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Abstract

This work addresses the challenges of robust covariance estimation and interpretable outlier
detection for multivariate, matrix-variate, and functional data. The goal is to develop
methods that enhance both the robustness and interpretability in these settings.

For outlier interpretability, we propose a novel approach that combines robust Mahalanobis
distances with Shapley values to decompose multivariate outlyingness into variable-specific
contributions. We present this decomposition in the multivariate setting and demonstrate
how our method reduces the exponential computational complexity in the number of variables
to linear complexity, while preserving the key properties of the Shapley value. This approach
is also extended to the matrix-variate and functional setting, respectively.

For robust location and covariance estimation in the matrix-variate setting, we define
the Matrix Minimum Covariance Determinant (MMCD) estimators and prove that they
are consistent in the class of matrix-variate elliptical distributions. We show that these
estimators are matrix affine equivariant and achieve a higher breakdown point than the
maximum attainable for any multivariate affine equivariant covariance estimator applied to
vectorized data. We demonstrate that the incorporation of an additional reweighting step
improves the efficiency, and finally present and implement a fast algorithm with convergence
guarantees.

The MMCD approach naturally extends to the setting of multivariate Functional Data
Analysis (FDA), where data are represented using basis functions and coefficient matrices. We
establish a connection between stochastic processes with a separable covariance structure and
the corresponding matrix-variate distribution of their basis representations. In combination
with a multivariate functional Mahalanobis (semi-)distance, the MMCD approach can be
used to robustly estimate the mean and covariance functions for multivariate functional
data.

The combined use of robust Mahalanobis distances, MMCD estimators, and Shapley
value-based outlyingness decomposition offers a comprehensive framework for robust and
interpretable data analysis across multivariate, matrix-variate, and functional data structures,
with substantial theoretical and practical benefits, verified through simulations and real-world
examples.





Kurzfassung

Die vorliegende Dissertation widmet sich den Herausforderungen der robusten Kovarianz-
schätzung sowie der interpretierbaren Ausreißererkennung für multivariate, matrixwertige
und funktionale Daten. Das Ziel der Arbeit besteht darin, Methoden zu entwickeln, die dazu
dienen, sowohl die Robustheit als auch die Interpretierbarkeit für diese Datenformate zu
verbessern.

Zur Verbesserung der Interpretierbarkeit von Ausreißern präsentieren wir eine neuartige
Herangehensweise, bestehend aus einer Kombination von robusten Mahalanobis-Distanzen
und Shapley-Werten, mit der die quadrierte Mahalanobis-Distanz in variablen-spezifische
Beiträge zerlegt wird. Zuerst wird diese Zerlegung im multivariaten Kontext eingeführt,
wobei wir zeigen, dass der exponentielle Rechenaufwand in der Anzahl der Variablen durch
unsere Methode auf eine lineare Abhängigkeit von der Variablenanzahl reduziert wird. Des
Weiteren demonstrieren wir, dass die postulierte Methode auch auf matrixwertige und
funktionale Daten erweitert und angewendet werden kann.

Um eine robuste Schätzung für die Lage und Kovarianz von matrixwertigen Daten zu
erhalten, definieren wir die Matrix Minimum Covariance Determinant (MMCD) Schätzer
und beweisen ihre Konsistenz in der Klasse der matrixwertigen elliptischen Verteilungen,
sowie ihre matrix-affine Äquivarianz. Weiters zeigen wir, dass der Bruchpunkt des MMCD-
Schätzers über dem maximal erreichbaren Bruchpunkt von multivariaten affin äquivarianten
Schätzern, welche auf vektorisierten Daten berechnet werden, liegt. Durch einen zusätzliche
Neugewichtung der Beobachtungen wird die Effizienz der MMCD-Schätzer verbessert. Zur
Berechnung der MMCD-Schätzer wird ein schneller Algorithmus mit Konvergenzgarantien
implementiert.

Zur Erweiterung des MMCD-Ansatzes auf multivariate funktionale Daten werden die
Beobachtung zunächst mithilfe von Basisfunktionen geglättet. Zu diesem Zweck leiten wir
den Zusammenhang zwischen stochastischen Prozessen mit einer separierbaren Kovarianz-
struktur und der entsprechenden matrixwertigen Verteilung ihrer Koeffizientenmatrizen in
der Basisdarstellung her. Wir verwenden die MMCD-Schätzer in Kombination mit einer
multivariaten funktionalen Mahalanobis-(Semi-)-Distanz, um Mittel- und Kovarianzfunktion
für multivariate funktionale Daten robust zu schätzen.

Die Verknüpfung von robusten Mahalanobis-Distanzen, MMCD-Schätzern und der auf
Shapley-Werten basierenden Ausreißererklärung bildet ein umfassendes Framework für ro-
buste und interpretierbare Datenanalyse von multivariaten, matrixwertigen und funktionalen
Datenstrukturen. Das vorgestellte Konzept bietet sowohl theoretische als auch praktische
Vorteile, welche mithilfe von Simulationen und Anwendungen auf realen Daten illustriert
und belegt werden.
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1 Introduction

Advancements in the development of data collection tools have led to a vast increase in both
the volume and complexity of available datasets. While multivariate samples are usually
represented as vectors, modern applications often involve more sophisticated data structures,
such as matrix-variate or functional data. This inherent data structure enables more detailed
data analysis but also presents new challenges, especially if the observations include outliers.
Anomalies can distort statistical analyses if left unaddressed, yet they may also provide
valuable insights by revealing unusual but important patterns in the data.

Robust statistics provide methods for handling data that contain outliers as well as tools
to reliably detect them. However, the vast majority of the approaches are designed for
classical vector-valued data. Moreover, most robust procedures focus on the identification of
outliers but often fall short of explaining the reason why some observations deviate from the
majority of the data. Since the goal of many applications lies not only in detecting outliers
but also in investigating which variables contribute most to the outlyingness, providing such
explanations is vital for gaining deeper insights into the data and the decisions of robust
procedures in a way that is understandable by humans.

This thesis bridges these gaps by presenting theory and methods for robust location
and covariance estimation as well as explainable outlier detection for multivariate, matrix-
variate, and multivariate functional data. The remainder of the introduction is organized as
follows: We provide an overview of robust statistics in Section 1.1, before we briefly describe
explainability in AI and outlier detection in Section 1.2. We then introduce matrix-variate
data in Section 1.3 and functional data in Section 1.4, respectively. After outlining the
introduction, the remainder of the dissertation is structured as follows: In Chapter 2, we
introduce outlier explanations based on a combination of Mahalanobis distances and Shapley
values. In Chapter 3, the Matrix Minimum Covariance Determinant (MMCD) estimators
for robust location and covariance estimation for matrix-variate data are introduced, and
we extend explainable outlier detection to the matrix setting. Chapter 4 builds upon the
methods developed in the previous chapters and introduces an approach for robust and
explainable outlier detection for multivariate functional data. Finally, Chapter 5 summarizes
the key findings and outlines potential directions for future research.

1.1 Robust Statistics

Statistical data analysis provides a mathematical framework for analyzing, interpreting,
explaining, modeling, and presenting data. Statistical models rely on assumptions about
the data, such as randomness, independence, or the underlying distribution, to enable us
to effectively summarize the data, quantify uncertainty, and draw valid conclusions. To
ensure the reliability of summary statistics and uncertainty measures, it is vital that the
model assumptions are met, making it important to thoroughly examine these assumptions.

1



1 Introduction

There are various diagnostic tools and tests available for this purpose. However, many of
those tools themselves rely on assumptions and are sensitive to outliers which can create a
compounding problem.

The goal of robust statistics is to provide tools in which small deviations from the model
assumptions only induce small errors in the final conclusions (Huber and Ronchetti, 2011).
In the present context, our focus lies on robust location and covariance estimation. Robust
estimators should fit the majority of the data while simultaneously limiting the effects
of possible outliers. This type of robustness is called distributional robustness and the
most common model can be described as follows: Let us assume that the samples are
generated from a clean distribution F with probability (1− ε) > 0.5 and from an unspecified
distribution H with probability ε, i.e.,

Fε = (1− ε)F + εH.

In terms of random variables, we can write

X = (1−B)Y +BZ, (1.1)

with B ∼ Bernoulli(ε), Y ∼ F , Z ∼ H , B independent of Y and Z. Hence, X ∼ Fε and we
want to estimate F , but we can only observe Fε. Other than the independence of B, we do
not make any assumptions regarding H. This is known as the Tukey-Huber contamination
model after Tukey (1960) and Huber (1964).

In the subsequent paragraphs, we outline the most common multivariate location and
covariance estimators, focusing on their properties as detailed in Hampel et al. (1986);
Huber and Ronchetti (2011); Maronna et al. (2019). These books provide a comprehensive
overview of robust statistics, detailing the various methods developed within the casewise
contamination model, which extends beyond location and covariance estimation to include
topics such as linear and generalized linear models, Principal Component Analysis (PCA),
and time series analysis. We also discuss the more recently proposed cellwise contamination
of Alqallaf et al. (2009), which assumes that only individual cells of a data matrix are
outlying, rather than entire rows.

1.1.1 Classical Estimators and Their Limitations

We consider a p-variate random variable x = (x1, . . . , xp)
′ with distribution F taking

values in Rp. We analyze the location µ = E(x) ∈ Rp and covariance matrix Σ =
Var[x] = E[(x−µ)(x−µ)′] ∈ PDS(p), where PDS(p) denotes the class of all p× p positive
definite symmetric matrices. The most common assumption in statistics is that x follows a
multivariate normal distribution with density

f(x|µ,Σ) =
1 

(2π)p det(Σ)
exp

�
−1

2
(x− µ)′Σ−1(x− µ)

�
, (1.2)

denoted as x ∼ N (µ,Σ). Given an i.i.d. sample of multivariate normal observations
xi = (xi1, . . . , xip)

′, for i = 1, . . . , n, the samples can be collected as rows in the data matrix

2



1.1 Robust Statistics

X = (x1, . . . ,xn)
′ ∈ Rn×p. The maximum likelihood estimators (MLEs) of µ and Σ are

the sample mean and covariance given by

m̂(X) = m̂ =
1

n

n!
i=1

xi and Ŝ(X) = Ŝ =
1

n

n!
i=1

(xi − m̂)(xi − m̂)′, (1.3)

respectively. Equation (1.3) reveals that even if only a few out of the n samples in X deviate
from the normality assumptions, they can completely alter and distort the sample estimates.

A more general assumption for the distribution of x is that it follows an elliptical
distribution, allowing for moderate departures from normality in some samples. Similar to
the normal distribution, it is characterized by its mean µ and covariance Σ. In addition
to the parametric part, the elliptical distribution is described by its generator function
g : [0,∞) → R and its density is given by

f(x|µ,Σ, g) =
1 

det(Σ)
g((x− µ)′Σ−1(x− µ)). (1.4)

A random vector x following an elliptical distribution with mean µ, covariance Σ, and
generator function g is denoted as x ∼ E(µ,Σ, g). The normal distribution is the most
well-known representative of the class of elliptical distributions class, but it also encompasses
heavy-tailed distributions such as the multivariate t-distribution. For any choice of positive
g such that the integral in Equation (1.4) equates to one, the level sets

Ld(f) = {x ∈ Rp : f(x|µ,Σ, g) = d},

for d > 0 are ellipsoids. Figure 1.1 shows the level sets of the centered bivariate normal and
centered bivariate t-distribution with 2 degrees of freedom for fixed values of d, respectively.
In the elliptical setting, the diagonal entries of Σ are ones and off-diagonal entries are 0.7.
For the spherical case Σ equates to the identity matrix. The comparison between the two
distributions highlights that the bivariate t-distribution has a more concentrated center and
heavier tails than the bivariate normal distribution.

1.1.2 Outlier detection

Outliers may represent erroneous observations that adversely affect statistical analyses. On
the other hand, they often capture rare or extreme events, making them some of the most
important pieces of information in a dataset.

A widely used tool for detecting multivariate outliers in statistics is the Mahalanobis
distance (Mahalanobis, 1936). For a multivariate observation x ∈ Rp from a population
with mean µ ∈ Rp and covariance Σ ∈ PDS(p), the squared Mahalanobis distance of an
observation x to the mean µ with respect to the covariance Σ is defined as

MD2(x,µ,Σ) = MD2(x) = (x− µ)′Σ−1(x− µ). (1.5)

If x ∼ N (µ,Σ), then MD2(x) ∼ χ2
p, where χ2

p denotes the chi-square distribution with p
degrees of freedom (Seber, 1984). Usually, the 0.975 or 0.99 quantile of the χ2

p distribution
is used as a detection threshold to flag outliers based on Mahalanobis distance.

3
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Figure 1.1: Spherical and elliptical level sets Ld(f) of the bivariate normal and bivariate
t-distribution with 2 degrees of freedom. Identical values for d are chosen in each
plot.

In practice, the true values of the mean and covariance matrix are not known and must
instead be estimated from the data. By using sample estimators (1.3), which are themselves
highly sensitive to anomalies, many outliers might remain undetected; this phenomenon
is known as the masking effect, as illustrated in Figure 1.2. The regular data (dots) are
sampled from a bivariate normal distribution, and the outliers (triangles) are drawn from a
shifted bivariate normal with a smaller spread. The plot also shows the tolerance ellipses
based on the true parameters (solid line), i.e., the mean and covariance matrix used to
simulate the data, and based on the sample estimates (dashed line). The tolerance ellipses
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1.1 Robust Statistics

represent the level sets where MD2(x) = χ2
0.975,2, where χ2

0.975,2 denotes the 0.975 quantile
of the chi-square distribution with 2 degrees of freedom. Hence, all samples that are within
the tolerance ellipse are regular observations while points outside are flagged as outliers. The
sample estimates are influenced and biased by the outliers, which distort the location as well
as covariance estimation. The right panel of the figure shows the plot of the Mahalanobis
distance based on the sample estimates, and the dashed line indicates the chi-square cutoff.
This clearly shows that the outliers are masked.
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(b) Mahalanobis distances based on sample mean
and covariance matrix.

Figure 1.2: Illustration of the masking effect: Regular data are drawn from a bivariate normal
distribution (black dots), and outliers are generated from a shifted bivariate
normal distribution (orange triangles).

Robust procedures are designed to capture the overall structure of the data while minimiz-
ing the influence of outliers, and they offer diagnostics to help identify and interpret these
outliers effectively. By replacing the sample estimates with a robust alternative, we can
robustify the Mahalanobis distances and obtain a reliable tool for outlier detection for ellip-
tically distributed data. A popular example of robust location and covariance estimation is
the Minimum Covariance Determinant (MCD) approach proposed by Rousseeuw (1985), see
Section 1.1.4 for details. Additionally, the distance-distance plot introduced by Rousseeuw
and Van Driessen (1999) serves as a diagnostic tool that compares Mahalanobis distances
based on sample estimates versus robust counterparts based on the MCD approach. In
Figure 1.3, we extend the example illustrating the masking effect from Figure 1.2 by also
including the tolerance ellipse for the MCD and the distance-distance plot. The tolerance
ellipse of the MCD estimator (dotted line) is slightly narrower than the true ellipse (solid
line) but captures its shape and location very accurately. The vertical and horizontal dashed
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1 Introduction

lines in the distance-distance plot represent the chi-square cutoffs. These lines divide the
distance-distance plot into four quadrants: The lower left quadrant shows regular samples
according to both classical and robust distances, while the upper right quadrant contains
outliers according to both. The lower right quadrant shows samples considered outliers
by classical but not by robust distance metrics, while the upper left quadrant highlights
samples outlying according to the robust but not the classical distance. As can be seen,
the outliers are masked by the classical approach and remain undetected, whereas they are
clearly identified using robust Mahalanobis distances based on the MCD estimators.
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(a) Comparison of 97.5% tolerance ellipses based
on the true mean and covariance ma-
trix (solid black line), sample counterparts
(dashed orange line), and robust MCD esti-
mators (dotted blue line).
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(b) Mahalanobis distances based on sample mean
and covariance matrix, as well as their robust
counterparts based on the MCD approach.

Figure 1.3: Comparison of classical and robust Mahalanobis distances.

1.1.3 Properties of Robust Location and Covariance Estimators

Affine equivariance. The class of elliptical distributions is also used to motivate one
desirable property of location and covariance estimators, namely affine equivariance. This
means that the estimators used for location and covariance should transform in the same
way as the parameters of elliptical distributions under affine transformations. Specifically,
let a ∈ Rp be a fixed vector, A ∈ Rp×p an invertible matrix and x ∼ E(µx,Σx, g). Then

z = Ax+ a ∼ E(µz,Σz, g),

where µz = Aµx + a and Σz = AΣxA
′.

Let µ̂(X) and Σ̂(X) denote location and covariance estimators corresponding to a sample
X, respectively. If every observation in X is transformed to obtain the dataset Z with
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1.1 Robust Statistics

entries zi = Axi+a, i = 1, . . . , n, then the estimators should transform in the same manner
as the parameters of the elliptical distribution, i.e.,

µ̂(Z) = Aµ̂(X) + a and Σ̂(Z) = AΣ̂(X)A′.

Influence function. A key principle in robustness is that estimators should remain stable
under small deviations from the model assumptions. The influence function quantifies
this kind of stability and is defined on the distribution level, rather than on the sample
level. To formalize this, let θ̂n(X) = θ̂n denote an estimator depending on the sample
X = (x1, . . . ,xn)

′ ∈ Rn×p of size n, consisting of i.i.d. observations with distribution F .
The asymptotic value of the estimator at F , denoted θ̂∞(F ) = θ̂∞, satisfies

θ̂n
p−→ θ̂∞(F ),

meaning that θ̂n converges in probability to θ̂∞(F ) as n → ∞. Then, the influence function
of the estimator θ̂ is given by

IFθ̂(x0, F ) = lim
ε↘0

θ̂∞((1− ε)F + εδx0)− θ̂∞(F )

ε
, (1.6)

where δx0 is the point-mass at x0, and limε↘0 denotes the limit from the right approaching
0. The influence function (1.6) quantifies the sensitivity of the estimator θ̂ to small changes
in the data distribution at x0.

Breakdown point. The finite-sample breakdown point of an estimator refers to the smallest
proportion of observations that can be replaced by outliers before they may cause the
estimator to lose all information about the true parameter. For location and covariance
estimators this can be formalized as follows: Let X = (x1, . . . ,xn)

′ ∈ Rn×p denote the
collection of clean samples and Zm = (z1, . . . , zn)

′ a set of n samples, such that zi = xi for
n−m samples while the remaining m samples are replaced by arbitrary vectors in Rp. This
can be seen as a finite-dimensional version of the casewise contamination model (1.1). Let
(µ̂(Zm), Σ̂(Zm)) and (µ̂(X), Σ̂(X)) be location and scatter estimators based on Zm and
X, respectively. The finite sample breakdown point of the location estimator µ̂ is defined as

ε∗(µ̂,X) = min
1≤m≤n

�
m

n
: sup
Zm

∥µ̂(Zm)− µ̂(X)∥ = ∞
	
,

where the supremum is taken over all possible corrupted collections Zm. The finite sample
breakdown point of Σ̂ is defined as

ε∗(Σ̂,X) = min
1≤m≤n

�
m

n
: sup
Zm

Dλ(Σ̂(Zm), Σ̂(X)) = ∞
	
,

with

Dλ(Σ̂(Zm), Σ̂(X)) = max
�%%%λ1(Σ̂(Zm))− λ1(Σ̂(X))

%%% , %%%λ−1
p (Σ̂(Zm))− λ−1

p (Σ̂(X))
%%%� .

Here, λ1(A) ≥ · · · ≥ λp(A) are the ordered eigenvalues of the matrix A and the supremum
is taken over all possible corrupted collections Zm.
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1 Introduction

Efficiency. In statistics, the efficiency of an estimator refers to its ability to estimate a
parameter as precisely as possible based on the available data. More formally, the efficiency
of an estimator is measured by the ratio between the variance of an optimal estimator
and the variance of the estimator in question. Efficiency is often studied in both the finite
sample setting and the asymptotic setting. Here, we focus on the finite-sample version;
for details regarding the asymptotic setting, see, e.g., Maronna et al. (2019). For location
and covariance estimators (µ̂, Σ̂), efficiency is usually measured under the normal model
N (µ,Σ) based on the Kullback-Leibler (KL) divergence, denoted as D. Under the normal
model, the KL divergence for the mean with known Σ is

D(µ̂) = (µ̂− µ)′Σ−1(µ̂− µ),

and for the covariance matrix with known µ it is

D(Σ̂) = tr(Σ−1Σ̂)− log(det(Σ−1Σ̂))− p.

The normal finite-sample efficiency of µ̂ and Σ̂ is then defined as

E[D(m̂)]

E[D(µ̂)]
and

E[D(Ŝ)]

E[D(Σ̂)]
,

respectively, where m̂ is the sample mean and Ŝ the sample covariance matrix as defined in
Equation (1.3). The finite-sample efficiency of an estimator is usually evaluated based on
Monte Carlo simulations, and the expectation E[D] is replaced by the average simulation
score.

Consistency. Another important asymptotic characteristic of an estimator is consistency,
which means that an estimator converges to its true parameter value as the sample size
increases indefinitely. In robust statistics, consistency of affine equivariant location and
covariance estimators (µ̂, Σ̂) is often studied in the context of elliptical distributions. Let
X denote a random sample from an elliptical distribution E(µ,Σ, g) as in Equation (1.4),
then (µ̂, Σ̂) are consistent estimators if

∥µ̂− µ∥ a.s.−−→ 0,
$$$cΣ̂−Σ

$$$ a.s.−−→ 0,

where c is a constant.

1.1.4 Robust Location and Covariance Estimators

M-estimators of location and covariance can be seen as a generalization of the normal
MLEs (1.3). Instead of maximizing the likelihood function of the multivariate normal
distribution, they introduce weights based on the squared Mahalanobis distance into the
estimating equations. They are defined as solutions of

n!
i=1

w1(di)(xi − µ̂) = 0 and
1

n

n!
i=1

w2(di)(xi − µ̂)(xi − µ̂)′ = Σ̂,

8



1.1 Robust Statistics

respectively. Here, w1(di) and w2(di) are weight functions based on the squared Mahalanobis
distances

di = MD2(xi, µ̂, Σ̂),

for i = 1, . . . , n. One way to obtain those weights is to derive the MLEs based on the
elliptical density (1.4). To ensure robustness, it is crucial to limit the weights assigned to
observations with large distances, thereby minimizing their influence on the estimators.

The idea is to make the scale of the squared Mahalanobis distances MD2(xi, µ̂, Σ̂) small.
This can be achieved by using a robust estimator of scale σ̂ and minimizing

σ̂(MD2(x1, µ̂, Σ̂), . . . ,MD2(xn, µ̂, Σ̂)),

where µ̂ ∈ Rp, Σ̂ ∈ PDS(p), and det(Σ̂) = 1, to avoid degenerate solutions. S-estimators
are obtained by using an M-estimator of scale for σ̂.

A drawback of highly robust S-estimators is that they generally have low efficiency.
MM-estimators are designed to combine the strengths of S- and M-estimators. They yield
estimators that retain the high robustness of S-estimators while achieving the efficiency
that M-estimators reach under optimal conditions. For more details regarding M-, S-, and
MM-estimators, we refer to the work of Maronna et al. (2019).

MCD estimator. One of the most used location and covariance estimators is the Minimum
Covariance Determinant (MCD) estimator (Rousseeuw, 1985). The objective of the MCD
estimator is to find the subset of observations, whose sample covariance matrix has the lowest
determinant. This can be formalized as follows: Let X = (x1, . . . ,xn)

′ ∈ Rn×p denote the
collection of samples, H ⊆ {1, . . . , n} a h-subset of size |H| = h, with ⌊(n+p+1)/2⌋ ≤ h ≤ n,
and

m̂(H) =
1

h

!
i∈H

xi and Ŝ(H) =
1

h− 1

!
i∈H

(xi − m̂(H))(xi − m̂(H))′ (1.7)

the sample mean and sample covariance matrix based on the observations in H , respectively.
Then the MCD estimators are (µ̂, Σ̂) = (m̂(H∗), Ŝ(H∗)), where

H∗ = argmin
H⊆{1,...,n},|H|=h

log(det(Ŝ(H))). (1.8)

In total, there are
�
h
n

�
possible h-subsets. Thus, an efficient strategy should be used to tackle

the optimization problem. For this purpose, Rousseeuw and Van Driessen (1999) proposed
the Fast-MCD algorithm, with the concentration step (C-step) as a key component. The
schematics of the C-step are visualized in Figure 1.4 and can be described as follows: Start
with any h-subset Hold ⊂ {1, . . . , n}, with |Hold| = h, and compute (m̂(Hold), Ŝ(Hold)) as
defined in Equation (1.7). If det(Ŝ(Hold)) ̸= 0, compute the squared Mahalanobis distances

MD2(xi) = d2i (Hold) = (xi − m̂(Hold))
′Ŝ−1(Hold)(x− m̂(Hold))

for all i = 1, . . . , n, and sort them in ascending order. This sorting induces a permutation π
of {1, . . . , n} such that d2π(1)(Hold) ≤ . . . ≤ d2π(n)(Hold). Now, define a new h-subset Hnew =

{π(1), . . . , π(h)}, and compute m̂(Hnew) and Ŝ(Hnew). It holds, that det(Ŝ(Hnew)) ≤
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Subset
Hold ⊂

{1, . . . , n}

Sample es-
timates
m̂(Hold)
Ŝ(Hold)

Compute
MD2(xi) for
all i and sort

New subset
Hnew =

{π(1), . . . , π(h)}

Sample es-
timates
m̂(Hnew)
Ŝ(Hnew)

Objective
det(Ŝ(Hnew)) ≤
det(Ŝ(Hold))

Figure 1.4: Visualization of the main steps of the concentration step (C-step) algorithm.

det(Ŝ(Hold)), with equality if and only if Ŝ(Hnew) = Ŝ(Hold) (Rousseeuw and Van Driessen,
1999, Theorem 1). Iteratively applying C-steps implies, that the objective function is
decreasing in each step and convergence is reached within finitely many iterations.

Since the C-step must not necessarily lead to a global optimum, the Fast-MCD algorithm
uses multiple initial h-subsets, iterating C-steps on each one until convergence, and keeps
the solution with the lowest determinant. Scaling and reweighting steps are used in the Fast-
MCD procedure to increase efficiency and ensure consistency under multivariate normality.
Moreover, subsampling strategies are used to deal with large datasets (Rousseeuw and Van
Driessen, 1999).

The MCD estimator strikes an effective balance between robustness, efficiency, and
computational demands. Moreover, it was shown in Rousseeuw (1985) that the MCD
estimator is affine equivariant and attains the highest possible breakdown point for an affine
equivariant estimator. Butler et al. (1993) proved consistency, and Croux and Haesbroeck
(1999) studied the influence function and proposed a one-step reweighted version of the
MCD estimators to improve finite-sample efficiency. Cator and Lopuhaä (2012) extended
the theoretical results to more general settings and proved asymptotic normality for both
the MCD location and covariance estimators. Computing robust location and covariance
estimators is often computationally expensive, and the MCD minimization problem (1.8) is
no exception. However, with the computationally efficient Fast-MCD algorithm of Rousseeuw
and Van Driessen (1999) this issue was mitigated. Moreover, Hubert et al. (2012) proposed an
even faster, deterministic approach to compute the MCD estimator, and Boudt et al. (2020)
proposed a regularized version of the MCD. Recently, Raymaekers and Rousseeuw (2023)
showed that the MCD optimization problem (1.8) can be rewritten as a restricted maximum
likelihood problem: Let wi ∈ {0, 1}, i = 1, . . . , n denote a set of binary weights such that"

i=1 nwi = h and L(xi,µ,Σ) the negative log-likelihood function of the multivariate normal
distribution. Then, minimizing

n!
i=1

wiL(xi,µ,Σ),

subject to
"n

i=1wi = h, is equivalent to minimizing (1.8). Raymaekers and Rousseeuw
(2023) used this connection to define a cellwise robust version of the MCD estimator, and in
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1.1 Robust Statistics

Mayrhofer et al. (2024a) (Chapter 3), we proposed a matrix-variate version of the MCD
estimator.

1.1.5 Cellwise Contamination

The cellwise contamination model for a p-variate random vector X proposed by Alqallaf
et al. (2009) is specified as

X = (I −B)Y +BZ, (1.9)

where B = diag(B1, . . . , Bp) is a diagonal matrix with entries Bi ∼ Bernoulli(εi) for
i = 1, . . . , p. By assuming different dependence structures between the random variables
Bi, i = 1, . . . , p, different contamination models arise. If they are fully dependent, this
model corresponds to the casewise model (1.1). On the other end of the spectrum, if they
are fully independent and ε1 = · · · = εp = εcell, the probability of observing a realization
without contamination is (1 − εcell)

p. Thus, the casewise contamination probability, i.e.,
the probability that at least one cell of a p-variate observation is contaminated, is given
by εcase = 1 − (1 − εcell)

p. This interplay between cellwise and casewise contamination
probability is visualized in Figure 1.5. The blue contours display settings where εcase < 0.5,
which are separated by the black line for which εcase = 0.5, from the red contours for which
εcase > 0.5.
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Figure 1.5: Comparison of cellwise and casewise contamination probabilities.

The cellwise and casewise contamination schemes are visualized in Figure 1.6. In both
settings, the contamination probability is 10%, and outlying cells are colored black, while
regular cells are gray. Under the cellwise contamination model, more than half of the rows
are affected by cellwise outliers. Under this model, casewise robust procedures are no longer
reliable since there is no clean majority of the data left.
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Figure 1.6: Comparison between the casewise (left) and cellwise (right) contamination
models.

The cellwise contamination model can be thought of as a setting where individual cells
deviate from the values they should have had. This deviation refers to instances where the
observed values of certain cells substantially differ from approximations of their expected
value based on the values of other cells within the same observation and the general behavior
of the population. If an observed value is too different from this prediction, it is flagged as
a cellwise outlier. However, this comparison process often involves higher computational
demands than many casewise robust approaches, as it requires extensive calculations across
all cells to identify and assess potential outliers, and necessitates iterative updates to reflect
the population behavior. Therefore, cellwise robust procedures have only risen in popularity
rather recently due to rapid advancements in computational power. An overview of cellwise
outlier detection is given in Raymaekers and Rousseeuw (2024). Early approaches for cellwise
outlier detection focused on the marginal distribution. However, those were only able to
detect rather extreme cellwise outliers since dependencies between the variables were not
taken into account. On the other hand, approaches that exploit multivariate relations can
also detect cellwise outliers that are not marginally outlying. This includes, for instance,
the Detecting Deviating Cells (DDC, Rousseeuw and Bossche (2018)) algorithm, which
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robustly computes standardized residuals based on linear regressions. Raymaekers and
Rousseeuw (2023) proposed a cellwise version of the casewise MCD estimator (Rousseeuw,
1985), to robustly estimate location and covariance under cellwise contamination. All of
those approaches are designed to yield reliable results even when more than half of the
observations are contaminated by cellwise outliers.

1.2 Explainability

Statistical models are often used to understand and explain relationships between variables
and test hypotheses. These intentions lead to the development of many models that are
intrinsically interpretable. For example, a classical linear regression model is transparent and
understandable. Each coefficient quantifies the effect of a predictor variable on the response
variable. Moreover, statistical tests can be employed to validate model assumptions and to
determine whether the influence of a predictor variable is significant (Johnson and Wichern,
1998; Hastie et al., 2009).

Due to rapid increases in computational power, optimization-based, data-driven methods
that increase prediction accuracy, have gained much popularity in recent times. They include,
for example, approaches like gradient-boosting (Friedman, 2001) or deep learning (LeCun
et al., 2015), which are focused on achieving better performance on large tabular data as well
as on non-tabular data like images or text, rather than making their internal workings easy
to explain. This lack of interpretability has given rise to the field of eXplainable Artificial
Intelligence (XAI), also known as Interpretable Machine Learning (IML); see, e.g., Molnar
(2022); Arrieta et al. (2020) for an overview.

1.2.1 Explainable AI

In XAI, the terms transparancy, interpretablity, and explainability are used to describe
desirable properties of machine learning models and XAI approaches. Roscher et al. (2020)
provide an overview and summarize the key terminology as follows: Roughly speaking,
transparency considers the machine learning approach, interpretability considers the machine
learning model together with data, and explainability considers the model, the data, and
human involvement. For this overview, we will consider XAI as a set of methods to make
the decisions and predictions of machine learning models understandable by humans and do
not distinguish between interpretability and explainability.

Interpretability can be achieved through two main approaches. The first involves intrinsi-
cally interpretable models, which restrict model complexity to obtain interpretable results,
such as sparse linear models or short trees. The second approach is based on post-hoc
methods to provide explanations of complex models after training. The class of additive
feature attribution methods introduced by Lundberg and Lee (2017) is model-agnostic and
follows an additive model structure where the explanation for a single prediction is expressed
as a sum of effects from each feature. This class includes Local Interpretable Model-agnostic
Explanations (LIME, Ribeiro et al. (2016)), which explain individual predictions of machine
learning models by local approximation with an intrinsically interpretable model. It also
encompasses approaches based on Shapley values (Shapley, 1953) from cooperative game
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theory to explain individual predictions (Štrumbelj and Kononenko, 2010, 2014). The expla-
nations based on Shapley values can be combined to determine global feature importance
measures (Lundberg et al., 2020).

1.2.2 Multivariate Outlier Explanation

In Mayrhofer and Filzmoser (2023) (Chapter 2), we adapted Shapley values to answer
the question of why a multivariate observation is flagged as outlying. In robust statistics,
the common procedure for outlier detection relies on robust estimation of location and
covariance, computing Mahalanobis distances based on the robust estimators, and checking
if the distances exceed a certain threshold. While this approach allows for distinguishing
between regular observations and outliers, we do not gain any information about which
variables might have caused the outlyingness. Using our approach based on Shapley values,
we obtain multivariate outlier explanations by decomposing the squared Mahalanobis distance
into variable-specific contributions. Due to the properties of Shapley values, we obtain
an additive decomposition, i.e., the sum of all variable-specific outlyingness contributions
is equal to the squared Mahalanobis distance. The resulting outlyingness scores contain
information about all 2p marginal outlyingness contributions for every observation and can
be calculated with linear computational complexity.

Related work includes the method of Debruyne et al. (2019), who answer the same
question by estimating the univariate direction of maximum outlyingness using sparse
regression. Multivariate outlier explanations are also connected to the cellwise outlier
detection described by the model (1.9). The goal of outlier explanation is to provide insights
into why an observation is outlying, rather than answering the question of what value a
cell should have had, the latter being a common perspective in the cellwise contamination
setting.

1.3 Matrix-variate Data

In multivariate statistics, observations are usually given as p-dimensional vectors. In several
fields, including image analysis, longitudinal studies, multivariate functional data analysis,
and spatio-temporal analysis, data are naturally structured in two dimensions and given
as matrices X ∈ Rp×q. While vector-valued samples are usually stored in an n × p data
matrix, matrix-variate observations are commonly collected in a p× q × n data tensor, see
Figure 1.7.

Oftentimes, such matrices are vectorized, which means that the cells of the matrix are
converted column-by-column to a long vector, resulting in high-dimensional observations.
Let vec(·) denote the vectorization operator, then x = vec(X) ∈ Rpq denotes the vector-
ized version of X. With such a treatment, the inherent data structure is lost, and the
dimensionality increases quickly. For example, when we stack the pixel information of a 100
by 100 pixel grayscale image, we obtain a vector with 10, 000 entries, and we rarely have
enough data points for covariance estimation in such a high dimensional setting. Moreover,
computation time is often a limiting factor in those settings.

Alternatively, matrix-variate data can be modeled by assuming that the underlying random
matrix follows a matrix-variate distribution. The matrix normal distribution (Dawid, 1981)
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Multivariate data matrix
X = (x1, . . . ,xn)

′,xi ∈ Rp

p

n

Matrix-variate data tensor
X = (X1, . . . ,Xn),Xi ∈ Rp×q

q

p
n

Figure 1.7: Data structure of vector-valued versus matrix-valued samples.

is the matrix-variate counterpart to the multivariate normal distribution (1.2). Formally, a
random matrix X ∈ Rp×q follows a matrix normal distribution MN (M,Σrow,Σcol) with
mean M ∈ Rp×q, row covariance Σrow ∈ PDS(p), and column covariance Σcol ∈ PDS(q), if
and only if its vectorized version vec(X) ∈ Rpq follows a multivariate normal distribution
N (vec(M),Σcol ⊗Σrow), where ⊗ denotes the Kronecker product (Gupta and Nagar, 1999).
The density function of the matrix normal distribution is given by

f(X|M,Σrow,Σcol) =
exp(−1

2 tr((Σ
col)−1(X −M)′(Σrow)−1(X −M)))

(2π)pq/2 det(Σcol)p/2 det(Σrow)q/2
. (1.10)

For a sample X = (X1, . . . ,Xn) ∈ Rn×p×q drawn from MN (M,Σrow,Σcol), the MLEs for
the mean matrix, the row covariance, and the column covariance are given by

M̂ = X̄ =
1

n

n!
i=1

Xi

Σ̂row =
1

qn

n!
i=1

(Xi −M)(Σcol)−1(Xi −M)′, and

Σ̂col =
1

pn

n!
i=1

(Xi −M)′(Σrow)−1(Xi −M),

(1.11)

respectively. Due to the factored covariance structure, the covariance matrices Σrow and
Σcol are only identified up to a multiplicative constant κ ̸= 0, since replacing Σrow by κΣrow
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all i and sort

New subset
Hnew =

{π(1), . . . , π(h)}
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M̂(Hnew)
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Σ̂col(Hnew)

Objective
det(Σ̂col(Hnew)⊗Σ̂row(Hnew)) ≤
det(Σ̂col(Hold) ⊗ Σ̂row(Hold))

Figure 1.8: Adaptation of the concentration step algorithm for the matrix-variate setting.

and Σcol by Σcol/κ does not change the matrix normal density (1.10). Since the estimator
Σ̂row for the row covariance depends on the inverse of the column covariance Σcol, and
vice versa for Σ̂col, there is no closed-form solution for the covariance maximum likelihood
estimators (1.11). However, Dutilleul (1999) proposed an iterative estimation procedure that
alternates between an update of Σ̂row and Σ̂col based on Equation (1.11). This procedure is
often referred to as flip-flop algorithm. Similar approaches are also discussed in Mardia and
Goodall (1993) and Brown et al. (2001). While for the vectorized samples, the computation
of the estimators (1.3) would require n ≥ n+ 1 observations, the MLEs (1.11) yield positive
definite estimators with probability one if n ≥ ⌊p/q + q/p⌋ + 2 (Soloveychik and Trushin,
2016).

As in the multivariate case, the matrix normal distribution is a member of the class
of the family of matrix elliptical distributions, which offer a more general framework.
Those distributions allow us to model the row-wise and column-wise covariance separately,
accounting for the inherent data structure. We provide more details about matrix elliptical
distributions in Chapter 3 and propose robust estimators for the row and column covariance
matrices based on the MCD estimator described in Section 1.1.4. Moreover, we also present
an algorithm for an efficient computation based on a C-step for matrix-variate observations.
This includes a matrix-variate version of the C-step that replaces the sample mean and
covariance estimators, which are the MLEs under the Gaussian model, with the matrix-
variate MLEs for the matrix-variate normal distribution. Since the optimization problem
of the MCD can be expressed as a trimmed ML problem, the C-step can be seen as an
algorithm for computing trimmed ML estimators. Using this connection in combination
with the iterative ML estimators for covariance estimation in the matrix-variate setting, we
can generalize the C-step to the matrix-variate setting, as illustrated in Figure 1.8. Here,
MMD2 denotes the matrix-variate squared Mahalanobis distance, as detailed in Chapter 3.

Lu and Zimmerman (2005) derived the likelihood ratio test to check whether the sepa-
rability assumption is valid on the basis of a random sample from a multivariate normal
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population. The test requires a large number of samples relative to the dimensions of the
data since it relies on an estimate of the full covariance structure when separability is not
assumed. Filipiak et al. (2016) proposed Rao’s score test for separability, which does not rely
on the estimation of the full covariance structure. However, both tests are not robust against
anomalies, and few outlying samples could yield a rejection of the separability assumption
even if the majority of the data have a separate covariance structure.

1.4 Functional Data Analysis

In Functional Data Analysis (FDA), the observed data are functions instead of real numbers
or vectors. FDA offers a set of methods to deal with observations as elements of a function
space. In the following, we provide a partial overview and introduction to common methods
in FDA based on the books of Ramsay and Silverman (2005); Kokoszka and Reimherr (2017)
and reviews of Cuevas (2014); Wang et al. (2016), focusing on the univariate setting. The
multivariate setting is described in Chapter 4.

The most used functional space is L2, the space of square-integrable functions. Let T ⊂ R
denote a compact interval and x, y ∈ L2(T ), then the inner product and norm are given by

⟨x, y⟩ =
�
T
x(t)y(t)dt and ∥x∥ = ⟨x, x⟩1/2,

respectively. An L2 process X has finite second moments, i.e., E[∥X(t)∥2] < ∞ for all
t ∈ T and we consider continuous L2 processes, i.e., lim

h→0
E[∥X(t+ h)−X(t)∥2] = 0 for

every t ∈ T .

1.4.1 Basis Representation

In FDA, observations can be seen as realizations of a stochastic process. The values are
usually recorded on a discrete grid t1, . . . , tq, and we observe a possibly high dimensional
vector (X(t1), . . . , X(tq)) ∈ Rq, tj ∈ T , j = 1, . . . , q. Preliminary treatment of the discretely
observed samples (X(t1), . . . , X(tq)) is necessary to transform them into functional data, and
basis representation is a very common approach. Let {ϕj(t)}∞j=1, t ∈ T be a basis of L2(T )
and ϕ = (ϕ1, . . . , ϕm), m ∈ N, m ≤ q a finite collection of basis functions that spans an m-
dimensional subspace of L2(T ). Then we can obtain a smooth version X̃(t) =

"q
j=1 aj ϕj(t)

of X(t) by minimizing

q!
k=1

X(tk)−
m!
j=1

aj ϕj(tk)

2

. (1.12)

The smoothing step is often motivated either in terms of dimension reduction or noise
removal in the data. In its simplest form, the smooth representation is obtained by

(X(t1), . . . , X(tq)) �→ (a1, . . . , am) �→ (X̃(t1), . . . , X̃(tq))

and we receive a more compact representation (m < q) and a denoised process, since
X̃(t), t ∈ T , yields a smoothed version of the original process X(t), t ∈ T (Cuevas, 2014).
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Common choices for basis functions include B-splines or the Fourier basis, the first five
basis functions of which are visualized in Figure 1.9, respectively. While the Fourier basis is
commonly used for smoothing periodic or seasonal data, B-splines are applied more broadly
across various types of data.

B−spline Fourier
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Figure 1.9: First five basis functions of the cubic B-spline basis (left) and the Fourier basis
(right).

There exist various other prepossessing procedures such as kernel smoothing, local polyno-
mial fitting, or penalized smoothing. For the latter, a roughness penalty is introduced into
the minimization problem (1.12), which allows for finer control over the degree of smoothness
of the function and enables us to use more than q basis functions. In Figure 1.10 the raw
data are X(t) = sin(πt) + ε, t ∈ [0, 1], and ε are i.i.d. normal errors sampled at q = 100
time points. For illustration purposes, we show smooth approximations using B-splines with
either m = 25 basis functions and no penalty, or m = 200 basis functions and a roughness
penalty on the second derivative. In this simple example, the penalized approach yields
more accurate results since the underlying function is very smooth.

Based on functional representations of the data, the generalizations of the sample mean
and covariance (1.3) are defined as follows: Let {x1(t), . . . , xn(t)}, t ∈ T , denote a sample
of n functional observations from X, then the sample mean and sample covariance function
are given by

µ̂(t) =
1

n

n!
i=1

xi(t) and κ̂(s, t) =
1

n− 1

n!
i=1

(xi(s)− m̂(s))(xi(t)− m̂(t)),

for s, t ∈ T , respectively. Their population counterparts are given by

µ(t) = E[X(t)] and κ(s, t) = cov(X(s), X(t)) = E [(X(s)− µ(s))(X(t)− µ(t))] .

