
Fakten-Checks anhand von
Nachweisen von

Autoritäts-Accounts

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Luis Kolb, BSc
Matrikelnummer 01622731

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Allan Hanbury

Wien, 1. September 2024
Luis Kolb Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Fact-Checking Claims using
Authority Evidence

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Luis Kolb, BSc
Registration Number 01622731

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Allan Hanbury

Vienna, September 1, 2024
Luis Kolb Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Luis Kolb, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. September 2024
Luis Kolb

v





Danksagung

Zuallererst will ich meiner Familie danken: meiner Mutter Traudi, der mit Sicherheit
einige der zu-poetischen Ausdrücke zu verdanken sind, die ich aus dem Draft wieder
streichen musste, aber trotzdem gern getippt habe. Meinem Vater Helmut, dem ich
überhaupt mein Interesse nicht nur für alles Technische zu verdanken habe, sondern auch
für Rock ‘n‘ Roll und Gitarrenmusik ganz generell. Meine nicht mehr so kleine Schwester
Anna, auf die mich immer stützen konnte, vor, während und sicher noch lange nach dem
Studium. Ihr wart unermüdlich für mich da, und ohne euch würde dieses Dokument nicht
existieren.

Außerdem darf ich meinem Betreuer Allan Hanbury danken, für die stete Unterstützung
nicht nur durch den Schreibprozess, sondern auch um die CLEF-Konferenz in Frankreich,
welche eine essenzielle Rolle in der Entstehung dieser Arbeit hatte. Der internationale
Austausch in Grenoble hat wahrlich meinen Horizont erweitert, und dank den Kollegen
und Kolleginnen der TU Wien war es eine unvergessliche Woche. Moritz, Florina, Patrick,
Alaa – es war mir eine Freude!

Zuletzt bedanke ich mich bei meinen Freunden, die mich ein Stück des langen Weges
begleitet haben, und besonders bei jenen, die es immer noch tun.

vii





Kurzfassung

Soziale Medien sind effektive Mechanismen zur schnellen Verbreitung von Desinformation
und Gerüchten, gezielt oder ohne direkte Absicht dazu. Oft ist es aufwendig, Kontext für
die Behauptungen auf diesen Plattformen zu finden. Das Volumen von Informationen
aller Art, welche das Internet füllen, erschwert diese Aufgabe weiters.

Wir präsentieren einen Ansatz zur automatisierten Überprüfung von Behauptungen in
Social Media Postings unter Verwendung von Nachweisen, welche direkt aus den Kanälen
von Autoritäten auf dem gegebenen Thema stammen. Mithilfe dieser Nachweise kann unser
Ansatz Behauptungen automatisch als “unterstützt” oder “widerlegt” gekennzeichnet
werden, basierend auf den Postings der Autoritäts-Accounts.

In unserem zweistufigen Ansatz filtern wir relevante Postings zu einer Behauptung aus
den Kanälen von Accounts, die “Autorität” über das Thema der Behauptung haben. Wir
vergleichen mehrere Methoden zum Auffinden dieser relevanten Postings, von simplen
lexischen Methoden zu komplexeren Embedding und Transformer-basierten Methoden.

Wir untersuchen auch die Effektivität und Verlässlichkeit von “Large Language Models”
(LLMs) zur automatischen Beurteilung des Verhältnisses von Posting und Behauptung,
und präsentieren ermutigende Ergebnisse. Effektive und flexible Methoden für diese Art
der “Natural Language Inference” sind essentiell, um diese automatisierten Klassifika-
tionen zu treffen - besonders auf Plattformen, wo ein informeller Sprachstil die Norm
ist. Die Größe eines Sprachmodells spielt eine wichtige Rolle in der Anwendbarkeit auf
diese Aufgabe. Dazu präsentieren wir Vergleiche zwischen verschiedenen Modellgrößen
und deren Effektivität auf unserem Datensatz.

Zusätzlich inkludieren wir noch einige unserer Beiträge zur CLEF 2024 Konferenz, im
Rahmen derer wir am CheckThat! Lab 2024 teilgenommen haben.

Schlussendlich zeigen wir mögliche Erweiterungen und wichtige Aspekte im Kontext des
automatisierten Fact-Checkings zu unserem Ansatz auf.
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Abstract

Social media is an opportune delivery vehicle for misinformation to spread quickly and
effectively. Finding context for extraordinary claims made on these platforms can be
challenging, given the volume of the information available online.

We present an approach to claim verification in social media using evidence retrieved
from the social media accounts of authorities on the claim topic. Using our approach,
claims can be automatically labeled as “refuted” or “supported” based on the social
media post timelines from relevant authorities.

In a two-stage approach we first compare typical retrieval methods to search through a
social media timeline and find posts that are relevant to a given claim. Our comparison
includes both simple lexical retrieval methods, as well as more complex embedding and
transformer-based methods.

Further, we investigate the effectiveness and reliability of Large Language Models (LLMs)
as “Natural Language Inference” (NLI) agents, and find promising results. Effective NLI
methods are crucial the the development of an automated claim verification approach,
especially in a setting where usage of informal language is the norm. The size of a
model plays an important role in its performance on this task. To this end, we present
comparisons between a range of model sizes and their respective performance on our
chosen dataset.

Additionally, we include some of our contributions to the 2024 CLEF conference, where
we participated in at the 2024 CheckThat! Lab.

Finally, we discuss possible extensions and caveats to our approach.

xi





Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5
2.1 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Natural Language Inference . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Deep Learning and Transformers . . . . . . . . . . . . . . . . . . . . . 9

3 Related Work 13
3.1 Traditional Fact-Checking Approaches . . . . . . . . . . . . . . . . . . 13
3.2 Additional Tasks Involved in Fact-Checking . . . . . . . . . . . . . . . 14
3.3 Alternative Approaches to Fact-Checking . . . . . . . . . . . . . . . . 15
3.4 Semi-Automated Fact-Checking State-of-the-Art . . . . . . . . . . . . 16
3.5 Stance Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 CLEF 2024 CheckThat! Lab Task 5 . . . . . . . . . . . . . . . . . . . 18

4 Experiment Setup 21
4.1 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Experiment Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Retrieving Authority Statements as Evidence 27
5.1 Evidence Retrieval Methods . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Introducing Additional Data . . . . . . . . . . . . . . . . . . . . . . . . 30

xiii



6 Using Authority Evidence for Verification 31
6.1 BERT-Based Verification . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Large Language Models for Verification . . . . . . . . . . . . . . . . . 32
6.3 Configuration Options for the Verification Stage . . . . . . . . . . . . 33
6.4 Aggregating Pairwise Predictions . . . . . . . . . . . . . . . . . . . . . 36

7 Evaluation and Results 39
7.1 Experiment Results for the Retrieval Stage . . . . . . . . . . . . . . . 40
7.2 Experiment Results for the Verification Stage . . . . . . . . . . . . . . 41
7.3 Experiment Results for an Integrated Pipeline . . . . . . . . . . . . . . 44
7.4 CheckThat! Lab Submission Results . . . . . . . . . . . . . . . . . . . 45
7.5 Fail-Case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.6 Inclusion in GPT Training Data . . . . . . . . . . . . . . . . . . . . . 50

8 Conclusion and Discussion 55
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

List of Figures 59

List of Tables 61

Bibliography 63



CHAPTER 1
Introduction

1.1 Motivation
As the world is ever more inundated with what can be called rumors at best and outright
misinformation at worst, easy access to verification tools is required to promote sovereignty
over the digital space.

It is generally accepted that social media is prone to spreading of misinformation.
Rumors on social media spread fast and wide [VRA18], and – whether intentionally or
unintentionally – such rumors can both influence public discourse and impact individuals.
What is more, sowing misinformation is now fully part of hybrid warfare [Sta22], and
one way of doing this is posting on social media platforms. Given the increasing volume
of rumors on social media, automatic detection and verification of such rumors seems of
utmost importance

In this thesis, we propose an approach to verify claims (or “rumors”) posted on social
media using evidence (social media posts relevant to that claim) obtained from accounts
that have specific authority over the topic of that claim.

To find answers to our research questions, we work with data from authority Twitter
accounts to demonstrate the effectiveness of the implementation of our proposed approach.
The dataset was retrieved and annotated by the CheckThat! Lab Task 5 organizers.
We will refer to X.com as “Twitter”, as it was formerly known, and posts on X.com as
“tweets” (or just “posts” more generally), as we are working with data posted to and
obtained from this platform.

We participated in the CheckThat! Lab Task 5 [HES24] of the 2024 CLEF conference1.
The paper [KH24] we submitted to the conference was later published in the working
notes of CLEF 2024 (“Working Notes of CLEF 2024 - Conference and Labs of the

1clef2024.imag.fr

1
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1. Introduction

Evaluation Forum,” 2024) [FFGGSdH24]. While our working notes cover the results
of the experiments conducted during our Lab participation, this thesis has a different
objective, the research questions being presented in the next subsection (Section 1.2).

From this paper published in the CLEF working notes, we include our findings where
relevant to our research in our thesis. The parts of our thesis referencing our CLEF paper
are clearly marked as such, citing our paper as a source. These parts are mainly our own
submission to the leaderboard, other participants’ submissions and approaches to the
task, as well as some evaluation scores. We omit other parts of our CLEF paper in this
thesis, like the experiment results for specific models we used in the paper, but not in
the thesis.

