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Abstract

In elastic systems, small changes in stiffness or inertia yield a shift in natural frequencies.
The so-called energy approach allows to obtain a linear approximation to estimate this
frequency shift using energetic considerations. The goal of this thesis is to test this
energy approach for a square plate with a crack or applied mass for different mode
shapes. In particular, the behaviour of the frequency shift is to be determined with
finite element analyses and checked for convergence with the solution according to the
energy approach.
First, necessary theoretical aspects from Kirchhoff's plate theory and the linear finite
element method are stated. Then, the energy approach is introduced and a mathemat-
ical justification is given. Afterwards, the simulation model and the used meshes are
presented. Following this, the results of the finite element analyses for the plate with
additional mass/crack are discussed.
The simulations clearly show that the previously known form of the energy approach
fails in the case of repeated natural frequencies, as they occur with square plates. Apart
from that, good correspondence can be seen for the considered examples.
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Kurzfassung

In elastischen Systemen äußern sich geringfügige Änderungen der Steifigkeit oder Mas-
senträgheit in einer Verschiebung der Eigenfrequenzen. Das sogenannte Energieverfahren
ermöglicht es, mit Hilfe von energetischen Betrachtungen eine lineare Approximation zu
bestimmen, mit welcher die Frequenzverschiebung abgeschätzt werden kann. Das Ziel
der vorliegenden Arbeit ist es, dieses Energieverfahren für eine quadratische Platte mit
Riss oder aufgebrachter Masse für verschiedene Eigenmoden zu prüfen. Speziell soll da-
bei der Verlauf der Frequenzverschiebung durch Finite-Elemente-Analysen ermittelt und
auf Konvergenz mit der linearen Näherungslösung untersucht werden.
Zunächst werden erforderliche theoretische Zusammenhänge aus der Kirchhoffschen Plat-
tentheorie und der linearen Finite-Elemente-Methode angeführt. Ebenso wird das Ener-
gieverfahren erläutert und durch eine Herleitung gestützt. Anschließend wird das Simula-
tionsmodell und die verwendeten Netze vorgestellt. Darauffolgend werden die Ergebnisse
der Finite-Elemente-Analysen für die Platte mit Zusatzmasse/Riss diskutiert.
Die Simulationen zeigen deutlich, dass das Energieverfahren in der bisher bekannten
Form bei mehrfachen Eigenfrequenzen, wie sie bei quadratischen Platten auftreten, schei-
tert. Abgesehen davon lässt sich bei den betrachteten Problemen eine gute Übereinstim-
mung feststellen.
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1 Introduction

An interesting question occurs when investigating the natural vibrations of an elastic
structure (modal analysis): how do small changes in inertial or stiffness properties af-
fect the spectrum of natural frequencies? It is well known that local damage due to a
crack or changed inertia from an applied mass result in lower natural frequencies of the
system. If the behaviour of the origin system is already studied, is it even necessary
to execute another whole modal analysis for the perturbed system? No, there exists a
linear approximation for the change in natural frequencies of the perturbed system based
on the so-called energy approach. The energy approach allows a quick calculation of the
frequency shifts (difference between natural frequency of perturbed and unperturbed
system) when the vibration modes of the unperturbed system are known.

In the 13th International Symposium on Vibrations of Continuous Systems, which took
place in Canada in 2023 [15], the energy approach for natural frequencies of a simply
supported rectangular plate with cracks was presented and tested with different dimen-
sions of the crack and the plate itself. The energy approach was treated analytically
in this conference contribution, which is possible for such simple boundary conditions
of the plate. This awakened motivation to examine the energy approach further for
plates with more complex boundary conditions, where the natural vibrations cannot be
described by simple analytical expressions. As a result, the prediction according to the
energy approach has to be obtained by the finite element method. In particular, the
energy approach formula is further investigated for plate problems with cracks and also
with added masses. The goal is to determine the behaviour of the frequency shift in a
clamped square plate due to applied masses or cracks in dependence on the measure of
the structural change and to compare the predictions obtained by the energy approach
to the results of the conventional approach, which requires re-meshing in dependence
on the geometry of the structural change and solving a new eigenvalue problem. The
main question is if the initial slopes of these two solutions (reference solution and energy
method) approach each other for small property changes in different mode shapes. For
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1 Introduction

this sake, a finite element model using Bogner-Fox-Schmit elements [19] was developed
in Wolfram Mathematica [22].
An interesting fact is that there is also a practical demand for such efficient prediction
methods for the non-destructive inspection of elastic systems using frequency measure-
ments (e.g. for plate-like structures in machine coverings or casings) [11]. Changes in
natural frequencies of structures are highly dependent on the location and size of damage
and therefore used to detect and characterise it [11].

In Chapter 2 of this thesis some theoretical aspects about Kirchhoff's plate theory and
the linear finite element method are given. At the end of Chapter 2 the mentioned
energy approach is introduced and a mathematical justification is presented for the case
of unchanged kinematics (admissible deformations of unperturbed and perturbed system
are the same). Chapter 3 deals with the implemented finite element model and discusses
the used rectangular and skewed mesh. Following this, in Chapter 4, the energy approach
is tested and compared to the reference solution in the case of a plate with applied line
mass (centric and skewed). In Chapter 5 the cracked plate is discussed. First, the used
crack implementation is given, then the energy approach is tested and compared again to
the reference solution (centric and skewed). Finally, Chapter 6 summarizes the findings
of this thesis and provides an outlook of possible further investigations around this topic.
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2 Theoretical Background

2.1 Kirchhoff's plate theory

First of all, we need to distinguish between curved and planar thin-walled surface-like
structures. Curved structures are called shells while the planar ones are separated
into disks and plates. Disks are only loaded within its plane, while structures with
perpendicular loading states are called plates. Structures can be seen as thin-walled if the
thickness is much smaller compared to the other dimensions (or a characteristic length).
In this thesis, the vibrations of a thin-walled square plate clamped at all four edges are
simulated with the account for added masses and cracks. This section should give an
overview of the used mechanical theory to describe plate problems mathematically. For
thin-walled plates an analogous theory to the Bernoulli-Euler beam was formulated by
Kirchhoff1.

mid− plane
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pz

h i

j

k
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y

z

Mν

Mt

Figure 2.1: Sketch of a plate problem

1Gustav Robert Kirchhoff, 1824-1887, German physicist [16]
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2 Theoretical Background

This plate theory is based on a several assumptions [4, 16, 21]:

• As already mentioned, the thickness is small compared to the other dimensions.

• Equations are formulated for the mid-plane of the plate (see Figure 2.1).

• Kirchhoff's hypothesis is valid, which means that normals to the undeformed mid-
surface stay perpendicular to the deformed mid-plane → shear rigid plate.

• The distance between points along the normals to the mid-plane remains the same.
According to this assumption a plane strain would occur because εz = 0. In
the next assumption, a plane stress state is assumed - here a contradiction of
Kirchhoff's plate theory should be pointed out.

• A plane stress is assumed. Therefore the stresses σz, τxz and τyz are zero. As a
consequence the strain component perpendicular to the plate εz will be different
from zero.

• Geometric linearity - small deformation compared to the dimension of the plate
and small strains are considered.

• Linear elastic material behaviour - Hooke's law is valid. Furthermore isotropic
homogeneous plates are treated.

In these assumptions one can notice that Kirchhoff's plate theory is not free of contra-
dictions. However, practical experience shows that the resulting errors are negligible if
the plate thickness is sufficiently small [16].

2.1.1 Plane stress state

As shown in Figure 2.1, a three dimensional i-j-k coordinate system with a k-axis
perpendicular to the mid-plane is used. In this thesis dyadic products like ii are written
without the often used symbol ⊗. With this notation the three dimensional stress tensor
σ3 can be expressed in general as [21]

σ3 = σ + τk + kτ + σzkk, (2.1)

where σ = σxii+σyjj+τxy(ij+ji) represents the plane stress tensor and τ = τxzi+ τyzj

denotes the shear stress vector. Using Kirchhoff's assumptions of the plate theory the
stress tensor σ3 simplifies to σ3 = σ, which is the considered plane stress state. Note
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2 Theoretical Background

that the assumption that shear stresses τ equal to zero τ = 0 for plate problems
(perpendicular loading states) cannot be true. They have to counteract the transverse
load, which reveals another inconsistency of this plate theory. However, it is still possible
to calculate so-called statically equivalent estimates for the shear stresses τxz, τyz by using
the stress resultants [4].
The three dimensional linear strain tensor can be formulated in the same way [21]:

ε3 = ε⊥ + γk + kγ + εzkk. (2.2)

Here ε⊥ = εxii+εyjj+γxy(ij+ji) indicates the planar strain tensor and γ = γxzi+ γyzj

is used for the shear strain vector. The constitutive law for an ideal elastic and isotropic
body (Hooke's law) is given by [13]:

ε3 =
1 + ν

E
σ3 − ν

E
I trσ3 and tr ε3 =

1− 2ν

E
trσ3, (2.3a)

σ3 =
E

1 + ν
ε3 +

Eν

(1− 2ν)(1 + ν)
I tr ε3 and trσ3 =

E

1− 2ν
tr ε3. (2.3b)

In Equation (2.3) the Young's modulus is denoted with E, the Poisson's ratio is ν, the
trace operator is symbolized with tr and for the three dimensional unit tensor I is used.
In the next step a fomulation of Hooke's law for a plane stress state like in Equation
(2.3b) is derived. If the expressions for ε3 in Equations (2.3a) and (2.2) are set equal
and the unit tensor I is written as I = I⊥ + kk, one gets [21]

ε3 = ε⊥ + γk + kγ + εzkk =
1 + ν

E
σ − ν

E
(I⊥ + kk) trσ. (2.4)

As a result the shear strain vector γ must disappear. By comparing the kk-components
one can see that εz does not become zero. The transversal strain component becomes
equal to

εz = − ν

E
trσ, (2.5)

where a short look at the made assumptions points out the mentioned contradiction in
this plate theory. Now the planar strain tensor is expressed by

ε⊥ =
1 + ν

E
σ − ν

E
I⊥ trσ. (2.6)

Further relations in this section and in the following two sections refer closely to [21].
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2 Theoretical Background