1.4.2 Functional Principal Component Analysis (FPCA)

Functional Principal Component Analysis (FPCA) is one of the most widely used tools in
FDA. Similar to PCA in multivariate statistics, the goal of FPCA is to decompose functional
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Figure 1.10: Smooth approximations of a random function.

data into a set of uncorrelated functional principal components (FPCs), which explain
as much variability within the data as possible. FPCA is often used for exploratory data
analysis since it allows us to identify functional features that characterize typical functions by
extracting key functional features that describe typical patterns and trends in the data. The
FPCs for observed data provide an optimal basis because they yield a basis that maximizes
the explained variance in each component. Additionally, dimension reduction can be achieved
by projecting the observed functions onto those FPCs that explain most of the variability.

Let X ∈ L2(T ) be a continuous stochastic process with mean function µ(t) and covariance
function κ(s, t), s, t ∈ T , with the associated covariance operator K : L2(T ) → L2(T )
defined as

Kf(s) =

�
T
c(s, t)f(t)dt, f ∈ L2(T ).

Then we can characterize the functional principal components by eigenanalysis of the
covariance operator K. Mercer’s theorem yields the eigendecomposition of K given by

K ξk = λk ξk and κ(s, t) =
∞!
k=1

λk ξk(s) ξk(t),

where {ξk}∞k=1 ∈ L2(T ) is the countable sequence of continuous orthonormal eigenfunctions
with non-negative decreasing eigenvalues {λk}∞k=1,

"∞
k=1 λk < ∞. The Karhunen-Loève

representation theorem implies that X can be written as

X(t) = µ(t) +
∞!
k=1

αk ξk with αk =

�
T
ξk(t)(X(t)− µ(t))dt,
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where αk ∼ N (0, λk), if X is a Gaussian process, see Daw et al. (2022) for more details.
The deterministic functions ξk are the FPCs, the random variables αk are the scores, and
the total variance of X is equal to the sum of the variances λk of the projections of X on
the FPCs ξk. To compute the empirical FPC ξ̂k, the continuous functional eigenanalysis
problem (1.4.2) is typically approximated by either discretizing the functions or using the
basis representation to transform it into an approximately equivalent matrix eigenanalysis
problem. Figure 1.11 shows the first four empirical FPCs computed from a sample of n = 300
smoothed Wiener process trajectories. As for the previous example illustrated in Figure 1.10,
the raw data were sampled at q = 100 time points and smoothed using either m = 25
basis functions and no penalty, or m = 200 basis functions and a roughness penalty on the
second derivative. If the FPCs are computed based on the coefficient matrix rather than on
discretization, the resulting coefficient matrices are of size n×m and the eigenanalysis is
then performed on an m ×m matrix, see, e.g., Ramsay and Silverman (2005) for details.
Hence, using only m = 25 basis functions instead of m = 200 in our example results in a
computationally easier task.

Smoothed (25 basis fcts.) Smoothed (200 basis fcts. + penalty)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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FPC 3

FPC 4

Figure 1.11: Empirical FPCs for a Wiener process.

1.4.3 Outlier Detection

Outlier detection procedures for functional data can generally be categorized as either
depth-based or distance-based approaches. Statistical depth functions provide a measure of
the centrality of an observation with respect to a dataset or distribution. Functional depth
measures provide an ordering within a sample of curves and enable the definition of ranks.
The concept of depth was originally introduced in multivariate data analysis as a way to
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generalize order statistics, ranks, and medians to higher-dimensional spaces, see, e.g., Zuo and
Serfling (2000) for an overview and a discussion of key properties. López-Pintado and Romo
(2009) introduced the concept of depth for functional data and proposed the band depth
as a measure of centrality for functions. Let G(x) = {(t, x(t)) : t ∈ T } denote the graph of
a real-valued function x(t), t ∈ T , and let {x1(t), . . . , xn(t)} denote a sample of functional
observations. The band in R2 that is delimited by the curves {xi}i∈A, A ⊆ {1, . . . , n}, is
defined as

B({xi}i∈A) = {(t, y(t)) : t ∈ I, xmin(t) ≤ y(t) ≤ xmax(t)},

where xmin(t) = argmini∈A xi(t) and xmax(t) = argmaxi∈A xi(t). For any function x ∈
{xi}N , N = {1, . . . , n}, 2 ≤ j ≤ n, the quantity

BD(j)
n (x) =

�
n

j

�−1 !
A⊆N,|A|=j

1{G(x) ⊆ B({xi}i∈A)}

is the proportion of bands B({xi}i∈A} determined by j different curves {xi}i∈A containing
the whole graph of x. Here, 1{B} is one if B is true and zero otherwise. The band depth of
x for fixed J ∈ N, 2 ≤ J ≤ n is given by

BDn,J(x) =
J!

j=2

BD(j)
n (x). (1.13)

The band depth (1.13) measures how often the function x is enclosed within the bands
formed by other subsets of the functional data. López-Pintado and Romo (2009) suggest
using J = 3 as a default value. The band depth is the basis for the functional boxplot by Sun
and Genton (2011), which extends the univariate boxplot by using functional depth instead
of traditional univariate ranks. It summarizes a sample of functional observations based
on three key features: the functional median, the 50% central region, and the fence. The
functional median is the curve with the highest depth and is the most central observation.
The band delimited by 50% of the deepest curves defines the 50% central region. The
fence is created by expanding this central region by 1.5 times the range of the 50% central
region. Using the functional boxplot, a functional observation is identified as an outlier if
it is outside of the fence at least at one point. Typically, the band delimiting the regular
observations is plotted instead of the fence. For an overview of depth-based outlier detection
procedures for univariate and multivariate functional data, we refer to Hubert et al. (2015).

To illustrate the functional boxplot, we consider the monthly sea surface temperature
(SST) data related to the El Niño–Southern Oscillation (ENSO) phenomenon. The data
cover 74 periods from 1950-1951 to 2023-2024, with SST measurements across four regions
in the equatorial Pacific. Further details on the data are provided in Chapter 4. Figure 1.12
shows the functional boxplots for the four regions. The solid line within the shaded area
is the functional median, the shaded area is the 50% central region, the area between the
dashed lines is the band delimiting the regular observations, the lighter lines are the sample
curves, and the labeled lines are the outliers. The period 1997:1998 is flagged as an outlier
in the Niño 1+2 and Niño 3 regions. In the other two regions, no observations are flagged.
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Figure 1.12: Functional boxplots of the monthly SST measurements across four regions in
the equatorial Pacific. The solid black line in the shaded blue area represents
the functional median. The shaded area indicates the 50% central region. The
region between the dashed blue lines delineates the regular observations. The
light gray lines depict the sample curves, and the labeled orange lines mark
outliers.

In Chapter 4, we use a distance-based approach that accounts for the dependencies between
the four SST measurement functions, and provide a comprehensive analysis of the data.

Many distance-based approaches for functional outlier detection focus on a generalization of
the Mahalanobis distance to the functional setting. The standard Mahalanobis distance (1.5)
is based on the inverse covariance matrix. The covariance operator K takes the same role
in the functional context as the covariance matrix does in the multivariate setting, but it
is not invertible in general. Hence, it is not straightforward how a functional Mahalanobis
distance should be defined. Galeano et al. (2015) proposed a method that relies on spectral
cutoff regularization to define a regularized covariance operator. Ghiglietti et al. (2017) and
Berrendero et al. (2020) proposed further approaches to regularize the covariance operator.
Most research regarding functional Mahalanobis distance considers univariate functional
data. In Chapter 4, we introduce a method to robustly estimate location and covariance for
multivariate functional data and compute truncated Mahalanobis (semi-)distances based on
the approach of Galeano et al. (2015).
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2 Multivariate Outlier Explanations Using
Shapley Values and Mahalanobis
Distances

This chapter was published as Mayrhofer, M. and Filzmoser, P. (2023). Multivariate outlier
explanations using Shapley values and Mahalanobis distances. Econometrics and Statistics.
DOI: 10.1016/j.ecosta.2023.04.003.

Contributions: M. Mayrhofer developed the methodology, established the proofs, and
implemented the proposed procedures in the R package ShapleyOutlier (Mayrhofer and
Filzmoser, 2022). He wrote the first draft of the paper, participated in discussions, and
finalized the paper together with the co-author.

2.1 Introduction

Multivariate outlier detection is a topic of unabated popularity in statistics and computer
science. Not only does there exist a wide variety of approaches but also the terminology
varies; anomaly detection, novelty detection, or fraud detection all refer to the problem of
identifying unusual behavior (Zimek and Filzmoser, 2018). In a dataset with n observations
measured at p variables, one is interested in identifying observations that do not conform to
their expected behavior according to the remaining (neighboring) observations (Chandola
et al., 2009; Grubbs, 1969).

A widespread tool for the detection of multivariate outliers in statistics is based on
the Mahalanobis distance (Mahalanobis, 1936). Generally, for an observation vector x =
(x1, . . . , xp)

′ from a population with expectation vector µ = (µ1, . . . , µp)
′ and covariance

matrix Σ, the squared Mahalanobis distance of x to µ with respect to Σ is given as

MD2
µ,Σ(x) = (x− µ)′Σ−1(x− µ) (2.1)

and will be denoted as MD2(x). To specify the outlyingness of an observation from a given
sample, the parameters µ and Σ need to be estimated, with their estimators being denoted
as µ̂ and Σ̂. If the underlying distribution is a multivariate normal distribution, it is common
to use the 0.975 quantile of a chi-square distribution with p degrees of freedom χ2

p;0.975 as a
cutoff value (Rousseeuw and Zomeren, 1990). Observations with a squared Mahalanobis
distance exceeding this cutoff are identified as multivariate outliers. It is evident that for
outlier detection, the estimates µ̂ and Σ̂ themselves must be robust against such outliers.
Many different proposals for robust estimation of multivariate location and covariance can be
found throughout the literature, with one of the most popular being the minimum covariance
determinant (MCD) estimator (Rousseeuw, 1985).

23

https://doi.org/10.1016/j.ecosta.2023.04.003


2 Multivariate Outlier Explanations Using Shapley Values and Mahalanobis Distances

The squared Mahalanobis distance from Equation (2.1) can also be written as

MD2(x) =

p!
j=1

p!
k=1

(xj − µj)(xk − µk)ωjk, (2.2)

where ωjk denotes the element (j, k) of the precision matrix Ω = Σ−1. This outlyingness
measure collects distance contributions of all pairwise variable combinations, weighted by
ωjk, resulting in a single number. However, this value cannot be interpreted in the sense of
contributions from individual variables, which would be vital for determining the effect of
the single variables on the overall outlyingness.

Analyzing the contributions of individual variables is also of major interest in Explainable
Artificial Intelligence, which is often referred to as Interpretable Machine Learning. For
example, suppose a “black-box” classifier has been trained on a dataset; it is often essential
to know how and why the individual variables of an observation contribute to the model’s
decision to assign an observation to a particular class (Ribeiro et al., 2016). Various tools
have been established for this purpose, and Shapley values are among the most popular ones.
Although the Shapley value (Shapley, 1953) was initially proposed in the context of game
theory in 1953, it was applied much later in the context of machine learning by Štrumbelj
and Kononenko (2010, 2014) and its popularity increased greatly after the publications of
Lundberg and Lee (2017); Lundberg et al. (2018, 2020). We refer to Molnar (2022) and
Biecek and Burzykowski (2021) for a more exhaustive discussion of these methods.

In this paper, we propose using the Shapley value for multivariate outlier explanation,
which will be directly based on the squared Mahalanobis distance. Our method allows us
to determine the individual variable contributions to the outlyingness and to answer the
question why an observation is flagged as a multivariate outlier. The arguably most critical
disadvantage of the Shapley values in a general setting is their high computational complexity,
which exponentially increases with the number of variables. However, we will show that
the Shapley values resulting from our approach can be expressed as a simplified problem,
substantially facilitating their computation, even in a higher dimension. In addition, we
present an extension of this concept that enables the assignment of outlyingness scores to
pairs of variables, allowing the evaluation of interaction effects.

It should be mentioned that an alternative approach to answer which variables contribute
the most to the multivariate outlyingness of an observation has been presented by Debruyne
et al. (2019), who estimate the univariate direction of maximum outlyingness using sparse
regression. Nevertheless, this method does not result in an additive decomposition of the
squared Mahalanobis distance.

Another approach closely related to outlier explanation is called cellwise outlier detection.
For an overview of this relatively recent research field, we refer to Raymaekers and Rousseeuw
(2021). Its main idea is to investigate the outlyingness of each cell of a data matrix instead
of focusing on entire observations. In general terms, cellwise outlyingness is based on the
difference of the actual value of a cell compared to the value we would have expected.

Computing the amount by which a cell is anomalous is also related to multivariate
outlier explanation. However, the approach is somehow reversed: To obtain explanations
for the outlyingness of a single row, we decompose its squared Mahalanobis distance into
outlyingness contributions for every cell using the Shapley value. In comparison, cellwise
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outlier detection methods must first identify a subset of clean cells for every row, which is
used to derive the value a cell should have had. This is commonly done using the conditional
expectation, and the resulting outlyingness scores are then based on the difference between
a cell’s actual value and its conditional expectation.

The remainder of this paper is structured as follows: In Section 2.2 we introduce Shapley
values before we derive in detail how to apply them for multivariate outlier explanation using
squared Mahalanobis distances. Moreover, we outline how to combine those results with
the concept of cellwise outlier detection, leading to the cellwise robust outlier explanation
algorithms described in Section 2.3. The performance of those outlier explanation tools
for cellwise outlier detection is demonstrated via the numerical experiments presented in
Section 2.4. In Section 2.5 we analyze the performance of our method on real-world examples.
The final Section 2.6 summarizes the key points of our findings.

2.2 Shapley Values for Outlier Explanation

In the following, we propose a method for the interpretation of multivariate outliers that
combines squared Mahalanobis distances with Shapley values (Shapley, 1953). The concept of
Shapley values is briefly introduced based on its nascent field of research, namely cooperative
game theory (Peters, 2008).

2.2.1 Shapley Values and Cooperative Game Theory

In cooperative game theory, players can form coalitions that produce a payoff and decide
how their coalitions’ proceeds are distributed among them.

Definition 2.2.1.1. A coalitional (cooperative) game with transferable utility (TU-game)
(T, v) is given by a set of players T = {1, 2, . . . , t} and the characteristic function v, which
assigns the worth v(S) ∈ R to each coalition S ⊆ T , such that v(∅) = 0.

In other words, the function v tells us how much collective payoff a coalition S of players
can gain by cooperating. A payoff distribution for the grand coalition T is given by
φ(v) = (φ1(v), . . . , φt(v))

′, where φj(v) ∈ R is the payoff to player j. There are several
proposals on how the payoff should be assigned to the players j ∈ T to obtain a fair
distribution. While there are different concepts and notions of fairness in the literature,
we will focus on the one introduced by Shapley (1953). The Shapley value ϕ(v), with
coordinates

ϕj(v) =
!

S⊆T\{j}

|S|!(t− |S| − 1)!

t!
(v(S ∪ {j})− v(S)) , (2.3)

is the unique payoff distribution that fulfills the following conditions (Young, 1985):

• Efficiency: The payoff to individual players φj(v) must add up to the worth of the
grand coalition v(T ), hence

"p
j=1 φj(v) = v(T ).

• Symmetry: If v(S ∪ {j}) = v(S ∪ {k}) holds for all S ⊆ T \ {j, k} for two players j
and k, then φj(v) = φk(v).
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• Monotonicity: If for any two games (T, v1) and (T, v2) and all S ⊆ T the condition

v1(S ∪ {j})− v1(S) ≥ v2(S ∪ {j})− v2(S)

is satisfied, then ϕj(v1) ≥ ϕj(v2).

Therefore, the Shapley value permits the definition of a fair payoff distribution for the grand
coalition T . The term v(S ∪ {j})− v(S) describes the marginal contribution of player j to
a coalition S. The corresponding Shapley value ϕj(v) is then given as the weighted mean of
the marginal contributions formed over all possible coalitions.

2.2.2 Linking Shapley Value and Mahalanobis Distance

Let us consider an observation vector x = (x1, . . . , xp)
′ from a population with expectation

vector µ = (µ1, . . . , µp)
′ and covariance matrix Σ. We would like to investigate the

contribution of the j-th coordinate xj to the outlyingness of x. The set of players is denoted
as P = {1, . . . , p}, and it contains the indices of all variables. A coalition S is formed by
a subset of P . We define the characteristic function v mentioned above as the squared
Mahalanobis distance

MD2
µ,Σ(x̂

S) = MD2(x̂S) (2.4)

with x̂S = (x̂S1 , . . . , x̂
S
p )

′ and

x̂Sj :=

�
xj if j ∈ S

µj if j /∈ S
, (2.5)

which fulfills MD2(x̂S) = 0, if S = ∅ is the empty set.
In this setting, the k-th coordinate of the Shapley value from Equation (2.3) is given as

the weighted average of the marginal contributions

∆k MD2(x̂S) := MD2(x̂S∪{k})−MD2(x̂S)

over all 2p−1 subsets S ⊆ P \ {k}. This suggests an exponential computational complexity,
which becomes costly, especially if p is large. However, the following theorem shows that
this highly demanding problem can be reduced to linear complexity.

Theorem 2.2.2.1. Given two vectors x,µ ∈ Rp and a non-singular matrix Σ ∈ Rp×p, the
contribution of the k-th variable to the squared Mahalanobis distance MD2(x) based on the
Shapley value is given by

ϕk(x,µ,Σ) :=
!

S⊆P\{k}

|S|!(p− |S| − 1)!

p!
∆k MD2(x̂S) (2.6)

= (xk − µk)

p!
j=1

(xj − µj)ωjk, (2.7)

with Σ−1 =: Ω = (ωjk)j,k=1,...,p and x̂S as in Equation (2.5).

Proof. The proof of this theorem is given in A.1.

26



2.2 Shapley Values for Outlier Explanation

Indeed, we can compute the expression of Equation (2.7) as an intermediate result when
we compute the squared Mahalanobis distance, see Equation (2.2).

The Shapley value of an observation x resulting from Theorem 2.2.2.1 is given by the
vector

ϕ(x,µ,Σ) = (ϕ1(x,µ,Σ), . . . , ϕp(x,µ,Σ))′ (2.8)

and we will simply denote it as ϕ(x) = (ϕ1(x), ..., ϕp(x))
′, whenever the (robustly estimated)

mean and covariance matrix are employed for its computation. Considering Theorem 2.2.2.1,
it is straightforward to see that

ϕ(x) = (x− µ) ◦Σ−1(x− µ), (2.9)

where ◦ denotes the element-wise product.
Since ϕ(x) is based on the Shapley value, it is the only decomposition of the squared

Mahalanobis distance with the characteristic function defined in Equation (2.4) that fulfills
the following properties:

• Efficiency: The contributions ϕj(x), for j = 1, . . . , p, sum up to the squared Maha-
lanobis distance of x, hence

p!
j=1

ϕj(x) = MD2(x). (2.10)

• Symmetry: If MD2(x̂S∪{j}) = MD2(x̂S∪{k}) holds for all subsets S ⊆ P \ {j, k} for
two coordinates j and k, then ϕj(x) = ϕk(x).

• Monotonicity: Let µ, µ̃ ∈ Rp be two vectors and Σ, Σ̃ ∈ Rp×p be two non-singular
matrices. If

MD2
µ,Σ(x̂

S∪{j})−MD2
µ,Σ(x̂

S) ≥ MD2
µ̃,Σ̃

(x̂S∪{j})−MD2
µ̃,Σ̃

(x̂S)

holds for all subsets S ⊆ P , then ϕj(x,µ,Σ) ≥ ϕj(x, µ̃, Σ̃).

A single coordinate ϕj(x) of the Shapley value defined in Theorem 2.2.2.1 can be interpreted
as the average marginal contribution of the j-th variable to the squared Mahalanobis distance
of an individual observation x. While the squared Mahalanobis distance aggregates all
distance contributions and results in an outlyingness measure for an entire observation,
Equation (2.7) reveals that a coordinate ϕj(x) of the Shapley value only accounts for those
distance contributions that are related to the j-th variable. This also implies that the
outlyingness contribution of the j-th variable is connected to all other variables since a large
distance of another variable to its mean influences the contribution of the j-th variable.
However, the weighting based on the precision matrix alleviates this issue, since only variables
that are not conditionally independent influence the score, at least in the case of elliptically
distributed data (Baba et al., 2004). The efficiency property stated in Equation (2.10)
indicates that we obtain an additive decomposition of the squared Mahalanobis distance
into variable contributions, where a large value of ϕj(x) indicates a large contribution of the
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Figure 2.1: Plots illustrating a two-dimensional visualization of the Shapley values ϕ(x)
for x ∈ [−4, 4] × [−4, 4] with mean µ = (0, 0)′ and covariance matrix Σ, with
elements σ12 = σ21 = 0.8, and σ11 = σ22 = 1. The graphs are colored according
to the components ϕ1(x) and ϕ2(x) of the Shapley value, respectively, and both
panels show the 99-percentile confidence ellipse.

j-th coordinate to MD2(x). It should be noted that the contributions can also be negative,
as illustrated in Figure 2.1.

Remark: The definition given in Equation (2.5), where x̂Sj = µj if j /∈ S, could also be
modified. In the literature, it is often suggested to use the conditional expectation of xj ,
given all other variables with index contained in S, instead of the expected value (Lundberg
and Lee, 2017). However, evaluating the conditional expectation explicitly requires us to
impose distributional assumptions or to apply approximation techniques, and this may also
lead to high computational complexity, as for every coordinate j ∈ P there are 2p−1 possible
subsets S. Our definition of x̂S results in two major advantages:

1. The computational complexity of computing the Shapley value reduces from an
exponential to a linear one; see Theorem 2.2.2.1.

2. For any S and the resulting x̂S , the definition of Equation (2.5) results in the fact that
MD2

µ,Σ(x̂
S) is identical to (xS −µS)

′ΩS(xS −µS), the squared Mahalanobis distance
of xS = (xj)j∈S , where xS and µS only consist of the coordinates of x and µ contained
in the set S, respectively, and ΩS is the submatrix of the precision matrix Ω = Σ−1

with rows and columns included in S. Therefore, analyzing the outlyingness of x̂S

using the squared Mahalanobis distance is equivalent to an analysis of the outlyingness

28



2.2 Shapley Values for Outlier Explanation

of the lower dimensional version xS , see also Equation (2.2).

2.2.3 Shapley Interaction Index

The analysis of interactions between players is often of interest in cooperative game theory,
and one of the first proposals for such an analysis is due to Owen (1972). In more recent
developments Grabisch and Roubens (1999); Fujimoto et al. (2006) introduced a framework
that allows for an axiomatic generalization of the Shapley value to the so-called Shapley
interaction index, which is also used in the field of Explainable AI (Lundberg et al., 2018).
Applying this method within our framework, we can investigate pairwise outlyingness
contributions of variables.

Using the notation of cooperative game theory, as in Section 2.2.1, the Shapley interaction
index for S, with fixed |S| = s, is given by

ISh(v, S) =
!

T⊆P\S

t!(p− t− s)!

(p− s+ 1)!
∆Sv(T ), (2.11)

with t = |T |, and ∆Sv(T ) =
"

L⊆S(−1)s−lv(T ∪ L), l = |L|, also known as the discrete or
set function derivative (Grabisch, 2016). We refer to the previously mentioned articles of
Grabisch and Roubens (1999); Fujimoto et al. (2006) for more details regarding the theory
and properties connected to this concept.

As before, we decompose the squared Mahalanobis distance using the characteristic
function defined in Equation (2.4). Moreover, we only focus on the pairwise Shapley
interaction index (|S| = 2) because higher order Shapley interaction indices (|S| ≥ 3) turn
out to be zero in this setting (see A.2 for a proof).

Theorem 2.2.3.1. Given two vectors x,µ ∈ Rp and a non-singular matrix Σ ∈ Rp×p,
the pairwise contributions of the variable pair (j, k) of an observation x to the squared
Mahalanobis distance MD2(x), based on the Shapley interaction index as defined in Equa-
tion (2.11), are collected in the matrix Φ(x) = Φ(x,µ,Σ), where the off-diagonal elements
are given by

Φjk(x) :=
!

T⊆P\{j,k}

t!(p− t− 2)!

(p− 1)!
∆{j,k}MD2(x̂T ) (2.12)

= 2(xj − µj)(xk − µk)ωjk, (2.13)

with

∆{j,k}MD2(x̂T ) = MD2(x̂T∪{j,k})−MD2(x̂T∪{j})−MD2(x̂T∪{k}) +MD2(x̂T ). (2.14)

The diagonal elements are defined as

Φjj(x) := ϕj(x)−
!
k ̸=j

Φjk(x) (2.15)

= (xj − µj)
2ωjj − (xj − µj)

!
k ̸=j

(xk − µk)ωjk, (2.16)

where ϕj(x) is the j-th coordinate of the Shapley value as in Theorem 2.2.2.1.
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2 Multivariate Outlier Explanations Using Shapley Values and Mahalanobis Distances

Proof. The proof of this theorem is given in A.2.

To gain a better understanding of what the Shapley interaction index measures, we start
by rewriting Equation (2.14) as

∆{j,k}MD2(x̂T ) = (MD2(x̂T∪{j,k})−MD2(x̂T ))

− (MD2(x̂T∪{j})−MD2(x̂T ))

− (MD2(x̂T∪{k})−MD2(x̂T )).

This reveals that ∆{j,k}MD2(x̂T ) measures the difference in squared Mahalanobis distance
between simultaneous, pairwise and individual, marginal replacement of the variables xj and
xk with their means µj and µk, respectively. The Shapley interaction index Φjk(x) then
aggregates the pairwise differences ∆{j,k}MD2(x̂T ) across all 2p−2 subsets T ⊆ P \ {j, k}
and measures the average effect of a pairwise versus a marginal replacement. Theorem 2.2.3.1
shows that the Shapley interaction index can be simplified, such that Φjk(x) only depends
on the deviation of the j-th and the k-th coordinate from their mean, weighted by the
corresponding entry of the precision matrix. This discloses that the Shapley interaction
index Φjk(x) isolates the outlyingness contribution of the variable pair (j, k), while the
Shapley value ϕj(x) accounts for all marginal contributions in which the j-th variable is
involved. Figure 2.2 provides an illustration of the Shapley interaction index between the
first and the second variable in a simple two-dimensional example.

The definition of the diagonal elements Φjj(x) is chosen such that a generalization of the
Efficiency property given in Equation (2.10) is possible:

ϕj(x) =

p!
k=1

Φjk(x) and MD2(x) =

p!
j=1

p!
k=1

Φjk(x).

Thus, the Shapley values for every variable can be decomposed into pairwise interactions
with the remaining variables. Since the covariance matrix only contains information about
the pairwise, linear relationship between variables, it is quite intuitive that no further
decomposition is possible.

It is worth mentioning that there are other suggestions on how to generalize the Shap-
ley value such that an explicit definition of Φjj(x), j = 1, . . . , p, is not necessary (e.g.
Sundararajan et al., 2020, Shapley-Taylor interaction index ).

2.3 Cellwise Robust Outlier Explanation

Cellwise outlier detection focuses on identifying unusual cells rather than rows in a data
matrix. Such a procedure is particularly justified when dealing with datasets containing
many variables: If only individual cells of an observation are contaminated, then the majority
of non-contaminated cells still contains valuable information that should not be discarded.
Moreover, already a small proportion of outlying cells spread out over the whole data matrix
could, in a rowwise treatment, soon lead to a setting where the majority of observations would
have to be considered as traditional rowwise outliers. However, rowwise robust methods
can only deal with settings where at least half of the observations are not corrupted. To
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Figure 2.2: Using the same setup as for the example described in Figure 2.1, the pairwise
contributions Φ12 of x1 and x2 to the squared Mahalanobis distance are visualized
in the left panel. In this simple two-dimensional example, we can see that the
pairwise contributions are highest in the direction of the eigenvector of Σ with the
smallest eigenvalue. Hence, observations with a large multivariate outlyingness
and a small univariate outlyingness are assigned high pairwise outlyingness scores
Φ12. In the right graph, we display the squared Mahalanobis distance, and both
panels include the 99-percentile confidence ellipse.

deal with such settings, Alqallaf et al. (2009) formalized the cellwise contamination model.
Several papers that build on this concept are referred to in Raymaekers and Rousseeuw
(2021), and they also introduce a novel procedure for cellwise outlier identification.

As already outlined in Section 2.1, the key objective of this work concerns the explanation
of multivariate outliers based on the Shapley value for given or appropriately estimated
parameters µ and Σ. To obtain cellwise robust covariance estimates, the 2SGS approach
of Agostinelli et al. (2015a), the DDC method of Rousseeuw and Bossche (2018), or the
cellMCD estimator of Raymaekers and Rousseeuw (2023) can be used. Since the Shapley
value enables an additive decomposition of the squared Mahalanobis distance, it can be used
to identify outlying cells. However, these contributions do not inform about the supposed
cell values under the assumption that they were not contaminated. Apart from detecting
outlying cells, estimating the values the cells were supposed to have is of major importance
when handling cellwise outliers. In this section, we outline how to combine the ideas of
cellwise outlier detection and multivariate outlier explanation to obtain cellwise robust outlier
explanations.
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2 Multivariate Outlier Explanations Using Shapley Values and Mahalanobis Distances

2.3.1 SCD (Shapley Cell Detector) Algorithm

As a starting point, we take another look at the decomposition derived in Theorem 2.2.2.1,
where we obtain the average marginal contributions of each component to the squared
Mahalanobis distance. Equations (2.5) and (2.6) allow us to interpret said contributions in
more detail: The value of ϕj(x) represents the average change in MD2(x) across all 2p−1

possible variations of other variables, when the j-th component of x is replaced by its mean.
Hence, positive values of ϕj(x) indicate that replacing xj with µj would lead to an average
reduction in MD2(x), whereas negative values indicate that such a replacement would have
the opposite effect.

The information provided by the Shapley value can now be used to design an algorithm
for identifying outlying cells and replacing their values. We propose a stepwise procedure,
which is described in detail in Algorithm 1. We call this method Shapley Cell Detector,
abbreviated as SCD. The set R is updated in each step and will finally contain the indices of
all cells of an observation x which are marked as outlying. The set of outlying coordinates
R can be related to Equation (2.5), where S = R̄ = P \R denotes the cells which are not
replaced. In the course of each iteration, we replace the coordinates of x that have the
highest scores according to the Shapley value ϕ(x) until the modified observation x̃ is no
longer a multivariate outlier. As is common in multivariate outlier detection, a cutoff based
on the chi-square distribution is used, which entails the same distributional assumptions
discussed in the introduction. The replaced value does not directly correspond to the mean
but rather to a value towards the direction of the mean whereby the magnitude of the
correction is controlled by a step size parameter δ ∈ (0, 1]. This is done for each set R until
a score resulting from the complement R̄ := P \ R of R is larger than one obtained from
the set R. Here, the r-dimensional subvector x̃R = (x̃j)j∈R of the modified observation
x̃ consists of the replaced values, which are dependent on µR = (µj)j∈R. Note that the
maximum in line 6 of Algorithm 1 is usually unique, implying that k = 1 and only one index
is added to R per iteration.

Algorithm 1 Shapley Cell Detector (SCD)

1: procedure SCD(x,µ,Σ, δ)
2: x̃ ← x
3: R ← ∅
4: ϕ = (ϕ1, . . . , ϕp)

′ ← ϕ(x,µ,Σ) = (ϕ1(x,µ,Σ), . . . , ϕp(x,µ,Σ))′

5: while MD2(x̃) > χ2
p,0.99 do

6: R ← R ∪ {j1, . . . , jk}, where (ϕjl)l=1,...,k = maxi=1,...,p ϕi

7: while maxj∈R ϕj > maxj∈R̄ ϕj do
8: x̃R ← x̃R − (x̃R − µR)δ
9: ϕ ← ϕ(x̃,µ,Σ)

10: end while
11: end while
12: return x̃
13: end procedure
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2.3 Cellwise Robust Outlier Explanation

Example 2.3.1.1. We illustrate the working principle of Algorithm 1 by considering a 5-
dimensional observation x = (0, 1, 2, 2.2, 2.5)′ from a population with mean µ = (0, 0, 0, 0, 0)′

and covariance matrix Σ, with elements σjk = 0.9, j ̸= k, and σjj = 1. Here, x would
be marked as a multivariate outlier since MD2(x) = 44.90 > 15.09 = χ2

5,0.99 and we can
employ the Shapely value of Theorem 2.2.2.1 to explain this multivariate outlier, resulting in
ϕ(x) = (0,−5.07, 9.87, 15.26, 24.84)′. Those outlyingness scores are then used in Algorithm 1
to flag outlying cells, and, for simplicity, we analyze the case where δ = 1. In this scenario,
the coordinate x5 is identified first, followed by x4, and then x3. Each variable in turn is
replaced by µ5, µ4, and µ3, respectively. This results in an altered version x̃ of the original
observation x, which is no longer outlying, and therefore the algorithm stops.

It should be noted that in this example, we have no information about which cells are
truly outlying or have been manipulated. However, in general, it seems desirable to keep the
number of modified coordinates as small as possible.

Algorithm 1 is easy to implement and fast to compute. The discrepancy between the
original and replaced cells indicates the outlyingness in the particular variables. However,
this simplicity results from our definition of the Shapley value in Theorem 2.2.2.1, which
leads to a replacement by a value towards the mean in Algorithm 1.

Figure 2.3 provides a further illustration of the SCD procedure for a two-dimensional
example. It schematically displays five specific observations, denoted by A to E, to which
Algorithm 1 is applied. The left plot shows the result when setting δ = 1 in the algorithm,
while the right plot corresponds to δ = 0.1. The points in the plots highlight the individual
computation steps of the algorithm, and the ellipse indicates the stopping criterion χ2

2,0.99.
While for δ = 1 the algorithm uses at most two steps, this behavior changes for the case
of δ = 0.1. Using a smaller step size leads to different replacement values for the points
B, D, and E. Comparing the computation steps for points B and D, the results in the right
plot seem more meaningful since they avoid increasing the Mahalanobis distance during the
computation, and the final replacement is more similar to the original points.

Until now, we only considered a replacement of outlying cells by the mean or by a value
towards the direction of the mean. However, the algorithm is only stopped by a sufficient
reduction of the squared Mahalanobis distance. Therefore, the task at hand can thus be
redefined further: Find the optimal replacements for outlying cells to achieve the highest
possible reduction in squared Mahalanobis distance. As before, the Shapley value should
determine the outlyingness of the cells.

2.3.2 MOE (Multivariate Outlier Explainer) Algorithm

Based on the definition of the Shapley value in Equation (2.7), a coordinate has a low
outlyingness contribution if it is close to its mean. Consequently, it is unlikely that this cell
is flagged as outlying. This center-outward ordering is induced by the squared Mahalanobis
distance computed with respect to the mean, and thus it explains the global outlyingness
of an observation. However, the described procedure might not be optimal for detecting
cellwise outliers, where local outlyingness is emphasized, because the information contained
in the regular cells of an observation could be incorporated to define an optimal replacement.
For this purpose, an alternative approach to using the mean as the center for computing
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Figure 2.3: In this figure, two graphs are displayed to illustrate the operating principle of
Algorithm 1 in a two-dimensional setting. Both plots show the position of the
five outlying points A to E and their replacements. The plot on the left side
shows the results when cells are directly replaced by their corresponding mean,
while the right side illustrates the stepwise approach.

Mahalanobis distances and Shapley values is outlined in the following paragraphs. We call
the newly proposed center parameter reference point. This new Shapley value will also be
used later for an outlier replacement strategy.

The question of how to best replace cells of an observation to minimize the squared
Mahalanobis distance has been addressed in Raymaekers and Rousseeuw (2021). Here
we assume that the set R of outlying cells is fixed (and R ̸= ∅) for an observation x =
(x1, . . . , xp)

′, and the cells xj should be shifted to the values x̃j , for j ∈ R. Explicitly we can
write this as x−ERβ where ER denotes the p× r matrix with the standard basis vectors
ej , j ∈ R as columns. The squared Mahalanobis distance of this expression can now be
rewritten as follows,

MD2
µ,Σ(x−ERβ) = (x− µ−ERβ)

′Σ−1(x− µ−ERβ)

=
$$$Σ−1/2(x− µ−ERβ)

$$$2
2

=
$$$Σ−1/2(x− µ)−Σ−1/2ERβ

$$$2
2
.

Minimizing this expression corresponds to a least-squares problem, which leads to the
least-squares estimator

β̂(R) = argmin
β∈Rs

MD2
µ,Σ(x−ERβ) = (E′

RΣ
−1ER)

−1E′
RΣ

−1(x− µ), (2.17)
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2.3 Cellwise Robust Outlier Explanation

and the replaced values are given by x̃R = xR − β̂(R), which are equal to the conditional
means under multivariate normality, i.e. x̃R = E[xR|xR̄] (Raymaekers and Rousseeuw,
2021).

If R consists of only one element, say R = {j}, for j ∈ P , then the solution of Equa-
tion (2.17) simplifies to

β̂(j) =
1

ωjj
(ωj1, . . . , ωjp)(x− µ), (2.18)

where ωij denotes the element (i, j) of Σ−1, and the modification for observation x is given
by x̃j = xj − β̂(j).

Building on those findings, we can now define the new reference point µ̃(x, R) for a fixed
set of outlying cells R, by setting each coordinate to

µ̃j(x, R) = xj − β̂(j)(R ∪ {j}), (2.19)

where β̂(j)(R ∪ {j}) is the component of β̂(R ∪ {j}) corresponding to the index j. To
determine the set R, we adapt the SCD procedure by incorporating µ̃(x, R) as a reference
point for the Mahalanobis distance and updating it in each iteration. We refer to this
procedure as Multivariate Outlier Explainer (MOE) and outline its general workflow in
Algorithm 2.

The MOE procedure is initialized by computing the reference point µ̃ = µ̃(x, R), with
R = ∅. For the initial computation of β̂ we can simply apply Equation (2.18) to each
coordinate of x, which can be done in one step by matrix multiplication. Using this initial
reference point, we obtain the squared Mahalanobis distance MD2

µ̃,Σ(x̃), which is in turn
used to define the corresponding Shapley value ϕ(x̃, µ̃,Σ) according to Equation (2.9). We
want to emphasize that the properties of the Shapley value listed in Section 2.2 remain
unchanged, particularly the Efficiency property: The sum of the coordinates of the Shapley
value ϕ(x̃, µ̃,Σ) equals the squared Mahalanobis distance with respect to the new reference
point µ̃. Outlying cells are then identified based on the Shapley value and corrected in the
direction of their corresponding entries of µ̃, resulting in the modified observation x̃. The
process of updating the reference point µ̃, identifying outlying cells based on their Shapley
values, and correcting them in the direction of µ̃, is then repeated until the vector x̃ is no
longer marked as outlying. Aside from using the reference point µ̃ in the MOE procedure
instead of µ, the concept of the algorithm is similar to the SCD procedure, but there are
two other important distinctions:

• The outlier cutoff value used in line 7 is adapted to the new reference point. Filzmoser
et al. (2014) have shown that for a sample x drawn from a multivariate normal
distribution N (µ,Σ), the conditional distribution of the squared Mahalanobis distance
MD2

µ̃,Σ(x) given µ̃ is a non-central chi-square distribution with p degrees of freedom
and non-centrality parameter λ = MD2(µ̃), denoted as χ2

p(λ). Therefore, the 0.99
quantile of this distribution is taken as the cutoff value to exit the loop.

• Since the goal of this procedure is cellwise outlier detection, we want to avoid flagging
coordinates that were only shifted by a negligible amount. Therefore, we monitor
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2 Multivariate Outlier Explanations Using Shapley Values and Mahalanobis Distances

the distance d by which each cell of x is shifted in the direction of µ̃. Initially, this
distance is set to dj = 0, j = 1, . . . , p, followed by an iterative update of the distance
variable in line 11. Moreover, we adjust d such that the distances are independent of
the scale of the single coordinates. We then update the set of outlying coordinates
R by only choosing coordinates for which dj > ηmaxl=1,...,p dl, with η ∈ [0, 1]. In
simulations not included in this work, η = 0.2 resulted in a good trade-off between the
recall, meaning the fraction of correctly identified cells among all contaminated cells,
and the precision, meaning the fraction of correctly identified cells among all detected
cells, of the procedure and is therefore chosen as a default value. Finally, we amend
µ̃(x, R), ϕ(x, µ̃,Σ), and x̃ according to the updated set R.

Algorithm 2 Multivariate Outlier Explainer (MOE)

1: procedure MOE(x,µ,Σ, δ, η)
2: x̃ ← x
3: R ← ∅
4: d = (d1, . . . , dp)

′ ← (0, . . . , 0)′

5: µ̃ = (µ̃1, . . . , µ̃p)
′ ← µ̃(x, R) = (x1 − β̂(1), . . . , xp − β̂(p))′

6: ϕ = (ϕ1, . . . , ϕp)
′ ← ϕ(x̃, µ̃,Σ) = (ϕ1(x̃, µ̃,Σ), . . . , ϕp(x̃, µ̃,Σ))′

7: while MD2
µ̃,Σ(x̃) > χ2

p,0.99(MD2(µ̃)) do
8: R ← R ∪ {j1, . . . , jk}, where (ϕjl)l=1,...,k = maxi=1,...,p ϕi

9: while maxj∈R ϕj > maxj∈R̄ ϕj do
10: c ← (x̃R − µ̃R)δ
11: dR ← dR + c
12: x̃R ← x̃R − c
13: ϕ ← ϕ(x̃, µ̃,Σ)
14: end while
15: µ̃ ← µ̃(x, R)
16: end while
17: d = (d1, . . . , dp)

′ ← (d1/
√
σ11, . . . , dp/

√
σpp)

′

18: R ← {j1, . . . , jm}, for which (djl)l=1,...,m > ηmaxi=1,...,p di
19: µ̃ ← µ̃(x, R)
20: ϕ ← ϕ(x, µ̃,Σ)
21: x̃ ← x
22: x̃R ← µ̃R

23: return x̃, µ̃,ϕ
24: end procedure

Algorithm 2 allows us to detect and impute cellwise outliers, and it also yields a local
explanation of the outlyingness. Furthermore, the Shapley values computed with respect
to the reference point µ̃(x, R) can be used to explain the results of other cellwise outlier
detection procedures. To this end, we merely need to compute µ̃ = µ̃(x, R) for a given set
of outlying cells R of an observation x. By subsequently determining the Shapley value
ϕ(x, µ̃,Σ), we can therefore explain why the observation is outlying.
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2.4 Simulations

Example 2.3.2.1. We reiterate Example 2.3.1.1 with the MOE procedure, using a step size
of δ of 0.1. The first two coordinates x1 and x2 are marked as outlying, resulting in µ̃ =
µ̃(x, {1, 2}) = (2.19, 2.19, 2.27, 2.13, 2.04) and ϕ(x, µ̃,Σ) = (34.89, 7.07,−0.86, 1.28, 4.88).

Comparing the results of Algorithms 1 and 2, it can be seen that the sets of outlying
cells for the two algorithms are disjoint. Therefore, the interpretations of the results are
different. The reason for this discrepancy is mainly that we no longer decompose MD2

µ,Σ(x),
but instead the squared Mahalanobis distance of the amended reference point µ̃, MD2

µ̃,Σ(x).
While the Shapley value ϕ(x,µ,Σ) used in Algorithm 1 explains the global outlyingness, the
Shapley value ϕ(x, µ̃,Σ) used in Algorithm 2 provides us with a local understanding of the
outlyingness, which is better suited to the setting of cellwise outlyingness.

In Figure 2.4, we compare the final Shapley values yielded by the SCD and MOE algorithms.
In Figure 2.5, we show the Shapley values computed during each iteration for both algorithms,
using a step size δ = 0.1. Both figures indicate the squared Mahalanobis distance (black bar)
and the corresponding (non-)central chi-square quantile (dotted line).
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Figure 2.4: Comparison of the Shapley values ϕ(x,µ,Σ) used in Algorithm 1 to explain the
global outlyingness, and ϕ(x, µ̃,Σ), used in Algorithm 2 to gain local insights
on the outlyingness, with the input values defined in Example 2.3.1.1. The SCD
procedure identifies the three coordinates x3, x4, and x5, which are furthest
from the mean µ. On the other hand, the MOE algorithm uses the alternative
reference point µ̃ to identify variables x1 and x2.