1.2 Research Questions
In this thesis, we answer the following three research questions (“RQs”):

• RQ1: To what extent can tweets (“evidence”) relevant to a claim be retrieved from
timelines of authority accounts, given an initial claim, a set of authority accounts
and the timelines of those authority accounts?

– (For this RQ, we will assume that the tweets included in the timelines are
limited to the period surrounding the time the rumor was published.)

• RQ2: To what extent can a claim, given a list of tweets (“evidence”), accurately be
identified as being supported by the evidence (true), being refuted by the evidence
(false), or being unverifiable (not enough evidence to verify it being available)?

• RQ3: To what extent can a pipeline combining the approaches from RQ1 and RQ2
refute or support a claim, automatically retrieving evidence from the timelines of
authority accounts?

– (For this RQ, we will assume that a collection of timelines is given, as retrieval
of whole “authority timelines” is not included in the scope of this thesis.)

1.3 Structure of the Thesis
This thesis consists of the following chapters:

• Chapter 2 provides some background on and explains key concepts for the
techniques used in this thesis.

• Chapter 3 discusses related work in the field of fact-checking.

• Chapter 4 introduces the data and performance measures we use and describes
how we answer our research questions from Section 1.2.

2



1.3. Structure of the Thesis

• Chapter 5 describes our approach to evidence retrieval, and Chapter 6 describes
our approach to verification of claims using retrieved evidence.

• Chapter 7 reports on and discusses the results of our experiments and includes
the answers to our research questions.

• Chapter 8 summarizes and discusses our findings and suggests avenues for further
research.
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CHAPTER 2
Background

To provide some background, we will briefly introduce some key concepts from the
domains of Information Retrieval, Natural Language Processing and Machine Learning
this thesis will be drawing on.

2.1 Natural Language Processing
Natural Language Processing (NLP) describes the discipline of working with text created
by humans (“natural language”) using computers. Since computers communicate and
store data differently from humans, text must be represented in such a way that computers
can work with the data. A definition offered by E. Liddy in 2001 describes NLP as
follows:

“Natural Language Processing is a theoretically motivated range of computa-
tional techniques for analyzing and representing naturally occurring texts at
one or more levels of linguistic analysis for the purpose of achieving human-like
language processing for a range of tasks or applications.” [Lid01](p.3)

Most of the problems we are tackling in this thesis fall squarely into this definition:
identifying semantically relevant documents in a larger collection and analyzing pieces
of texts to arrive at a conclusion based on the semantic content of these same texts.
To make this task feasible, we employ several computational techniques. Section 2.2
describes some Information Retrieval techniques, which often rely on NLP techniques
(such as text embeddings or text preprocessing, which are described there) to represent
text in ways a machine can handle more easily. Similarly, Section 2.4 introduces recent
techniques that had a sizable impact on the field of NLP.

5



2. Background

2.2 Information Retrieval
A popular definition of Information Retrieval is provided by Manning et al., from 2008:

“Information retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers)” [MRS08](p.1).

The “information need” in the context of this thesis is “relevance”. Relevance in this
context means that the documents to be retrieved are in some way relevant with regard
to some input. Different applications of information retrieval imply different use cases
and their own definitions of documents, input and relevance. Prominent examples of
information retrieval are web search engines, where the input is the user’s search text, the
data to be retrieved is a website, and relevance is a balance of different factors such as
whether the user’s search text appears on the website, algorithmically calculated scores
like Google’s PageRank, and many more.

In the context of this thesis, we want to retrieve “documents” from a set of documents
(also called a “corpus”), the content of which is about, or contains, the same topic or
entities as a given input text (also called “query”). The query is a set of sentences
(originally tweets), which make up the claim. The documents are in the form of tweets as
well, and the corpus is a collection of timelines from authority sources, which ultimately
contain tweets. A definition of what we consider an authority is given in Section 4.2.1.

To facilitate this search, some score must be calculated for every pairing of query and
document from the corpus. The documents with the best score are, ideally, the most
relevant. There are many components that go into the calculation for such a “relevance
score” (and approaches can also be combined!), for example:

• Lexical matching: does the text (or part of the text) in the query appear in the
text of a document in the corpus? If yes, that document from the corpus is more
likely to be relevant to the query.

• Frequency: do many documents in the corpus contain some part of the query
text? If yes, that part of the query text is not useful in differentiating between
relevant and irrelevant documents, and it should have little impact on the score.

• Preprocessing: to improve results from the two above components, text can also
be changed before the score is calculated. Well known techniques include:

– Stopword removal to reduce noise. Typical stopwords in the English language
are, for example: “the”, “a”, etc. – words that usually don’t contribute any
relevant signal.

6
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– Stemming (or Lemmatization), where terms are transformed into a common
form, for example by truncating suffixes (where previously non-matching
inflections of the same term would not match) or transforming words into a
normalized form (a “lemma”). We don’t make use of these methods in this
thesis, but they are commonly used to improve the performance of lexical
retrieval algorithms.

• Query rewriting in the context of Natural Language Processing (NLP) refers to
a family of techniques used to improve the results of retrieval with respect to some
metric. For example:

– To increase precision one could use “Query Segmentation” like described by
Bergsma and Wang [BW07]. Query segmentation is a technique where the
query is split up into individual semantic units, which is useful to disambiguate
queries. Depending on how words in a query are grouped together, the different
possible groupings imply different semantic meanings, which influences what
documents from the corpus could be relevant.

– To increase recall, “Query Expansion” could be used: existing databases can
be used to insert additional text and improve lexical matching, for example
by including synonyms of existing words in the query or writing out an
abbreviation, which might not have contributed to the search if the query uses
an abbreviation, but the desired document only contains the non-abbreviated,
full term.

2.2.1 Lexical Retrieval
There are many lexical methods available to be used in retrieval. Lexical methods
generally perform the task of retrieving relevant documents by relying on the individual
terms (or “words”) in a document. In this thesis, we use two of the most commonly used
algorithms: BM25 and TF-IDF, which we will describe here.
TF-IDF relies on the fact that if a document contains many of the same terms as the
query, it is likely more similar than those documents which contain few, or no mentions
at all, of the term. This measure is also called “term frequency”. There are, of course,
terms which appear in many documents, such as “the” or “a” (also called “stopwords”).
Terms which appear in many documents are likely less discriminatory and less helpful in
finding a few related documents from among all the documents. Thus, terms which occur
frequently are assigned a lower “weight”. Terms which appear rarely in the collection of
all documents (and in the query) are more informative. Increasing the score of documents
which contain “rarer” terms is called “inverse document frequency”. Together, these
approaches form the algorithm called TF-IDF (“Term Frequency, Inverse Document
Frequency”).
BM25 is a specific configuration of a retrieval function. Its usage in information retrieval
is wide-spread, and it is cheap to compute. BM25 works similarly to TF-IDF, with
variations and some tuning parameters set manually by the creators.

7



2. Background

Generally, when a matching function relies on “raw” terms, preprocessing the text is
important. Typical preprocessing approaches are described in the previous Section.

There are also many other methods to improve the performance of lexical matching
approaches, which are more complex in their implementation, like spelling out abbrevia-
tions using a knowledge base to include more terms and potentially increase matchability.
However, the basic issue remains that a claim and an authority statement might be
discussing the same event or thing, but simply use different language or terms (for
example, formal speech versus common vernacular), which would be more challenging to
an approach based on lexical matching.

2.2.2 Embeddings
The paper introducing the model architectures for the “Word2Vec” algorithm was
published in 2013 by Mikolov et al. [MCCD13]. Word2Vec models text by transforming
words into vectors in a high-dimensional vector space. The benefit of this technique is
that semantic relationships between words are captured. Words appearing in similar
contexts are mapped to vectors which are nearby each other in this high-dimensional
vector space, and the distance can be computed. As words are represented as vectors,
they can also be arithmetically combined. An example Mikolov et al. give in their paper
is: “Paris - France + Italy = Rome”, or this example:

“To find a word that is similar to small in the same sense as biggest is similar
to big, we can simply compute vector X = vector(”biggest”) - vector(”big”) +
vector(”small”). Then, we search in the vector space for the word closest to
X measured by cosine distance and use it as the answer to the question (we
discard the input question words during this search). When the word vectors
are well trained, it is possible to find the correct answer (word smallest) using
this method” [MCCD13](p.5).

Techniques like Word2Vec are called “non-contextual embeddings”, and they operate
on words as the smallest unit. If a word is not in the originally trained vocabulary,
Word2Vec cannot represent it. Another approach is subword tokenization, where the
text is “tokenized”, with each token then being vectorized. Since the smallest possible
token is a letter of the alphabet, all words can be represented, if not by word-level or
multiple-character tokens, then by single letter tokens at least. This deals with the “out-
of-vocabulary” problem and this “contextual embedding” approach is what BERT-like
models use. The vector representations of tokens are learned during training, which is
also true for Word2Vec, where vector representations of words are learned and saved to a
lookup table.

The semantic relationships between tokens are captured in both approaches. To compute
the “semantic” distance between vectors A and B, we can use cosine similarity:

8
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CosineSimilarity(A, B) := cos(θ) = A · B

|A||B|
In this thesis, we experiment with multiple “contextual embedding” models in the
retrieval stage, using cosine similarity as a similarity measure. This is also related to
Natural Language Processing (NLP), for which we gave some background in Section 2.1.
Representing text via embeddings is an NLP technique, and with a similarity measure
like cosine similarity it can be used for IR purposes.

