
Dissertation

Shape Optimization of CAD-Compliant
Boundary-Conforming Microstructured

Geometries

carried out for the purpose of obtaining the degree of Doctor technicae
(Dr. techn.), submitted at TU Wien, Faculty of Mechanical and Industrial

Engineering, by

Jacques Marvin Zwar
Matrikelnummer: 12020679

under the supervision of

Univ.Prof.in Dr.-Ing.in Stefanie Elgeti
Institute of Lightweight Design and Structural Biomechanics, E317

reviewed by
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Summary

Recent developments in additive manufacturing have opened up a vast field of new design
possibilities that cannot be fully exploited by traditional engineering methods. These
advances require sophisticated numerical design methods, particularly in the form of shape
optimization. This thesis addresses this need by presenting a comprehensive framework
for the design, analysis, and optimization of periodic two-scale or microstructured designs
compatible and compliant with geometry representations from computer-aided design. It
is based on a paradigm for constructing boundary-conforming microstructures through
functional compositions between splines that naturally conform to the external geometry.
The design variables that control the local geometry prior to its composition into the

microstructure are abstracted in order to ensure smooth transitions and to reduce local
fluctuations between adjacent tiles. The geometry is modeled using a volumetric represen-
tation of the material, which is particularly well-suited for IsoGeometric Analysis. This
approach maintains geometric exactness, eliminates the need for computationally expen-
sive meshing techniques, and streamlines analysis, thereby enhancing overall computational
efficiency and simulation accuracy. Furthermore, by deriving geometric derivatives of the
modeled microstructure, we enable the computation of sensitivities using an adjoint ap-
proach. These sensitivities facilitate the use of gradient-based optimization algorithms,
reducing the number of iterations required to converge to an optimal design.
The proposed framework is validated through applications in heat transfer and structural

optimization. In heat transfer problems, it is employed to optimize temperature profiles
with respect to a target temperature. Here, an extrusion die is presented as a potential
future application for microstructured geometries. For structural design, the framework
minimizes compliance under nonlinear mass constraints applied to a cantilever benchmark.
These test cases also serve to compare different optimization algorithms with increasing de-
sign complexity. Furthermore, local, macroscopic, and concurrent optimization strategies
are evaluated.
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Kurzfassung

Die jüngsten Entwicklungen im Bereich der additiven Fertigung haben eine Vielzahl neuer
Gestaltungs- und Designmöglichkeiten eröffnet, die mit traditionellen Ingenieurmethoden
nicht vollständig ausgeschöpft werden können. Diese Fortschritte erfordern die Entwick-
lung neuer, numerische Entwurfsmethoden, insbesondere durch Formoptimierung. Die
vorliegende Arbeit widmet sich diesem Bedarf durch die Entwicklung eines umfassenden
Frameworks für den Entwurf, die Analyse und die Optimierung periodischer Zweiskalen-
oder mikrostrukturierter Designs, die mit der Geometrieredarstellung aus dem rechner-
gestützten Entwurf (CAD) konform und kompatibel sind. Es basiert auf einem Paradigma
zur Konstruktion grenzkonformer Mikrostrukturen durch funktionale Verkettung zwischen
Splines, die sich entlang der äußeren Geometrie ausrichten.
Die Designvariablen, die die lokale Geometrie vor ihrer Verkettung und Eingliederung in

die Mikrostruktur definieren, werden abstrahiert, um glatte Übergänge zu gewährleisten
und lokale Schwankungen zwischen benachbarten Zellen zu reduzieren. Die Geometrie wird
durch eine volumetrische Darstellung des Materials modelliert, welche sich besonders gut
für die Isogeometrische Analyse eignet. Durch diesen Ansatz wird die geometrische Ge-
nauigkeit beibehalten, die Notwendigkeit rechenintensiver Meshing-Schritte entfällt, und
es wird eine Schnittstelle zwischen Geometriemodellierung und Analyse geschaffen, was
zur Steigerung der Gesamtrecheneffizienz führt und die Simulationsgenauigkeit verbessert.
Darüber hinaus ermöglicht die Herleitung geometrischer Ableitungen der modellierten Mi-
krostruktur die Berechnung von Sensitivitäten mittels eines adjungierten Ansatzes. Die-
se Ableitungen ermöglichen die Verwendung gradientenbasierter Optimierungsalgorithmen
und verringern die Anzahl der notwendigen Iterationen, um zu einem optimalen Design zu
konvergieren.
Das Framework wird durch Anwendung an Wärmeübertragungsproblemen im Rahmen

der Strukturoptimierung validiert. Bei der Wärmeübertragung wird es zur Optimierung
von Temperaturprofilen unter Berücksichtigung einer Zieltemperatur eingesetzt. Hier wird
ein Extrusionswerkzeug als potenzielle Anwendung für mikrostrukturierte Geometrien vor-
gestellt. Für das Strukturoptimierungsproblem minimiert das Framework die Nachgiebig-
keit unter Berücksichtigung nichtlinearer Massenrandbedingungen, angewendet auf einen
Tragbalken Benchmarktest. Diese Anwendungsfälle dienen auch dem Vergleich verschie-
dener Optimierungsalgorithmen mit zunehmender Designkomplexität. Darüber hinaus
werden lokale, makroskopische und kombinierte Optimierungsstrategien bewertet.
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based on the micro-tile parameters P̃M
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nχχχ Total number of design variables
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Entities for Numerical Analysis

εabs Absolute convergence tolerance

k Additional constraints, e.g., mass constraints, manufacturing constraints, etc.

au Bilinear form of the elasticity formulation, with au = au,λ + au,µ1 + au,µ2

aθ Bilinear form of the heat equation

∂Ω Boundary of the computational domain

σσσ Stresses associated to the elasticity problem

û Coefficients of the displacement field

θ̂ Coefficients of the temperature field discretization

ρ Material density
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nû Number of Coefficients in the displacement field

nθ̂ Number of Coefficients in the temperature field

nD Number of coefficients on the Dirichlet boundary ΓD in both mentioned PDEs

J Objective function of the optimization problem evaluates to J = J (•), Ĵ denotes
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ν Poisson’s ratio
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1
Introduction

This thesis investigates the development and evaluation of methods for the numerical
design and optimization of boundary-conforming microstructures that integrate seamlessly
into existing Computer Aided Engineering (CAE) workflows. A central aspect is the
unification of geometry representation using Computer Aided Design (CAD)-based models
for creation, analysis and optimization, and the implementation of a new paradigm for
microstructure design based on functional composition between spline-based geometries.

1.1. Motivation

Engineered microstructures are cellular materials with (at least) two different scales, one
describing the local geometry, i.e., the local cells or lattices, and the other describing the
macroscopic shape of an object. With this definition, a microstructure does not necessar-
ily have to be microscopic, but finds applications across a wide range of different scales.
For example, on the nano- to millimeter-sized scale, these microstructures are used in
lightweight meta-materials to design structures with high stiffness [24] or auxetic material
behavior [35, 87]. In the mid-range, they are used in the design of orthopedic insoles [84]
or implants and prosthetics [42, 19], but also in industrial applications such as heat ex-
changers [106]. As an extension of the definition of a microstructure, there are even efforts
to apply the cellular design approach to buildings and structures several meters in length
in civil engineering using cement [170].
The use of man-made non-stochastic structures such as honeycomb sandwich laminates

in lightweight structures dates back at least to the beginning of the 20th century [44].
These cellular materials are said to be bio-inspired and are often motivated by their low
relative density and anisotropic properties [92]. With recent developments in the field of
Additive Manufacturing (AM), the use of these microstructures has seen a new upsurge,
making novel, topologically intricate designs more accessible. The global AM equipment
and materials market has experienced a compound annual growth rate of 25.9% over the
past 28 years, and AM products are projected to reach a market share of approximately 5%
by 2030 [126]. Moreover, AM is increasingly used across various engineering fields, from
classical lightweight structures to civil engineering [176] and even the food industry [141].
However, the vast new design space associated with 3D manufacturing methods cannot be
fully exploited using conventional engineering approaches, hence the need for numerical
design and optimization.
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1. Introduction

Sophisticated numerical design methods for exploring new design spaces can be divided
into three main components: geometric modeling, analysis, and optimization. In the fol-
lowing chapters, we will examine each of these components and discuss their contributions
to enhancing the CAE workflow for microstructure design.
Traditionally, microstructured geometries are modeled as cells that are periodically re-

peated in a Cartesian grid to form the macroscopic or “outer” geometry, e.g., [6, 137,
234, 229]. However, these approaches face two major challenges. First, structures built on
such a grid often struggle to accurately represent boundaries, as individual cells are not
always completely inside or outside the macro shape. This requires a binary choice for
cell inclusion or the development of complex solutions [17] to cut cells without disrupting
the outline of the microstructure. Second, these structures are typically defined as mesh
connections between points [211], implicit functions [155, 111], or single parametrized cells
that are repeated in the macro shape. Converting these into CAD-compatible geometry
representations requires extensive post-processing for further steps in the numerical design
workflow. Since CAD is often the first step in production, its geometry representation is
often the interface for subsequent steps such as analysis, optimization, and manufacturing.
Recently, new design paradigms for microstructure design have emerged based on explicit
spline representations [72]. These approaches solve both problems by creating spline-based
microstructure designs that naturally conform to the macroscopic geometry of a structural
component, ensuring compatibility with CAD systems, and improving the overall efficiency
of the design workflow.
The second major component, the analysis of microstructured geometries, corresponds

to the second step in the traditional CAE workflow. Conventional methods often employ
model order reduction and homogenization [11] techniques to cope with the high number
of Degrees Of Freedom (DOF) required to represent the topologically complex microstruc-
tured geometry. This greatly simplifies the structure by ignoring individual cells and
focusing on global (or macroscopic) properties. While it reduces the computational cost, it
is not suitable if the scale of the local geometry is not several orders of magnitude smaller
than the outer geometry. In cases with about 10 to 50 cells per characteristic global length,
however, full-scale models are inevitable. These models, which include all the intricate ge-
ometric features, require a large number of DOFs, making them computationally expensive
and cumbersome to create, especially if the geometry is created implicitly. In addition, tra-
ditional methods such as the Finite Element Method (FEM) with linear elements can only
approximate curved or freeform surfaces in a piecewise linear fashion, introducing geomet-
ric errors that increase with element size. This approach also requires a separate meshing
step, which adds significantly to the overall simulation time. IsoGeometric Analysis (IGA)
offers a promising solution to these challenges [53]. By using spline representations, IGA
maintains geometric accuracy without the need for meshing, which reduces pre-processing
time and has also shown to improve simulation accuracy per DOF [116, 191]. In addi-
tion, this method seamlessly integrates with the spline-based CAD models used in modern
design processes. As a result, IGA has the potential to improve both the efficiency and
accuracy of numerical analysis of microstructured geometries, making it a valuable tool in
the optimization framework.
Finally, the third component is optimization itself. The quality of a design is evaluated

using an objective function that takes into account factors such as design parameters, field
quantities (e.g., temperatures, displacements, or stresses), and/or object properties (e.g.,
mass). The field quantities are typically the solution to a Partial Differential Equation
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(PDE), such as those governing heat transfer, continuum mechanics, or fluid dynamics,
and require appropriate analysis. In addition, optimization routines generally perform
better with more detailed information, so accurate gradient calculation is critical to the
efficiency of the design workflow.

IsoGeometric Analysis pairs well with shape optimization because the design coeffi-
cients can serve as design variables, streamlining further geometry parametrization. Con-
sequently, the combination of IGA and shape optimization has received increasing research
attention over the last 15 years since IGA was introduced to the scientific community in
2005 [118]. This reflects in the number of publications on these topics1 as shown in Fig-
ure 1.1.
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Figure 1.1.: Publications on IsoGeometric Analysis and in combination with shape opti-
mization respectively retrieved from Scopus Search Engine [22].

1.2. Objectives

Traditionally, design, analysis, and optimization have been separate disciplines within
the product-development workflow. This thesis aims to provide the necessary methods
and concepts for the design and optimization of microstructured geometries that can be
seamlessly integrated into existing design frameworks without the need for remeshing or
post-processing. By using a consistent geometry representation of the microstructures for
geometric modeling and optimization, the goal is to facilitate streamlining and automation.
Specifically, this thesis aims to

1Search queries were set to include the keywords “isogeometric analysis” and “shape optimization” as of
June 16th, 2024. Search results were not manually screened.
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1. Introduction

Unify the three components of shape optimization into one framework Given
a unified geometry representation, the thesis aims to build a combined workflow that
integrates geometric modeling, analysis, and design. Building on advanced analysis
techniques like IGA, this framework will provide as much information as possible to
improve the convergence of optimization algorithms. Starting with an initial design of
the macroscopic geometry, the microstructure can then be designed with a minimal set
of input variables, enabling a more efficient exploration of the design space.

Investigate applications of boundary-conforming microstructures This thesis in-
vestigates the use of boundary-conforming microstructures in various model problems,
particularly in the context of heat transfer and structural optimization. By assessing the
current state of the art and ongoing research efforts, we aim to evaluate the performance
of microstructured geometries in different contexts and compare it to existing workflows.
This will help to identify possible applications and further research potential.

Explore different optimization strategies and algorithms By investigating differ-
ent optimization algorithms and strategies, i.e., objective functions or design param-
eters, this thesis attempts to evaluate the applicability of conformal microstructures to
increasingly complex geometries and model problems.

In order to achieve these objectives, we first need to introduce the relevant concepts and
equations, laying the groundwork for the detailed investigations presented in subsequent
chapters.

1.3. Thesis Outline

After this brief introduction and motivation for the work presented, the remainder of this
document is organized as follows:

Chapter 2 deals with the construction of microstructures and focuses on providing in-
sights into geometry modeling. First, we provide an overview of the state-of-the-art in
microstructure design and characterize the different classes of microstructures. Then, in
Section 2.2.3, the mathematical prerequisites for the construction of specific microstruc-
tures are introduced, with a deep dive into spline fundamentals, where different spline
types and the necessary mathematical tools and spline operations for the construction
of boundary-conforming microstructures are introduced. It then details the actual con-
struction process and the geometric derivatives, which play a key role in the optimization
framework.

Chapter 3 focuses on the analysis and optimization aspects. We start with an intro-
duction to the physical background and the model problem. This is followed by a concise
introduction to IsoGeometric Analysis (IGA) and the necessary tools to numerically solve
the derived Partial Differential Equations (PDEs). After that, Section 3.3 provides an
introduction to shape optimization, drawing an analogy to Topology Optimization (TO)
and introducing the optimization driver and framework. It also provides the necessary
ingredients to properly define the optimization problem. The following section is dedi-
cated to discrete adjoints, showing how derivatives of the optimization problem can be
efficiently computed. The chapter concludes with a short discussion comparing the chosen
parametric shape optimization approach with alternative strategies.
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1.3. Thesis Outline

In Chapter 4, we apply the methods to heat transfer problems. First, we cover prelim-
inary work and introduce and compare different objective functions from literature. We
then apply the optimization framework to a simple problem in a rectangular 2D domain
and use this test case to compare the cost of different optimization algorithms. We then
increase the complexity in Section 4.3 by applying the methods to an extrusion die. Af-
ter introducing the design challenges, we demonstrate the application of the presented
methods to more realistic and intricate 3D geometries.
In Chapter 5, the microstructures are used to optimize elastic structures, considering lin-

ear elasticity for a variety of structures subjected to external loads. We begin by introduc-
ing additional constraints and describing the objective function. Section 5.2 demonstrates
the performance of the methods on a benchmark problem (cantilever design). Then, we
increase the geometric complexity by applying the methods to a bending arch, highlighting
the benefits of boundary-conforming lattice structures. This test case is used to compare
different optimization strategies, including local, global, and concurrent approaches. The
chapter concludes with a brief discussion of local parameter abstraction in the context of
structural optimization.
Chapter 6 concludes the thesis by summarizing the present work, highlighting the con-

tributions made, and identifying potential areas for future research based on the results of
this work.
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2
Construction of Microstructures

2.1. An Introduction to Microstructures

Microstructured geometries, encompassing both micro and macro scales, are inspired by
nature’s intricate designs such as the ones found in bone structures, wood, and sponges [91].
These structures often exhibit structural behaviour tailored to their loading conditions, like
excellent stiffness-to weight ratio relative to comparable foam-structures [63], which is why
engineers have long been inspired by these natural designs when constructing new mate-
rials or geometries, leading to a wide range of applications in various fields of engineering.
While they are most prominent in classical lightweight applications such as aerospace [83]
or automotive engineering [1], they have also proven valuable in medical applications such
as bone implants [5, 19] or orthopedic devices [84] and in the design of compliant mecha-
nisms [74]. It is important to note that the term microstructure1 in this context does not
refer exclusively to small-scale structures, but rather emphasizes the presence of different
spatial scales.
Since the advent of Additive Manufacturing (AM) technologies, new design methods

have been explored to fully exploit the vast design space made accessible through this de-
velopment. Through intricate micro scale geometries, these structures can mimic complex
anisotropic material behavior on a global scale, e.g., by exploiting local instabilities [127],
or create meta-materials exhibiting auxetic properties such as negative Poisson’s ratio [35,
73].
There are several methods for designing microstructures. These construction methods

can be distinguished based on the global characteristics of the resulting microstructure,
as derived from [128], see Figure 2.1. Most prominently, this classification distinguishes
between periodic and non-periodic structures. Non-periodic structures, cf. Figure 2.1d,
such as those resulting from force flow-based approaches [138, 3] or those based on global
Topology Optimization (TO) [230], and - to a certain extent - foams [92], do not exhibit a
regular, recurring pattern. In contrast, periodic structures (Figures 2.1a to 2.1c) have one
or more repeating base cells that fill the entire structure in a grid-like fashion. Periodic
microstructures are further categorized in terms of their conformity. While conformal
microstructures, see Figure 2.1b, align with the exterior geometry, non-conformal – or
uniform – structures result from the repeated insertion of a parametrized base cell into a

1We will use the terms microstructure and lattice structure interchangeably throughout this work, al-
though an alternative nomenclature may be used in other literature.
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2. Construction of Microstructures

(a) Non-conformal mi-
crostructure

(b) Conformal
microstructure

(c) Functionally
graded microstructure

(d) Non-periodic
microstructure

Figure 2.1.: Classification of microstructured geometries, based on [128]

(Cartesian) grid, progressively filling the entire computational domain, cf. e.g. [137, 234].
This approach represents the macro shape in a binary fashion, which can require a high
resolution to accurately represent intricate geometries, and special precautions must be
taken at the domain boundary, since cells may be only partially inside the domain [17].
To illustrate this, Figure 2.1a only deletes elements if they are fully outside the predefined
outer geometry, which leads to partial penetration of the boundary.
Further, periodic microstructures can be categorized as either functionally graded or

homogeneous. Homogeneous structures replicate the base cell without modification, while
functionally graded structures, see Figure 2.1c, adapt the parametrized base cell based on
local constraints or loading conditions, introducing variations in, for example, thickness,
angles, and other geometric parameters. In the context of (structural) optimization, in-
homogeneous or functionally graded microstructures are often used in combination with
TO, particularly with the Solid Isotropic Material with Penalization (SIMP) method and
its variants [30]. These methods aim to find an optimal material distributions based on
external loads and constraints. Approaches based on TO are twofold. On the one hand,
it is used to design an optimized macro-geometry, where the outcome of this optimization
serves as an input for generating a conformal mesh from the boundary representation.
This mesh is then systematically filled with microstructures [188]. On the other hand,
parametrized cells are utilized to achieve intermediate material densities on a global scale,
i.e., discarding the penalization step [38], often involving methods for homogenization to
reduce computational efforts during optimization [234]. TO-based approaches will be the
subject of further discussion in Section 3.3.4.
Unlike uniform microstructures, where the initial structure is often limited to box-like

geometries, conformal structures provide a more natural representation because the meshes
are aligned with the macroscopic geometry. In the context of this thesis, we will focus on
conformal meshes that are recoverable in a Computer Aided Design (CAD)-compliant rep-
resentation. Comprehensive discussions on different construction techniques can be found
in literature, e.g., with a focus on geometric modeling and microstructural design [192,
210], on Additive Manufacturing (AM) and possible applications [69, 194], or on struc-
tural optimization [181, 143, 128].
Recently, there have been a growing number of efforts to develop methods for conformal

structures. In some of these approaches, the macroscopic structure is first discretized us-
ing a piecewise linear hexahedron mesh [77] with consecutive truss size optimization [167],
while the inner structure is defined based on control points within the unit cell. These
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2.2. Splines

control points are subsequently mapped onto the hexagonal mesh, and the lattice structure
interpolates between these mapped control points in an explicit manner. Other approaches
consist of representing the macro geometry as a set of vertices and connections and then use
implicit functions in a local coordinate system to represent the local cell geometry [211].
Because both methods represent the macrogeometry in a piecewise linear fashion, the
resulting microstructure cannot accurately represent curved boundaries. In addition, al-
though the latter method can be used to sample voxel-based geometries for AM, both
methods require extensive post-processing to recover a CAD-compatible representation.
In [208], building from an existing CAD representation, sphere packing is applied, where a
spline based truss structure is created by connecting the center nodes, building a boundary
conforming, non-periodic lattice structure. However, the resulting microstructure also only
approximates the boundary of the macro shape with piecewise linear trusses and nodes.

To address the challenges posed by the reduced continuity of the boundary and the need
for CAD compatibility, the method proposed by Elber [72] employs functional composition
of tensor product splines. In particular, this approach excels in its ability to control the
degree of continuity to a certain extent. Moreover, it integrates a fully explicit volumetric
representation of the domain, rendering it particularly suitable for IsoGeometric Analysis
(IGA) (cf. Section 3.2). While the use of functional composition of splines in the design
process is a relatively recent development, its application has already been demonstrated
in the design of wing structures [102], where stringers have been modeled using spline
compositions.

In the following, Section 2.2 provides a brief introduction to splines, which form the
basis for representing free-form geometries in computer graphics and engineering. This
chapter will also provide insights into the various spline operations in Section 2.2.3, that
are required to construct microstructures using the method proposed in [72]. The construc-
tion process is then detailed in Section 2.3, along with the available extensions. Finally,
Section 2.4 provides the mathematical tools to differentiate the resulting geometry with
respect to its parametrization.

2.2. Splines

Splines are a versatile mathematical tool for describing complex geometries in arbitrary
dimensions. Most commonly used in computer graphics and Computer Aided Design
(CAD), they play a central role in representing mechanical drawings, architectural designs,
and a variety of intricate geometries. Historically, modern spline representations originated
in the automotive industry, when French engineers Pierre Bézier [32] of Renault and Paul
Faget de Casteljau of Citroën developed similar ideas for representing curves and surfaces
based on interpolation with Bernstein polynomials [31]. These advances ultimately led to
the development of one of the first CAD systems UNISURF [33]. Shortly thereafter, in the
1970s, new fundamental contributions were made with Richard Riesenfeld’s dissertation on
B-Splines [187], followed by Kenneth Versprille’s dissertation [220] on rational B-Splines.
The latter - usually referred to as Non-Uniform Rational B-Splines (NURBS) - have since
become the de facto industry standard for CAD. For a more detailed historical overview,
the reader is referred to [189].