To obtain an expression for trσ the trace operator is applied on Equation (2.6)

tr ε⊥ =
1 + ν

E
trσ − ν

E
2 trσ, (2.7)

where trσ is easily determined as

trσ =
E

1− ν
tr ε⊥. (2.8)

Using the expression for trσ and Equation (2.6), a final formulation for σ(ε⊥) is given
by

σ =
E

1 + ν
ε⊥ +

Eν

(1 + ν)(1− ν)
I⊥ tr ε⊥, (2.9)

or in a shorter version with Y = E(1− ν2)−1 as

σ = Y ν I⊥ tr ε⊥ + Y (1− ν) ε⊥. (2.10)

2.1.2 Kinematics and strain energy in a plate problem

The position vector of a point P within the plate (see Figure 2.2) is described with its
normal projection point P0 on the undeformed mid-plane by

R3 = R0 + zk. (2.11)

j

k

i

P0

P

P0

P
R0

zk

u0

Q · zk
r3

R3

undeformed

deformed

Figure 2.2: Kinematic assumptions for the plate problem

In the current or deformed configuration, the position vector becomes

r3 = R0 + u0 +Q · zk, (2.12)
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2 Theoretical Background

where u0 describes the displacement vector of point P0 and Q represents an orthogonal
rotation tensor. The rotation tensor Q within the considered geometrically linear theory
can be formulated as Q = I3+ω×I3+O(ω2) with an axial vector ω. For the displacement
vector of point P one gets

u3 = r3 −R3 = u0 + z(Q− I3) · k = u0 + z(ω × I3) · k = u0 + zω × k. (2.13)

Here, it is clear that the z-component of ω has no influence on the displacement vector,
so it is considered as zero without any effects - hence ω is a planar vector within the
plate surface. If the cross product ω × k is denoted as ψ and the nabla-operator in
the three dimensional space ∇3 = ∇ + k∂z expressed by using a planar part ∇, the
deformation gradient becomes equal to

∇3u3 = ∇u0 + z∇ψ + kψ. (2.14)

Furthermore, the displacement vector u0 of a point P0 in the mid-plane can generally
be split into a part within the plane (for disk problems) and another part normal to
the plane, which is considered here for the plate problems. This perpendicular part is
called the deflection of the mid-plane and is given by w = u0 · k. Because in the plate
bending problem we focus only on the transversal displacement we can set u0 = wk and
do not need to consider the in-plane part. Referring to the assumptions mentioned at
the beginning, zero strain in the direction of the thickness of the plate is assumed. If
one scalar multiplies u3 ·k, it can be easily seen that this equals w, as a result no strain
component εz will be obtained. In the geometrically linear theory the three dimensional
strain tensor ε3 is given by the symmetrical part of the deformation gradient [2]

ε3 = (∇3u3)
S =

1

2

�
(∇3u3)

T + (∇3u3)
�
. (2.15)

Using u0 = wk into (2.15) yields the following expression:

ε3 = −zκ+ (kγ)S. (2.16)

Here κ = −(∇ψ)S is the linearised curvature tensor and γ = ∇w + ψ represents the
shear strain vector, which was introduced earlier. In the last step to obtain an expression
for the planar strain tensor ε⊥, which is necessary for (2.10), Kirchoff's assumption of
a shear rigid plate must be taken into account. The shear strain vector becomes zero

7



2 Theoretical Background

γ = ∇w + ψ = 0, so normals to the mid-plane remain normal. As a result, we write
that ψ = −∇w which leads to κ = −(∇ψ)S = ∇∇w. Hence, the strain tensor becomes
equal to

ε3 = −zκ = −z∇∇w ≡ ε⊥. (2.17)

Now, further required quantities as the tensor of moments, the plate stiffness and the
strain energy are derived. At first, the internal virtual work reads as

δAi = −
�
V

σ · · δε⊥dV = −
�
A

(−
�
h

σzdz · · δκ) dA = −
�
A

m · · δκ dA, (2.18)

where m is the tensor of moments. The calculation of m is done by inserting the planar
strain tensor (2.17) into the constitutive law (2.10)

σ = Y ν I⊥(−z trκ) + Y (1− ν)(−zκ) (2.19)

and integrating over the plate thickness with a symmetric interval [−h/2, h/2]:

m = −
h/2�

−h/2

�
Y ν I⊥ z(−z trκ) + Y (1− ν)z(−zκ)

�
dz, (2.20)

or in a shorter version
m = Dν I⊥ trκ+D(1− ν)κ. (2.21)

Here, D is used for the so-called plate stiffness (flexural rigidity):

D =

h/2�
−h/2

Y z2 dz =
Y h3

12
=

Eh3

12(1 + ν)(1− ν)
=

Eh3

12(1− ν2)
. (2.22)

Furthermore, the bending strain energy density per unit area ub is expressed by

ub =
1

2
D
�
ν (trκ)2 + (1− ν)κ · ·κ� or ub =

1

2
m · ·κ. (2.23)

To get the total bending strain energy Ub we have to integrate ub over the area of the
plate:

Ub =

�
A

ub dA =
1

2

�
A

m · ·κ dA. (2.24)
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2 Theoretical Background

2.1.3 Equilibrium conditions and plate equation

In this section, the equilibrium conditions for the plate problem are derived, which
are necessary for the final plate equation. We start with the principle of virtual work
δAe + δAi = 0, where the total of the virtual external and internal work is zero for an
equilibrium state. The internal work δAi has already been expressed in Equation (2.18).
Using the linearised curvature tensor κ = ∇∇w we write

δAi = −
�
A

m · · δκ dA = −
�
A

m · · δ∇∇w dA

=

�
A

(∇ ·m) · δ(∇w) dA−
�
∂A

ν ·m · δ∇w ds

= −
�
A

(∇ · ∇ ·m) δw dA+

�
∂A

(∇ ·m) · ν δw ds−
�
∂A

ν ·m · δ∇w ds,

(2.25)

where ν is the unit normal vector to the boundary ∂A of the plate area A, see Figure
2.1. Next, the virtual work of external forces is given by

δAe =

�
A

pz δw dA+

�
∂A

(Pz δw +M · δω) ds. (2.26)

Here, the moment vector M performs virtual work on the virtual rotations δω = k×δψ.

Using δψ = −δ∇w we further write M ·δω = M ·k×δψ = M×k ·δ∇w. Subsequently
the principle of virtual work for the plate reads

0 =

�
A

( pz−∇·∇·m) δw dA+

�
∂A

�
Pz+(∇·m) ·ν� δw ds−

�
∂A

(ν ·m+M×k) ·δ∇w ds.

(2.27)
In Equation (2.27) we see that not all virtual displacements can be chosen independently.
The variation of the deflection gradient δ∇w cannot be chosen arbitrarily, therefore this
term must be examined in more detail. This gradient is given by

∇w = ν(ν · ∇w) + t (t · ∇w) = ν
∂w

∂ν
+ t

∂w

∂s
, (2.28)

where ∂ν = ∂(·)/∂ν and ∂s = ∂(·)/∂s are the directional derivatives, t represents the
unit vector tangential to the boundary ∂A of area A. Especially ∂νw represents the
inclination of the plate at the borderline. By the use of the commutativity δ∇w = ∇δw,

9



2 Theoretical Background

the last term of Equation (2.27) becomes equal to

−
�
∂A

(ν ·m+M × k) · δ∇w ds =

= −
�
∂A

(ν ·m · ν +M × k · ν) δ∂νw ds−
�
∂A

(ν ·m · t+M × k · t) ∂sδw ds

= −
�
∂A

(ν ·m · ν +M × k · ν) δ∂νw ds+

�
∂A

∂s (ν ·m · t+M × k · t) δw ds.

(2.29)
In Equation (2.29) the integral with (· · · ) ∂sδw was rewritten using the integration by
parts. No boundary terms arise because of the closed path of the line integral. The cross
products with M result in a bending moment Mt around an axis with direction t and
analogous into a twisting moment Mν around an axis with direction ν:

M × k · ν = k × ν ·M = t ·M = Mt,

M × k · t = k × t ·M = −ν ·M = −Mν .
(2.30)

Finally, the principle of virtual work for the plate reads

0 =

�
A

(pz −∇ · ∇ ·m)δw dA−
�
∂A

(ν ·m · ν +Mt) δ∂νw ds

+

�
∂A

�
Pz + (∇ ·m) · ν + ∂s (ν ·m · t)− ∂sMν

�
δw ds.

(2.31)

The occurring variations δw and δ∂νw can be chosen arbitrarily, therefore the terms in
brackets must vanish. This yields the sought for equilibrium conditions with q = −∇·m:

A : ∇ · q + pz = 0,

∂A : q · ν − ∂s (ν ·m · t) = Pz − ∂sMν .
(2.32)

Using ∇ · q + pz = 0, the Laplace operator Δ = ∇ ·∇ = ∇2 and the following relations:

∇ · κ = ∇ · ∇(∇w) = Δ(∇w) = ∇(Δw), trκ = tr(∇∇w) = ∇ · ∇w = Δw,

q = −∇ ·m = −Dν∇ trκ−D(1− ν)∇ · κ = −D∇(Δw),
(2.33)

one obtains the fourth-order plate equation for an isotropic shear-rigid plate according
to Kirchhoff:

DΔΔw = pz. (2.34)

10



2 Theoretical Background

2.1.4 Free vibration analysis

This section covers the solution for natural vibrations of plates. At first the fourth-order
plate equation (2.34) is adapted for the dynamical analysis. Using pz = 0 and adding a
dynamical term −ρhẅ (inertial force, also called d'Alembert force with ρh being mass
per unit area) on the right side of the equation, one gets

D∇∇w(x, y, t) = −ρhẅ(x, y, t). (2.35)

Natural vibrations are now studied by separating the time t and position (x, y) variables.
According to [3] the following separation ansatz is suitable:

w(x, y, t) = W (x, y)T (t). (2.36)

This ansatz inserted into the partial differential equation (2.35) leads to

D∇∇W (x, y)

ρhW (x, y)
= − T̈ (t)

T (t)
!
= ω2. (2.37)

To ensure that both sides W (x, y) and T (t) of Equation (2.37) are equal for any time t

or position (x, y), they have to be constant. The constant is chosen as ω2, which is the
squared natural frequency [3]. As a result, one gets two separate equations:

∇∇W (x, y)− ρhω2

D
W (x, y) = 0,

T̈ (t) + ω2T (t) = 0.