2.3 Natural Language Inference
First introduced as a concept in 2009 by McCartney [Mac09], Natural Language Inference
(NLI) is a task both in the domain of natural language processing and typically machine
learning. The goal, usually, is to infer “ENTAILMENT”, “CONTRADICTION” or “NOT
ENOUGH INFORMATION” between two pieces of text (such as a statement and a
claim, or a premise and a statement).

For example, does the sentence “Experts say that the sky is usually blue.” entail or
contradict the claim “Skies have been green all day today!”? This type of task is similar
to classification, where the target label is one of “ENTAILMENT”, “CONTRADICTION”
or “NOT ENOUGH INFORMATION”. This task is hard because:

• Natural language is generally complex and culture-dependent, sometimes containing
sarcasm, jokes, slang, and so on, increasing complexity.

• Logical reasoning engines usually require specific structures (such as a graph or a
semantic web) to work. Extracting, for example, a graph-like structure from two
sentences mapping all the objects, relations, properties (adjectives), antonyms, etc.
is not trivial. The system then must combine the two graphs, align nodes, and
so on to arrive at an answer. This step can involve techniques like Named Entity
Recognition to increase matchability of subjects across sentences or graphs.

Often, NLI as a task is compared to Recognizing Textual Entailment (RTE), which in
turn is sometimes thought of as a predecessor to NLI. In RTE, the task is to recognize if
the meaning of one text is entailed by another. However, the concept of contradiction
does not formally exist in this task. RTE is described in detail in the 2010 article by
Dagan et al. [DDMR10].

2.4 Deep Learning and Transformers
The approaches we employ in this thesis involve, at some stages, the use of pre-trained
language models. These models were created via a process called “Deep Learning” (DL).
We will first give a definition of “Machine Learning” (ML), cited from B. Mahesh:

9



2. Background

“Machine learning (ML) is the scientific study of algorithms and statistical
models that computer systems use to perform a specific task without being
explicitly programmed.” [Mah19](p.381)

According to Wikipedia1, the phrase “without being explicitly programmed“ was originally
coined in 1959, but it first appeared in a publication in 1996 [KBAK96]. Moving on, a
widely used definition of Deep Learning (DL) is the following:

“Deep learning [. . . ] is learning data representations, as opposed to task-
specific algorithms. Learning can be supervised, semi-supervised or unsuper-
vised.” [ZYL+18](p.233)

This definition is presumably a paraphrase of the first paragraph of the Wikipedia entry,
which cites a paper called “Deep Learning” by Y. LeCun [LBH15], which itself, however,
does not give a designated definition of DL. The paper by Zhang et al. [ZYL+18] discusses
problems with this and other definitions of DL, and highlights areas where the definitions
are lacking.

For the purposes of this thesis, we will consider DL as a specific type of Machine Learning
(ML), in which features and relations of features are learned from a large corpus of
training data. The learned features and relations in a language model are useful to us
because we can use the model to process and generate natural language texts.

One of the most revolutionary papers in the field of machine learning and deep learning
in the last few years was the paper introducing the transformer architecture by Vaswani
et al. [VSP+17], with the paper introducing BERT by Devlin et al. [DCLT19] releasing a
year later and transforming NLP research and rapidly advancing many disciplines within
NLP. The paper introducing BART by Lewis et al. [LLG+19] was released another year
later, and yet again advanced many of the disciplines in the field of NLP. Generally,
transformers rely on the attention mechanism to components in a sequence, like words (or
tokens) in a sentence, to influence their generation. For language models, this mechanism
allows relevant words in a sentence to influence generated tokens, enabling long-range
dependencies and references to context often found in natural language.

Even more recently, another advance in transformer-based approaches has rapidly ad-
vanced the possibilities in the field of NLP: Large Language Models (LLMs). Large
Language Models like, for example, Llama-3.1 [DJP+24] differ from the language models
like BERT above in terms of capability and versatility, as well as in terms of scale and
training data. While BERT-based models usually have to be fine-tuned on task-specific
data to be useful on a specific task, LLMs are more versatile and more capable of
performing a wide range of tasks.

LLMs are usually transformer-based deep learning models, the first of which arguably
was introduced in 2020 with the GPT-3 model [BMR+20] . Via the attention mechanisms

1wikipedia.org/wiki/Machine_learning
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2.4. Deep Learning and Transformers

built into their architecture (to take context into account) and huge amounts of training
data, LLMs learn to model one or more languages better than any other approach
known today. Since the initial GPT-3 model, many more models have been introduced,
and recent rapid increases in the trainable parameter count of LLMs have dramatically
improved their general performance [ZZL+23]. During training, LLMs learn to model a
language such that generative models can generate their own text. Importantly, the text
this class of model can generate adheres to the (grammatical and semantic) rules of the
language(s) it is trained on. Self-attention in the model architecture makes the model
respect related input data.

Text generation applications of these models excel at many tasks such as code generation,
creative writing and document summarization. We theorize that a performant enough
LLM will be able to perform the basic inference tasks required to perform the role
of a verification component given a claim-evidence pairing. As we described earlier,
performing this role is very similar to performing the task of Natural Language Inference
(NLI). In our experiments, we apply LLMs to the task of NLI, described in Section 2.3,
and report the results in Section 7.
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CHAPTER 3
Related Work

In this section, we cover relevant papers and methods positioned in the field of general
fact-checking and adjacent topics.

3.1 Traditional Fact-Checking Approaches
The task of “Fact-Checking” in the field of computer science is introduced in a paper by
Riedel and Vlachos in 2014 [VR14]. They define it as “[. . . ] the assignment of a truth
value to a claim made in a particular context” [VR14](p.19). “Traditional” fact-checking
already happened before this paper, of course, for example by media organizations and
journalists in, for example, a political context [GA19] . At the time their paper was
published, there also existed professional fact-checking services reliant on humans, which
provided fact-checks for popular rumors, like PolitiFact and Snopes.

Riedel and Vlachos consider this task an ordinal classification task, with stages that map
neatly onto well-established NLP disciplines:

• Claim extraction can be thought of as a sentence classification problem

• Question answering over a knowledge base and information extraction to obtain a
basis of context for the verdict

• Logic-based textual entailment (see Section 2.3 for a brief description of RTE, the
predecessor of NLI) to obtain a verdict

Additionally, even in 2014 the authors pointed out that not only journalists are involved
in both creating and fact-checking information, but that ordinary citizens could benefit
from fact-checking information on their own, and that some citizens themselves have
become sources of information that should be fact-checked.
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In their survey from 2022, Guo et al. [GSV22] also define claim verification as a RTE
problem. They list typical retrieval strategies, some of which we implemented in our
paper:

• Commercial search APIs

• Lucene indices, which we included in our experiments via PySerini (Sparse Retrieval)

• Entity linking

• Ranking functions like TF-IDF and BM25, which we included in our experiments

• Learned representations, which we included in our experiments as Text Embeddings

• Re-ranking via methods like stance detection

The verification of more complex claims may require multiple pieces of evidence, which
must be combined in some way. For example, the conceptually simplest approach is to
concatenate the pieces of evidence, and then proceed with a method like RTE as though
there was only one piece of evidence. Guo et al. cite multiple papers that discuss possible
approaches to dealing with this issue, most of which are graph-based, such as the system
by Schlichtkrull et al. [SKO+21]. For our system, we take an alternative approach of
scoring separately and then combining verdicts as described in Section 6.

3.2 Additional Tasks Involved in Fact-Checking
In most fact-checking systems, there are additional tasks to consider depending on the
intended application, also listed by Guo et al. [GSV22]:

• Claim detection and determining the check-worthiness of a claim: this task is
outside the scope of our thesis, as the dataset we use already provides claims and
associated evidence candidates (the timelines of the relevant authority accounts).

• Claim matching: if a claim is repeated, for example in a rumor that spreads around
on social media, it can be beneficial to see if a claim has been fact-checked previously.
If previous fact-checks can be reused, the work necessary to fact-check it again can
be avoided. Zeng et al. [ZAZ21] summarize some of the approaches that can be
applied to this task in their 2021 survey. Shaar et al. [SBDSMN20] discuss how
this task can be formulated as a ranking retrieval task, and stress the importance
of claim matching not only with respect to human fact-checkers and their limited
resources, but also as an integral part of automated fact-checking systems.

• Justification for the predicted label: we do not implement this task in our thesis.
There are multiple approaches summarized by Guo et al. in their survey [GSV22]
to increase the explainability of a fact-checking system, though they all have their
drawbacks. Briefly:
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– Highlighting tokens that heavily influence attention mechanics inside the
verification model as an explanation. Using attention scores to produce
explanations is problematic, as removing tokens with low or high attention
scores can influence the label prediction in unpredictable ways. As such,
justifications produced relying on attention scores can be unfaithful [JW19].

– Rule-based systems relying on knowledge bases. This approach is limited by
the knowledge base and availability of the information that can be used to
create the justification. Any fact-check using information that does not exist
in a previously existing knowledge base (usually in the form of a triple) cannot
be justified.

– Generating textual explanations for why a prediction was made. A paper from
Atanasova et al. [ASLA20] is criticized by Guo et al. for “[. . . ] assum[ing]
fact-checking articles provided as input during inference, which is unrealistic”
[GSV22](p.187). However, this approach is prone to producing plausible
explanations even if the underlying prediction is wrong and not supported by
the evidence, which can be thought of as a type of hallucination.