Many of the fundamental advantages of splines have led to their widespread adoption.
They allow the creation of smooth and arbitrarily continuous geometries, providing great
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2. Construction of Microstructures

flexibility for geometric modeling, including the construction of objects in arbitrary dimen-
sions and embedded geometries such as three-dimensional surfaces. In addition, splines are
particularly well suited for data interpolation because their piecewise polynomial (rational)
definition making them less susceptible to oscillations, compared to the classical Lagrange
interpolation [81, Chapter 7.4].
Over time, a multitude of specialized spline types has evolved from Bézier splines and

B-Splines, each tailored to their specific application. For example, Truncated Hierarchical
B-Spline (THB) [90] and T-Splines [201] allow for local refinement and hence are used in
CAD to reduce the number of control points required for the same level of accuracy to
approximate local features, e.g., in surface reconstruction from point clouds [89].

2.2.1. Non-Uniform Rational B-Splines (NURBS)

NURBS allow the construction of intricate geometries, including conic sections such as
circles. A NURBS curve C of degree p is determined by its knot vector ΞΞΞ = [t1, . . . , tnC+p+1]
with ti ≤ tj if i < j, a set of positive non-zero weights W = [w1, . . . ,wnC

] and a vector of
control points C = [C1, . . . ,CnC

]. The curve is then constructed by interpolating between
the control points, using piecewise rational polynomial basis functions Rp

i in the form

C(ξ) =
nC�
i=1

Rp
i (ξ)Ci for ξ ∈ �

tp+1, tnC+1

�
. (2.1)

In this representation, the control points Ci ∈ Rd are of an arbitrary physical dimension
d and can even be used to interpolate scalars if d = 1. The rational basis functions are
composed of their polynomial B-Spline counterparts N p

i using

Rp
i (ξ) =

wiN p
i (ξ)

nC�
j=1

wjN p
j (ξ)

=
wiN p

i (ξ)

W(ξ)
. (2.2)

Here, the denominator function – which is a scalar spline itself – is denoted W to simplify
the expression. This construction can be interpreted as a perspective projection from a
(d + 1) dimensional space into dimension d , cf. [178]. The polynomial B-Spline basis
functions N have very distinct properties, notably

• non-negativity, i.e., N p
i (ξ) ≥ 0

• formation of a partition of unity, i.e.,
�

i N p
i (ξ) = 1

• N p
i attaining exactly one maximum on the interval

�
tp+1, tnC+1

�
if p > 0

The same properties also hold for the rational basis functions R. From the partition of
unity and Equation (2.2) follows, that polynomial basis functions are equal to their rational
counterparts if all weights are equal. B-Spline basis functions are defined recursively using
the Cox-de Boor formula:

N 0
i (ξ) :=

�
1 if ti ≤ ξ < ti+1

0 otherwise
, (2.3)

N p
i (ξ) :=

ξ − ti
ti+p − ti

N p−1
i (ξ) +

ti+p+1 − ξ

ti+p+1 − ti+1

N p−1
i+1 (ξ). (2.4)
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The interval between two consecutive knots
�
ti, ti+1

�
, is called a knot-span. According to

Equation (2.3), the B-Spline basis function N p
i is only non-zero on the interval

�
ti, ti+p+1

�
,

i.e., it exhibits only local support on p + 1 knot-spans. This is an important feature, as
it limits the influence of a control point locally, allowing for more flexibility in geometric
design. The knot vector also determines the continuity of the basis functions. A knot
vector in the form

ΞΞΞ =
�
t1, . . . , t1� �� �

p+1

, tp+2, . . . , tnC
, tnC+1, . . . , tnC+1� �� �

p+1

�
, (2.5)

is called open if the multiplicity of the first and last knot is (p + 1). Although it is
possible to describe periodic knot vectors without repetitions of the first and last knot,
open (or clamped) knot vectors are preferred as they lead to an interpolatory property
at the first and last control point of the curve. The multiplicity of consecutive knots
further determines the continuity of the basis function and therefore the continuity of the
spline curve. The spline is C∞-continuous everywhere and Cp−mi at knot ti, where mi

denotes the multiplicity of knot ti. The continuity of the associated spline can be deduced
directly from the basis functions. Further, any linear transformation to the knot vector, i.e.,
multiplication or addition with a non-zero scalar, will not alter the physical representation
of the spline. An exemplary NURBS spline curve and its associated basis functions are
depicted in Figure 2.2.

0, 0, 0 1/4 1/2 1, 1, 1
0

1

(a) Rational basis functions over knot-vector,
each associated to one control point

0

1 2

3

4

(b) Nurbs curve in 2D with control points and
element borders (green marks)

ΞΞΞ =
�
0, 0, 0, 1/4, 1/2, 1, 1, 1

�
C =

��
0 0

�
,
�
1 1

�
,
�
3 1

�
,
�
4 0

�
,
�
5 1

��
W =

�
1, 1, 1, 4/5, 1

�
(c) Knot vector, control point list and
weights required to construct the spline

Figure 2.2.: Basis function and spline representation of a NURBS of degree p = 2, created
with splinepy [136].

The same considerations and properties of a curve can be applied to higher dimen-
sional splines such as surfaces and volumes/multivariates. These geometric entities are
constructed in a tensor-product fashion, resulting in multivariate functions. For example,
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2. Construction of Microstructures

a NURBS surface is constructed of a control grid Ci,j with associated weights Wi,j using
basis functions Rp,q

i,j , with:

Rp,q
i,j (ξ, η) =

wi,jN p
i (ξ)N̂ q

j (η)�
k,l

wk,lN p
k (ξ)N̂ q

l (η)
. (2.6)

Here, both basis functions N and N̂ are assigned an accompanying knot vector ΞΞΞ and

Ξ̂ΞΞ, and degrees p and q, which define the basis functions in their respective parametric
dimension. To simplify the notation, a vector-valued notation is used in the following,
with the parametric coordinates ξξξ = {ξ, η, . . . }, the degrees-vector p = {p1, p2, . . . } and a
unique multi-index iii = {i, j, . . . }, leading to

S(ξξξ) =
�
iii

Rp
iii (ξξξ)Ciii . (2.7)

A more extensive description on NURBS and B-Spline geometries, including efficient
algorithms for their evaluation, differentiation and construction can be found in [178, 189],
the open-source library splinepy used in the context of this thesis for the construction,
visualization, and manipulation of splines is provided by ILSB [136].

2.2.2. (Rational) Bézier Splines

Even though (rational) Bézier splines predate NURBS historically, they can be considered
a special case of NURBS. That is, they contain no interior knots. In the following, we
further assume that all Bézier splines map from the (multivariate) unit cube [0, 1]d̃ into
physical space. Under these conditions, the recursive expression (2.3) describes a Bernstein
polynomial

Bp
i (ξ) =

�
p

i− 1

�
ξi−1 (1− ξ)p−i+1 , i = 1, . . . , nC , (2.8)

that forms the basis for a Bézier spline (with nC = p + 1)2. As for NURBS, rational
Bézier splines are obtained using a projection as in Equation (2.2). However, contrary to
B-Splines and NURBS, Bézier type splines exhibit global support, as they contain only a
single knot span.
In principle, it is possible to represent any (rational) Bézier spline using a NURBS or B-

spline, and vice versa, it is possible to represent a NURBS as a set of Bézier splines. While
the transformation from a Bézier type to a NURBS is trivial, the reverse transformation
can be achieved using the methods presented in Section 2.2.3.

2.2.3. Spline Operations

A wide array of geometric algorithms is available to manipulate and modify splines. These
include, for example, the complementary operation to knot insertion, i.e., knot removal,

2In other literature, the indexation for Bézier splines might be from 0, . . . , p. In the context of this
thesis, control points and basis functions will be counted 1, . . . , nC to conform to B-Spline-type spline
notation.
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and techniques to adjust the degree of a given spline without introducing geometric or
parametric alterations. Furthermore, many algorithms and techniques related to creating
geometries exist, including interpolations, projections, and reparametrizations. However,
a detailed discussion of these operations is beyond the scope of this thesis. For a more
comprehensive exploration of the vast realm of spline operations, interested readers are
referred to [178].

Knot Insertion and Bézier Extraction

The term knot insertion refers to the change of basis, which alters the knot vector ΞΞΞ without
changing the spline geometrically and without directly affecting the image of the spline
function. The process for knot insertion is demonstrated for B-Spline curve C, however,
the same considerations are also valid for NURBS, where the same algorithm is applied
to the weights. Here, an additional knot is introduced into the knot vector, effectively
creating a new spline C̃, which meets the condition:

C(ξ) = C̃(ξ) ∀ξ ∈ �
tp+1, tnC+1

�
. (2.9)

In order to satisfy this equation, a new set of control points C̃ must be determined -
since the basis functions result directly from the knot vector. Considering the insertion of
the new knot t̃ ∈ [tk, tk+1), the new control points can be obtained using

C̃i = αiCi + (1− αi)Ci−1 , (2.10)

with

αi =

��
1 i ≤ k − p
t̃−ti

ti+p−ti
k − p+ 1 ≤ i ≤ k

0 k + 1 ≤ i

. (2.11)

This process is demonstrated in Figure 2.3. Knot insertion is commonly used for re-
finement, allowing for more precise, localized control and, thus, design flexibility. Further,
by increasing the multiplicity of a specific knot through its repeated insertion into the
knot vector, the continuity between knot spans diminishes. This process can be repeated
until the spline’s continuity is reduced to C0, which allows the individual knot spans to be
reinterpreted as new (Bézier) splines. In the context of geometric modeling, this reinter-
pretation is generally referred to as Bézier extraction.
The method described by Equation (2.10) can be extended to insert a single knot multiple

times in one step [178] and can also be used to insert multiple knots in one pass. The
equation further establishes a linear relationship between the control points of the original
spline and the control points of the refined spline. This observation can be utilized to
rewrite Equation (2.10) as a matrix product in the following format

C̃ = AΞΞΞ C . (2.12)

This equation can also be used for higher dimensional splines to perform knot insertions
along several parametric dimensions in succession, resulting in a series of matrix multipli-
cations. The sparsity of the resulting matrix increases the computational efficiency of this
operation and enables storage of the matrix in memory after computing it once, even if
the control points undergo changes in the meantime.
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2. Construction of Microstructures

(a) Spline and control point polygon before
knot insertion

(b) Spline and control point polygon after knot
insertion

0, 0, 0, 0 2, 2, 2 3 4, 4, 4, 4
0

1

(c) Associated basis functions before knot in-
sertion

0, 0, 0, 0 1 2, 2, 2 3, 3 4, 4, 4, 4
0

1

(d) Associated basis functions before knot in-
sertion at positions [1, 3]

Figure 2.3.: Modification of the control points and basis function through knot insertion.
The individual knots are displayed under the graphs along with their multiplicities. When
the multiplicity is as high as the degree, i.e., p = mi, the basis functions become only C0

continuous and the spline becomes interpolatory at the position of the repeated knot.

Addition

Besides refinement operations, which primarily increase design flexibility, it is also possible
to define arithmetic operations between two splines, where the result is again a spline.
Although their use may seem rather theoretical, they can, for example, be used to inter-
polate between data sets. To calculate the sum of non-rational splines, it is necessary to
first unify their representations so that they share the same basis functions. Thereafter,
their sum can be obtained by simply adding their respective control points. For (multivari-
ate) B-Splines, this requires (1) degree elevation [51] of the lower order spline until both
splines share the same degrees in all parametric dimensions and (2) knot insertion until
both splines share the same knot vectors.

This approach is also applicable to rational splines. However, in cases where they possess
non-matching weight functions, it is necessary to first find a common denominator via cross-
multiplying with the respective denominator splines. Note, that the exact same procedure
can be employed for subtraction. For a more comprehensive description, the interested
reader is referred to [71].
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2.2. Splines

Multiplication

Similar to addition, it is also possible to exactly compute the product of two splines
and display it as a spline itself. This requires that the multiplication of their respective
control point types is defined. For instance, a scalar-valued spline can be multiplied by a
vector-valued spline, resulting in a vector-valued spline. The multiplication of two Bézier
spline curves C and C̃ with degree p and p̃ results in a new Bézier spline with degree
(p+ p̃). Similarly, when multiplying multi-variate Bézier splines, the degree of the resulting
spline along each parametric axis is the sum of the degrees of the original splines along
that respective axis. The new control points C̄ of the resulting spline can be determined
using [200, 71]3

C̄k+1 =

min(k,p)�
i=max(0,k−p̃)

Ci+1 · C̃k−i+1

�
p
i

��
p̃

k − i

�
�

p+ p̃
k

� for k = 0, . . . , (p+ p̃) . (2.13)

This formula can be extended for higher-dimensional geometries, e.g. as done in [239],
allowing the multiplication of surface-surface, or volume-volume splines. It also holds for
rational Bézier splines. These require the numerator and denominator to be multiplied
individually.
The same calculations are also attainable for NURBS and B-Splines. Corresponding

algorithms are presented in, e.g., [46] and [179]. It is further possible to determine the
control points of the product spline by setting up and solving a linear system of equations
through evaluation of the basis functions and products at a specific set of points. This
approach is adopted to avoid the high implementation effort and computational costs
associated with these methods [71]. In the following, only (rational) Bézier splines will be
considered for the construction of microstructures – which can be extracted from NURBS
and B-Splines.

Composition

By employing the techniques described above, it becomes feasible to establish a symbolic
composition, S ◦ S̃, between two splines. Notably, Bézier splines are continuously differ-
entiable C∞ across their entire parametric domain, making them particularly suited for
performing compositions. In contrast, the composition between two tensor-product B-
Splines is generally not a tensor-product spline [62]. Therefore, our focus in this context
will be directed toward the composition involving (rational) Bézier splines. Spline com-
position has existed for several decades [71]; however, recently there have been concerted
efforts to explore its applications more thoroughly [207]. For example, compositions serve
as a valuable extension to the traditional Free-Form Deformation (FFD) technique [199, 95]
(cf. Section 3.3), particularly in shape optimization for CAD geometries [114]. Moreover,
they find utility in transforming trimmed surfaces into tensor product surfaces [75].
In the following, the method will be demonstrated for a surface-curve composition,

although the same methods extend to higher dimensions so long as the physical dimension
of the inner function matches the parametric dimension of the outer function. Let C be

3Note, to ensure uniform indexation, there is an index-shift compared to the references in [200, 71]
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2. Construction of Microstructures

a univariate (non-rational) Bézier curve with degree p in 2D, and S be a bivariate Bézier
surface with degrees p = (p̃1, p̃2) in 2D, then the composed spline C̃ fulfills

C̃(ξ) = (S ◦ C) (ξ) = S�Cx(ξ), Cy(ξ)
�

=

p̃1+1�
i=1

p̃2+1�
j=1

Bp̃1
i

�Cx(ξ)
� Bp̃2

j

�Cy(ξ)
�
Cij , (2.14)

where Cx/y describe the x and y components of the spline curve, respectively. Equa-
tion (2.14) shows, how the problem of spline composition is reduced to finding the compo-
sition between a scalar-valued spline, e.g., Cx, with a Bernstein basis function, cf. Equa-
tion (2.8). Note, that this is only possible, given Cx/y(ξ) ∈ [0, 1] ∀ξ ∈ [0, 1]. With

Bp
i

�C(ξ)� = �
p

i− 1

��
1− C(ξ)�p−i+1�C(ξ)�i−1

, (2.15)

this operation is made possible using solely the expressions presented in the previous sec-
tions4. The result of this B-Spline composition is a scalar-valued Bézier curve itself, mean-
ing that the scalar control points αij

kl, associated with the multiplication Bp̃1
i (Cx)Bp̃2

j (Cy) are
multiplied with the surface’s 3D control points Cij, prior to addition. Figures 2.4a, 2.4b
and 2.4c show an example composition between a polynomial curve and surface in 2D.
Analogous considerations hold for rational splines. Specifically, the resulting composition

will also be rational if either function is rational. The composition then must be applied
separately to the denominator and numerator splines if the outer function is rational. If
the inner function is rational, Equation (2.15) can be rewritten as

Bp
i

�C(ξ)� = �
p

i− 1

��W(ξ)− c(ξ)
�p−i+1�

c(ξ)
�i−1

W(ξ)p
, (2.16)

whereW and c denote the denominator and numerator of the rational inner spline function,
respectively. The denominator term in Equation (2.16) cancels out if the outer function is
rational as well. A rational surface curve composition is depicted in Figures 2.4d, 2.4e and
2.4f.
From the aforementioned description of spline multiplications, it was established that

the degree of the product spline equals the sum of the degrees of the factor splines. In
the context of composition, the splines are raised to an integer power, specifically, the
degree of the outer function. This indicates that the degrees of the inner spline and the
corresponding basis function multiply. This process is repeated across all tensor product
basis functions. Consequently, the degrees q of the composition of an outer spline with
degrees p and an inner function with degrees p̃ follow

qi = p̃i
�
j

pj , (2.17)

both for rational and polynomial spline compositions. This results in exceedingly high
orders, significantly increasing the computational cost associated with manipulating and

4Although not explicitly listed, the scalar 1 can be interpreted as a spline of zeroth degree with control
points 1, hence it is possible to express the difference by computing (1−Ci)∀i
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2.2. Splines

(a) Polynomial Bézier curve
p = 3 in unit-square

(b) Polynomial Bézier Surface
p = [2, 2]

(c) Composed curve in outer
function p = 12

(d) Rational Bézier curve
(quarter circle) p = 2 in unit-
square

(e) Rational Surface (quarter
ring) p = [2, 1]

(f) Composed rational curve
p = 6

Figure 2.4.: Surface-Curve composition between a (rational) Bézier curve and a (rational)
Bézier surface. Note, that the degrees of the composed curves are significantly higher.

evaluating such splines. For instance, even composing a quadratic curve with a bi-cubic
surface yields a spline of degree 12. Exact degree reduction is feasible in cases where the
spline aligns with a parametric axis of the outer function. If this is not enough, lower-order
splines can be employed to approximate the resulting geometry.

Derivatives of Splines

If a spline has at least C1 continuity over its entire definition range, it is possible to
express its derivative as a closed-form representation in terms of another spline function –
and therefore this also holds for higher-order derivatives given a sufficient continuity; that
is C ′(ξ) = ∂

∂ξ
C(ξ). This derivative spline describes the rate of change with respect to the

parametric coordinates. In the context of curves, this spline is called a hodograph [52].
Such derivative representations find practical applications in various fields of engineering,
e.g., in trajectory planning for unmanned aerial vehicles (UAVs) [216]. Furthermore, it
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2. Construction of Microstructures

plays an important role in geometric analysis, for example [148] use the exact representation
of the determinant of a spline to evaluate the quality of a given spline parametrization.
For a non-rational Bézier curve C of degree p > 0, its derivative C ′ is a non-rational

Bézier curve of degree p′ = p− 1 with control points

C′
i = p

�
Ci+1 −Ci

�
. (2.18)

An example of a close-form derivative of a Bézier spline is shown in Figure 2.5.

(a) Bézier Spline curve with degree
p = 3

(b) Spline representation of the derivative
with degree p = 2

Figure 2.5.: Close-form derivative of a cubic Bézier spline curve. The yellow arrow
represents the derivative evaluated at the position of the green point.

Similar considerations can be made for B-Splines, if the multiplicity of any interior knot
does not exceed p − 1, i.e., the spline remains at least continuously differentiable. Given
a B-Spline Curve C of degree p, with control points C and an open knot-vector ΞΞΞ, the
close-form of the derivative C ′ is a B-Spline of degree p− 1 and its knot vector and control
points are computed as

ΞΞΞ′ =
�
t1, . . . , t1� �� �

p

, tp+2, . . . , tnC
, tnC+1, . . . , tnC+1� �� �

p

�
(indices referring to ΞΞΞ) ,

C′
i =

p

ti+p+1 − ti+1

�
Ci+1 −Ci

�
. (2.19)

Piegl and Tiller [179] further show how Equation (2.19) extends to higher order deriva-
tives. For tensor-product splines, Equation (2.19) has to be applied separately for every
“layer”, i.e., along a given parametric axis for every new control point in the control poly-
gon. Similar considerations apply to rational Bézier splines and NURBS; however, the
quotient rules must be applied then. Given a rational spline Cr = C̄/W, the quotient rule
reads

C ′
r(ξ) =

C̄ ′(ξ)W(ξ)− C̄(ξ)W ′(ξ)�W(ξ)
�2 , (2.20)

which requires the use of spline multiplication and hence results in a spline of degree5 p′ =
2p. Additionally, efficient algorithms are available for the computation of basis function

5Order elevation of the numerator is required to obtain a valid spline representation.
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2.3. Construction Process

derivatives and for evaluating higher-order derivatives at specific parametric coordinates
without the need to compute the closed-form representation beforehand. Interested readers
are directed to references [178, 52, 189, 81] for a more detailed and comprehensive overview.

2.2.4. A Distinction Between Composition and Free-Form
Deformation

Node-based shape optimization within the FEM framework - i.e., where each node in the
mesh is considered a free design variable - requires constraints on mesh motion to prevent
entanglement, i.e., inverted (irregular) elements with a negative Jacobian. In addition,
optimizing the shape of the boundary may require expensive techniques to update the
internal parametrization, such as the use of elastic deformations [27]. Therefore, Sederberg
and Parry [202] introduced Free-Form Deformation (FFD) as a cost-effective method for
mesh modification. FFD has since found various applications in shape optimization, such
as in [215, 129].
The FFD technique involves defining a spline (mostly B-Spline or Bézier) around the

bounding box of a mesh. The parametric domain usually aligns with its physical counter-
part to facilitate the mapping. The spline in the surrounding area is modified by adjusting
its control points. Subsequently, the nodes of the finite element mesh are updated to the
new physical domain without altering the node-element connectivity. This technique has
also been extended to the use of non-rational splines. Additional measures, such as map-
ping the Jacobian [149] (as implemented in the splinepy library), can be employed to
ensure that the surrounding spline remains untangled.
This approach can also be applied to spline geometries by mapping the control points.

Contrary to functional spline composition presented in Equation (2.14), only the position
of the control points is set into the spline representation of the outer geometry. For the
“composition” of a line with degree p and control points C into a surface S, this results in
the mapping

C̃FFD(ξ) =
nC�
i=1

Rp
i (ξ) S(Cij) . (2.21)

The method has already been utilized in shape optimization problems within the context
of IsoGeometric Analysis (IGA) [190]. However, it is important to note that while both
approaches originate from a composition, the continuity is generally not preserved when
applying FFD, as shown in Figure 2.6. This is a key distinction from the functional
composition approach, which preserves continuity as long as the geometry of the outer
spline is maintained. However, the functional composition approach comes with a trade-
off. The degree of the composed spline is significantly higher than the degree of the original
spline (cf. Equation (2.17)).