(2.38)

The solution for the time function T (t) is expressed as T (t) = sin(ω + ϕ) or using the
imaginary unit as T (t) = ei(ωt+ϕ). In the next step, the remaining eigenvalue prob-
lem in (2.38) for the mode shapes W (x, y) and natural frequencies ω can be solved.
This succeeds analytically only in a few simple cases, for example the simply supported
rectangular (l1 × l2) plate. In this certain problem Navier's method with the ansatz

W (x, y) =
N�

n=1

M�
m=1

Wmn sin
�mπ

l1

�
x sin

�nπ
l2

�
y, (2.39)

leads to the goal; see also [4] for the solution of the static deflection W (x, y) under a
certain load and [3] for the eigenvalue problem. In general, for an eigenvalue problem
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2 Theoretical Background

of plates with arbitrary boundary conditions, one needs to make use of approximate
solution techniques like Ritz, Galerkin or numerical methods like the finite element
method. At this point, the paper from A. W. Leissa should also be mentioned [14]. Leissa
gives an overview of all 21 possible combinations of boundary conditions for a rectangular
plate and determines the natural vibrations. Six of them can be determined analytically
exact. For the remaining problems including the square clamped plate (considered in
this thesis) Ritz's method was used. We, however, do not use this analytical technique
as we need finite elements for more complicated problems anyways.

2.2 Linear Finite Element Method

Linear finite element analyses are widely used and one could say became daily business
in the academic research and mechanical engineering nowadays. Problems in continuum
mechanics lead to partial differential equations, which can only be solved analytically in
a few simple cases [10]. The linear finite element method (a numerical method) is used
to obtain numerical solutions when analytical solutions can not be found in general or
determined in a reasonable amount of time. Moreover, it is worth mentioning that the
whole process of simulating a problem using the finite element method (FEM) is called
finite element analysis (FEA). As in Section 2.1.4 already mentioned, the calculation
of eigenmodes and eigenvalues from Equation (2.38) succeeds analytically only in a
few simple ways. Therefore the linear finite element method is used for the eigenvalue
problem of the clamped square plate with added masses or cracks which is treated in
this thesis. Due to this, some basics of the linear FEM are discussed in this section.
At first some assumptions are made in the linear finite element method [18]:

• Small deformations, small displacement gradients and small strains - the Green
Lagrange strain tensor corresponds to the linear strain tensor: G ≈ ε3

• No material nonlinearities, contact or bifurcation of equilibria

• Equilibrium conditions are formulated for the undeformed system

2.2.1 General formulation in continuum mechanics

Before the finite element method can be applied, one has to transfer the strong formu-
lation of a problem (partial differential equations) into the so-called weak formulation
(integral form derived with calculus of variation e.g. principle of virtual work). This two

12



2 Theoretical Background

formulations are mathematically equivalent [20]. The weak formulation is the starting
point for the finite element method. If an arbitrary elastic body with surface area O,
volume V and some kinematic boundary conditions is considered, the principle of virtual
work (global equilibrium condition) reads as [18]

δAi + δAe = −
�
V

σ3 · · δε3 dV +

�
O

t · δuO dO +

�
V

kV · δu dV = 0, (2.40)

where t is used for surface loads (traction forces), kV are volume loads and u = u(x, y, z)

is the displacement of a material point P . To get an approximate solution for primarily
the displacement field u (displacement driven finite element method) a special form of
Ritz's method is used. The system is discretized with a lot of fixed points (nodes) all
over the volume V and surface O. Connecting those points with lines delivers a mesh
and divides the considered body into many small sub-volumes with nodes on the edges.
This are the so-called finite elements, sketched in Figure 2.3.

x

y

z

(e) u(x, y, z)

Figure 2.3: The system is discretized using finite elements

At this point, a special Ritz-ansatz is made for the displacement u(x, y, z) within a finite
element (e) [18, 17]:

u(x, y, z) = N(e)(x, y, z)u(e). (2.41)

The displacement of a point P with the global coordinates (x, y, z) symbolized with
u(x, y, z) is approximated by using the nodal displacements u(e) = [ux1 , uy1 , uz1 , ux2 , . . . ]

of a finite element around this position and an interpolation matrix N(e) which yields a
continuous field within the elements. The interpolating functions (also called shape func-
tions) are components of the interpolation matrix N(e) and are in contrast to the general
Ritz-method only valid within an element. Thus the shape functions are called local. The
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shape functions are constructed so that the displacement u(x, y, z) is always continuous
between the elements (C0 continuity must be ensured, see Section 2.2.3). Structural theo-
ries (beams, plates, shells) may require higher degree of continuity, namely C1-continuity,
see Section 2.2.3.
What is the goal of this special Ritz-ansatz? It is implemented in the global equilibrium
condition (2.40) and a solution for the nodal displacement u(e) of all elements is sought
for, such that the equation is fullfiled in an approximate sense [18]. From that moment
one has to keep in mind that this is only an approximation and no longer equal to the
strong formulation. If the weak formulation (2.40) is used for a (cut out) finite element
(e) one gets in operator notation [18]�

V (e)

σT
3 δε3 dV

(e) = (F (e))T δu(e), (2.42)

with σ3 = [σ11, σ22, σ33, σ23, σ13, σ12] as the vector of stress components (Voigt-notation),
the vector of strain components ε3 = [ε11, ε22, ε33, 2ε23, 2ε13, 2ε12] and the nodal force
vector F (e) = F

(e)
external + F

(e)
internal. Distributed loads like kv and t are converted into

consistent nodal forces F (e)
external [17]. The nodal force vector F (e) includes in addition to

the external forces also the internal forces (unknown) which became external forces on
the considered cut out element (e) [18].
In the next step of the derivation of the discrete linear FEM equation some expressions
are used:

ε3 = (∇3u3)
S =

1

2

�
(∇3u3)

T + (∇3u3)
� → ε3 = du3 = dN(e)u(e) = D(e)u(e),

δε3 = D(e) δu(e),
(2.43)

where D(e) denotes a differential operator matrix (operator notation) [18]. Furthermore
Hooke's law (without temperature influence) is converted into operator notation too,
where the elasticity tensor 4C becomes the [6× 6] elasticity matrix E:

σ3 =
4C · · ε3 → σ3 = E ε3 = ED(e)u(e). (2.44)

Inserting Equation (2.43) into (2.42) yields [18]�
V (e)

σT
3D

(e) dV (e) = (F (e))T. (2.45)

Transposing both sides of Equation (2.45) and inserting (2.44) leads to an expression
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2 Theoretical Background

for the element stiffness matrix K(e) [17]:

�
V (e)

(D(e))TED(e) dV (e)� �� �
K(e)

u(e) = F (e). (2.46)

For dynamical analyses an element mass matrix is determined as [17]

M(e) =

�
V (e)

ρ(e)N(e)(N(e))T dV (e). (2.47)

The nodal force vector F (e) still includes the internal forces F (e)
internal which are unknown,

therefore one has to assemble all the finite elements (e) to get rid of these [18]. At
first, the element mass matrix M(e) and element stiffness matrix K(e) are evaluated
using numerical integration (e.g. Gauss-Legendre Quadrature). For the assembly of
all elements, in general a transformation from local to global coordinates as well as a
mapping from local to global node numbering is necessary, reference is made to further
literature [12]. Transformed quantities are signed with a tilde above. Now, the global
matrices, the global nodal force vector and the global nodal displacements are calculated
with

K =
�
(e)

K̃
(e)
, M =

�
(e)

M̃
(e)
, F =

�
(e)

F̃ (e), u =
�
(e)

ũ(e), (2.48)

which yields the well known global system of equation for linear static problems:

Ku = F . (2.49)

Subsequently the nodal displacements u are obtained by solving the system of equations.
Finally the strain and stress fields can be determined for the integration points within the
element and extrapolated into the nodal points. The optimal points for the evaluation
of derived variables from the displacement u are the Gauss-Legendre integration points
(Table 2.1) according to [10]. Strain and stress fields are in general not continuous over
the element edges. This is a contradiction with the analytically solution, which would
indicate an error in the approximate (FE) solution [10]. Therefore strains and stresses
are often averaged on the element edges to get a continuous field [10].
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2.2.2 Approach of this thesis for the plate problem

Using the advantages of computer algebra, we chose a faster way to obtain the two
matrices K and M, which are necessary for the considered eigenvalue problem of the
plate. We consider the quadratic forms of the kinetic energy T and strain energy Ub in
linear systems to determine the global mass and stiffness matrix. At first T (e) and U

(e)
b ,

the kinetic and strain energy of a finite element, are calculated. Afterwards, all finite
elements are assembled with a mapping between the local and global numbering of nodes
(and degrees of freedom) and the total quantities T and Ub are evaluated. The quadratic
forms [20] with respect to the finite element method and the plate problem (Area A,
plate thickness h, density ρ, transversal deflection w, rotary inertia of through-thickness
elements is neglected in Kirchhoff's theory) read as

U
(e)
b =

1

2
(q(e))TK(e) q(e) =

1

2

�
A(e)

D
�
ν (trκ(e))2 + (1− ν)κ(e) · ·κ(e)

�
dA(e),

T (e) =
1

2
(q̇(e))TM(e) q̇(e) =

1

2

�
A(e)

ρhẇ2 dA(e),

(2.50)

where further K and M are obtained by

Ub =
�
(e)

U
(e)
b , K =

∂2Ub

∂qi∂qj
and T =

�
(e)

T (e), M =
∂2T

∂q̇i∂q̇j
. (2.51)

In this formulation, q denotes the generalized coordinate vector and q̇ its time derivative
(with superscript (e) only valid for a finite element). Integrals are calculated with
Gauss-Legendre quadrature, which is discussed in the following section.