2.4 Simulations

The simple numerical example from the previous section has illustrated that the SCD and
MOE algorithms can lead to quite different outcomes. However, it needs to be emphasized
that their purposes also differ: While the SCD procedure aims at global outlier explanation,
i.e. with respect to the distribution of the entire dataset, the MOE procedure is locally
applicable and builds on the local information contained in the regular cells of an individual
observation. Nevertheless, it can be interesting to compare both procedures in terms of
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Figure 2.5: Comparison between the Shapley values calculated for each iteration of Algo-
rithm 1 (left) and Algorithm 2 (right), respectively, for Example 2.3.1.1. While
the outlyingness is monotonically decreasing in both cases, the sets of identified
variables are disjoint. Both the SCD and MOE procedures reduce the outly-
ingness by iteratively shifting the identified variables toward the corresponding
coordinates of µ or µ̃, respectively.

their ability to identify cellwise outliers and, in particular, to examine their performance
in comparison to a reference method, namely the cellHandler procedure introduced by
Raymaekers and Rousseeuw (2021). We choose standard parameters for all three procedures,
meaning that both the SCD and MOE algorithms are set up with a step size of δ = 0.1, and
the MOE procedure additionally uses a detection threshold η = 0.2.

In our analysis, we compare two different mechanisms for generating outliers and analyze
the effects of various parameter configurations, which are summarized in Table 2.1 and
described in more detail in the following paragraphs. For each specific parameter combination,
we repeat the simulations 50 times and compute averages of the resulting measures Recall,
Precision, and F-Score.

For both outlier generation procedures, we generate data matrices with p columns and
n = 20p rows from multivariate normal distributions with mean µ = 0 and three different
types of covariance matrices Σ, namely Cmod, Cmix, and Clow. In all three cases, the diagonal
elements are set to 1. For Cmod, the off-diagonal elements are chosen as 0.5, resulting in
moderate correlations. The off-diagonal elements of Cmix correspond to (−0.9)|j−k|, j ̸= k,
yielding both high and low correlations. For Clow, the off-diagonal elements are randomly
generated as described in Agostinelli et al. (2015a), generally resulting in low correlations.

To analyze the effect of highly correlated shift-outliers, we randomly select ⌈nϵ2⌉ rows,
and for each of those rows, we replace r = ⌈pϵ1⌉ randomly selected cells by r-variate outliers.
Those follow a Gaussian distribution with mean µ = (γ, . . . , γ)′ and covariance matrix Σ̃,
with elements σ̃jk = 0.7, j ̸= k, and σ̃jj = 1. The magnitude of the outliers is determined by
the value γ, which is selected according to Table 2.1. Following this approach, the fraction
of outlying cells ranges between 0.01 and 0.16.
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Table 2.1: Summary of the parameters used for the two simulation scenarios on cellwise
outlier detection discussed in Section 2.4.

Parameters Shift outliers Structured outliers

Dimension, p 5, 10, 20, 30, 40 5, 10, 20, 30, 40
Covariance, Σ Cmix, Clow, Cmod Cmix, Clow, Cmod
Fraction of outlying columns, ϵ1 0.1, 0.2, 0.3, 0.4 -
Fraction of outlying rows, ϵ2 0.1, 0.2, 0.3, 0.4 -
Fraction of outlying cells, ϵ3 - 0.1, 0.2, 0.3, 0.4
Magnitude of outlyingness, γ 1, 2, 3 2, 3, 4, 5, 6

Total combinations 720 300

For the second scenario, outliers are generated such that they are structurally outlying but
have low univariate outlyingness, as proposed by Raymaekers and Rousseeuw (2021). For this
purpose, nϵ3 cells are selected randomly in each column. Like this, each row contains a subset
K ⊆ P of cells xK which are subsequently replaced by the vector γ

√
ku′/MDµK ,ΣK

(u),
where k = |K|, and u is the eigenvector of ΣK that corresponds to the smallest eigenvalue.

We summarize the overall results in Table 2.2, comparing Precision, Recall, and F-Score.
The performance metrics are averaged over all parameters not listed in the table (p, ϵ1, ϵ2,
ϵ3, and γ) and all replications. Regarding Precision, the MOE algorithm exhibits the best
results in 4 out of 6 settings. Concerning Recall, the SCD procedure performs best when
the correlations are low to moderate, while the cellHandler procedure performs best when
the correlations are moderate or mixed. Finally, when comparing the F-Score, we see that
each algorithm outperforms the remaining two at least once. However, the results listed in
the table are averaged over a wide range of parameter settings. Therefore, we study the
individual effects of the different parameters in more detail in the following.

In Figure 2.6, we analyze the effect of the dimension p on the cellwise outlier detection
performance. We focus on the case of highly correlated shift outliers, with fixed ϵ1 = ϵ2 = 0.4
and γ = 3. This results in a situation with many moderately contaminated cells. We observe
an increase in Precision for all three algorithms and covariance structures as p increases.
The SCD procedure shows the most substantial increase and the highest overall Precision
in case of low and moderate correlations. For the mixed correlations, the MOE procedure
exhibits the highest Precision. Moving on to Recall, we see an initial increase followed
by a very slight decline for all three methods for mixed and moderate correlations. For
low correlations, the MOE procedure shows a severe drop in Recall, while the other two
procedures only show a slight decline in performance. This is related to the default choice of
the tuning parameter η = 0.2 for the MOE procedure, and the Recall could be improved by
choosing a smaller value of η. While the Recall is similar for all methods in case of moderate
and mixed correlations, we observe that the SCD procedure has the highest Recall in case
of low correlations, followed by the cellHandler algorithm.

For the structured outliers, we illustrate the influence of γ for fixed ϵ3 = 0.4 and p = 30 in
Figure 2.7. As expected, Precision and Recall are increasing as the magnitude of outlyingness,

39



2 Multivariate Outlier Explanations Using Shapley Values and Mahalanobis Distances

Table 2.2: Summary of the results of the simulations described in Section 2.4. The perfor-
mance metrics Precision, Recall, and F-Score listed in this table are averaged over
all replications and parameter combinations.

Shift outliers Structured outliers

Σ Algorithm Precision Recall F-Score Precision Recall F-Score

Cmix SCD 0.690 0.737 0.708 0.546 0.551 0.540
Cmix MOE 0.894 0.707 0.782 0.916 0.545 0.668
Cmix cellHandler 0.760 0.743 0.741 0.854 0.564 0.667

Clow SCD 0.713 0.510 0.574 0.767 0.715 0.729
Clow MOE 0.678 0.396 0.478 0.880 0.597 0.695
Clow cellHandler 0.599 0.473 0.508 0.900 0.630 0.722

Cmod SCD 0.767 0.405 0.507 0.859 0.530 0.627
Cmod MOE 0.808 0.421 0.528 0.954 0.476 0.599
Cmod cellHandler 0.649 0.471 0.522 0.917 0.513 0.634

controlled by γ, increases. The MOE procedure shows the highest overall Precision. However,
regarding Recall, the SCD procedure performs better for mixed and high correlations. For
low correlations, the cellHandler procedure exhibits the steepest increase in Recall as γ
increases.

In conclusion, these simulations show that our approaches based on the Shapley value,
particularly the MOE procedure, yield comparable results to one of the current state-of-the-
art methods, namely the cellHandler procedure. While cellwise outlier detection presents the
focus of the latter method, our approach is instead based on utilizing cellwise outlier detection
specifically to enhance and robustify the outlyingness scores based on Theorem 2.2.2.1, with
respect to an observation’s “expected” position, as outlined in Equations (2.17) and (2.19).
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Figure 2.6: Comparison between the SCD, MOE, cellHandler procedures in the simulation
setting of cellwise shift outliers outlined in Section 2.4, with simulation parameters
ϵ1 = ϵ2 = 0.4 and γ = 3. The performance scores Precision (left) and Recall
(right) of the individual algorithms are listed separately for each type of covariance
structure.

41



2 Multivariate Outlier Explanations Using Shapley Values and Mahalanobis Distances

Precision Recall

C
m

ix
C

low
C

m
od

2 3 4 5 6 2 3 4 5 6

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

γ

Pe
rfo

rm
an

ce

Method SCD MOE cellHandler

Figure 2.7: Comparison between the SCD, MOE, cellHandler procedures in the simulation
setting of structured cellwise outliers outlined in Section 2.4, with simulation
parameters ϵ3 = 0.4 and p = 30. The performance scores Precision (left) and
Recall (right) of the individual algorithms are listed separately for each type of
covariance structure.
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2.5 Applications

While the simulations shown in the previous section have demonstrated the performance of
the methods and algorithms introduced in Section 2.2 and 2.3 on simulated datasets, we
now apply them to two real-world data. To this end, we analyze the Top Gear dataset from
Alfons (2021) and the Weather in Vienna dataset from Stadt Wien (2022).

2.5.1 Top Gear

The Top Gear dataset comprises measurements of 11 numerical attributes (see Figure 2.8)
of 245 complete data instances of cars featured on the website of the BBC television series.
We apply a logarithmic transformation to five variables for data preprocessing to obtain
more symmetrical marginal distributions. Additionally, each column is robustly centered
and scaled based on the median and the MAD. Furthermore, we estimate the covariance
using the MCD estimator before applying the SCD, MOE, and cellHandler procedures.

In the following, we use three different types of plots to analyze the results of all three
tested algorithms on this dataset: Figure 2.8 summarizes the Shapley values, Figure 2.9 shows
the outlying cells, and Figure 2.10 displays the Shapley interaction indices, respectively.
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Figure 2.8: Comparison of the outlyingness scores resulting from the SCD (left), MOE
(center), and cellHandler (right) procedures. Each graph shows a visualization
of the Shapley values for the six most outlying observations.

In detail, Figure 2.8 consists of three graphs, each displaying the outlyingness decom-
positions according to the applied algorithm of the six cars with the highest Mahalanobis
distance. In the left panel, we see the results generated using the SCD procedure, where we
use the center of the data as a reference point. In the center panel, we show the results of
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using the MOE algorithm with the non-central chi-square cutoff. For both procedures, we
use a step size δ = 0.1, and the MOE algorithm’s detection threshold is η = 0.2. In the right
panel, we show the results of using the cellHandler procedure to flag outlying cells, and then
employing the Shapley value, with reference point µ̃(x, S) according to Equation (2.17), to
enhance the interpretability of the results, as outlined in Section 2.3. Since we are analyzing
multiple observations with large differences in squared Mahalanobis distance, plotting the
squared distance is ineligible, and we display the square root instead. However, since we
are decomposing the squared distance in Theorem 2.2.2.1, we must scale the outlyingness
scores. For this reason, we derive each variable’s proportional contribution to the squared
distance and multiply it by the (not-squared) Mahalanobis distance. While this results in
a somewhat distorted graph, this workflow enables us to analyze and compare multiple
observations using a stacked bar chart.

Analyzing Figure 2.8, we first want to focus on the three cars with the highest outlyingness.
For those cars, the main contribution to the squared Mahalanobis distance in the three
graphs is caused by the variable MPG. Considering that these specific models are hybrid
vehicles, it seems reasonable that their fuel consumption differs strongly from that of gasoline
and diesel cars. All three methods lead to similar results in this case. For the two sports
cars Bugatti Veyron and Pagani Huayra, we see that the Price variable is contributing
the most to the outlyingness, which is again visible in the results of all three methods.
For these two cars, most characteristics are similar to a certain extent, except for their
weight: The Bugatti weighs 1990 kg while the Pagani has only a weight of 1350 kg. This
fact becomes clearly visible when applying the MOE algorithm, where the Weight variable
has a high contribution to the squared Mahalanobis distance of the Pagani but not for the
Bugatti. Again, the three procedures agree for the Ssangyong Rodius, where Acceleration
contributes the most. In fact, the listed value for Acceleration is 0, which is clearly an
error in the published dataset itself.

In Figure 2.9, we show the results of applying the MOE procedure (top) to the TopGear
dataset, as well as the Shapley values based on the cellHandler procedure (bottom). In
these plots, the original values of the variables are displayed in each cell. White rectangles
represent regular cells, while outlying cells are colored red or blue, depending on whether
the cell’s original value is higher (red) or lower (blue) than the replacement. The color
intensity is given according to the Shapley values of the cells. The biggest differences between
the MOE and the cellHandler algorithm can be seen between the two sports cars Bugatti
Veyron and Pagani Huayra, where the cellHandler procedure results in many more outlying
cells. However, it is surprising that the Acceleration parameter is not flagged since both
cars have an exceptionally fast acceleration.

Finally, Figure 2.10 consists of heatmaps displaying the Shapley interaction indices and
barplots showing the corresponding Shapley values for the Chevrolet Volt (left) and Pagani
Huayra (right). The Shapley values and interaction indices are based on the reference point
obtained from Algorithm 2. For the Chevrolet, we see a single outstanding index for MPG. On
the other hand, the Pagani not only shows a high index for Price but also for the pairwise
outlyingness score between Weight and Price, which indicates that for an expensive sports
car, it is unexpectedly lightweight.
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Figure 2.9: Outlying cells according to Algorithm 2 (top) and the cellHandler procedure
(bottom). Each cell shows the original value from the dataset, color coding
indicates whether those values were higher (red) or lower (blue) than the imputed
values, and the color intensity is based on the magnitude of the Shapley value.

2.5.2 Weather in Vienna

As a second real-world example, we analyze monthly weather data from the weather station
“Hohe Warte” in Vienna (Stadt Wien, 2022). Therefore we consider 16 numerical attributes,
which are described in Table A.3 in A.3, over a time period spanning from 1955 to 2022.
Furthermore, we restrict our investigation to the three summer months, June, July, and
August, and compute average values for the considered variables, which yields 68 annual
observations for each variable. As for the previous example, we center and scale the data
using median and MAD and estimate the covariance using the MCD estimator before
applying the SCD and MOE algorithms using the same setup as before.

Figure 2.11 displays the outlying cells of the entire 68 years of measurements: The top
panel shows the results from the SCD algorithm, and the bottom panel displays those from
the MOE algorithm. Both panels reveal that the number of detected anomalies has increased
over the years. The SCD procedure further yields results that we would expect to find given
that we are currently experiencing an anthropogenic climate change, such as an increasing
number of hot days over the years or an increased minimum and maximum mean daily
temperature. We emphasize that the SCD procedure results in a global outlyingness measure
with respect to the overall mean. On the other hand, the MOE algorithm acts as a local
measure: With given values of the regular cells in a particular year, the outlyingness in the
remaining variables is determined.
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Figure 2.10: The two graphs in the lower portion of this figure show the Shapley interaction
indices Φ(x, µ̃(x, S),Σ) for the Chevrolet Volt and Pagani Huayra, which
are computed with respect to the reference point provided by Algorithm 2. The
corresponding Shapley values are displayed above the heatmaps.

A more detailed analysis of the results can be made by comparing the Shapley values and
pairwise outlyingness scores obtained from each procedure. Such an analysis is representa-
tively carried out for the year 2021. The results are displayed in Figure 2.12, where we can
observe a clear distinction between the results of the SCD and MOE procedures, respectively.
Both algorithms detect anomalies in the average temperature minimum (avg_t_min) and
total precipitation (precp_sum). However, using the local reference point enables the MOE
procedure to detect outliers in the number of sun hours (sun_h) and the number of clear days
(num_clear). According to the results of the local MOE procedure given in Figures 2.11 and
2.12, the weather of Vienna in 2021 was unusually hot, with more rain than we would expect.
When considering the trend of increasing temperature over the years at this specific weather
station, we would generally expect fewer sun hours and more clear days than observed in
2021.

2.6 Discussion and Conclusions

This paper introduced Shapley values in connection with Mahalanobis distances for multivari-
ate outlier explanation. The Mahalanobis distance is commonly employed for multivariate
outlier detection in statistics. Then again, the Shapley value is a concept that originated in
cooperative game theory and recently gained popularity in the field of Explainable AI. There
it is used to explain the predictions of complex machine learning models by providing infor-
mation about the contributions of the individual features to a model’s prediction. Combining

46



2.6 Discussion and Conclusions

MOE

SCD

1960 1970 1980 1990 2000 2010 2020

avg_t_max
avg_t_min
num_clear
num_cloud
num_heat

num_precp_01
num_summer

num_wind_v60
p

precp_sum
rel_hum

rel_hum_max
rel_hum_min

sun_h
wind_v

wind_v_max

avg_t_max
avg_t_min
num_clear
num_cloud
num_heat

num_precp_01
num_summer

num_wind_v60
p

precp_sum
rel_hum

rel_hum_max
rel_hum_min

sun_h
wind_v

wind_v_max

Cellwise
outlier

lower than
expected
regular
cell
higher than
expected

Figure 2.11: Comparison of outlying cells according to Algorithm 1 (top) and Algorithm 2
(bottom) for the weather data of Vienna. It is visible in the results of both
procedures that the number of anomalies is increasing over the years.

the Shapley value with the squared Mahalanobis distance enables us to derive outlyingness
scores for each coordinate of an observation. Those scores consider all 2p possible combina-
tions of p variables of a single instance and allow us to additively decompose the squared
Mahalanobis distance into contributions originating from the individual variables. Without
further simplification, the computation would entail evaluating the squared Mahalanobis
distance for those 2p combinations, which would pose a substantial computational challenge.
However, we showed that our approach leads to a much simpler and computationally efficient
form of the Shapley value. Moreover, the Shapley interaction indices generalize Shapley
values and can be used to derive outlyingness scores for pairs of variables.

Outlier explanation, and thus identifying the contributions of a variable to the outly-
ingness of a particular observation, is closely related to cellwise outlyingness, where one
aims to identify unusual cells instead of entire observations. We have adopted cellwise
outlyingness into the framework of Shapley values and have proposed two procedures for
simultaneous outlier detection and explanation. First, we introduced the SCD procedure
as a straightforward implementation of Shapley values for cellwise outlier detection. This
algorithm is iteratively replacing anomalous cells with a value towards their mean until
the observation is no longer outlying. The more sophisticated MOE procedure takes the
information of the non-outlying cells into account and determines a local reference point
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Figure 2.12: The two graphs in the lower panel show the Shapley interaction indices of the
year 2021 for the SCD procedure (left) and the MOE procedure (right). The
corresponding Shapley values are displayed above the heatmaps.

based on this added input. As a result, one again obtains an additive decomposition of the
squared Mahalanobis distance, but with contributions that explain the local outlyingness of
an observation.

The performance of the two cellwise outlier detection and explanation procedures has
been evaluated in simulations and on real-world datasets. It has further been compared to
the recently published cellHandler procedure. However, we want to emphasize that the goal
of our work is clearly defined as outlier explanation rather than cellwise outlier detection.
In particular, Mahalanobis distances rely on a robustly estimated covariance matrix, which
has not been in focus in this paper.

We believe that Shapley values are a powerful tool for providing humanly interpretable
explanations that allow us to gain further insights into the results of models and methods
used in statistics and computer science. They show great potential for further use in this
area, especially when a simplification of the computation is possible, as is the case when
combining them with Mahalanobis distances. Possible extensions of Shapley values for
outlier detection in functional data analysis will be the subject of our future research.

Software and data availability: The methods introduced in this work are available in
the R package ShapleyOutlier on CRAN, including the weather dataset and a vignette to
reproduce the examples presented in Section 2.5.
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A.1 Proof of Theorem 2.2.2.1

Lemma A.1.1. The contributions ∆k MD2(x̂S) = MD2(x̂S∪{k})−MD2(x̂S) can be expressed
as

∆k MD2(x̂S) = 2(xk − µk)

 !
j∈S∪{k}

(xj − µj)ωjk

− (xk − µk)
2ωkk, (A.20)

for any subset S ⊆ P \ {k}.

Proof.

∆k MD2(x̂S) = MD2(x̂S∪{k})−MD2(x̂S)

= (x̂S∪{k} − µ)′Σ−1(x̂S∪{k} − µ)− (x̂S − µ)′Σ−1(x̂S − µ)

=

p!
j=1

p!
l=1

(x̂
S∪{k}
j − µj)(x̂

S∪{k}
l − µl)ωjl −

p!
j=1

p!
l=1

(x̂Sj − µj)(x̂
S
l − µl)ωjl

=
!

j∈S∪{k}

!
l∈S∪{k}

(xj − µj)(xl − µl)ωjl −
!
j∈S

!
l∈S

(xj − µj)(xl − µl)ωjl

=
!

j∈S∪{k}
(xk − µk)(xj − µj) ωkj����

=ωjk

+
!
j∈S

(xk − µk)(xj − µj)ωjk

= (xk − µk)
2ωkk + 2(xk − µk)

!
j∈S

(xj − µj)ωjk = (A.20)

Now that we have derived a simpler form for the contributions ∆k MD2(x̂S), we can use
this result to rewrite Equation (2.6) for the k-th component of the Shapley value ϕk(x). We
apply Lemma A.1.1 in the first step of the proof below, and for a simpler notation, we write

w(|S|) := |S|!(p− |S| − 1)!

p!
,

for which
"

S⊆P\{k}w(|S|) = 1 holds.
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Proof of Theorem 2.2.2.1.

ϕk(x) =
!

S⊆P\{k}
w(|S|)∆k MD2(x̂S)

=
!

S⊆P\{k}
w(|S|)

�
(xk − µk)

2ωkk + 2(xk − µk)
!
j∈S

(xj − µj)ωjk

�

= (xk − µk)
2ωkk

� !
S⊆P\{k}

w(|S|)
� �� �

=1

�
+ 2(xk − µk)

!
S⊆P\{k}

w(|S|)
!
j∈S

(xj − µj)ωjk



= (xk − µk)
2ωkk + 2(xk − µk)

p−1!
s=1

�
w(s)

!
S⊆P\{k}
|S|=s

!
j∈S

(xj − µj)ωjk

�

= (xk − µk)
2ωkk + 2(xk − µk)

p−1!
s=1

�
w(s)

�
p− 2

s− 1

� !
j∈P\{k}

(xj − µj)ωjk

�

= (xk − µk)
2ωkk + 2(xk − µk)

p−1!
s=1

�
s

p(p− 1)

!
j∈P\{k}

(xj − µj)ωjk

�

= (xk − µk)
2ωkk + (xk − µk)

!
j∈P\{k}

(xj − µj)ωjk

= (xk − µk)
!
j∈P

(xj − µj)ωjk = (xk − µk)

 p!
j=1

(xj − µj)ωjk



A.2 Proof of Theorem 2.2.3.1

Proof of Theorem 2.2.3.1. To derive the off-diagonal elements defined in Equation (2.12),
we start with rewriting ∆{j,k}MD2(x̂T ), T ⊆ P \ {j, k}, by applying Lemma A.1.1:

∆{j,k}MD2(x̂T )

=
�
MD2(x̂T∪{j,k})−MD2(x̂T∪{j})]− �

MD2(x̂T∪{k})−MD2(x̂T )


=2(xk − µk)

 !
l∈T∪{j}

(xl − µl)ωjk −
!

l∈T∪{k}
(xl − µl)ωjk

+ 2(xk − µk)
2ωkk

=2(xk − µk) ((xj − µj)ωjk − (xk − µk)ωkk) + 2(xk − µk)
2ωkk

=2(xk − µk)(xj − µj)ωjk
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Moving on, we plug the result into the formula for Φjk for j ̸= k, given in Equation (2.12),
and we obtain

Φjk =
!

T⊆P\{j,k}

t!(p− t− 2)!

(p− 1)!
∆{j,k}MD2(x̂T )

=
!

T⊆P\{j,k}

t!(p− t− 2)!

(p− 1)!
2(xk − µk)(xj − µj)ωjk

= 2(xk − µk)(xj − µj)ωjk,

where the last equality is obtained by following the same structure as in the proof of Theorem
2.2.2.1. Finally, we have to derive the diagonal elements Φjj given by

Φjj = ϕj −
!
k ̸=j

Φjk

= (xj − µj)

p!
k=1

(xk − µk)ωjk − 2(xj − µj)
!
k ̸=j

(xk − µk)ωjk

= (xj − µj)
2ωjj − (xj − µj)

!
k ̸=j

(xk − µk)ωjk.

Higher Order Interactions

Proof. To show that all interactions of order three or higher are zero, it is sufficient to show
that for the three-way interactions the set function derivative ∆{j,k,l}MD2(x̂T ) is zero for
all T ⊆ P \ {j, k, l}. This follows from the iterative definition of the set function derivative
for S ∩ {j} = ∅ (Grabisch, 2016), which is given by

∆S∪{j}MD2(x̂T ) = ∆S(∆j MD2(x̂T )).

Hence, to show that all Shapley interaction indices

ISh(v, S) =
!

T⊆P\S

t!(p− t− s)!

(p− s+ 1)!
∆Sv(T ),
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with |S| ≥ 3 are zero, we only have to prove that ∆{j,k,l}MD2(x̂T ) = 0, ∀T ⊆ P \ {j, k, l}.
For this purpose, we first rewrite the above expression and then apply Lemma A.1.1:

∆{j,k,l}MD2(x̂T ) =−MD2(x̂T∪{j,k,l})

+MD2(x̂T∪{j,k}) +MD2(x̂T∪{j,l}) +MD2(x̂T∪{k,l})

−MD2(x̂T∪{j})−MD2(x̂T∪{k})−MD2(x̂T∪{l})

+MD2(x̂T )

=− �
MD2(x̂T∪{j,k,l})−MD2(x̂T∪{k,l})


+
�
MD2(x̂T∪{j,l})−MD2(x̂T∪{l})


+
�
MD2(x̂T∪{j,k})−MD2(x̂T∪{j})−MD2(x̂T∪{k}) +MD2(x̂T )


=− �

(xj − µj)
2ωjj + 2(xj − µj)

!
m∈T∪{k,l}

(xm − µm)ωjm


+
�
(xj − µj)

2ωjj + 2(xj − µj)
!

m∈T∪{l}
(xj − µj)ωjk


+
�
2(xk − µk)(xj − µj)


=− 2(xk − µk)(xj − µj) + 2(xk − µk)(xj − µj) = 0
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A.3 Weather in Vienna - Parameters

Table A.3 shows the parameter descriptions for the Weather in Vienna dataset, which have
been adapted and translated from Stadt Wien (2022).

Table A.3: Description of the parameters of the Weather in Vienna dataset

Parameter Desciption

avg_t_max Mean daily maximum air temperature in °C
avg_t_min Mean daily minimum air temperature in °C
num_summer Number of summer days

(days with a temperature maximum tmax ≥ 25.0 °C)
num_heat Number of hot days

(days with a temperature maximum tmax ≥ 30.0 °C)
p Daily mean air pressure in hPa

(mean of all measurements at 7 a.m., 2 p.m., 7 p.m. CET;
before 1971 9 p.m. instead of 7 p.m.)

sun_h Monthly total sunshine duration in hours
num_clear Number of clear days (daily mean cloudiness < 20/100)
num_cloud Number of cloudy days (daily mean cloudiness > 80/100)
rel_hum Daily mean relative humidity in percent

(2 x RH7 mean + RH14 mean + RH19 mean)/4;
before 1971 9 p.m. instead of 7 p.m.)

rel_hum_max Relative humidity maximum in percent
rel_hum_min Relative humidity minimum in percent
wind_v Monthly average wind speed in km/h
num_wind_v60 Number of days with wind peaks ≥ 60 km/h
wind_v_max Maximum wind speed in km/h
precp_sum Monthly total precipitation in mm
num_precp_01 Number of days with precipitation ≥ 0.1 mm

53





3 Robust Covariance Estimation and
Explainable Outlier Detection for
Matrix-valued Data

This chapter is based on the work Mayrhofer, M., Radojičić, U., and Filzmoser, P. (2024a).
Robust covariance estimation and explainable outlier detection for matrix-valued data. arXiv
preprint arXiv:2403.03975.

Contributions: M. Mayrhofer developed the methodological framework, implemented the
procedures in C++ and R in the package robustmatrix (Mayrhofer et al., 2024b), and wrote
the first draft of the paper. He established the proofs together with co-author Radojičić U.
All co-authors were involved in the discussions and collaborated on writing the final paper.

3.1 Introduction

Thanks to modern data collection tools, the amount and complexity of available information
are increasing rapidly, and matrix-valued data are often observed. Compared to classical
multivariate observations, where values for p variables are recorded for one subject, matrix-
valued observations are recorded on a grid of p × q variables. These are then naturally
represented as a matrix with p rows and q columns. Some examples include image data,
where p and q are given by the resolution of the image, or multivariate data measured
on p variables, where the measurements for a subject are available for q replications (e.g.,
different time points, different spatial locations, different experimental conditions, etc.).
Frequently, matrix-valued data are analyzed as classical multivariate data by stacking the
matrix columns (or rows) to a vector of length p · q. Thus, if n observations are available,
the data are arranged in a matrix of dimension n × pq. Depending on the dimensions,
this can create high-dimensional data, possibly with a sample size lower than the resulting
dimensionality, which constitutes a limitation for multivariate statistical methods.

As an alternative to vectorizing matrix-valued observations, we model them under the
assumption that they originate from a certain matrix-variate distribution. As in the
multivariate setting, the class of matrix-elliptical distributions (Gupta et al., 2013), serves
as a natural ground for studying covariance estimation. The matrix-elliptical family is a
semi-parametric class of distributions parametrized by the mean M ∈ Rp×q, row covariance
Σrow ∈ PDS(p), column covariance Σcol ∈ PDS(q), and the so-called density generator
function g : [0,∞) → R. Here, PDS(a), with a ∈ N, denotes the class of all positive
definite symmetric a× a matrices. More specifically, a random matrix X with an absolutely
continuous distribution has an elliptical distribution, denoted ME(M,Σrow,Σcol, g), if its
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density can be written as

f(X) = det(Σrow)
−q/2 det(Σcol)

−p/2g(tr(Ωcol(X −M)′Ωrow(X −M))), (3.1.1)

with Ωrow = (Σrow)−1 and Ωcol = (Σcol)−1 denoting the precision matrices among the
rows and columns, respectively. Matrix elliptical distributions can also be related to
their multivariate counterparts. Formally, a random matrix X follows a matrix elliptical
distribution ME(M,Σrow,Σcol, g) if and only if its vectorized version vecX follows a
multivariate elliptical distribution E(vec(M),Σcol ⊗ Σrow, g) (Gupta et al., 2013). Here,
vec(·) is the vectorization operator, stacking the columns of a matrix on top of each other,
⊗ is the Kronecker product. Probably the most studied matrix elliptical distribution is the
matrix normal distribution (Dawid, 1981), denoted MN (M,Σrow,Σcol), with density

f(X|M,Σrow,Σcol) =
exp(−1

2 tr(Ω
col(X −M)′Ωrow(X −M)))

(2π)pq/2 det(Σcol)p/2 det(Σrow)q/2
. (3.1.2)

Regarding the estimation of location and covariance for an i.i.d. sample X = (X1, . . . ,Xn)
in Rn×p×q, with Xi ∼ MN (M,Σrow,Σcol), we can either work with the vectorized observa-
tions or directly with the matrices. In the former setting, the existence and uniqueness of
the maximum likelihood estimator (MLE) for the covariance is guaranteed almost surely if
n ≥ pq + 1. However, this approach does not take advantage of the Kronecker structure of
the covariance matrix and instead directly estimates the entire pq-dimensional matrix Σ. In
contrast, if we utilize the knowledge of the inherent data structure, we only need to esti-
mate the p-dimensional rowwise covariance matrix Σrow and the q-dimensional columnwise
covariance matrix Σcol. For the matrix-variate sample X, the MLEs for the mean, as well
as for the rowwise and columnwise covariance, are given by (Dutilleul, 1999):

M̂ =
1

n

n!
i=1

Xi (3.1.3)

Σ̂row =
1

qn

n!
i=1

(Xi − M̂)Ω̂col(Xi − M̂)′ (3.1.4)

Σ̂col =
1

pn

n!
i=1

(Xi − M̂)′Ω̂row(Xi − M̂) (3.1.5)

Soloveychik and Trushin (2016) showed that for n i.i.d. samples from a continuous p×q matrix-
variate distribution, there exists no unique maximum of the matrix normal likelihood function
if n < max(p/q, q/p)+1, and that a unique maximum exists almost surely if n ≥ ⌊p/q+ q/p⌋+2.
Although there are no closed-form solutions for the maximum likelihood estimates (MLEs)
of Σrow and Σcol, Dutilleul (1999) proposed an iterative estimation procedure. The idea of
the so-called flip-flop algorithm is to alternate between the computation of Σ̂row and Σ̂col

based on Equations (3.1.4) and (3.1.5), respectively, until a convergence criterion is met.
The algorithm is constructed such that positive definite estimates of subsequent iterations
are nondecreasing in likelihood (Lu and Zimmerman, 2005), and it converges almost surely
to the unique maximum from any symmetric positive definite initialization of either Σ̂row or
Σ̂col, if n ≥ ⌊p/q + q/p⌋+ 2 (Soloveychik and Trushin, 2016).
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3.2 The MMCD Estimators

Existing proposals for robust covariance estimation include a generalization of Tyler’s
M-estimator (Tyler, 1987) introduced by Soloveychik and Trushin (2016), a robust estimator
for structured covariance matrices with Kronecker structure as a particular case (Sun et al.,
2016), distribution-free robust covariance estimation (Zhang et al., 2022), and ML estimation
for the matrix t-distribution (Thompson et al., 2020).

We propose novel robust estimators for the parameters M, Σrow, and Σcol, termed the
matrix minimum covariance determinant (MMCD) estimators. These estimators generalize
the minimum covariance determinant (MCD) approach (Rousseeuw, 1985), one of the most
widely used approaches for robustly estimating the mean and covariance of multivariate
(vector-valued) data. We show that the MMCD estimators are equivariant under matrix affine
transformations and surpass the maximal attainable breakdown point of any multivariate,
affine equivariant location/covariance estimator when applied to the vectorized data, such
as the MCD estimator. Additionally, we show that the MMCD estimators are consistent
for the finite-dimensional parameters (M,Σrow,Σcol) of the matrix elliptical distribution,
thus bridging a gap between the individual, distribution-specific, estimators in the elliptical
family. Furthermore, a concentration step (C-step) algorithm is developed to efficiently
compute the MMCD estimators; see Rousseeuw and Van Driessen (1999) for more details on
C-step for MCD. Additionally, we introduce a reweighting step that preserves the properties
of the MMCD estimators and greatly increases finite-sample efficiency.

The robust MMCD estimators can then be employed for outlier detection using the
Mahalanobis distances (Mahalanobis, 1936) for matrix-valued observations. Because it
is essential to understand the reasons for the outlyingness, we extend the concept of
Shapley values introduced in Mayrhofer and Filzmoser (2023) for outlier explanation in
the multivariate case to the matrix-variate setting. Shapley values (Shapley, 1953) are
well-known from explainable AI (Lundberg and Lee, 2017), but their computation is usually
time-consuming. Our proposal is computationally efficient, and the resulting Shapley values
preserve their attractive properties (Shapley, 1953).

The paper is organized as follows. In Section 3.2, we introduce the MMCD estimators,
then proceed to derive their theoretical properties in Section 3.3. Section 3.4 is devoted
to computational details for the MMCD estimators. In Section 3.5, we propose Shapley
values for outlier explanation and present their properties. In Sections 3.6 and 3.7, we
illustrate the performance of the proposed methods on numerical simulations and real-world
examples. Section 3.8 concludes our findings. The supplementary materials contain more
information on the theoretical background in this context, proofs, technical derivations, code,
and additional numerical results.

3.2 The MMCD Estimators

The MLEs given in Equations (3.1.3)-(3.1.5), much like the multivariate normal MLEs, i.e.
sample mean and covariance, also serve as valid (consistent) parameter estimators in the
class of elliptical distributions; see Remark 3.3.0.1. However, just like their multivariate
counterparts, these are not robust against outlying observations. In order to obtain robust
estimators for the finite-dimensional parameters (M,Σrow,Σcol) in Equation (3.1.1), we
optimize the weighted version of the matrix-normal (log-)likelihood function. This principle
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has been similarly used in the context of other robust estimators (e.g., Neykov et al.,
2007; García-Escudero et al., 2010; Kurnaz et al., 2018), and in particular, Raymaekers
and Rousseeuw (2023) show that the MCD estimator can be reformulated in terms of
likelihood; the objective of the MCD estimator is to identify the subset of h out of n
samples (n/2 ≤ h ≤ n) with the smallest determinant of the sample covariance matrix. This
is equivalent to determining a subset of size h that maximizes the multivariate normal
(log-)likelihood function.

Extending the concept of the multivariate MCD approach, we introduce weights w =
(w1, . . . , wn) ∈ Rn for a given sample X = (X1, . . . ,Xn) that is independently drawn from
MN (M,Σrow,Σcol) to formulate the weighted log-likelihood function l(w,M,Σrow,Σcol|X)
as

−1

2

n!
i=1

wi

�
p ln(det(Σcol)) + q ln(det(Σrow)) +MMD2(X) + pq ln(2π)

�
, (3.2.1)

where MMD2(X) denotes the squared matrix Mahlanobis distance defined as

MMD2(X) := MMD2(X;M,Σrow,Σcol) = tr(Ωcol(X −M)′Ωrow(X −M)). (3.2.2)

Setting wi = 1 for all i = 1, . . . , n, yields the traditional log-likelihood function, and
its maximization yields the MLEs of Equation (3.1.3)-(3.1.5). However, by taking binary
weights, wi ∈ {0, 1}, with the constraint that

"n
i=1wi = h, we see that n− h contributions

are trimmed. Since contributions from outliers should be trimmed, the task is to identify
the subset of regular observations H ⊂ {1, . . . , n} with |H| = h, where wi = 1 for i ∈ H and
0 otherwise. The resulting constrained optimization problem of finding the weighted MLE
can be written as

max
w,M,Σrow,Σcol

l(w,M,Σrow,Σcol|X)

subject to wi ∈ {0, 1} for all i = 1, . . . , n and
n!

i=1

wi = h.
(3.2.3)

To improve clarity, we will use the following notation for subsamples of X and estimators
based on it: Let H ⊆ {1, . . . , n} be a subset of size h = |H|, then XH := (Xi)i∈H denotes
an h-subset of X. An estimator for a parameter θ based on the sample X is denoted as
θ̂X or simply as θ̂ if it is clear on which sample the estimator is computed. Similarly, if an
estimator is based on an h-subset, it is denoted as θ̂H or as θ̂XH

.

Proposition 3.2.0.1. Let X = (X1, . . . ,Xn), n/2 ≤ h ≤ n and h ≥ ⌊p/q+q/p⌋+2, be an i.i.d.
sample from MN (M,Σrow,Σcol). Maximizing the weighted log-likelihood function (3.2.3) is
equivalent to minimizing

ln(det(Σ̂col
H ⊗ Σ̂row

H )) = p ln(det(Σ̂col
H )) + q ln(det(Σ̂row

H )) (3.2.4)

58



3.3 Properties of the MMCD Estimators

across all subsets H ⊂ {1, . . . , n} with |H| = h. In Equation (3.2.4),

M̂H =
1

h

!
i∈H

Xi, (3.2.5)

Σ̂row
H =

1

qh

!
i∈H

(Xi − M̂H)Ω̂col
H (Xi − M̂H)′, and (3.2.6)

Σ̂col
H =

1

ph

!
i∈H

(Xi − M̂H)′Ω̂row
H (Xi − M̂H) (3.2.7)

denote the MLEs based on the observations in H, and Ω̂row
H = (Σ̂row

H )−1 and Ω̂col
H = (Σ̂col

H )−1

denote the corresponding precision matrices.

A proof is given in Supplement B.2. Based on this proposition, we obtain a matrix-variate
counterpart to the multivariate MCD estimator’s objective, resulting in robust estimators of
the parameters M, Σrow, and Σcol.

Definition 3.2.0.1. Let X = (X1, . . . ,Xn), n/2 ≤ h ≤ n and h ≥ ⌊p/q + q/p⌋ + 2, be an
i.i.d sample of a continuous p × q matrix-variate distribution. The raw matrix minimum
covariance determinant (MMCD) estimators are defined as

(M̂H∗ , Σ̂row
H∗ , Σ̂col

H∗) := argmin
M̂H ,Σ̂row

H ,Σ̂col
H

H⊂{1,...,n},|H|=h

p ln(det(Σ̂col
H )) + q ln(det(Σ̂row

H )), (3.2.8)

with M̂H , Σ̂row
H , and Σ̂col

H as in Equations (3.2.5), (3.2.6), and (3.2.7), respectively.

The estimators in Definition (3.2.0.1) almost surely exist and are positive definite if
h ≥ ⌊p/q + q/p⌋+ 2 (Soloveychik and Trushin, 2016). If p = 1 and/or q = 1, optimization
problem (3.2.8) coincides with the optimization problem of the MCD estimator, and one
obtains the univariate or multivariate MCD estimator, respectively.

3.3 Properties of the MMCD Estimators

Matrix affine equivariance. The concept of affine equivariance in multivariate analysis is
rooted in the idea that the estimators used for location and covariance should transform in
the same way as the parameters of elliptically symmetrical unimodal distributions (referred
to as elliptical distributions hereafter), see Maronna et al. (2019). We can define the matrix-
variate analog of affine equivariance based on the properties of matrix-variate elliptical
distributions, which are frequently employed to study the robustness properties of normal
theory under nonnormal situations (Gupta and Nagar, 1999).

Linear functions of a random matrix X ∼ ME(M,Σrow,Σcol, g) also have an elliptical
distribution (Gupta et al., 2013). This means that for constant matrices A ∈ Rr×p,
rank(A) = r ≤ p, B ∈ Rq×s, rank(B) = s ≤ q, and C ∈ Rr×s, the transformed random
matrix Z = AXB +C has density

Z ∼ ME(AMB +C,AΣrowA′,B′ΣcolB, g). (3.3.1)
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3 Robust Covariance Estimation and Explainable Outlier Detection for Matrix-valued Data

Let M̂X, Σ̂row
X , and Σ̂col

X denote the estimators based on a sample X = (X1, . . . ,Xn) gener-
ated by f(M,Σrow,Σcol). Then the estimators of the sample Z = (AX1B+C, . . . ,AXnB+
C) should transform in the same way as the parameters in Equation (3.3.1), i.e.,

M̂Z = AM̂XB +C, Σ̂row
Z = AΣ̂row

X A′, Σ̂col
Z = B′Σ̂col

X B. (3.3.2)

Properties (3.3.2) provide a suitable generalization of affine equivariance to the matrix-variate
setting, and it is easy to verify that they hold for the estimators given in (3.1.3)-(3.1.5).
However, they do not imply affine equivariance of the location and covariance estimators for
the vectorized observations. This would only hold for transformations with the Kronecker
structure vec(AXB +C) = (B′ ⊗A) vec(X) + vec(C). We refer to Properties (3.3.2) as
matrix affine equivariance to avoid confounding definitions.

Lemma 3.3.0.1. Let X = (X1, . . . ,Xn) be a sample of p × q matrices, where Xi ∼
ME(MX,Σ

row
X ,Σcol

X , g), and let Z = (Z1, . . . ,Zn) be the affine transformation of X, i.e.,
Zi = AXiB + C, A ∈ Rp×p, B ∈ Rq×q, A,B invertible, and C ∈ Rp×q. The following
then holds:

(a) The MMCD estimators as in Definition 3.2.0.1 are matrix affine equivariant.

(b) MMD2(Zi; M̂Z, Σ̂
row
Z , Σ̂col

Z ) = MMD2(Xi; M̂X, Σ̂
row
X , Σ̂col

X ), where (M̂Z, Σ̂
row
Z , Σ̂col

Z )
are matrix affine equivariant location and covariance estimators of the transformed
sample Z.

Lemma 3.3.0.1 shows that the MMCD estimators are equivariant under matrix affine
transformations, and a proof is given in Supplement B.2.