• Some fact-checking systems and datasets define their own “labels” for the outcome
of a fact-check, like “pants-fire” [Wan17], “half-true” or “half-false”. As such, there
is no “official” set of labels a fact-checking system must use to classify claims. There
is also the aspect of checking for support or contradiction, which as a set of labels
has an entirely different type of meaning.

• Authority finding: in our thesis, we use evidence from authority social media
accounts. As we use a dataset provided to us, we don’t retrieve authorities and
timelines as a whole ourselves. Haouari et al. published a paper in 2023 [HEM23]
detailing approaches to the task of finding authorities.

3.3 Alternative Approaches to Fact-Checking
There are alternative approaches to the NLP-driven and machine-learning-driven methods.
On Twitter, there exists a feature which was previously called “Birdwatch” and is now
known as “Community Notes”. Community Notes are created by Twitter users, and
were originally intended do display missing context below misleading tweets (if enough
trustworthy users, also called “contributors”, give a relevant rating to that Community
Note). This approach does not rely on professional human fact-checkers or end-to-end
automated fact verification systems, and faces its own challenges:

• Biases and polarization in the sources: A community note must contain a link
to a source of “evidence” to back up its contents. A 2024 study by Kangur et
al. [KCS24] analyzes sources cited in community notes, and finds that there are
relevant political divisions within the community, and that there are patterns in
the sources that get cited. The most-cited sources are tweets on Twitter itself and
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Wikipedia, both crowd-sourced platforms. Sources are mainly biased left-leaning
and score high in factuality, which, according to the authors, suggest a left-leaning
trend in the political makeup of the community of contributors. Right-leaning
sources are found to be both generally lower in factuality and more supportive of
tweets (as opposed to “correcting” a tweet) than left-leaning sources, which could
imply the existence of echo-chambers among right-leaning contributors.

• Impact on the spread of misinformation: A study by Chuai et al. in 2023 [CTPL23]
presents their findings on the impact of the Community Notes feature since its
release in 2021. The authors found that the feature did not significantly impact
the spread of misinformation (measured in terms of interactions with misleading
tweets). A possible explanation could be the response time of the Community Note
feature, which the authors suggest is too slow and takes too long to significantly
impact the viral spread of misinformation on the platform.

• Influential accounts: A study by Pröllochs from 2022 [Pro22] finds that the
community-driven approach has drawbacks when fact-checking tweets posted by
influential accounts with a large following. Community Notes on tweets by these
accounts, for example on a tweet by a prominent politician, are more likely to be
perceived as incorrect or argumentative. Accounts with large followings, the study
found, tend to have polarized and fragmented social networks, which presents a
challenge to a crowd-sourced approach to fact-checking.

3.4 Semi-Automated Fact-Checking State-of-the-Art
Today, the most popular and effective methods to do automated fact-checking are based
on both deep learning methods and graph-based methods, with pre-trained language
models.

While quantification is not trivial due to a lack in standardization across fact-checking
disciplines, a survey in 2023 by Vladika and Matthes [VM23] focused on approaches
to scientific fact-checking specifically. They list 6 datasets for fact-checking and claim
verification in the domain of science: SciFact, PubHealth, Climate-FEVER, HealthVer,
COVID-Fact, CoVERT. They also provide the performance (in terms of the F1 score) of
approaches they were able to find on each dataset, with three out of the six datasets only
listing a baseline performance, two datasets listing the performance of one implemented
approach each, and the SciFact dataset listing 5 different implementations and their
scores. While there are some differences in the document/evidence retrieval step, all
the approaches listed utilize a transformer-based architecture for claim verification:
Longformer, T5, BERT or some fine-tuned BERT-based model.

There are also leaderboards for some fact-checking datasets on paperswithcode.com1.
The most popular dataset for fact-checking is FEVER by Thorne et al [TVC+18]. Over

1paperswithcode.com/sota/fact-verification-on-fever
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the past few years, top scores have been improved by advances in the field. Graph neural
networks like KGAT by Liu et al. [LXSL20], transformers, seq2seq models like ProofVER
[KRV22] and improvements to the capabilities of transformers have advanced the top
performance scores on this dataset. Currently, the best performing approach is called
BEVERS, introduced in a paper by DeHaven and Scott in 2023 [DS23], which uses a
claim verification component based on the DeBERTa model [HLGC21] (not listed on the
paperswithcode.com leaderboard).

Overall, deep learning and neural methods are leading the state-of-the-art in claim verifi-
cation, one of the crucial steps in fact-checking [ALA23]. Deep learning-based retrieval
models can be combined in a re-ranking pipeline where a simpler and computationally
cheaper algorithm like BM25 pre-filters the majority of the search space. The more
powerful and resource-intensive models can then be used on this smaller search space,
increasing retrieval efficiency in terms of time and resources. The state-of-the-art model
we use for retrieval is NV-Retriever-v1 [MOX+24], a new model at the time of writing.
It is described further in Section 5.1.

3.5 Stance Detection
A task that is similar to claim verification (via authority evidence as context) is “stance
detection”. The task of “stance detection of authorities towards rumors” was formulated
by Haouari et al. in 2023 as:

“Given a rumor expressed in a tweet and a tweet posted by an authority
of that rumor, detect whether the tweet supports (agrees with) the rumor,
denies (disagrees with) it, or not (other)”. [HE24](p.2)

The approach Haouari et al. took [HE24] involved fine-tuning a BERT model using a
dataset they created themselves, comprised of Arabic Twitter posts. They also investigate
approaches to alleviate class imbalance and published the “AuSTR” dataset along with
the paper.

In essence, this is an earlier version of the task we are attempting. Importantly, in
our thesis, we don’t aim to assign a truth value at all. Our approach instead attempts
to predict support or refutal from authority sources. Verifying factual claims usually
involves claim extraction and retrieval of facts from a knowledge base, which are then
used to verify the factuality of a claim.

A study paper by Cruickshank et al. [CN24] already investigated the validity of using
LLMs for stance detection as a general NLP task. They systematically tested multiple
LLMs and prompting schemes using manually annotated social media sets that are
traditionally used for other NLP tasks. Like us they highlight the benefits of zero-shot
inference, but also investigate performance improvements via few-shot inference and
fine-tuning. Additionally, they highlight related work specific to the task of stance
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detection, which can be found in Table 1 of their paper, where nearly all the work they
survey use some sort of OpenAI GPT model.

In short, Cruickshank et al. find that the models they used don’t consistently outperform
the accuracy baselines provided along with the dataset at the time each dataset was
published. In most of these baselines, the baseline accuracy is provided by a model relying
on “traditional” machine learning methods. However, “specific prompting schemes” can
improve the performance of LLM-based approaches to stance detection to the point
where they outperform the previously mentioned “traditional” methods. Fine-tuning
LLMs also did not necessarily increase performance. A problem the authors encountered
throughout their study was the generation of “invalid” answers by the LLMs, which did
not adhere to the answering scheme laid out in the prompt.

The 6 datasets the authors use for evaluation have different topics and contexts, where
the meaning of “stance” depends on the dataset. They alleviate this issue of different
labels by modifying the prompt given to the LLM based on the dataset. The authors use
10 different LLMs in their experiments, with the largest model (in terms of parameter
count) being the “Falcon 40B Instruct” model. They also do some fine-tuning using LoRA
[HSW+21], but find that fine-tuning actually tends to generally decrease performance.

As mentioned previously, the authors did not find any LLM that consistently outperformed
established baselines “out of the box”. They also had issues with “invalid” responses,
where about half of the responses could not be parsed into a single, valid label. Filtering
for only valid responses, and using few-shot prompting or chain-of-thought prompting,
Cruickshank et al. “[. . . ] observe that the accuracy scores for the good results consistently
and significantly outperform the baseline supervised approaches” [CN24](p.14).

Comparing the LLMs Cruickshank et al. used to the LLMs that are available today
and which we use in our thesis shows a drastic performance gap not only in terms of
model size (parameter count), but also in terms of output consistency and stability. The
industry and research around LLMs are progressing rapidly, which likely explains the
performance gap we see between their results and the results we present in our thesis.
Many of the experiments conducted in their study and issues highlighted in their paper
are, however, still relevant today and will be for quite some time.

3.6 CLEF 2024 CheckThat! Lab Task 5
During the 2024 edition of the CheckThat! Lab at CLEF we participated in the shared
Lab Task 5. The task is set up with these guidelines:

• “Definition: Given a rumor expressed in a tweet and a set of authorities (one or
more authority Twitter accounts) for that rumor, represented by a list of tweets
from their timelines during the period surrounding the rumor, the system should
retrieve up to 5 evidence tweets from those timelines, and determine if the rumor
is supported (true), refuted (false), or unverifiable (in case not enough evidence to
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verify it exists in the given tweets) according to the evidence. This task is offered
in both Arabic and English.”2

• Datasets for development and evaluation are provided3.

• Submission guidelines, baselines and evaluation scripts are provided4.

• There are four leaderboards showing submission results from participants: Evidence
Retrieval (Arabic), Evidence Retrieval (English), Verification (Arabic), Verification
(English).

We only participated in the English part of the shared task, where we scored the highest
on the leaderboard for Verification (English). Other participants implemented systems
with a wide variety of components, some of which we will take a closer look at here.

For English retrieval, the top spot on the leaderboard was achieved by team “IAI Group”
(consisting of the members Aarnes, Setty, Galuščáková from University of Stavanger,
Norway) using a cross-encoder from HuggingFace. This team used the model “cross-
encoder/ms-marco-MiniLM-L-12-v2” without fine-tuning on the train split of the dataset5.
Their approach demonstrates that retrieval without fine-tuning can work adequately.
Unfortunately, they did not publish a paper or working notes on their approach for the
CheckThat! Lab Task 5.