2.2.3 Local shape functions and numerical integration

In this section general aspects of local shape functions (two dimensional formulation)
and the used procedure for the numerical integration are presented. The local shape
functions together with the nodal displacements (special Ritz-ansatz (2.41)) describe
the displacement field within a finite element (e). Main advantages of this ansatz are
the usage of a reference element with simple shape functions (transformation/mapping
into unit square with normalized coordinates ξ, η), further that the boundary conditions
can be fulfilled easily and of course the numerical automation [18].
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There are a few conditions to the shape functions [10]:

• Continuity - a field function must be continuous within the finite element (e)

and also across the element edges. Inside the element it is easy to ensure with
a continuous function. The inter-element continuity is realised by setting the
nodal displacements of neighbouring elements as equal and the usage of specially
constructed shape functions → C0-continuity. In the case of shear rigid beams,
plates or shells it must be ensured that in addition to C0 the first derivatives
across the element boundaries are continuous too. This is called C1-continuity.
Otherwise, the structure shows kinks which are physically not correct. The reason
is that the curvature (second derivative) becomes infinite at kinks and therefore
one would obtain squares of infinite terms in the strain energy [23].

• Shape functions Ni(ξ, η) must be linearly independent to obtain a unique solution.

• It must be possible to represent a gradient free field, which is in the mechanics
of solids a rigid-body translation, for example. This is ensured with the so-called
partition of unity:

�
i Ni(ξ, η) = 1.

• The degree of a polynomial function has to be as high as necessary to get at least
a constant value for the derivatives in the weak formulation.

• To ensure the displacement field u at a node with coordinates ξ̂j is exactly the
displacement of this node, the shape functions are constructed as given in (2.52).
Therefore, the value of a shape function is exactly one at the respective node.

Ni(ξ̂j) =

1 for i = j

0 for i �= j
(2.52)

There are a lot of possible types of shape functions, in most cases polynomial functions
are used, see also [10]. The functions used in this thesis are given in Section 3.1.
The already mentioned transformation of the shape functions into a unit area is the
next step towards increasing efficiency. Figure 2.4 shows the mapping from local and
normalized (natural) coordinates ξ, η ∈ [−1,+1] into global coordinates with respect to
the plate problem. At this point the shape functions were only used in context with
displacements but they are of course also used to display the original geometry. If the
same shape functions are used for the geometry and the displacement (each element is
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transformed in the same way, hence: N(e) → N, plate problem is considered)

x =

x(ξ, η)y(ξ, η)

0

 = N(ξ, η)x(e), u =

 0

0

w(ξ, η)

 = N(ξ, η)u(e), (2.53)

then the elements are called isoparametric or one can say it is an isoparametric formula-
tion [10]. When the order of the shape functions for the geometry is lower than for the
displacement, it is called subparametric formulation [10]. In the case of higher order for
the geometry it is a superparametric formulation [10].

y

x

z

A

B

C

D

x(ξ, η)
u(ξ, η)

Transformation

η

ξ

1

1

−1

−1

1 2

34

Figure 2.4: Mapping from local to global coordinates (plate problem)

As shown above, in the chosen approach to determine the global stiffness and mass
matrix integrals of type �

A(e)

f(x, y) dA(e), (2.54)

have to be evaluated. Here f(x, y) denotes an arbitrary function of global coordinates.
Using the mapping into a unit square one can rewrite those integrals into [10]�

A(e)

f(x, y) dA(e) =

� +1

−1

� +1

−1

f̂(ξ, η) detJ(ξ, η) dξ dη, (2.55)

with J(ξ, η) as the two-dimensional Jacobian:

J(ξ, η) =
∂x

∂ξ
=

∂(x, y)

∂(ξ, η)
=



∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

�
. (2.56)
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Note that the presented variant of the Jacobian corresponds to a mathematical definition,
contrary to many finite element literature sources (there it is defined as the transposed
mathematical Jacobian) [10]. Next the occurring integrals are numerically evaluated
using the Gauss-Legendre quadrature (often only named as Gauss-quadrature)[10]:

+1�
−1

+1�
−1

f̂(ξ, η) detJ dξ dη ≈
nx�
i=1

ny�
j=1

f̂(ξi, ηj) detJ(ξi, ηj)ωi ωj. (2.57)

Here n is used for the number of integration points (integration order), (ξi, ηj) is the
position of the integration points and ωi,j are the quadrature weights. Table 2.1 shows
the position of the integration points, the maximum degree of a polynomial pmax which
can be integrated analytically exact and the corresponding weights for ξ ∈ [−1,+1].

Table 2.1: Gauss-Legendre parameters [10]

n pmax ξi ωi

1 1 0 2

2 3 ± 1√
3

1

3 5
0

±
�

3
5

8
9

5
9

4 7
±
√

525−70
√
30

35

±
√

525+70
√
30

35

1
2
+

√
30
36

1
2
−

√
30
36
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2.3 Energy approach to estimate changes in the

natural frequencies

The standard modal analysis starts with the consideration of the unforced motion equa-
tion of a multiple degree of freedom (multiple DOF, q as generalized coordinates) system:

Mq̈ +Kq = 0. (2.58)

With the determined mass and stiffness matrix the eigenvalue problem can be studied:

(K− ω2M)ψ = 0, det(K− ω2M) = 0. (2.59)

Here ω denotes the natural frequency (math: eigenvalue) and ψ the corresponding mode
shape (eigenmode, math: eigenvector). The characteristic equation det(K− ω2M) = 0

yields the natural frequencies. To each natural frequency there exists one (unique,
except amplitude) mode shape vector ψ (considering mechanical system which yields
symmetric positive definite n×n-matrices). Natural frequency and corresponding mode
shape defines the so-called modal motion, which is a harmonic process [5]:

q = ψeiωt. (2.60)

A general oscillation of a n-DOF system is then given as the sum of the modal motions
with additional constants αk to fit the initial conditions [8]:

q =
n�

k=1

αkψke
iωkt. (2.61)

An interesting question on this issue is: How do small changes in the elastic structure
(additional masses or local damages) affect the natural frequencies? Is it necessary to
execute another whole modal analysis for the perturbed system? To keep it short: No,
a linear approximation exists. The derivation is now presented.
By solving (2.59) of the unperturbed system the natural frequencies ω0 and the mode
shapes ψ0 are obtained. Assuming a small change in the mass and stiffness matrices
(no influence on the kinematics, perturbed and original system have the same possible
deformations, q is used for both systems) we write with a small parameter λ:

K = K0 + λK1, M = M0 + λM1. (2.62)
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Furthermore, the sought for natural frequency and mode shape can also be written with
λ in terms of an asymptotic series

ω = ω0 + λω1 +O(λ2), ψ = ψ0 + λψ1 +O(λ2). (2.63)

Here, ω1 and ψ1 denote the first order correction. Consequently, the eigenvalue problem
of the perturbed system becomes equal to

�
K0 + λK1 − (ω0 + λω1)

2(M0 + λM1)
�
(ψ0 + λψ1) = 0. (2.64)

The equation is obviously fulfilled for the terms without λ because of the eigenvalue
problem of the unperturbed problem

(K0 − ω2
0M0)ψ0 = 0. (2.65)

All the terms with λ have to be equal to zero for the asymptotic series. Therefore one
gets for the coefficients with λ

(−ω2
0M1 − 2ω0ω1M0 +K1)ψ0 + (−ω2

0M0 +K0)ψ1 = 0. (2.66)

Multiplying Equation (2.66) with ψT
0 from the left side and applying (2.65) yields

ψT
0 (−ω2

0M1 − 2ω0ω1M0 +K1)ψ0 = 0. (2.67)

There one can see that the linear frequency correction ω1 decouples from the mode shape
correction ψ1. From that the searched frequency correction ω1 is expressed as

ω1 =
ψT

0K1ψ0

2ω0ψ
T
0M0ψ0

− ω0ψ
T
0M1ψ0

2ψT
0M0ψ0

. (2.68)

Moreover the amplitude of the kinetic energy of the original system (value is equal to
the amplitude of the strain energy) reads as

T0 = max
t

�1
2
q̇TM0q̇

�
=

1

2
ω2
0ψ

T
0M0ψ0. (2.69)

The kinetic energy of the added mass at a mode shape of the unperturbed system T1

and the additional strain energy of the perturbed system U1, as a result of the stiffness
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change are given by

T1 =
1

2
ω2
0ψ

T
0M1ψ0, U1 =

1

2
ψT

0K1ψ0. (2.70)

Finally, the first order frequency correction results in

ω1 =
ω0

2T0

(U1 − T1), ω = ω0 + ω1. (2.71)

To demonstrate the energy approach, a brief test is done using a simply supported
Bernoulli-Euler beam with added concentrated mass µ in the middle. The mass µ de-
termines the ratio of the added mass to the total mass of the beam. First the kinetic
energies T0, T1 and the natural frequency ω0 of the unperturbed beam have to be eval-
uated (first eigenmode is considered). Afterwards, a comparison of analytically exact
solution and energy approach of the natural frequency of the perturbed system ω can be
plotted as shown in Figure 2.5. Here we see that the correspondence of exact solution
and the prediction obtained by the energy approach is quite good up to µ = 0.10 (10%).

0.05 0.10 0.15 0.20 0.25
μ

8.0

8.5

9.0

9.5

10.0
ω

exact solution

energy approach

Figure 2.5: Beam with added mass: exact solution vs. energy approach, mode shape 1
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3 Finite Element Model

3.1 Bogner-Fox-Schmit element formulation

As already mentioned in Section 2.2.3 the finite element approximation for a classical
Kirchhoff plate must remain C1-continuous under deformation. For this reason, quadri-
lateral C1-continuous Bogner-Fox-Schmit (BFS) elements are used. These elements were
introduced by Bogner, Fox and Schmit in the first conference on matrix methods in
structural mechanics in 1965 [6, 7]. The BFS-elements (shown in Figure 3.1) own four
corner-nodes with overall 16 degrees of freedom (four at each node). Consider a node i

with the DOFs given by

wi,
�∂w
∂ξ

�
i
,
�∂w
∂η

�
i
,
� ∂2w

∂ξ∂η

�
i
, (3.1)

with the nodal displacement (lateral displacement of the plate), the first derivatives in
the two directions ξ and η and the second derivative.