Breakdown point. The finite sample breakdown point of an estimator evaluates its resilience
to contamination. It refers to the largest proportion of observations that may be arbitrarily
replaced by outliers such that the estimator still contains some information about the true
parameter (Maronna et al., 2019). Let X be a sample of n matrix-variate observations
in Rp×q and suppose Y is a corrupted version, obtained by replacing m samples of X by
arbitrary matrices. The finite sample breakdown point of a location estimator M̂ is given by

ε∗(M̂,X) = min
1≤m≤n

�
m

n
: sup

m

$$$M̂X − M̂Y

$$$ = ∞
	

(3.3.3)

and the (joint) finite sample breakdown point of row and columnwise covariance estimators
Σ̂row and Σ̂col is given by

ε∗(Σ̂row, Σ̂col,X) = min
1≤m≤n

�
m

n
: sup

m
max
i,j

%%%Dλ(Σ̂
row
Y , Σ̂col

Y , Σ̂row
X , Σ̂col

X )
%%% = ∞

	
, (3.3.4)

where

Dλ(Σ̂
row
Y , Σ̂col

Y , Σ̂row
X , Σ̂col

X ) = log(λi(Σ̂
row
Y )λj(Σ̂

col
Y ))− log(λi(Σ̂

row
X )λj(Σ̂

col
X )).

While the MCD and the MMCD estimators coincide for the case that p = 1 and/or q = 1,
the following theorem shows that the MMCD estimators achieve a higher breakdown point
than the MCD estimators applied to the vectorized samples if p ≥ 2 and q ≥ 2.
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3.3 Properties of the MMCD Estimators

Theorem 3.3.0.1. Let X be a collection of n i.i.d. samples from a continuous p × q
matrix-variate distribution, where d = ⌊p/q + q/p⌋, p, q ∈ N, p ≥ 2, q ≥ 2, and let M̂, Σ̂row,
and Σ̂col denote the MMCD estimators, then

ε∗(M̂,X) = ε∗(Σ̂row, Σ̂col,X) =
1

n
⌊min(n− h+ 1, h− (d+ 1))⌋ =:

m

n
,

with n/2 ≤ h ≤ n and h ≥ d+ 2.

The proof extends established methodologies from Rousseeuw (1985) and Lopuhaa and
Rousseeuw (1991) to address the matrix variate setting, leveraging additional insights
and techniques outlined in Supplement B.2. Theorem 3.3.0.1 implies that the maximum
breakdown point of the MMCD estimators is 1/n⌊(n−d)/2⌋ and is attained if h = ⌊(n+d+2)/2⌋.
This means that the maximum breakdown point of the MMCD covariance estimators for
p ≥ 2, q ≥ 2 is higher than the upper bound for the breakdown point of affine equivariant
covariance estimators applied to vectorized samples, which is given by 1/n⌊(n−pq+1)/2⌋ (Davies,
1987; Lopuhaa and Rousseeuw, 1991). However, as mentioned earlier, affine equivariance
in the matrix-variate setting does not imply affine equivariance in the multivariate setting.
Thus, the mentioned upper bound for the vectorized observations does not apply. In other
words, since affine equivariance (in the vectorized case) is not a requirement for matrix-
variate affine equivariance, it is possible to achieve a higher breakdown point for the MMCD
estimators than for any affine equivariant multivariate estimator applied to the vectorized
data.

To illustrate the advantage of respecting the inherent data structure of matrix-variate
data for the breakdown properties, we compare the maximum breakdown points of the
MCD and MMCD estimators in Figure 3.3.1 for different combinations of p and q, and for
different sample sizes n. Here, the MCD estimator is applied to the vectorized data, and the
dimensionality of the samples is pq, which can get large. This affects the computability of
the MCD estimator since it requires a subset size larger than the dimension.

p = 1, q = 20, d = 20 p = 5, q = 20, d = 4 p = 10, q = 20, d = 2 p = 20, q = 20, d = 2
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Figure 3.3.1: Comparison of the maximum breakdown point of the MMCD estimators for
matrix-variate data with p = 1, 5, 10, 20 rows and q = 20 columns, and the
MCD estimator applied to the vectorized data. When p = 1, both estimators
and their breakdown points coincide. However, increasing the number of rows
yields better breakdown properties for the MMCD estimators, as the proportion
between the number of rows and columns d = ⌊p/q + q/p⌋ is approaching 2.
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3 Robust Covariance Estimation and Explainable Outlier Detection for Matrix-valued Data

Consistency for elliptical distributions. Let us now consider the asymptotic behavior of the
MMCD estimators. By scaling the rowwise or columnwise MMCD covariance estimator by a
distribution-specific consistency factor, we can achieve consistency for elliptical distributions.

Theorem 3.3.0.2. Let X1, . . . ,Xn be a random sample from an elliptical matrix-variate
distribution ME(M,Σrow,Σrow, g) with positive definite covariances Σrow,Σcol, and let
(M̂, Σ̂row, Σ̂col) be the corresponding MMCD estimators. Then, it holds that$$$M̂−M

$$$ a.s.−−→ 0,
$$$c(α)Σ̂col ⊗ Σ̂row −Σcol ⊗Σrow

$$$ a.s.−−→ 0,

where c(α), α = h/n ∈ [0.5, 1], is a distribution-specific consistency factor as in Croux and
Haesbroeck (1999).

The proof of the consistency of the raw MMCD estimators relies on the strong consistency
of the MCD estimator given in Butler et al. (1993); Cator and Lopuhaä (2012) and is
provided in Supplement B.2. It shows that the consistency factor of the MCD estimator
and the MMCD estimator must coincide, and therefore, we use the consistency factor

c(α) =
α

Fχ2
pq+2

(χ2
α;pq)

(3.3.5)

proposed by Croux and Haesbroeck (1999) to obtain consistency at the normal model, where
Fχ2

pq+2
denotes the CDF of the chi-square distribution with pq + 2 degrees of freedom, and

χ2
pq;α denotes the α quantile of the chi-square distribution with pq degrees of freedom.

Remark 3.3.0.1. Note first that for h = n, the corresponding MMCD estimators coincide
with the ones defined in (3.1.3)-(3.1.5). Therefore, a simple, yet not discussed in the literature,
consequence of Theorem 3.3.0.2 is that the estimators obtained maximizing the likelihood under
the matrix-normal model, are consistent estimators of the corresponding finite-dimensional
parameters (M,Σrow,Σrow) in the semi-parametric, matrix elliptical family.

Reweighted MMCD - improving efficiency. The raw MMCD estimators are most robust
when about half of the observations are trimmed, i.e., h = ⌊(n+d+2)/2⌋. However, this leads to
a low efficiency at the normal model. While efficiency could be increased by trimming fewer
samples, this would lead to lower robustness. To enhance a robust estimator’s efficiency
without compromising robustness, Lopuhaa and Rousseeuw (1991); Maronna et al. (2019)
proposed a one-step reweighing procedure. We can apply this technique for the MMCD
estimators by defining weighted ML estimators with weights depending on the Mahalanobis
distances given the raw MMCD estimators.

Definition 3.3.0.1. Let X be a collection of n i.i.d. samples from a continuous p × q
matrix-variate distribution, where d = ⌊p/q + q/p⌋, p, q ∈ N, p ≥ 2, q ≥ 2, and let M̂, Σ̂row,
and Σ̂col denote the raw MMCD estimators as in Definition 3.2.0.1. The reweighted MMCD
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3.4 Algorithm

estimators are given by

M̃ =
1"n

i=1w(MMD(Xi))

n!
i=1

w(MMD(Xi))Xi, (3.3.6)

Σ̃row =
1

q
"n

i=1w(MMD(Xi))

n!
i=1

w(MMD(Xi))(Xi − M̃)Ω̃col(Xi − M̃)′, and (3.3.7)

Σ̃col =
1

p
"n

i=1w(MMD(Xi))

n!
i=1

w(MMD(Xi))(Xi − M̃)′Ω̃row(Xi − M̃), (3.3.8)

where w : [0,∞) → [0,∞) is a non-increasing and bounded weight function such that
w(MMD(Xi)) > 0 for at least ⌊(n+d+2)/2⌋ observations that vanishes for large distances, i.e.,
w(MMD(Xi)) = 0 if MMD(Xi) > c1 > 0.

The following theorem shows that the reweighted MMCD estimator preserves the break-
down point of the original estimator. The simulations presented in Section 3.6 illustrate
substantial improvements in the efficiency of the reweighed MMCD estimators. With in-
creasing sample size, the finite sample efficiency exceeds 90% across various selections of p
and q.

Theorem 3.3.0.3. Let X be a collection of n i.i.d. samples from a continuous p × q
matrix-variate distribution, where d = ⌊p/q + q/p⌋, p, q ∈ N, p ≥ 2, q ≥ 2, and let M̂X, Σ̂row

X ,
and Σ̂col

X denote the raw MMCD estimators as in Definition 3.2.0.1 with breakdown points

ε∗(M̂X,X) = ε∗(Σ̂row
X , Σ̂col

X ,X) =
1

n
⌊min(n− h+ 1, h− (d+ 1))⌋ =:

m

n
,

and let M̃X, Σ̃row
X , and Σ̃col

X denote the reweighted estimators as in Definition 3.3.0.1. Then,

ε∗(M̃X,X) ≥ m

n
and ε∗(Σ̃row

X , Σ̃col
X ,X) ≥ m

n
.

A proof is given in Supplement B.2. For the algorithm used to compute the reweighted
MMCD estimators introduced in the following section, we use the weight function w :
[0,∞) �→ {0, 1} with

w(MMD2(Xi)) :=

�
1 if i ∈ H ∨MMD2(Xi) < χ2

pq;0.975

0 otherwise
. (3.3.9)

Note that the h observations in the h-subset of the raw MMCD estimator have the lowest
MMDs, and the condition that all observations i ∈ H get a positive weight ensures that the
reweighting step does not lead to an estimator that uses fewer than h samples.

3.4 Algorithm

Rousseeuw and Van Driessen (1999) proposed the Fast-MCD algorithm to efficiently compute
the MCD estimator. The key idea to find the h-subset with the lowest covariance determinant
is based on the concentration step (C-step): after each C-step, the objective function is
smaller or equal as before, and by repeatedly applying C-steps convergence is reached within
finitely many iterations.
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3 Robust Covariance Estimation and Explainable Outlier Detection for Matrix-valued Data

3.4.1 Adapting the C-step

Adapting the structure of the Fast-MCD algorithm to the matrix-variate setting leads to the
development of the MMCD algorithm. This adaptation necessitates a modification in the
covariance estimation during the C-step to derive suitable counterparts for computing the
MMCD estimators. However, this process encounters a challenge due to the involvement of
two covariance matrices, as depicted in Equations (3.2.6) and (3.2.7), both lacking closed-form
solutions for their estimation. To address this issue, we incorporate the flip-flop algorithm
introduced by Dutilleul (1999) within the C-step. Consider a matrix-variate random sample
X = (X1, . . . ,Xn), with Xi ∈ Rp×q, and any h-subset Hold ⊂ {1, . . . , n}, with |Hold| = h >
⌊p/q+q/p⌋+2. First, the MLEs (M̂Hold

, Σ̂row
Hold

, Σ̂col
Hold

) are computed based on the observations
in the subset Hold using the flip-flop algorithm, which is non-decreasing in likelihood. Next,
compute the squared Mahalanobis distances d2i (Hold) := MMD2(Xi, M̂Hold

, Σ̂row
Hold

, Σ̂col
Hold

)

for all i = 1, . . . , n. In Proposition 3.2.0.1, we showed that
"

i∈Hold
d2i (Hold) = hpq, hence

only the terms of the log-likelihood function involving the determinants change in this step.
To construct the new subset Hnew, sort the squared MMDs in ascending order, resulting in
a permutation π of {1, . . . , n} such that d2π(1)(Hold) ≤ . . . ≤ d2π(n)(Hold), and define a new
h-subset Hnew = {π(1), . . . , π(h)}. Since the estimators do not change in this step, the terms
involving the determinant are constant, and by construction, the sum of the Mahalanobis
distances either decreases or stays constant. Hence, the reordering is non-decreasing in
likelihood. Finally, the estimators are updated using the flip-flop algorithm based on the
observations in the subset Hnew, resulting in estimators (M̂Hnew , Σ̂

row
Hnew

, Σ̂col
Hnew

), increasing
the likelihood once more, and it follows that

p ln(det(Σ̂col
Hnew

)) + q ln(det(Σ̂row
Hnew

)) ≤ p ln(det(Σ̂col
Hold

)) + q ln(det(Σ̂row
Hold

)). (3.4.1)

By repeatedly applying such C-steps, we can decrease the covariance determinant in sub-
sequent iterations as in Equation (3.4.1). This results in a decreasing and non-negative
sequence of determinants that must converge after exploring finitely many h-subsets. Similar
to the multivariate case, we obtain equality of the determinants from one h-subset to the
next if and only if the estimators do not change from one to the next iteration. However,
this does not necessarily imply that we have found a global optimum. A pseudo-code for
this matrix-variate version of the C-step is given in Algorithm 3 in Supplement B.3.

3.4.2 The MMCD Algorithm

The MMCD algorithm is a matrix-variate extension of the Fast-MCD procedure of Rousseeuw
and Van Driessen (1999), aiming to alleviate the C-steps dependence on the initial subset by
using multiple initial subsets, iteratively conducting C-steps on each until convergence, and
ultimately selecting the solution with the lowest determinant. While this explains the idea
of the algorithm, there are more computational considerations and adjustments in the full
MMCD algorithm. A pseudo-code of the MMCD Algorithm 4 is given in Supplement B.3.

As in its multivariate counterpart, the MMCD procedure uses so-called elemental subsets
to initialize the procedure. This means that we use m subsets of size d+ 2, d = ⌊p/q + q/p⌋,
instead of size h, to increase the probability of obtaining at least one clean initial subset.
Using m = 500 elemental subsets by default allows for a reasonable tradeoff between a
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3.5 Outlier Detection and Explainability

wide variety of settings where we likely obtain at least one clean elemental subset and the
computational demands of computing initial estimators. If either p ≪ q or q ≫ p, d will be
large, and using more initial subsets is recommended. Using elemental subsets increases not
only the robustness of the initial estimators but also the computational efficiency.

Moreover, the MMCD procedure only uses 2 C-step and MLE iterations for the initial
elemental subsets to ensure even faster computation of the initial estimators. In the MLE
procedure, Werner et al. (2008) demonstrated that the same asymptotic efficiency can be
attained using only two iterations instead of iterating until convergence. As for the C-step,
Rousseeuw and Van Driessen (1999) outlined that after two iterations, subsets with the
lowest covariance determinant during the procedure can already be identified, even before
reaching convergence. Moreover, simulations show that we can identify those initial subsets
that yield robust solutions after 2 C-steps, whether we use 2 MLE iterations or iterate the
flip-flop algorithm until convergence. This is described in detail in Supplement B.3, where
we also show that elemental subsets indeed yield more robust solutions than their larger
counterparts in case of high contamination.

The initialization step of the MMCD procedure yields m initial estimators, and we keep
the 10 estimators with the lowest covariance determinant. Using those as initial estimators,
we iterate C-steps until convergence on the complete dataset X. The solution with the
lowest covariance determinant then yields the raw MMCD estimators.

The raw MMCD estimators are scaled using the consistency factor c(α) given in Equa-
tion (3.3.5) to achieve consistency at the normal model as outlined in Theorem 3.3.0.2.
Based on those rescaled raw MMCD estimators, the reweighted estimators described in
Definition 3.3.0.1 are computed using the weights given in Equation (3.3.9). The reweighted
MMCD estimators are then scaled using c(α̃) = c(h̃/n), where h̃ denotes the number of
observations with weights one.

The MMCD algorithm repeatedly computes Mahalanbois distances for all n samples,
which is computationally expensive when n gets large. To improve the computational
efficiency for settings where n is large, we implemented the subsampling approach proposed
by Rousseeuw and Van Driessen (1999). The idea is to split the sample of n observations
into several smaller subsamples and compute initial estimators on those subsamples before
working on the large set with n observations.

3.5 Outlier Detection and Explainability

Given a sample X = (X1, . . . ,Xn) of matrix-variate observations, the task for outlier
detection is to identify those observations which are “far away” from the center of the data
cloud with respect to its shape. In robust statistics, it is common to consider the Mahalanobis
distance for this purpose, assume an underlying normal distribution of the observations, and
use a quantile of the chi-square distribution as an outlier cutoff value (Maronna et al., 2019).
Here, we follow the same idea: an observation Xi is flagged as an outlier if

MMD2(Xi; M̂, Σ̂row, Σ̂col) > χ2
pq;0.975 ,

for i ∈ {1, . . . , n} and the MMCD estimators M̂, Σ̂row, and Σ̂col.
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3 Robust Covariance Estimation and Explainable Outlier Detection for Matrix-valued Data

Even though this information is valuable in practice, it is not very useful for understanding
the reasons for outlyingness. This is the goal of outlier explainability, where the contributions
of the cells/rows/columns of the matrix-valued observations are investigated in more detail.
We will use the concept of Shapley values for this purpose and first briefly review how this
is applied to multivariate data before extending it to the matrix-variate case. For details,
we refer to Mayrhofer and Filzmoser (2023).

3.5.1 Shapley Values for Multivariate Data

Let x = (x1, . . . , xp)
′ denote an observation vector from a population with expectation

vector µ = (µ1, . . . , µp)
′ and covariance matrix Σ, and P = {1, . . . , p} the index set of the

variables. Then the outlyingness contributions ϕ(x,µ,Σ) = ϕ(x) = (ϕ1(x), . . . , ϕp(x))
based on the Shapley value assign each variable its average marginal contribution to the
squared Mahalanobis distance, i.e.,

ϕk(x,µ,Σ) =
!

S⊆P\{k}

|S|!(p− |S| − 1)!

p!
∆k MD2(x̂S) = (xk − µk)

p!
j=1

(xj − µj)ωjk, (3.5.1)

with marginal contributions

∆k MD2(x̂S) := MD2(x̂S∪{k})−MD2(x̂S) and x̂Sj :=

�
xj if j ∈ S

µj if j /∈ S
(3.5.2)

as the components of x̂S . Here, ωjk is the element (j, k) of Ω = Σ−1. Since ϕ(x) is based
on the Shapley value, it is the only decomposition of the squared Mahalanobis distance
based on Equation (3.5.2) that fulfills the following properties:

• Efficiency: The contributions ϕj(x), for j = 1, . . . , p, sum up to the squared Maha-
lanobis distance of x, hence

"p
j=1 ϕj(x) = MD2(x).

• Symmetry: If MD2(x̂S∪{j}) = MD2(x̂S∪{k}) holds for all subsets S ⊆ P \ {j, k} for
two coordinates j and k, then ϕj(x) = ϕk(x).

• Monotonicity: Let µ, µ̃ ∈ Rp be two vectors and Σ, Σ̃ ∈ PDS(p) be two matrices. If

MD2
µ,Σ(x̂

S∪{j})−MD2
µ,Σ(x̂

S) ≥ MD2
µ̃,Σ̃

(x̂S∪{j})−MD2
µ̃,Σ̃

(x̂S)

holds for all subsets S ⊆ P , then ϕj(x,µ,Σ) ≥ ϕj(x, µ̃, Σ̃).

In words, the coordinate ϕk(x) of the Shapley value is the average marginal contribution
of the k-th variable to the squared Mahalanobis distance and is obtained by averaging over
all marginal outlyingness contributions ∆k MD2(x̂S) across all possible subsets S ⊆ P \ {k}.
Although this suggests an exponential computational complexity, which becomes costly,
especially if p is large, the second equality in Equation (3.5.1) reveals just linear complexity;
for a proof we refer to Mayrhofer and Filzmoser (2023). Equation (3.5.1) allows for another
insight into the Shapley value by comparing it to the squared Mahalanobis distance, which
can be written as

"p
j,k=1(xj − µj)(xk − µk)ωjk. While the latter calculates an outlyingness

measure by aggregating the contributions (xj − µj)(xk − µk)ωjk of all variables for the
entire observation, Equation (3.5.1) shows that a coordinate ϕk(x) of the Shapley value only
considers the contributions that are associated with the k-th variable.
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3.5 Outlier Detection and Explainability

3.5.2 Shapley Balue for Matrix-valued Data

To define Shapley values for matrix-variate data, we can use the connection between the
matrix and multivariate Mahalanobis distance; see Equation (3.2.2). Let X ∈ Rp×q be a
matrix-variate sample with mean M ∈ Rp×q and covariance matrices Σrow ∈ PDS(p) and
Σcol ∈ PDS(q). The pq-dimensional vectorized observation is denoted as x = vec(X), with
mean µ = vec(M) and covariance matrix Σ = Σcol ⊗Σrow. Based on Equation (3.5.1), we
can obtain outlyingness contributions for every coordinate of x and hence for every cell of
the matrix X by

ϕa(x) = (xa − µa)

pq!
b=1

(xb − µb)ωab = (xjk −mjk)

p!
i=1

q!
l=1

(xil −mil)ω
row
ij ωcol

kl = ϕjk(X),

with a = i+(l−1)p and b = j+(k−1)p, and for j = 1, . . . , p and k = 1, . . . , q. Using matrix
operations, we can efficiently compute the p × q matrix containing the cellwise Shapley
values ϕjk(X) as

Φ(X) = (X −M) ◦Ωrow(X −M)Ωcol ∈ Rp×q, (3.5.3)

where ◦ refers to element-wise multiplication.
Next, we discuss how matrix affine transformations as in Equation (3.3.2) affect the

cellwise Shapley values for matrix-variate data.

Proposition 3.5.2.1. Let X ∈ Rp×q be a sample from ME(M ,Σrow,Σcol, g), A ∈ Rp×p,
B ∈ Rq×q, A,B invertible, and C ∈ Rp×q. Then, the cellwise Shapley values are not
matrix affine equivariant, i.e., Φ(AXB) ̸= AΦX)B for general positive definite A and B.
However, they are

(a) shift invariant, i.e., Φ(X +C) = Φ(X),

(b) scale invariant, i.e., if A and B are scaling matrices, thus diagonal matrices with
non-zero entries, then Φ(AXB) = Φ(X),

(c) permutation equivariant, i.e., if A and B are permutation matrices, then Φ(AXB) =
AΦ(X)B, and

The proofs are given in Supplement B.4. When considering gray-scale image data, shifting
or rescaling the gray-scale information would not change the cellwise Shapley values. Further,
exchanging rows and columns of the image; in particular mirroring or rotating the image by
90◦, would equivalently transform the Shapley values. Similarly to the setting of cellwise
outliers (Alqallaf et al., 2009), cellwise Shapley values are tied to the original coordinate
system and are not matrix affine equivariant.

It can be preferable in some applications to obtain outlyingness explanations for a
complete row or column of the matrix-valued observations, especially when we want to
compare multiple observations. In the following, we show how Shapley values for rows can
be obtained; Shapley values for columns can be computed based on the transposed matrix
or by adapting the following notation accordingly for columns.
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3 Robust Covariance Estimation and Explainable Outlier Detection for Matrix-valued Data

Consider again the set P = {1, . . . , p}, and S ⊆ P \ {j}. The rowwise marginal contribu-
tions to the matrix Mahalanobis distance are defined as as

∆j MMD(X̂S) := MMD(X̂S∪{j})−MMD(X̂S),

where the i-th row of X̂S is given as (xi1, . . . , xiq) if i ∈ S and (mi1, . . . ,miq) if i /∈ S.

Proposition 3.5.2.2. The j-th coordinate of the rowwise Shapley value is given by

ϕj.(X) :=
!

S⊆P\{j}

|S|!(p− |S| − 1)!

p!
∆j MMD(X̂S) (3.5.4)

=

p!
i=1

q!
k=1

q!
l=1

(xjl −mjl)(xik −mik)ω
row
ij ωcol

kl =

q!
k=1

ϕjk(X), (3.5.5)

A proof for Equation (3.5.5) can be found in Supplement B.4. Thus, a rowwise Shapley
value is obtained by summing up the cellwise Shapley values for the corresponding row,
which is equivalent to adapting the marginal contributions to a rowwise replacement. The
vectors containing the rowwise or columnwise Shapley values can also be computed by

ϕrow(X) = diag(Ωrow(X −M)Ωcol(X −M)′) ∈ Rp and (3.5.6)

ϕcol(X) = diag((X −M)′Ωrow(X −M)Ωcol) ∈ Rq, (3.5.7)

respectively. The properties listed in Proposition 3.5.2.1 also apply in this setting.

3.6 Simulations

In the simulation studies outlined in this section, our primary focus is to rigorously assess the
performance of the MMCD estimators. We aim to validate their demonstrated theoretical
properties and compare efficiency against ML estimators. Despite our initial intention to
include various robust estimators as mentioned in Section 3.1, practical constraints arose
as the relevant routines were exclusively accessible in Matlab, while our current framework
operates within R. For the sake of consistency and practical implementation, we concentrate
on comparing the efficiency of the raw and reweighted MMCD alongside an in-depth analysis
of the MLEs, (reweighted) MMCD estimators, and MCD estimator based on the vectorized
samples on contaminated data. To ensure the highest possible breakdown point across all
simulations and examples discussed in this paper, we set h = ⌊(n+d+2)/2⌋ for the MMCD
estimators and h = ⌊(n+pq+1)/2⌋ for the MCD estimator. We conduct 100 repetitions for
each simulation setting and visualize the results through either line plots or boxplots. In
the line plots, the solid lines represent average scores, while the shaded areas depict the one
standard error regions.

Finite-sample efficiency. To analyze the finite-sample efficiency, we generate samples from
a centered matrix normal distribution with dimensions (p, q) ∈ {(5, 20), (50, 20), (100, 50)}
for various sample sizes n ∈ {20, 50, 100, 300, 1000}. For the rowwise covariance matrix
we adopt the covariance matrices proposed by Agostinelli et al. (2015b), denoted Σrow =
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Σrnd ∈ PDS(p), which have random entries and generally yield low correlations. For the
columnwise covariance, we use Σcol = Σmix(0.7) ∈ PDS(q), with entries σmix

jk (0.7) = 0.7|j−k|.
We assess the normal finite-sample efficiency by comparing the ratio

D(Σ̂row
MLE, Σ̂

col
MLE)

D(Σ̂row
MMCD, Σ̂

col
MMCD)

,

where D(Σ̂row, Σ̂col) denotes the Kullback-Leiber (KL) divergence of the estimators Σ̂row

and Σ̂col in the matrix normal setting MN (M,Σrow,Σcol), which is given by

D(Σ̂row, Σ̂col) = tr(ΩrowΣ̂row) tr(ΩcolΣ̂col)

− q log(det(ΩrowΣ̂row))− p log(det(ΩcolΣ̂col))− pq,
(3.6.1)

with Ωrow = (Σrow)−1 and Ωcol = (Σcol)−1. As shown in Figure 3.6.1, the efficiency of
the raw MMCD estimators is below 0.5 on average. In contrast, the reweighted estimators’
efficiency is above 0.5 for n = 100 and it rises to over 0.9 as the sample size increases.
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Figure 3.6.1: Comparison of the finite-sample efficiency of raw and reweighted MMCD.

Robustness and matrix size. For the setting with contamination, we consider matrix-
variate samples with p ∈ {2, . . . , 30} rows and q = {10, 20, 30} columns for sample sizes
n ∈ {100, 1000}. The clean data are generated from a centered matrix normal distribution
with Σrow = Σrnd and Σcol = Σmix(0.7). A fraction, ε = 0.1, of the clean data is replaced
by outliers, sampled from a matrix normal distribution with a mean matrix where all entries
are equal to γ = 1. The covariance matrices of the outliers are the same as for the regular
observations.

We use KL divergence (3.6.1) to analyze the quality of the covariance estimation. Addi-
tionally, we analyze outlier detection capabilities of the squared Mahalanobis distance based
on the estimators, with the χ2

pq,0.99 quantile as a detection threshold. We also include the
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Mahalanobis distances based on true parameters used to generate the data as a benchmark
and measure performance by precision and recall. Due to the excessively long computation
times of the Fast-MCD procedure in higher-dimensional scenarios, we used the deterministic
MCD (Hubert et al., 2012) when pq > 300. Since the MCD estimator requires n > pq, it is
only computed for those settings.
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Figure 3.6.2: Comparison of precision, recall, and KL divergence for ML and MMCD estima-
tors, (deterministic) MCD estimators with vectorized data, and true parameters
as a benchmark for outlier detection for simulated data from a matrix normal
distribution with 10% contamination.

Figure 3.6.2 shows that the MMCD estimators have lower KL divergence than the
competing methods and attain a recall similar to the benchmark approach based on the
true parameters used to generate the data across all settings. The precision of the MMCD
estimators depends on the dimensionality of the matrix-variate samples as well as on the
sample size. For n = 100, the precision decreases with increasing dimensionality pq, but the
effect is mitigated by an improving performance when max{p/q, q/p} is small. For n = 1000,
the precision is close to the precision based on the true parameters. This suggests that for
small sample sizes, a correction similar to the one proposed by Pison et al. (2002) for the
MCD could lead to a better performance. In the matrix-variate setting, such a correction
would not only be dependent on pq and n but also on p/q and q/p.

For small p and q, the comparison between the MMCD estimators and the MCD for the
vectorized observations is of special interest. For n = 1000 and q = 10 they have a similar
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recall when p ≤ 6, and for q ∈ {20, 30} the MCD estimators show substantial improvements
when the deterministic MCD approach is used instead of the Fast-MCD. This can be
explained by the dependence of the Fast-MCD on the robustness of the initial solutions,
and with an increasing pq, the probability of obtaining a clean subset becomes very small.
The MCD estimator shows a steep drop in precision as p increases when Fast-MCD is used.
For the deterministic MCD, we see a trade-off between precision and recall with increasing
dimensionality, but the KL divergence remains high. With increasing dimensionality, even
the nonrobust matrix MLEs outperform the MCD estimator which highlights the importance
of respecting the inherent data structure of matrix-variate observations.

Robustness and contamination type. In addition to the shift outliers we also consider block
and cell contamination for matrix normal samples of size (p, q) = (5, 20). In all three settings,
we consider a fraction of ε = 0.1 contaminated samples. Let X = (xjk), j = 1, . . . , 5, k =
1, . . . , 20, denote a sample from a centered matrix normal distribution with rowwise covariance
Σrow = Σrnd and columnwise covariance Σcol = Σmix(0.7). For block contamination, we
replaced the top left 2× 5 block, corresponding to the entries xjk, j = 1, 2, k = 1, . . . , 5, with
entries from a shifted matrix normal distribution with a mean matrix where all entries are
equal to γ = 1 and covariance matrices corresponding to the top left block of Σrow and
Σcol. For cell contamination, a fraction of 0.1 of the cells of the outlying observations are
randomly permuted. The shift outliers are generated with a mean shift γ = 1 as before.

Figure 3.6.3 shows that the MMCD estimators are better suited for outlier detection and
yield more robust covariance estimates than the matrix MLEs as well as the MCD estimator
on the vectorized observations. Overall, the results are similar across all three simulation
scenarios, only for mean shift contamination we see higher variation than in the other two
settings. This is likely because the block and cell contamination interfere with covariance
estimation more profoundly, i.e., the KL divergence of the matrix MLEs is highest for block
contamination followed by cell and shift contamination.

The supplementary materials B.5 provide in-depth simulation studies that expand upon
the scenarios discussed in this section. These simulations analyze the effects of the level of
contamination and mean shifts for multiple types of covariance matrices. Additionally, we
extend our analysis beyond the normal model to include samples generated from a matrix
t-distribution, examining performance across a range of degrees of freedom. For this scenario,
we also compute the ML estimators for the matrix t-distribution (Thompson et al., 2020).
We include a summary of computation time and consider additional performance metrics,
such as the F-score (harmonic mean of precision and recall), Frobenius error, and the angle
between eigenvalues of covariance matrices.

3.7 Examples

3.7.1 Glacier Weather Data – Sonnblick Observatory

We analyze the publicly available weather data from Austria’s highest weather station,
located in the Austrian Central Alps at an elevation of 3106 m above sea level on top
of the glaciated mountain “Hoher Sonnblick” (datasource: GeoSphere Austria - https:
//data.hub.geosphere.at). The observed parameters are monthly averages of temperature
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Figure 3.6.3: Precicion, recall, and logarithm of KL divergence comparing block, cell, and
sample contamination.

(T), precipitation (P), proportion of solid precipitation (SP), air pressure (AP), and sunshine
hours (SH). We consider the monthly values between 1891 and 2022 and exclude five years
with missing values, yielding n = 127 observations of p = 5 times q = 12 dimensional
matrices. Our goal is to identify observations that show a different weather pattern than
the majority of the data and explain why the corresponding years deviate from the majority.
We did not adjust for a possible yearly trend in this exploratory analysis as we wish to
understand long-term patterns and shifts in climate without the influence of adjustments.

In total, outlier detection based on the MMCD estimators flags 23 outlying matrices, which
are indicated in Figure 3.7.1 as colored years: If the aggregated monthly measurements are
above their average, the cells are colored red; otherwise, they are colored blue. The rowwise
Shapley value is then used to determine color brightness, i.e., the larger the outlyingness
contribution, the darker the color. Years with missing observations are grey; years with only
white cells refer to regular observations. It is visible that the outlier frequency increases in
the last period. Moreover, more recent outliers are characterized by increased temperature,
precipitation, air pressure, and a lack of solid precipitation (e.g. snow) – a clear signal of a
climate change.

In Figure 3.7.2, we use cellwise Shapley values to understand which parameters in which
months contributed most to the outlyingness of 1895 and 2022, corresponding to the first
and last outlying observation in the dataset, respectively, where the color scheme is inherited
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Figure 3.7.1: Yearly outlyingness contributions for the glacier weather data. Regular years
are white, and years that contain missing data are gray. Outliers are colored
as follows: blue for “above average”, red for “below average”, and color intensity
proportional to rowwise Shapley value.
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Figure 3.7.2: Outlyingess contributions based on cellwise Shapley values for the years 1895
and 2022 of the glacier weather data using the same color scheme as in
Figure 3.7.1.

from Figure 3.7.1. The largest outlyingness contribution is due to an unusually large amount
of precipitation in March 1895. Overall, high amounts of precipitation were observed that
year, with a high percentage of snow even in the summer months. In contrast, the largest
outlyingness contributions in 2022 are due to a very sunny March and low percentages of
snowfall in May, June, and August.

3.7.2 Darwin Data

We consider the DARWIN (Diagnosis AlzheimeR WIth haNdwriting) (Cilia et al., 2022)
dataset containing handwriting samples of 174 subjects, 89 diagnosed with Alzheimer’s
disease (AD), and 85 healthy subjects (H). Each individual completed 25 handwriting tasks
on paper, and the pen movements were recorded using a graphic tablet. The tasks are
ordered in difficulty. From the raw handwriting data, 18 features were extracted: Total
Time, Air Time, Paper Time, Mean Speed on paper, Mean Speed in air, Mean Acceleration
on paper, Mean Acceleration in air, Mean Jerk on paper, Mean Jerk in air, Pressure Mean,
Pressure Variance, Generalization of the Mean Relative Tremor (GMRT) on paper, GMTR in
air, Mean GMRT, Pendowns Number, Max X Extension, Max Y Extension, and Dispersion
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Figure 3.7.3: Plot of robust MMD based on MMCD estimators for the Darwin data on
the left, and average proportional rowwise Shapley values for the H and AD
subjects on the right.

Index. For a more detailed description of the data, we refer to Cilia et al. (2018). In Cilia
et al. (2022), each task was considered separately to train a classifier, and the combination of
the classifiers led to an improvement in the classification of subjects. Our focus here lies not
in the classification task but rather in explaining the differences between AD and H groups.
We treat the observations as matrices, with the rows representing the extracted features
and the columns representing the tasks. Because of linear dependencies, the variables Total
Time and Mean GMRT were excluded. Further, the variable Air Time had several extreme
and unreliable measurements and was thus also excluded. This yields observation matrices
with p = 15 features and q = 25 tasks.

We applied the MMCD procedure only on the healthy subjects and used the robust
estimators to compute MMDs for all observations. Thus, the MMDs presented in Figure 3.7.3
left are generally smaller for the H group, whereas all observations from the AD group exceed
the outlier cutoff value. The fact that healthy subjects also exceed the cutoff value shows
the heterogeneity in this group. In the right panel of Figure 3.7.3, we consider the average
proportional contributions of the variables to the MMDs for the H and AD groups. The
outlyingness contributions are based on the rowwise Shapley values, resulting in 15 scores for
each individual. Since those scores sum up to the squared MMD, we can divide them by the
squared MMD to get proportional contributions, and by averaging over all individuals in the
H and AD groups, respectively, we obtain the values shown in this plot. Large differences
between the AD and H groups indicate variables that are important to distinguish between
healthy individuals and those who have Alzheimer’s disease. For example, Pressure Mean
and Paper Time are evidently higher in the AD group.

74



3.7 Examples

3.7.3 Video Data

In this example, we examine a surveillance video of a beach sourced from Li et al. (2004).
The video comprises 633 frames, each sized at 128 × 160 pixels; five selected frames are
shown in Figure 3.7.4. The majority of the frames depict the beach scene. Around frame
500, a man walks into the scene from the left and partly disappears behind the tree. As he
continues walking, he reappears on the right side of the tree and remains in the video until
the end.

Frame 1 Frame 487 Frame 491 Frame 495 Frame 500

Figure 3.7.4: Selected frames of the video data.

For our analyis, we converted the original RGB video to a grayscale video, applied
the MMCD procedure, and obtained MMDs for all 633 frames, which are visualized in
Figure 3.7.5. The plot on the left shows the robust MMDs for all 633 frames, and the one on
the right for frames 471 to 633 to better highlight the increase in MMD when the man enters
the scenery, with a short drop in MMD when he disappears behind the tree. We indicate
frames 487, 491, and 495, also presented in Figure 3.7.6 in terms of their cellwise Shapley
values. We see that the pixels that form the contours of the man and most of the pixels
of the man’s head contribute most to the outlyingness. When the man disappears behind
the tree, there are fewer pixels with high outlyingness contributions. Since the sum of the
contributions amounts to the squared MMD of an observation, this explains the behavior of
the MMDs of the frames shown in Figure 3.7.5b. It is interesting to see a certain increase in
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(b) Frames 471 to 633.

Figure 3.7.5: Plot of robust MMD based on MMCD estimators for the video data.

the MMD in Figure 3.7.5a between frames 400 and 450. Here, the Shapley values on the
contour of the palm tree contribute the most to the outlyingness. This could be caused by a
slight shifting of the camera or a small movement of the palm tree due to wind.
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Frame 487 Frame 491 Frame 495 Frame 500

Figure 3.7.6: Outlyingness scores based on cellwise Shapley values are shown in red, where
darker colors indicate higher outlyingness contributions, and the grayscale
video frames are displayed in the background.

3.8 Summary and Conclusions

Matrix-valued observations, like images or dual-factor data tables, are common in various
fields. To apply multivariate methods on matrix-valued data, the matrices are typically
converted to vectors by stacking either the rows or columns. This disrupts the inherent data
structure and increases dimensionality, thereby complicating parameter estimation. Thus, it
is often preferable to model matrix-valued data directly with matrix-variate distributions.
In this setting, Maximum Likelihood (ML) estimation methods exist for estimating the
mean, as well as the row and column covariances, respectively. However, these estimators
are sensitive to deviations caused by outliers among matrix-valued observations.

This work introduced the MMCD (matrix minimum covariance determinant) estimators
as a robust counterpart to the ML estimators in the matrix-variate normal model. Several
desirable properties are achieved: equivariance under matrix affine transformations, high
breakdown point, and consistency under elliptical matrix-variate distributions. The proposed
reweighted versions lead to higher efficiency but not to any loss in terms of breakdown point.
An algorithm along the lines of the Fast-MCD procedure (Rousseeuw and Van Driessen,
1999) allows for efficient computation of the estimators. Simulation experiments validate the
theoretical properties and advantages. Depending on the ratio of the number of rows and
columns of the matrix-valued observations, the MMCD estimators show a big advantage
over robust estimation for vectorized observations regarding breakdown and computational
efficiency.

We further extended the outlier explanation concept based on Shapley values (Mayrhofer
and Filzmoser, 2023) to the matrix-variate setting. This allows for an additive decomposition
of the matrix-variate Mahalanobis distance of an observation into Shapley contributions of
either the rows, the columns, or the matrix cells. The resulting Shapley values greatly aid
with diagnostics, particularly in revealing those cells (rows, columns) of the matrix with the
most substantial contributions to the outlyingness of the observation.

The efficiency of MMCD estimators in outlier detection for large sample sizes is evident
from the simulations. However, our future research aims to improve and extend these
estimators. For instance, smaller sample sizes might benefit from integrating finite sample
corrections proposed by Pison et al. (2002) to enhance the results. Furthermore, the iterative
computation of MMCD covariance estimators, which involves inverse covariance matrices,
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requires data that ensures full-rank estimates at each iteration. This requirement may be
impeded for example in image data, in case certain rows or columns maintain constant pixel
values across all observations. To solve this, regularization involving a linear combination of
the covariance matrix with a full-rank target matrix can be used (Ledoit and Wolf, 2004),
similarly to the multivariate setting (Boudt et al., 2020).

The MMCD objective can be expressed as a trimmed maximum likelihood problem,
and thus, can be extended to tensor-valued data using ML estimation for the tensor
normal distribution Manceur and Dutilleul (2013). The framework of Raymaekers and
Rousseeuw (2023) can be used to develop a cellwise robust version of the MMCD. Our
ongoing research focuses on extending the MMCD estimators and outlier explanations based
on Shapley values to the field of functional data analysis. Our goal is to introduce robust
estimators and enhance interpretability for multivariate functional data. In the future, we
also plan to incorporate these robust estimators as plug-in estimators to robustify established
multivariate methodologies in the matrix-variate domain, like principal component analysis
and discriminant analysis.
Software and data availability
The R package robustmatrix includes a parallelized C++ implementation of the MMCD
algorithm and a vignette to reproduce the examples presented in this paper.
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Appendix B

B.1 Preliminaries

Consider an i.i.d. sample X = (X1, . . . ,Xn) ∈ Rn×p×q, with Xi ∼ MN (M,Σrow,Σcol).
Due to the factored covariance structure of matrix normal data, the rowwise and columnwise
covariance matrices Σrow and Σcol are only identified up to a multiplicative constant κ ̸= 0,
since replacing Σrow by κΣrow and Σcol by 1/κΣcol does not change the pdf of X. While the
Kronecker product Σcol⊗Σrow can be uniquely identified, the issue of trivial non-uniqueness
of Σrow and Σcol is commonly solved by either fixing a diagonal entry, the determinant, or
the norm of either matrix (Roś et al., 2016; Soloveychik and Trushin, 2016). For simplicity,
we assume that the first diagonal entry of Σcol is set to one. This implies that the uniqueness
of Σcol ⊗ Σrow is equivalent to the uniqueness of Σcol and Σrow with the identifiability
constraint σcol

11 = 1. The multiplicative constant for their estimators is also chosen such that
σ̂col
11 = 1.
Instead of using Equations (3.1.3)-(3.1.5) for mean and covariance estimation, it is also

possible to consider the vectorized samples xi = vec(Xi) ∼ N (µ,Σ), i = 1, . . . , n, where
µ = vec(M) and Σ = Σcol ⊗Σrow denote the mean and covariance matrix, respectively.
Then the maximum likelihood estimators for mean and covariance are given by

µ̂ =
1

n

n!
i=1

xi and Σ̂ =
1

n

n!
i=1

(xi − µ̂)(xi − µ̂)′, (B.1)

respectively. The computation of the MLEs for matrix-variate samples based on Equa-
tions (3.1.3)-(3.1.5) involves estimating p(p+ 1)/2 + q(q + 1)/2 + pq parameters instead of
pq(pq + 1)/2 + pq parameters for the vectorized observations according to Equation (B.1).
This raises the question of whether fewer than pq + 1 observations are sufficient for guar-
anteeing the existence and uniqueness of MLEs for i.i.d. samples from a matrix normal
distribution. This question was investigated in several papers, such as Dutilleul (1999); Lu
and Zimmerman (2005); Srivastava et al. (2008); Roś et al. (2016); Soloveychik and Trushin
(2016). We rely on the latter for the most recent proof of those conditions. Note that it is
not necessary to assume that the sample consists of i.i.d. observations. In fact, the i.i.d.
assumption can be relaxed to allow for statistically dependent samples and it is not even
necessary to require identical distribution (Soloveychik and Trushin, 2016, Remarks 2 and
6). The critical condition for existence and uniqueness is that the sample contains at least
n ≥ ⌊p/q + q/p⌋ + 2 observations that are not collinear. The same holds for the existence
and uniqueness of the MMCD estimators, where n is replaced by h, and for properties like
the breakdown point the assumptions could be relaxed only requiring that the sample is
in general position, i.e., no subset of r, 2 ≤ r ≤ ⌊p/q + q/p⌋ + 2 samples lies on an r − 2
dimensional subspace. However, the i.i.d. assumption is still necessary when we consider
properties like consistency.
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The idea of the multivariate MCD estimator is as follows: Let xi = (xi1, . . . , xip)
′ ∈ Rp

denote the i-th observation of a dataset in the multivariate setting, where i = 1, . . . , n. The
objective of the MCD estimator is to find the subset of h out of n observations whose sample
covariance matrix has the lowest determinant, with n/2 ≤ h ≤ n and h > p. In total, there
are

�
h
n

�
possible h-subsets, and thus, a strategy needs to be used to tackle the optimization

problem efficiently. This has been done with the so-called Fast-MCD algorithm (Rousseeuw
and Van Driessen, 1999), which internally sorts the observations based on their Mahalanobis
distances. For an observation xi from a population with mean µ ∈ Rp and covariance
Σ ∈ PDS(p) it is given by

MD(xi,µ,Σ) =
 
(xi − µ)′Σ−1(xi − µ).