2.3. Construction Process

The methodology for creating CAD-compliant microstructures is based on the design
paradigm through functional composition between splines outlined by Elber in [72]. In
a general sense, the entire microstructure comprises two key components: (1) the micro
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2. Construction of Microstructures

(a) Two lines, each consisting of linear B-
Splines with an interior knot. Although the
two line segments are G1 in practice, the
parametrization is only C0. They are shown
in the unit square [0, 1]2.

(b) A biquadratic Bézier Spline describing
a given deformation. Its parametric domain
is the unit square.

(c) The yellow line is deformed by means of functional composition with the
Bézier spline, whereas the green spline is deformed by mapping only its control
points corresponding to the classical Free-Form Deformation.

Figure 2.6.: Here, we demonstrate the distinction between the Free-Form Deformation
method, which is commonly used in FEM-based shape optimization. Both lines consist of
two colinear segments before deformation. The green line is deformed using FFD, which is
applied to the control points of the spline representation, while the yellow line is deformed
through functional composition with the new outer geometry. Although the latter ensures
continuity, it significantly increases the degree (to degree 4, see Equation (2.17)).
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2.3. Construction Process

representation, forming the basis which is periodically inserted to fill the geometry, and (2)
a macro-representation, defining the overall structure’s contour. In this context, we will
refer to the (set of) patches defining the local geometry as the microtiles Miii and the macro
geometry as the deformation function T . Additionally, we define the number of tiles per
parametric dimension of the deformation function as the grid dimensions (nξ1 , . . . , nξd̃

).

We continue to presume that all tiles fit into the unit cube [0, 1]d .
The individual tiles can be some arbitrary combination of polynomial or rational

splines. The original proposal for the microstructure construction paradigm also allowed
for trimmed spline geometries and embedded geometries, e.g., surfaces or lines in 3D. In the
context of shape optimization, however, we will only consider Volumetric Representation
(V-Rep) geometries – that is, a representation of the body, rather than only its boundary
– to facilitate the integration of IGA, see Chapter 3.2.
As described in the previous sections, compositions cannot generally be performed across

knot lines. Consequently, the deformation function is first divided into its constituent C∞

Bézier subsections T̃ , with ∪iii T̃iii = T . Knot insertion is performed prior to this step in order
to attain the desired grid dimensions. The Bézier extraction further omits the necessity
for a linear substitution to fit the microtiles into the individual knot spans, because their
parametric domain spans the unit cube by definition. These individual Bézier patches are
then subjected to functional composition with the splines that form the microtile. The
resulting geometry can then be written as

MMM =
�
iii

T̃iii
�
Miii

�
=

�
iii

Miii . (2.22)

(a) Microtile definition in unit
cube M

T̃0

T̃1

(b) Knot span elements
(Bézier patches) of the defor-
mation function T

(c) Complete microstructure
MMM

Figure 2.7.: Construction of microstructures. The microtiles, defined in the unit cube,
are placed into the parametric domain of the individual knot spans of the deformation
function using functional composition.

The construction process is illustrated in Figure 2.7. As a result of the composition,
the microtile cells are not only periodically repeated, but also deformed, resulting in the
overall conformity of the structure within the macro representation.
Another advantage of this construction method is the controllable continuity of the

resulting lattice structure. The continuity of the composition is governed by the lowest
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2. Construction of Microstructures

continuity of either the inner and outer function spline [72]. This implies that continuity
can be determined by analyzing patches on opposite faces of the unit cube prior to the
composition. Further, if both the microtile and the deformation function are regular, i.e.
det(J) > 0, the resulting structure will also be regular.
This construction process has since been extended in various ways. Massarwi et al. [158]

introduced the utilization of bifurcation tiles, enabling a hierarchical microstructure that
incorporates multi-scale components to some extent. Additionally, Hong and Elber [110]
demonstrated the application of this composition-based method to trimmed trivariates
with the aim of using this method with more intricate macro-geometries. The same au-
thors also investigated the use of implicit functions to describe complex micro-geometries
in [111]. The particular interest in implicit functions is driven by the use of Triply Peri-
odic Minimal Surface (TPMS), which have been subject to noticeable research attention
in recent years in the realm of microstructure design [155]. Further, in an effort to create
shell structures, Dahiya, Shein, and Elber [57] used the composition based approach to
tessellate an embedded surface representation in 3D.
The spline-based result of the microstructure construction process facilitates post-

processing, as it is inherently in a CAD-compliant format. Additionally, the V-Rep ge-
ometry supports analysis through IGA naturally. Being based on the same spline repre-
sentation, this paradigm allows seamless integration into established design processes. It
also streamlines the back-propagation of geometry changes in the design pipeline’s later
stages, which might result from production constraints, such as those arising from Additive
Manufacturing (AM). Consequently, this paradigm was proposed as the basis for numer-
ical optimization in [14] and has since found application in [238], where it was utilized
to optimize heat transfer in extrusion dies, cf. Section 4. In order to establish a sound
mathematical formulation for the optimization problem, it is necessary to represent the
geometry through a set of design variables. These variables should encompass both the
local (micro) geometry, as well as the macroscopic geometry, i.e., the deformation function.

2.3.1. Parametrization of the deformation function

The deformation function captures both the outer shape of the microstructure and the
arrangement of its interior knots determines the position of the cells within the macro
shape. Consequently, the deformation function can be utilized to control both the external
contour and the distribution of tiles within the structure.
In order to alter the deformation function, we consider two cases: modification of the in-

ternal parametrization and contour modification. In the application case discussed in [238],
the microstructure surrounded a flow channel in an extrusion die, with the outer surface
constrained by tool dimensions. Thus, the outer contour was assumed to be optimized
or fixed, limiting the design space for the deformation function to the internal structure.
Here, the objective is to adjust the internal parametrization without changing the outline
of the macro geometry. One way to achieve this distribution modification is by altering
the position of interior knots by means of knot insertion. However, the effectiveness of
knot insertion is limited to the placement of additional knots. Hence, this method may
prove insufficient if the deformation function already encompasses multiple knot spans,
even though it might, in some cases, be possible to remove some of the original knots with-
out affecting the precision too much [146]. Alternatively, an approximate representation of
the outer geometry can be constructed, e.g., through spline fitting within production tol-
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erances. Methods for spline fitting are manifold [153, 178] and can result in much simpler
representations of the macro geometry. Moreover, [238] utilized the inner control points of
the tensor product spline to modify the internal parametrization, as they do not contribute
to the outer geometry. However, caution is advised as this can lead to irregular regions
within the domain.
The main drawback associated with modifying the tile distribution by altering the de-

formation function originates from the inherent composition process of microstructures.
As tiles are set into the parametric domain via functional composition, those situated in
denser regions of the macro-spline simultaneously become thinner. This thinning can neg-
atively impact the overall performance of a given structure, depending on the underlying
physical problem. For example, in a heat transfer problem with isotropic material, the
overall heat transfer is practically proportional to the volume density of a microstructure,
which does not change by the composition, given a “smooth enough” deformation function.
Ergo, changing the local distribution of tiles will have a negligible impact on the overall
performance because the thinning of individual tiles counteracts the benefits of a denser
tile distribution.
More design freedom is provided when the outer geometry of the macro geometry can

be modified during optimization. This may be the case if (part of) the shape is not
constrained by manufacturing or design limitations. In this case, all control points on the
outside of the control mesh can be considered as design variables. However, this approach
introduces new challenges since the regularity of the deformation function depends on the
control points. This means that too much modification of the control mesh can result in
irregular regions with negative Jacobian determinants, leading to a tangled microstructure
with self-intersections.
This risk of irregularity affects not only the surface, but also the internal parametrization.

In fact, creating the smoothest possible internal parametrization based on a boundary rep-
resentation is a common problem in the context of IGA and shape optimization. Therefore,
much research effort is directed at modifying internal control points to produce smooth
internal parametrizations, either by computing the internal control points as a function of
the external control points [94] or by introducing additional constraints to the optimization
problem [140].

2.3.2. Parametrization of the microtile

As stated in the previous section, a denser distribution ultimately leads to thinning of indi-
vidual tiles after their composition - two effects that may cancel each other out in terms of
structural performance. To counteract these effects, the microtiles can be locally modified
prior to their insertion into the macro-geometry. Here the possibilities are manifold and
are not limited to geometric aspects, but can also be extended to material properties.
A primitive approach consists of designing multiple microtiles and setting them into

their respective regions within the macro-geometry. However, this method is generally not
a well-suited approach to numerical shape optimization because (1) the initial placement
of the microtiles requires a lot of insight into the problem and design intuition, and (2)
this method leads to a combinatorial problem that becomes exponentially more complex
with the number of tiles in the microstructure.
Regarding elastic structures, the most intuitive way to modify the local properties of a

microstructure is through manipulation of the material properties. For instance, selecting a
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material with a higher Young’s modulus in a region that requires greater stiffness. However,
while this idea translates well into simulations, it is very difficult production-wise. To offer
an array of material properties, it is necessary to either provide a multitude of different
materials [193] or create meta-materials during production [18]. Although approaches have
been developed to incorporate functionally graded materials in the design stages – using
trivariate spline representations with an additional material dimension and even producing
real prototype demonstrators [80] – AM production of multi-material designs still poses
practical difficulties. Therefore, we will restrict the conversation to pure shape optimization
in the context of this thesis, altering solely the microtile’s geometry and leaving material
properties untouched.

The options for altering the microtile shape are multifaceted and depend on the objective
of the optimization at hand. In the application examples discussed in later Chapters 4
and 5, this can be accomplished by locally modifying the volume density, which is akin to
changing the volume density of a tile prior to its insertion. For example, for a tile consisting
of a cross, this can be achieved by modifying the thickness of its branches, which, in the
context of heat transfer, can correlate with higher heat fluxes in a given area. An example
of such a structure is depicted in Figure 2.8.

(a) Cross-shaped tile with branch
width 0.4 in the unit square

(b) Cross-shaped tile with branch
width 0.2 in the unit square

Figure 2.8.: Example of a parametrized microtile. A cross with individually modified
branch thicknesses. In this example, all four branches have individual widths. Here, the
parametrization only acts on the position of the control points in the unit square.

Similar approaches also apply for structural problems. Here, a higher volume density
generally correlates with a higher stiffness. More recently, methods have further evolved
to align the microscopic structure with the stresses in order to distribute forces more
efficiently throughout the structure [4]. Based on this idea, it is also possible to create and
alter tiles to achieve comparable outcomes, e.g., by using rotations. However, because tiles
are created locally in a unit cube, maintaining continuity between adjacent parametrized
tiles can be challenging.

By using this method for microtile parametrization, each microtile is defined as a function
of design variables that are associated with the tile’s specific characteristics. In the example
tile in Figure 2.8, each branch in the cross cell possesses a specific thickness associated with

24



2.3. Construction Process

the corresponding design variable. The microtile resulting from this process, prior to its
insertion into the deformation function, can therefore be expressed as follows

Miii = M̃(P̃M
iii ) , (2.23)

where M̃ indicates the parametrized base-cell as a function of the microtile’s design vari-
able(s) P̃M at position iii = {i, j, . . . } (indices in the tile-grid). Note, that the parametriza-
tion in this case only acts on the control points of the microtile definition, leaving all other
spline properties untouched. As a consequence, the individual patches, composing the
microtile S̃ ∈ Miii , can be written as

S̃(ξξξ)|P̃M
iii

=
�
iii

RS
iii (ξξξ)Ciii(P̃

M
iii ) . (2.24)

2.3.3. Parameter Abstraction

As highlighted in the previous section, various parameters can be associated to each in-
dividual microtile to fully exploit localized parametrization. Consequently, given the vast
number of microtiles involved in certain applications, such an optimization can quickly ex-
ceed 100 000 design variables. In practice, such a large number of optimization parameters
is not practical, especially if the optimization is performed by black-box drivers without
access to gradient information. Therefore, this motivates rearranging the parameter set
utilizing a small subset of superordinate parameters PM , in order to decrease the number
of degrees of freedom in the optimization.

This abstraction has the additional purpose of assigning similar values to microtiles
in close proximity, resulting in smooth transitions between tile characteristics. It can also
make it easier to maintain continuity between adjacent tiles, e.g. by ensuring that adjacent
tiles have the same thickness at their connecting interface.

One intuitive approach to accomplish this is by defining a function in the parametric
domain of the deformation function. This function needs to meet certain criteria:

• continuity within the parametric domain of the deformation function

• intuitive representation and local control

• extensibility

One natural choice for these functions is splines, since they can be chosen to be arbitrarily
continuous and allow for extensibility through knot refinement. They also offer a clear
idea of the resulting structure due to their interpolatory properties with non-negative
basis functions. The spline coefficients or control points, which can be interpreted as
the superordinate design variables, provide an easy design intuition when projected onto
the deformation function. This method, as proposed in [238], building upon approaches
presented in [14], denotes the resulting spline as the parameter spline P . The parameter
spline and deformation function do not necessarily require sharing the same representation.
They must, however, be defined over the same parametric domain and the image of the
parameter spline must be within the admissible range for the local design parameters in
M̃ . It may be necessary to fulfill additional constraints, for example, if the deformation
has two connected boundaries, the parameter spline has to fulfill the same restrictions.
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(a) Parametrized cross tile and evalua-
tion points xM (green), shown with branch
thicknesses 0.1 (left) and 0.23 (right).

(b) Parameter spline and its coefficients
mapped onto a square with values ranging
from 0.05 (lower left) to 0.35 (lower right).

(c) Deformation function; Linear-
Quadratic B-Spline one interior knot

(d) Resulting microstructure with
tiling 3×4 in every element

Figure 2.9.: Microstructure synthesis in a nutshell. The microtile in Subfigure (a) is
defined within the unit-square along with evaluation points (green), that are used to re-
trieve local parameters from the parameter spline displayed in Subfigure (b), based on its
position within the deformation function (Subfigure (c)). The resulting microstructure in
Subfigure (d) then reflects this abstraction in the “thickness”-distribution.

Using these parameter splines as abstractions, the microstructure synthesis can be de-
scribed as follows. First, the tile parametrization is established, along with a set of eval-
uation points xM . The position of these points within the deformation function is then
used to assess the parameter spline and retrieve the corresponding local spline parameters.
If evaluation points fall on the boundary (e.g., at position [0.5, 1] for a 2D microtile),
adjacent tiles will receive the same value as long as the parameter spline is at least C0

continuous. Afterwards, the microtile is constructed based upon the updated parameters
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and inserted into the deformation function via functional composition. This process is
illustrated in Figure 2.9.
To conclude, the microstructure construction process is illustrated in Algorithm 2.1.

The number of coefficients in the parameter spline corresponds to the number of design
variables associated with the internal parametrization of the optimization procedure. This
significantly reduces the complexity and helps to accelerate the convergence to the optimal
solution. In this thesis, the nχχχ design variables χχχ considered for the optimization problem
therefore comprise (a subset of) the control points CT of the deformation function to
modify the macro-shape and the coefficients of the parameter spline PM , which yields

χχχ = {CT , PM} . (2.25)

2.4. Geometric Derivatives

As outlined in the preceding chapters, the resulting microstructure is fully described by the
deformation function, the parameter spline and the parametrization of the microtile. Based
on this input, the microstructure is built explicitly, facilitating the analytical differentiation
of the geometry with respect to the design variables. This attribute is an important
advantage in terms of the optimization strategy, which will be presented in Chapter 3.4.
We will first examine the derivative of the composed microtile in relation to the defor-

mation function’s control points, which is required for optimization of the macro-shape.
Recalling the definition of the microstructure construction from Equation (2.22) the deriva-
tive of the microstructure can be written as

∂MMM
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iii
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iii

=
�
k

∂T̃k

�
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∂CT
iii
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The first term represents the derivative of the Bézier patch T̃ with respect to the control
points of the deformation function T . However, these control points pertain to the original
deformation function before knot insertion and Bézier extraction. The chain rule simplifies
since the microtile parametrization is independent of the deformation function’s control
points. As a result, the first term in Equation (2.26) can be split up into the derivatives
(1) with respect to the patch control points, and (2) the sensitivities of the deformation
function’s control points
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which leads to
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2. Construction of Microstructures

Algorithm 2.1: Microstructure synthesis during optimization adapted from An-
tolin et al. [14], extending it by parametrization of the deformation function as
well as local parameter retrieval

Input:

M̃
parametrized microtile in parametric space as a func-
tion of P̃M

T0 Initial geometry of the deformation function

(nξ1 , . . . , nξd̃
) Grid dimensions of the microstructure

P Spline representation of the parameter space that is
projected into the deformation function

Output:

MMM complete microstructure

χχχ : {CT ,PM} optimized set of parameters

Algorithm:
1 MMM ← ∅;
2 Parametrization Deformation function
3 T ← CT ; // Update coefficients

4 Parameter spline update
5 P ← PM ; // Update coefficients

6 for iii in (nξ1 , . . . , nξd̃
) do

7 Parametrization Microtile

8 P̃M
iii ← P(ξiii); // Retrieve microtile parameters

based on position of the

microtile
9 Miii ← M̃(P̃M

iii ); // Construct Microtile in Parameter

space

10 Construct Microstructure

11 T̃iii ← T ; // Extract corresponding Bézier

patch from Deformation Function

12 Miii ← T̃iii(Miii) ; // Perform composition

13 MMM ←MMM∪Miii ; // Add new tile to Microstructure

14 end
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2.4. Geometric Derivatives

The derivative with respect to a control point yields a matrix-valued spline, which can be
difficult to handle in practice. Therefore, in most cases, the individual vector contributions
are derived separately.

(a) Microtile comprised of 2 Bézier
curves of degree 3 and 4.

(b) Linear-quadratic deformation
function. The resulting microstruc-
ture is derived with respect to the
x-component of the green control
point in the upper right corner.

(c) Resulting microstructure and control point derivative
plotted as a field.

Figure 2.10.: Microstructure and derivative (field) with respect to the x-component of
the 6th control point, marked green. The field is computed by functional composition of
the microtiles with the basis functions of the deformation function.

It is also of interest to consider Equation (2.28) in regards of computational efficiency.
The order of evaluation has a significant impact on the number of required computations.
The individual terms are independent of each other, allowing for significant reduction in the
number of multiplications through their pre-combination and computation. Furthermore,
depending on the implementation, the computation of the basis function compositions can
be an intermediate step of the spline composition itself, resulting in very little overhead.
The knot insertion matrices for Bézier extraction are independent of the position of the
control points of the deformation function, hence they can be computed in pre-processing,
too. Moreover, the underlying spline representation, i.e., the type, degree and knot vector,
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2. Construction of Microstructures

of the basis function composition is equivalent to the spline composition itself. This is
because the subsequent addition of basis function contributions does not change the order
of the splines. This correspondence creates a one-to-one relationship between the control
points of the microstructure and the (vector-valued) close-form derivative’s control points.
Similar considerations can be made for the derivation of the remaining design variables,

the coefficients of the parameter spline PM . To accomplish this, Equation (2.22) will
be revisited, but taking into account the abstraction of the design variables using the
parameter splines. This can be expressed as follows
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where x̄M
k denote the microtile’s evaluation points mapped into the parametric domain of

the deformation function. The chain rule must be applied successively to calculate the
analytical derivatives of the microstructure, leading to
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Upper indices correspond to the parametric dimension of the deformation function and,
thus, to the physical dimension of the microtile. The first term of the equation ∂T̃k/∂Mk

corresponds to the closed-form derivative of the deformation function patches with respect
to its parametric coordinates as described in Equation (2.18) and Equation (2.19). The
last term ∂P/∂PM can be rewritten as the parameter spline’s basis functions. The derivative
with respect to the local design variables P̃M must either be analytically derived for a given
tile or determined using numerical methods, like Algorithmic Differentiation (AD) [162,
96] or Finite Differences (FD).
It was established in Chapter 2.2.3, that the degree of the composed spline is a function

of the outer function’s degrees and the inner function’s degrees, cf. Equation (2.17). In
addition, the degree of a polynomial spline is reduced in the derivative along the paramet-
ric dimension in which it is differentiated. Since the microtiles are parametrized solely in
terms of their control points, the degree spline representation of the microtile derivative
with respect to the microtile parameters P̃M remains unaffected. If we now consider Equa-
tion (2.30) for a certain parametric dimension o, the degree of the deformation function p
in this parametric direction is first reduced by 1, so that the sum of the degrees is also
reduced by 1. On the other hand, the degree of all parametric directions of the composed
spline pM is increased by the respective degrees of the derived microtile p̃ through its
multiplication, resulting in the degree of the derivative

pMi = p̃i


�
j,j ̸=o

pj + (po − 1)

�
+ p̃i = p̃i


��
j

pj

�
− 1

�
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�
j

pj , (2.31)
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2.4. Geometric Derivatives

which is equivalent to the microstructured geometries inner parametrization.
If the control point of the deformation function remains unaltered during the optimiza-

tion process, the closed-form derivatives can be precomputed once. However, this is not
possible if the deformation function is optimized at the same time. In addition, the multipli-
cation with the microtile derivative must be performed once for each microtile parameter
required to define the structure. Therefore, the computational cost of determining the
derivative of the microstructure with respect to the parameter spline coefficient is signifi-
cantly higher than the previously introduced derivative with respect to the control points
of the deformation function. Therefore, in order to minimize the required computations,
it is crucial to take advantage of the local support of the parametrization function and
determine the derivative only in the regions where the basis functions are non-zero.

Figure 2.11.: Derivative of the parametrized microstructure displayed in Figure 2.9 with
respect to the third coefficient of the parameter spline, here displayed in the lower right
corner. The field vectors are scaled for better visibility.

Recalling the microstructure construction process shown in Figure 2.9, the resulting
structure is now derived with respect to the coefficient in the lower right corner of the
parameter spline shown in Figure 2.9b. The derivative field is mapped onto the structure in
Figure 2.11. The figure shows that the derivative is non-zero only within the support of the
basis function associated to the coefficient (here in the lower right corner of the deformation
function). This property is particularly useful in the context of shape optimization, as it
allows for localized adaptation of the microstructure.

31





3
Numerical Analysis

This chapter provides a concise overview of the theoretical foundations of computational
modeling. The initial section presents the required differential equations by formulating
the integral conservation laws. In our optimization examples, we will consider two distinct
cases: (1) a heat transfer problem and (2) an elasticity problem. This section will also
introduce the underlying assumptions and constitutive equations to provide the closed
Partial Differential Equation (PDE) which will be discretized in later parts of this chapter.

Following this, we examine IsoGeometric Analysis (IGA), comparing it to the traditional
Finite Element Method (FEM) and highlighting its applications in shape optimization. In
order to provide a better perspective, we break down the steps of IGA, touching on its
strengths and challenges. This section presents the strong and variational forms, followed
by an illustration of the discretization process. Then, the numerical concepts and imple-
mentation details are addressed.