w1,
�

∂w
∂ξ

�
1
,
�

∂w
∂η

�
1
,
�

∂2w
∂ξ∂η

�
1

w2,
�

∂w
∂ξ

�
2
,
�

∂w
∂η

�
2
,
�

∂2w
∂ξ∂η

�
2

w3,
�

∂w
∂ξ

�
3
,
�

∂w
∂η

�
3
,
�

∂2w
∂ξ∂η

�
3

w4,
�

∂w
∂ξ

�
4
,
�

∂w
∂η

�
4
,
�

∂2w
∂ξ∂η

�
4

η

ξ

1

1

−1

−1

1 2

34

Figure 3.1: Square BFS-element with nodal DOFs and local coordinate system ξ − η

At first glance, the second derivative as nodal DOF seems to be redundant but it can
easily be shown that it is not. Therefore, we consider Figure 3.1 and examine the change
of the first derivatives along the element edges. In general, the change of ∂w/∂ξ along
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the edge form node 1 to 4 (direction η) is described with

∂ ∂w
∂ξ

∂η
= ∂(∂w/∂ξ)∂η, (3.2)

which is only dependent on the nodal parameters 1 and 4. The same can be done for
the edge from node 3 to 4 which leads to ∂(∂w/∂η)∂ξ. At the common node 4, one can
not automatically say that

∂2w

∂ξ∂η
≡ ∂2w

∂η∂ξ
, (3.3)

for arbitrary nodal values 1 and 3 [23]. Hence it is impossible to determine polynomial
shape functions which ensure full compatibility when only the displacement and its first
derivatives are prescribed in the finite element nodes [23]. For this reason the mixed
derivative ∂2w/∂ξ∂η is used as additional nodal parameter (DOF).
Furthermore BFS-elements are based on the use of Hermitian polynomials (known from
shear rigid Bernoulli-Euler beam elements), thus they are one of the simplest approaches
to obtain plate or shell elements. The one-dimensional cubic shape functions of the beam
element (two nodes, see Figure 3.2) read as [6]

ψ1 =
1

4
(1− ξ)2(2 + ξ), ψ2 =

1

4
(1− ξ)2(1 + ξ),

ψ3 =
1

4
(1 + ξ)2(2− ξ), ψ4 =

1

4
(1 + ξ)2(ξ − 1),

(3.4)

with ξ as the local normalized coordinate. Here for example ψ1 corresponds to the
displacement DOF of the node at ξ = −1 and ψ2 to the rotational DOF at ξ = −1 [6].

ψ2
ψ3ψ1

ψ4-1.0 -0.5 0.5 1.0
ξ

-1.0
-0.5

0.5

1.0

1.5

ψi(ξ)

Figure 3.2: One-dimensional cubic Hermitian polynomials for shear rigid beam elements
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The shape functions for the lateral deflection of a BFS-element at node i = 1, for
example, are described with a second dimension η (local normalized coordinate) by the
tensor products of the beam Hermitian polynomials (shown in Figure 3.3) [6]

S1,1 = ψ1(ξ)ψ1(η) =
1

16
(1− ξ)2(2 + ξ)(1− η)2(2 + η),

S1,2 = ψ2(ξ)ψ1(η) =
1

16
(1− ξ)2(1 + ξ)(1− η)2(2 + η),

S1,3 = ψ1(ξ)ψ2(η) =
1

16
(1− ξ)2(2 + ξ)(1− η)2(1 + η),

S1,4 = ψ2(ξ)ψ2(η) =
1

16
(1− ξ)2(1 + ξ)(1− η)2(1 + η).

(3.5)

(a) S1,1(ξ, η) (b) S1,2(ξ, η)

(c) S1,3(ξ, η) (d) S1,4(ξ, η)

Figure 3.3: Bi-cubic shape functions of node 1 of a Bogner-Fox-Schmit element

Finally, the lateral deflection within a finite element is approximated with [6]

w(ξ, η) =
4�

i=1

	
wi Si,1(ξ, η) +

�∂w
∂ξ

�
i
Si,2(ξ, η) +

�∂w
∂η

�
i
Si,3(ξ, η) +

� ∂2w

∂ξ∂η

�
i
Si,4(ξ, η)

�
.

(3.6)
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3.2 Rectangular mesh

In this thesis, rectangular and skewed meshes were implemented in Wolfram Mathemat-
ica for the examination of natural frequencies of a plate with additional mass or a crack.
We begin with the implementation of the simple regular mesh, where the considered
clamped square plate is discretized with square elements. As discussed above, the Bogn-
er-Fox-Schmit finite elements were used. To increase the numerical efficiency we made
also use of the mapping into a unit area with local coordinates, see also Section 2.2.3.
The rectangular mesh with, for example, 4×4 elements (element side length h = 0.25m)
is depicted in Figure 3.4 (only the grid lines are shown). The parameters of the consid-
ered plate are: square plate with side length a = 1m, steel (density ρ = 7800 kg/m3,
Young's modulus E = 2.1 · 1011 N/m2, Poisson's ratio ν = 0.3), thickness t = 10−3 m.

x

y

a

a

h

h

η

ξ

1

1

−1

−1

1 2

34

Transformation

Figure 3.4: Rectangular mesh and mapping

With the approximation of w(ξ, η) (3.6) one can evaluate the kinetic energy T (e) and
strain energy U

(e)
b (2.50) for one finite element (e). The necessary expression of the

linearised curvature tensor for an element κ(e) is determined as

κ(e)(ξ, η) =
4

h2
∇ξη∇ξη w(ξ, η). (3.7)

Here the following relations are used

dx =
h

2
dξ, dA = dxdy =

h2

4
dξdη,

dy =
h

2
dη, ∇ξη =

	
∂
∂ξ

∂
∂η

�T
.

(3.8)
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Subsequently, the expressions for U
(e)
b and T (e) read as

U
(e)
b =

�
A(e)

ub dA
(e) =

1

2

+1�
−1

+1�
−1

h2

4
D
�
ν(trκ(e))2 + (1− ν)κ(e) · ·κ(e)

�
dξ dη,

T (e) =
1

2

�
A(e)

ρtẇ2 dA(e) =
1

2

+1�
−1

+1�
−1

h2

4
ρtẇ2 dξ dη.

(3.9)

The integrals are calculated with Gauss-Legendre quadrature using 4 × 4 integrations
points. After assembling the whole finite element model and taking into account the
transformation from local DOFs into global DOFs (renumber the nodal DOFs), we write
with a global vector of nodal DOF q = {qi} (see Section 2.2.2)

Ub =
�
(e)

U
(e)
b , K =

∂2Ub

∂qi∂qj
and T =

�
(e)

T (e), M =
∂2T

∂q̇i∂q̇j
. (3.10)

Finally, the considered eigenvalue problem (2.59) yields the natural frequencies and mode
shapes (first four given in Figure 3.5) for the unperturbed clamped square plate.

(a) mode shape 1: ω = 56.617 rad/s (b) mode shape 2: ω = 116.245 rad/s

(c) mode shape 3: ω = 116.245 rad/s (d) mode shape 4: ω = 171.915 rad/s

Figure 3.5: First four mode shapes with rectangular 4× 4 mesh
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3 Finite Element Model

3.3 Skewed mesh

3.3.1 The problem with the C1-continuity

It gets more challenging to consistently treat the model with a skewed mesh with dis-
torted elements. The skewed mesh will be used in further chapters when a reference
solution for the case of cracks or added masses, which are not parallel to a plate edge,
is searched. In this thesis, the skewed cracks or additional masses attached along a line
are considered with an angle α in the middle of the plate. How do the finite elements
have to be changed to get a C1-continuous mesh? At first sight, it could be done with
a well known bilinear transformation - as shown below it is unfortunately not sufficient.
The sought for mapping for the unit element with local coordinates ξ, η into the global
system x, y is sketched in Figure 3.6.

x

y

A

B

C

D

η

ξ

1

1

−1

−1

1 2
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x =

�
x(ξ, η)
y(ξ, η)

�

Figure 3.6: Mapping from local to global coordinates (skewed element)

An expression for the mapping x (skew but straight element edges) is given by [10]

x =



x(ξ, η)

y(ξ, η)

�
= N(ξ, η)x(e) =



N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

�


xA

yA
...
xD

yD


, (3.11)

where bilinear shape functions Ni are used to depict the geometry

N1 = 1/4(1− η)(1− ξ), N2 = 1/4(1− η)(1 + ξ),

N3 = 1/4(1 + η)(1 + ξ), N4 = 1/4(1 + η)(1− ξ).
(3.12)
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3 Finite Element Model

Instantly, the question arises how the mesh of the plate can be determined. The problem
will be discussed with a simple sketch. Consider the square plate with a 4 × 4 mesh,
shown in Figure 3.7. The red grid line is inclined at the angle α. Along this red line the
crack or added mass are to be implemented.

x

y

α

1,2

1,3

(a) skewed mesh - first attempt

η

y

(b) function y(η) at ξ = 0

Figure 3.7: Sketch to point out the problem with the C1-continuity

In the easiest approach, one can set the element heights above and below as equal, as
shown in Figure 3.7a with green and blue equal signs. The problem arises when two
different element heights meet, for example element 1, 2 and 1, 3. Now we calculate the
Jacobian J = ∂x/∂ξ for those two elements (α = π/9), evaluate them at a common
node on the left edge (highlighted with a small circle), which yields

J1,2(ξ, η)
��
η=+1
ξ=−1 =



0.125 0

0.0454963 0.0795037

�
�= J1,3(ξ, η)

��
η=−1
ξ=−1 =



0.125 0

0.0454963 0.170496

�
.

(3.13)
Comparing the elements ∂y/∂η (matrix elements 2,2) of both Jacobians, it is now clear
that the first derivatives are not equal with this mesh - C1-continuity is not ensured.
In this case the function y(η) at ξ = 0 shows a kink at the border of elements 1, 2 and
1, 3, sketched in Figure 3.7b. As a result, this easily constructed mesh is not going to
yield physically exact solutions. Another approach to get a C1-continuous mesh must be
found.
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3 Finite Element Model

3.3.2 Double mapping – achieving C1-continuity

In this section, we consider a double mapping intended to provide a remedy. Instead of
the usual transformation from the unit area with local coordinates ξ, η directly into the
physical domain x, y, another mapping is used inbetween. So, firstly, the new mapping
will be a transformation from the unit area with coordinates which are now named
as ξ1, η1 ∈ [−1,+1], into a rectangular finite element within a mesh in coordinates
ξ, η ∈ [0, 1] - analogous to Figure 3.4. Afterwards, the second transformation into
the physical domain is done. We begin with the search for a C1-continuous mapping
from the finite element mesh in into the physical domain. To obtain suitable functions
x(ξ), y(ξ, η), the mapping of two skewed elements (shown in Figure 3.8) is examined.

x

y

α

Δ

a

a

(a) physical domain

ξ

η

1
2

1

1

(b) FE mesh

Figure 3.8: Sketch for the C1-continuous mapping (ξ, η) → (x, y)

Further the searched mapping is of the form

x(ξ) = aξ, y(ξ, η) = y0(η)(1− ξ) + y1(η)ξ, y1 = a− y0(1− η), (3.14)

where y0 and y1 are piecewise linear and cubic polynomials in η. With the given geome-
tries in Figure 3.8 and an additional parameter β, which influences the gradient of the
cubic polynomial, the solution for y0(η) reads as

y0(η) =

������
2ηΔ η < 1

2

a[5 + 2β(−1 + η)− 4η](1− 2η)2−
2Δ(−1 + η)[β(1− 2η)2 − 4(1− 4η + 3η2)] else.