Since the Mahalanobis distance is vital for the computation of the MCD estimator, it
will also be crucial in a matrix-variate extension, where it can be directly derived from the
Mahalanobis distance of a vectorized matrix-variate observation X as

MMD2(X) = MMD2(X;M,Σrow,Σcol) = MD2(vec(X))

= vec(X −M)′(Ωcol ⊗Ωrow) vec(X −M)

=

p!
i=1

p!
j=1

q!
k=1

q!
l=1

(xik −mik)(xjl −mjl)ω
row
ij ωcol

kl

= tr(Ωcol(X −M)′Ωrow(X −M)),

where mij , ωrow
ij and ωcol

ij denote the elements (i, j) of the matrices M, Ωrow and Ωcol,
respectively. If X has a matrix normal distribution, then the squared matrix Mahalanbois
distance has a χ2 distribution with pq degrees of freedom, MMD2(X) ∼ χ2

pq (Gupta and
Nagar, 1999).

B.2 Proofs of Section 3.2

Proof of Proposition 3.2.0.1. In optimization problem (3.2.3) we want to maximize

l(w,M,Σrow,Σcol|X) =− 1

2

n!
i=1

wi

�
p ln(det(Σcol)) + q ln(det(Σrow))

�
− 1

2

n!
i=1

wiMMD2(Xi)− hpq ln(2π)

(B.2)

subject to wi ∈ {0, 1} for all i = 1, . . . , n and
"n

i=1wi = h. In Equation (B.2), MMD2(Xi)
is defined as in Equation (3.2.2).

For any random h-subset H (or equivalently the corresponding set of weights w) the
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constrained MLEs for M, Σrow, and Σcol of Equation (B.2) can be written as:

M̂H =
1

h

n!
i=i

wiXi =
1

h

!
i∈H

Xi

Σ̂row
H =

1

qh

n!
i=i

wi(Xi − M̂H)Ω̂col
H (Xi − M̂H)′ =

1

qh

!
i∈H

(Xi − M̂H)Ω̂col
H (Xi − M̂H)′

Σ̂col
H =

1

ph

n!
i=i

wi(Xi − M̂H)′Ω̂row
H (Xi − M̂H) =

1

ph

!
i∈H

(Xi − M̂H)′Ω̂row
H (Xi − M̂H)

Using those estimators to compute the sum of the Mahalanobis distances MMD2(Xi) in
Equation (B.2) we obtain

n!
i=1

wiMMD2(Xi) =
!
i∈H

tr
�
Ω̂col

H (Xi − M̂H)′Ω̂row
H (Xi − M̂H)

�
=
!
i∈H

tr
�
(Xi − M̂H)Ω̂col

H (Xi − M̂H)′Ω̂row
H

�
=tr

�!
i∈H

((Xi − M̂H)Ω̂col
H (Xi − M̂H)′)Ω̂row

H

�
=tr

�
qhΣ̂row

H Ω̂row
H

�
= hpq.

Thus, the terms in the second row of Equation (B.2) are all constant, and it is sufficient
to maximize only the term in the first row, which contains the (negative) determinant of
Equation (3.2.4).

Properties of MMCD estimators

Proof of Lemma 3.3.0.1. Ad (a): We show that the MMCD estimators are matrix affine
equivariant. Let us consider the objective of the MMCD for the transformed samples, which
is to minimize

det(Σ̂col
ZH

⊗ Σ̂row
ZH

) = det
�
(B′Σ̂col

XH
B)⊗ (AΣ̂row

XH
A′)

�
=



det(B′Σ̂col

XH
B)

�p

det(AΣ̂row

XH
A′)

�q
=



det(B′) det(Σ̂col

XH
) det(B)

�p

det(A) det(Σ̂row

XH
) det(A′)

�q
= 4det(B)p det(A)q det(Σ̂col

XH
)p det(Σ̂row

XH
)q.

Since 4 det(B)p det(A)q is constant, the objective does not change, and we obtain the same
h-subset. Since the MMCD estimators correspond to the trimmed MLEs and the objective is
not affected by the transformation, the matrix affine equivariance of the MMCD estimators
follows from the matrix affine equivariance of the MLEs.
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Ad (b): Suppose that (M̂Z, Σ̂
row
Z , Σ̂col

Z ) are matrix affine equivariant estimators of location
and covariance of the transformed sample Z, then

MMD2(Zi; M̂Z, Σ̂
row
Z , Σ̂col

Z )

= tr(Ω̂col
Z (Zi − M̂Z)

′Ω̂row
Z (Zi − M̂Z))

= tr
��

B−1Ω̂col
X (B′)−1(AXiB +C − (AM̂XB +C))′

�
�
(A′)−1Ω̂row

X A−1(AXiB +C − (AM̂XB +C))
��

=tr(B−1Ω̂col
X (B′)−1B′(Xi − M̂X)

′A′(A′)−1Ω̂row
X A−1A(Xi − M̂X)B)

= tr(Ω̂col
X (Xi − M̂X)

′Ω̂row
X (Xi − M̂X)) = MMD2(Xi; M̂X, Σ̂

row
X , Σ̂col

X ).

The proofs of Theorems 3.3.0.1 and 3.3.0.3 require some definitions and properties related
to the vector space of matrices, which are introduced before the proofs of the theorems.
Since all matrices of a fixed size form a vector space, objects such as ellipsoids or a simplex
that are defined on the more common vector spaces are also defined here. Let

E(T ,U ,V ) = {X : tr(V −1(X − T )′U−1(X − T )) ≤ 1} (B.3)

be the ellipsoid containing the matrices X ∈ Rp×q with MMD2(X;T ,U ,V ) ≤ 1, where
T ∈ Rp×q, U ∈ PDS(p) and V ∈ PDS(q). The volume of this ellipsoid is given by

vol(E(T ,U ,V )) =
πpq/2

Γ(pq/2 + 1)� �� �
=:βpq

p�
i=1

q�
j=1

�
λi(U)λj(V ) = βpq det(U)

q/2 det(V )
p/2� �� �

=:det(E(T ,U ,V ))

, (B.4)

where Γ is the gamma function, 0 < λp(U ) ≤ . . . ≤ λ1(U ) and 0 < λq(V ) ≤ . . . ≤ λ1(V ) are
the eigenvalues of U and V , respectively. Moreover, the axes have lengths

 
λi(U)λj(V ).

Let A be a symmetric nonnegative definite p× p matrix, then

λ1(A) = sup
z∈Rp

z′Az

z′z
and λn(A) = inf

z∈Rp

z′Az

z′z
. (B.5)

Consider another symmetric nonnegative definite p× p matrix B, then using Equation (B.5)
we get that

λ1(A+B) ≤ λ1(A) + λ1(B) and λp(A+B) ≥ λp(A) + λp(B). (B.6)

If A ∈ PDS(p) with eigenvalues 0 < λp(A) ≤ . . . ≤ λ1(A) then the eigenvalues of A−1

are the reciprocals of the eigenvalues of A, i.e. λi(A
−1) = λ−1

i (A). Hence, we have that

1

λ1(A)
= inf

z∈Rp

z′A−1z

z′z
,
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which implies that for any x ∈ Rp

1

λ1(A)
≤ x′A−1x

x′x
⇔ x′x ≤ x′A−1xλ1(A). (B.7)

Suppose A ∈ PDS(p), B ∈ PDS(q) and let λ(A) be an eigenvalue of A with corresponding
eigenvector v(A), and λ(B) an eigenvalue of B with corresponding eigenvector v(B). Then
λ(A)λ(B) is an eigenvalue of B ⊗ A with corresponding eigenvector v(B) ⊗ v(A). We
denote the sequence of eigenvalues of A and B as 0 < λp(A) ≤ . . . ≤ λ1(A) and 0 < λq(b) ≤
. . . ≤ λ1(b), respectively. It follows that the smallest eigenvalue λpq(A,B) = λp(A)λq(B)
and the largest eigenvalue λ1(A,B) = λ1(A)λ1(B). Moreover note that for Z ∈ Rp×q

vec(Z)′(B ⊗A) vec(Z) = tr(BZ ′AZ),

as in Equation (3.2.2), which implies that

λpq(A,B) = inf
Z∈Rp×q

tr(BZ ′AZ)

tr(Z ′Z)
and λ1(A,B) = sup

Z∈Rp×q

tr(BZ ′AZ)

tr(Z ′Z)
.

This leads us to the matrix-variate version of Equation (B.7), where for any matrix X ∈ Rp×q

∥X∥2F = tr(X ′X) ≤ tr(B−1X ′A−1X)λ1(A,B) = tr(B−1X ′A−1X)λ1(A)λ1(B) (B.8)

Lemma B.2.1. Take p, q ∈ N, d = ⌊p/q + q/p⌋, d+ 2 ≤ s ≤ pq, and matrices X1, . . . ,Xs ∈
Rp×q that are in general position, i.e., no subset of r, 2 ≤ r ≤ s samples lies on an r−2 dimen-
sional subspace. For an ellipsoid E(T ,U ,V ) as in Equation (B.3), containing the matrices
X1, . . . ,Xs, it holds that for every C > 0 there exists a constant α := α(X1, . . . ,Xs) > 0 only
depending on X1, . . . ,Xs such that ∥T ∥F =

 
tr(T ′T ) > α implies det(E(T ,U ,V )) > C,

i.e.,

∀C > 0 ∃α > 0 : ∥T ∥F > α =⇒ det(E(T ,U ,V )) > C.

Proof. The samples X1, . . . ,Xs are in general position, which implies that they span a
nonempty s − 1 simplex. Since E(T ,U ,V ) contains those samples, it also contains the
simplex spanned by those matrices. This implies that there exists a constant a > 0 only
depending on X1, . . . ,Xs, such that the length of k, s− 1 ≤ k ≤ pq, of the pq axes of the
ellipsoid E(T ,U ,V ) is at least a, i.e., there are k out of pq indices (i, j), 1 ≤ i ≤ p, 1 ≤ j ≤ q
such that �

λi(U)λj(V ) > a. (B.9)

In Equation (B.9), λi(U ), i ∈ {1, . . . , p}, are the eigenvalues of U , and λj(V ), j ∈ {1, . . . , q},
are the eigenvalues of V . For any matrix X contained in E(T ,U ,V ), Equations (B.3) and
(B.8) imply that

∥X − T ∥2F = tr((X − T )′(X − T ))

≤ tr(V −1(X − T )′U−1(X − T ))λ1(U)λ1(V )

≤ λ1(U)λ1(V ).

(B.10)

82



Appendix B

Without loss of generality, we assume that the matrix of all zeros 0 ∈ Rp×q is contained in
the ellipsoid E(T ,U ,V ), then Equation (B.10) implies that ∥T ∥2F ≤ λ1(U)λ1(V ). Take
α = C/(apq−1), then we have that

C

apq−1
< ∥T ∥F ≤

 
λ1(U)λ1(V ) ⇔ C <

 
λ1(U)λ1(V )apq−1

and from Equaiton (B.9) it follows that

det(E(T ,U ,V )) : = det(U)
q/2 det(V )

p/2

=

p�
i=1

q�
j=1

�
λi(U)λj(V )

>
 
λ1(U)λ1(V )apq−1 > C.

Proof of Theorem 3.3.0.1. We show that the breakdown points of the MMCD estimators
of location and covariance defined in Equations (3.3.3) and (3.3.4), respectively, are both
m/n, with m = ⌊min(n − h + 1, h − (d + 1))⌋, d = ⌊p/q + q/p⌋. First, we prove that
ε∗(M̂,X) = ε∗(Σ̂row, Σ̂col,X) ≥ m/n. Let Y be the sample obtained by replacing at most
m− 1 matrices of X by arbitrary p× q matrices. Since n− (m− 1) ≥ h, Y contains at least
h matrices of the orginial sample X and because m− 1 ≤ h− (d+ 1)− 1, every subset of
size h of Y includes at least d+ 2 matrices of the original sample X. Hence, the MMCD
estimators can almost surely be computed for any h-subset of Y. Let us consider three
ellipsoids:

• Let Emax = E(0, cmaxI, I) denote the smallest sphere that contains all samples in X,
where cmax is chosen accordingly.

• Let Eh = E(0, chI, I) denote the smallest sphere that contains the h samples of X
that are also in Y, where ch is chosen accordingly.

• Let EMMCD = E(M̂Y, Σ̂row
Y , Σ̂col

Y ) denote the MMCD ellipsoid.

It follows that det(EMMCD) ≤ det(Eh) ≤ det(Emax) =: α, where for an ellipsoid E =
E(T ,U ,V ), det(E) is defined in (B.4). Note that X is a collection of random samples
from a continuous distribution and therefore it is in general position almost surely. Further,
EMMCD covers at least h samples, and those include at least d+2 samples of X, which span
a nonempty d+ 1 simplex. Lemma B.2.1 shows that there exists a constant α > 0 that only
depends on those d+ 2 samples such that, if

$$$M̂Y

$$$
F
> C it would imply det(EMMCD) > α.

As shown above, this is not possible, hence
$$$M̂Y

$$$
F
≤ C.

Similarly, since Y contains at least d+ 2 matrices of the original sample X, the MMCD
estimators almost surely yield positive definite covariance estimates Σ̂row

Y and Σ̂col
Y . More

specifically, let XT , T ⊆ H be the subset of the at least d+2 matrices of the original sample
that are in Y. Since |T | ≥ d+ 2 = ⌊p/q + q/p⌋+ 2 the MLE estimators (M̂XT

, Σ̂row
XT

, Σ̂row
XT

)

of this subsample are almost surely positive definite. Let ET = E(M̂XT
, Σ̂row

XT
, Σ̂row

XT
) denote
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the corresponding ellipsoid which is the smallest ellipsoid, of the type E = E(T,U,V)
as in Equation (B.3), containing the samples XT as one can think of it as the MMCD
ellipsoid for those |T | ≥ d+ 2 samples with H = T . This further implies that the volume
of the corresponding ellipsoid ET is bounded from below by a constant only depending
on X, i.e. det(ET ) ≥ v > 0. As EMMCD is also an ellipsoid containing the samples XT ,
det(EMMCD) ≥ det(ET ) ≥ v > 0. Moreover, it also means that there exists a constant k
depending only on X, such that ET ⊆ kEMMCD, implying that there exists a constant γ > 0
depending only on X, such that λi(Σ̂

row
Y )λj(Σ̂

col
Y ) > γ, 1 ≤ i ≤ p, 1 ≤ j ≤ q. Especially,

λp(Σ̂
row
Y )λq(Σ̂

col
Y ) > γ. Since also det(EMMCD) ≤ α there exists a constant δ > 0, depending

only on X such that λi(Σ̂
row
Y )λj(Σ̂

col
Y ) < δ, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Next we show that ε∗(M̂,X) = ε∗(Σ̂row, Σ̂col,X) ≤ m/n. If m = n − h + 1, we replace
m = n − h + 1 matrices of X to obtain Y, then n − m = h − 1, implying that every
subset of h samples of Y contains at least one conaminated sample. Hence, EMMCD =
E(M̂Y, Σ̂row

Y , Σ̂col
Y ) also includes at least one contaminated sample. Let ∥X∥F → ∞ for

all contaminated samples X, then at least one eigenvalue of EMMCD explodes and the
MMCD location and covariance estimators break down. Finally, consider the case where
m = h−(d+1). To construct Y, take any d+1 samples of X and consider the d dimensional
hyperplane L they determine. Replace h− (d+ 1) samples that are not in L and replace
them with matrices on L. Then L contains h points of Y and the ellipsoid covering those
points has volume zero and hence determinant zero. Since X is in general position, we can
construct Y such that no other lower dimensional hyperplane contains h points of Y. Hence,
M̂Y lies on L and EMMCD = E(M̂Y, Σ̂row

Y , Σ̂col
Y ) has zero determinant. This implies that

at least one eigenvalue is zero, hence the MMCD location and covariance estimators break
down.

Proof of Theorem 3.3.0.2. Let (X1, . . . ,Xn) be a sample of matrix-variate observations
and (x1, . . . ,xn), xi = vec(Xi), i = 1, . . . n its vectorized form. The MCD estimator can
also be found as a solution to the following maximization problem:

max
w,µ̂,Σ̂

l(w, µ̂, Σ̂|(x1, . . . ,xn)) = max
w,µ̂,Σ̂

−1

2

n!
i=1

wi(ln(det(Σ̂)) + pq ln(2π) +MD2(xi, µ̂, Σ̂))

subject to w1, . . . , wn ∈ {0, 1}, "n
i=1wi = h, µ̂ ∈ Rpq, Σ̂ ∈ PDS(pq); see Raymaekers and

Rousseeuw (2023) for more insight. Similarly, the MMCD estimator is a solution to the
following maximization problem:

max
w,M̂,Σ̂row,Σ̂col

l(w, M̂, Σ̂row, Σ̂col|(X1, . . . ,Xn))

= max
w,M̂,Σ̂row,Σ̂col

−1

2

n!
i=1

wi

�
p ln(det(Σ̂col)) + q ln(det(Σ̂row)) +MMD2(Xi) + pq ln(2π)

�
subject to w1, . . . , wn ∈ {0, 1}, "n

i=1wi = h, M̂ ∈ Rp×q, Σ̂row ∈ PDS(p), Σ̂col ∈ PDS(q);
see Proposition 3.2.0.1.

Denote further (wMCD, µ̂MCD, Σ̂MCD) and (wMMCD, µ̂MMCD, Σ̂
col
MMCD⊗ Σ̂row

MMCD) weights,
mean and covariance estimators for the vectorized sample (x1, . . . ,xn), based on MCD and
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MMCD, respectively. As Xi ∼ ME(M,Σrow,Σcol, g), then xi ∼ E(µ,Σcol ⊗Σrow, g), with
E(xi) = µ = vec(M), cov (xi) = cgΣ

col ⊗Σrow, where cg is a distribution-specific scaling
parameter; for more details see Theorem 2.11 in Gupta et al. (2013). Moreover, the mean
estimator µ̂MCD and properly scaled covariance estimator Σ̂MCD are strongly consistent for
the population counterparts µ and Σcol ⊗Σrow; see e.g. Croux and Haesbroeck (1999) and
Cator and Lopuhaä (2012). Especially, this implies that for every δ > 0 there exists n ∈ N
such that

∥µ̂MCD − µ∥ a.s.
< δ,

$$$Σ̂MCD −A⊗B
$$$ a.s.

< δ,

for some A⊗B ∈ PDS(p)⊗ PDS(q). In the following, we will drop a.s. superscript from
(in)equality signs when it is clear from the context. For fixed weights w, the log-likelihood
function l·,w|(x1,...,xn) : (µ,Σ) �→ l(µ,Σ|w, (x1, . . . ,xn)) is continuous in both µ, and Σ,
and its continuity implies%%%l(wMCD, µ̂MCD, Σ̂MCD|(x1, . . . ,xn))− l(wMCD,µ,A⊗B|(x1, . . . ,xn))

%%% < ε,

for ε = ε(δ) > 0. The solution (wMCD, µ̂MCD, Σ̂MCD) is optimal for l(·|(x1, . . . ,xn)),
implying that

0 < l(wMCD, µ̂MCD, Σ̂MCD|(x1, . . . ,xn))− l(wMCD,µ,A⊗B|(x1, . . . ,xn)) < ε. (B.11)

Similarly, (wMMCD, µ̂MMCD, Σ̂
col
MMCD ⊗ Σ̂row

MMCD) is a maximizer of l(·|(x1, . . . ,xn)) in the
set of all feasible weights, means, and covariances with Kronecker product structure. As
(wMCD,µ,A⊗B) belongs to the same set,

l(wMMCD, µ̂MMCD, Σ̂
col
MMCD ⊗ Σ̂row

MMCD|(x1, . . . ,xn)) > l(wMCD,µ,A⊗B|(x1, . . . ,xn)).

Denote further ŜMMCD = 1
h

"n
i=1wMMCD,i(xi − µ̂MMCD)(xi − µ̂MMCD)

′ to be the estimate
of Σcol⊗Σrow, based on the weights (subset) produced by the MMCD algorithm. As ŜMMCD

is optimal for l given fixed weights wMMCD,

l(wMCD, µ̂MCD, Σ̂MCD|(x1, . . . ,xn))

>l(wMMCD, µ̂MMCD, ŜMMCD|(x1, . . . ,xn))

>l(wMMCD, µ̂MMCD, Σ̂
col
MMCD ⊗ Σ̂row

MMCD|(x1, . . . ,xn))

>l(wMCD,µ,A⊗B|(x1, . . . ,xn)). (B.12)

(B.11) and (B.12) now give that

0 < l(wMCD, µ̂MCD, Σ̂MCD|(x1, . . . ,xn))− l(wMMCD, µ̂MMCD, ŜMMCD|(x1, . . . ,xn)) < ε,

i.e., due to Proposition 3.2.0.1,

0 < det(ŜMMCD)− det(Σ̂MCD) < ε, (B.13)

for ε = ε(n) > 0, arbitrarily small (ε(n) → 0, n → ∞). As both Σ̂MCD and ŜMMCD are
weighted sample covariances for the random sample of vectorized observations calculated
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using the weights satisfying the same constraints, Corollary 4.1. in Cator and Lopuhaä
(2012) (taking Pt to be the empirical measure based on the sample (x1, . . . ,xn)) implies
that

µ̂MMCD
a.s.−−→ µ, ŜMMCD

a.s.−−→ c(α)−1Σcol ⊗Σrow , (B.14)

where c(α) > 0 is a distribution-specific consistency factor of the MCD given in Croux and
Haesbroeck (1999).

To complete the proof consider reparametrization of l(w,a,A|(x1, . . . ,xn)) for fixed
weights w ∈ Rn, mean a ∈ Rpq, and covariance A ∈ PDS(pq) in terms of the preci-
cion matrix B = A−1. Denote this new parametrization as g(B|w,a, (x1, . . . ,xn)) =
l(w,a,B−1|x1, . . . ,xn), which is now concave in B. Especially, for w = wMMCD and
a = µ̂MMCD, the function g(B|wMMCD, µ̂MMCD, (x1, . . . ,xn)) is concave in B and achieves
a unique global maximum at B = ŜMMCD. Equations (B.11) and (B.12) then give

0 <l(wMMCD, µ̂MMCD, ŜMMCD|(x1, . . . ,xn))

− l(wMMCD, µ̂MMCD, Σ̂
col
MMCD ⊗ Σ̂row

MMCD|(x1, . . . ,xn)) < ε,

further implying that

0 <g(Ŝ−1
MMCD|wMMCD, µ̂MMCD, (x1, . . . ,xn))

− g((Σ̂col
MMCD ⊗ Σ̂row

MMCD)
−1|wMMCD, µ̂MMCD, (x1, . . . ,xn)) < ε,

as both ŜMMCD and Σ̂col
MMCD⊗Σ̂row

MMCD are a.s. positive definite for n large enough. Concavity
of g and the fact that Ŝ−1

MMCD is its global maximum further imply that

∥Ŝ−1
MMCD − (Σ̂col

MMCD ⊗ Σ̂row
MMCD)

−1∥ < δ1,

for δ1 = δ1(ε) → 0 as n → ∞. Almost sure positive definiteness of ŜMMCD and Σ̂col
MMCD ⊗

Σ̂row
MMCD, and continuity of matrix inverse imply that

∥ŜMMCD − Σ̂col
MMCD ⊗ Σ̂row

MMCD∥ < δ, (B.15)

for δ = δ(ε) → 0 as n → ∞. Equations (B.14) and (B.15) now complete the proof. Observe
that the proof indicates that the distribution-specific consistency factor is inherited from
the MCD covariance estimator; see Croux and Haesbroeck (1999).

Proof of Theorem 3.3.0.3. We show that the breakdown points of the reweighted MMCD
estimators are at least as high as the breakdown points of the raw MMCD estimators.
Let Y be the sample obtained by replacing at most m − 1 matrices of X by arbitrary
p × q matrices. Let M̂Y, Σ̂row

Y , and Σ̂col
Y denote the raw MMCD estimators and M̃Y,

Σ̃row
Y , and Σ̃col

Y denote the reweighted MMCD estimators based on the corrupted sample
Y. Further, d(Yi) = MMD(Yi; M̂Y, Σ̂row

Y , Σ̂col
Y ), i ∈ N = {1, . . . , n}, denote the matrix

Mahalanbois distances of the corrupted sample based on the raw MMCD estimators. Since
m ≤ ε∗(M̂X,X)− 1 = ε∗(Σ̂row

X , Σ̂col
X ,X)− 1 it follows that there exist constants k0, k1, and

k2 that only depend on X, such that$$$M̂Y

$$$ ≤ k0 < ∞ and

0 < k1 < λp(Σ̂
row
Y )λq(Σ̂

col
Y ) ≤ λ1(Σ̂

row
Y )λ1(Σ̂

col
Y ) ≤ k2 < ∞.

(B.16)
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Since at least ⌊(n+d+2)/2⌋ have a positive weight and at most ⌊(n−d)/2⌋ − 1 observations are
replaced, there are at least d+ 2 observations of the orginal sample X contained in Y that
have a positive weight. Let T ⊆ N denote the indices of those samples, then we have that

n!
i=1

w(d(Yi)) =
!

i∈N\T
w(d(Yi)) +

!
i∈T

w(d(Xi)) ≥
!
i∈T

w(d(Xi)) ≥ (d+ 2)c0 > 0, (B.17)

with c0 := mini∈T w(d(Xi)) > 0. This implies that the denominators of M̃Y, Σ̃row
Y , and

Σ̃col
Y are always positive.
Let us now show that there exists a constant α0 < ∞ only dependent on X such that$$$M̃Y

$$$
F
< α0. From Equation (B.8) we have that

$$$Yi − M̂Y

$$$2
F
≤ tr(Ω̂col

Y (Yi − M̂Y)′Ω̂row
Y (Yi − M̂Y))λ1(Σ̂

row
Y )λ1(Σ̂

col
Y )

= d(Yi)λ1(Σ̂
row
Y )λ1(Σ̂

col
Y ).

When computing M̃Y we have that w(d(Yi)) = 0 if d(Yi) > c1 and for all Yi ∈ Y that are
assigned positive weights, Equation (B.16) yields

∥Yi∥2F ≤
$$$Yi − M̂Y

$$$2
F
+
$$$M̂Y

$$$2
F
≤ c1k2 + k20. (B.18)

Since the denominator of is M̃Y bounded according to Equation (B.17), w is non-increasing
and bounded, and k0 and k2 are only dependent on X, there exsits a constant α0 only
dependent on X such that $$$M̃Y

$$$
F
≤ α0 < ∞. (B.19)

To show that the covariance does not break down, we first consider the case of the weight
function w(di) = 1(di ≤ c1), for c1 > 0. Let S ⊆ {1, . . . , N} denote the subset of indices
of the s = |S| samples of Y = {Y1, . . . ,Yn} for which di ≤ c1, i ∈ S. Observe that the h
samples Yi, i ∈ H are those with the smallest MD, hence T ⊆ H ⊆ S. Let M̂YT

, Σ̂YT
, Ω̂YT

and M̂YS
, Σ̂YS

, Ω̂YS
denote the MLE estimators of YT = (Yi)i∈T and YS = (Yi)i∈S ,

respectively. Consider the following three ellipsoids:

• Let ET = E(M̂YT
, Σ̂YT

, Ω̂YT
) denote the ellipsoid corresponding to the MLEs of

YT , i.e., the smallest ellipsoid containing those at least d+ 2 samples.

• Let ES = E(M̂YS
, Σ̂YS

, Ω̂YS
) denote the ellipsoid corresponding to the MLEs of YS .

• Let E0 = E(0, kIp, Iq) denote the smallest sphere containing the samples YS , where
k = c1k2 + k20 is as in (B.18).

Observe first that as ET is the smallest ellipsoid containing the samples YT = XT that
are also in ES , there exists a constant a1 depending only on XT , such that ET ⊆ a1ES :=
E(M̂YS

, a1Σ̂YS
, Ω̂YS

). On the other hand, ES is the smallest ellipsoid containing YS . As
these points are also in E0, then there exist α = α(c1) such that det(ES) ≤ det(E0) ≤ α.
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Equivalent argumentation as in the proof of Theorem 3.3.0.1 completes the first part of the
proof.

Let now w = w(di) be an arbitrarily, nondecreasing, bounded weight function, such that
w(di) = 0 if di > c1, i = 1, . . . , n. The weighted log-likelihood function for the sample Y,
with the weights satisfying

"n
i=1wi = s is given by

l(w,M,Σrow,Σcol|Y) =− 1

2

m!
i=1

wi

�
p ln(det(Σcol)) + q ln(det(Σrow))

+ tr(Ωcol(Yi −M)′Ωrow(Yi −M)) + pq ln(2π)
�

=− 1

2

�
s
�
p ln(det(Σcol)) + q ln(det(Σrow))

�
+

s!
i=1

tr(Ωcol(Zi −M)′Ωrow(Zi −M)) + pq ln(2π)
�

= l(w̃,M ,Σrow,Σcol|Z),

where w̃ = (w̃(d1), . . . , w̃(dn)), the new weight function satisfies w̃(di) = 1(d1 ≤ c1),
Z = {Z1, . . . ,Zn}, and Zi =

√
wiYi, i = 1, . . . , n. To complete the proof it is sufficient to

observe the following: Z1, . . . ,Zh contains at least d+ 2 points of the form
√
wiXi and are

in a general position, as wi ≥ a2 > 0, for some constant depending only on X. Moreover,
∥Zi∥2F = wi∥Yi∥2F ≤ wi(c1k2 + k20) ≤ w(0)(c1k2 + k20), i = 1, . . . , s. The statement now
follows from the first part of the proof, observing that assumption

"m
i=1wi = s without loss

of generality, since 0 < w(0) ≤ "n
i=1wi ≤ sw(0) < ∞.

B.3 MMCD Algorithm

Algorithm 3 Iterative C-step procedure for the MMCD estimators
1: procedure CSTEP((X1, . . . ,Xn), Hold, ε > 0)
2: (M̂Hnew , Σ̂

row
Hnew

, Σ̂col
Hnew

) = MLE((Xi)i∈Hold
)

3: h = |Hold|
4: repeat
5: (M̂Hold

, Σ̂row
Hold

, Σ̂col
Hold

) = (M̂Hnew , Σ̂
row
Hnew

, Σ̂col
Hnew

)

6: d = (MMD2(X1; M̂Hold
, Σ̂row

Hold
, Σ̂col

Hold
), . . . ,MMD2(Xn; M̂Hold

, Σ̂row
Hold

, Σ̂col
Hold

))
7: π1(i) = {{1, . . . , n} → {1, . . . , n} : i �→ j : dπ(1) ≤ . . . ≤ dπ(n)}
8: Hnew = {π(1), π(2), . . . , π(h)}
9: (M̂Hnew , Σ̂

row
Hnew

, Σ̂col
Hnew

) = MLE((Xi)i∈Hnew)

10: until
%%%p(ln(det(Σ̂col

Hold
))− ln(det(Σ̂col

Hnew
)))+q(ln(det(Σ̂row

Hold
))− ln(det(Σ̂row

Hnew
)))

%%%<ε

11: return M̂Hnew , Σ̂
row
Hnew

, Σ̂col
Hnew

,d, Hnew

12: end procedure
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Algorithm 4 Fast reweighted MMCD procedure
1: procedure MMCD(X = (X1, . . . ,Xn))
2: h = ⌊(n+d+2)/2⌋
3: α = h/n
4: N = {1, . . . , n}
5: for k = 1 to 500 do
6: Hk = sample(N , size = d+ 2)
7: (M̂k, Σ̂

row
k , Σ̂col

k ,dk, Hk) = CSTEP2(X, Hk) ▷ 2 MLE and C-step iterations
8: δk = p ln(det(Σ̂col

k )) + q ln(det(Σ̂row
k ))

9: end for
10: πδ(i) = {{1, . . . , 500} → {1, . . . , 500} : i �→ j : δπδ(1) ≤ . . . ≤ δπδ(500)}
11: for l ∈ {πδ(1), πδ(2), . . . , πδ(10)} do
12: (M̂l, Σ̂

row
l , Σ̂col

l ,dl, Hl) = CSTEP(X, Hl) ▷ Iterating C-steps until convergence
13: δl = p ln(det(Σ̂col

l )) + q ln(det(Σ̂row
l ))

14: end for
15: j = argmink∈N (δk)
16: (M̂, Σ̂row, Σ̂col) = (M̂j , c(α)Σ̂

row
j , Σ̂col

j ) ▷ Consistency scaling for raw MMCD
17: d = (MMD2(X1; M̂, Σ̂row, Σ̂col), . . . ,MMD2(Xn; M̂, Σ̂row, Σ̂col))
18: H = Hj ∪ {i ∈ N |di < χ2

0.975;pq}
19: (M̂, Σ̂row, Σ̂col) = MLE(Xi∈H) ▷ Computation of reweighted MMCD
20: α̃ = |H|/n
21: (M̂∗, Σ̂row∗ , Σ̂col∗ ) = (M̂, c(α̃)Σ̂row, Σ̂col) ▷ Consistency scaling for reweighted MMCD
22: return M̂∗, Σ̂row∗ , Σ̂col∗
23: end procedure
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Elemental Subsets

For large n, the probability of obtaining at least one clean subset with d+ 2 observations
among m random subsets tends to

1− (1− (1− ε)d+2)m,

with ε denoting the percentage of outliers, see also Rousseeuw and Van Driessen (1999).
Hence, the number of subsets we must investigate to obtain at least one clean subset with a
probability of β is

⌈log(1− β)/log(1− (1− ε)d+2)⌉. (B.20)

In Figure B.1, we plot the number of necessary subsets according to Equation (B.20) for
β = 0.99 for d between 1 and 50 and ε between 0 and 0.5. The different green-shaded areas
starting from the bottom right indicate settings where up to m = 500 initial subsets of size
d+ 2 are sufficient to obtain at least one clean subset with a probability of β = 0.99 and the
various shades of orange indicate settings where we need more elemental subsets.
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Figure B.1: Number of subsets of size d + 2 we have to investigate for various levels of
contamination, to obtain at least one clean subset with a probability of 99%

We assess the influence of using only 2 C-step and MLE iterations on the MMCD estimators’
objective, the determinant of Σ̂col ⊗ Σ̂row. We consider a setting with n = 200 observations
with p = 2 rows and q = 8 columns. The clean observations are generated by a centered
matrix normal distribution with Σrow = Σfix(0.7) and Σcol = Σmix(0.7), with diagonal entries
σfix
jj = σmix

jj = 1 and off-diagonal entries σfix
jk (0.7) = 0.7 and σmix

jk (0.7) = 0.7|j−k|, respectively.
The outliers have a mean of 5 and the same covariance as the regular observations. We use
100 random subsets and plot det(Σ̂col ⊗ Σ̂row) for subsequent C-step iterations with 40% of
contamination. We compare the setting when we limit the number of MLE iterations to 2 or
iterate until convergence and/or use elemental subsets with d+ 2 = 6 instead of h-subsets
of size n/2 = 100. Comparing the top and bottom row of Figure B.2, we see that there is
virtually no difference in the objective function while limiting the ML iterations increases
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Figure B.2: Logarithm of determinant for successive C-step iterations to analyze the effects
of initial subset size and the number of ML iterations.

the computation speed. For the subset size, we see that several of the elemental subsets
yield robust solutions with a lower covariance determinant than the larger h-subsets and
that most of them are identified after 1 or 2 iterations. While 40% contamination is not
often encountered in practice, it shows that the algorithm can deal with settings with such a
high level of contamination. We also analyzed settings with lower contamination, and using
elemental subsets and fewer ML iterations had no negative effects in those settings, however,
the larger h-subsets also led to robust solutions more frequently.

Remark B.3.1. Instead of using the consistency factor c(α) given in Equation (3.3.5),
we could also scale the estimators to align the MMDs with a quantile of the chi-square
distribution as in Rousseeuw and Van Driessen (1999). Across the simulations and the
examples considered in this paper, we have only seen very slight changes in the resulting
estimators for both the raw and reweighted MMCD.

B.4 Shapley Proofs

Proof of Proposition 3.5.2.1. To show that cellwise Shapley values are not matrix affine
equivariant, we consider a rowwise addition matrix A that adds the w-th row to the v-th
row. For simplicity, let B be the identity matrix. Then Equation (B.21) yields

((AX) ◦ (CY ))jk =

�
(xjk + xwk)(yjk − ywk) j = v

xjkyjk j ̸= v

while

(A(X ◦ Y ))jk =

�
xjkyjk + xwkywk j = v

xjkyjk j ̸= v
.

Hence, we do not get invariance nor equivariance for rowwise or columnwise addition
matrices. This also implies that the cellwise Shapley values are not, in general, matrix affine
equivariant.
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Shift invariance follows from

Φ(X +C) = ((X +C)− (M+C)) ◦Ωrow((X +C)− (M+C))Ωcol = Φ(X),

which means that we can assume that X has zero mean without loss of generality.
Let Y := ΩrowXΩcol, C := (A′)−1 and D := (B′)−1, then we can write the cellwise

Shapley values as Φ(AXB) = (AXB) ◦ (CY D). The jk-th entry of this matrix can be
written as

ϕjk(AXB) =((AXB) ◦ (CY D))jk = (AXB)jk(CY D)jk

=

p!
i=1

q!
l=1

ajixilblk

p!
m=1

q!
n=1

cjmymndnk

=

p!
i=1

q!
l=1

p!
m=1,m ̸=i

q!
n=1,n ̸=l

ajicjmxilymnblkdnk

+

p!
i=1

q!
l=1

q!
n=1,n ̸=l

ajicjixilyinblkdnk

+

p!
i=1

q!
l=1

p!
m=1,m ̸=i

ajicjmxilymlblkdlk

+

p!
i=1

q!
l=1

ajicjixilyilblkdlk.

(B.21)

If A is a scaling matrix, i.e., a diagonal matrix with non-zero entries, we have that

ajicjm =

�
1 j = i = m

0 otherwise
,

and similarly for B. This implies that

ϕjk(AXB) = xjkyjk = (X ◦ Y )jk = ϕjk(X),

showing the scale invariance.
If A is a permutation matrix, i.e., a matrix consisting of any permutation of the canonical

basis vectors, we have that (A′)−1 = A and

ajicjm = ajiajm =

�
aji i = m

0 i ̸= m
,

and similarly for B. Hence Equation (B.21) becomes

((AXB) ◦ (CY D))jk =

p!
i=1

q!
l=1

ajicjixilyilblkdlk = (A(X ◦ Y )B)jk,

verifying the permutation equivariance.
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Proof of Theorem 3.5.2.2. To show that the computation of the rowwise Shapley value
can be simplified, we start by rewriting the rowwise marginal contributions to the matrix
Mahalanobis distance.

∆aMMD(X̂S) :=MMD(X̂S∪{a})−MMD(X̂S)

=

p!
i=1

p!
j=1

q!
k=1

q!
l=1

(x̂
S∪{a}
ik −mik)(x̂

S∪{a}
jl −mjl)ω

col
lk ωrow

ij

−
p!

i=1

p!
j=1

q!
k=1

q!
l=1

(x̂Sik −mik)(x̂
S
jl −mjl)ω

col
lk ωrow

ij

=
!

i∈S∪{a}

!
j∈S∪{a}

q!
k=1

q!
l=1

(xik −mik)(xjl −mjl)ω
col
lk ωrow

ij

−
!
i∈S

!
j∈S

q!
k=1

q!
l=1

(xik −mik)(xjl −mjl)ω
col
lk ωrow

ij

=
!

i∈S∪{a}

!
j∈S

q!
k=1

q!
l=1

(xik −mik)(xjl −mjl)ω
col
lk ωrow

ij

+
!

i∈S∪{a}

q!
k=1

q!
l=1

(xik −mik)(xal −mal)ω
col
lk ωrow

ia

−
!
i∈S

!
j∈S

q!
k=1

q!
l=1

(xik −mik)(xjl −mjl)ω
col
lk ωrow

ij

=
!
i∈S

!
j∈S

q!
k=1

q!
l=1

(xik −mik)(xjl −mjl)ω
col
lk ωrow

ij

−
!
i∈S

!
j∈S

q!
k=1

q!
l=1

(xik −mik)(xjl −mjl)ω
col
lk ωrow

ij

+
!
j∈S

q!
k=1

q!
l=1

(xak −mak)(xjl −mjl)ω
col
lk ωrow

aj

+
!
i∈S

q!
k=1

q!
l=1

(xik −mik)(xal −mal)ω
col
lk ωrow

ia

+

q!
k=1

q!
l=1

(xak −mak)(xal −mal)ω
col
lk ωrow

aa

=2
!
i∈S

q!
k=1

q!
l=1

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

+

q!
k=1

q!
l=1

(xak −mak)(xal −mal)ω
col
lk ωrow

aa .
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Now the coordinates ϕa(X) of the Shapley value ϕ(X) are given by (w(|S|) = |S|!(p−|S|−1)!
p! )

ϕa(X) =
!

S⊆P\{a}
w(|S|)∆aMMD(X̂S)

=2
!

S⊆P\{a}
w(|S|)

!
i∈S

q!
k=1

q!
l=1

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

+
!

S⊆P\{a}
w(|S|)

q!
k=1

q!
l=1

(xak −mak)(xal −mal)ω
col
lk ωrow

aa

and we can simplify the first term of the sum as

2
!

S⊆P\{a}
w(|S|)

!
i∈S

q!
k=1

q!
l=1

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

= 2

p−1!
s=1

w(|S|)
!

S⊆P\{a},|S|=s

!
i∈S

q!
k=1

q!
l=1

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

= 2

p−1!
s=1

q!
k=1

t!
l=1

w(|S|)
!

S⊆P\{a},|S|=s

!
i∈S

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

= 2

p−1!
s=1

q!
k=1

q!
l=1

|S|!(p− |S| − 1)!

p!

�
p− 2

s− 1

� !
i∈P\{a}

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

= 2
1

p(p− 1)

p−1!
s=1

s

q!
k=1

q!
l=1

!
i∈P\{a}

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

= 2
1

p(p− 1)

p(p− 1)

2

q!
k=1

q!
l=1

!
i∈P\{a}

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

=

q!
k=1

q!
l=1

!
i∈P\{a}

(xal −mal)(xik −mik)ω
col
lk ωrow

ia .

Since the second term is independent of the subset S and
"

S⊆P\{a}w(|S|) = 1, we obtain

ϕa(X) =

q!
k=1

q!
l=1

!
i∈P\{a}

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

+

q!
k=1

q!
l=1

(xak −mak)(xal −mal)ω
col
lk ωrow

aa

=

p!
i=1

q!
k=1

q!
l=1

(xal −mal)(xik −mik)ω
col
lk ωrow

ia ,

which completes the proof.