Moving on to shape optimization, this section outlines and classifies various design opti-
mization methods and introduces the key concept of optimization drivers, setting the stage
for the later chapters. Finally, we demonstrate how to efficiently compute sensitivities using
the adjoint approach.

3.1. Physical Background

For our derivations of the required PDEs, we will consider an open and connected set in
Rd that defines our physical domain Ω. We will further denote its boundary ∂Ω : Ω̄ \ Ω.
The domain and its boundary are illustrated in Figure 3.1, along with some exemplary
boundary subdomains, which play a role in the the definition of the necessary BCs.

3.1.1. Heat Transfer

As a first example, we will look at a heat transfer problem in a solid material, i.e. without
convection. The following considerations are based on the derivations in [144]. To construct
the necessary equations, we will first consider an arbitrary small body B, fully contained
within the domain Ω, with B ⊆ Ω. Given the specific (heat) energy e, a directional heat
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x

y

z

ΓN

Ω

ΓD

f

∂Ω

Figure 3.1.: Representative body with Neumann and Dirichlet conditions. All boundaries
that are not further specified will be considered with zero-Neumann Boundary Conditions.

flux q on the boundary of the body ∂B with its outward facing normal n, and local heat
sources f , the energy balance equation can be written as

d

dt

�
B

e dV = −
�
∂B

q · n dS +

�
B

f dV , (3.1)

which states that the change in thermal (internal) energy within the body must be equal
to the heat transferred across its boundary ∂B and the heat introduced from additional
sources f . The integral is negative because the transferred energy is considered added to
the system if the heat flux is pointing into the body.
Assuming that heat flux q is a continuously differentiable field within domain B and

continuous on ∂B, we can apply the divergence theorem to the vector field

d

dt

�
B

e dV = −
�
B

∇ · q dV +

�
B

f dV . (3.2)

Given that body B is independent of time, we can pull the time derivative into the
integral and rearrange the terms onto one side. Further, the integral must hold on every
subset of the computational domain Ω, giving rise to the PDE

de

dt
+∇ · q− f = 0 . (3.3)

To obtain a closed system of equations, we need to introduce constitutive relationships
between the internal energy e and the heat flux q in terms of the temperature field θ.
Considering a rigid body without motion, the internal energy can be written as [152]

e = ρcθ , (3.4)

where ρ is the local material density, c denotes the specific heat capacity and θ the temper-
ature. Furthermore, we introduce Fourier’s law of heat conduction for isotropic materials,
which states

q = −k∇θ . (3.5)
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3.1. Physical Background

Assuming that the material constants are time-independent, the full PDE can be rewrit-
ten as

ρc
dθ

dt
−∇ · (k∇θ)− f = 0 . (3.6)

If the material parameters are considered constant, the parameters are often rearranged
in terms of their thermal diffusivity λ = k/ρc. Then Equation (3.6) reads

dθ

dt
− λ∆θ − f

ρc
= 0 . (3.7)

This system can be simplified in the stationary case without external heat sources (f = 0),
when the temperature field satisfies Laplace’s equation

∆θ = 0 . (3.8)

Heat transfer problems (or other types of diffusion dominated systems) are not only
frequently considered for demonstration purposes in simulations due to their simplicity,
but also play an important role in many fields of engineering, with applications ranging
from heat transfer in electrical systems in fatigue analysis under thermo-mechanical load-
ing [108], to heat dissipation in braking systems [233], to extrusion die manufacturing [238]
(cf. Chapter 4).

3.1.2. Continuum Mechanics - Linear Elasticity

Continuum mechanics is the study of the mechanical behavior under different loading
conditions of a continuous, compact set of material points. It describes the macroscopic
behavior of a body and is used in almost all areas of modern engineering. While a full
discussion of continuum mechanics is beyond the scope of this work, there is extensive
literature on this topic and the interested reader is referred to, for example, [12, 36, 109,
132]. In the context of this work, we limit ourselves to the consideration of linear elastic,
isotropic material behavior, which is a reversible deformation that does not depend on the
load history or the orientation of the material. Furthermore, only stationary problems are
addressed.
The derivation of the corresponding equations follows a similar principle as in the pre-

vious model. For this purpose, an infinitesimal element is virtually cut free from a solid to
form the balance of forces. This approach yields the conservation equation (cf., e.g., [49])

∇ · σσσ + f = 0 , (3.9)

with the Cauchy stress tensor σσσ and a volumetric force field f .
Equation (3.9) describes a general principle and is not limited to a specific material.

However, this system of equations is not complete and requires additional constitutive
equations that describe the idealized material behavior and determine the relationship
between strains (as a function of the displacement field), describing the deformation of a
body and the resulting stresses.
As strain measure, we consider the linearized Green-Lagrange strain [12], or infinitesimal

strain tensor, which reads

ϵϵϵ =
1

2

�
(∇u) + (∇u)T

�
, (3.10)
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as a function of the displacement field u.
Finally, we need to establish a relationship between stress and strain to close the system

of equations. To do this, we formulate the constitutive equation for an ideal material,
the isotropic, linearly elastic solid, according to Hook’s law. Linear elasticity is often
used as a first estimate of the mechanical behavior of new designs. In fact, for many
applications, engineers try to stay within the linear regime of the material used to ensure
that the mechanism does not exhibit permanent deformation or even fracture. As the
name suggests, this material idealization assumes a linear relationship between the strain
measure, i.e., the deformation, and the applied load, and a fully reversible deformation
when the load is removed. This idealization can provide a good estimate of material
behavior when deformations remain very small. It reads

σσσ = λtr (ϵϵϵ) I+ 2µϵϵϵ , (3.11)

where λ and µ are known as Lamé’s coefficients, which are to be determined from appro-
priate experiments. These constants can also be expressed in terms of the more commonly
used parameters Young’s modulus E, which is a proportionality factor between the ten-
sile/compressive loading and the corresponding tensile/compressive stress, and Poisson’s
ratio ν, which characterizes the transverse contraction behavior using1

µ =
E

2 (1 + ν)
λ =

Eν

(1− 2ν)(1 + ν)
. (3.12)

3.1.3. Boundary Conditions

Both PDEs described in Equations (3.3) and (3.9) yield a parabolic boundary value prob-
lem given the presented constitutive equations and require appropriate Boundary Condi-
tions (BCs) in order to form a well-posed problem.
The BCs considered in this thesis are twofold. First, Dirichlet-type conditions are applied

where the fields have an explicitly defined value of the unknown quantity. Dirichlet-type
boundaries are applied to a (part of a) spatial boundary ΓD ⊂ ∂Ω. In the case of heat
transfer, this is reflected in a specific temperature TΓ on the surface,

θ = TΓ on ΓD , (3.13)

while in the case of linear elasticity, a specified displacement g is forced

u = g on ΓD . (3.14)

Dirichlet BCs are typically used to describe surfaces attached to other components, such
as heating elements, mechanical mounts, housings, or external mechanisms, and therefore
must have the same value as their counterpart.
Neumann, or second-type BCs are applied to the external boundary ΓN ⊂ ∂Ω, with

ΓN ∪ ΓD = ∂Ω and ΓN ∩ ΓD = ∅. Contrary to Dirichlet BCs, which impose values on
the solution itself, these act on the (first-order) derivatives of the fields described by the

1The presented simplified equations originate from the 3D linear case and their validity heavily depends
on underlying hypothesis about the state of strain and stress in the 2D case. Here, we indirectly assume
that all strain components along the third axis are zero, which in practice is referred to as the plane
strain assumption.
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system of PDEs. In the context of heat transfer, this involves prescribing the net heat flux
density qΓ over the boundary, c.f. Equation (3.5))

q = −k∇θ · n = qΓ on ΓN , (3.15)

where n represents the unit normal vector. If the prescribed flux over the boundary qΓ is
negative, heat is added to the system. In the case of linear elasticity, Neumann BCs are
expressed as a prescribed surface traction h, i.e., external pressures, loads or forces, which
are imposed using

σσσ · n = h on ΓN . (3.16)

If not otherwise specified, zero-Neumann conditions are assumed, i.e., qΓ = 0 and h = 0.
For heat transfer, this implies an adiabatic surface, while for elasticity problems it implies
a traction-free boundary.

3.2. Isogeometric Analysis

3.2.1. An Overview

PDEs like the ones introduced in Chapter 3.1 can be solved numerically using various
techniques. Among the most prevalent are the Finite Difference Method (FDM) (e.g.,
[133]), the Finite Volume Method (FVM) (e.g., [58]) and the Finite Element Method
(FEM) (e.g., [67, 117, 236]). Since its introduction in the aerospace industry in the 1950s,
FEM has become the de facto industry standard in structural mechanics and many other
fields of engineering.
Most modern mechanical engineering applications use Computer Aided Design long be-

fore physical prototypes to reduce production costs. The standard workflow links the
geometric design stage with CAD to Computer Aided Analysis (CAA) through meshing,
a costly and time-consuming process. In this step, the original geometry is discretized
and (in most cases) defeatured using a computational mesh, while geometric complexity
is reduced to a minimum in order to make the analysis manageable. Even without de-
featuring, this step introduces geometric errors into the system, as in most cases rounded
surfaces in the original geometry are approximated using piecewise polynomial cells. Fur-
thermore, the necessary preparatory steps and meshing procedures collectively account
for a significant proportion of the total analysis time [53]. Moreover, if the given mesh
accuracy proves insufficient, mesh refinement requires knowledge of the original geometry
to capture geometric details of the boundary and the discretization has to be repeated.
Driven by considerations of cost efficiency within the design workflow, Hughes, Cottrell,

and Bazilevs [118] introduced the paradigm of IsoGeometric Analysis in 2005 with the goal
of seamlessly linking the analysis stage with geometric design. This approach incorporates
splines, the mathematical geometry description traditionally used in CAD (cf. Chapter 2),
as the basis for solving PDEs, therefore eliminating the meshing stage. The accuracy pro-
vided from CAD geometries is generally insufficient for analysis, where, e.g., displacement
fields or stresses have to be computed on a very fine scale compared to their geometric
features. However, refinement strategies such as h-, p-, and k-refinement [54] can be in-
troduced using the methods presented in Chapter 2.2.3, which increase the field resolution
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without altering the geometry. It is important to note that while h- and p-refinement
have counterparts in FEM, k-refinement has a distinctive status in IGA. This method al-
lows to simultaneously reduce the element size and increase the polynomial order without
compromising a given level of continuity.

The high continuity in between elements, as well as the direct utilization of the CAD-
model confer multiple benefits to the analysis, with particular emphasis on the following
aspects:

Integration of Optimization and Design A fundamental aspect of this thesis is the
inherent compatibility between IGA and shape optimization. Using IGA for analysis
within the shape optimization loop, the control points of the discretized geometry di-
rectly serve as the design variables [223]. After successful optimization, these control
points can be easily reinserted into the original design because they contain the same
geometry representation. This eliminates the need for additional post-processing steps
that are otherwise required in classical FEM when using a node-based optimization
strategy. In the latter case, the original design must be adjusted based on the modified
mesh, which can be a costly, error-prone process. As a result, IGA has found many ap-
plications in shape optimization, such as fluid dynamics for minimizing drag or pressure
loss [173, 177] shell structures [102, 104], and also truss-based lattice structures [228,
227].

Geometrically exact As mentioned above, eliminating the mesh not only reduces the
number of steps required for analysis, but also limits the geometric error that would
otherwise be introduced by piecewise polynomial approximations using standard FEM.
One of the major advantages of the specific construction methods for microstructured
geometries presented in Section 2.3 is their exact conformity to the macro shape. It
is therefore natural to maintain this exactness in the analysis step. Furthermore, the
approximation can significantly affect the simulation result, especially when the analysis
is particularly sensitive to the underlying geometry, e.g. in buckling [174]. The use of
spline-based geometries is also beneficial for many applications that require a specific
continuity, such as some shell models [23]. To that extent, modeling geometries with
consistently high continuity is an active area of research, see for example [151].

High Accuracy Compared to conventional Finite Element Methods, it is typically pos-
sible to achieve higher accuracy per Degrees Of Freedom, employing the aforementioned
refinement strategies [116, 191]. This has already been demonstrated in various fields,
notably, structural analysis [54, 55] and fluid mechanics [2, 145].

Of course, these advantages do not come without drawbacks. The high continuity, in-
cluding across element boundaries, not only improves solution accuracy but also typically
results in a larger number of non-zero elements in the assembled matrices and reduces the
efficiency of the linear solver compared to standard finite elements. Generally, this increases
the computational costs and memory requirements for both assembly and solving, partic-
ularly when conventional methods adapted from standard FEM are used (cf. Da Veiga
et al. [56] and references therein for more details). Methods to counteract these effects are
an active topic of current research, with measures ranging from increasing the efficiency of
assembly through more efficient quadrature rules [43] or sum factorization [39], to devel-
oping efficient multi-grid solvers [205]. The primary motivation for developing IGA was to
provide a natural integration of CAD and numerical analysis. However, a significant chal-
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lenge arises from the different representation modes. In particular, CAD predominantly
uses a Boundary Representation (B-Rep) - describing the surface between the inside and
outside of the domain. While a surface representation (in 3D) may be sufficient for cer-
tain shell models [219, 125, 218] used to describe the behavior of thin-walled structures,
continuum mechanics applications, whether structural or fluid, require Volumetric Repre-
sentations (V-Reps) of the computational domain. Contrary to the original intent, this
requires a separate “meshing” step to generate an analysis-suitable V-Rep geometry. Many
methods have recently been developed to recover such geometries or to make them more
suitable for numerical analysis, for example those presented in [121, 101]. Recognizing
this limitation, Cohen et al. [50] called for a shift towards analysis-aware modeling and
proposed appropriate guidelines. Furthermore, recent efforts towards modeling with V-
Reps, including multivariate trimmed B-Splines [156, 157], have already yielded promising
results in IGA [13]. Efforts towards volumetric modeling have also been proposed in the
field of additive manufacturing, where it is essential to represent the region of interest in
detail, also suggesting the incorporation of spline types that can be locally refined [66].

IsoGeometric Analysis is still a relatively new and active area of research. While a com-
prehensive discussion is beyond the scope of this thesis, the interested reader is referred
to the (probably most influential) book [53] as well as the review papers on fluid mechan-
ics [25], structural mechanics [98], design optimization [225], as well as implementation
details [168] and the treatment of trimmed B-Reps [154], for further reading.

In the remainder of this section, we will elucidate the basic principles of IsoGeometric
Analysis and explain the essential equations and concepts. To this end, we will follow
the derivation of one of the PDEs introduced earlier and discuss the underlying concepts
and spaces. Although other forms of IGA exist, such as collocation methods [20, 196],
immersed IGA [195, 65], but also locally adaptive methods [41], we will only consider the
more established Galerkin method with standard tensor product splines, which is more
closely related to standard FEM.

3.2.2. Strong and Variational Form

To derive the necessary components for IGA, we will consider the boundary value problem
of the heat equation as introduced in Equation (3.7) in the stationary, isotropic case.
For simplicity, we will rewrite f̄ = f/ρc and q̄Γ = −qΓ/ρc. In this context, the minus
sign is introduced to represent the flux from the perspective of an external observer for
readability. Simply put, a positive flux value indicates the addition of energy to the system.
The objective is to find a temperature field θ : Ω̄ → R, such that (cf. Section 3.1)

λ∆θ + f̄ = 0 on Ω , (3.17a)

θ = TΓ on ΓD , (3.17b)

λ∇θ · n = q̄Γ on ΓN . (3.17c)

The above equation is referred to as the strong form of the model problem. Following
a classical Galerkin approach, the first step is to write Equation (3.17a) in the weak or
variational form. This is achieved by multiplying both sides with an arbitrary test function
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w and integrating over the domain Ω. After applying Green’s identity to the resulting
equation, the weak form of the problem reads

−
�
Ω

λ∇w · ∇θ dV +

�
∂Ω

λw (∇θ · n) dS +

�
Ω

wf̄ dV = 0 , (3.18)

which only contains first order spatial derivatives, hence reducing the continuity require-
ments of the solution.
Considering the BCs from Equation (3.17b), we can now define the set of trial solutions

Sθ the set of weighting functions V as (see e.g., [53])

Sθ =
�
θ | θ ∈ H1(Ω), θ = TΓ on ΓD

�
, (3.19a)

V =
�
w |w ∈ H1(Ω), w = 0 on ΓD

�
. (3.19b)

where H1 denotes the first order Sobolev space. All trial solutions θ ⊂ Sθ naturally fulfill
the Dirichlet BCs on ΓD, i.e., θ|ΓD

= TΓ. The weighting functions can therefore be chosen
homogeneous on the Dirichlet boundary, that is, w = 0 on ΓD.
As in the given example the BCs only consists of Dirichlet-type and Neumann-type

boundaries, the boundary integral of Equation (3.18) reduces to an integral over ΓN , where
the flux over the boundary is known. Rearranging the terms in terms of unknowns and
replacing the boundary integral yields the weak form of the problem: Given f̄ , q̄Γ, find
θ ⊂ Sθ, such that for every w ⊂ V�

Ω

λ∇w · ∇θ dV� �� �
aθ(θ,w)

=

�
ΓN

w q̄Γ dS +

�
Ω

w f̄ dV� �� �
Lθ(w)

. (3.20)

Here, aθ and Lθ denote the bilinear and linear form respectively. This new equation will
serve as a basis for discretization in the following steps.

3.2.3. Discretization

The key to solving Equation (3.20) numerically is to consider discrete functions θh and wh,
of a set of finite dimensional function spaces Vh ⊂ V and Sh

θ ⊂ Sθ yielding the problem
formulation: Find θh ∈ Sh

θ such that

aθ(θ
h, wh) = Lθ(w

h) ∀wh ∈ Vh . (3.21)

Following the core concept of IGA, we will further consider the geometric mapping Ψ :
Ω̃ → Ω, which is set to be some tensor-product (NURBS) spline2, that maps from a
parametric domain Ω̃ into the physical space Ω. We consider the mapping to be bijective,
i.e., det(JΨ) > 0, where JΨ denotes the Jacobian matrix of the geometric mapping with
(JΨ)ij = ∂xi/∂ξj. Recalling Equation (2.7), the mapping consists of

Ψ =

nC�
i

RiCi , (3.22)

2Here, we will consider one spline, or a single-patch geometry. For completeness, a short remark on
multipatch geometries has been included at the end of this chapter.
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3.2. Isogeometric Analysis

with control pointsCi in physical space. Building on this mapping, we can define our (finite
dimensional) solution space based on all linear combinations of the set of basis functions
Ri. Therefore, an approximation of the unknown field θ̃h : Ω̃ → R can be written as

θ̃h =

nθ̂�
i

Riθ̂i +

nD�
i

RD
i θ̂

D
i , (3.23)

with a set of nθ̂ independent coefficients θ̂, and a set of nD nodes θ̂D on the Dirichlet

boundary ΓD. We assume that a set of boundary coefficients θ̂Di exists to represent the
function TΓ at the boundary ΓD, otherwise an approximation must be computed using
methods such as L2-projections. Note that in the general case, the number of coefficients
in the field approximation may differ from the number of control points associated with
the geometry representation, e.g., when refinement is applied. To reduce the number of
computations required, the refinement could be applied only to the field and not to the
geometry, hence nC ̸= nD +nθ̂. Although this is done in practice, we will not consider this
case in the derivation of the necessary equations.
Since we require the mapping to be invertible, we obtain a suitable function θh using

the composition

θh = θ̃h ◦Ψ−1 . (3.24)

Pulling back Equation (3.20) into the parametric domain, Equation (3.21) becomes:�
Ω̃

λ (∇̃w̃hJ−1
Ψ ) · (∇̃θ̃hJ−1

Ψ ) det (JΨ) dV =

�
Ψ−1(ΓN )

w̃h(q̄Γ ◦Ψ) JΓ dS + . . .

. . .+

�
Ω̃

w̃h(f̄ ◦Ψ) det (JΨ) dV , (3.25)

with test functions in the parametric domain w̃h = wh ◦Ψ. These set of nθ̂ test functions is
defined in a similar fashion to Equation (3.23), but zero on the Dirichlet boundary. Since
the integrals are all linear with respect to the test functions, the test function coefficients
can be omitted and only the basis functions will be considered.
Here, ∇̃ denotes the gradient in the parametric domain, such that ∇̃i = ∂/∂ξi, with

coordinates in parametric space ξξξ. Pulling back the gradient from the physical into the
parametric domain with Equation (3.24) yields

∇ = ∇̃ J−T
Ψ (3.26)

Further, JΓ is the surface metric on the boundary of the geometry, defined as JΓ = ∥∂Ψ/∂ξ̃∥
in 2D and JΓ = ∥∂Ψ/∂ξ̃1 × ∂Ψ/∂ξ̃2∥ in 3D, with local coordinates ξ̃ defined on the respective
boundary in parametric space.
Equation (3.25) results in a system of nθ̂ linear equations

Kθθθ = F . (3.27)

with the vector of unknown coefficients θθθ = [θ̂1, . . . , θ̂nθ̂
]T and entries

Kij = aθ(Ri,Rj) ,

Fi = Lθ(Ri) . (3.28)

An illustration of the workflow from geometry representation to IGA solution is shown
in Figure 3.2.
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(a) Linear and quadratic
Bézier curves comprise the let-
ter “J” in the GNU FreeFont
FreeSerif [185].

(b) Analysis suitable geome-
try, generated using the meth-
ods presented in [120, 119] with
G+SMO.

(c) Solution of the Poisson
equation ∆u = c with homo-
geneous BCs computed on the
geometry using IGA.

Figure 3.2.: Illustration of the Computer Aided Engineering workflow with IGA. Taking
the spline representation of a geometry, for example from a CAD design (here in Figure (a)
extracted from a font-file, which are generally stored as Bézier curves), a V-Rep geometry
suitable for analysis is generated, see Figure (b). Finally, with CAA, the Poisson equation
is solved using the methods presented in this chapter, resulting in the solution field shown
in Figure (c).

Some Remarks on the Numerical Implementation

In practice, the integrals described in Equations (3.25) are evaluated by numerical inte-
gration. Although finding more efficient methods is an active topic of current research [21,
100, 43], in the context of this thesis, the classical Gauss-Legendre quadrature and Bézier
extraction is adopted. This method involves defining a set of weights and quadrature points
on a reference element, which is subsequently mapped (using a linear mapping Ψ̄) into the
parametric space. Analogous to the FEM approach, an element is defined as a (tensor
product) non-zero knot span of the spline patch. For a clearer perspective, Figure 3.3
provides an overview of the various domains and mappings utilized in this chapter.