(3.15)
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y0 cubic

y1 linear

y0 linear

y1 cubic

Δ

a-Δ

a

0.2 0.4 0.6 0.8 1.0
η

0.2

0.4

0.6

0.8

1.0

y

Figure 3.9: C1-continuous mapping η → y

Figure 3.9 shows the two functions y0 and y1. They represent the y-transformation for
the edges with ξ = 0 and ξ = 1. The entire new mapping is depicted in Figure 3.10 for
the case of 8× 8 finite elements, an angle α = π/10 and β = 1.5.

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4
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0.8
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y

(a) physical domain 8× 8

0.2 0.4 0.6 0.8 1.0
ξ

0.2

0.4

0.6

0.8

1.0

η

(b) FE mesh 8× 8

Figure 3.10: C1-continuous mapping from the FE mesh into the physical domain

On the left edge of the plate in the physical domain (Figure 3.10a) above the red grid
line (cubic part of y0), we see the increase in element size along the y-axis, which is
associated with β. Similar features to change the element size over a length are often
called bias in commercial finite element programs. In this thesis, β = 1.5 is chosen.

31



3 Finite Element Model

3.3.3 Eigenvalue problem

We aim at using the skewed mesh for the eigenfrequency analysis. At first the Jacobian
J(ξ, η) of the new mapping must be determined using the functions (3.14):

J(ξ, η) =
∂(x, y)

∂(ξ, η)
=



∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

�
. (3.16)

Here, one has to substitute the coordinates ξ, η expressed via the element number (i, j)
and the local coordinates ξ1, η1 to get the Jacobian as a function of ξ1, η1. The transfor-
mation from the unit area ξ1, η1 ∈ [−1,+1] into a rectangular finite element within the
mesh in coordinates ξ, η ∈ [0, 1] is already known and can be adapted from Equations
(3.7), (3.8). Thus, the linearised curvature tensor for an element κ(e) is determined as

κ(e)(ξ1, η1) =
2

h
J−T(ξ1, η1)∇ξ1η1

	2
h
J−T(ξ1, η1)∇ξ1η1w(ξ1, η1)

�
. (3.17)

With the determinant of the Jacobian detJ(ξ1, η1) as a function of the local coordinates
one can further write

U
(e)
b =

1

2

+1�
−1

+1�
−1

detJ
h2

4
D
�
ν(trκ(e))2 + (1− ν)κ(e) · ·κ(e)

�
dξ1 dη1,

T (e) =
1

2

+1�
−1

+1�
−1

detJ
h2

4
ρtẇ2 dξ1 dη1.

(3.18)

For the integration a 4 × 4 Gauss-Legendre quadrature is used. Consequently, we as-
semble the system and determine the eigenvalues with corresponding mode shapes -
analogous to the rectangular mesh, see Equation (3.10). The mode shapes are similar,
in the eigenvalues there are some differences though, especially for a smaller amount of
finite elements. Therefore, in the following section a brief convergence study on those
two meshes is done to show the differences.

3.4 Mesh convergence study

A quick convergence study is conducted with the rectangular and the skewed mesh before
further calculations with added masses or cracks are done. The goal is to compare
the values of the first four natural frequencies to check if the skewed mesh with the
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3 Finite Element Model

double mapping converges to the same values as the rectangular mesh. The integration
order was set to four. The parameters of the skewed mesh are unchanged (α = π/10,
β = 1.5). In Table 3.1 the numerical results of the convergence study are shown. The
plate parameters are given in Section 3.2. Figures 3.11 and 3.12 display the convergence
of the first natural frequency with rectangular and skewed mesh with a line plot. One can
see that the rectangular mesh converges much faster than the skewed mesh. Furthermore,
the calculation time was much shorter. Nevertheless, with 8× 8 or more finite elements
the skewed mesh also yields accurate results. The relative difference between these two
meshes in the first natural frequency with 8× 8 elements is 0.075%. Another interesting
fact is that the rectangular mesh exhibits the repeated natural frequency (frequency two
and three) even at 2 × 2 finite elements. In contrast to the skewed mesh, the repeated
frequency is not represented exactly here, even with 16× 16 elements.

4 6 8 10 12 14 16
elements
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68

ω

skewed mesh

rectangular mesh

Figure 3.11: Convergence study
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ω
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Figure 3.12: Convergence study, enlarged
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Table 3.1: Convergence study: skewed - rectangular mesh

Number of elements and mesh type

2× 2 4× 4 6× 6

skewed rectangular skewed rectangular skewed rectangular

E
ig

en
va

lu
es

1. 68.326 58.073 57.216 56.617 56.656 56.529

2. 155.807 146.325 116.994 116.245 115.641 115.456

3. 256.296 146.325 121.322 116.245 116.367 115.456

4. 321.027 220.453 178.033 171.915 171.712 170.347

Number of elements and mesh type

8× 8 12× 12 16× 16

skewed rectangular skewed rectangular skewed rectangular

E
ig

en
va

lu
es

1. 56.555 56.512 56.514 56.505 56.507 56.504

2. 115.381 115.313 115.272 115.257 115.252 115.247

3. 115.605 115.313 115.317 115.257 115.266 115.247

4. 170.537 170.064 170.055 169.951 169.965 169.930

34



4 Plate with added line mass

In this chapter the energy approach, given in Section 2.3, is going to be tested for the
square plate (clamped at all four edges) with added line masses. At first, the centric case
is examined, where a line mass is applied in the middle of the plate parallel to an edge.
Afterwards the line mass is inclined at an arbitrary angle α < π/4 to a plate edge and
therefore no longer called centric. For each case the reference solution (line mass runs
along element edges) is determined and compared to the energy approach. The plate
parameters are: square plate with side length a = 1m, steel (density ρ = 7800 kg/m3,
Young's modulus E = 2.1 · 1011 N/m2, Poisson's ratio ν = 0.3), thickness t = 10−3 m.
The applied mass is described by a mass per unit length µ.

4.1 Centric line mass

In the case of a centric line mass the reference solution and also the energy approach
refer to the rectangular mesh (8 × 8 elements are used). The plate with applied line
mass is shown in Figure 4.1 exemplary for the first two mode shapes.

(a) first eigenmode (b) second eigenmode

Figure 4.1: Centric line mass - plot on the first two eigenmodes
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4 Plate with added line mass

With the applied mass a new mass matrix M is obtained, whereas the stiffness matrix
K = K0 remains unchanged. Here we consider the added line mass as ideally flexible
with zero bending stiffness (⇒ U1 = 0 in the energy approach). The reference solution
for the natural frequencies of the plate with the additional mass is determined by the
eigenvalue problem. This calculation is repeated multiple times for different masses per
unit length µ and the resulting dependence is described by a curve.
For the energy approach, the kinetic energies of the unperturbed system T0 and of
the applied mass T1 are required. T0 and T1 are already amplitudes by the definition,
therefore we evaluate these kinetic energies by the use of the mode shapes. When the
linear function of the energy approach is determined and the reference solution is known
too, one can display them together. Figure 4.2 shows the comparison for the first mode
shape of the plate, in Figure 4.3 the relative error of the first frequency is displayed.
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Figure 4.2: Centric line mass: reference solution vs. energy approach, mode shape 1
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Figure 4.3: Relative error: centric line mass, mode shape 1
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Figure 4.4: Centric line mass: reference solution vs. energy approach, mode shape 2
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Figure 4.5: Centric line mass: reference solution vs. energy approach, mode shape 3
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Figure 4.6: Centric line mass: reference solution vs. energy approach, mode shape 4
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Table 4.1: Convergence study: initial slope - centric line mass, mode shape 1

Number of elements and solution method

8× 8 16× 16

reference energy approach reference energy approach

Initial slope −8.8898 −8.8907 −8.8855 −8.8865

Furthermore, the mode shapes two to four are shown in Figures 4.4, 4.5 and 4.6. Ac-
cording to Figure 4.2, the energy approach describes the system for mode shape one at
small values of µ very well. As already expected, with increasing µ the error between
both solutions gets bigger. The relative error function in percent (with respect to the
reference solution) for the first mode shape, as shown in Figure 4.3, gives a feeling how
accurate the approach is. Here one can see for example at µ = 1.260 kg/m the relative
error is 5%. Expressed in numerical values one deals with a plate mass of 7.8 kg and
an applied line mass of 0.945 kg, which is approximately 12% of its own mass. By the
examination of the initial slopes of both solutions in mode shape one the correspondence
is also shown numerically. As initial slopes the first derivatives for µ = 0 are meant. For
the reference solution the value of the slope was determined as good as possible using
the difference quotient. The slope of the linear function of the energy approach is given
by ω1 in Equation (2.71). In Table 4.1 the values of the initial slopes are compared for
two different meshes, the length of the applied mass is in both cases the same. With a
16×16 mesh the correspondence is already very good. Hence there is good convergence.
In Figures 4.4 and 4.5 it is clearly shown, that the energy approach for the second and
third mode shapes does not reflect the systems behaviour, the slopes for µ = 0 are not
the same. The fourth mode shape is also well approximated until the kink in the refer-
ence solution occurs.
So what is the problem? Further calculations showed that at repeated natural frequencies
(two equal eigenvalues with different mode shapes) the energy approach in its presented
simple form fails. Considering the first ten eigenvalues and mode shapes for the square
plate, the second and third, also the seventh and eighth, as well as the ninth and tenth
eigenvalue are the same. In all these cases the energy approach fails.
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4 Plate with added line mass

4.2 Skewed line mass

In the next step the plate is loaded with a line mass applied at an angle α = π/6 to the
center. In this case, one cannot obtain a reference solution with the rectangular mesh.
A skewed mesh is needed, where the added mass is aligned with the element edges.
The solution for the energy approach is again evaluated with the regular mesh. For the
energy approach the kinetic energy of the applied mass T1 was calculated by numerical
integration using the trapezoidal rule. Both meshes contain 8× 8 elements. Figure 4.7
shows the applied mass on the rectangular mesh. A comparison of both solutions for
the first four mode shapes is shown in Figures 4.8, 4.9, 4.10 and 4.11.