94



Appendix B

B.5 Further Simulation Results

In order to select a simulation setting, one has to consider that the ML estimators for the
parameters of the matrix-variate normal distribution employ an iterative algorithm, which
is commonly initialized by setting either the rowwise or columnwise covariance matrix equal
to the identity matrix (Dutilleul, 1999). Therefore, identity covariance matrices will not be
used for data generation as this could lead to an undesirable advantage for the estimation.

To assess the quality of covariance estimation, we consider two additional measures to the
KL divergence: the relative Frobenius error given as$$$Σ̂col ⊗ Σ̂row −Σcol ⊗Σrow

$$$
F

∥Σcol ⊗Σrow∥F
,

and angle error between eigenvalues given as

1− â⊤a√
â⊤â

√
a⊤a

,

where â and a are the vectors of sorted eigenvalues of Σ̂col ⊗ Σ̂row and Σcol ⊗ Σrow,
respectively. Large values of the KL divergence and the relative Frobenius error indicate
difficulties in the estimation of the covariances. The angle error between the eigenvalues
is in the interval [0, 1], and a large value means that the shape of the covariance matrix
is not appropriately estimated. To assess the efficacy of outlier detection, we include the
F-score in addition to precision and recall. The F-score is defined as the harmonic mean of
precision and recall, where precision denotes the proportion of correctly identified outliers
among all detected samples, while recall represents the proportion of correctly identified
outliers among all contaminated samples. The R code of the simulations and all simulation
results are available in the online supplement.

Effects of Dimensionality and Computation Time

We start by considering additional metrics for the simulations discussed in Section 3.6.
Figure B.3 shows the F-score in addition to precision and recall. The F-score shows that for
n = 100 and increasing dimensionality the robust MMCD estimators and the MLEs yield
similar results. This is due to an increasing recall of the MLEs and a decreasing precision
of the MMCD estimators. For n = 1000, the F-score of the MMCD estimators is close to
the benchmark and for the MCD we see the advantage of using the deterministic MCD
approach over the Fast-MCD method with increasing sample size. In Figure B.4 we see that
the MCD performs best in all settings across all evaluation measures. For the MCD we do
not see a difference in the KL divergence when swapping to the deterministic procedure.
However, the angle error between eigenvalues shows clear improvements, indicating that the
estimation of the shape of the covariance matrix improves. Both in terms of the angle and
Frobenius error, the MCD estimator attains better scores than the MLEs even for higher pq,
while the MLEs have better KL divergence.

We also analyze the computation times of the estimators in this setting. Figure B.5 clearly
shows that computation time depends on the dimensionality of the matrix-variate samples
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and the number of samples for all approaches. The relative increases of computation time
of the matrix MLEs and the MMCD estimators are similar for n ∈ {20, 100, 300} but for
n = 1000 the relative increase in computation time for the matrix MLEs is larger than for
the MMCD estimators, highlighting the effectiveness of the subsampling approach with
increasing sample size. For the MCD, we observe a decrease in computation time when
pq > 300 since the deterministic MCD is used instead of the Fast-MCD procedure. However,
computing the MCD still takes longer than the MMCD approach. Hence, the matrix-variate
approach does yield higher robustness and more accurate covariance estimation with shorter
computation times. Although parallel processing is available for the MMCD procedure, it was
not utilized in the simulations to ensure better comparability for the algorithms. Depending
on the number of available threads, parallel processing yields substantial improvements in
computation time.

Cellwise and Block Contamination

We also consider the additional metrics for the simulations comparing the three different
contamination types in Figures B.6 and B.7. The robustness of the MMCD estimators is
again confirmed using all three metrics assessing the quality of the covariance estimation.
The angle error reveals that the cell contamination has less effect on the shape of the
covariance matrix than the other two scenarios and that all three estimators seemingly do
a good job of estimating the covariance shape. For block contamination, the MCD yields
better results than the MLEs with increasing sample size and even gets close to the MMCD
in terms of angle error.

Remark B.5.1. Our cell contamination setting does not correspond to the setting of cellwise
outliers (Alqallaf et al., 2009). We first select a subset of outlying observations and permute
the cells for this selection while Alqallaf et al. (2009) select a fraction of all cells from
all samples. In our setting, we can guarantee that only 10 percent of the samples are
contaminated while the cellwise contamination scheme of Alqallaf et al. (2009) would likely
lead to more than half of the samples being contaminated.

In further simulations, we considered different fractions of contaminated samples as well as
multiple rowwise and columnwise covariance matrices for cellwise and block contamination.
Additionally, we analyzed the effect of the fraction of permuted cells per observation for cell
contamination, and for block contamination, we considered different mean matrices. Those
simulation results are not discussed here but are available in the online supplement.

Shift Outliers

For shift outliers, we include an in-depth analysis of the effect of the various simulation
parameters. The simulations involve generating regular and outlying samples from a matrix
normal distribution. A fraction, ε, of the clean data is replaced by outliers. The clean
observations are drawn from a centered distribution, while the mean of the outliers shifts
based on the parameter γ, i.e., the mean of the outliers is set to a matrix with all entries
equal to γ. Three types of covariance matrices are considered: The covariance matrix Σrnd,
as proposed by Agostinelli et al. (2015b), is randomly generated with low correlations. The
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covariance matrix Σfix(0.7) induces a relatively collinear setting, with entries defined as:

σfix
jk (0.7) =

�
1 if j = k

0.7 if j ̸= k
.

The covariance matrix Σmix(0.7) exhibits both large and small correlations, featuring entries
as follows:

σmix
jk (0.7) =

�
1 if j = k

0.7|j−k| if j ̸= k
.

While maintaining the same covariance structure for both outliers and clean samples, we
explore the impact of increasing the outlier covariance by scaling the covariance of clean
observations by the parameter s. Each simulation setting is replicated 100 times. Unless
specified otherwise, we set Σrow = Σrnd, Σcol = Σmix(0.7), and s = 1 as detailed in
Section 3.6. An overview of all parameters for the simulations is provided in Table B.1.
For (p, q) = (5, 20), all listed parameter combinations are considered, while for (p, q) ∈
(50, 20), (100, 50), we only consider s = 1.

Parameter Parameter values

Sample size n 20, 50, 100, 200, 300, 400, 500, 750, 1000
Contamination ε 0.1, 0.2, 0.3, 0.4
Rowwise covariance Σrow Σfix(0.7),Σrnd

Columnwise covariance Σcol Σmix(0.7),Σrnd

Mean shift γ 1, 2, 3, 4, 5
Covariance multiplier s 1, 2, 3, 4

Table B.1: Parameters considered for the simulations with p, q = (5, 20).

We analyze the effect of the mean shift in a setting with contamination of ε = 0.2
and compare γ = 1 and γ = 3. In the upper row of Figure B.8, the boxplots depict
F-scores across various parameter configurations. Notably, the MMCD estimators exhibit
improved performance as sample sizes increase across all settings, consistently outperforming
ML estimators. However, for (p, q) = (5, 20), in a scenario involving a minor mean shift,
the F-scores derived from MMCD exhibit some volatility with larger sample sizes. This
situation arises due to the proximity of outliers to regular observations, posing challenges in
their identification. Notably, a more pronounced mean shift significantly simplifies outlier
detection. Moreover, we see that the recall of the MMCD estimators is close to one across all
settings, except for (p, q) = (5, 20) and a small mean shift. The MLE estimators only detect
the most severe outliers due to the masking effect, leading to a median recall below 0.25
across all settings. With an increasing sample size, the precision of the MMCD is improving
and has very low variability. On the other hand, the MLE shows very unstable results.

Figure B.9 presents the scores depicting covariance estimation. For the MMCD estimators
the covariance estimation performance is improving with the sample size across all settings.
On the other hand, the sample size has a negligible effect on the quality of the MLE
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estimators in the presence of outliers and a larger mean shift decreases performance. For
small sample sizes, MLE and MMCD estimators are close in terms of KL divergence, but
the angle error and Frobenius error indicate worse performance of the MLE estimators also
for small sample sizes. The relative Frobenius error of MMCD estimators is smaller than
one and thus only plotted on [0, 1]. For the MLE estimators, it is often above one and those
settings are not visible in plots.

Figure B.10 shows the difference between a contamination of ε = 0.1 and ε = 0.4 with
mean shift γ = 1. The KL divergence reveals that the MMCD estimator yields more accurate
results across all settings. However, for ε = 0.1, the F-scores of the MLE are increasing with
the dimensionality and perform better than the MMCD for small sample sizes. For ε = 0.4,
only the MMCD yields reliable results.

For the setting with (p, q) = (5, 20) and ε = 0.2, we also computed the MCD on the
vectorized samples in addition to the matrix MLE and MMCD and considered the true
mean and covariance used to generate the data as a benchmark. Figures B.11 and B.12
summarize the results and reveal that the MCD on the vectorized observations does not
lead to robust estimators. This issue arises because the robustness of the MCD and MMCD
depends on the dimensionality of the data. For the MCD it depends on p · q and for the
MMCD it depends on p/q + q/p. To achieve a 99% probability of obtaining at least one clean
initial subset with (p, q) = (5, 20) and a contamination ε = 0.2, MCD requires approximately
2.8 · 1010 initial subsets, while MMCD only needs 16. For the setting with the smallest mean
shift, the comparison between MMCD and the actual parameters in Figure B.12 highlights
the difficulty of this setting since even using the actual parameters; the recall shows a lot of
variability.

In addition to shifting the mean of the outliers by γ ∈ {1, . . . , 5}, we now consider the
effect of scaling the covariance by s ∈ {1, . . . , 4}. The difference between s ∈ {2, 3, 4} was
negligible and Figures B.13 and B.14 summarize the results for s = 2. While the MLE
performs quite well for outlier detection, especially compared to the setting with s = 1 (see
Figure B.10), the estimated covariance matrices are not accurate. The overall performance
of the MCD computed on the vectorized samples improves with increasing sample size n
but even more samples would be necessary to obtain similar results to the MMCD.

Finally, we compare the 4 different combinations of row- and columnwise covariance
matrices with ε = 0.2. In Figure B.15 we use γ = 1 and in Figure B.16 we increase the mean
shift to γ = 5. The F-score based on the true parameters is included as a reference. When
Σrow = Σfix(0.7), Σcol = Σmix(0.7), and γ = 1, the mean shift is too small and the outliers
cannot be separated from the regular observations. Increasing the mean shift to γ = 5, the
separation becomes clearer and the MMCD yields robust results. If γ = 1, we still see a lot
of variability in the F-score if only the rowwise or columnwise covariance matrix is generated
randomly. However, if both are generated randomly the distinction between outliers and
regular observations is easier.

Effects of Fine-grained Mean Shifts

To get a more in-depth view of the effect of the mean shift we consider a finer grid for
the parameter γ ∈ {0.1, 0.2, . . . , 2} for n ∈ {20, 100, 1000}, (p, q) = (5, 20), ε = 0.1. In
Figure B.17, we see that for n = 20, the MMCD has a low precision but an even higher
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recall than we can achieve using the actual parameters used to generate the data to compute
the Mahalanobis distances for outlier detection. For larger sample sizes, the precision of
the MMCD increases while the recall remains high, resulting in an F-score close to the
one achieved by the actual parameters. For n = 1000, we also computed the MCD on the
vectorized observations, it attains a higher recall than the matrix MLEs but lower precision
and performs worse than the MMCD in all settings. Likewise, to the results for outlier
detection, Figure B.18 shows similar results for covariance estimation. While the MMCD
performs best in most settings it shows potential for improvement for small n and γ. The
simulations also show that at a level of 10 percent contamination, even a small shift γ of the
outliers negatively impacts covariance estimation and, consequently, outlier detection due to
the masking effect.

Beyond Normality, Contaminated t-distribution

To analyze the effect of deviations from the matrix normal distribution we consider samples
from a matrix t-distribution. Similar to the matrix normal distribution, the matrix t-
distribution is parameterized by a mean matrix, rowwise and columnwise covariance matrices,
and degrees of freedom as an additional parameter, see Gupta and Nagar (1999) for more
details. We also consider the ML estimators for the matrix t-distribution proposed by
Thompson et al. (2020), which are implemented in the R package MixMatrix. We consider
samples from a p× q = 5× 20 centered matrix t-distribution with ν ∈ {1, . . . , 30} degrees of
freedom with Σrow = Σrnd ∈ PDS(p) and Σcol = Σmix(0.7) ∈ PDS(q) for n ∈ {20, 100, 1000},
(p, q) = (5, 20), ε ∈ {0.1, 0.2}. The outliers are generated from a shifted distribution with
a mean matrix of all ones with the same covariance structure and the same degrees of
freedom. In Figure B.19, we analyze the influence of the degrees of freedom on precision,
recall, angle error between eigenvalues, and the logarithm of the relative Frobenius error for
various estimators, number of samples, and levels of contamination. The angle and Frobenius
error clearly show the advantage of the MMCD estimators for covariance estimation. If the
distribution of the samples is known, the consistency correction outlined in Theorem 3.3.0.2
allows us to obtain consistency for any matrix elliptical distribution. Since we do not know
the underlying distribution in practice, we use the consistency factor for the normal model
given in Equation (3.3.5) which does affect the scale of the covariance but not the shape.
This is also reflected in the difference between the angle and Frobenius error of the MMCD
estimators and MLEs for the matrix t-distribution since the scale of the covariance has a
more profound impact on the Frobenius error. In terms of angle error, the MMCD estimators
perform better than the MLEs for the matrix t-distribution for all degrees of freedom ν
while the MMCD shows high Frobenius errors for ν ≤ 4.

While the MMCD estimators and MLEs for the matrix t-distribution have a recall close to
one in all settings, we see a difference in precision depending on the fraction of contaminated
samples and the number of samples. For ε = 0.1, the MLEs for the matrix t-distribution
show a steep increase in precision with rising degrees of freedom for all the sample sizes. On
the other hand, for ε = 0.2, the precision is constant and low for all n. Similarly to the
simulations based on the normal model, the precision of the MMCD estimators is low for
n = 20 and remains low for increasing degrees of freedom. While the precision increases
alongside the degrees of freedom for larger sample sizes it is still low. However, this is what
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we would expect since the matrix t-distribution has heavier tails than the matrix normal
distribution and the mean shift is rather small, such that we do not see the full potential of
the MMCD estimators even under the normal model, see Section B.5.

Both the normal MLEs and the MCD estimators computed on the vectorized samples
perform poorly for covariance estimation and outlier detection when the samples are generated
from a matrix t-distribution.
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Figure B.3: Outlier detection capabilities comparing multiple matrix sizes p ∈ {2, . . . , 30}
and q ∈ {10, 20, 30} for n ∈ {100, 1000}, γ = 1, ε = 0.1.
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Figure B.4: Quality of covariance estimation comparing multiple matrix sizes p ∈ {2, . . . , 30}
and q ∈ {10, 20, 30} for n ∈ {100, 1000}, γ = 1, ε = 0.1.
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Figure B.5: Comparison of computation time in seconds for multiple matrix sizes p ∈
{2, . . . , 30} and q ∈ {10, 20, 30} for n ∈ {20, 100, 300, 1000}.
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Figure B.6: Quality of covariance estimation comparing block, cell, and sample contamina-
tion.
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(p,q) = (5,20)

Block contamination Cell contamination Mean shift contamination

log(K
LD)

E
igenA

ngle
log(FrobE

rror)

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0

2

4

0.00

0.05

0.10

0.15

−2

−1

0

1

n

Method Matrix MLE MMCD MCD vectorized

Figure B.7: Outlier detection capabilities comparing block, cell, and sample contamination.
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Figure B.8: Overview of simulation results with a fraction ε = 0.2 of contaminated samples.
The outlier detection capabilities are measured by F-score, precision, and recall.
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Figure B.9: Overview of simulation results with a fraction ε = 0.2 of contaminated samples.
The quality of covariance estimation is evaluated based on the logarithm of
KL divergence, angle error between eigenvalues, and the logarithm of relative
Frobenius error.
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Figure B.10: F-score and logarithm of KL divergence for simulations with mean shift γ = 1.
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Figure B.11: Quality of covariance estimation for simulations with ε = 0.2 and (p, q) =
(5, 20).
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Figure B.12: Outlier detection capabilities for simulations with ε = 0.2 and (p, q) = (5, 20).
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Figure B.13: Quality of covariance estimation for simulations where the covariance of the
outliers is scaled by s = 2.
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Figure B.14: Outlier detection capabilities for simulations where the covariance of the outliers
is scaled by s = 2.
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Figure B.15: F-score and logarithm of KL divergence comparing 4 different combinations of
row- and columnwise covariance matrices, γ = 1, and ε = 0.2.
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Figure B.16: F-score and logarithm of KL divergence comparing 4 different combinations of
row- and columnwise covariance matrices, γ = 5, and ε = 0.2.
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Figure B.17: Outlier detection capabilities for simulations with mean shift γ ∈
{0.1, 0.2, . . . , 2} for n ∈ {20, 100, 1000}, ε = 0.1.
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Figure B.18: Quality of covariance estimation for simulations with mean shift γ ∈
{0.1, 0.2, . . . , 2} for n ∈ {20, 100, 1000}, ε = 0.1.

116



Appendix B

(p,q) = (5,20)

ε = 0.1 ε = 0.2

n = 20 n = 100 n = 1000 n = 20 n = 100 n = 1000

E
igenA

ngle
log(FrobE

rror)

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

0.10

0.15

0.20

0.25

0.30

0

4

8

Degrees of freedom

Method Matrix MLE MMCD MCD vectorized Matrix t MLE

Figure B.19: Precicion, recall, eigen angle and logarithm of relative Frobenius error of
samples from a contaminated t-distribution with ν ∈ {1, . . . , 30} degrees of
freedom for n ∈ {20, 100, 1000}, γ = 1, ε ∈ {0.1, 0.2}.
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4 Explainable Outlier Detection for
Multivariate Functional Data Based on a
Functional Mahalanobis Distance

This chapter is based on the joint work of M. Mayrhofer, U. Radojičić, H. Lewitschnig, and
P. Filzmoser.

Contributions: M. Mayrhofer developed the methodological framework and implemented
the procedures in R. He and co-author Radojičić U. collaborated in establishing the proofs
and writing the first draft. All co-authors were involved in the discussions and collaborated
on writing the final paper.

4.1 Introduction

Functional Data Analysis (FDA) encompasses statistical models and methods to analyze
data that are naturally represented as functions. With the advancement of modern data
collection tools, multivariate functional observations are increasingly common since data are
now often recorded repeatedly across multiple time points. These functional observations
can be seen as finite-dimensional realizations of continuous stochastic processes, providing
a framework for modeling and analyzing such data effectively (Cuevas, 2014; Wang et al.,
2016).

Unlike traditional approaches that treat data as vectors or matrices, models with a
functional structure inherently account for key characteristics of the underlying random
process generating the observations, such as smoothness (Ramsay and Silverman, 2005;
Ferraty, 2006). In this context, the estimation of mean and covariance plays a central role
in understanding the underlying structure and variability. However, rather than direct
covariance estimation, Functional Principal Component Analysis (FPCA) is often the
dominant focus in the literature. Shang (2014) provides a comprehensive review of methods
for univariate FPCA, Chiou et al. (2014) provide extensions to multivariate functional data,
and Happ and Greven (2018) establish and discuss the connection between univariate and
multivariate FPCA.

In the context of applications like climate and weather monitoring, medical data analysis,
signal processing, or financial modeling, where multivariate functional data often arise, robust
and explainable methods are essential to ensure accurate conclusions. Robust procedures
enable reliable statistical data analyses by focusing on common patterns while providing
clarity on anomalies, which is a key step for drawing informed, data-driven conclusions.

The presence of outliers can severely distort estimates of mean and covariance, as well as the
performance of non-robust FPCA. Thus, robust approaches and tools for outlier detection are
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needed. Several methods for robust FPCA have been developed in the univariate functional
setting; see, e.g., Boente and Salibián-Barrera (2015, 2021) for an overview. While there are
some methods for distance-based outlier detection in the univariate functional setting, see,
e.g., Galeano et al. (2015); Ghiglietti et al. (2017); Berrendero et al. (2020); Oguamalam
et al. (2024), non-parametric, depth based approaches are more commonly employed in
the multivariate case. Hubert et al. (2015) provide an overview of outlier detection in
multivariate functional data.

Given that much of the focus in multivariate FDA is on FPCA and depth-based outlier
detection, there is a clear need for robust mean and covariance estimation methods. Our
contribution is a detailed framework for robust covariance estimation and distance-based,
explainable outlier detection for smooth multivariate functional data with a focus on
processes with a separable covariance structure. This approach leverages the Matrix Minimum
Covariance Determinant (MMCD) estimators of Mayrhofer et al. (2024a) for robust covariance
estimation and a generalization of the trimmed functional Mahalanobis distance of Galeano
et al. (2015) to the multivariate functional setting to identify outliers. Further, a framework
for outlier explanations based on Shapley values (Shapley, 1953; Mayrhofer and Filzmoser,
2023) is proposed which enables an additive decomposition of the trimmed multivariate
functional Mahalanobis distance into time-coordinate-specific contributions.

The structure of the paper is as follows: Section 4.2 outlines the theoretical framework
and the already existing notion of univariate functional Mahalanobis distance. In Section 4.3
we propose a trimmed multivariate functional Mahalanobis distance and provide an in-depth
analysis of its properties with a focus on processes with a separable covariance structure.
Section 4.4 focuses on processes that are expressed on a finite basis and contains the main
theoretical contribution of this work, which shows how the separability of the multivariate
covariance operator of a random function translates onto the distribution of the random
coefficient matrix of its smoothed counterpart. This leads to the connection between the
trimmed multivariate functional Mahalanobis distance and the matrix-variate Mahalanobis
distance. The connection is paramount to enable efficient computation with real-world data,
and a step-by-step algorithm detailing the method is provided. Section 4.5 outlines the
framework and computational details for outlier explanations based on Shapley values in
the functional datasetting. Section 4.6 demonstrates the performance of our method for
outlier detection and covariance estimation in an extensive simulation study, including a
comparison with state-of-the-art methods. Section 3.7 shows the usefulness of the robust
procedure and outlier explanations for real-world examples, and in Section 4.8 we discuss,
summarize, and conclude our results.
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4.2 Preliminaries

4.2.1 Multivariate Stochastic Processes

Let (Ω,A, P ) be a probability space and T ⊂ R a compact interval, commonly thought of
as time, then

X = {X(t, ω), t ∈ T } = {(X1(t, ω), . . . , Xp(t, ω))
′, t ∈ T } : T × Ω → Rp

is a time-continuous vector-valued stochastic process. Hence, X is a collection of random
variables defined on a common probability space index by the continuous set T ; for every
fixed t ∈ T the process defines a random variable X(t), and for every fixed ω ∈ Ω a sample
path or trajectory X(., ω), i.e., a function of t ∈ T .

In functional data analysis (FDA) it is commonly assumed that those realizations are
elements of a Hilbert space such as H := L2

p(T ) = L2(T ) × · · · × L2(T ), the space of
p-dimensional square-integrable functions (Jacques and Preda, 2014; Wang et al., 2016).
The inner product and norm of x = (x1, . . . , xp)

′ and y = (y1, . . . , yp)
′ in H are given by

⟨x,y⟩H =

p!
j=1

⟨xj , yj⟩ =
p!

j=1

�
T
xj(t)yj(t)dt and ∥x∥H = ⟨x,x⟩1/2H , (4.2.1)

respectively. A stochastic process is called an L2 process if and only if it has finite second
moments; E[∥X(t)∥2H] < ∞ for all t ∈ T . In the following, we consider L2-continuous
processes, i.e., L2 processes for which lim

h→0
E[∥X(t+ h)−X(t)∥2H] = 0 for every t ∈ T , see,

e.g., Ash and Gardner (2014) for more details. To simplify the notation, we will omit the
subscript H from the inner product and norm when it is clear from the context which inner
product or norm is being referenced.

In this setting, each component Xj of X is an L2-continuous stochastic process for all
j = 1, . . . , p with continuous mean and covariance function given by

µ(t) = E[X(t)] =

�E[X1(t)]
...

E[Xp(t)]

� , K(s, t) =

�κ11(s, t) · · · κ1p(s, t)
...

. . .
...

κp1(s, t) · · · κpp(s, t)

� , (4.2.2)

respectively. Here, κij , i, j = 1 . . . , p, are (cross) covariance functions (kernels) given by

κij(s, t) = cov(Xi(s), Xj(t)) = E [(Xi(s)− µi(s))(Xj(t)− µj(t))] . (4.2.3)

The covariance operator K : H → H of X associated with kernel K(s, t) is defined as

Kx(s) =

�
T
K(s, t)x(t)dt, x ∈ H.

Since X is L2-continuous, the covariance operator K is a Hilbert-Schmidt operator, and the
multivariate Mercer’s theorem (Withers, 1974; Daw et al., 2022) implies that there exist
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countable sequences of continuous orthonormal eigenfunctions {ψk}k≥1 and non-negative
decreasing eigenvalues {πk}k≥1 with

"∞
k=1 πk < ∞ such that

Kψk = πk ψk and K(s, t) =
∞!
k=1

πk ψk(s)ψ
′
k(t). (4.2.4)

The multivariate Karhunen-Loève representation theorem then implies that there exists a
unique sequence of uncorrelated random variables {βk}k≥1 such that

X(t) = µ(t) +
∞!
k=1

βk ψk with βk = ⟨X − µ,ψk⟩H =

�
T
ψ′

k(t)(X(t)− µ(t))dt, (4.2.5)

where βk ∼ N (0, πk) if X is a multivariate Gaussian process (Daw et al., 2022).
In continuation, an L2-continuous multivariate stochastic process X with mean function

µ and covariance function K is denoted as X ∼ MSP(µ,K).

4.2.2 Notion of Mahalanobis Distance

Before we start discussing the functional setting, let us first review the concept of the
Mahalanobis distance for random vectors. For a p-variate random vector x from a population
with mean µ ∈ Rp and covariance matrix Σ ∈ PDS(p), the squared Mahalanobis distance of
a random vector x (from mean µ, with respect to covariance Σ) is given by

MD2(x,µ,Σ) = MD2(x) = (x− µ)′Σ−1(x− µ). (4.2.6)

Here PDS(p) denotes the set of all (p × p) positive definite symmetric matrices. Let
V DV ′ = Σ denote the spectral decomposition of Σ, where D = diag(λ1, . . . , λp) is a
diagonal matrix containing the ordered eigenvalues λ1 ≥ · · · ≥ λp of Σ, and the matrix
V ∈ Rp×p contains the corresponding eigenvectors. Based on the spectral decomposition,
we can rewrite MD2(x) in terms of the principal components z = V ′(x− µ) as follows:

MD2(x) = (x− µ)′Σ−1(x− µ) = (x− µ)′V D−1V ′(x− µ) =

p!
j=1

z2j
λj

. (4.2.7)

In the context of functional data, the covariance operator K serves as the functional
analog to the covariance matrix in multivariate statistics. Therefore, when defining the
Mahalanobis distance for functional data in a manner analogous to the multivariate case,
the inverse of the covariance operator plays a crucial role in the formulation. However, as
a Hilbert-Schmidt operator, see Preliminaries 4.2.1, the covariance operator is, in general,
not invertible, and a regularized covariance operator should be used instead. For univariate
functional data, there have been several proposals on how to define a notion of Mahalanobis
distance in infinite-dimensional L2 space: Galeano et al. (2015) introduced a method based
on a spectral cutoff regularization, where the covariance operator is truncated to a finite
number of components, making it invertible. Specifically, let X ∈ L2(T ) be a univariate
stochastic process with mean µ and covariance function κ, denoted as X ∼ SP(µ, κ), then
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4.3 Multivariate Functional Mahalanobis Distance

its squared truncated functional Mahalanobis distance with truncation level m ∈ N is given
by

fMD2(X,µ;κ,m) = fMD2(X;m) =

m!
i=1

1

λi
⟨X − µ, ξi⟩2, (4.2.8)

where (λi, ξi), i = 1, . . . , p, λ1 ≥ · · · ≥ λm > 0, denote the first m eigenpairs of the
covariance operator K with kernel κ. This approach is computationally efficient and well-
suited for smoothed functions represented by a finite basis. Ghiglietti et al. (2017) proposed
an alternative method that introduces regularization through an additional parameter,
offering greater flexibility and addressing convergence issues encountered in Galeano et al.
(2015). Berrendero et al. (2020) further extended the Mahalanobis distance definition by
incorporating smoothing through reproducing kernel Hilbert spaces (RKHS), embedding
regularization directly into the distance computation.

4.3 Multivariate Functional Mahalanobis Distance

In this section, we introduce the notion of multivariate truncated Mahalanobis semi-distance,
which extends the univariate functional version defined by Galeano et al. (2015). This
particular choice of univariate functional Mahalanobis distance was made for computational
simplicity and the favorable properties when applied to functions represented by a finite
basis. While the concept has been briefly discussed in Martino et al. (2019), primarily in the
context of simulations and examples as a competitive method, to the best of our knowledge,
this is the first rigorous formalization and study of the Mahalanobis distance for multivariate
functional data and its properties.

Definition 4.3.0.1. Let X ∼ MSP(µ,K) and Y ∼ MSP(µ,K). For M ∈ N such that
π1 ≥ · · · ≥ πM > 0, the squared truncated functional multivariate Mahalanobis semi-distance
(fMMD) between X and Y (w.r.t. K) is given by

fMMD2(X,Y ;K,M) =
M!
k=1

1

πk
⟨X − Y ,ψk⟩2,

where, (πk,ψk) denotes the kth eigenpair of the covariance operator K with kernel K,
k = 1, . . . ,m, and M ∈ N determines the spectral cutoff.

Using Definition 4.3.0.1, we define the squared truncated functional Mahalanobis semi-
distance of X ∼ MSP(µ,K) (w.r.t. µ and K) as

fMMD2(X;M) := fMMD2(X,µ;K,M) =

M!
k=1

1

πk
⟨X − µ,ψk⟩2. (4.3.1)

As shown in Galeano et al. (2015) for univariate functions and discussed in Martino et al.
(2019) for the multivariate setting, fMMD in Definition 4.3.0.1 is a semi-distance, since it
lacks the identifiability condition due to truncation. I.e., if the projections of X and Y
coincide on span(ψ1, . . . ,ψM ), for a fixed M ∈ N, then fMMD(X,Y ) = 0, even if X ≠ Y .
For the sake of conciseness, we will simply write Mahalanobis distance.
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4 Explainable Outlier Detection for Multivariate Functional Data

4.3.1 L2-Multivariate Stochastic Processes

The following lemma shows that fMMD given in Definition 4.3.0.1 is affine invariant.

Lemma 4.3.1.1. Let X ∼ MSP(µX ,KX) be such that fMMD2(X,µX ;KX ,M) is well
defined for M ∈ N. Then, for any regular matrix A ∈ Rp×p, fixed vector-variate function
ν : T → Rp and Y = AX + ν, the following holds,

i) Y ∼ MSP(µY ,KY ), with µY = AµX + ν,KY = AKX A′,

ii) fMMD2(Y ,µY ;KY ,M) = fMMD2(X,µX ;KX ,M).

For a detailed proof, see Appendix C.2. Lemma 4.3.1.2 gives another desirable property
of fMMD (Definition 4.3.0.1); in the case where the components of X are uncorrelated,
its squared Mahalanobis distance reduces to the weighted sum of univariate functional
Mahalanobis distances (4.2.8), where the amount of truncation depends on the magnitude
of the eigenvalues of the individual processes.

Lemma 4.3.1.2. Let X ∼ MSP(µ,K) be a multivariate process with uncorrelated com-
ponents Xj ∈ L2(T ), j = 1, . . . , p. Let further π1 ≥ · · · ≥ πM > πM+1 be the largest M
eigenvalues of the covariance operator K = diag(K1, . . . ,Kp) associated with the covariance
function K = diag(κ1, . . . , κp). Then, for M = m1 + · · ·+mp,

fMMD2(X,µ;K,M) =

p!
j=1

fMD2(Xj , µj ;κj ,mj),

with (λ
(j)
i , ξ

(j)
i ), i = 1, . . . ,mj denoting the mj largest eigenpairs of the covariance operator

Kj with kernel κj, and mj = |{λ(j)
1 , . . . λ

(j)
M } ∩ {π1, . . . πM}| is the number of eigenvalues of

the covariance operator Kj that belongs to {π1, . . . , πM}, i = 1, . . . , p, where we count also
the multiplicities in {λ(j)

1 , . . . λ
(j)
M }.

A proof is given in Appendix C.2. Lemma 4.3.1.2 implicitly implies that the (uncorrelated)
components in the multivariate process should be transformed to similar scales. We also
note that the additive property of fMMD discussed in Lemma 4.3.1.2 extends to processes
with uncorrelated blocks of components. However, we refrain from formally presenting this
more general result to keep the paper accessible and avoid unnecessary technical complexity.

A key challenge in computing fMMD lies in accurately estimating the eigenfunctions
and the covariance operator. The common approach is to vectorize the p-variate process
X = (X1, . . . , Xp)

′ : T → Rp by concatenating the individual processes and then applying
the univariate method (Ramsay and Silverman, 2005). However, this strategy neglects the
potential structure in X and can substantially increase the dimensionality, making the
problem computationally prohibitive when p is large. Hence, in the following, we focus on
the family of multivariate processes with separable covariance structure; for an overview,
see, e.g., Chen et al. (2021).
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4.3 Multivariate Functional Mahalanobis Distance

4.3.2 Separable Covariance Processes

We say that the multivariate stochastic process X ∼ MSP(µ,K) has separable covariance
structure if for every s, t ∈ T , the covariance K can be decomposed into

K(s, t) = Σrow κ(s, t), (4.3.2)

for Σrow ∈ PDS(p) representing the cross-covariance structure between the p components and
a positive definite kernel κ capturing the common temporal covariance structure. We write
X ∼ MSP(µ,Σrow, κ). The separability property significantly simplifies the covariance
estimation since it allows for the within-function and the between-component second-order
dependence to be studied (and interpreted) separately; see, e.g., Chen et al. (2021, 2023);
Genton (2007); Cressie and Huang (1999); Rodríguez-Iturbe and Mejía (1974).

Remark 4.3.2.1. It should be noted that Σrow and κ(s, t) in decomposition (4.3.2) are only
identifiable up to a multiplicative constant; for any c > 0, K(s, t) = (cΣrow) (c−1κ(s, t)).
This ambiguity has little practical relevance. However, for reproducibility, we fix the scale of
κ using the strategy presented in Mayrhofer et al. (2024a).

The equivalent of Lemma 4.3.1.2 for the processes with separable covariance structure is
given in Corollary 4.3.2.1.

Corollary 4.3.2.1. Let X ∼ MSP(µ,Σrow, κ) be a multivariate process with separable
covariance and components Xj ∈ L2(T ), j = 1, . . . , p. Then, for M being a multiple of p,
i.e., M = mp > 0, with m ∈ N, the following holds:

(i) fMMD2(X,µ;Σrow, κ,M) =

p!
j=1

fMD2((Σrow)−1/2Xj , e
′
j(Σ

row)−1/2µ;κ,m).

(ii) If X has uncorrelated components, i.e., Σrow = diag(σ2
1, . . . , σ

2
p) with σ1, . . . , σp > 0,

then

fMMD2(X,µ;Σrow, κ,M) =

p!
j=1

1

σ2
j

fMD2(Xj , µj ;κ,m).

Here, (λi, ξi), i = 1, . . . ,m, correspond to the first m eigenpairs of the covariance operator K
with kernel κ, and ej is the jth vector of the canonical basis of Rp.

See Appendix C.2 for the proof. Separability of the covariance structure transfers further
to certain separability of the eigendecomposition of K, thus reducing the calculation of
eigenpairs (πi,ψi), i ≥ 1, to a separate univariate functional eigendecomposition of the
covariance associated with κ, and a multivariate eigendecomposition of Σrow. For more
insight, see Appendix C.1.

Remark 4.3.2.2. It is important to note that requiring M to be a multiple of p is not
arbitrary, but rather a natural choice given the structure of the problem. To illustrate, if
Σrow = Ip, the eigenvalues of the covariance operator K appear with multiplicity p, reflecting
the inherent symmetries in the data. When projecting onto an M -dimensional space, M is
typically chosen to capture a desired amount of explained variance, or based on a threshold
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4 Explainable Outlier Detection for Multivariate Functional Data

related to the significance of the eigenfunctions. Given that each eigenvalue corresponds to
p linearly independent components, it is reasonable to select all p components associated
with any given eigenvalue when deciding on the projection dimension. This ensures that
the projection retains the intrinsic structure of the data, avoiding arbitrary truncation of
the eigenspaces and preserving the full contribution of the variance associated with each
eigenvalue.

One of the most prominent members of the separable-covariance class of processes is a
multivariate Gaussian process: X is a multivariate Gaussian process if every finite collection
of realizations has a matrix-variate normal distribution. We provide a brief overview of matrix
normal distribution in Appendix C.1, and for more details on matrix-variate distributions,
see, e.g., Gupta and Nagar (1999); Gupta et al. (2013). Multivariate Gaussian processes
are fully characterized by their first and second moments, and in continuation, we write
X ∼ MGP(µ,Σrow, κ). For a formal definition, see Appendix C.1, and for an overview of
properties of multivariate Gaussian processes, see, e.g., Chen et al. (2017, 2023). Lemma
4.3.2.1 gives the distribution of fMMD under the assumption of Gaussianity.

Lemma 4.3.2.1. Let X ∼ MGP(µ,Σrow, κ) be a multivariate Gaussian process. Then, for
M > 0,

fMMD2(X,µ;Σrow, κ,M) ∼ χ2(M),

where χ2(M) is the chi-square distribution with M degrees of freedom.

The proof is presented in Appendix C.2.

4.4 Robust Parameter Estimation for Separable Processes

In practice we do not observe continuous functions, but rather a discrete set of functional
values. As discussed in Basna et al. (2022), a fundamental step in FDA is often to transform
these discretely recorded data into a functional form, allowing each observed function to be
evaluated at any point within its continuous domain t ∈ T . Typically, the functional object
is approximated by linear combinations of a finite number of basis functions, where this
representation is exact only for functions of finite rank.

4.4.1 Finite Basis Representation

Let X = (X1, . . . ,Xn),

Xi =

�Xi,1(t1) · · · Xi,1(tq)
...

. . .
...

Xi,p(t1) · · · Xi,p(tq)

� ∈ Rp×q, i = 1, . . . , n,

be an i.i.d. sample of the multivariate random processes MSP(µ,Σrow, κ) with separable
covariance K = Σrowκ, observed at time points t1, . . . , tq ∈ T , for q ∈ N.

Given m ∈ N, let ϕ (t) = (ϕ1(t), . . . ϕm(t))′, t ∈ T be a fixed basis that spans an m-
dimensional subspace of L2(T ). We transform each discretely observed Xi, i = 1, . . . , n, to
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a functional form by representing its components as a linear combination of basis functions
in ϕ:

X
(m)
i,j (t) =

m!
k=1

a
(i)
j,k ϕk(t) = a

(i)
j

′ϕ(t), j = 1, . . . , p, i = 1, . . . , n, (4.4.1)

where superscript (m) emphasizes that X(m)
i,j , j = 1, . . . , p, i = 1, . . . , n, is at most a rank-m

process, meaning that its covariance operator has at most m non-zero eigenvalues.
Collecting all coefficients a

(i)
j = (a

(i)
j,1, . . . , a

(i)
j,m)′, j = 1, . . . , p, corresponding to the ith

observation, in a matrix Ai = (a
(i)
1 , . . . ,a

(i)
p ) ∈ Rm×p, we can represent each observation as

X
(m)
i (t) = A′

iϕ(t), i = 1, . . . , n. (4.4.2)

For simplicity of the notation, we drop the superscript (m) in the following and write
Xi(t) = A′

iϕ(t), i = 1, . . . , n.

The coefficients a
(i)
j , j = 1, . . . , p, i = 1, . . . , n, are usually determined through least

squares estimation, where the goal is to minimize the difference between the observed data
and their approximation while ensuring smoothness; see Ramsay and Silverman (2005) for
more details. Common choices of basis functions include splines, wavelets, and Fourier bases,
among others; see, e.g., Ramsay and Silverman (2005) for an overview. The choice of the
basis ϕ is beyond the scope of this paper, and for simplicity we use B-splines; see, e.g., Eilers
and Marx (1996). For more details on a connection between a finite-basis representation
(4.4.2) and noise smoothening in additive noise models, see Appendix C.1.

The following theorem shows how the separability of the covariance K translates onto
the distribution of a random matrix A, and gives a direct connection between fMMD2 of X
and the squared matrix Mahalanobis distance of A, defined as

MMD2(A,M,Σrow,Σcol) = MMD2(A) = tr((Σcol)−1(A−M)′(Σrow)−1(A−M)) (4.4.3)

for an m × p random matrix A, with mean matrix M ∈ Rm×p, and row and column
covariance Σrow ∈ PDS(m) and Σcol ∈ PDS(p), respectively (Mayrhofer et al., 2024a).

Theorem 4.4.1.1. Let X(t) = A′ϕ(t) be a rank m separable covariance process with mean
µ and covariance K = Σrowκ, with a regular matrix A = (a1, . . . ,ap) ∈ Rm×p, and a vector
of basis functions ϕ = (ϕ1, . . . , ϕm)′. Then the following holds:

(i) A has a matrix-variate distribution with mean MA and covariance Cov(vec(A)) =
Σrow ⊗Σcol, for Σcol ∈ PDS(m), satisfying

M ′
Aϕ(t) = µ(t) and ϕ′(s)Σcolϕ(t) = κ(s, t),

for every s, t ∈ T .

(ii) fMMD2 (X;mp) = tr
�
(Σcol)−1(A−MA)′(Σrow)−1(A−MA)

�
= MMD2 (A).

(iii) If additionally X ∼ MGP(µ,Σrow, κ) is a multivariate Gaussian process, then A ∼
MN (MA,Σcol,Σrow) follows a matrix normal distribution with mean MA and positive
definite covariances Σrow and Σcol as in (i).

127



4 Explainable Outlier Detection for Multivariate Functional Data

For a detailed proof, see Appendix C.2. By leveraging the relationships between the
moments of A and those of X, the parameter estimation for X becomes straightforward once
the mean and covariance of A are estimated. Additionally, Theorem 4.4.1.1 (ii) implies that
the robust estimator of MMD(A) serves also as a robust estimator of fMMD(X). Details on
covariance estimation for the random matrices can be found in Dutilleul (1999); Soloveychik
and Trushin (2016).

The equivalent of Theorem 4.4.1.1 for univariate processes of finite rank is given in
Corollary 4.4.1.1.

Corollary 4.4.1.1. Let X(t) = a′ϕ(t) be a rank m ∈ N stochastic process with mean µ
and covariance κ, with coefficients a ∈ Rm and basis ϕ = (ϕ1, . . . , ϕm)′. Then the following
holds:

(i) a has a multivariate distribution with mean ma and covariance cov(a) = Σ ∈ PDS(m)
such that m′

aϕ(t) = µ(t) and ϕ′(s)Σϕ(t) = κ(s, t) for all s, t ∈ T .

(ii) fMD2(X;m) = (a−ma)
′Σ−1(a−ma) = MD2(a).

(iii) If X is a Gaussian process, then a ∼ N (ma,Σ) has a multivariate normal distribution
with mean ma and covariance matrix Σ.

The corollary follows directly from Theorem 4.4.1.1. As the primary objective is robust
covariance estimation, we employ robust estimators of the moments of the random matrix A,
specifically using the MMCD estimators for mean and covariance, as introduced in Mayrhofer
et al. (2024a). For completeness, we briefly review the MMCD method in the following.