Team Axolotl published their approaches as working notes [PF24] for the CLEF 2024
conference. They experimented with several setups, making use of both lexical and
semantic retrieval methods in various combinations for retrieval. For verification, they
experimented with both LLMs and more traditional transformer models. The details are
available in their paper [PF24].

Table 7.7 in Section 7.4 contains the submission results and approaches used by other
participating teams.

2From the official task website: checkthat.gitlab.io/clef2024/task5
3gitlab.com/checkthat_lab/clef2024-checkthat-lab/-/tree/main/task5/data
4gitlab.com/checkthat_lab/clef2024-checkthat-lab/-/tree/main/task5
5This was confirmed by one of the “IAI Group” members via email.
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CHAPTER 4
Experiment Setup

To answer our research questions, we conducted and evaluated experiments. In these
experiments, we test different configurations of components and features to find the
most effective configuration for this specific task of evidence retrieval and evidence-based
fact-checking. This section describes the framework for our experiments.

4.1 Performance Measures
To answer our research questions, we will consider these performance metrics. . .

• ...for RQ1 (retrieval only):

– Recall@5
– Mean Average Precision (MAP)

• ...for RQ2 (verification only) and RQ3 (verification using retrieved evidence):

– Macro-F1 score
– Strict-Macro-F1 score

These performance metrics are identical to the target performance metrics used by the
CheckThat! Lab Task 5 organizers to score submissions for their leaderboards during
the submission period. We also select these measure for this thesis. While CheckThat!
Lab Task 5 used MAP as the primary measure and Recall@5 as the secondary measure,
we are more interested in Recall for our approach as finding any relevant evidence is
the objective of RQ1. Macro-F1 is also well-suited to our objectives, as our dataset is
somewhat imbalanced, and Macro-F1 provides a class-balanced score indicating overall
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performance. Strict-Macro-F1 is a special measure, where a rumor label is only considered
correct if at least one piece of relevant evidence was retrieved. We use Recall@5 and
Macro-F1 as primary performance measures, with MAP and Strict-Macro-F1 serving as
secondary performance measures.

4.2 Dataset
To conduct our experiments, we use a dataset provided by the CheckThat! Lab at CLEF
2024, intended for use in the CheckThat! Lab Task 5.

4.2.1 Dataset Structure
The dataset contains JSON-lines, each of which represents a rumor and a set of tweets
from authority sources that could be relevant in regard to that rumor. Additionally, each
rumor was “labelled” by the task organizers (“SUPPORTS” or “REFUTES” or “NOT
ENOUGH INFO”), and – if the rumor is verifiable, meaning the label is “SUPPORTS”
or “REFUTES” – also provides the relevant subset of tweets that were used by the task
organizers to label the rumor.

The dataset consists of three “splits”: “train”, “dev” and “test”. The split “test” was
intended to be used as data for a “blind” run, and the predictions on the “test” set were
submitted to the CheckThat! Lab Task 5 team. The results from the submissions of
each team at the Lab Task were published on a leaderboard. Due to the nature of this
task, no labels were obviously provided for the “test” data. Since we need to evaluate
our systems for this thesis, we will not use the “test” data. The “train” and “dev” splits
are identical in terms of structure, they simply contain different rumors. While we could
fine-tune pre-trained models on the “train” or “dev” data, we believe that a zero-shot
approach is the best fit for the out-of-domain performance we want, to cover a broad
array of topics and posts. For this reason, we will simply combine the “train” and “dev”
splits into a single dataset.

The rumors and timelines were originally posted to Twitter in Arabic. Additionally, the
dataset was translated from Arabic to English by the task organizers using the Google
Translate API. This English version of the dataset is what we use in this thesis. Due to
the translation step, however, some rumors and tweets only consist of the text “ISSUE:
COULDN’T TRANSLATE” – we drop those rumors, and do not use them in this thesis.
Overall, we dropped 13 rumors (11 from “train”, 2 from “dev”).

After dropping rumors with translation issues, we are left with 30 (32-2) rumors in the
“dev” split, and 85 (96-11) rumors in the “train” split, which we combine into a dataset
with 115 (30+85) rumors to be used for the purposes of evaluating our approach. We
will refer to this combined data as “our dataset” from here on out.

We define an authority or “authorities” in the context of this thesis as follows, after
Haouari et al. [HEM23]:
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Figure 4.1: The claim tweet and one of the relevant evidence tweets included in rumor
AuRED_142 (https://x.com/LBpresidency/status/1555424541509386240
and https://x.com/MTVLebanonNews/status/1555393952378937346)

“Authorities” are not necessarily government entities or government bodies
but are defined as an entity with authoritative knowledge over the domain
of the claim. Authorities are considered experts in their field, but not all
experts are considered authorities, as described by Haouari et al. [HEM23].
In cases where a claim is about a specific entity, that entity is considered an
authority, since the claim is about the entity itself.

Figure 4.1 shows screenshots of (part of) the tweets that make up one rumor in our
dataset. In this case, the authority is the Lebanese Presidency, on the topic of ongoings
in Lebanon. Figure 4.2 shows some of the tweets that make up another rumor in our
dataset, this time the claim stating that a person has “passed away in a traffic accident”,
and the authority being the person the claim was about. These examples illustrate how
what an authority source is can depend on the claim being made.

As stated previously, for this thesis we exclude the tasks of claim detection, claim
matching and authority finding. These tasks can be fulfilled by other systems in the
field, and we work with the data in the CheckThat! Lab Task 5 dataset described above,
provided and labeled by the CheckThat! Lab organizers.

4.2.2 Addressing Training Data Inclusion of our Dataset
The dataset we are using was released to the public in the beginning of 2024, and we
do not believe that the labeled data leaked into the training data of the models we are
using. The tweets were all originally posted in Arabic and translated to English.

For “open models” like the Llama family of models the corpus of training data is known,
and the weights are fixed and available online. The models are not continually updated,
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Figure 4.2: The claim tweet and one of the relevant evidence tweets
included in rumor AuRED_160 (https://x.com/yhXsAlxUj4DfmHS/
status/1436813633607159810 and https://x.com/Elsrari/status/
1436952831215476739)

and the “knowledge cutoff” signifying the last date of data collection is earlier than the
publication of the data we use.

Proprietary models like the GPT family of models very likely include data from social
media, and are likely to be updated continually. However, the dataset we use is not
available in an easy-to-scrape format. We also conducted simple experiments to check
adherence to the prompt and test for inclusion of our dataset, and are optimistic that
our dataset was not included at the time of writing. For these tests, see Section 7.6.

4.3 Experiment Framework
To answer our research questions, we create a framework with implementations of the
components visualized in Figure 4.3. Figure 4.3 consists of multiple numbered blocks,
which map onto how data flows through our framework. We step through the numbered
blocks here, referencing which Sections describe them in more detail:

• Block 1: the dataset and its structure are described in the the above paragraphs,
here in Section 7 .

• Blocks 2 and 3: our preprocessing strategies, as well as the approaches we use for
evidence retrieval are expanded on in Section 5.

• Block 4: we describe the models we compare for the task of claim verification in
Sections 6.1 and 6.2.
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Figure 4.3: Diagram showing the framework we use for our experiments.

• Block 5: further details on how the final, overall rumor label is created can be
found in Sections 6.3 and 6.4.

• Block 6: the results of the experiments we conduct using the implemented compo-
nents in our framework and evaluate using the ground-truth labels are provided
and discussed in Section 7. In Section 7, we also answer our research questions.

Along with the answers to our research questions, we conduct additional experiments to
evaluate the validity of our approach. These are the experiments we conducted:

• Finding the approach that produces the best achievable performance score in each
research question setting: RQ1 (best possible retrieval stage), RQ2 (best possible
verification stage assuming perfect evidence) and RQ3 (best possible verification
using our own retrieved evidence).

• Comparing the three Llama-3.1 models against each other to evaluate the impact
of model size (in terms of parameter count) on the verification stage performance.

• Impact of the parameters “temperature” and “top_p” in LLM approaches to claim
verification.

• Consistency between different runs using the same GPT-4o-mini model: do the
predictions arbitrarily change across multiple executions using the same model and
input data? This experiment aims to highlight consistency and examines if the
predictions are simply “hallucinated”.

• Testing for logical consistency in GPT models by both inverting the label and editing
the rumor text such that the flipped label would be accurate. This experiment
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aims to find our if the predictions the GPT models produce are simply memorized,
or if they are actually generated depending on the data we provide via the prompt.

To implement the framework described above, we use Python and set up a repository1

containing the source code as well as the experiment results. For the larger models
like the GPT or Llama-3.1 models, we use external APIs from third parties to obtain
our predictions. For the GPT models, we use the OpenAI Assistant API. For the
Llama-3.1 models, we use our own deployed endpoints on Microsoft Azure. To obtain
the NV-Retriever-v1 embeddings, we use the NVIDIA NIM API.

1github.com/LuisKolb/thesis
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CHAPTER 5
Retrieving Authority Statements

as Evidence

To verify claims using authority evidence, we first need to find evidence which is relevant
to a given claim. Our dataset provides a set of timelines for each claim, from around
the surrounding time period each claim was published to Twitter. We need to retrieve a
number of tweets from these timelines to use as the basis of our verification stage.