The assembly of the linear system is subsequently performed element-wise. In the con-
text of this thesis, we use the open-source software Geometry + Simulation Modules
(G+SMO) [123] (pronounced gismo) for assembling these linear systems of equations.
G+SMO also provides linear solvers using the Eigen library [97]. For the simulations con-
ducted in this thesis, we will exclusively use the iterative solver BiCGStab, see the Eigen
documentation or [217] for further detail.

So far, we have only dealt with a single spline at a time. For most applications, however,
a single spline cannot adequately describe the complex topologies of the physical domain.
The computational domain therefore consists of a set of patches, each represented by a
spline (or patch).

There are several ways to couple the individual patches during the assembly of the linear
system [107, 15], such as weak interface coupling using Nitsche’s method [169] or mortar
method approaches [40], but here we consider only strong coupling, where neighboring
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ξ̄

η̄

ξi ξi+1

ηj+1

ηj
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y

ξ

η

Ψ̄

Ψ

Figure 3.3.: Overview over the different mappings and domains. During assembly, quadra-
ture points are defined on the reference element, which are then projected into the para-
metric domain Ω̃ using a linear mapping Ψ̄. The trial and test functions are defined on
the parametric domain and then mapped into physical space Ω using the geometric map-
ping Ψ.

spline patches share control points and coefficients on their common interface. As a conse-
quence, we not only require C0-continuity between adjacent splines, but also assume that
they share a common tangential parametrization of the boundary surface. However, they
may have different internal parametrizations along normal parametric axes.

3.3. Shape Optimization

3.3.1. Strategies for Numerical Optimization

Structural optimization is a fundamental part of modern engineering, focused on determin-
ing the optimal design under given constraints. In fact, numerical optimization as a field
of active research goes back as early as the 1960s [197]. Conceptually, design optimization
can be divided into three categories [59], with increasing design flexibility:

Sizing Optimization Given a predefined layout, the optimization process focuses on
determining the optimal set of thicknesses, widths, or cross-sections. Examples include
the appropriate sizing of trusses in a lattice structure [213] and also the optimization of
channel geometries using specific set of widths [79]
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Shape Optimization Here, the objective is to find the best geometric configuration un-
der prescribed constraints without altering the topology of the design.

Topology Optimization This strategy introduces a higher degree of design freedom by
allowing the distribution of material within a specified design space. This may involve
creating new voids and structural elements, essentially altering the topological layout of
the design.

It’s worth noting that the distinction between sizing and shape optimization is some-
times blurry, as sizing optimization can be viewed as a trivial subset within the broader
spectrum of shape optimization techniques. Conversely, a 2D topology optimization with
density field can equally be interpreted as a sizing problem of the individual cells. Never-
theless, this categorization provides a global understanding of the evolution of design op-
timization techniques with increasing levels of design flexibility. The different approaches
are illustrated by a simple example in Figure 3.4, inspired by [30].

Figure 3.4.: Comparison between the different categories of design optimization applied to
lattice structures, inspired by [30]. Starting from a base geometry (top), sizing optimization
(left) acts on a predefined set of individual model parameters, such as beam thickness. On
the other hand, shape optimization (center) acts – more globally – on the geometry of the
domain. Finally, Topology Optimization (right) determines features and can change the
connectivity, here shown by removing individual cells. In practice, the distinction between
these methods is usually blurry. The geometries shown are not the result of optimization,
but are used for illustration purposes only.

In the context of microstructure optimization, a further distinction can be made between
concurrent optimization, which involves the simultaneous modification of multiple scales or
design features [165], and single-scale optimization, where only local or global features are
considered, e.g., the individual truss diameters within a lattice structure [166]. In general,
concurrent lattice optimization couples the designs at different scales. It is, therefore,
preferable to single-scale optimization, as research suggests that macro scale and micro
scale effects strongly interact with each other [231].
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3.3.2. PDE-constraint Optimization

The shape optimization problems discussed in this thesis and structural optimization prob-
lems in engineering applications generally belong to the class of PDE-constraint optimiza-
tion problems, where structural performance or the design quality is evaluated in the
context of a model problem. The shape optimization problem consists of three main com-
ponents. The first component is the geometry module OΨ, which defines the structural
design as a function of a set of geometric design variables χχχ (cf. Equation (2.25)). The
geometry module provides the optimization process with an appropriate geometry for the
second component - the solver for numerical analysis. This analysis is performed based
on the generated geometry to provide the necessary fields required to asses the current
design’s performance. Finally, the optimization driver Oχχχ updates the design variables
and thus the underlying geometry. The general outline of the optimization framework is
illustrated in Figure 3.5. The geometry module includes an optional step of discretization,
which may be necessary to prepare an analysis-suitable geometry representation. This
may involve modifying or refining the mesh, particularly in the context of Finite Element
Method (FEM), or appropriately refining the underlying geometry. Furthermore, some op-
timization drivers require information about the gradient of the objective function, which
will be covered in detail in Section 3.4.
Considering the objective function J , evaluating the structural performance of a given

design, the shape optimization problem in its basic form can be written as

min
∀χχχ

J (θ, χχχ) ,

subject to c (Ω(χχχ), θ) = 0 , (3.29)

where c represents the PDE constraint in its residual form. In structural optimization
however, the domain Ω and the solution field θ can also be regarded as a function of
the design variables χχχ, i.e., θ(χχχ). Furthermore, additional equality constraints kE and
inequality constraints kI can be imposed on the optimization problem. In the fabrication
and design of microstructures, these can include, e.g., restricting the total mass [137],
limiting the design space to admissible design variables χχχ, or introducing manufacturing
constraints [6, 212, 198]. These constraints can be a function of the domain (e.g., mass
constraints), of the design variables (e.g., box constraints to maintain an admissible range
of design parameters) and of the solution field (e.g., maximum stresses, temperature limits),
and therefore can be written as k (θ(χχχ), Ω(χχχ), χχχ), making them a function that depends
purely on the design variables. Using this information, we can introduce a new (albeit
less rigorous) definition of the objective function Ĵ (χχχ) = J (θ(χχχ), χχχ) to facilitate the
treatment of these additional constraints in the form

min
χχχ

Ĵ (χχχ) ,

subject to kI (χχχ) ≤ 0 ,

kE (χχχ) = 0 , (3.30)

with Lagrangian

L̂(χχχ, λλλ) = Ĵ (χχχ) + λλλT
I kI(χχχ) + λλλT

E kE(χχχ) , (3.31)
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Initial
Design χχχ0 and
Boundary
conditions

Geometry Module
OΨ

Construct
Geometry

Discretize Domain

Solver

PDE-Analysis
on Ω(χχχ)
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Optimal Design

Determine
Gradient

Update Parameters

Oχχχ
Optimization Driver

χχχ

Ω(χχχ)

J (θ,Ω,χχχ)

yes
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Figure 3.5.: General outline of the optimization framework for PDE constraint optimiza-
tion, based on [238]. Here, we assume that the gradient is computed on the solver side,
which is typically the case when using an adjoint approach. Furthermore, the termination
criterion is in most cases also evaluated by the optimization driver.

with Lagrange multipliers λλλ = λλλI ∪ λλλE. This Lagrangian L̂ is a prerequisite for defining
the first-order necessary condition for optimality, also known as the Karush-Kuhn-Tucker
(KKT)-conditions [131]. It states, that for any local solution χχχ∗, there exists a Lagrange
multiplier λλλ∗, such that the following conditions are satisfied

∂χχχL̂(χχχ∗, λλλ∗) = 0 , (3.32a)

kI (χχχ
∗) ≤ 0 , (3.32b)

kE (χχχ∗) = 0 , (3.32c)

λλλ∗
I ≥ 0 , (3.32d)

λλλ∗T
I kI = 0 . (3.32e)
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Equation (3.32e) implies that (row-wise) either the inequality constraint is active, i.e.,
kI(χχχ) = 0 or the Lagrange multiplier is 0. The active inequality constraints are referred to
as the active set. For a more comprehensive explanation and the definition of second-order
necessary and sufficient conditions, we refer to [172], which also provides a mathematically
sound explanation, aspects of which were neglected here for simplicity. The optimization
problem defined in Equation (3.30) is treated by the optimization driver Oχχχ. Together with
the geometry module OΨ, the analysis driver provides the required function evaluations
and derivatives. Computing the derivative of the Lagrangian with respect to the design
variables χχχ requires differentiating the objective function as stated in Equation (3.21).
This is not a trivial task and will be discussed in detail in section 3.4.

3.3.3. IsoGeometric Analysis and Shape Optimization of Lattice
Structures

As highlighted in Section 3.2, the integration of IsoGeometric Analysis, which inherently
bases its numerical analysis on the shape representation, constitutes a natural complement
to the classical shape optimization framework. It allows (a subset of) the geometry’s con-
trol points to serve as design variables for the optimization problem. This largely omits
the intermediate step of providing an appropriate analysis mesh to the FEM-model and
eliminates the reintegration of geometric changes into the CAD-model. Despite numerous
applications of isogeometric analysis in design optimization, as evidenced by works such
as [86], its use in the specific context of lattice structures has been relatively limited. In
many applications using IGA with microstructure geometries, the focus is often solely on
designing either scale, for example to find local geometries which lead to auxetic macro-
scopic behavior [87], sometimes analyzed in combination with reduced order models [164].

IGA has also been applied to lattice structures comprised of beam elements, where
the one-dimensional element description is used to save computational costs. In [227],
Weeger, Narayanan, and Dunn used a global optimization approach to modify the control
points defining the beam centerline to minimize the compliance of the structures. The same
approach was later extended by the author to include other cross-sectional properties, such
as thicknesses and material properties, and has been used in various applications, such as
the design of meta-material unit cells or shape memory composites [226]. However, this
approach treats all centerline control points as individual design variables, requiring the
implementation of specific constraints to minimize deviation from the original shape. As a
result, this method is limited to specific macro geometries, and macro shape optimization
cannot be performed easily.

In an effort to optimize conformal microstructures, the study presented by Choi and
Cho [47] uses a different methodology based on the concept of Free-Form Deformation.
In their approach, the lattice structure is initiated by constructing a spline geometry on
a planar surface and then using FFD on sample points to map the lattices onto a curved
surface (see Section 2.2.4). The optimization goal is to achieve a conformal microstructure
within the surface representation, so the samples are fitted with a NURBS curve. They
further used IGA-beam elements and analytical derivatives for the optimization of the
lattices. However, despite efforts to minimize the fitting error through refinement, the
spline itself may deviate outside the surface, introducing a geometric error.
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Finally, Antolin et al. [14] suggested using the microstructure design process described
in Section 2.3 for shape optimization. This approach allows the optimization of both
the local geometry and the macro shape, individually or simultaneously. In contrast to
the previous methods, analytical conformity is ensured up to machine accuracy and the
geometry output is inherently CAD-compliant.

3.3.4. An Analogy with Topology Optimization

Topology Optimization (TO) encompasses a range of methods aimed at determining the
optimal layout or distribution of material within a given design space to achieve spe-
cific performance objectives. These methods include density-based approaches, such as
the Solid Isotropic Material with Penalization (SIMP) method [28], free material design
techniques [29], homogenization method [11], approaches based on stochastic optimization
strategies like genetic algorithms [124], evolutionary strategies [186], and many more. This
thesis will not cover a comprehensive review of topology optimization methods; instead,
the interested reader is referred to [30, 10, 9].

At their core, homogenization approaches, SIMP and free material design techniques
incorporate fictitious materials or fields as design variables for optimization. While all en-
tries of the elasticity tensor can serve as design variables for free material design, the SIMP
method scales the elasticity tensor with a density distribution field. In SIMP, the penal-
ization step forces the density to take values closer to 0 and 1 in different post-processing
stages to extract a “real” shape. In the 2D case, a density field can be interpreted as a
plate with varying thickness. Thus, the problem can be interpreted as sizing the individual
cells, again blurring the boundaries between sizing, shape, and topology optimization.

The idea of using a density field for optimization also translates to microstructure con-
struction and has already found applications in other construction methods for microstruc-
tures. Previous work has often leveraged these density fields by (1) homogenizing structures
composed of lattice geometries to extract their material properties and (2) employing topol-
ogy optimization methods to select the cell that best suits the local loading requirements.
In [113], the authors applied IGA at the macro level, using an approach similar to SIMP
within a B-Spline representing the macro geometry. Following this analysis, the density
distribution obtained was used as a basis for designing the microstructure using Triply Pe-
riodic Minimal Surface (TPMS)-based local geometries defined in the parametric domain
of the spline. Similarly, in [224] the authors used SIMP alongside asymptotic homogeniza-
tion [16] to optimize compliance. However, no IGA-based analysis or optimization was
directly applied to the full model of the microstructure itself.

In the parametrization technique proposed in this work, the abstraction of local cell pa-
rameters in the form of a parameter spline can be interpreted as a density field, analogous
to TO approaches. However, in contrast to these techniques, our concurrent parametriza-
tion – i.e., the simultaneous modification of local and global properties – extends this idea
to include, to some extent, the interaction between macroscopic and microscopic effects.
The deformation of the outer geometry and the resulting orientation of the local structure
promises a better force distribution of the structure. In addition, by abstracting the thick-
ness distribution, we can vary the local structure and achieve a continuous variation of the
thickness through the smooth non-zero basis functions of splines.
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3.3.5. On the Optimization Driver

In the iterative process of a common optimization framework, the optimization driver
plays a critical role in determining the evolution of design variables toward an optimal
solution. This updating step employs various optimization algorithms that rely on in-
formation acquired by previous iterations. The vast field of optimization algorithms can
generally be divided into two distinct groups based on the information provided. Gradient-
based approaches, such as steepest descent methods [159] or quasi-Newton methods [222],
are known for their faster convergence rates, resulting in fewer objective function evalua-
tions and better overall performance. However, their requirement for gradient information,
which is often analytically inaccessible, poses a challenge.

In contrast, gradient-free methods [182] require only objective function evaluations. Such
methods are widely used as computing the gradient can be an expensive and cumbersome
task. Recent advances have explored the use of machine learning as gradient-free opti-
mization algorithms in shape optimization [85]. In addition, evolutionary algorithms have
found applications in microstructure optimization [64].

When the gradient is required, techniques such as adjoint methods [214] (see Section 3.4),
algorithmic differentiation [161, 96], or finite differences [70] are used to approximate the
gradient. While adjoint methods are computationally efficient, they present challenges
in terms of implementation complexity, especially in systems with black-box components.
Conversely, (forward) algorithmic differentiation3 and finite differences are more accessible
but come with additional costs, generally requiring an additional evaluation of the PDE
constraint for each design parameter. This makes them computationally expensive, espe-
cially for complex geometry parametrizations. In the following section, we introduce the
adjoint method, a powerful technique for efficiently computing gradients in shape opti-
mization.

3.3.6. Short Remark on the Optimization Framework

The framework for the optimizations conducted in this thesis is constructed in Python and
follows the principles shown in Figure 3.5. For geometry construction, we use splinepy,
our in-house prototyping tool for geometry construction. splinepy provides all the methods
and functionality needed to construct the microstructures described in Section 2 as well
as their derivatives. splinepy utilizes a fast C++ backend for expensive operations such as
spline composition and evaluation, while providing a simple Python interface and many
input/output options, including for Geometry + Simulation Modules (G+SMO) [123].
G+SMO, the open-source simulation module, is used for discrete adjoint analysis and
computation. To facilitate the implementation of new PDEs, G+SMO provides an ex-
pression assembler, which has also been used in the context of this thesis. Special Python
bindings have been written to facilitate integration into the optimization framework, which
can be found in reference [237]4.

3Although computing the gradient using backward algorithmic differentiation is efficient for a high number
of variables, its implementation is very complex and is associated with high memory usage. Therefore,
it is not considered here.

4At the time this was written, Python bindings for the expression assembler were unavailable. However,
G+SMO’s rapid development now includes a new framework supporting the expression assembler
natively through just-in-time compilation.
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The optimization driver uses the Python bindings provided by the Nonlinear Optimiza-
tion Framework (NLopt) [122], a freely available library designed for nonlinear optimization
tasks. NLopt provides a unified interface for accessing various optimization routines from
different online repositories, as well as original algorithms developed within the NLopt
project. This allows the selection and testing of different optimization algorithms with-
out major intervention in the optimization framework. The selected algorithm is specified
for each application in the following chapters. Additionally, the SLSQP implementation
provided by the scipy [221] library will be used in some of the test cases.

3.4. Computing Derivatives

Adjoint methods, based on the principles of Lagrange multipliers, have been widely used
in shape optimization because of their computational efficiency and versatility. These
methods provide a powerful means to efficiently compute gradients, which play a crucial
role in sensitivity analysis for shape optimization. For a deeper understanding and more
comprehensive exploration of adjoint methods, the interested reader is referred to [8, 45,
93]. In the following section, we will present the adjoint method by deriving the necessary
equations from the Lagrangian formulation based on the model problem introduced in
Chapter 3.25. The objective is to find the derivatives of the objective function with respect
to the design variables χχχ, therefore we will disregard all additional constraints k. These
either do not depend on the solution of the PDE-constraint or are treated separately by
the optimization driver, as discussed in Section 3.3.2.
Recalling the optimization problem introduced in Equation (3.29), the Lagrangian can

be defined as

L (θ,χχχ,λλλ) = J (χχχ, θ) + λλλTc (θ,Ω(χχχ)) , (3.33)

where L defines the Lagrangian of the optimization problem, together with a vector of
Lagrange-multipliers λλλ ∈ Rnθ̂ , i.e., one for every DOF. The superscript h indicating the
discretized functions is omitted for readability. As the PDE constraint c is written in
residual form, i.e., c = 0, it follows that

dχχχL (θ,χχχ,λλλ) = dχχχJ (χχχ, θ)

= ∂χχχL (θ,χχχ,λλλ) + ∂θL (θ,χχχ,λλλ) dχχχθ . (3.34)

Here, we use the notation ∂(•) to write partial derivatives, and d(•) to write a total
derivative. The total derivatives dχχχθ denote implicit derivatives, which are computationally
unattainable without solving for every component of χχχ. Therefore, crucially, we chose λλλ
to satisfy the adjoint equation

∂θL (θ,χχχ,λλλ) = 0

= ∂θJ (χχχ, θ) + λλλT∂θc (θ,Ω(χχχ)) , (3.35)

which eliminates the second term in Equation (3.34) and thus reduces the total derivative
of the Lagrangian to

dχχχL (θ,χχχ,λλλ) = ∂χχχJ (χχχ, θ) + λλλT∂χχχc (θ,Ω(χχχ)) . (3.36)

5The same principles can be applied to other PDEs.
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From Equations (3.35) and (3.36), we can develop a cost efficient procedure to determine
the gradient of the objective function. Starting from the design variables χχχ, we first

1. solve the PDE-constraint c(θ,Ω(χχχ)) = 0 using Equation (3.27)

2. determine the Lagrange multipliers λλλ using

λλλ = −�
∂θc (θ,Ω(χχχ))

�−T
∂θJ (χχχ, θ)T (3.37)

3. evaluate the gradient using Equation (3.36)

This procedure allows the computation of the gradient with only one additional solution
of a linear system of equations, as opposed to nχχχ additional linear solutions that would be
required by the Finite Differences approach.
Without loss of generality, the above equations can be derived in the same manner with

respect to the control points of the geometry representation, i.e.,

dχχχL (θ,χχχ,λλλ) = dCL (θ,χχχ,λλλ) ∂χχχC . (3.38)

In Section 2.4, the derivative of the microstructure based on the functional composition was
derived and a one-to-one relationship between the control points of the geometry and its
derivative representation was established, which means that Equation (3.38) can be written
as a matrix multiplication. The derivative with respect to the control points can also be
used to freely expand the design space once the microstructure has been constructed.
Therefore, in the following we will consider the derivatives with respect to the control
points and then use the matrix multiplication to restrict our design space to the proposed
construction process.
The derivative of the PDE-constraint function c with respect to the (here) temperature

field θ, required to solve the adjoint Equation (3.35), is already computed during the
analysis step, and can be recovered, the derivatives of the objective function are mostly
trivial to compute and will be discussed separately for each application. In the case of
linear elasticity and heat transfer problems, we also benefit from the symmetry of the
system matrix. Recalling the definitions of the bilinear forms in Equation (3.25) in the
pulled back configuration and by applying the product rule to the individual terms of the
bilinear form, the derivative of the constraint function with respect to the control points
∂Cc yields

∂Cc (θ,Ω(χχχ)) =
∂aθ(w, θ)

∂C
− ∂Lθ(w)

∂C
, (3.39)

with the temperature solution of the heat transfer problem θ, θ̃ and a the test functions
w, w̃ in their pulled back (parametric) configuration, respectively

∂aθ(w, θ)

∂Ci

=

�
Ω̃

λ (∇̃w̃
∂J−1

Ψ

∂Ci

) · (∇̃θ̃ J−1
Ψ ) det (JΨ) dV

+

�
Ω̃

λ (∇̃w̃ J−1
Ψ ) · (∇̃θ̃

∂J−1
Ψ

∂Ci

) det (JΨ) dV

+

�
Ω̃

λ (∇̃w̃ J−1
Ψ ) · (∇̃θ̃ J−1

Ψ )
∂det (JΨ)

∂Ci

dV , (3.40)
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and

∂Lθ(w)

∂Ci

=

�
Ψ−1(ΓN )

w̃ (q̄Γ ◦Ψ)
∂JΓ

∂Ci

dS +

�
Ω̃

w̃ (f̄ ◦Ψ)
∂det (JΨ)

∂Ci

dV . (3.41)

Here, we make use of the following identities6 and apply Jacobi’s formula

∂J−1
Ψ

∂Ci

= −J−1
Ψ

∂JΨ

∂Ci

J−1
Ψ (3.42a)

∂ det(JΨ)

∂Ci

= det(JΨ)tr

�
J−1
Ψ

∂JΨ

∂Ci

�
. (3.42b)

Using the definition of the geometric mapping and it’s geometry from Equation (3.22),
we obtain7

∂Ψ

∂Ck
i

= Ri , (3.43)

∂JΨ

∂Ck
i

= ∇̃Ri , (3.44)

where the index k refers to the kth component (physical dimension) of the control point.
Differentiating ∂JΨ/∂Ci would result in a third order tensor. In practice, the individual
components are computed separately and are treated as independent DOFs, which also
helps to avoid the necessity for higher dimensional matrices.