4.4.2 Matrix Minimum Covariance Determinant Estimator (MMCD)

For a random sample A1, . . . ,An ∈ Rm×p from a matrix-elliptical semi-parametric distribu-
tion (Gupta et al., 2013), with the parametric part parameterized by the mean MA and
covariance matrices Σrow and Σcol, Mayrhofer et al. (2024a) proposed robust mean and
covariance estimators. The robust MMCD estimators (M̂A,H∗ , Σ̂row

H∗ , Σ̂col
H∗) solve

argmin
M̂A,H ,Σ̂row

H ,Σ̂col
H

H⊂{1,...,n},|H|=h

p ln(det(Σ̂col
H )) + q ln(det(Σ̂row

H )), (4.4.4)

where

M̂A,H =
1

h

!
i∈H

Xi,

Σ̂row
H =

1

qh

!
i∈H

(Xi − M̂A,H)(Σ̂col
H )−1(Xi − M̂A,H)′, (4.4.5)

Σ̂col
H =

1

ph

!
i∈H

(Xi − M̂A,H)′(Σ̂row
H )−1(Xi − M̂A,H). (4.4.6)

Here, h = αn, α ∈ [0.5, 1] represents the size of the clean subset of the sample used for
moment estimation. For h = 0.5n, the estimators achieve a maximal breakdown point of
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n/2 − ⌊p/m + m/p⌋ − 1. With the proper scaling, the method yields consistent estimators in
this context, while the finite-sample efficiency can be further improved with an additional
reweighting step.

As there are no closed-form solutions for the robust MMCD-estimators, Mayrhofer et al.
(2024a) proposed a nested iterative estimation procedure based on a concentration step
algorithm (Rousseeuw and Van Driessen, 1999) for solving (4.4.4), and an iterative flip-flop
algorithm (Dutilleul, 1999) for computing the maximum likelihood estimates (4.4.5)-(4.4.6).
Starting from any positive definite initialization, the proposed procedure is shown to converge
almost surely to the positive definite covariance estimates, provided h ≥ ⌊p/m + m/p⌋+ 2.
The convergence also holds if the ellipticity assumption is violated. For technical and
implementation details, see Mayrhofer et al. (2024a).

A detailed pseudocode for the robust parameter estimation of the separable covariance
processes based on a finite basis representation (4.4.2) and the MMCD estimators (4.4.4) is
given in Algorithm 5.

Algorithm 5 Robust estimation of mean and covariance function

Input: X = (X1, . . . ,Xn), Xi ∈ Rp×q, i = 1, . . . , n, ϕ = (ϕ1, . . . , ϕm)′, T
1: Create functional data object

Estimate coefficient matrices A = (A1, . . . ,An) by smoothing X;
Obtain finite basis representation Xi(t) = A′

iϕ(t), i = 1, . . . , n, t ∈ T ;
2: MMCD (Mayrhofer et al., 2024a, Algorithm 2)

Run MMCD procedure on A and get (M̂A,H∗ , Σ̂row
H∗ , Σ̂col

H∗ ,MMD(A));
3: Obtain functional data objects for mean and covariance

µ̂(t) = M̂A,H∗ ϕ(t);
Σ̂row = Σ̂col

H∗ ;
κ̂(s, t) = ϕ′(s)Σ̂row

H∗ ϕ(t);
fMMD(Xi) = fMMD(Xi, µ̂; Σ̂

row, κ̂,mp) = MMD(Ai, M̂A,H∗ ; Σ̂row
H∗ , Σ̂col

H∗)

Output: µ̂, Σ̂row, κ̂, (fMMD(X1), . . . , fMMD(Xn))

Algorithm 5 yields robust estimators. Similarly, non-robust counterparts can be obtained
by replacing MMCD by the iterative matrix maximum likelihood estimation (MMLE)
procedure of Dutilleul (1999) in step 2. Since covariance estimation and FPCA are closely
related, we outline how to compute the robust functional principal components in the
separable covariance setting in Algorithm 6 in Appendix C.3.

Algorithm 5 can be easily adapted for the analysis raw data: step 1 in the algorithm is
omitted, and p× q matrices of raw data observations are supplied to the MMCD in step 2.
The pointwise estimates of mean and covariance evaluated at observed time points t1, . . . , tq
are the output of MMCD step 2. Usually post-smoothing is applied to those estimates to
extend them to the functional setting, see Ramsay and Silverman (2005). However, this is
beyond the scope of this paper. The rationale for using the algorithm on raw data lies in the
fact that, for certain classes of separable covariance processes (e.g., Gaussian and Student’s-t
processes, see Chen et al. (2021, 2023)), all finite-dimensional projections belong to the same
family of matrix-variate distributions with separable covariance structure. Moreover, in
those cases, parameters estimated on finite-dimensional projections correspond to pointwise
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evaluations of the process parameters, as described above.

4.5 Explainable Outlier Detection

The combination of the MMCD estimators (Mayrhofer et al., 2024a) with the truncated
multivariate functional Mahalanobis distances provides a reliable framework for outlier detec-
tion. To understand why an observation is outlying, we propose a method for decomposing
the truncated (multivariate) functional Mahalanobis distance into time-coordinate-specific
outlyingness contributions. As in Mayrhofer and Filzmoser (2023), we use Shapley val-
ues (Shapley, 1953) to obtain those decompositions; they were originally introduced in
cooperative game theory (Peters, 2008) and gained popularity in the field of Explainable
AI (Lundberg and Lee, 2017).

4.5.1 Outlier Explanations for Multivariate and Matrix-variate Data

For a p-variate observation x = (x1, . . . , xp)
′ from a population with mean µ = (µ1, . . . , µp)

′,
covariance matrix Σ ∈ PDS(p), and P = {1, . . . , p} the index set of the variables, the
outlyingness contributions θ(x,µ,Σ) = θ(x) = (θ1(x), . . . , θp(x))

′ assign each variable its
average marginal contribution to the squared Mahalanobis distance (4.2.6), i.e.,

θk(x,µ,Σ) =
!

S⊆P\{k}

|S|!(p− |S| − 1)!

p!
∆k MD2(x̂S) = (xk − µk)

p!
j=1

(xj − µj)ωjk, (4.5.1)

with marginal outlyingness contributions

∆k MD2(x̂S) := MD2(x̂S∪{k})−MD2(x̂S) and x̂Sj :=

�
xj if j ∈ S

µj if j /∈ S
(4.5.2)

as the components of x̂S . Here, ωjk is the element (j, k) of Ω = Σ−1. Since θ(x) is based on
the Shapley value, it is the only decomposition of the squared Mahalanobis distance based
on Equation (4.5.2) that fulfills the following properties:

• Efficiency: The contributions θj(x), for j = 1, . . . , p, sum up to the squared Maha-
lanobis distance of x, hence

"p
j=1 θj(x) = MD2(x).

• Symmetry: If MD2(x̂S∪{j}) = MD2(x̂S∪{k}) holds for all subsets S ⊆ P \ {j, k} for
two coordinates j and k, then θj(x) = θk(x).

• Monotonicity: Let µ, µ̃ ∈ Rp be two vectors and Σ, Σ̃ ∈ PDS(p) be two matrices. If

MD2
µ,Σ(x̂

S∪{j})−MD2
µ,Σ(x̂

S) ≥ MD2
µ̃,Σ̃

(x̂S∪{j})−MD2
µ̃,Σ̃

(x̂S)

holds for all subsets S ⊆ P , then θj(x,µ,Σ) ≥ θj(x, µ̃, Σ̃).
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This means that the kth coordinate of the Shapley value θk(x) represents the average
marginal contribution of the kth coordinate to the squared Mahalanobis distance. This is
calculated by averaging over all marginal outlyingness contributions ∆k MD2(x̂S) across
all possible subsets S ⊆ P \ {k}. The second equality in Equation (4.5.1) demonstrates
that the exponential computational complexity of the Shapley value can be reduced to a
linear complexity in this setting. For a proof, we refer to Mayrhofer and Filzmoser (2023).
Equation (4.5.1) provides further insight into the Shapley value by comparing it to the
squared Mahalanobis distance MD2(x) =

"p
j,k=1(xj − µj)(xk − µk)ωjk. While MD2(x)

yields an outlyingness measure that aggregates the contributions (xj − µj)(xk − µk)ωjk

of all p variables, the outlyingness scores θk(x) only consider the contributions associated
with the kth coordinate. In Mayrhofer et al. (2024a), the concept was extended to the
matrix-variate setting. For a random matrix X ∈ Rp×q with mean M ∈ Rp×q, row covariance
Σrow ∈ PDS(p) and column covariance Σcol ∈ PDS(q), cellwise, rowwise, and columnwise
outlyingness contributions to the squared matrix Mahalanobis distance (4.4.3) are given by

Θ(X) = (X −M) ◦ (Σrow)−1(X −M)(Σcol)−1 ∈ Rp×q, (4.5.3)

θrow(X) = diag((Σrow)−1(X −M)(Σcol)−1(X −M)′) ∈ Rp, (4.5.4)

θcol(X) = diag((X −M)′(Σrow)−1(X −M)(Σcol)−1) ∈ Rq, (4.5.5)

respectively, where ◦ is an element-wise product. The cellwise Shapley values (4.5.3) are
based on the multivariate Shapley values (4.5.1) of vectorized observations. The row- and
columnwise Shapley values can be obtained by adding up the cellwise Shapley values for
the respective row or column, or by adjusting the individual contributions for row-wise
replacements.

4.5.2 Outlier Explanations for Functional Data

Here we extend outlier explanations based on Shapley values to the setting of univariate
and multivariate functional data. We consider square integrable stochastic processes defined
on the domain T ⊆ R which we can decompose into disjoint subintervals T = T1 ∪ · · · ∪ Td
where Ta ∩ Tb = ∅ for all a ̸= b.

For univariate stochastic processes X ∼ SP(µ, κ), we show that we can decompose
fMD2(X,µ;κ,m) into time-specific outlyingness contributions θTa(X,µ;κ,m) for the disjoint
subintervals Ta, a = 1, . . . , d, of T . For a multivariate process X = (X1, . . . , Xp)

′ ∼
MSP(µ,K), we show that we can decompose fMMD2(X,µ;K,M) into coordinate-specific
contributions θk(X,µ;K,M), time-specific contributions θTa(X,µ;K,M), as well as time-
coordinate-specific contributions Θk,Ta(X,µ;K,M), for the disjoint subintervals Ta, a =
1, . . . , d, of T and k = 1, . . . , p. Since these decompositions are based on the Shapley value,
they inherit desirable properties (see Section 4.5.1) such as efficiency, implying that the
outlyingness contributions sum up to the squared (multivariate) truncated Mahalanobis
distance.

Univariate Time-specific Outlyingness Contributions
Consider two univariate stochastic processes X,Y ∈ L2(T ) with T = T1∪· · ·∪Td, Ta∩Tb = ∅
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4 Explainable Outlier Detection for Multivariate Functional Data

for all a ̸= b, then the inner product ⟨X,Y ⟩ can be written as

⟨X,Y ⟩ =
d!

a=1

⟨X,Y ⟩Ta with ⟨X,Y ⟩Ta =

�
Ta

X(t)Y (t)dt. (4.5.6)

Let us now generalize Equation (4.5.2) to the functional setting. Consider X ∼ SP(µ, κ),
then we define the marginal outlyingness contribution on the subinterval Ta to fMD2(X,µ;κ,m)
as

∆Ta fMD2(X̂R, µ;κ,m) := fMD2(X̂R∪{a}, µ;κ,m)− fMD2(X̂R, µ;κ,m) (4.5.7)

with R ⊆ D \ {a}, D = {1, . . . , d}, and

X̂R(t) :=

�
X(t) if t ∈ #

b∈R Tb
µ(t) if t /∈ #

b∈R Tb
. (4.5.8)

Proposition 4.5.2.1. For X ∼ SP(µ, κ) and ∆Ta fMD2(X̂R, µ;κ,m) as in Equation (4.5.7),
the time-specific outlyingness contribution within the subinterval Ta based on the Shapley
value is given by

θTa(X,µ;κ,m) :=
!

R⊆D\{a}

|R|!(d− |R| − 1)!

(d)!
∆Ta fMD2(X̂R, µ;κ,m)

=

m!
i=1

1

λi
⟨X − µ, ξi⟩Ta⟨X − µ, ξi⟩, (4.5.9)

where (λi, ξi), i = 1, . . . ,m, denote the eigenpairs of the covariance operator K with kernel κ.

A proof is given in Appendix C.4. The following lemma outlines how to efficiently compute
Equation (4.5.9) for smooth functions represented in a basis. Let ϕ(t) = (ϕ1(t), . . . , ϕm(t))′

for t ∈ T and m ∈ N be a family of basis functions in L2(T ). The rank m×m matrix of inner
products of ϕ is denoted as W =

�
T ϕ(t)ϕ′(t)dt and WTa =

�
Ta ϕ(t)ϕ

′(t)dt represents the
matrix of inner products restricted to Ta ⊆ T .

Lemma 4.5.2.1. Let X ∼ SP(µ, κ) be a rank m ∈ N stochastic process as in Corol-
lary 4.4.1.1, with X(t) = a′ϕ(t), µ(t) = m′

aϕ(t), and κ(s, t) = ϕ′(s)Σϕ(t), for s, t ∈ T ,
then

θTa(X,µ;κ,m) = (a−ma)
′WTaW

−1Σ−1(a−ma).

See Appendix C.4 for a proof.

Multivariate Coordinate-specific Outlyingness Contributions
Let us consider the p-variate stochastic process X ∼ MSP(µ,K), with X = (X1, . . . , Xp)

′,
P = {1, . . . , p} the index set of variables, and (πk,ψk), k = 1, . . . ,M the eigenpairs of the
covariance operator K with kernel K.
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4.5 Explainable Outlier Detection

We would like to investigate the contribution of the kth coordinate function Xk to
fMMD(X,µ;K,M) using Shapley values. Similar as in Equation (4.5.2), the marginal
outlyingness contributions to fMMD2 are given by

∆k fMMD2(X̂S ,µ;K,M) := fMMD2(X̂S∪{k},µ;K,M)− fMMD2(X̂S ,µ;K,M) (4.5.10)

with X̂S = (X̂S
1 , . . . , X̂

S
p )

′, S ⊆ P , and

X̂S
j :=

�
Xj if j ∈ S

µj if j /∈ S
. (4.5.11)

Proposition 4.5.2.2. For X ∼ MSP(µ,K) and ∆k fMMD2(X̂S ,µ;K,M) as in Equa-
tion (4.5.7), the coordinate-specific outlyingness contribution to fMMD2(X,µ;K,M) of the
kth coordinate function based on the Shapley value is given by

θk(X,µ;K,M) :=
!

S⊆P\{k}

|S|!(p− |S| − 1)!

p!
∆k fMMD2(X̂S ,µ;K,M)

=

M!
i=1

1

πi
⟨Xk − µk, ψi,k⟩⟨X − µ,ψi⟩, (4.5.12)

with ψi,k = ψ′
i ek denoting the kth component of the ith eigenfunction ψi of covariance

operator K with kernel K.

The proof is given in Appendix C.4. The following corollary outlines how to compute the
coordinate-specific outlyingness contributions for a multivariate stochastic process with a
separable covariance structure.

Corollary 4.5.2.1. Let X ∼ MSP(0,Σrow, κ) with covariance operator K = ΣrowK and
covariance kernel K(s, t) = Σrowκ(s, t), then

θk(X,µ;Σrowκ,M) =

m!
i=1

p!
j=1

1

λker
i λrow

j

�
⟨Xk − µk, ξi⟩vrowj,k

p!
l=1

⟨Xl − µl, ξi⟩vrowj,l

�
.

Here, (λker
i , ξi), i = 1, . . . ,m, denote the m largest eigenpairs of K, (λrow

j ,vrow
j ), j = 1, . . . , p,

the eigenpairs of Σrow, and vrowj,k = e′kv
row
j .

A proof is given in C.4. We can efficiently compute the outlyingness contributions for all
p variables using matrix operations. Let Ã ∈ Rp×m with entries (αji) = ⟨Xj −µj , ξi⟩ denote
the matrix of inner products of the coordinate functions Xj , j = 1, . . . , p, with the functional
principal components ξi, i = 1, . . . ,m, and Dker = diag(λker

1 , . . . , λker
m ) the diagonal matrix

of the corresponding ordered eigenvalues λker
1 ≥ · · · ≥ λker

m of the kernel function κ. Then the
vector θ(X,µ;K,M) with entries θk(X,µ;Σrowκ,M), for k = 1, . . . , p, can be computed
as

θ(X,µ;K,M) = diag(Ã(Dker)−1Ã′(Σrow)−1).

For smooth multivariate functional data represented in a finite basis ϕ = (ϕ1, . . . , ϕm)′,
the outlyingness scores can be computed using the coefficients.
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Lemma 4.5.2.2. Let X ∼ MSP(µ,Σrow, κ) be a rank M ∈ N multivariate stochastic
process as in Theorem 4.4.1.1, with X(t) = A′ϕ(t), µ(t) = M ′

Aϕ(t), and κ(s, t) =
ϕ′(s)Σcolϕ(t), for s, t ∈ T . Then it holds that

θk(X,µ;K,M) =

p!
j=1

1

λrow
j

vrowj,k (ak −mA,k)
′(Σcol)−1(A−MA)′vrow

j ,

with (λrow
j ,vrow

j ), j = 1, . . . , p, the eigenpairs of Σrow, and vrowj,k = e′kv
row
j .

See Appendix C.4 for a proof. Using matrix operations we obtain the vector of coordinate-
specific outlyingness contributions θ(X,µ;K,M) with entries θk(X,µ;K,M), for k =
1, . . . , p, by

θ(X,µ;K,M) = diag((Σrow)−1(A−MA)(Σcol)−1(A−MA)′).

Here, diag(.) of a square matrix denotes the vector of diagonal entries.

Multivariate Time and Time-coordinate Outlyingness Contributions
To obtain the marginal outlyingness contribution of the kth coordinate function in the time
interval Ta to fMMD2 based on the Shapley value, we modify Equation (4.5.2) and define
them as

∆k,Tc fMMD2(X̂S,R,µ;K,M) := fMMD2(X̂S∪{k},R∪c,µ;K,M)− fMMD2(X̂S,R,µ;K,M)
(4.5.13)

with X̂S,R = (X̂S,R
1 , . . . , X̂S,R

p )′,

X̂S,R
j (t) :=

�
Xj(t) if j ∈ S ∧ t ∈ #

a∈R Ta
µj(t) if j /∈ S ∨ t /∈ #

a∈R Ta
. (4.5.14)

Proposition 4.5.2.3. For X ∼ MSP(µ,K) and ∆k,Tc fMMD2(X̂S,R,µ;K,M) as in
Equation (4.5.7), the outlyingness contributions of the kth coordinate in the time-interval Ta
to fMMD2(X,µ;K,M) based on the Shapley value are given by

Θk,Ta(X,µ;K,M) =
M!
i=1

1

πi
⟨Xk − µk, ψi,k⟩Ta⟨X − µ,ψi⟩T , (4.5.15)

with ψi,k = ψ′
i ek denoting the kth component of the ith eigenfunction ψi of covariance

operator K with kernel K.

The proof is given in Appendix C.4; it relies on concatenating the coordinate functions and
Proposition 4.5.2.1. We can modify Equations (4.5.13) and (4.5.14) to obtain time-specific
outlyingness contributions by replacing all coordinate functions Xj(t) by their mean µj(t)
for a given interval t ∈ Ta for all j = 1, . . . , p coordinates instead of only one. This yields
the time-specific outlyingness contributions

θTa(X,µ;K,M) =

M!
i=1

1

πi
⟨X − µ,ψi⟩Ta⟨X − µ,ψi⟩T . (4.5.16)
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Corollary 4.5.2.2. For a multivariate stochastic process X ∼ MSP(0,Σrow, κ) with
separable covariance operator K = ΣrowK and covariance kernel K(s, t) = Σrowκ(s, t)
Equation (4.5.15) becomes

Θk,Ta(X,µ;Σrowκ,M) =

m!
i=1

p!
j=1

1

λker
i λrow

j

�
⟨Xk − µk, ξi⟩Tavrowj,k

p!
l=1

⟨Xl − µl, ξi⟩T vrowj,l

�
.

Here (λker
i , ξi), i = 1, . . . ,m, denote the m largest eigenpairs of K, (λrow

j ,vrow
j ), j = 1, . . . , p,

the eigenpairs of Σrow, and vrowj,k = e′kv
row
j .

The proof follows from the same arguments as the proof of Corollary 4.5.2.1. We can
compute Shapley values for the time interval Ta for all coordinate functions simultaneously.
Let ÃT ∈ Rp×m with entries (αT

ji) = ⟨Xj − µj , ξi⟩T and ÃTa ∈ Rp×m with entries (αTa
ji ) =

⟨Xj − µj , ξi⟩Ta , j = 1, . . . , p, i = 1, . . . ,m. Then the vector ΘTa(X,µ;K,M) with entries
Θk,Ta(X,µ;Σrowκ,M), for k = 1, . . . , p, can be computed as

ΘTa(X,µ;K,M) = diag((Σrow)−1ÃTa(Dker)−1(ÃT )′),

for each interval subinterval Ta, a = 1, . . . , d, of T .

Lemma 4.5.2.3. Let X ∼ MSP(µ,Σrow, κ) be a rank M ∈ N multivariate stochastic
process as in Theorem 4.4.1.1, with X(t) = A′ϕ(t), µ(t) = M ′

Aϕ(t), and κ(s, t) =
ϕ′(s)Σcolϕ(t), for s, t ∈ T . Then the following holds,

ΘTa,k(X,µ;K,M) =

p!
j=1

1

λrow
j

vrowj,k (ak −mA,k)
′WTaW

−1(Σcol)−1(A−MA)′vrow
j ,

with (λrow
j ,vrow

j ), j = 1, . . . , p, the eigenpairs of Σrow, and vrowj,k = e′kv
row
j .

A proof is given in Appendix C.4. Using matrix operations we get

ΘTa(X,µ;K,M) = diag((Σrow)−1(A−MA)WTaW
−1(Σcol)−1(A−MA)′).

4.6 Simulations

Outlier detection in multivariate FDA is particularly challenging as various types of outliers
can emerge, such as shifts, shape outliers, isolated spikes, or changes in the dependence
structure. We performed a simulation study to assess the performance of different outlier
detection methods by simulating multivariate functional data and introducing several types
of outliers. In our comparison of outlier detection methods, we examine two categories:
distance-based approaches and depth-based methods.

The distance-based approach uses Mahalanobis distance, which is either based on the
trimmed functional Mahalanobis distance (4.3.1) applied to B-spline coefficient matrices, or
the matrix Mahalanobis distance (4.4.3) applied to the raw data. The parameters for the
Mahalanobis distance are estimated using classical maximum likelihood estimation (Dutilleul,
1999) or the robust matrix minimum covariance determinant approach (Mayrhofer et al.,
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4 Explainable Outlier Detection for Multivariate Functional Data

2024a). Both approaches are implemented in the robustmatrix R package (Mayrhofer et al.,
2024b).As a benchmark, we also include ML estimators of the clean data that are used to
compute relative scores to asses mean and covariance estimation.

On the other hand, depth-based methods determine outliers by measuring the centrality
of a function within a data cloud and define outliers as observations with low depth values,
which indicates that they lie far from the central bulk of the data, see, e.g., Zuo and Serfling
(2000) for more details. There are various depth-based outlyingness measures for multivariate
functional data, such as Stahel-Donoho outlyingness/projection depth (fSDO; Stahel (1981);
Donoho (1982); Zuo (2003)), skewness-adjusted outlyingness/skewness-adjusted projection
depth (fAO; Hubert and Van der Veeken (2008); Hubert et al. (2015)), or directional
outlyingness/directional projection depth (fDO; Rousseeuw et al. (2018)). Those methods
are implemented in the R package mrfDepth (Segaert et al., 2024). Additionally, we consider
the Magnitude-Shape Plot (MS; Dai and Genton (2018)) from the R package fdaoutlier
(Ojo et al., 2023), which is based on directional outlyingness as defined by Dai and Genton
(2019). These methods are applied to the raw and smoothed data as well as to the coefficient
matrices. The depth-based methods are not specifically designed to be used on the coefficient
matrices. However, Theorem 4.4.1.1 implies that the distribution of the finite-dimensional
projections of a Gaussian process can be transferred to the coefficients. This provides a
lower-dimensional representation of the data that is easier to handle computationally and is
thus included in the comparison.

4.6.1 Setup

The random functions are drawn from a multivariate Gaussian process with a separable
covariance structure, by generating finite-dimensional realizations at q = 100 time points.

The data are smoothed using d = 30 cubic B-Spine basis functions without a penalty.
This choice of basis functions captures the essential functional features. Since the goal of
this simulation study is to compare the methods and not determine the best smoothing
strategy, we kept this fixed across all settings. We consider sample sizes of n ∈ {300, 1000}
observations with p ∈ {3, 10, 50} coordinate functions. For the covariance structure between
the coordinate functions we adopt the covariance matrices proposed by Agostinelli et al.
(2015b), denoted by Σrow, which have random entries and generally yield low correlations. For
the covariance function κ we consider both Ornstein-Uhlenbeck κOU as well as Matérn-type
κMatérn covariance structures, which are defined as

κOU(s, t) = σ2
1 exp

�− |s− t|
σ2

�
and κMatérn(s, t) = σ2 2

1−ν

Γ(ν)
(τ |s− t|)νKν(τ |s− t|),

respectively. For the clean data, we use parameters σ1 =
√
0.3 and σ2 = 0.3 for the Ornstein-

Uhlenbeck covariance function, and σ = 1, τ = 5, and ν = 0.5 for the Matérn-type covariance
function. Except for the isolated outliers, the mean function of every coordinate is given by
µj(t) = 30t(1− t)1.5, for j = 1, . . . , p. Similar choices for the mean and covariance function
were considered by Arribas-Gil and Romo (2014), Dai and Genton (2018), and Oguamalam
et al. (2024) for outlier detection in univariate functional data. Outliers are added to the
datasets by randomly replacing a fraction ε ∈ {0.1, 0.3} of the clean observations. Each
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simulation setting is replicated 100 times. Four considered outlier settings are visualized in
Figure 4.6.1.

shift shape covariance−induced isolated
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0

5

t

X
1(t
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Figure 4.6.1: Visualization of the first coordinate function, X1(t), of the multivariate pro-
cess X(t) = (X1(t), X2(t), X3(t)), for the 4 outlier types considered in this
simulation study. Each plot shows 45 clean sample curves (gray) and 5 out-
liers (black). For the shift and shape outliers, λ = 9 and κ = κOU. For the
covariance-induced outliers, ν = 0.2 and τ = 10, and for the isolated outliers,
λ = 0.5.

Shift outliers are created in all p coordinates by introducing perturbations along the first
eigenfunction ξ1, capturing the largest mode of variation. On the other hand, shape outliers
are created by perturbing along the tenth eigenfunction ξ10, affecting local features without
a global shift of the functions. The coordinate functions are given by

Xshift
j (t) = Xj + λ ξ1 and Xshape

j (t) = Xj + λ ξ10,

respectively. Here, j = 1, . . . , p, and λ ∈ {6, 9, 12, 15}.
To introduce covariance-induced outliers, we modify the covariance structure using the

Matérn-type covariance function. By altering the smoothness parameter ν ∈ {0.1, 0.2, 0.5}
and range parameter τ ∈ {7, 10, 15}, we generate functions with unusually high variability
or erratic behavior compared to the regular observations.

The final setting considers isolated outliers, which deviate from the regular observa-
tions at specific time points, while the remaining function remains unchanged. The
mean of the clean data is µj = 4t while the outliers have random mean functions µj =

4t + λ(−1)u
�
1.8− 1√

0.02π
exp

�−(t−α)2

0.02

��
, for j = 1, . . . , p. Here u ∼ Bernoulli(0.5) is

a Bernoulli random variable, and α ∼ U(0.25, 0.75) follows a uniform distribution. In
comparison to the first three settings, the mean function is random, and hence, the outliers
neither follow the same distribution nor form a cluster.

4.6.2 Results

The outlier detection performance of the methods is compared based on precision, recall, and
their harmonic mean, i.e., the F-score. In cases where none of the flagged observations are
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identified correctly, precision and F-score may be undefined, as this would lead to division by
zero. To handle these cases, we assign the highest rank to them in rank-based comparisons,
ensuring they are considered appropriately. For the comparison of the actual performance
measures, such cases are excluded from the plots to avoid skewing the results.

To evaluate mean and covariance estimation we consider

1

p |T |
�

∥µ(t)− µ̂(t))∥22 dt and
1

(p |T |)2
�� $$$Σrowk(s, t)− Σ̂rowk̂(s, t))

$$$2
2
dsdt,

respectively. Here |T | = max(T ) −min(T ) denotes the length of the interval T . For the
distance-based methods, these errors can be computed based on the estimated parameters.
Since the depth-based approaches are non-parametric, we first apply the outlier detection
methods to identify and remove the outliers before robustly computing the maximum
likelihood estimates on the cleaned subset. Additionally, relative errors are computed by
dividing the estimation errors of each method by the benchmark estimation error attained
by the ML estimates computed on the clean data.

Among the depth-based methods, the average results across all settings are only slightly
influenced by smoothing. Therefore, only the results based on the raw data are reported.
For a comparison of the depth-based methods, see Appendix C.5. For the distance-based
methods, smoothing has a more apparent influence, and results for both raw and smoothed
data are reported.

To get an overview of the overall performance for all described simulation settings, we
compare the methods by ranking them according to precision, recall, F-Score, and mean
as well as covariance estimation errors in Figure 4.6.2. All ranks are ordered such that the
method with the lowest rank is best. The dots show the average ranks and the intervals
are based on non-parametric multiple comparisons using the Friedman and the post-hoc
Nemenyi tests; see Hollander (2013) for details. Whenever two methods’ intervals do not
overlap, they are statistically significantly different at a 99 percent confidence level. All
methods that have overlapping intervals with the best method are colored black while the
others are gray.

For shift outliers, the robust distances computed on the smoothed data and the MS plot
perform best. The distance-based approach performs significantly better than the MS plot
for mean estimation and in terms of recall, while the MS plot is better in terms of F-Score
and covariance estimation error. For the shape outliers, the robust distances computed
on the smoothed data work best. The MS plot is close in terms of recall while the robust
distances computed on the raw data are similar in terms of covariance estimation error. For
the covariance-induced outliers the distance-based methods work significantly better than
the depth-based approaches. The non-robust distances perform very well for outlier detection
but have higher mean and covariance estimation errors. Finally, for the isolated outliers, the
robust distances computed on the smooth data work best for outlier detection, while the MS
plot and the robust distances based on the raw data have the lowest covariance estimation
errors. While there is no overall best method for all settings, the robust distances computed
on the smoothed and raw data yield the most reliable results for mean and covariance
estimation. For outlier detection, the robust distances computed on the smoothed data and
the MS plot perform best.
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Figure 4.6.2: Rank-based comparison between the methods for all described simulation
settings with intervals based on non-parametric multiple comparisons using the
Friedman and the post-hoc Nemenyi tests. Methods with overlapping intervals
with the best method (lowest average rank) are not statistically significantly
different at a 99% confidence level and are colored black, while the others are
gray. The horizontal facets describe the different performance metrics, and the
vertical facets distinguish between the four outlier types.

To get a more in-depth understanding of the simulation results, we analyze the results for
p ∈ {3, 50}, ε ∈ {0.1, 0.3}, n = 1000, and κ = κM in more detail. We consider two parameter
settings for each scenario that either result in slightly outlying observations that are rather
difficult to detect (setting A) or more clearly outlying observations that are easier to detect
but have a stronger influence on parameter estimation when they remain undetected (setting
B). Specifically, for shift and shape outliers, λ = 6 in setting A and λ = 15 in setting B. For
covariance-induced outliers, we fix ν = 0.2 in both settings and use τ = 7 in setting A and
τ = 15 in setting B. Finally, for the isolated outliers, λ = 0.2 and λ = 1 in settings A and B,
respectively.

Figures 4.6.3 and 4.6.4 compare F-Score and relative covariance estimation errors, re-
spectively. Relative covariance estimation errors close to 1 (dashed-line) indicate that the
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method’s error is similar to the error of the benchmark approach. Plots of recall, precision,
and relative mean estimation errors are given in Appendix C.5 for more details.

For the shift outliers, the MS plot performs best when the fraction of contaminated
samples is low. However, the MS plot fails for a higher fraction of contaminated samples and
higher dimension (p = 50 and ε = 0.3). Robust distances (raw and smoothed) perform well
in setting B. The other depth-based methods show mixed results, with strong sensitivity
to contamination at p = 3 and more stable results at p = 50. Covariance estimation errors
follow a similar pattern, with no clear best method, but robust distances on smoothed data
provide the most reliable results.

For shape outliers, smaller alterations in setting A are best detected by robust distance-
based methods across all dimensions. In setting B, depth-based methods improve but are
less stable compared to the robust distance-based methods.

For covariance-induced outliers, distance-based methods (robust and non-robust) excel
in outlier detection. Covariance estimation is most accurate with robust distance-based
methods.

Considering the isolated outliers, robust distances on smooth data offer the most stable
results for both outlier detection and covariance estimation. At p = 3, the MS plot
performs comparably. The other depth-based approaches work well at ε = 0.1 but decline in
performance as contamination increases. Robust distances on the raw data perform well
but fall short compared to the smoothed approach. At p = 50, the MS plot shows extreme
differences between settings A and B, with F-scores close to 0 and 1, respectively. The
remaining depth-based approaches work well but show decreases in F-Score in setting B at
ε = 0.1. Distance-based methods still work well, distances based on raw data occasionally
outperform their smoothed counterparts.
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Figure 4.6.3: Comparison of simulation results based on F-Score for n = 1000 and κ = κM:
The top-level horizontal facets represent different dimensionalities, with p ∈
{3, 50}. The nested horizontal facets correspond to moderate (Setting A) and
severe (Setting B) outliers. The vertical facets distinguish between the four
outlier types. Boxplot colors (blue and orange) correspond to contamination
levels of ε = 0.1 and ε = 0.3, respectively.
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Figure 4.6.4: Comparison of simulation results based on relative covariance estimation errors
given on a log-scale for n = 1000 and κ = κM: The top-level horizontal facets
represent different dimensionalities, with p ∈ {3, 50}. The nested horizontal
facets correspond to moderate (Setting A) and severe (Setting B) outliers.
The vertical facets distinguish between the four outlier types. Boxplot colors
(blue and orange) correspond to contamination levels of ε = 0.1 and ε = 0.3,
respectively.
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4.7 Examples

4.7.1 Fertility rates

We analyze the annual age-specific female fertility curves for several countries/regions from
the Human Fertility Database (2024). Specifically, we consider the age-specific fertility rate
(ASFR), defined as

ASFR(s, t) =
number of live births to women aged s in year t

population of women aged s in year t
,

for women aged 15 to 45. We selected the subset of n = 22 countries/regions that contain
no missing values for the years between 1960 and 2019. To facilitate the interpretability of
the results, we aggregate the annual ASFRs into five-year intervals (1960:1964, 1965:1969,
. . . , 2015:2019), which results in observations that that are naturally arranged in 12× 44
matrices for each country. This matrix structure reflects the average ASFRs for each of the
12 five-year periods across the 44 age groups.
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Figure 4.7.1: Smoothed age-specific fertility curves for all 22 countries/regions.

Our goal is to treat these ASFRs as functional data with continuous age s for each of
the 12 five-year intervals. To achieve this, the matrix-variate data are transformed into
multivariate functional data through the following process. First, a log transformation is
applied to the ASFR data. Next, the log-transformed data are smoothed into multivariate
functional data using a cubic B-spline basis consisting of 20 basis functions. Finally, the
smoothed coefficient matrices are exponentiated to return the data to their original scale.
This method ensures the positivity of the smoothed ASFRs, thereby maintaining the inherent
characteristics of the fertility rates. The smoothed curves are shown in Figure 4.7.1. Here,
every plot shows the fertility curves for one of the five-year intervals. Overall, fertility is
declining and women give birth at older ages as time progresses. Moreover, the curves are
rather similar in the last period while there is more difference between the countries in the
earlier years. We see that some countries/regions form a cluster with left-skewed fertility,
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i.e., women give birth at younger ages. On the other hand we see that, for example, Norway
(NOR) stands out because of very high fertility in the first years and right-skewed fertility
in the later years.
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Figure 4.7.2: Robust analysis of the smoothed ASFRs.

We compare the classic and robust fMMD of the smoothed samples in the distance-distance
plot shown in Figure 4.7.2a. The distances are based on parameter estimates from the
MMLE and MMCD procedures, respectively, applied to the coefficient matrices. Outliers
are detected using (χ2

0.99,20·12)1/2 as the cutoff, where χ2
0.99,d denotes the 0.99 quantile of a

χ2-distribution with d degrees of freedom. When comparing the classic and robust fMMD,
we observe that several countries, such as the US (USA) and Germany (DEUTNP), are
masked when using the classic distance.

The influence of outliers on the principal component functions is illustrated in Figure 4.7.2b.
The classic and robust mean functions are similar, but their eigenfunctions are quite different.
The first classic eigenfunction captures the fertility differences between younger and older
women across countries/regions and explains around 47% of the variance, while the first
robust eigenfunction, which mirrors the form of the robust mean, indicates overall high or
low fertility levels and explains around 51% of the variance. This difference arises because
the robust eigenfunctions are estimated from a subset of the data that excludes countries
with exceptionally high fertility rates among young women. The second robust eigenfunction
closely resembles the first classic eigenfunction and explains 31% of the variance, while the
second classic eigenfunction highlights generally higher fertility rates, particularly for younger
women, and explains 39% of the variance. The first two robust eigenfunctions provide a clear
and coherent interpretation, i.e., overall high or low fertility from the first eigenfunction and
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higher and lower fertility for younger or older women based on the second eigenfunction,
whereas the classic eigenfunctions exhibit contrasting effects on the fertility of young women,
complicating their interpretation. The third robust and classical eigenfunctions explain about
10% and 13% of the variance, respectively, and are quite similar, showing a concentrated
increase in fertility around age 25, with lower fertility rates for both younger and older
women.
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Figure 4.7.3: Age-specific (left) or year-specific (right) outlyingness contributions based on
Shapley values for the smoothed ASFRs.
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Figure 4.7.4: Age-specific and year-specific outlyingness contributions based on Shapley
values for the smoothed ASFRs of Norway (left) and the US (right).

We also analyze the year-specific and/or age-specific outlyingness contributions based
on Shapley values for the outlying countries, visualized in Figures 4.7.3 and 4.7.4. Here,
positive contributions are colored red, while negative contributions are colored blue. The
color intensity depends on the absolute value of the contributions. For Belgium (BEL), Czech
Republic (CZE), Netherlands (NLD), Slovakia (SVK), and the US we see high outlyingness
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contributions for young women. On the other hand, countries like Switzerland (CHE) and
Norway stand out due to the high outlyingness contributions of older women. When we
compare the outlyingness over the years, we see that Poland (POL) shows moderately high
contributions over almost all years while countries like Belgium stand out due to changes
in fertility dynamics more recently. For Norway and the US, we consider a more detailed
analysis in Figure 4.7.4. Norway shows the highest outlyingness contributions for women
aged 36 to 39 in recent periods and for women aged 39 to 45 in the earlier time periods.
Analyzing Figure 4.7.1, we see that Norway shows an almost linear decay in ASFR for older
women between 1960 and 1984 while the other countries show more of an exponential decay
in ASFR for the same age group, explaining the higher outlyingness contributions for those
years and ages. Additionally, from 2005 onwards, Norway is the only country where the
ASFR peaks for women older than 30 and is clearly higher up to an age of 40. In contrast,
the US stands out because of the high fertility of young women from 1960 to 1964 as well as
1985 to 1999. This is reflected by an upward shift of the smooth ASFR curves for young
women as well as by the difference in the curvature of the functions.

4.7.2 El Niño la Niña data

El Niño–Southern Oscillation (ENSO) is a periodic climate phenomenon describing recurring
changes in sea surface temperature (SST) and atmospheric pressure in the equatorial
Pacific Ocean (Trenberth, 1997). The ENSO phenomenon thereby impacts temperature and
precipitation patterns across the planet. ENSO is divided into three states: El Niño refers
to the warm phase, La Niña to the cold phase, and in the middle of the continuum there is
the Neutral state.

Niño 1+2

Niño 3Niño 4

Niño 3.4

40°S
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Figure 4.7.5: Map of the 4 regions in the equatorial Pacific Ocean where SST related to
ENSO are measured: Niño 1+2 (0° to 10°S, 90°W to 80°W), Niño 3 (5°N to
5°S, 150°W to 90°W), Niño 4 (5°N to 5°S, 160°E to 150°W), Niño 3.4 (5°N to
5°S, 170°W to 120°W).

We analyze the SST data provided by the US Climate Prediction Center (CPC). Specifically,

146



4.7 Examples

we consider the monthly SST measurements (datasource: https://www.cpc.ncep.noaa.
gov/data/indices/) based on the Extended Reconstructed Sea Surface Temperature, Version
5 (ERSSTv5), see Huang et al. (2017) for more details. The CPC defines the onset of an
El Niño/La Niña episode when the 3-month average SST anomaly exceeds +/-0.5°C in
the Niño 3.4 region shown in Figure 4.7.5. Here, SST anomalies are computed as the
differences between the 3-month average SST and a 30-year baseline average. This method
of classification of the phases is known as the Oceanic Niño Index, and the classification
across different institutions is similar but not identical; see, e.g., Trenberth (1997), for a
discussion.

The threshold for El Niño/La Niña events is further divided into four categories: weak
(0.5 to 0.9°C absolute SST anomaly), moderate (1.0 to 1.4°C), strong (1.5 to 1.9°C), and
very strong (≥ 2.0°C) episodes. Instead of grouping the months into calendar years, they are
grouped into 12-year periods, running from June to May. A period is classified according to
the most intense episode (El Niño or La Niña) that occurs within it. If no such episodes are
present, the period is classified as neutral.

We consider the 74 periods from 1950-1951 to 2023-2024. In each period we have 12
monthly SST measurements for each of the four regions depicted in Figure 4.7.5. In total,
there are 573 neutral months, 223 La Niña months, and 92 El Niño months in this dataset.
However, there are only 18 neutral periods while there are 36 La Niña periods and 18 El
Niño periods. Our goal is to compare a univariate analysis of the SST data based on the
region Niño 3.4 with a multivariate approach that incorporates the SST measurements of
all 4 regions.

As a first step, the raw data are smoothed using 6 B-spline basis functions without any
penalty. We then compare the robust fMD based on the SST data of region Niño 3.4 and
the fMMD based on SST data of all 4 regions in the distance-distance plot in Figure 4.7.6.
The robust distances are based on parameter estimates from the MCD (Rousseeuw and Van
Driessen, 1999) and MMCD (Mayrhofer et al., 2024a) procedures applied to the coefficient
vectors or coefficient matrices, respectively. The vertical line represents the (χ2

0.99,6)
1/2

cutoff for fMD, and the horizontal line is its multivariate counterpart (χ2
0.99,24)

1/2 for fMMD.
The dots represent the 74 periods from 1950:1951 to 2023:2024 and their size indicate the
number of months during which an El Niño or La Niña event occurred. The color of the dots
corresponds to the strongest sea surface temperature (SST) anomaly recorded in each period.
The multivariate treatment of the data allows us to identify more unusual observations, many
of which are (very) strong El Niño periods that are not outlying based on the univariate
distance. This suggests that considering the SST measurements of all four Niño regions is
better suited to identify extreme periods.

Figure 4.7.7 displays the smoothed SST measurements of all n = 74 periods. Regular
observations are depicted in gray while outliers are colored in either red or blue, indicating
whether they correspond to El Niño or La Niña periods, respectively. The thicker black line
is the smoothed robust mean function. To avoid label overlap, each period is labeled with
the last two digits of its starting year (e.g., label 50 represents the period 1950:1951). Most
outlying La Niña periods show the same curvature as the regular observations but with a
downward shift, while the detected El Niño periods often show both a different curvature
and an upward shift.
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Figure 4.7.6: Comparison of robust fMD based on the region Niño 3.4 and fMMD based on
all 4 regions.