Retrieving a limited number of rumors before verification serves two purposes:

• It reduces the computational resources required for the verification process.

• More importantly, it limits the noise that would be introduced by verifying each
pairing of claim and evidence. If no retrieval were to take place before verification,
we would have to score each pairing of claim and evidence individually. For every
non-relevant tweet, ideally, we would predict “NOT ENOUGH INFO” such that the
non-relevant tweets would not be considered when predicting an overall label for
the rumor. However, this “score everything” approach is more likely to introduce
noise and more prone to mispredictions, as a much higher number of individual
predictions are produced. Prefiltering via the retrieval stage ensures that only a few
pieces of likely relevant evidence are considered for the final prediction, preempting
the noise caused by mostly non-relevant “evidence”.

5.1 Evidence Retrieval Methods
There are several methods for efficient document retrieval from a corpus of documents.
For our purposes, the documents are tweets by authority accounts. The corpus we are
retrieving from is unique for each claim. This is contrary to the approach of retrieving
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evidence from a single, large corpus of documents (or a “knowledge base”) and using
those as evidence to fact-check claims.

We tested two general approaches for evidence retrieval, with different implementations
of each general approach. We also implement a basic version of a cross-encoder approach
(the general idea is also described by Rosa et al. [RBJ+22]). We compare the performance
of these general approaches in our thesis: lexical retrieval methods, cross-encoders for
retrieval and embeddings for retrieval.

The lexical retrieval methods (as described in Section 2.2.1) we implemented are:

• BM25 with default parameters

• TF-IDF

For the cross-encoder approach, we use the Sentence Transformers (“SBERT”) library
to locally run a very basic re-ranking pipeline consisting of a Bi-Encoder and a Cross-
Encoder. One of the teams at the CLEF 2024 CheckThat! Lab Task 5 used a cross-encoder
approach for retrieval, achieving the high score on the English retrieval leaderboard. We
also implement a basic cross-encoder approach, but do not fine-tune it (as stated, we
aim to investigate the performance of our approaches in a zero-shot setting). We expect
this approach not to perform well, and not to achieve the high score of the other team.

Like we described in Section 2.2.2, we can use embedding models to compare pairings of
text (in our case, claim and authority posting), and find the pairings which score the
highest according to our similarity measure. The authority postings from the top pairings
are returned as the “retrieved evidence” for the given claim. To compare a sampling of
multiple embedding models, our experiments cover three different embedding models:

• “multi-qa-distilbert-cos-v1”1 (768 dimensions).

• “NV-Retriever-v1” [MOX+24] by NVIDIA, based on Mistral-7b (4069 embedding
dimensions and 32k input tokens, which is more than sufficient for our data), imple-
mented via the Nvidia NIM API2. This model is also available via HuggingFace3.

• One of the OpenAI embedding models: “text-embedding-3-small” (proprietary,
1536 dimensions).

Since some models like NV-Retriever-v1 are expensive to run for a large amount of input
data, we utilize a re-ranking pipeline, where documents are first ranked using a simple
BM25 algorithm, and the NV-Retriever-v1 model only runs on a subset of the original

1huggingface.co/sentence-transformers/multi-qa-distilbert-cos-v1
2build.nvidia.com/explore/discover
3huggingface.co/nvidia/NV-Retriever-v1
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input data. We found that this combination of a simple lexical retrieval algorithm and a
powerful semantic embedding model works well.

NV-Retriever-v1 is also actually based on a Large Language Model (LLM). Mistral-7b-v0.1
is used as the foundational model that NV-Retriever-v1 is built on. More information
about the techniques used to create this model can be found in the paper by its creators,
Moreira et al. [MOX+24]. NV-Retriever-v1 (and NV-Embed models, introduced in a
previous paper by Lee et al. [LRX+24]) uses training data comprised of different publicly
available datasets covering various retrieval tasks. These datasets are published in their
respective papers, and while they do contain some datasets from other CLEF Labs (like
BioASQ), we are happy to report that our CheckThat! dataset is not included. The
datasets used to fine-tune the NV-Retriever-v1 model we use in this thesis are listed in
Appendix C of the paper by Moreira et al. [MOX+24].

5.2 Preprocessing
Preprocessing can improve lexical matchability, as mentioned in Section 2.2.1. There are
many traditional methods in NLP, like stemming or lemmatization. However, these meth-
ods inherently remove some information (or “signal”) – even normalizing capitalization
(usually to lower-case) removes information that could potentially be useful later on in
the verifier stage, so preprocessing should most likely be restricted to the retrieval stage.

Additionally, tweets sometimes include additional “symbols” or content, such as:

• Hashtags, which might contain valuable information required for an accurate
verification prediction. We do not strip hashtags away completely, but simply
remove the “#” character.

• Username mentions, which are prefixed with an “@” character. Similar to hashtags,
we strip away the “@” character, but leave the username, as it might be necessary
to “understand” the contents of the tweet.

• The pattern “RT @<username>:”, which is part of the text provided by the Twitter
API. This pattern indicates that the tweet is a “Quote Tweet”, a platform-specific
signal which we do not use for this thesis. Accordingly, we strip out this pattern.

• Links, which are part of the tweet text provided by the Twitter API. These links can
refer to other tweets in case of a “Quote Tweet”, media like photos or videos, and
so on. Multimodal input is excluded from our thesis, though it could be integrated
into the verification stage, if the verification is powered by a LLM with multimodal
capabilities, which are becoming more common. For our thesis, we strip out the
links.

We also remove special characters and emojis, which might contain some information, but
generally introduce more noise. Especially emojis are sometimes semantically ambiguous.
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5. Retrieving Authority Statements as Evidence

5.3 Introducing Additional Data
A tweet presented to a human reader contains more information than just the tweet
text: the tweet date and the author’s name are visible, as well as attached media such
as pictures, images or video. If desired, the author’s bio can easily be viewed on their
profile. For this thesis, we experimented with adding additional data which is not present
in the original data set. In our implemented setup, the author’s “@username” is always
added to the tweet text. If an optional feature is enabled, the author’s display name
and the author’s bio will be also added before the text of the statement. In some
cases, this additional information could improve retrieval, as well as the verification
later. Most authority statements do not state the affiliation of the authority, but such
information could be required to find the relevant statements from multiple tweets in
multiple timelines from different authorities.

In other cases, adding the author’s name or other information (like the Twitter bio) is
actually crucial for the relevant evidence to be able to be found. For example: there
is a claim that a person died in a traffic accident. The timeline we are retrieving from
contains the statement “Thank you to all my friends, I am fine [. . . ]” by the same person
the claim is about. If the claim mentions the person by name, but the authority post
does not contain the authority’s own name, the retrieval stage could miss that authority
post. The issue here is the intersection of similar language, words or tokens between
claim and authority post. With the addition of the author’s name or Twitter bio, this
evidence could now be found more easily by a retrieval stage. This example actually
exists in our dataset, as can be seen in the original tweets shown in Figure 4.2 in Section
4.2.1.

In this section, we described why a retrieval stage is necessary, the components we
implemented to represent different approaches to retrieval from a timeline of authority
posts, and how the input data could be processed to improve retrieval performance. The
performance of each component in combination with different data preprocessing steps is
evaluated in Section 7.1.
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CHAPTER 6
Using Authority Evidence for

Verification

Posts on social media are often formulated using informal, casual language. This presents
a challenge to traditional NLP methods. Today, models with a transformer architecture
(“transformers”) are state-of-the-art when it comes to natural language understanding,
especially Large Language Models (LLMs). So, for the verification stage, we are exclusively
looking at transformer-based approaches to fact verification.

As mentioned in Section 2, we will focus on “zero-shot” approaches, where we don’t train
or fine-tune the models we use on our own data. We want our approach to be generally
applicable across multiple topics and platforms, and do not want to limit our approach
to only a select few, fine-tuned topics posted in the format of a tweet.

The following two Sections 6.1 and 6.2 describe two different approaches to claim
verification: using BERT-based models, and using LLMs for claim verification. In our
framework implementation, we set up the models in way that these models provide their
prediction to a set specification. Set up like this, the claim verification stage can use
different models to generate verification “predictions”. We use this claim verification
stage with different models to compare their performance on the task of claim verification
in Sections 7.2 and 7.3.

6.1 BERT-Based Verification
A transformer-based approach we implement uses RoBERTa [LOG+19] as a foundational
model, which was introduced in 2019. One of the tasks for which fine-tuned versions of
RoBERTa are available is Natural Language Inference (see Section 2.3). The “roberta-
large-mnli” model is only one of the models fine-tuned on the MultiNLI dataset, as there
are multiple models available which were already fine-tuned on this dataset. Another
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fine-tuned model we implement is based on BART [LLG+19], a pre-trained seq2seq model
also introduced in 2019. As these models are rather similar across the board in terms
of performance and approach (compared to other similar transformer models fine-tuned
on NLI datasets), we decided to include only these two models in our experiments:
“FacebookAI/roberta-large-mnli”1 and “facebook/bart-large-mnli”2. The fine-tuned
models are available on and were obtained from HuggingFace.

6.2 Large Language Models for Verification
Like we described in Section 2.4, LLMs are trained to perform a wide range of NLP
tasks. In our thesis we compare the performance of different LLMs as verification models,
similar to the task of Natural Language Inference (NLI, see Section 2.3).

We can create an input in such a way that the model will respond predictably (also called
“prompting”). For our purposes, we take the pairing of claim and authority posting and
insert them into the prompt to the LLM. A special system prompt instructs the model
to only consider data supplied in the prompt to formulate the answer, and to respond in
a specified JSON-format template of {“label”: ..., “confidence”: ...}.