Substituting the derivatives in Equation (3.42) yields

∂aθ(w, θ)

∂Ci

=−
�
Ω̃

λ (∇̃w̃ J−1
Ψ

∂JΨ

∂Ci

J−1
Ψ ) · (∇̃θ̃ J−1

Ψ ) det (JΨ) dV

−
�
Ω̃

λ (∇̃w̃ J−1
Ψ ) · (∇̃θ̃ J−1

Ψ

∂JΨ

∂Ci

J−1
Ψ ) det (JΨ) dV

+

�
Ω̃

λ (∇̃w̃ J−1
Ψ ) · (∇̃θ̃ J−1

Ψ ) det(JΨ) tr

�
J−1
Ψ

∂JΨ

∂Ci

�
dV . (3.45)

Similar considerations also apply to the boundary integral with the surface metric JΓ.
To differentiate the linear form and to get a generalized equation, we rewrite the metric in
a dimension-independent expression [78, 139], which yields

JΓ =

�
d�

j=1

det
�
MΨ

jk

�2� 1
2

, (3.46)

where MΨ
jk denotes the j,kth minor of the Jacobian matrix JΨ, namely where the jth row

and the kth column are removed, the index k corresponds to the parametric dimension

6These arise from applying the product rule to ∂(J−1
Ψ JΨ)/∂Ci = 0

7As mentioned before, the geometry representation Ψ and trial functions might differ due to refinement.
While the different function spaces may be considered in the implementation to reduce computational
cost, here the difference will be left out to simplify the necessary equations.
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that is normal to the boundary in parametric space. This expression allows calculating
the derivative with respect to the control points of the geometry. It reads

∂JΓ

∂Ci

=
1

JΓ

d�
j=1



det

�
MΨ

jk

�
tr

�
(MΨ

jk)
−1

∂MΨ
jk

∂Ci

��
, (3.47)

where the derivative of the Jacobian minor with respect to the control points is the minor of
the derivative of the Jacobian itself, see Equation (3.44). It is essential to note that, in the
context of this work, the surface integrals exclusively appear on the Neumann boundary
ΓN . In the majority of shape optimization problems, however, this boundary remains
immutable. Its mention here is included for the sake of completeness. The optimization
framework is summarized in Algorithm 3.1.
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Algorithm 3.1: Solution strategy for a shape optimization problem with sensi-
tivities obtained using the method of discrete adjoints.

Input:

χχχ0 Initial vector of design variables

OΨ Geometry Module

Oχχχ Optimization driver

Output:
χχχ Vector of optimized design variables

Algorithm:
1 χχχ ← χχχ0 ; // Initialize system

2 while not optimized do

3 Geometry Module
4 Ω(χχχ), ∂χχχC ← OΨ(χχχ) ; // Determine parametrized geometry

and its derivatives with respect

to the vector of design variables

χχχ (cf. Algorithm 2.1)

5 PDE Solver on Ω(χχχ)

6 θθθθθθθθθ ← (K)−1 F; // Solve constraint function and

determine solution field (cf.

Equation (3.27))
7 J ← J (θθθ); // Evaluate objective function based

on solution field
8 λλλλλλλλλ ← (K)−T ∂θθθJ

T ; // Determine Lagrange multipliers,

requires solving an additional

linear system of equations (cf.

Equation (3.35))
9 dCJ ← ∂CJ +λλλλλλλλλT ∂Cc (θ,Ω(χχχ)); // Determine sensitivities of

objective function using adjoint

approach (cf. Equation (3.39))
10 dχχχJ ← dCJ ∂χχχC; // Map the control point

sensitivities onto the design

variables using their geometric

derivatives (cf. Equation (3.38))

11 Optimization Driver
12 χχχ ← Oχχχ(J, ∂χχχJ); // Update design variables based on

solver results

13 end
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3.5. Discussion

With node-based methods, where every control point of an original design serves as a design
variable, IsoGeometric Analysis provides a CAD-compliant optimization method for free,
“unconstrained” shape optimization, enabling the design of microstructures with minimal
limitations. In contrast, the proposed method for constructing microstructures appears
to be overly restrictive, as it only allows for composition-based outcomes, significantly
limiting design freedom. At the same time, the resulting geometry representation has high
polynomial degrees, which are associated with high computational costs for both analysis
and geometry construction. Therefore, the question naturally arises:

Why use this construction method at all?

First, the proposed method achieves analytical conformity by populating a domain us-
ing functional composition, aligning the local tiles both with the surface and the internal
parametrization of the macroshape. This offers a clear advantage over traditional methods,
where only point-wise boundary conformity is achieved, or the internal structure remains
in a Cartesian grid while only the boundary is conformal. Conformity plays a key role in
the adoption of this technique, as the macroscopic shape is often designed to optimize the
stress distribution in structural mechanics or the heat flux in thermal problems, guided by
external factors. Aligning the microtiles with the original design that fulfills these objec-
tives promises undisturbed flow through the microstructured design and can potentially
outperform Cartesian grid geometries. Furthermore, concurrent optimization of outer and
local geometries allows tile distribution and orientation adjustments via control points,
while stress variations can be addressed by modifying the local tile geometry, e.g., through
increasing thickness. This approach works even when the design’s outer contour remains
unchanged, by adjusting only internal control points.
The composition-based approach only utilizes components from the initial design, fa-

cilitating integration into the established design workflow. In other words, when a
pre-designed part is used as the outer shape, or deformation function, the design can be
populated with a microstructured geometry without affecting surrounding or connecting
components. In classical approaches that fill macro-domains in a Cartesian grid-like fash-
ion, geometric features and connections to adjacent parts require special attention to ensure
watertightness and prevent “floating” lattices, especially in areas of high surface curvature.
The composition-based approach can circumvent these issues by using closed tiles at the
boundary, defined once in the reference element, which naturally seal the boundary if
needed (see Section 4.3).
Restricting the design space to local tile parameters and the control points of the defor-

mation function — rather than using all control points from an initial microstructure —
helps mitigate entanglement issues and other challenges associated with node-based
approaches. In traditional node-based methods, additional constraints must be imposed
on all patches and nodes to prevent overlapping regions in the model. In contrast, the
composition-based approach ensures regularity as long as both the inner and outer func-
tions are regular. However, the parametrized microtile naturally fulfills this requirement.
As a result, only the deformation function, where control points can be modified freely,
requires checking, significantly reducing the number of necessary constraints.
Moreover, appropriate parametrization of the local structure can be used to ensure

manufacturability. By carefully setting bounds on the parametrization of the local
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structure, manufacturability constraints such as minimum thickness requirements can be
addressed directly, or in combination with characteristics of the deformation function before
insertion. This minimizes the need for strict constraints during the design process.
In addition, the design space is low dimensional, consisting only of the parameter

spline coefficients and the control points of the deformation function. Low dimensionality is
typically associated with faster convergence in the context of shape optimization, especially
when information about the gradient of the objective function is not available.
Finally, it is possible to construct pairs of microtiles that, together, form a conformal rep-

resentation of the unit cube in the parametric domain. This expands the range of possible
applications to designing microstructures and their corresponding inverse geometries for
fluid-structure interaction problems, such as static mixers for plastic extrusion processes.
However, it is also important to acknowledge certain limitations or challenges associated

with the proposed method. While IGA has proven to be a powerful tool for structural
analysis, its application to microstructures can be computationally expensive, espe-
cially due to the high-fidelity models required to represent the intricate local structures
and the high polynomial orders from the construction process. In response, recent ad-
vancements have been introduced to mitigate computational costs. The high polynomial
orders and continuities are especially numerically demanding during the assembly process,
among other things, because numerical integration requires a high number of quadrature
points. This holds especially true for 3D applications. Hirschler, Antolin, and Buffa [103]
proposed a multi-scale assembly procedure based on lookup tables and polynomial approx-
imation on the macro scale to reduce the computational demand associated to assembling
the linear system of equations. The same authors also discuss the development of inexact
solvers in [105]. They exploit the inherent periodicity of cells to take advantage of their
mechanical and geometric similarities, reducing the complexity of the system to a few main
local problems using cell-wise operators.
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4
Microstructure Optimization for Heat Transfer

Problems

4.1. Introduction

Heat transfer problems play an important role in several industrial and real-world applica-
tions, ranging from conjugate heat transfer in systems involving both solids and fluids [147]
to thermal management of electronic components [26]. Optimization of thermal processes
is therefore essential in system design to improve energy efficiency and ensure the relia-
bility of critical components. While a comprehensive examination of all aspects of heat
transfer is beyond the scope of this thesis, the review by Dbouk [60] provides valuable
insights into topology optimization techniques for heat transfer problems. Therein, the
author investigates different solution strategies and objective functions, highlighting the
advantages and disadvantages of different approaches.

4.1.1. Preliminary Work

In the following chapter we will explore the application of microstructures in the context
of heat transfer problems. First, we will introduce appropriate objective functions and
their differentiation. Then, we demonstrate the presented methods on a minimal exam-
ple. Through this test case, we also evaluate the performance of different optimization
algorithms in the context of heat diffusion systems. Finally, we will present a real-world
application with a more complex geometry where we apply our method to optimize an
extrusion die.
While the data provided in this thesis has been generated specifically for this work, it

is important to acknowledge that the test cases discussed herein are based on the findings
presented in

[238] Jacques Zwar, Gershon Elber, and Stefanie Elgeti. “Shape optimization for tem-
perature regulation in extrusion dies using microstructures”. In: Journal of Mechanical
Design 145.1 (2023)

As an extension to the test cases presented therein, the applications featured in the fol-
lowing sections include (1) the adoption of IsoGeometric Analysis instead of standard FEM
with linear elements, (2) the utilization of gradients obtained through discrete adjoints,
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and (3) the use of true 2D problems, as opposed to quasi-2D, where 3D crosses were used
to fill an extruded domain. In addition, the local geometry was slightly modified to cope
with the high number of DOFs. The changes are highlighted in the respective sections.

4.1.2. Objective Function

The objective function of an optimization problem assesses the quality of a given design.
Therefore, the choice of an appropriate objective function depends on the specific appli-
cation. In the context of (diffusive) heat transfer in solids, several approaches have been
proposed in literature to evaluate designs. For example, the authors in [235] state that
high temperatures are a primary failure factor in some electronic devices and therefore
choose an objective function that can capture the highest temperatures. This results in a
min-max type optimization. However, since the location of the highest temperature can
change, the objective function becomes non-differentiable, which is generally a problem for
gradient-based optimization algorithms. Therefore, the authors introduce a thermal per-
formance index based on the local flux density and temperature gradient. A very similar
strategy is adopted in [88], where it is referred to as the heat potential capacity. Mathe-
matically, this objective function is similar to the compliance often utilized in structural
optimization (cf. Section 5.1.1), which facilitates the use of discrete adjoints.

Donoso [68] takes a different approach, focusing on minimizing the quadratic mean tem-
perature gradient within the structure. This can potentially reduce the thermo-mechanical
stresses within the structure. Both of these ideas are considered in [150], where a multi-
objective optimization approach is chosen, minimizing the mean temperature on the one
hand, while simultaneously reducing the variance of the temperature to penalize local
deviations of the temperature.

In the context of this thesis, we will consider problems where, given a set of boundary
conditions, the temperature profile is optimized to best fit a given distribution. More
specifically, we will consider a body with a known temperature at one part of the struc-
ture ΓD and a known heat flux at another part ΓN . We will consider the inverse problem,
where the quality of the design is evaluated based on the deviation from the desired tem-
perature profile on the part with a given heat flux, i.e., where the Neumann boundary
condition is applied. This model problem has already been described in [34], in the con-
text of hierarchical optimization using IGA.

Given a target temperature profile θt : ΓN → R on the Neumann boundary ΓN , the
objective function therefore reads

J = J (θ) =

�
ΓN

(θ − θt)
2 dS (4.1)

=

�
Ψ−1(ΓN )

(θ − θt)
2 JΓ dS . (4.2)
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In order to compute the gradients using algorithm 3.1, we will additionally require the
partial derivatives of the objective function with respect to both the control points as well
as the solution field, which yield

(∂θθθJ)i =
∂J (θ)

∂θ̂i
= 2

�
Ψ−1(ΓN )

Ri (θ − θt) J
Γ dS , (4.3)

(∂CJ)i =
∂J (θ)

∂Ci

=

�
Ψ−1(ΓN )

(θ − θt)
2 ∂J

Γ

∂Ci

dS , (4.4)

where the quantity ∂JΓ/∂Ci can be evaluated using Equation 3.47. However, to facilitate the
optimization, we will not consider cases with moving Neumann boundaries, such that the
term evaluates to zero. This also simplifies the assembly of the derivation of the constraint
function with respect to the control points ∂Cc, see Equation 3.41.

4.2. Optimization of a Rectangular Microstructured

Domain

As a first test case, we consider a rectangular domain with dimensions of 4m by 2m,
described by a bilinear B-Spline function. This domain is filled with a grid of 10 by 5
crosstiles (see Figure 4.1). The crosstile branches have an adjustable thickness, which is
controlled by 4 evaluation points, each located in the center of the faces of the unit square.
To facilitate the imposition of boundary conditions and to accurately represent the macro
shape at the boundary, a closing layer is introduced into the microstructure, where the
tiles form a watertight surface at the top and bottom. The thickness is defined relative
to the parametric domain of the deformation function by inserting nodes at positions 0.05
and 0.95.
The individual microtiles consist of 5 patches and the closing patches consist of 4 patches

each. Here, the branches of the cross are linear quadratic to achieve G1 smoothness at
the junctions to adjacent tiles, and bilinear at the center and boundary patches. In total,
the discritized geometry comprises 330 patches with 4290 control points of which 3141
are “free”, non-duplicate control points adjusting for internal patch interfaces. By com-
posing the tiles with the bilinear surface, the patches are of degrees 2 and 4 (from linear
and quadratic splines, respectively). The resulting geometry is depicted in Figure 4.1.
Additionally, two consecutive uniform h-refinements are applied to obtain more accurate
results. This results in a total of 12 071 DOFs in the linear system of equations.
During the analysis, we assume no internal heat sources or sinks and an isotropic en-

vironment with a thermal diffusivity of 1m2 s−1 for simplicity1. A Dirichlet condition is
applied to the bottom surface ΓD with constant temperature θ of 0 ◦C. On the top sur-
face Neumann boundary condition are imposed in form of an irregular heat flux along the
x-direction, described by

q̄Γ =
27 (4− x) x2

256
+ 1 in

�
mKs−1

�
. (4.5)

1All units are the same as for the 3D case. Analogous to the plane-strain assumption in 2D structural
mechanics, we will assume an infinitely long z-axis to perform the 2D computations.
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ΓN

ΓD

2m

4m

q̄Γ

Figure 4.1.: Schematic representation of the macro geometry and boundary conditions
of the rectangle test case.

This irregular heat flow is chosen to create an asymmetric temperature distribution on the
top surface. The analysis is performed using the framework described in Section 3.3.6.

As in the reference test case, only the local microstructure is modified, i.e. the external
geometry remains constant throughout the optimization. To parametrize the local mi-
crostructure, we consider a parameter spline that is quadratic with an interior knot along
the parametric dimension that maps to the x-axis, and linear with no interior knot along
the y-axis, resulting in a control point grid with 4× 2 coefficients, or 8 independent design
variables.

In the initial configuration, all coefficients are set to the same value, resulting in a uniform
thickness distribution. As expected, uniform tiling results in a temperature profile that
closely resembles the progression of the applied heat flux, with a pronounced peak in the
region of maximum heat flux. The initial temperature of the microstructure is shown in
Figure 4.3a. The temperature profile is plotted in Figure 4.2.

This test case is relatively inexpensive due to the use of a (relatively) low polynomial
order in the spline representation, as well as the small number of resulting DOFs. As
such, we will use it to evaluate the efficiency of different optimization algorithms applied
to the local optimization of microstructures. The choice of an appropriate optimization
function depends strongly on the objective function and the problem at hand. Many studies
are therefore dedicated to finding suitable algorithms for optimization. For example, the
authors in [203] compared algorithms in the context of shape optimization of pipe flows.

We will consider both gradient-based and gradient-free algorithms, all provided by
NLopt. In the class of gradient-free algorithms, we consider the Constrained Optimiza-
tion BY Linear Approximation (COBYLA) [183] and Bound Optimization BY Quadratic
Approximation (BOBYQA) [184] algorithm, as well as the Nelder-Mead Simplex (NMS)
algorithm [163, 37]. While all of these methods allow the imposition of bound constraints,
only COBYLA allows the imposition of nonlinear inequality constraints. All three algo-
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Figure 4.2.: Temperatures on the rectangle surface before and after optimization. The
ripples in the temperature distribution show the effect of the microstructure, as the tem-
perature dips, where the branches connect to the surface.

rithms were also considered in [203], where BOBYQA showed the best performance for a
large number of design variables, while NMS showed the best convergence near the local
minimum.

We will further test the performance of six gradient-based optimization algo-
rithms provided by NLopt, namely Method of Moving Asymptotes (MMA) [209],
Sequential Least-Squares Quadratic Programming (SLSQP) [130], Low-storage Broy-
den–Fletcher–Goldfarb–Shanno (LBFGS) [142], Shifted Limited-Memory Variable-Metric
(SLMVM) [222] and a Preconditioned Truncated Newton algorithm [61]. Of these gradient-
based algorithms, only MMA and SLSQP support the use of nonlinear inequality con-
straints in the current implementation; the rest support bound-constrained or uncon-
strained problems only. Notably, MMA, developed by Svanberg, is one of the de facto
standard algorithms in the field of structure optimization and is widely used especially in
topology optimization, which is why we included it in this comparison. While a detailed
discussion and explanation of the utilized algorithms is beyond the scope of this thesis, the
interested reader is referred to [172] for a comprehensive review of numerical optimization,
the different approaches and concepts, and the available algorithms and methods.

All methods were applied to the model problem by setting a threshold on the value of the
objective function, which was determined in a preliminary optimization. Figure 4.4 shows
the number of iterations required to reach this threshold. Initial tests have shown that
each computation of the gradient (in this particular problem) adds a computational cost
equivalent to about 139% of a normal iteration. This cost is associated with the additional
solution of another linear system of equations to solve the Adjoint Equation (3.37), as
well as the assembly of the terms specified in Equation (3.39), which is more costly than
the assembly of the bilinear form of the forward problem. The adjusted “cost” in terms
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(a) Initial Geometry with a constant thickness throughout the microstructure. The overall
temperature on the top surface is too low, indicating that the structure in the initial configuration
is to thick.

(b) Optimized Geometry. Thinner branches in the upper right corner reduce the heat flux to
increase the temperature on the top surface.

(c) Parameter spline associated to the optimized geometry. Blue indicates smaller, red indicates
higher values, i.e. thinner or thicker branches in the microstructure. The parameter spline is
projected into the deformation function.

Figure 4.3.: Comparison of the initial and optimized geometry obtained with the SLSQP
algorithm after 15 iterations.
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Figure 4.4.: Comparison of different optimization algorithms. The gradient based algo-
rithms also show an adjusted count in green, taking the cost of gradient computations into
account. The graph shows the number of required iterations until the objective function
falls under a specified threshold determined in preliminary optimizations. The number of
iterations is plotted logarithmically.

of total iterations is shown in green for all gradient-based algorithms. Note that the
cost of the optimization routines is plotted logarithmically for better visualization. We
provided all optimization algorithms with the same initial conditions and only applied
bound constraints to the design space. To achieve optimal performance of the provided
algorithms, we scaled both the objective function and the design variables to be close to 1,
evaluated at the initial conditions.

Figure 4.4 shows that, as expected, gradient-based algorithms generally outperform
gradient-free methods, even after accounting for the additional cost of evaluating the gra-
dient. The SLSQP algorithm showed the fastest convergence to the minimum of all tested
methods. The same results could be repeated for an extended design space, i.e. with an
increase of the available design variables. In this particular test, MMA could not achieve
the same rate of convergence. Furthermore, MMA proved to be very sensitive to initial
conditions, while SLSQP was more consistent in its rate of convergence.

Among the gradient-free methods considered in this test, both BOBYQA and NMS
showed fast convergence, regardless of the initial conditions imposed on the problem. How-
ever, of the algorithms tested, only MMA, SLSQP, and COBYLA support nonlinear in-
equality constraints, which are required when, for example, additional mass constraints are
introduced into the optimization problem. These additional requirements on the available
constraints become a crucial factor for the appropriate choice of the algorithm, especially
for structural optimization in the context of lightweight design.

63



4. Microstructure Optimization for Heat Transfer Problems

Of course, the optimal choice of optimization algorithm may vary depending on the
specific test case and constraints imposed. However, in our case, SLSQP emerged as the
preferred option due to its consistent performance across different initial conditions and
its inherent support for nonlinear inequality constraints. Other algorithms, such as MMA,
may be better suited for larger optimization problems with significantly higher-dimensional
design spaces, with potentially millions of design variables, where this algorithm will ulti-
mately fall short due to its use of dense matrices in its second-order approximation of the
objective function [122]. However, our abstraction of the design space effectively reduces
the number of design variables so that we end up - at times - with around 1× 103.
The convergence behavior of the SLSQP algorithm is discussed in more detail below. To

create a fair comparison of the optimization algorithms, we initially chose a minimum value
of the objective function as the termination criterion. However, to allow the algorithm to
iterate closer towards a local minimum, another termination criterion of the form

εabs > |Jk+1 − Jk| , (4.6)

is chosen, with an absolute function value tolerance εabs. Here, the optimization is ter-
minated once the objective function value changes less then 1 × 10−5 in two consecutive
iterations.
The evolution of the objective function value is plotted in Figure 4.5a. Analyzing the

results, we also notice that the bounded constraints were never met during the optimiza-
tion, so Figure 4.5b also shows the norm of the objective function gradient, or sensitivities.
These must tend to 0 in order to satisfy the necessary condition of optimality, defined in
Equation (3.32). For ease of interpretation, both curves are plotted logarithmically. In the
first iteration, overshooting can be observed, as the initial step size was chosen too large
by the optimization algorithm, thereafter, the objective function slowly converges towards
the local minimum. A similar trend is also visible in the sensitivity graph. Overall the
objective function value was decreased by 99.6% with respect to the initial configuration.
The optimized geometry alongside the optimized parameter spline are shown in Figure 4.3.

4.3. Application to Extrusion Die Geometries

4.3.1. Design Challenges in Extrusion Die Design

Plastic extrusion is a continuous manufacturing process used to produce profiles with a
constant cross-section, such as window profiles or pipes. A schematic layout of the primary
part of a typical production line is shown in Figure 4.6. First, material in the form of small
plastic beads, along with additives and colorants, enters the process through a funnel (or
feed hopper). It then passes into a screw, which moves the solid granulate forward toward
an extrusion die. With external heating and due to shear heating, the pellets gradually
liquefy into a highly viscous melt. This melt then flows through the shaping component
of the process, the extrusion die, where it is formed into its final geometry. Therefore, the
geometry and structure of the die are critical to the quality of the final product. After
exiting the die, the profile is cooled and cut to length. For more details on the extrusion
process, the interested reader is referred to [48, 180].
The design of an extrusion die poses numerous challenges to engineers due to the inter-

dependence of various process parameters, the highly nonlinear behavior of the melt [175],
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(a) Evolution of the objective function J . In the first iteration the step size is too large leading
to a sharp increase in the objective function value.
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(b) Norm of the sensitivities ∥∇χχχJ∥. No constraints are active during the optimization, hence
the norm of the sensitivities must tend towards 0 to fulfill the KKT-condition at the minimum.