In combination with Figure 4.7.8 we gain a deeper insight into the data. This depicts
the month- and station-specific outlyingness contributions based on Shapley values for the
eight periods with the highest outlyingness. Here positive contributions are shown in red,
while negative contributions are in blue. For instance, during the period 1950:1951, the SST
remains declining in Niño 4 in September and October while the mean rises. Furthermore,
the SST measurements in Niño 1+2 and 3.4 are one of the lowest observed. In the period
1957:1958, there is a steep decline in SST in Niño 1+2 contrasted by almost constant SST
in Niño 4 early in the period; this joint behavior is contrary to the main trend. Additionally,
the curvature of the SST function in Niño 3.4 deviates from the mean in both July and
January-February. For 2015:2016, we observe an abrupt decline in SST in Niño 3 near
the end of the period, accompanied by unusually high, stable SST in Niño 4. The periods
1950:1951 and 1957:1958 do not stand out as clearly in Niño 3.4 and would remain undetected
by the univariate approach based on SST of only Niño 3.4. On the other hand, the period
2015:2016 stands out visually in all regions. While it still falls short of the univariate
detection threshold, the joint analysis clearly reveals unusual behavior.
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Figure 4.7.7: Smoothed SST measurements of all four Niño regions with outlying observations
colored either red or blue, depending on whether the outliers are El Niño or
La Niña periods.

1982:1983 1983:1984 1997:1998 2015:2016

1950:1951 1954:1955 1956:1957 1957:1958

Ju
n Ju

l
AugSep Oct

NovDec Ja
n
Fe

b
Mar Apr

May Ju
n Ju

l
AugSep Oct

NovDec Ja
n
Fe

b
Mar Apr

May Ju
n Ju

l
AugSep Oct

NovDec Ja
n
Fe

b
Mar Apr

May Ju
n Ju

l
AugSep Oct

NovDec Ja
n
Fe

b
Mar Apr

May

NINO1.2
NINO3

NINO3.4
NINO4

NINO1.2
NINO3

NINO3.4
NINO4

Month

S
ta

tio
n

Figure 4.7.8: Month- and station-specific outlyingness contributions based on Shapley values.

4.8 Discussion and conclusions

In this paper, we introduce an approach to multivariate functional outlier detection based on
the Mahalanobis distance, a method commonly used for traditional multivariate data. While
most existing methods rely on various depth measures (Hubert et al., 2015), our approach
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offers an alternative distance-based approach from classical multivariate analysis. While it
is not obvious how to define a Mahalanobis distance for multivariate functional data, there
is the additional difficulty of robustly estimating a corresponding covariance. We proposed
the functional Mahalanobis (semi-)distance and derived several properties such as affine
invariance. If the components of the multivariate process are uncorrelated, the multivariate
functional Mahalanobis distance reduces to the sum of the functional Mahalanobis distance
of the individual components introduced by Galeano et al. (2015). This can be further
exploited with the assumption of separability of the multivariate covariance operator. In that
case we have shown how a multivariate random function is connected to the distribution of
the random coefficient matrix resulting from a basis representation of the smoothed functions.
As a consequence it is possible to link the trimmed multivariate functional Mahalanobis
distance with the matrix-variate Mahalanobis distance, for which robust parameter estimates
have been proposed in Mayrhofer et al. (2024a) to reliably identify outliers.

A further contribution is outlier explainability by means of Shapley values, which allow for
an additive decomposition of the univariate and multivariate squared functional Mahalanobis
distance. The outlyingness contributions can be evaluated for the individual components of
the multivariate functions, for non-overlapping time domains, or simultaneously as time-
coordinate-specific contributions. The strength of these diagnostics was demonstrated in the
example section.

The proposed robust distances can either be computed with raw data or with a smoothed
version, and performance results were reported in the simulation section, where both versions
show good performance. However, there are computational arguments for using smoothed
data: First, the parameter estimation and distance computation for the smoothed data is
performed on the coefficient matrix, which has much lower dimension than the raw data
matrix, resulting in a 5- to 10-fold increase in computation speed, see Appendix C.5 for a
detailed comparison. Second, the required sample size and breakdown point of the MMCD
estimators depend on the ratio between the number of rows and columns. As this ratio
approaches one, fewer samples are needed, and the breakdown point increases.

This paper provides a framework for the generalization of other Mahalanobis distance-based
outlier detection approaches, like the α-Mahalanobis distances proposed by Berrendero et al.
(2020). We leave the exploration of these generalizations for future research. As demonstrated
in the examples, robust covariance estimates can be used for FPCA. Furthermore, robust
Mahalanobis distance can subsequently be used for clustering and classification purposes.
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Appendix C

C.1 Further Preliminaries

Matrix Normal Distribution

A random matrix X ∈ Rp×q follows a matrix normal distribution, denoted as X ∼
MN (M,Σrow,Σcol), with mean M ∈ Rp×q, row covariance Σrow ∈ PDS(p), and column
covariance Σcol ∈ PDS(q), if and only if its vectorized form vec(X) ∈ Rpq has a multivariate
normal distribution N (vec(M),Σcol⊗Σrow) (Gupta and Nagar, 1999). Here, the class of all
positive definite symmetric a× a matrices is denoted by PDS(a). The vectorization operator
vec(·) stacks the columns of a matrix on top of each other, and ⊗ represents the Kronecker
product. The probability density function (pdf) of a matrix normal random variable X is
given by

f(X|M,Σrow,Σcol) =
exp(−1

2 tr((Σ
col)−1(X −M)′(Σrow)−1(X −M)))

(2π)pq/2 det(Σcol)p/2 det(Σrow)q/2
. (C.1)

Importantly, Σrow and Σcol are only identified up to a multiplicative constant κ ≠ 0.
Specifically, replacing Σrow by κΣrow and Σcol by 1/κΣcol leafs the pdf (C.1) unchanged.
To resolve the non-identifiability, one can fix a diagonal entry, the determinant, or norm of
either matrix (Roś et al., 2016; Soloveychik and Trushin, 2016).

Multivariate Gaussian Process

A stochastic process X is a multivariate Gaussian process if every finite collection of
realizations has a joint normal distribution. A finite collection of realizations from a
stochastic process X at time points t = (t1, . . . , tq), t1 < t2 < · · · < tq, tk ∈ T , k = 1, . . . , q,
is denoted by Xt = (X(t1), . . . ,X(tq))

′ ∈ Rp×q, yielding a matrix-variate sample. For the
mean function, we have Mt = (µ(t1), . . . ,µ(tq))

′ ∈ Rp×q, and the covariance function yields
a block-partitioned matrix Kt ∈ Rpq×pq as in Equation (4.2.2), with entries κij(tk, tl), for
i, j = 1, . . . , p and k, l = 1, . . . , q.

The joint normality of Xt is described using a matrix-variate approach, which directly
models the matrix-valued realizations as in Chen et al. (2017, 2023). In this case, Xt ∼
MN (Mt,Σ

row,Σcol
t ), where Σrow represents the row-wise covariance matrix, capturing the

dependencies between individual coordinate functions, and Σcol
t = (κ(tk, tl))

q
k,l=1 ∈ Rq×q

is the column-wise covariance matrix, accounting for the temporal correlations between
different time points. This formulation leverages a single kernel function κ(s, t) to model time
dependencies, allowing the covariance structure to be factorized as K(s, t) = Σrowκ(s, t),
significantly reducing complexity compared to using p(p+ 1) separate kernels, as mentioned
in Equation (4.2.2).
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Remark C.1.1. Alternatively, the joint normality can also be expressed by vectorizing the
matrix-valued realizations, as in Alvarez et al. (2012). In this case, the columns of Xt are
stacked into a vector xt = vec(Xt), and the process is modeled as xt ∼ N (mt,Kt), where
mt = vec(Mt).

Finite-basis Representation and Additive Noise Model

One of the key principles of FDA is to work with smooth functions. This means that adjacent
values are linked together to some degree and are unlikely to be too different from each
other. If the functions were not smooth, there would be no significant advantage to treating
it as functional data instead of just multivariate (Ramsay and Silverman, 2005).

In practice, functional data are observed at discrete time points and the raw observed data
may contain noise or fluctuations that obscure the underlying patterns or trends present
in the true functional form. We can formalize this using an additive noise model, see, e.g.,
Ramsay and Silverman (2005) and Zhu et al. (2016),

Y (t) =

�Y1(t)
...

Yp(t)

� =

�X1(t)
...

Xp(t)

�+

�ε1(t)
...

εp(t)

� = X(t) + ε(t),

where Y is the observed process, and X is an underlying signal process we are interested in,
and ε are additive errors that are independent of X.

To reduce the noise and reveal the underlying structure or behavior of the process we
employ smoothing techniques. The most common approach is to represent the observed
process by basis functions. Let {ϕk}k≥1 denote a family of orthonormal basis functions of
L2(T ), then each component Xj of X ∈ H can be expressed in terms of this basis as

Xj =
∞!
k=1

ajk ϕk, j = 1, . . . , p.

Because the basis is fixed, the randomness of the stochastic process X is captured by
the coefficients ajk, j = 1, . . . , p, k ≥ 1. Using only a sufficiently large number m of basis
functions, we can approximate Xj arbitrarily well and rewrite the coordinates of the observed
process as

Yj(t) =
m!
k=1

ajk ϕk(t) + ε̃j(t),

where the error term now consists of the approximation error and the measurement errors,
i.e.,

ε̃j(t) = εj(t) +
∞!

k=m+1

ajk ϕk(t).

Let ϕ = (ϕ1, . . . , ϕm)′ denote the vector consisting of the first m basis functions of {ϕk}k≥1

and aj = (aj1, . . . , ajm)′ ∈ Rm the vector of coefficients, we can write

Yj(t) = a′
j ϕ(t) + ε̃j(t), j = 1 . . . , p.
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By collecting the coefficients in a matrix A = (a1, . . . ,ap)
′ ∈ Rp×m we can write the

multivariate process as

Y (t) = Aϕ(t) + ε̃(t).

The coefficients ajk, j = 1, . . . , p, k = 1, . . . ,m, are usually determined based on a least
squares approach, and often a roughness penalty is involved; see Ramsay and Silverman
(2005) for more details.

FPCA for Multivariate Stochastic Process with Separable Covariance

Let K denote the covariance operator corresponding to the covariance kernel κ(s, t) of the
multivariate stochastic process X ∼ MSP(µ,Σrow, κ). Then we have that

K ξ(s) =

�
T
κ(s, t) ξi(t)dt = λker

i ξi(s), i = 1, . . . ,m,

and
Σrowvrow

j = λrow
j vrow

j , j = 1, . . . , p.

For the multivariate covariance operator K with corresponding kernel K(s, t) we have

Kψk(s) =

�
T
K(s, t)ψk(t)dt = πk ψk(s), k = 1, . . . ,M, (C.2)

where M = pm. In the separable setting, K = ΣrowK with kernel K(s, t) = Σrowκ(s, t). Con-
sider the eigendecomposition Σrow = V rowDrow(V row)′, where V row = ((vrow

1 )′, . . . , (vrow
p )′)

is the matrix of eigenvectors and Drow = diag(λrow
1 , . . . , λrow

p ) the diagonal matrix of or-
dered eigenvalues λrow

1 ≥ · · · ≥ λrow
p , where we assume the uniqueness of the eigenvalues

for simplicity; a proper generalization of the results holds also in the case of non-simple
eigenvalues. Using the indexation k = k(i, j) = 1, . . . ,M = pm,

πk = λker
i λrow

j , ψk(t) = ξi(t)v
row
j , t ∈ T , i = 1, . . . ,m, j = 1 . . . , p. (C.3)

To see that the relations in (C.3) indeed hold, observe first that orthogonality of V row and
orthonormality of ξi, i = 1, . . . ,m give the orthonormality of the corresponding products.
Furthermore,

λker
i λrow

j (ξi(s)v
row
j ) = λrow

j

�
T
κ(s, t)ξi(t)v

row
j dt

=

�
T
Σrowκ(s, t)ξi(t)v

row
j dt =

�
T
K(s, t)(ξi(t)v

row
j ) dt.

(C.4)

The uniqueness of the eigendecomposition (C.2) yields the desired claim. For a more general
connection between multivariate FPCA of X ∼ MSP(µ,K) and univariate FPCA of its
components X1, . . . , Xp, see Happ and Greven (2018).
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C.2 Mahalanobis Distance Proofs

Proof of Lemma 4.3.1.1. The affine equivariance of the mean and the covariance follow
directly from the affine equivariance of their multivariate counterparts:

µY = E[Y (t)] = E[AX(t) + ν] = AE[X(t)] + ν = AµX + ν,

KY (s, t) = cov(Y (s),Y (t)) = E[(Y (s)− E[Y (s)])(Y (s)− E[Y (t)])′]
= E[(AX(s)− E[AX(s)])(AX(s)− E[AX(t)])′]
= E[(AX(s)−AE[X(s)])(AX(s)−AE[X(t)])′]
= AE[(X(s)− E[X(s)])(X(s)− E[X(t)])′]A′

= AKX(s, t)A′.

For simplicity of the notation assume µX ,ν = 0, and denote KX and KY to be the
(matrices of) covariance operators associated with KX and KY , respectively. Then, for any
f ∈ H, u ∈ T ,

KX f(u) =

�
T
KX(u, v)f(v)dv = A

�
T
KY (u, v)(A

′f(v))dv = AKY (A′f)(u).

Denoting K(M)
X and K(M)

Y to be the truncation of KX and KY onto the corresponding
first M components, i.e., for f ∈ H,

K(M)
X f(u) =

M!
i=1

πX,i⟨f ,ψX,i⟩ψX,i(u), K(M)
Y f(u) =

M!
i=1

πY ,i⟨f ,ψY ,i⟩ψY ,i(u),

it is straightforward to verify that

(K(M)
X )−1f(u) = (A′)−1(K(M)

Y )−1(A−1f)(u),

provided M is such that K(M)
X is invertible. Additionally, we can write

fMMD2(X; k) = ⟨(K(M)
X )−1X,X⟩, fMMD2(Y ; k) = ⟨(K(M)

Y )−1Y ,Y ⟩.
Finally,

fMMD2(Y ,µY ;KY ,M) = ⟨(K(M)
Y )−1Y ,Y ⟩

= ⟨(A′)−1(K(M)
X )−1(A−1Y ),Y ⟩ = ⟨(A′)−1(K(M)

X )−1X,AX⟩
=

�
T
((A′)−1(K(M)

X )−1X(u))′AX(u)du

=

�
T
((K(M)

X )−1X)′X(u)du

= ⟨(K(M)
X )−1X,X⟩ = fMMD2(X,µX ;KX ,M).
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Proof of Lemma 4.3.1.2. Let (λ
(j)
i , ξji ), be the ith eigenpair of the covariance Kj of the

j-component of X, i ≥ 1, j = 1, . . . , p. Construct now the following set of multivariate
functions: ξ

(j)
i ej , i ≥ 1, j = 1, . . . , p, where ej is the jth vector of the canonical basis of

Rp. It is then straightforward to verify that this set is indeed orthonormal. Additionally,
as components in X are uncorrelated, K = diag(K1, . . . ,Kp). Simple algebra gives further
K ξ

(j)
i ej = λ

(j)
i ξ

(j)
i ej , for any i ≥ 1 and j = 1 . . . , p. Thus, functions in {ξ(j)i ej : i ≥ 1, j =

1 . . . , p}, are the eigenfunctions of K, while λ
(j)
i , i ≥ 1, j = 1 . . . , p are the corresponding

eigenvalues. In other words, the spectrum of K corresponds to the union of the spectra
of individual covariance operators Kj , j = 1, . . . , p. Then, for m1, . . . ,mp as described in
the statement of the result, the M largest eigenpairs of K are (λ

(j)
i , ξ

(j)
i ej), j = 1, . . . , p,

i = 1, . . . ,mj . Observe that since πM+1 < πM , these eigenvalues are chosen from the
spectrum of K in a unique way. The following now holds:

fMMD2(X,µ;K,M) =

p!
j=1

mj!
j=1

1

λ
(j)
i

⟨X − µ, ξ
(j)
i ej⟩2 =

p!
j=1

mj!
j=1

1

λ
(j)
i

⟨Xj − µj , ξ
(j)
i ⟩2


=

p!
j=1

fMD2(Xj , µj ;κj ,mj).

Proof of Corollary 4.3.2.1. The proof of the statement (i) follows from the following claims:
Lemma 4.3.1.2, the fact that the components of the separable covariance processes, which
have uncorrelated components, share, up to scale, common covariance kernel, and Lemma
4.3.1.1 by taking A = Σ−1/2 and observing that the process transformed that way has
uncorrelated components. Claim (ii) follows directly from (i).

Proof of Lemma 4.3.2.1. Let X be the multivariate Gaussian process with covariance K =
κΣrow and mean µ, where for the simplicity of the notation we assume that µ = 0.
Let further πi ≥ π2 ≥ · · · ≥ πM > 0, and ψ1, . . . ,ψM the leading M eigenvalues and
eigenfunctions of covariance operator K associated with covariance function K, respectively,
i.e., Kψi = πiψi, for i = 1, . . . ,M . Then βi = ⟨X,ψi⟩ ∼ N (0, πi), i = 1, . . . ,M are
uncorrelated, i.e., independent random variables; see, e.g., Wang (2008) for more details.
Denoting ηi = βi/

√
πi ∼ N (0, 1) to be i.i.d. random variables from standard normal

distribution, we can write

fMMD2(X,µ;Σrow, κ,M) =

M!
i=1

η2i ∼ χ2(M),

as a sum of M squared independent standard normal random variables.

Proof of Theorem 4.4.1.1. (i) For t ∈ T let X(t) = A′ϕ(t), ϕ = (ϕ1, . . . , ϕm)′, for
A = (a1 . . .ap). First observe that for every t ∈ T , µ(t) = E(X(t)) = E(A′ϕ(t)) =
E(A′)ϕ(t) = E(A)′ϕ(t) = M ′

Aϕ(t). For the simplicity of the notation, since all
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the quantities involved are centered, we further take MA = 0. Proceed now first by
assuming Σrow = Ip. Then, for t ∈ T
κ(t, t)δi,j = E(Xi(t)Xj(t)) = e′iE(X(t)X ′(t))ej = E(Xi(t)Xj(t)) (C.5)

= e′iE
�
A′ϕ(t)(A′ϕ(t))′

�
ej = ϕ′(t)E

�
aia

′
j

�
ϕ(t), i, j = 1, . . . , p, (C.6)

where Kronecker delta δi,j = 1 if i = j and 0 otherwise. Since (C.5) holds for every
t ∈ T ,

E
�
aia

′
j

�
= 0 for i ̸= j, and E

�
aia

′
i

�
= E

�
aja

′
j

�
, for i = 1, . . . , p.

Denoting Σcol := Cov(a1)

Cov(vec(A)) = Cov

�a1
...
ap

� =

���
Σcol 0 · · · 0
0 Σcol · · · 0
...

. . .
...

0 · · · Σcol

��� = Σcol ⊗ Ip,

where for every s, t ∈ T the matrix Σcol satisfies

κ(s, t) = ϕ′(s)Σcolϕ(t). (C.7)

To see that Σcol is indeed positive, observe the following: As W :=

�
T
ϕ(t)ϕ′(t)dt

is a positive definite matrix, then there exists m0 ∈ N and t1, . . . , tm0 , such that the
Riemann sum 1/m0

"m0
i=1ϕ(ti)ϕ

′(ti) approximating the integral in W is the positive
definite matrix. Therefore, there exist m linearly independent vectors in {ϕ(ti) : i =
1, . . . ,m0}. Without loss of generality assume that these are ϕ(t1), . . . ,ϕ(tm). Take
now y ∈ Rm, y ̸= 0. Due to the independence of ϕ(t1), . . . ,ϕ(tm), y can represented
as y =

"m
i=1 ciϕ(ti), for some (c1, . . . , cm) ̸= 0. Then

y′Σcoly =
m!

i,j=1

cicj ϕ
′(ti)Σcolϕ(tj) =

m!
i,j=1

cicjκ(ti, tj) > 0,

where the last inequality holds due to the positive definiteness of κ.

Let now X = A′ϕ ∼ MSP(0,Σrow, κ). Lemma 4.3.1.1 then implies that Y :=
Σrow−1/2X ∼ MSP(0, Ip, κ). Additionally, for AY = AΣrow−1/2 is Y = A′

Y ϕ. The
first part of the proof now shows that

Cov(vec(AY )) = Ip ⊗Σcol,

where Σcol depends only on the kernel κ as given in (C.7). Note further that

vec(A) = vec(ImAY (Σrow)1/2) =
�
(Σrow)1/2 ⊗ Im

�
vec(AY ),

finally giving

Cov(vec(A)) =
�
(Σrow)1/2 ⊗ Im

��
Ip ⊗Σcol

��
(Σrow)1/2 ⊗ Im

�
= Σrow ⊗Σcol.
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(ii) To prove the statement (ii) we begin by assuming Σrow = Ip. Additionally, without
loss of generality and for the simplicity of the notation take µ = 0. Let further
(λ1, ξ1), . . . , (λm, ξm), λ1 ≥ · · ·λm > 0 be the eigenpairs of κ, e.i. for every s ∈ T�

T
κ(s, t) ξi(t)dt = λi ξi(s). (C.8)

Expressing the eigenfunctions ξi, i = 1, . . . ,m in ϕ basis gives

ξi = b′iϕ, i = 1, . . . ,m. (C.9)

For any k ∈ {1, . . . , p}, i = 1, . . . ,m, and s ∈ T (C.8) and (C.9) imply the following
relations are equivalent:�

T
κ(s, t) ξi(t)dt = λi ξi(s) ⇐⇒

�
T
E(Xk(s)Xk(t)) ξi(t)dt = λi ξi(s),

⇐⇒ ϕ′(s)E(aka
′
k)

��
T
ϕ(t)ϕ′(t)dt

�
bi = λiϕ

′(s)bi,

⇐⇒ ϕ′(s)E(aka
′
k)Wbi = λiϕ

′(s)bi, (C.10)

where W :=

�
T
ϕ(t)ϕ′(t)dt is a positive definite matrix; see proof of part (i) for more

details. Since (C.10) holds for every s ∈ T , and since E(aka′
k) = Σcol; see proof of (i)

for details, we obtain

ΣcolWbi = λibi ⇐⇒ (Σcol)−1 = W 1/2ΣcolW 1/2ui = λiui, (C.11)

where ui = W 1/2bi, i = 1, . . . ,m. Equation (C.11) also implies that (λi,ui), i =
1, . . . ,m are eigenpairs of symmetric matrix W 1/2ΣcolW 1/2. Finally, (C.11) further
implies

W 1/2ΣcolW 1/2 =

m!
i=1

λiuiu
′
i = W 1/2

�
m!
i=1

λibib
′
i

�
W 1/2 ⇐⇒ Σcol =

m!
i=1

λibib
′
i.

Moreover,

W−1/2(Σcol)−1W−1/2 = (W 1/2ΣcolW 1/2)−1

=
m!
i=1

1

λi
uiu

′
i = W 1/2

�
m!
i=1

1

λi
bib

′
i

�
W 1/2

⇐⇒ (Σcol)−1 = W

�
m!
i=1

1

λi
bib

′
i

�
W . (C.12)

Corollary 4.3.2.1, together with relation ⟨Xj , ξi⟩ = ⟨a′
j ϕ, b

′
iϕ⟩ = a′

jWbi now implies

fMMD2(X;mp) =

m!
i=1

p!
j=1

λ−1
i ⟨Xj , ξi⟩2 =

m!
i=1

p!
j=1

λ−1
i (a′

jWbi)
2

=

p!
j=1

a′
jW

m!
i=1

�
λ−1
i bib

′
i

�
Waj =

p!
j=1

a′
j(Σ

col)−1aj

= tr(A′(Σcol)−1A) = MMD2(A).
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Affine invariance of fMMD; Lemma 4.3.1.1 and MMD (Mayrhofer et al., 2024a, Lemma
3.0.1) complete the proof of (ii).

(iii) As in (i), for t ∈ T , µ(t) = E(X(t)) = E(A′ϕ(t)) = E(A′)ϕ(t) = E(A)′ϕ(t) =
M ′

Aϕ(t). For the simplicity of the notation, we again take MA = 0.

Proceed first by assuming first that Σrow = Ip. Take further t1, . . . , tm, such that
ϕt1,...,tm := (ϕ(t1) . . .ϕ(tm)) is a full column rank matrix; for the proof of the existence
see proof of (i). Gaussianity of X then implies that

(X(t1), . . . ,X(tm)) = A′(ϕ(t1), . . . ,ϕ(tm)) ∼ MN (0, Ip,Σ
col
t1,...,tm),

where Σcol
t1,...,tm = [κ(ti, tj)]i,j is a positive definite matrix, due to the positive definite-

ness of kernel κ. Therefore,

vec(IpA
′ϕt1,...,tm) =

�
ϕt1,...,tm ⊗Ip

�
vec(A′) ∼ Nmp(0,Σ

col
t1,...,tm ⊗ Ip),

i.e.,
vec(ϕt1,...,tm AIp) =

�
Ip ⊗ ϕ′

t1,...,tm

�
vec(A) ∼ Nmp(0, Ip ⊗Σcol

t1,...,tm).

Regularity of ϕt1,...,tm and the fact that inversion of Kronecker product of two matrices,
as well as the product of two Kronecker products, retains the Kronecker structure
completes the first part of the proof, where the particular form of the covariance Σcol

is given by (i). A short note to the reader: Given the general result in (i), it was
enough to show that A has normally distributed entries.

Finally, for X ∼ MSP(0,Σrow, κ), let Y := (Σrow)−1/2X =
�
A(Σrow)−1/2

�′
ϕ ∼

MSP(0, Ip, κ). The first part of the proof shows that

A(Σrow)−1/2 ∼ MN (0,Σcol, Ip).

Matrix affine equivariance of matrix normal distribution (Gupta and Nagar, 1999)
finally gives that

A ∼ MN (0,Σcol,Σrow),

thus completing the proof.
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C.3 PCA Algorithm

Algorithm 6 Robust FPCA for separable processes

Input: X = (X1, . . . ,Xn), Xi ∈ Rp×q, i = 1, . . . , n, ϕ = (ϕ1, . . . , ϕm)′, T
1: Create functional data object

Estimate coefficient matrices A = (A1, . . . ,An) by smoothing X;
Obtain finite basis representation Xi(t) = A′

iϕ(t), i = 1, . . . , n, t ∈ T ;
2: MMCD (Algorithm 2 in Mayrhofer et al. (2024a))

Run MMCD procedure on A and get (M̂A,H∗ , Σ̂row
H∗ , Σ̂col

H∗ ,MMD(A));
3: Compute coefficient representations of FPCs

Compute matrix of inner products of basis functions W =
�
T ϕ(t)ϕ′(t)dt;

Eigendecomposition of W 1/2Σ̂col
H∗W 1/2 = UΛU ′;

Matrix of eigenvalues Λ = diag(λker
1 , . . . , λker

m );
Matrix of eigenvectors U = (u1, . . . ,um);

Compute coefficients bj = W−1/2uj , j = 1, . . . ,m, of FPCs;
4: Obtain univariate FPCs

Univariate eigenpairs (ξj , λ
ker
j ) with ξj(t) = b′j ϕ(t), t ∈ T , j = 1, . . . ,m;

5: Obtain multivariate FPCs
Eigendecomposition of Σ̂row = Σ̂col

H∗ = V ΓV ′;
Matrix of eigenvalues Γ = diag(λrow

1 , . . . , λrow
p );

Matrix of eigenvectors V = (vrow
1 , . . . ,vrow

1 );
Define indexation k = k(j, l) = 1, . . . ,M = pm for j = 1, . . . ,m, l = 1, . . . , p;
Multivariate eigenpairs (πk,ψk) = (λker

j λrow
k ,vrow

l ξj);
Output: (π1, . . . , πM ), (ψ1, . . . ,ψM )
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C.4 Shapley Proofs

Proof of Proposition 4.5.2.1. The outlyingness contribution θTa(X;m) = θTa(X,µ;κ,m) of
the kth coordinate to fMD2(X,m) = fMD2(X,µ;κ,m) is given as the weighted average of
the marginal outlyingness contributions ∆Ta fMD2(X̂R;m) = ∆Ta fMD2(X̂R, µ;κ,m). Then
the ∆Ta fMD2(X̂R;m) can be simplified as follows:

∆Ta fMD2(X̂R;m) = fMD2(X̂R∪{a};m)− fMD2(X̂R;m)

=

m!
i=1

1

λi

�
d!

b=1

⟨X̂R∪{a}, ξi⟩Tb
�2

−
�

d!
b=1

⟨X̂R, ξi⟩Tb
�2


=

m!
i=1

1

λi

 !
b∈R∪{a}

!
c∈R∪{a}

⟨X, ξi⟩Tb⟨X, ξi⟩Tc

−
!
b∈R

!
c∈R

⟨X, ξi⟩Tb⟨X, ξi⟩Tc
�

=

m!
i=1

1

λi

�!
b∈R

!
c∈R

⟨X, ξi⟩Tb⟨X, ξi⟩Tc + 2⟨X, ξi⟩Ta
!
b∈R

⟨X, ξi⟩Tb

+⟨X, ξi⟩2Ta −
!
b∈R

!
c∈R

⟨X, ξi⟩Tb⟨X, ξi⟩Tc
�

=
m!
i=1

1

λi

�
2⟨X, ξi⟩Ta

!
b∈R

⟨X, ξi⟩Tb + ⟨X, ξi⟩2Ta
�
.

Further, we write

w(|R|) := r!(d− r − 1)!

d!
,

with r = |R| for which
"

R⊆D\{a}w(|S|) = 1 holds. With this, the time-specific outlyingness
contribution within the subinterval Ta based on the Shapley value simplifies to

θTa(X,µ;κ,m) =
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Proof of Lemma 4.5.2.1. We have that X(t) = a′ϕ(t), µ(t) = m′
aϕ(t), and κ(s, t) =

ϕ′(s)Σϕ(t), for s, t ∈ T . Based on Proposition 4.5.2.1 we obtain

ϕTa(X,µ, κ;m) =
m!
i=1

1

λi
⟨X − µ, ξi⟩Ta⟨X − µ, ξi⟩

=
m!
i=1
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′ϕ, bi⟩Ta⟨(a−ma)
′ϕ, ξi⟩

=
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�
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λi
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′
i

�
W� �� �

=W−1(Σcol)−1, see Eq. (C.12)

(a−ma)

= (a−ma)
′WTaW

−1Σ−1(a−ma),

where W = ⟨ϕ,ϕ′⟩T :=
�
T ϕ(t)ϕ′(t)dt and WTa = ⟨ϕ,ϕ′⟩Ta :=

�
Ta ϕ(t)ϕ

′(t)dt.

Proof of Proposition 4.5.2.2. The outlyingness contribution θk(X;M) = θk(X,µ;K,M) of
the kth coordinate to fMMD2(X;M) = fMMD2(X,µ;K,M) is the weighted average of
the marginal outlyingness contributions ∆k fMMD2(X̂S ;M) = ∆k fMMD2(X̂S ,µ;K,M).
Without loss of generality, we assume that the data are centered to simplify the notation,
i.e., µ(t) = 0 = (0, . . . , 0)′ ∈ Rp, t ∈ T , simply denoted as µ = 0. Then the marginal
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outlyingness contributions can be written as
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Further, we write

w(|S|) := |S|!(p− |S| − 1)!

p!
,

for which
"

S⊆P\{k}w(|S|) = 1 holds. Then the contribution of the kth coordinate to the
squared truncated functional Mahalanobis distance fMMD2(X;M) based on the Shapley
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value is given by
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Proof of Corollary 4.5.2.1. From Equation (C.4) it follows that

ψkl(t) = ψ′
k(t)el = ξi(t)v

row
j el = ξi(t)v

row
j,l ,

for some i, j, k, hence
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�

Proof of Lemma 4.5.2.2. We have that X(t) = A′ϕ(t), µ(t) = M ′
Aϕ(t), and κ(s, t) =

ϕ′(s)Σcolϕ(t), for s, t ∈ T , see Theorem 4.4.1.1. Combined with Corollary 4.5.2.1 we obtain
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=(Σcol)−1, see Eq. (C.12)
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1
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vrowj,k a′
k(Σ

col)−1A′vrow
j ,

where W = ⟨ϕ,ϕ′⟩ := �
T ϕ(t)ϕ′(t)dt.
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Proof of Proposition 4.5.2.3. Let Y denote the univariate process concatenating each coordi-
nate function Xj for j = 1, . . . , p of X which is then defined on the interval T̃ = T ∪ · · · ∪ T� �� �

p times

.

With this concatenating approach, the mean function for t̃ ∈ [T · (j − 1), T · j] ⊂ T̃ , j =
1, . . . , p, is given as

µ(t̃) = µj(t),

with t ∈ T , and the covariance function for s̃ ∈ [T · (j − 1), T · j] ⊂ T̃ , j = 1, . . . , p, and
t̃ ∈ [T · (k − 1), T · k] ⊂ T̃ , k = 1, . . . , p, is given as

κ(s̃, t̃) = κjk(s, t),

with s, t ∈ T . The eigendecomposition of Y is then given as
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′
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with ξi(t̃) = ψi(t)ej = ψi,j(t) for t̃ ∈ [T · (j − 1), T · j] ⊂ T̃ , j = 1, . . . , p. Let Tak ⊆
[T ·(k−1), T ·k] ⊂ T̃ , a ∈ {1, . . . , d}, k ∈ {1, . . . , p}, D̃ = {1, . . . , pd}, and T̃ =

#p
j=1

#d
b=1 Tbj ,

where Tbj = Tb and T =
#d

b=1 Tb. Then we can define time-coordinate-specific outlyingness
contributions based on Shapley values using Proposition 4.5.2.1, which yields
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Proof of Lemma 4.5.2.3. We have that X(t) = A′ϕ(t), µ(t) = M ′
Aϕ(t), and κ(s, t) =

ϕ′(s)Σcolϕ(t), for s, t ∈ T , see Theorem 4.4.1.1. In combination with Corollary 4.5.2.2 we
obtain
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T ϕ(t)ϕ′(t)dt and WTa = ⟨ϕ,ϕ′⟩Ta :=
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′(t)dt.
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C.5 Further simulation results

Computation Time

p = 3 p = 10 p = 50
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Figure C.1: Comparison of the computation time for all described simulation settings in
Section 4.6 divided into facets according to dimensionality p ∈ {3, 10, 50} and
number of observations n ∈ {300, 1000}.

Comparison of the Depth-based Approaches

Figures C.2 and C.3 show that there are only slight differences in F-Score and the quality of
covariance estimation whether depth-based outlier detection is performed on the raw data,
smoothed data (evaluated on the raw data’s time grid), or the coefficient matrices of the
smoothed data.
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p = 3 p = 50
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Figure C.2: Comparison of simulation results for depth-based methods in terms of F-Score
for n = 1000 and κ = κM: The top-level horizontal facets represent different
dimensionalities, with p ∈ {3, 50}. The nested horizontal facets correspond to
moderate (Setting A) and severe (Setting B) outliers. The lowest horizontal facets
represent the four depth-based methods, each applied to raw data, smoothed data
(evaluated on the raw data’s time grid), or coefficient matrices. The vertical
facets distinguish between the four outlier types. Boxplot colors (blue and
orange) correspond to contamination levels of ε = 0.1 and ε = 0.3, respectively.
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p = 3 p = 50
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Figure C.3: Comparison of simulation results for depth-based methods in terms of relative
covariance estimation error for n = 1000 and κ = κM: The top-level horizon-
tal facets represent different dimensionalities, with p ∈ {3, 50}. The nested
horizontal facets correspond to moderate (Setting A) and severe (Setting B)
outliers. The lowest horizontal facets represent the four depth-based methods,
each applied to raw data, smoothed data (evaluated on the raw data’s time
grid), or coefficient matrices. The vertical facets distinguish between the four
outlier types. Boxplot colors (blue and orange) correspond to contamination
levels of ε = 0.1 and ε = 0.3, respectively.
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Additional Performance Metrics

p = 3 p = 50
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Figure C.4: Comparison of simulation results based on precision for n = 1000 and κ = κM:
The top-level horizontal facets represent different dimensionalities, with p ∈
{3, 50}. The nested horizontal facets correspond to moderate (Setting A) and
severe (Setting B) outliers. The vertical facets distinguish between the four
outlier types. Boxplot colors (blue and orange) correspond to contamination
levels of ε = 0.1 and ε = 0.3, respectively.
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Figure C.5: Comparison of simulation results based on recall for n = 1000 and κ = κM: The
top-level horizontal facets represent different dimensionalities, with p ∈ {3, 50}.
The nested horizontal facets correspond to moderate (Setting A) and severe
(Setting B) outliers. The vertical facets distinguish between the four outlier
types. Boxplot colors (blue and orange) correspond to contamination levels of
ε = 0.1 and ε = 0.3, respectively.
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Figure C.6: Comparison of simulation results based on relative mean estimation errors
given on a log-scale for n = 1000 and κ = κM: The top-level horizontal facets
represent different dimensionalities, with p ∈ {3, 50}. The nested horizontal
facets correspond to moderate (Setting A) and severe (Setting B) outliers.
The vertical facets distinguish between the four outlier types. Boxplot colors
(blue and orange) correspond to contamination levels of ε = 0.1 and ε = 0.3,
respectively.
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5 Conclusions

We presented a framework for robust location and covariance estimation as well as explainable
outlier detection for multivariate, matrix-variate, and functional data. In the following, we
summarize the key contributions and findings of each chapter, providing a brief recap of the
methodologies and results. Following each summary, we elaborate on the rationale behind
our chosen approaches and highlight potential avenues for future research.

In Chapter 2, we proposed multivariate outlier explanations based on the Shapley value,
a method rooted in cooperative game theory that has gained popularity in the field of
explainable AI. We showed that we can use the Shapley value to decompose the squared
Mahalanobis distance of a multivariate observation into variable-specific contributions to
multivariate outlyingness. This decomposition is additive, meaning that the sum of the
contributions is equal to the squared Mahalanobis distance. Further, the decomposition based
on the Shapley value contains information about all 2p marginal outlyingness contributions
of a p-variate observation. We showed that the contributions can be computed with linear
computational complexity in p. They rely on the robustness of the associated Mahalanobis
distance and, hence, the robustness of the location and covariance estimates, respectively.
Therefore, it is imperative to use robust estimates to obtain meaningful outlyingness
decompositions. The performance of our proposed cellwise outlier detection procedures
based on the variable-specific outlyingness contributions was evaluated using both simulations
and real-world datasets. The methods are implemented in R (R Core Team, 2024) in the
package ShapleyOutlier, which is publicly available on CRAN (Mayrhofer and Filzmoser,
2022). We further extended the multivariate outlier explanations based on Shapley values to
the matrix-variate and functional setting in Chapters 3 and 4. The visualizations shown in
these chapters allow us to gain deeper insights and understandings of why an observation is
outlying, confirming the benefits of the Shapley values in real-world applications.

The Shapley value and, thus, the variable-specific outlyingness contributions depend on
the characteristic function of the game assigning a value to every possible coalition of players.
We proposed to use the squared Mahalanobis distance MD2

µ,Σ(x̂
S) as the characteristic

function, where x̂S is a modified version of x = (x1, . . . , xp) in which all coordinates
j ∈ {1, . . . , n} \ S, S ⊆ {1, . . . , n}, are replaced by their mean µj . This replacement
strategy allows us to reduce the exponential computational complexity in p to a linear one.
However, the resulting marginal contributions ∆k MD2(x̂S) = MD2(x̂S∪{k})−MD2(x̂S) are
not necessarily positive. This indicates that the characteristic function is not monotonic,
as replacing an additional coordinate with its mean does not always reduce the squared
Mahalanobis distance. While the properties of the Shapley value guarantee that the
decomposition of the squared Mahalanobis distance is additive, some of the variable-specific
outlyingness scores can thus become negative. A negative outlyingness contribution of a
coordinate has a clear interpretation in our setting, i.e., replacing this coordinate with its
mean would lead to an average increase in the squared Mahalanobis distance. We can
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obtain solely positive marginal contributions ∆k MD2(x̂S) by replacing the coordinates j ∈
{1, . . . , n} \ S, S ⊆ {1, . . . , n} by their conditional expectations E[x{1,...,n}\S |xS ]. However,
we have not yet found a way to significantly facilitate the computation of the Shapley
values, if we use the replacement strategy based on conditional expectations. Therefore, the
conditional expectations and the squared Mahalanobis distances would need to be computed
for all 2p combinations to obtain the variable-specific outlyingness contributions based on
Shapley values in this setting, which is computationally infeasible even for rather small values
of p. Since the outlyingness contributions based on replacement with the mean proposed
in Chapter 2 have a clear interpretation, whether they are positive or negative, we did not
investigate this approach further, but it may provide an interesting topic for further research.

In Chapter 3, we introduced the Matrix Minimum Covariance Determinant (MMCD)
estimators to robustly estimate the location and covariance for matrix-variate data. The
MMCD estimators account for the matrix-variate data structure and do not require vector-
ization of the matrix-variate samples, which would lead to impractically high-dimensional
datasets. We showed that the estimators are consistent under matrix-variate elliptical
distributions, are matrix-affine equivariant, and achieve a higher breakdown point than the
maximum attainable for any multivariate affine equivariant covariance estimator applied to
vectorized data. We implemented an efficient algorithm with convergence guarantees in C++
and integrated it into R to ensure efficient execution (Eddelbuettel and François, 2011; R
Core Team, 2024). The implementation is publicly available in the robustmatrix package
on CRAN (Mayrhofer et al., 2024b). The simulations and examples we presented confirm
the robustness of the MMCD estimators and demonstrate that the robust Mahalanobis
distances based on MMCD estimators provide a reliable method for detecting outliers.

While we studied many robustness properties of the MMCD estimators, deriving and
analyzing their influence function remains a topic for future research. Moreover, based on our
framework of robust covariance estimation for matrix elliptical distributions, further robust
estimators can be generalized to the matrix-variate setting. Based on these, the deterministic
Minimum Covariance Determinant (MCD) procedure (Hubert et al., 2012) could be used
to compute the MMCD estimators. Another interesting direction for further research is
the generalization of cellwise robust procedures such as the cellwise MCD (Raymaekers
and Rousseeuw, 2023). Such an approach is particularly relevant in the matrix-variate
setting, where sample size is often limited. Discarding entire observations due to a few
outlying cells within a matrix can be overly restrictive in many cases. Beyond location and
covariance estimation, robust regression approaches like the least trimmed squares estimator
of Rousseeuw (1984) could be considered in the matrix-variate setting. We are currently
developing robust classification and clustering methods based on the MMCD estimators and
extending the MMCD approach to the tensor-variate setting based on maximum likelihood
estimators for the tensor normal distribution (Manceur and Dutilleul, 2013). Another topic
we would like to pursue in the future is developing a robust test for separability of the
covariance matrix in matrix- and tensor-variate settings, based on the works of Lu and
Zimmerman (2005) and Filipiak et al. (2016).

In Chapter 4, we proposed a framework for explainable outlier detection and robust
estimation of the mean and covariance functions of multivariate functional data. We es-
tablished a connection between stochastic processes with separable covariance structures
and the corresponding matrix-variate distribution of their basis representation. Leveraging
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this connection, we employed the MMCD estimators in conjunction with a truncated multi-
variate functional Mahalanobis semi-distance for robust parameter estimation. Simulations
demonstrate that our approach works well for the estimation of the mean and covariance
functions, as well as outlier detection in the presence of shift, shape, covariance-induced,
and isolated outliers.

In the functional data setting, the covariance operator is generally not invertible due to
its infinite-dimensional nature. Specifically, the operator usually has an infinite number of
eigenvalues, many of which are close to zero, making inversion infeasible. In our approach,
we used basis functions to smooth the raw data and obtain finite-dimensional coefficient
matrices. This finite-dimensional representation provides a regularized and invertible version
of the covariance operator. In situations where this prior smoothing step is not desired, one
can either use our approach based on the raw data or incorporate the smoothing step into
the distance computation as proposed by Berrendero et al. (2020) for univariate functional
data. Another interesting extension concerns function-valued stochastic processes where
each realization is a function rather than a vector (Chen et al., 2017). An example of this
approach would be the age-specific fertility rates analyzed in Chapter 4, which we averaged
over five-year periods to obtain multivariate functional data. In this context, both the years
and age could be treated as continuous variables.
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