Generally, the prompt we supply asks the model to perform the task of NLI, where the
answer should provide a label and score indicating how much the authority posting entails
or contradicts the claim. We also give the LLM the option to respond with an answer of
“NOT ENOUGH INFO”, if the pieces of text are not related. Since our approach always
scores a fixed number of claim-evidence pairings, it is very likely that some pairings are
not related to each other.

The system prompt will be consistent across all LLM-based approaches, and it is as
follows:

You are a helpful assistant doing simple reasoning tasks.
You will be given a statement and a claim.
You need to decide if a statement either supports the given claim (“SUP-
PORTS”), refutes the claim (“REFUTES”), or if the statement is not related
to the claim (“NOT ENOUGH INFO”).
USE ONLY THE STATEMENT AND THE CLAIM PROVIDED BY THE
USER TO MAKE YOUR DECISION.
You must also provide a confidence score between 0 and 1, indicating how
confident you are in your decision.
You must format your answer in JSON format, like this: {“decision”: [“SUP-
PORTS”|“REFUTES”|“NOT ENOUGH INFO”], “confidence”: [0...1]}
No yapping.

1huggingface.co/FacebookAI/roberta-large-mnli
2huggingface.co/facebook/bart-large-mnli
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6.3. Configuration Options for the Verification Stage

There is a question that remains, though: does an LLM have the capabilities to reason?
A very recent paper by Mirzadeh et al. [MAS+24] states “[...] that current LLMs
are not capable of genuine logical reasoning; instead, they attempt to replicate the
reasoning steps observed in their training data .” [MAS+24](p.1). Their paper studied
the mathematical reasoning capabilities of current LLMs. For our task, however, we
investigate the capabilities of LLMs with respect to the natural language inference steps
required to produce the correct label.

Hallucinations, which refer to LLM output that contains untrue statements, were not
an issue for our use case. We don’t ask the LLM to generate facts, and therefore
hallucinations don’t meaningfully influence the trustworthiness of the output, as we
demonstrate via our experiments in Section 7. To verify that our verification step yields
consistent predictions, and not simply random answers, we also compared the predictions
of the sample model executed multiple times. We compare the label and score produced by
these different “runs”, and the variation between the runs with respect to the performance
measures.

Most LLMs also support setting parameters that control the behavior of the LLM, like
“temperature” and “top_p”. We also tested the impact of these settings on consistency
between different executions of the same model.

Not all LLMs are equal, however. Each model is different depending on the training data,
input count, special instructions and “safeguards” by the model provider. The LLama3
model of families is available with three different parameter counts: 8 billion, 70 billion
and 405 billion. We tested these models against each other, and against two other popular
OpenAI models: GPT-4o and GPT-4o-mini, the most capable and efficient OpenAI
models available at the time of writing. Unfortunately, the OpenAI model weights (and
exact parameter counts) are not publicly available, while the Llama3 weights are publicly
available.

Nearly all top “inference-as-a-service” models like models from OpenAI or Anthropic are
subject to moderation restrictions, which could impact the LLMs’ willingness to provide
a SUPPORTS or REFUTES label for political or otherwise sensitive content. However,
some models that are “open-weight” – such as the family of Llama models – can be
hosted on your own infrastructure. These models have their own restrictions via a usage
policy that has to be agreed to in order to download and legally use the models.

6.3 Configuration Options for the Verification Stage
In the verification stage, we provide three multiple configuration options that influence
the verification stage across all implementations, no matter the underlying model used
for verification:

• “Scale”: can be true or false. Controls whether the confidence score produced by
the verification model for a given pairing of claim and evidence is scaled (multiplied)
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by the score returned by the retrieval stage. In theory, since we retrieve a set
number of evidence pieces per rumor (top-k evidence pieces, where k=5), scaling
up the importance of predictions that were based on a highly relevant (according to
the retrieval score) piece of evidence should give relevant predictions more impact,
and vice-versa for non-related pieces of evidence. For claim-evidence pairings with
a prediction of “NOT ENOUGH INFO”, this feature has no impact on those
predictions (since a “NOT ENOUGH INFO” prediction is always scored 0).

• “Normalize”: can be true or false. Controls whether the score returned by the
retrieval stage is normalized to [0, 1]. The maximum and minimum scores that
all the scores get normalized to are global across the dataset being used. In our
implementation, the retrieval stage produces a TREC-formatted file containing
the raw, un-normalized retrieval scores, and – if the feature is enabled – retrieval
scores are then normalized. Normalizing the retrieval scores after retrieval already
happened of course has no impact on the retrieval stage, and is only optionally
used in conjunction with the “Scale” feature described previously.

• “Ignore NEI” (“Ign.NEI”): can be true or false. Controls whether “NOT ENOUGH
INFO” (NEI) predictions are included in the total average confidence calculation.
As described in more detail in Section 6.4, the overall label is produced from the
averaged confidences, if the total average passes a threshold. NEI predictions
will always be zero, thus including NEI predictions will lower the total absolute
score (Ign.NEI=false), while not including NEI predictions in the total average
will make it easier for the threshold to be passed in either direction - positive
or negative (Ign.NEI=true). An example: if the system retrieves 5 rumors, and
creates predictions for each of the 5 pairings, where 1 pairing has a score of +0.7
(REFUTES with a confidence of 0.7) but 4 other, irrelevant pairings score 0 each,
the calculated overall score of (0.7+0+0+0+0)/5 = +0.14 would not pass the
threshold of 0.15. The overall label would be NEI, instead of REFUTES. If NEI
predictions are ignored, the overall score would simply be +0.7, giving an overall
label of REFUTES.

In our paper documenting our approach and results for CLEF 2024 CheckThat! Task 5
[KH24], we evaluated these three features over all the combinations of features. In the
paper, Table 2 detailed the score difference over all combinations of features. We again
provide the results for completeness in Table 6.1. Since we evaluated the impact in terms
of score for each feature, we used our previous research to decide on the configuration of
these three features that we are using in this thesis:

• Ignoring NOT ENOUGH INFO predictions in the overall label prediction calculation
(“Ign.NEI” = True).

• Not scaling confidence by the score returned from the retrieval stage (“Scale” =
False).
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6.3. Configuration Options for the Verification Stage

Feature /
Component
tested

Value
Option 1

Value
Option 2

Macro-F1
Difference

Strict-
Macro-F1

Difference
Verification OPENAI LLAMA +0.1911 +0.2066
Retrieval PyTerrier Embeddings +0.0239 +0.0132
Preprocessing False True +0.0139 +0.0117
ExternalData False True +0.0066 +0.0078
Normalize False True +0.0300 +0.0306
Scale False True +0.0635 +0.0637
IgnoreNEI True False +0.0709 +0.0708

Table 6.1: Differences in average verification performance score over all configurations,
for each feature. The positive difference represents the average score increase when value
option 1 is used over value option 2. This table is included directly from our earlier paper
[KH24].

• Normalizing retrieval score to [0. . . 1] (“Normalize”). This feature being set to
False resulted in a small increase in Macro-F1-score in our paper [KH24], but in
this thesis, since we are not scaling confidence scores by retrieval score (“Scale” =
False), this feature is not relevant and not used.

Aside from the three features described above, which we set to a fixed value for this
thesis, we provide two more features in our implemented system:

• “Preprocessing” the data similarly to what is described in Section 5.2.

• Adding external data from the authority’s Twitter account (referred to as “Exter-
nalData” in Table 6.1). Similar to Section 5.3, additional information about the
authority’s Twitter display name and Twitter bio can also be added to the dataset
before verification. Including this additional data along with the authority post
passed as evidence could be necessary to obtain a correct prediction in circumstances
similar to those described in Section 5.3.

It is important to keep in mind that the values for the components “Verification” and
“Retrieval”, as well as for the features “Preprocessing” and “ExternalData” will vary
depending on the experiment we report the results for in Section 7. In this thesis we have
implemented the retrieval and verification stages using models like the Llama-3.1 family of
models for verification, or the re-ranking BM25 and NV-Retriever-v1 pipeline for retrieval,
which are different to the implementations from our earlier paper. The components we
implemented for these two stages are described in more detail in Section 5 and Section 6,
respectively. These two rows in Table 6.1 are only included for completeness. Whether
text preprocessing or addition of authority account data is done is either fixed per
experiment, or the results of different combinations are reported.
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6.4 Aggregating Pairwise Predictions
Since for each rumor we retrieve (up to) 5 pieces of evidence, which are then individually
passed to the verification stage as claim-evidence pairings, we need to somehow combine
(up to) 5 individual claim-evidence predictions into an overall label per rumor.

To combine multiple claim-evidence pairwise predictions from the verification model,
and produce an overall label for a rumor, we use a simple arithmetic formula. Each
prediction from the verification model contains a label and a “confidence score” (based
on the claim-evidence pairing). The way confidence scores are created depends on the
verification model: the RoBERTa-based MNLI approach produces a score for each NLI
label and outputs the label with the highest score as its prediction, which is also the
confidence score in that label. The LLM-based approach is instructed via the system
prompt to both produce a label and assign a confidence value to its decision between [0,
1].