Figure 4.5.: Evolution of the objective function using the SLSQP algorithm. Both the
sensitivities and the objective function have been scaled by a constant factor so that the
initial objective function value is close to 1.
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Figure 4.6.: Schematic outline of the extrusion process, based on [115]. New material is
fed into the system and pushed through the die via a screw, here shown from left to right.
The extrusion die, where the final profile geometry is formed is attached to the extruder
on the right hand side.

complex effects such as die swelling, and temperature constraints [112]. At the same time,
the list of design objectives is long; For example, the die design must optimize pressure
drop and provide a uniform flow rate, the latter generally being considered the most im-
portant design factor [171]. Deviations from a uniform velocity profile at the die outlet can
lead to residual stresses in the final product, which can cause warpage, i.e., deformation
from the desired shape.

The traditional design process often relies on a trial-and-error approach, guided by en-
gineers’ domain-specific knowledge and experience. As a result, the process is associated
with high costs for prototyping and calibration of manufacturing parameters [112]. Con-
sequently, there has been a growing emphasis on numerical optimization of the extrusion
die and its associated parts to become more sustainable and cost effective. In the past,
the focus of these optimization approaches has mostly been on the flow channel geome-
try. Either by considering a specific set of geometric features [79, 232], or by employing
spline-based approaches to find an optimal channel geometry [76].

In most of these optimizations, the flow is assumed to be isothermal [79, 76] or with
constant wall temperatures [134]. These assumptions regarding temperature are generally
justified by stable conditions in a calibrated extrusion process. They significantly reduce
the complexity of the analysis and also reduce the simulation problem to the melt itself,
disregarding the temperature distribution in the surrounding extrusion die. However, the
temperature distribution of the flow within an extrusion die critically affects the material
properties of the melt and therefore the velocity profile. In general, a homogeneous tem-
perature in the flow channel would be ideal for rheological design [112, Chapter 8], but
local temperature control in combination with flow analysis can also provide new lever-
age for optimization. By changing the temperature, the melt can be made more or less
viscous, which, in addition to the shape of the flow channel, is an additional parameter
in achieving homogeneous velocities at the extrusion die outlet. In computer simulations,
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this idea translates into modifying the temperature boundary conditions and optimizing
the temperature distribution within the flow channel.
In [135], Lebaal, Schmidt, and Puissant employed this idea, optimizing the temperature

of a given channel with a coat-hanger design, where the die cooled the melt to counteract
shear-induced energy dissipation. However, no consideration has been given to how this
specific temperature profile is achieved. In practice, heating of the extrusion die, e.g. for
thermoplastics, is usually done by means of heating bands attached to the outside of the
extrusion die. These generally provide only global temperature control.
The die itself is usually made of metal by wire erosion or milling. In these dies, the

only way to control temperature is through holes or active fluid-based temperature control.
However, with recent advances in additive manufacturing techniques, 3D metal printing can
become a viable alternative to traditional extrusion die manufacturing. By using carefully
designed internal structures as opposed to massive solids, passive local heat control can
be achieved despite only global control on the heater band. With this in mind, the use of
microstructures for extrusion die design was explored in [238], which will be analyzed in
the following section.
It’s important to stress that this test case serves primarily as a conceptual exploration,

demonstrating the potential application of microstructure geometries in more complex
outer geometries, with a focus on extrusion die designs. The ability of the microstructure to
withstand high pressure requires thorough computational analysis to assess the feasibility
of using microstructured extrusion dies in practical applications. These considerations
must also take the interactions between the temperatures in the die and the melt into
account. In spite of this uncertainty, there are several potential advantages to the use
of such dies. Their hollow structure offers ease of handling and material cost savings,
while the cavities provide space for attaching sensors for testing and maintenance. In
addition, the incorporation of more complex designs could introduce tubes through the
microstructure for active temperature control.

4.3.2. Optimization of Heat Transfer in Extrusion Dies

Building on the results of Section 4.2, the same principles are applied to a more complex 3D
geometry of an extrusion die. It is assumed that the channel geometry is already optimized
and therefore only the local structure is considered during optimization. The desired cross
section of the extrusion die is a slit profile with circular edges as shown in Figure 4.7a. The
extrusion die is cylindrical with an outside diameter of 0.2m and a length of 0.1m. The slit
in the center of the die has a total width of 0.1m and a height of 0.004m. The diameter of
the inlet is 0.05m where the melt leaves the extruder. The die is symmetrical both along
the slot axis and about the center of the die, so only a quarter of the extruder is included
in the calculations. This test case is taken from [238] with minor modifications. The outer
geometry is constructed by linear interpolation between the inlet geometry from Figure 4.8a
and the outlet geometry from Figure 4.8b. The resulting B-Spline approximation of the die
is used as deformation function for microstructure construction. It has degrees p = [2, 1, 1]
and 1 knot along the quadratic angular axis at position 0.4, connecting the round part of
the slit profile with the straight edge.
The microtile is constructed using 7 patches connecting the center cube to the faces of

the unit cube. Each branch has a distinct thickness, which is obtained using the evaluation
points at the centers of the faces of the unit cube. An exemplary microtile is shown in
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(a) Half of the Extrusion die, showing the
channel geometry in the middle. B-Spline
with degrees p = [2, 1, 1]

(b) Microtile comprised of 7 trilinear
patches. The center cuboid’s width is 1.2
times the average branch thickness

Figure 4.7.: Deformation function and microtile parametrization.

(a) Inlet geometry of the extrusion die,
where the round channel entry is attached
to the extruder.

(b) Outlet geometry of the extrusion die,
showing the slit-geometry of the final pro-
file.

Figure 4.8.: Spline representation with control grid of the inlet and outlet side of the ex-
trusion die. The inlet and outlet geometry are linearly interpolated to obtain the geometry
of the deformation function.

Figure 4.7b with a constant branch width of 0.4. The width of the central cube is 1.2 times
the average branch thickness. These two components are used to construct a microstructure
with a total of 12× 7× 9 tiles.
This microstructure serves as a basis of optimization. The local thickness distribution is

described by a B-Spline with degrees p = [2, 1, 1] defined using a control grid of 4× 2× 2
coefficients leading to a total of 16 design variables. This relatively small number of control
parameters was chosen to ensure maximum concordance with the test case from [238]. The
resulting microstructure consists of 7452 patches with degree 4 along every parametric axis,
defined by 672 025 non-duplicate control points. Subtracting coefficients at the Dirichlet
boundary gives a total of 656 220 DOFs for the heat transfer problem. Based on the

68



4.3. Application to Extrusion Die Geometries

previous results, the SLSQP algorithm is employed, implemented via the scipy Python
library, with a function tolerance εabs of 1× 10−6.
In order to obtain results that are more physical and closer to reality, we have chosen ma-

terial parameters that are very similar to those of stainless steel. The material parameters
used to simulate the heat transfer problem are listed in Table 4.1.

Parameter Symbol Value Unit

Thermal Conductivity k 20 Wm−1 K−1

Specific Heat Capacity c 420 J kg−1 K−1

Density ρ 7850 kgm−3

Thermal Diffusivity λ 6.066× 10−6 Jm−3 K

Table 4.1.: Material parameters used for the extrusion die in optimization.

Evidently, the true temperature distribution in the die can only be calculated in a
coupled simulation that includes the melt and (to some extent) the ambient air. However,
for the purposes of this demonstration, we will assume that the outside of the die, where
the heater band is attached, has a constant temperature of 350 ◦C. At the channel wall,
on the inside of the die, we assume a time-invariant heat flux. We will now consider two
cases, one where the wall temperature, and thus the melt temperature, is constant with
a locally dependent heat flux, and another where the heat flux is constant but the target
temperature varies. These two cases correspond to two different concepts. In the first case,
the melt is assumed to have heated up irregularly due to pressure drop and mechanical
shear, as analyzed in [135]. This is modeled here by an irregular heat flux into the melt.
In the second case, the heat flux is assumed to be constant at the boundary, but the
target temperature is chosen to increase slightly at the slit boundary. This increase in
temperature is thought to locally reduce the viscosity and thus counteract the high flow
resistance as the melt sticks to the sidewall.
In the temperature optimization test case presented in [135], the melt heats up toward

the boundary due to increased mechanical shear and energy dissipation. This temperature
increase also causes a reduction of the viscosity, resulting in higher velocities near the
boundary. To counteract this effect, the temperature of the extrusion die was increased
towards the center during optimization in order to balance the temperature distribution of
the melt. From the perspective of the die, this temperature difference can be represented
as a higher heat flux. To model this (qualitatively) in the optimization problem, the scaled
heat flux q̄Γ at the channel wall in this example is set to

q̄Γ(x, y, z) = −4500

ρc
·
�
1 +

1

2

�
(1− 10z)(1− 20x)

�
in

�
mKs−1

�
(4.7)

Equation (4.7) applies an inward facing flux of 4500Wm−2 to the melt (i.e., cooling the
die), which increases by an additional 50% toward the center, where the lower temperatures
are expected. The flux is shown in Figure 4.10a.
The target temperature is set to θt = 250 ◦C. Initially all cross tiles are set to a constant

width. The initial and optimized geometry along with their temperature distributions are
shown in Figure 4.9. In the initial configuration, the lowest temperature is 60 ◦C below
the target temperature, indicating that the overall structure restricts the heat flow too
much. As a result, the average thickness of the cross tiles increases, adding approximately
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(a) Initial geometry and temperature (b) Optimized geometry and temperature

Figure 4.9.: Geometries and temperature fields associated to test case varying heat flux
and constant target temperature.

4500 6800

(a) Magnitude Heat flux

240 260

(b) Optimized Temperature

0 13

(c) Error |θ − θt|

Figure 4.10.: Irregular heat flux at the channel, along with the optimized temperature
and error plotted on the channel wall. The channel is projected onto the xz-plane. The
target temperature is θt = 250 ◦C

18.5% to the total volume of the microstructure. This effect is most pronounced in the
center of the die, where the heat flow is highest. The temperature distribution of the
optimized geometry as well as the difference between the actual temperature and the
target temperature θt is shown in Figure 4.10. The ripples in the channel wall temperature
are attributed to the microtile branches adhering to the surface.

The temperature deviates the furthest from the target temperature θt along the edge of
the slit profile. This is explained by the distance to the heat source, which is smallest at the
outer part of the geometry. As a result, although the average branch thickness increases
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significantly, the branches of the tiles attached to the narrow radius become thinner with
respect to the initial geometry.
In this first instance, it was inferred that mechanical friction and the associated heat

lead to a velocity increase at the boundary. However, in the case of a wide flow chan-
nel, this may not necessarily be the case, especially if the high viscosity of the melt is
the dominant perturbation of the velocity profile. In this case, it may be beneficial to
increase the temperature at the narrow boundary to reduce the viscosity and improve the
velocity profile. Assuming a constant heat flux |qΓ| = 4500Wm−2 and without changing
other parameters of the simulation, the following target temperature profile is set as an
optimization objective for the second test case

θt(x, y, z) = 250 + 5 ·max

�
x− 0.03

0.02
, 0

�
(1− 10z) in [◦C] . (4.8)

This temperature profile is shown in Figure 4.12a. The temperature is constant with a
value of 250 ◦C in most of the flow channel and increases linearly along the edges and
towards the outlet by an additional 5 ◦C.
The initial geometry identical to the first application, its associated temperature field,

and the optimized geometry and temperature are shown in Figure 4.11. As in the pre-
vious example, the overall temperature in the initial configuration is too low and thicker
microtiles are required to increase the total heat flux through the structure. In the rest
of the structure, the branches tend to thin, even along the narrow channel edge, where a
higher temperature is now sought. The temperature field at the flow channel, as well as
the deviation from the target temperature distribution are shown in Figure 4.12.

(a) Initial geometry and temperature (b) Optimized geometry and temperature

Figure 4.11.: Geometries and temperature fields associated to test case with increased
temperatures towards the edge of the channel wall.

Although the overall temperature distribution matches the target temperature profile
closely, local outliers can be observed in the optimized structure. How pronounced these
outliers become, as well as how they affect convergence to the optimal temperature profile,
depends on the objective function. One strategy to eliminate these outliers is to divide
the flow channel into different sections and then evaluate the performance on each sec-
tion. This penalizes local outliers, but taking the largest outlier as the performance metric
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245 260

(a) Target temperature

245 260

(b) Optimized temperature

0 4

(c) Error |θ − θt|

Figure 4.12.: Target temperature distribution, along with the optimized temperature and
error plotted on the channel wall. The channel is projected onto the xz-plane.

makes the objective function non-differentiable, making the use of gradient-based algo-
rithms impractical. Another approach is to utilize a different exponent in the integral,
which can prioritize outliers over average performance. The aforementioned strategies can
be integrated into the same framework, although the convergence of the optimizer may be
constrained by the non-differentiability of some of the objective functions. Ultimately, the
appropriate choice of the objective function is a fundamental design decision.
The evolutions of the objective function over the course of the optimization iterations

are shown in Figure 4.13. Initially, both optimization routines exhibit fast convergence
towards their respective local minima. This behavior coincides with a significant decrease
in the norm of the sensitivities by 3 to 4 orders of magnitude. However, as they approach
the minimum, significant spikes occur despite the absence of constraint violations. It is
observed that in both cases the step size starts to increase as the optimization progresses
towards the minimum, which may result in overshooting.
In the case of a constant target temperature, the objective function could be reduced

by approximately 99.16% with respect to the initial configuration. 31 iterations and 15
gradient evaluations were required to reach this local minimum. Similarly the second test
case showed an improvement of 99.63%, with 29 iterations and 21 gradient evaluations. As
the gradient computations are significantly more expensive than the forward simulation,
the optimization driver only determines the gradient, once a better solution has been found.
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(a) Evolution of the objective function J for
the first test case, with constant target tem-
perature.
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(b) Evolution of the objective function J for
the second test case, with modified target tem-
perature. First spike is due to inadequate ini-
tial step size.

Figure 4.13.: Evolution of the objective function over the iterations of the optimization.
In both cases, the design variables as well as the objective function values have been scaled
to ensure optimal performance of the optimization algorithm.
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5
Application to Structural Optimization Problems

Design optimization under structural and mechanical considerations is the main driving
force for numerical shape and topology optimization. Its applications are manifold and it
is used in almost every field of engineering. As a result, there is extensive literature on the
subject, for example [99], which focuses more on providing a general understanding and
briefly discusses various methods and tools, or [11, 206], which provide details about the
mathematical foundations.

In this chapter, we demonstrate the application of the design paradigm in the context
of structural optimization. After first introducing the necessary preliminaries, including
microtile geometry, objective functions and constraints, along with their derivatives, we
will apply the presented method to a benchmark test case and compare it to classical ap-
proaches. In the second part, we show microstructures on curved geometries and compare
different optimization strategies combining the ideas presented in the previous chapters.

5.1. Preliminaries

Throughout this chapter we will use the microtile shown in Figure 5.1, which consists
of a vertical box with diagonally crossed trusses in the center. The microtile consists of
20 bilinear Bézier splines. Its truss thickness is parametrized per cell, with an evaluation
point at the center of the unit cube, resulting in one design parameter per cell. The vertical
and horizontal patches are only half as wide because they are attached to their respective
adjacent cells.

5.1.1. On the Choice of the Objective Function

In the field of structural mechanics, particularly in lightweight design, the primary objective
of numerical design optimization is to minimize deformation under a given load while
maintaining the lowest possible overall mass of the structure. In practice, these two design
specifications are inherently incompatible, as a (geometrical) stiffness is typically achieved
by incorporating additional material. Therefore, defining an optimal balance between these
two objectives is an essential aspect of the design strategy and depends on the specific
application.
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t

t/2

Figure 5.1.: Lattice microtile parametrization, used throughout this chapter where the
thickness t is evaluated at the center of the tile within the parametric domain of the
deformation function.

Over time, various strategies have evolved to attain these objectives. These generally
follow one of two general paths. In the first strategy, the optimization is stress-based,
where the design for a given loading scenario is identified by minimizing the structural
weight while not exceeding a maximum permissible stress for the given material. In this
strategy, the weight serves as the objective function and some measure of the stresses
serves as constraint, e.g., von Mises stresses. However, this approach presents several
numerical challenges, especially if a strict limit is imposed on the maximum stress. The
specific location may change under design variations, making the objective function non-
differentiable. In contrast, the second approach is stiffness-based, where the weight is
constrained and the stiffness of the structure is maximized. A comparison between these
two approaches in the context of lattice structures was made in [82], where a p-mean of
Hill’s yield criterion was used in the stress-based approach. The authors concluded that
although the stress-based approach inhibited yield more rigorously, the resulting structures
were found to be less stiff when compared to their counterparts of the same weight. Both
strategies can be incorporated into the existing framework; however, this work will focus
on the second strategy exclusively.
Although other measures of overall stiffness have been explored to quantify the de-

formability of a given structure, see Appendix B, the stiffness of a structure in response
to external forces is typically quantified by its compliance. This measure is widely used
particularly in the context of structural topology and shape optimization [11, 230], also
in the context of lattice structures, see e.g., [212]. Compliance can be interpreted as the
deformation energy, with its formulation in the context of linear elasticity outlined as [160]

J (Ω(χχχ),u) =

�
Ω

f · u dV +

�
ΓN

h · u dS . (5.1)

The popularity of this objective functional is due to its compatibility with the adjoint-
based sensitivity analysis discussed in section 3.4. In the following, we will use the vari-
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ational form of the elasticity equation as well as the associated derivatives, which are
described in detail in Appendix A.1. Using these derived expressions, the objective func-
tion from Equation (5.1) can be rewritten in the form

J (Ω(χχχ),u) = Lu(u) . (5.2)

Building on the linear form Lu and bilinear form au established in Appendix A, we can
build a linear system of equations in the form (cf. Equations (A.4) to (A.7))

Ku = F . (5.3)

As the test and trial functions build on the same function space, it is possible to rewrite
Equation (5.2) using only components of the linear system of equations, which have already
been computed during analysis [223]. This demonstrated in more detail in Appendix A.2.
The objective function then reads

J (Ω(χχχ),u) = FTu . (5.4)

This expression for compliance further facilitates the differentiation of the objective
function required for sensitivity analysis, which can be computed using

∂CJ (Ω(χχχ),u) =
∂Lu(u)

∂Ci

, (5.5)

∂uJ (Ω(χχχ),u) = FT . (5.6)

Substituting Equation (5.6) into Equation (3.37) shows that, in this particular setup,
the Lagrange multipliers are related to the displacement coefficients of the solution field
with λλλ = −u, due to the symmetry of the stiffness matrix. This so-called self-adjoint [7]
behavior is a key factor in the popularity of the objective function in the context of design
optimization. It significantly reduces the computational cost associated with determin-
ing the sensitivities of the parametrization, obviating the necessity to solve an additional
system of linear equations. These can be computed by multiplication alone, using

dχχχJ =
�
∂CJ − uT∂Cc

�
∂χχχC . (5.7)

∂Lu(u)/∂Ci and ∂Cc are further detailed in Appendix A.1 in Equations (A.10d) and Equa-
tions (A.10a) to (A.10c).

5.1.2. Constraints

As discussed in the previous section, the total mass of the structure is constraint during
optimization. The mass of the microstructure MMM can be computed using

mMMM =

�
Ω

ρ dV =

�
Ψ−1 ◦ Ω̃

ρ det(JΨ) dV , (5.8)

and the derivatives of the constraint function can be determined using the identities in
Equation 3.42, which yield

∂mMMM
∂Ci

=

�
Ψ−1 ◦ Ω̃

ρ det(JΨ) tr

�
J−1
Ψ

∂JΨ

∂Ci

�
dV . (5.9)
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These are later multiplied with ∂χχχC in order to obtain the parameter sensitivities.
However, in practical applications, especially for constant densities ρ, the volume con-

straint is often given in terms of a global volumetric density. The volumetric density
compares the weight/volume of the microstructure to the dense structure, represented by
the deformation function T . It therefore reads

ρ̃ =

�
MMM dV�
T dV

, (5.10)

where the denominator remains constant only if the deformation function does not change
during optimization.

5.2. Optimization of a Cantilever Design

The first test case demonstrates the performance of the proposed method on a cantilever
beam. The cantilever beam is one of the de facto standard benchmark tests in structural
optimization, especially in the field of topology optimization [30]. Consequently, it has
also served as a benchmark in the context of lattice structure design, as demonstrated for
example in [38, 138]. In fact, in the review [181] it is used to evaluate different methods,
but comparison has proven difficult because there is no general agreement on aspect ratios
and target volume densities. In this section, the test case design is based on the numerical
example presented in [229], using the microtile geometry shown in Figure 5.1.

y

x

h

Figure 5.2.: Schematic outline of the cantilever benchmark test case. The force is applied
to the two outermost microtiles in the structure, the left side is clamped.

The schematic outline of the test case is shown in Figure 5.2. A rectangle with dimensions
2m × 1m is filled with a regular grid of 24 × 12 tiles. The structure is clamped on the
left side with both x and y displacements set to 0. Unlike the example in [229], where
a point force is applied, the force is evenly distributed over two columns of tiles on the
top surface of the rectangle in the form of a unit load of 1Pa. The material parameters
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are also taken from [229] and summarized in the Table 5.1. Note that arguably the only
“decisive” parameter that influences the outcome of the optimization is Poisson’s Ratio,
since Young’s Modulus, structure size, and applied force scale the compliance linearly, cf.
Equation (5.4). Consequently, the optimization would yield the same results if a stiffer
material with a Poisson’s Ratio of 0.3, such as steel, was used1.

Parameter Symbol Value Unit

Young’s Modulus E 1 Pa
Poisson’s Ratio ν 0.3 -

First Lamé constant λ 0.5769 Pa
Second Lamé constant (shear modulus) µ 0.3846 Pa

Table 5.1.: Fictitious material used for the cantilever optimization, taken from [229].