(a) first eigenmode (b) second eigenmode

Figure 4.7: Skewed line mass - plot on the first two eigenmodes
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Figure 4.8: Skewed line mass: reference solution vs. energy approach, mode shape 1
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Figure 4.9: Skewed line mass: reference solution vs. energy approach, mode shape 2
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Figure 4.10: Skewed line mass: reference solution vs. energy approach, mode shape 3
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Figure 4.11: Skewed line mass: reference solution vs. energy approach, mode shape 4
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Table 4.2: Convergence study: initial slope - skewed line mass, mode shape 1

Number of elements and solution method

8× 8 16× 16

reference energy approach reference energy approach

Initial slope −9.1806 −9.1582 −9.1573 −9.1560

The first mode shape is approximated very well by the energy approach according to
Figure 4.8. Similar to the centric line mass, the initial slopes are again numerically
determined and compared to each other. Table 4.2 shows a comparison of the initial
slopes of reference solution and energy approach for mode shape one in the case of a
skewed line mass. An interesting fact is that the energy approach is more accurate at
8×8 elements than the reference solution. This is a result of the slow convergence of the
skewed mesh. At 16× 16 finite elements the values of the slopes differ only in the third
decimal place. Overall one can say that for the first mode shape the convergence of the
reference solution and energy approach is quite good. In contrast to the centric line mass,
it seems that the second mode shape (Figure 4.9) is also well approximated with the
energy approach. Further calculations showed that this behaviour occurs not every time.
There is a dependence on the mesh size and length of the line mass which influences the
result. Anyway, the third mode shape in Figure 4.10 proves that the energy approach
also fails at repeated natural frequencies for skewed line masses. Again, like in the case
of the centric line mass, the fourth mode shape (single eigenvalue) is approximated quite
good.
To sum up, natural frequencies of a plate with added line mass can only be approximated
by the energy approach for unique eigenvalues. At repeated eigenvalues the energy
approach fails. Is this failure also obtained when a crack is considered instead of the
applied line mass? The following chapter deals with this question.
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5 Cracked plate

In an analogous way to the applied line mass, the energy approach is now tested for
the clamped square plate with a crack along a line. We start with some basic ideas
of the mechanical modelling, the implementation of the crack into the finite element
model and the used expression for the energy approach. Following this, the centric
case is considered, where the crack runs in the middle of the plate parallel to an edge.
Afterwards, a skewed crack (inclined at an arbitrary angle α < π/4 to the plate edge)
is examined. For each case the reference solution (element edges are aligned with the
line of the crack) is compared to the energy approach. The plate parameters remain
unchanged: square plate, side length a = 1m, steel (density ρ = 7800 kg/m3, Young's
modulus E = 2.1 · 1011 N/m2, Poisson's ratio ν = 0.3), thickness t = 10−3 m.

5.1 Crack implementation and adapted energy

approach

In this thesis a non-through-thickness crack is examined. In particular, a symmetric
crack at the top and bottom surfaces of the plate is considered, which results in a local
compliance. As a result, the displacement of the plate w(x, y) must be continuous (C0)
at the crack location, but may have slope discontinuities there, which is kinematically
inadmissible in the ideal plate with no damage. Such cracks are conventionally modelled
in mechanics by a hinge with a rotational spring (stiffness cT , massless). The rotational
spring acts against the slope difference at the shores of the crack. Of course, for high
values of cT the unperturbed solution must be approached.

(a) physical domain (b) mechanical system

Figure 5.1: Mechanical modelling: non-through-thickness crack
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Figure 5.2: Crack implementation in the FE-model - split up degrees of freedom

The mechanical modelling is sketched in Figure 5.1, where the cross sections of the
crack in the physical domain and in the mechanical system are compared. To implement
the crack into the finite element model, we have to split up degrees of freedom at its
location and introduce new ones to allow the plate to show up a kink (slope difference,
C1-continuity is no longer valid). In Figure 5.2 the splitting of the DOFs is sketched for
the centric case. The crack (between nodes A and B) is represented with the red element
edges and nodes. There are two elements highlighted in light red, where the crack is
fully developed along the common element edge. Transition elements are symbolized
with a green element edge, where the crack arises/disappears. The separated degrees of
freedom (written next to the corresponding nodes, ∂w/∂η = wη, ∂2w/(∂ξ∂η) = wξη) are
distinguished with index one and two for upper and lower shores at the crack. To keep
the sketch simple, no global numbering of nodes is given. Furthermore, all the other
unchanged DOFs are not mentioned. A new routine is necessary for the assembly of
all finite elements, with special attention to the new DOFs. These DOFs are connected
through the rotational spring along the crack. The total kinetic energy T and bending
strain energy Ub of the plate are calculated straight forward, see Equations (2.50) and
(2.51). For the total elastic energy U = Ub + Us one has to consider the contribution of
the rotational spring Us as well. The expression for Us differs for the centric and skewed
cases and is discussed in the corresponding Sections 5.2.1 and 5.3.1. Using U and T one
can calculate the global mass and stiffness matrix analogous to Equation (2.51).
Instantly, the question arises: how to correctly use the energy approach in the case
of cracks? The expression for the frequency correction (2.71) needs to be adjusted
now. This expression is used for an additional stiffness or mass. Here in the case of
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a crack, an additional compliance is added to the system, hence we can no longer use
Equation (2.71). This is because the vibration mode of the ideal plate results in no slope
difference in the crack as it is C1-continuous. Instead of the additional strain energy U1,
the complementary energy of the rotational spring U∗ is needed. The reason is simple,
U1 due to the rotational spring can only be determined with the global vector of nodal
DOFs of the cracked plate. Of course, this is not the goal when applying the energy
approach. In [9] a mathematical justification using continuum mechanics considerations
for a general valid energy approach formula is given. Referring to [9], an analogous
variant of the energy approach (2.71) which is valid for additional compliance (cracks)
is given by (note the additional negative sign):

ω1 = −ω0U
∗

2T0

, ω = ω0 + ω1. (5.1)

Here all quantities are evaluated using the simple rectangular mesh. The calculation of
the complementary energy U∗ differs for the centric and skewed cases and is therefore
given in the corresponding Sections 5.2.1 and 5.3.1.

5.2 Centric crack

5.2.1 Potential of the spring and complementary energy

Using the presented implementation of a non-through-thickness crack we start with the
examination of the centric case. The potential energy of the rotational spring along the
crack is described by an integral over the crack length L = AB

Us =
1

2
cT

�
L

	2
h

�∂w
∂η

�
1
− 2

h

�∂w
∂η

�
2

�2
ds. (5.2)

Here (∂w/∂η)1 and (∂w/∂η)2 represent the slopes at the upper (index one) and lower
(index two) shores of the crack. The crack length L = AB is shown in Figure 5.2. With
determined Us we are able to calculate the global mass and stiffness matrix and further
the eigenvalue problem of the cracked plate.
For the calculation of the complementary energy of the spring U∗ one needs the tensor
of moments m of the unperturbed plate (2.21). The relevant component of m is the
bending moment M22 = Myy which is to be determined along the location of the crack
(unperturbed finite element model). Myy can be calculated with the upper (η = −1)
or lower (η = +1) finite elements at the crack. We distinguish them with Myy1 above
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5 Cracked plate

and Myy2 below the crack. Their values are different because the curvature is slightly
discontinuous. Thus, to increase the accuracy, the arithmetic mean of Myy1 and Myy2

was evaluated and used for U∗. The complementary energy U∗ of the rotational spring
for the centric crack is given by

U∗ =
1

2

�
L

�Myy1 +Myy2

2

�2

λ ds, (5.3)

where λ = 1/cT is the small compliance of the rotational spring. With the potential
and complementary energy of the spring all quantities are known to obtain the reference
solution and energy approach for the centric crack.

5.2.2 Testing the cracked finite element model

Before the natural frequencies are calculated, we do a brief plausibility check of the
behaviour of the cracked finite element model. Therefore, the static deflection of the
cracked plate due to gravity is determined for two different values of spring stiffness
cT (low and high value). We consider a crack in the middle of the plate with length
L = 0.5a. The static solution is then obtained by using the potential of external forces
W and with the following relations:

W (e) =

�
A(e)

ρtgw dA(e), W =
�
(e)

W (e), F = −∂W

∂q
, Kqstatic = F . (5.4)

Here g is the free fall acceleration and q is the global vector of nodal degree of freedoms
(the active ones). Both solutions are scaled by a factor of -50 and shown in Figure 5.3.

(a) low stiffness cT = 102 - a kink occurs (b) high stiffness cT = 108 - smooth surface

Figure 5.3: Centric crack - comparison of static deflection, hidden rectangular mesh
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5 Cracked plate

With such a three-dimensional plot of the plate one can observe the kink, which is visible
in the case of smaller spring stiffness, see Figure 5.3a. In contrast, with higher stiffness
the function of the hinge is suppressed and an increasingly smoother surface occurs,
which looks like the unperturbed system (Figure 5.3b). To check the correspondence
of unperturbed plate and cracked plate with high spring stiffness (cT = 108, L = 0.5a)
numerically, the values of the static deflection in the middle of the plate are compared
in Table 5.1. Here we clearly see that the correspondence is very good.