The macro geometry is constructed using a bilinear Bézier spline. Although in this
particular example the tiles could have been periodically stacked using only linear trans-
formations, the microstructure is constructed using functional composition, resulting in
biquadratic microtile patches in the overall microstructure. The entire geometry is de-
scribed by 5760 patches described by 25 561 non-duplicate control points, for a total of
50 976 DOFs.
The total mass of the structure is constraint, aiming for a target volume fraction of solid

material ρ̃t of 30%. This is imposed using an additional inequality constraint

kI(χχχ) = ρ̃− ρ̃t ≤ 0 . (5.11)

The initial thickness is chosen, such that the inequality constraints is active, i.e. ρ̃initial =
0.3. In the benchmark test case, the individual cell thicknesses are specified individually.
In order to achieve this without changing the framework, a zero-order spline is adopted
that has the same internal nodes as the deformation function (with tiling).
Employing the optimization framework detailed in section 3.3.6, the SLSQP-algorithm

from the scipy Python library is used with a function tolerance of εabs of 1 × 10−4 as
termination criterion, see Equation (4.6). The evolution of the objective function over the
course of the optimization is plotted in Figure 5.3.
Figure 5.4 shows the displacement fields before and after optimization. Comparing the

two designs, the maximum displacement (located at the top right) is reduced by 56.22%,
which also indicates a higher stiffness of the optimized design.
The compliance is reduced by 55.22% after a total of 35 optimization iterations. Fig-

ure 5.5 show snapshots taken at different iterations, which show the evolution of the design.
Initially, the material shifts to the top and bottom of the structure, increasing the bending
stiffness in the leftmost part of the structure. After only five iterations, the final design
begins to emerge, and the typical design with two diagonals crystallizes toward the end
of the optimization. This can be seen more clearly in the parameter spline plot projected
onto the deformation function. Dark blue areas appear where the design variable is set to
the minimum allowed thickness.
In the original test case from [229], the structure is further modified by penalizing

intermediate values. On the one hand, this resulted in a more refined structural outline - or

1With adjusted convergence scaling and convergence criteria.
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Figure 5.3.: Evolution of the objective function over the course of the iterations, plotted
logarithmically. The objective function is scaled with a constant factor, such that the
objective function in the initial configuration evaluates to 1.

(a) Magnitude of the displacement before the
optimization.

(b) Magnitude of the displacement after opti-
mization.

Figure 5.4.: Qualitative comparison of the displacement magnitude before and after op-
timization. The deformation results from a unit force applied to the top right microtiles
of the microstructure. Since the magnitude scales linearly with the applied force and the
objective function describes the stiffness of the entire structure, a color bar was intention-
ally omitted. Both use the same color scheme for comparison.

a “cleaner” design - and allowed the authors to more aggressively eliminate all cells with a
thickness below a certain threshold. This reduced design can be beneficial for fabrication,
as fewer cells with intricate features are present in the final structure. On the other
hand, penalizing intermediate values also increased the overall compliance of the system,
hence resulting in a less favorable design. In the context of this work, the topology of the
geometry remains unchanged over the design iterations. Compared to the non-penalized
geometry, the result of the presented approach qualitatively is in good agreement with the
benchmark test.
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(a) Initial Design (b) Iteration 5

(c) Iteration 35 (final)

(d) Parameter spline (zeroth degree)

Figure 5.5.: Design evolution of the cantilever during optimization shown at different
iterations during the optimization. The thickness of the initial design is chosen such that
ρ̃ = ρ̃t. Figure (d) shows the parameter spline of the finalized design.
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5.3. Optimization of a Bending Arch

As mentioned in the previous section, a composition-based approach was not necessarily
required to fill the rectangular domain with a microstructure. Thus, in the second test
case, the method is demonstrated on a curved outer geometry, highlighting the key ad-
vantages of the boundary-conformal microstructure approach. The paradigm has already
been demonstrated on a similar geometry in [103] to highlight the benefits of reduced order
modeling in analysis of microstructured geometries.

h

y

x

Figure 5.6.: Schematic outline of the bending arch test case. The deformation function
(macro geometry) is defined using a linear-quadratic Bézier spline. Control points 2 and 5
(green) are treated as design variables. The bounds of the control point displacement are
illustrated with the dashed rectangles.

The schematic outline of the second example is shown in Figure 5.6. The outer geom-
etry is a polynomial approximation of a quarter circle described by a B-Spline, which is
quadratic in the angular direction and linear in the radial direction. The control point
mesh of the spline is shown in blue. The outer dimensions of the macro geometry are
3m×3m, the width of the arc is 1m, so the inner and outer radii are 2m and 3m, respec-
tively. The horizontal boundary on the left side is clamped, and a vertical unit traction of
1Pa is applied to the vertical side on the right. The material parameters are chosen as in
the first example and can be found in Table 5.1
Unlike in the first example, the macro geometry is not kept constant during optimiza-

tion. Instead, the control points C2 and C5, shown in green in the Figure 5.6, are treated
as design variables. Both the horizontal and vertical position of the two control points can
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be modified by the optimizer within a box constraint of ±1m, indicated by the dashed
rectangles. Additionally, the local thickness of the microtiles is controlled using a bilinear
B-spline with 5× 5 control points with evenly spaced inner nodes. In contrast to the first
example, where all tile parameters are assigned individually, the abstraction of the thick-
ness with linear spline basis functions ensures smoother transitions between neighboring
tiles.
The deformation function is filled with a grid of 32× 8 microtiles, each consisting of 20

bi-linear Bézier patches. The entire microstructure thus consists of 5120 patches of degree
3 and is defined by 50 025 non-duplicate control points. This results in a total of 99 904
DOFs, accounting for coefficients on the Dirichlet boundary.
The objective of the optimization is to reduce the compliance of the structure while main-

taining a mass associated with a volumetric density ρ̃t of 50% in the initial, undeformed
macro shape. However, since the deformation function T will not necessarily remain un-
changed over the course of the optimization, the total mass must be constrained, with
mt = ρ̃t mT0 , resulting in

kI(χχχ) = m−mt ≤ 0 . (5.12)

This configuration is chosen specifically to compare different optimization strategies.
Using this setup, three different cases can be considered:

Local optimization – where only the local tile thickness is modified, and the deformation
function remains unchanged, resulting in 25 design variables.

Macro optimization – where the control points can be modified and the thickness of
the tiles is adjusted globally with a single value to fulfill the mass constraint, yielding 5
design variables.

Concurrent optimization – where both the local tile thickness and the control points
can be modified, leading to a total of 29 design variables.

All three strategies were tested in the same framework described in section 3.3.6, using
the SLSQP algorithm from the scipy library in Python. Again, all initial values of the
objective function are scaled to 1 at the beginning of the optimization, similarly the design
variables are scaled to ensure optimal performance of the optimization driver.
The evolution of the objective function for all three cases is shown in Figure 5.7. All

three cases show similar convergence behavior and reach a local minimum within 15 iter-
ations. Notably, only the macro and concurrent optimizations exceed the maximum mass
constraint in some of the first couple of iterations.
The optimized designs are shown in Figure 5.8. In the local optimization, the material

is concentrated at the boundary of the design, which makes the structure stiffer against
bending, similar to the concept of sandwich structures. In addition, there is more material
in the vertical sections of the arch, especially at the inner radius, suggesting that the
vertical load is concentrated in this area. Overall, the compliance of the optimized design
is reduced by approximately 61% compared to the original design.
In the macro optimization, the structure becomes wider, which also makes it more

rigid against bending. In addition, both control points move significantly closer to the
Neumann boundary. Although this changes the contour of the outer geometry only slightly,
it affects the inner parametrization of the deformation function, which in turn determines
the distribution of the microtiles within the microstructure. As the control points get
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Figure 5.7.: The evolution of the objective function over the course of the iterations,
plotted logarithmically. The objective function is scaled by a constant factor so the initial
configuration evaluates to 1. The thickness of the initial design is chosen so that mt = m.
The lowest value in the fourth iteration of the macro geometry optimization is not a valid
minimum, because the mass constraints are violated.

closer to the upper right surface, the “tile density”, i.e. the number of tiles in a given area,
increases. As a result, the tiles on the right are squeezed horizontally and the diagonal
trusses are arranged at a steeper angle, making it easier to distribute the vertical load.
The same is true for the tiles in the lower left, where the elongation of the tiles creates
trusses that are more upright. However, the effects of the macro optimization are not as
significant as the local optimization, only reducing the compliance by about 39%.

Optimization Type Compliance reduction [%]
Reduction of maximum

displacement [%]

Macro Optimization 39.1615 34.2198
Local Micro Optimization 60.6879 60.2637
Concurrent Optimization 75.0576 71.1745

Table 5.2.: Summary of the results of the individual optimization strategies.

The concurrent optimization combined these two effects and achieved a total reduction
of the compliance of about 75%. The summary of the results of the different optimization
strategies can be found in Table 5.2. As an alternative measure of the stiffness, it also
shows the reduction of maximum displacement.
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5.3. Optimization of a Bending Arch

(a) Initial design of the bending arch (b) Result of the local optimization

(c) Result of the macro optimization (d) Result of the concurrent optimization

Figure 5.8.: Comparison of the final geometries after optimization. The figures all use the
same color scheme to represent the magnitude of the displacements. The displacements
scale proportionally to the applied force. The thickness of the initial design is chosen that
mt = m.
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5.4. Discussion

The paradigm of constructing boundary-conforming microstructures through functional
composition allows even complex geometries to be seamlessly filled without the need to
find solutions for cells that lie on the boundary, which is a common issue for cells stacked
in a Cartesian grid. This is particularly useful in the context of structural optimization,
where straight edges and rectangular designs rarely occur. As mentioned in the previous
sections, the macro-shape of a structural part is generally designed to efficiently “guide”
forces through the structure. With boundary-conforming microstructures that naturally
align with the external geometry, the local structure will therefore potentially follow the
flow of forces in the same way.
In the first example, the tile parameters were set individually. In fact, using a higher

parameter spline degree with a smaller number of design variables in the abstraction ul-
timately reduces the design freedom and limits the minimum value that can be achieved
(for example, in the first example, using a bilinear parameter spline with a control mesh
of 12 × 6 coefficients only allows a reduction of 50.18% instead of 55.22%). However,
it can still be advantageous to use the spline-based abstraction. Parameter splines with
non-zero, smooth basis functions tend to regularize the problem and help avoid undesirable
phenomena such as checkerboard patterns2. These patterns are naturally filtered out by
the layer of abstraction. This additional blurring of design variables also ensures smoother
transitions between high and low density regions where neighboring cells have similar tile
parameters. This results in more intuitive designs. It also helps to avoid regions with
extremely narrow structures that can cause manufacturing problems. Additionally, denser
regions might in some cases prevent stress concentrations, as the load can be distributed
among more tiles, as a preventive measure against damage formation.
Finally, the additional layer of abstraction also significantly reduces the number of design

parameters, as described in section 2.3. Arguably, the cost of gradient computation is not
(significantly) reduced with a smaller number of design variables when using the adjoint
method. However, gradient information may not always be available, or may require the
use of FD, or AD, for example, when black-box solvers are used, or the implementation
of adjoints would be too cumbersome for complex nonlinear PDEs. Here, a reduction of
the design space can provide remedy and allow a faster convergence of the optimization
algorithm.

2Checkerboard patterns, numerical instabilities observed in density-based topology optimization ap-
proaches [204], manifest as alternating regions of high and low density. While we have observed
instances of high fluctuation between adjacent tiles in our approach, it is uncertain whether these
phenomena are directly related, as there is no penalization of intermediate values in the spline based
abstraction.
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6.1. Conclusion

This thesis presents a comprehensive framework for the design, analysis, and optimiza-
tion of microstructured CAD-compliant geometries. This framework adopts the design
paradigm based on a functional composition between splines. Using this approach, we fur-
ther introduced an abstraction of the local geometry parameters to reduce the number of
design variables. This reduction allows the use of less performant optimization algorithms
and minimizes local fluctuations in the geometries, resulting in smooth transitions between
neighboring splines.

In addition, we derived geometric derivatives in terms of parameters that control both
the macroscopic and local geometry, involving the spline abstraction. This allowed the
application of an adjoint approach to compute sensitivities, which are critical for gradient-
based optimization algorithms. These algorithms generally achieve faster convergence to
an optimal solution. To verify and test these results, we developed a modular, open-source
framework. This framework allows the testing of different optimization algorithms and
strategies, ensuring the robustness and flexibility of the proposed methods.

As a first example, the framework was tested on a heat transfer problem to achieve a
predefined temperature distribution on a specified subdomain under Dirichlet and Neu-
mann boundary conditions, controlling only the local geometry. This setup allowed the
comparison of different optimization algorithms in the context of PDE-constrained shape
optimization. To further test the applicability of the framework to complex geometries,
an extrusion die test case was recreated. The new framework showed improvements in
both analysis and optimization over the reference. The use of IGA maintained geomet-
ric accuracy and eliminated the need for remeshing. In addition, the use of an adjoint
approach made sensitivity calculations more efficient, compared to preceeding test cases,
which relied on finite difference methods for derivative calculations.

The framework was then applied to structural optimization to minimize the compli-
ance of a microstructure under nonlinear mass constraints. Initially, the framework was
validated using a cantilever benchmark test, yielding results consistent with traditional
topology optimization methods. However, traditional methods do not yield boundary-
conforming microstructures where the local geometry naturally aligns with the external
shape. Therefore, a load-bearing arch composed of microtiles was optimized to demon-
strate the full potential of this paradigm. This test case compared the effects of different
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optimization strategies, including local, macroscopic, and concurrent optimization. The
results highlighted the potential of combining global and local optimization and further
demonstrated the benefits of boundary-conforming microstructures in the context of struc-
tural design.

6.2. Outlook

While the current work has laid a foundation for the design of microstructured, CAD-
compliant geometries, it has also revealed several potential future research directions.
When it comes to the design of microstructured geometries, a shift in the design approach
to V-Rep geometries can facilitate the use of this paradigm for topologically complicated,
(trimmed,) multi-patch geometries that can be used as the deformation function. While
there has been research on modeling microstructures with trimmed V-Rep splines [110] and
bifurcating tiles [158], efforts are still needed to incorporate these findings in the context
of optimization.

Another significant potential for improving shape optimization lies in improving the
performance of the analysis. Analysis is currently the bottleneck of the iterative process,
primarily due to the high polynomial degrees of the microstructures, but also due to
their complex topologies and number of DOFs. While some recent research has focused
on reducing the analysis time [103, 105], there is still potential to explore model order
reduction techniques or other methods potentially including scientific machine learning to
speed up the analysis and thus reduce the computational cost per iteration.

Extending the study of microstructure simulation to fluid-structure interactions holds
promise for a variety of applications. For example, cooling systems or heat exchangers could
benefit from evaluating fluid flow through the microstructure, as shown in Figure 6.1. In
addition, extrusion die simulation could be extended to include the melt itself. In a coupled
die-melt simulation, system performance could be evaluated based on the behavior of the
melt, with structural integrity serving as a constraint to withstand the high pressures
within the flow channel.

Figure 6.1.: Simulation of fluid flow through a microstructure as a demonstration. Cour-
tesy of Daniel Wolff.
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Moreover, it is worth investigating structural issues more thoroughly to account for the
nonlinear behavior of the structures using the boundary-conforming paradigm. Including
stresses or potential energy in the objective function could broaden the scope of design ap-
plications. Recent advances in AM, particularly the development of novel high-performance
materials, have created new opportunities for the design and implementation of complex
microstructures. These potential applications can be found in many fields of engineering,
from robotics to damping systems in automotive parts and beyond.
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A
Additional Remarks on the Linear Elasticity

Formulation

A.1. Variational Form and Derivatives

Recalling the strong form of the linear elasticity problem

∇ · σσσ + f = 0 on Ω

with σσσ = λtr (ϵϵϵ) I+ 2µϵϵϵ

and ϵϵϵ =
1

2

�
(∇u) + (∇u)T

�
u = g on ΓD

σσσ · n = h on ΓN , (A.1)

With the function spaces

Su =
�
u |u ∈ H1(Ω), u = g on ΓD

�
, (A.2a)

V =
�
w |w ∈ H1(Ω), w = 0 on ΓD

�
. (A.2b)

Using the techniques introduced in Section 3.2, we obtain the variational (or weak form)
as �

Ω

�
λ∇ · uI+ µ

�∇u+ (∇u)T
��

: (∇w) dV =

�
∂Ω

h ·w dS +

�
Ω

f ·w dV , (A.3)

or, separated into simpler terms1�
Ω

λ (∇ · u) (∇ ·w) dV� �� �
au,λ(u,w)

+

�
Ω

µ (∇u) : (∇w) dV� �� �
au,µ1 (u,w)

+ . . .

. . .

�
Ω

µ (∇u)T : (∇w) dV� �� �
au,µ2 (u,w)

=

�
ΓN

h ·w dS +

�
Ω

f ·w dV� �� �
Lu(w)

(A.4)

1Here, the term ϵϵϵ(u) : ∇w is often written as ϵϵϵ(u) : ϵϵϵ(w), which originates from the identity A : B = 0
if A is symmetric and B is antisymmetric.
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Recalling the IGA-approach and the definition of the trial functions, we can write the
displacement field similar to Equation (3.23) as

ũh =

nû�
i

Riûi +

nD�
i

RD
i û

D
i , (A.5)

in the parametric domain, with uh = ũh ◦ Ψ, the number of independent displacement
coefficients nû, as well as the number of coefficient on the Dirichlet boundary nD.

Building on this, the terms introduced in Equation (A.4) can be used to build a linear
system of equations using

Kij = au(Ri,Rj)

= au,λ(Ri,Rj) + au,µ1(Ri,Rj) + au,µ2(Ri,Rj) , (A.6)

Fj = Lu(Rj) . (A.7)

Using the following identities (with (JΨ)ij = ∂xi/∂ξj),

∇u =
∂ui

∂xj

=
∂ui

ξk

ξk
∂xj

= ∇̃uJ−1
Ψ , (A.8a)

∇ · u =
∂ui

∂xi

=
∂ui

∂xj

δij = tr (∇u)

= tr
�
∇̃uJ−1

Ψ

�
= ∇̃u : J−T

Ψ , (A.8b)

we can pull back Equation (A.4) into parametric space, which yields

�
Ω̃

λ
�
∇̃u : J−T

Ψ

��
∇̃w : J−T

Ψ

�
det(JΨ) dV +

�
Ω̃

µ
�
∇̃uJ−1

Ψ

�
:
�
∇̃wJ−1

Ψ

�
det(JΨ) dV + . . .

. . .+

�
Ω̃

µ
�
J−T
Ψ (∇̃u)T

�
:
�
∇̃wJ−1

Ψ

�
det(JΨ) dV = . . .

. . . =

�
Ψ−1(ΓN )

h ·w JΓ dS +

�
Ω̃

f ·w det(JΨ) dV . (A.9)

To compute derivatives with the adjoint approach, we need to introduce the derivatives
of the PDE-constraint with respect to the control point components. Therefore, we need
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to differentiate the (bi-)linear functions. Using the identities from Equations (A.8) and
(3.42) these can be written as (cf . Section 3.4)

∂au,λ(u,w)

∂Ci

=−
�
Ω̃

λ
�
∇̃u :

�
J−T
Ψ (∇̃Ri)TJ−T

Ψ

���
∇̃w : J−T

Ψ

�
det(JΨ) dV

−
�
Ω̃

λ
�
∇̃u : J−T

Ψ

� �
∇̃w :

�
J−T
Ψ (∇̃Ri)TJ−T

Ψ

��
det(JΨ) dV

+

�
Ω̃

λ
�
∇̃u : J−T

Ψ

� �
∇̃w : J−T

Ψ

�
det(JΨ)tr

�
J−1
Ψ (∇̃Ri)

�
dV (A.10a)

∂au,µ1(u,w)

∂Ci

=−
�
Ω̃

µ
�
∇̃u

�
J−1
Ψ (∇̃Ri)J−1

Ψ

��
:
�
∇̃wJ−1

Ψ

�
det(JΨ) dV

−
�
Ω̃

µ
�
∇̃uJ−1

Ψ

�
:
�
∇̃w

�
J−1
Ψ (∇̃Ri)J−1

Ψ

��
det(JΨ) dV

+

�
Ω̃

µ
�
∇̃uJ−1

Ψ

�
:
�
∇̃wJ−1

Ψ

�
det(JΨ)tr

�
J−1
Ψ (∇̃Ri)

�
dV (A.10b)

∂au,µ2(u,w)
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µ
��
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Ψ (∇̃Ri)TJ−T

Ψ

�
J−T
Ψ (∇̃u)T
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:
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Ψ
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det(JΨ) dV

−
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µ
�
J−T
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�
Ω̃

µ
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∂Lu(w)

∂Ci

=

�
Ψ−1(ΓN )

h ·w∂JΓ

∂Ci

dS +

�
Ω

h ·wdet(JΨ)tr
�
J−1
Ψ (∇̃Ri)

�
dV (A.10d)

A.2. Computing the Compliance

In this section we show how the compliance used in Chapter 5 is written using components
of the linear system.
Given the compliance given in the form

Lu(u) =

�
∂Ω

h · u dS +

�
Ω

f · u dV . (A.11)

As the test functions w are the same as the trial functions associated to the solution field
coefficients, the above equation can be rewritten as follows

Lu(u) =

�
∂Ω

h ·
��

i

Riûi

�
dS +

�
Ω

f ·
��

i

Riûi

�
dV , (A.12)

=
�
i

�
∂Ω

h Ri dS · ûi +

�
Ω

f Ri dV · ûi , (A.13)

=
�
i

��
∂Ω

h Ri dS +

�
Ω

f Ri dV� �� �
Fi

�
· ûi����

ui

. (A.14)
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B
Alternative Measures for structural compliance

In Chapter 5 of this thesis, we explored shape optimization using a compliance measure
related to deformation energy to evaluate the structural performance of the design, see
Equation (5.4). However, as mentioned before, there are other measures of stiffness, one
of which is described in this appendix.
Instead of considering the applied external forces, this measure focuses solely on the

deformation within a specific region of interest. Specifically, it determines stiffness by
the amount of deformation in the area where the external force is applied, known as the
Neumann boundary ΓN . This can be expressed as

J (Ω(χχχ),u) =

�
ΓN

u · u dS ,

=

�
Ψ−1(ΓN )

u · u JΓ dS . (B.1)

In order to compute adjoint sensitivities using the adjoint approach, we further introduce
the derivatives of Equation (B.1), which read

(∂uJ)i =
∂J (Ω(χχχ),u)

∂ûi

= 2

�
Ψ−1(ΓN )

Ri u JΓ dS , (B.2)

(∂CJ)i =
∂J (Ω(χχχ),u)

∂Ci

=

�
Ψ−1(ΓN )

u · u ∂JΓ

∂Ci

dS . (B.3)

This measure was also applied to the cantilever benchmark test case introduced in Chap-
ter 5.2. Unlike the original compliance, the calculation of sensitivities requires the ad-
ditional solution of a linear system of equations, which makes it more computationally
expensive. Thus, despite a similar number or iterations required to converge to a local
minimum, the total computation time exceeds that of the original compliance. Qualita-
tively, the results of the cantilever optimization are equivalent to those computed with the
energy-based compliance. The optimized designs are shown in Figure B.1 along with snap-
shots throughout the iterative process. Figure B.2 shows the parameter spline abstraction
associated with the optimized design.
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B. Alternative Measures for structural compliance

(a) Initial Design (b) Iteration 5

(c) Iteration 32 (final)

Figure B.1.: Design evolution of the cantilever design during optimization using the L2

norm of the displacement as objective function.

Figure B.2.: Parameter-spline of the optimized geometry with the alternative compliance
measure. Here we assigned every tile their parameters individually, which can be inter-
preted as a zero-th degree spline in the proposed framework.
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calcul de quantités d’intérêt en ingénierie mécanique”. PhD thesis. Ecole Normale
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