Table 5.1: Convergence study: max. static deflection, 32× 32 elements

Cracked plate: cT = 108, L = 0.5a wmax = −0.005034622516m

Unperturbed plate wmax = −0.005034621270m

5.2.3 Comparison of reference solution and energy approach

Now the energy approach (5.1) is applied and the results are compared to the reference
solution in the case of a centric crack. We consider a crack in the center of the square
plate with a length L = 0.5a, like in Figure 5.3. For the analysis a rectangular mesh
with 32 × 32 elements was chosen. The reason for this fine mesh is the slower conver-
gence of the cracked finite element model compared to the model for the applied mass.
The comparisons of the reference solution and the prediction according to the energy
approach for the first four mode shapes are shown in Figures 5.4, 5.5, 5.6 and 5.7 .
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λ
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Figure 5.4: Centric crack: reference solution vs. energy approach, mode shape 1
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Figure 5.5: Centric crack: reference solution vs. energy approach, mode shape 2
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Figure 5.6: Centric crack: reference solution vs. energy approach, mode shape 3
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Figure 5.7: Centric crack: reference solution vs. energy approach, mode shape 4
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5 Cracked plate

Table 5.2: Convergence study: initial slope - centric crack, mode shape 1

Number of elements and solution method

16× 16 32× 32

reference energy approach reference energy approach

Initial slope −384.267 −394.247 −390.327 −390.470

Obviously the first mode shape is repeatedly approximated very good. By the examina-
tion of the initial slopes of both solutions in mode shape one, the good correspondence is
also seen numerically, see Table 5.2. As initial slopes the first derivatives of the frequency
with respect to the compliance value λ for λ = 0 are meant. Compared to the plate with
added line mass the numerical correspondence between reference solution and energy
approach for a small amount of elements was a bit worse. Thus, it was mentioned above
that the convergence is a bit slower compared to the model for the line mass. Anyway,
with 32 × 32 elements the correspondence is quite good. Furthermore, one clearly sees
that the energy approach fails again at the repeated natural frequency two. Surprisingly
the third eigenvalue is approximated very good. As expected the fourth eigenvalue is
also predicted very good by the energy approach.
An interesting fact is that the natural frequency in the reference solution of mode shape
three and four is not influenced by the crack. Hence these reference solutions are dis-
played by a horizontal line. The question arises, why the fourth eigenvalue is not in-
fluenced by the crack. To get to the bottom of this, we examine the bending moment
Myy = M22 of the unperturbed plate (used in the complementary energy U∗ in the en-
ergy approach) in more detail. To do this, we evaluate the bending moment Myy all over
the plate and plot it three-dimensional, see Figure 5.8. Here additionally a zero-plane
(z = 0) is displayed in light blue and the crack position is visualized with a red line.
According to this figure, the answer to this interesting behaviour of eigenmode four is
found. Along the crack length the bending moment is nearly equal to zero, which results
further in almost zero complementary energy U∗.
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5 Cracked plate

Figure 5.8: Unperturbed plate: bending moment Myy(x, y), mode shape 4

5.3 Skewed crack

The last simulation of this thesis is the clamped square plate under the influence of a
skewed crack (α = π/6 to the center), sketched in Figure 5.9. For the reference solution
we have to use the skewed mesh again, where the crack is aligned with the element edges.

x

y

α

a

a

n

Mnn

Mnn

a

A

B

Figure 5.9: Sketch of the skewed crack with normal vector n and bending moment Mnn
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5 Cracked plate

The prediction according to the energy approach (5.1) is evaluated with the rectangular
mesh as usual. As with the centric crack, only a higher amount of finite elements yield
good correspondence of both solutions. Therefore, we chose for both solution methods a
fine mesh with 24× 24 elements. With this amount of elements the simulation succeeds
within a reasonable amount of time. In addition, first troubles with a standard computer
occurred with 32× 32 elements, as in the centric case.

5.3.1 Potential of the spring and complementary energy

For the reference solution and energy approach of the skewed crack, we need to determine
the elastic energy Us as well as the complementary energy U∗ of the rotational spring.
We start with Us which reads with the normal vector n = − sin(α)i+ cos(α)j as

Us =
1

2
cT

�
L

	� 2

h
J−T∇ξ1η1 w(ξ1, η1)� �� �

∇xy w(ξ1,η1)

·n
�
1
−

�2
h
J−T∇ξ1η1w(ξ1, η1) · n

�
2

�2
ds. (5.5)

Here the directional derivatives ∇xy w(ξ1, η1) ·n are calculated at the shores of the crack
and again distinguished with indices one and two. The crack length L = AB (see
Figure 5.9) was chosen such that L cos(α) = 0.5a. With determined Us we are able
to calculate the global mass and stiffness matrix and further the eigenvalue problem
(reference solution) of the cracked plate. The first four mode shapes of the plate with a
skewed crack are depicted in Figure 5.10.
In the next step the complementary energy of the spring U∗ for the skewed crack, which
is used in the energy approach, is determined. As in the centric case, the tensor of
moments m of the unperturbed plate (2.21) is needed. The relevant component of m
for the skewed crack is the transformed bending moment M22 = Mnn = n ·m ·n which
is to be determined along the location of the crack (unperturbed finite element model).
For simplicity, here no distinction between upper and lower shore at the crack was made,
see Figure 5.9. The complementary energy U∗ of the rotational spring is then given by

U∗ =
1

2

�
L

(n ·m · n)2λ ds, (5.6)

where λ = 1/cT is the small compliance due to the rotational spring. This integral was
evaluated using the trapezoidal rule. Kinetic energy T and bending strain energy Ub are
calculated according to Equation (3.18). Now all quantities are known and the reference
solution as well as the energy approach for the skewed crack are evaluated.
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5 Cracked plate

(a) mode shape 1: ω = 53.855 rad/s (b) mode shape 2: ω = 113.041 rad/s

(c) mode shape 3: ω = 115.275 rad/s (d) mode shape 4: ω = 165.453 rad/s

Figure 5.10: Skewed crack: first four mode shapes, skewed mesh 16×16 hidden, cT = 102

5.3.2 Comparison of reference solution and energy approach

In this section the comparisons of the obtained reference solution and energy approach
are presented for the first four mode shapes, see Figures 5.11, 5.12, 5.13 and 5.14. The
reference solution is again approximated very well in the first mode shape. As with the
centric crack, the numerical correspondence of the initial slopes for the first eigenmode is
quite good, see Table 5.3. The skewed crack also clearly shows the failure of the energy
approach at the repeated natural frequency two and three. In these mode shapes, the
predictions of the energy approach are totally wrong. It seems even that the solution
of the energy approach from mode shape three would better fit to reference solution of
eigenmode two and vice versa. Another interesting point is that the natural frequency in
eigenmode three is not influenced by the crack. In mode shape four the correspondence
between both solutions is again quite good.
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Figure 5.11: Skewed crack: reference solution vs. energy approach, mode shape 1

Table 5.3: Convergence study: initial slope - skewed crack, mode shape 1

Number of elements and solution method

16× 16 24× 24

reference energy approach reference energy approach

Initial slope −448.551 −451.984 −452.177 −451.917
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Figure 5.12: Skewed crack: reference solution vs. energy approach, mode shape 2
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Figure 5.13: Skewed crack: reference solution vs. energy approach, mode shape 3
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Figure 5.14: Skewed crack: reference solution vs. energy approach, mode shape 4

To sum up, natural frequencies of a cracked plate can only be approximated by the
energy approach for unique eigenvalues. At repeated eigenvalues the energy approach in
its simple fails. The same behaviour was noticed at the plate with added line mass. Due
to this failure of the energy approach in two different plate problems it seems that this
previously known formula loses its validity at repeated natural frequencies and requires
further extension.
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6 Conclusion and Outlook

This master thesis deals with natural frequencies of a square plate clamped at all four
edges under the influence of a non-through-thickness crack and an applied line mass. The
crack and the applied mass result in a variation of stiffness and inertial properties of the
plate, which yields a shift in natural frequencies. Using energetic considerations, a gen-
eral linear approximation can be found to predict such frequency shifts between an origin
and perturbed elastic structure, which constitutes the so-called energy approach. Such
prediction methods have also a practical significance for the non-destructive inspection of
elastic systems (e.g. plate-like structures in machine coverings/casings) using frequency
measurement [11]. Changes in natural frequencies are highly dependent on the location
and severity of the damage and therefore used to detect and characterise it [11].

During the 13th International Symposium on Vibrations of Continuous Systems, which
took place in Canada in 2023 [15], the energy approach was treated analytically for
simply supported rectangular plates with cracks as well. This awakened motivation to
examine the energy approach further for plates with more complex boundary conditions,
where the natural vibrations cannot be described by simple analytical expressions. As a
result, the prediction according to the energy approach has to be obtained by a chosen
numerical method, the finite element method. The advantage of the numerical approach
is that for a given set of mode shapes, obtained using a simple regular mesh, one com-
putes changes in the eigenfrequencies for different distribution of additional mass or
damage by simple post-processing. The goal of this thesis was to check the energy ap-
proach in different mode shapes for a clamped square plate with a crack or added line
mass by using the finite element method. In particular, the behaviour of the frequency
shift in dependence on the measure of the structural change was determined by means
of a traditional analysis using conforming finite element discretization and compared
against the predictions obtained by the energy approach.
Wolfram Mathematica was chosen as the simulation environment, where a finite element
model was implemented using Bogner-Fox-Schmit approximation. At first, a line mass
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6 Conclusion and Outlook

along the element edges was applied and tested. Therefore, two meshes, a rectangular
and a skewed one, were needed to apply the mass at an arbitrary angle α and obtain
the reference solution. Moreover, a convergence study of these two meshes was also con-
ducted. Afterwards, the square plate was simulated with a crack (centric and skewed)
along element edges. The crack was modelled by creating new degrees of freedom and
adding a rotational spring along its length. For each case, applied mass or crack, the
reference solution for the frequency shift was determined and presented together with
the solution obtained by the energy approach (first four mode shapes).

The main outcome of this thesis is that the previously known formula for the energy
approach fails at repeated natural frequencies, as they occur with square and clamped
plates. It is obvious that in mode shape two and three (repeated eigenvalue) the solution
of the energy approach does not approximate the reference solution. The initial slopes of
both dependencies of the eigenfrequency on the imperfection parameter are different. For
unique natural frequencies the reference solution can be predicted very well by the energy
approach. Additionally, convergence is shown numerically for the first eigenmode. As a
result, the following question occurs: Does the possibility exist to modify the previously
known formula for the energy approach to cover repeated natural frequencies as well?
The answer to this question could be the subject of future mechanical endeavors.
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