Parsing the response from any verification stage model, we combine the predicted label
and confidence score to map the response to a value between [-1, 1]. This prediction can
be understood to semantically mean:

• Score between (0, +1] indicates a REFUTES prediction, with a value close to +1
indicating strong confidence

• Score of exactly 0 indicates a NOT ENOUGH INFO prediction, with no preference
towards either SUPPORTS or REFUTES

• Score between [-1, 0) indicates a SUPPORTS prediction, with a value close to -1
indicating strong confidence

In our thesis (and the implementation of the approach we present in it), a positive value
means the piece of evidence “REFUTES” the claim, a negative confidence score means
the piece of evidence “SUPPORTS” the claim, and a confidence score of zero indicates a
model response of “NOT ENOUGH INFO”.

In short, calculating the mean of these individual scores produces a value between [-1,
1], which we can use to return our final overall label with the same semantics from the
above paragraph (negative = ”REFUTES”, positive = ”SUPPORTS”). If the mean of
the scores is zero or close to zero, we are likely to have:

• Received exclusively “NOT ENOUGH INFO” predictions – in which case we want
to return NEI as the overall label

• Received conflicting predictions of similar confidence, for example 1 “REFUTES”, 1
“SUPPORTS”, 3 “NOT ENOUGH INFO” - in which case we would want the system
to return NEI as the overall label. Semantically this means the verification stage
received two claim-evidence pairings, in one of which the evidence supports the claim
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and in the other the evidence refutes the claim. The other three claim-evidence
pairings were predicted to be unrelated.

• If, taking the above example, the “REFUTES” model prediction is much more
confident than the “SUPPORTS” prediction, we may want to return “REFUTES”
as the overall label, or vice-versa.

For the reasons listed above, we implement a threshold of a low value that the absolute
value of the mean of the scores needs to exceed to predict a “REFUTES” or “SUPPORTS”
label. The threshold is not learned and is set to 0.15. The threshold is set such that
combining values indicating conflicting label predictions usually results in an overall label
of “NOT ENOUGH INFO”. In the case of combining conflicting predictions, only if the
predictions in one direction are much stronger or more numerous will an overall label
other than “NOT ENOUGH INFO” be produced.

There are additional, optional features influencing overall label creation, which are listed
in the previous Section 6.3.

This is the formula for overall label creation if the “Scale” and “Normalize” features are
turned off:

Overall Score =
�

p∈predictions(prediction valuep)
# of predictions

Here, the prediction value is a value between [-1,+1] as described above. As previously
described, if the value of the Overall Score is:

• greater than +0.15: the overall label is “REFUTES”

• between -0.15 and +0.15: the overall label is “NOT ENOUGH INFO”

• less than -0.15: the overall label is “SUPPORTS”

The formula above is the one being used in the thesis. As described in Section 6.3, we do
not include the retrieval score in our overall label calculation. If the retrieval score were
to be included, this is the formula for overall label creation if the “Scale” and “Norm”
features are turned on:

Overall Score =
�

p∈predictions(prediction valuep) × Retrieval Scorep

# of predictions

Retrieval score being the score given to the piece of evidence by the retrieval stage,
normalized to [0,1]:
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Model Name Architecture Configuration Options
(each With/Without)

Llama-3.1-405B-Instruct LLM Preprocess Text; Add
Author Data

Llama-3.1-70B-Instruct LLM Preprocess Text; Add
Author Data

Llama-3.1-8B-Instruct LLM Preprocess Text; Add
Author Data

GPT-4o LLM Preprocess Text; Add
Author Data

GPT-4o-mini LLM Preprocess Text; Add
Author Data

FacebookAI/roberta-
large-mnli

Transformer
(RoBERTa)

Preprocess Text; Add
Author Data

facebook/bart-large-mnli Transformer
(BART)

Preprocess Text; Add
Author Data

Table 6.2: Overview of models implemented for the verification stage. Each model can
be used with and without preprocessing the input text, and with or without adding
additional author data (Twitter display name and bio) to the input text. We present the
results of the comparisons between these models in Section 7.

Retrieval Scorep = (retrieval scorep − mininum retrieval score)
(maximum retrieval score − mininum retrieval score)

The minimum and maximum retrieval score values are global across all retrieved evidence.

Above, we describe how our system handles conflicting evidence for a rumor. However,
our dataset has a special characteristic we need to point out - it does not usually contain
evidence that directly contradicts other evidence. Usually, if a rumor is labeled as
“SUPPORTS” or “REFUTES”, the tweets from the timeline that are marked as “relevant
evidence” (according to the annotators) each agree with the ground-truth overall label.
While not as relevant for our specific dataset, it is important to keep the possibility of
genuinely conflicting evidence in mind, as other datasets (or real-world use cases) might
differ from our dataset in this aspect.

In this section, we presented our approach to claim verification. Table 6.2 gives an
overview over the models we use for our experiments in the next Section, as well as the
configuration options with which we test each model.
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CHAPTER 7
Evaluation and Results

To answer the research questions formulated in Section 1.2 we conducted experiments
using a system implementing the approaches from Sections 5 and 6. We also conducted
a fail-case analysis to investigate drawbacks and potentially negative implications for our
approach, to investigate under which circumstances issues arise.

In our previous conference working notes [KH24] we reported the findings of our experi-
ments during our participation in the shared task. Since then, we have improved our
implementations and added several new approaches and their implementations:

• Multiple new models: the Llama-3.1 family of models, for our CLEF 2024
CheckThat! Lab paper we used the Llama-3-8b and Llama-3-70b models in our
submission. In this thesis, we report the results for the whole Llama-3.1 family of
models (8b, 70b and 405b). For the OpenAI models we present results GPT-4o
and GPT-4o-mini, instead of GPT-4-Turbo.

• For our CLEF 2024 CheckThat! Lab submission we only ran experiments on the
dev split of the dataset and uploaded our results for the test dataset, for which
the labels are not publicly available. In this thesis, we use the combined train and
dev dataset splits instead of dev (and test for the competition) that we describe in
more detail in Section 4.2.

• We include new retrieval models, namely NV-Retriever-v1 and a CrossEncoder,
and implement two re-ranking approaches.

• We report our results running experiments to check consistency of repeated genera-
tion with the same model and data and report the impact of different settings for
model parameters “temperature” and “top_p”. Additionally, we present a direct
comparison between the three model sizes of the Llama-3.1 family of models with
regards to claim verification performance.

39



7. Evaluation and Results

• We also investigate the likelihood of our dataset being included in the GPT-4o
training data.

7.1 Experiment Results for the Retrieval Stage
For the retrieval stage, we report the results of the 5 retrieval approaches we implemented:

• BM25 (with default parameters)

• TF-IDF

• Re-ranking pipeline of BM25 > NV-Retriever-v1

• Cosine distance between embeddings obtained from the OpenAI model “text-
embedding-3-small”

• Re-ranking pipeline of Sentence Transformers “sentence-transformers/msmarco-
distilbert-cos-v5” into the Cross-Encoder “cross-encoder/ms-marco-MiniLM-L-6-v2”

For each model, we evaluate and report the performance in terms of Recall@5 and Mean
Average Precision (MAP). Our preprocessing approach and our approach to adding
additional data about the authority (“author”) are described in more detail in Section
5.2. Using our dataset described in Section 4.2, we report the results for 4 “variations”
of our dataset: with and without preprocessing, with and without additional author data
(Twitter display name, and Twitter bio).

• Without preprocessing and without additional author data (nopre-nonam-nobio):
the “raw” data from the dataset.

• With preprocessing and without additional author data (pre-nonam-nobio): the
“raw” data from the dataset, but preprocessed.

• With preprocessing and with additional author data (pre-nam-bio): we would
expect lexical retrieval to be best here.

• Without preprocessing but with additional author data (nopre-nam-bio): we would
expect semantic retrieval to be best here, as this includes the most information.

The general, non-specialized retrieval approaches we present the results of in Table 7.1
here do not perform particularly well. However, the best Recall@5 score is obtained by
the BM25-NV-Retriever-v1 re-ranking implementation (with default parameters), with a
Recall@5 of about 0.71. It performs the best across all data set variations but adding
author information worsens the score. Preprocessing also lowers the score, but not as
much as adding author information. As described in Section 5.1, we can also be sure that
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Rank Recall@5 MAP Retrieval Method Dataset Variation
1 0.714 0.671 rerank-nv-embed-v1 nopre-nonam-nobio
2 0.707 0.680 rerank-nv-embed-v1 pre-nonam-nobio
3 0.679 0.650 rerank-nv-embed-v1 nopre-nam-bio
4 0.675 0.647 rerank-nv-embed-v1 pre-nam-bio
5 0.645 0.580 bm25 pre-nam-bio
6 0.637 0.565 bm25 nopre-nam-bio
7 0.634 0.567 bm25 pre-nonam-nobio
8 0.633 0.575 openai pre-nam-bio
9 0.631 0.588 openai nopre-nonam-nobio

10 0.628 0.568 openai nopre-nam-bio
11 0.620 0.558 bm25 nopre-nonam-nobio
12 0.618 0.531 tfidf nopre-nam-bio
13 0.618 0.571 openai pre-nonam-nobio
14 0.611 0.491 tfidf nopre-nonam-nobio
15 0.602 0.504 tfidf pre-nonam-nobio
16 0.598 0.538 tfidf pre-nam-bio
17 0.531 0.499 rerank-sbert-crossencoder pre-nonam-nobio
18 0.527 0.496 rerank-sbert-crossencoder nopre-nonam-nobio
19 0.516 0.494 rerank-sbert-crossencoder nopre-nam-bio
20 0.516 0.492 rerank-sbert-crossencoder pre-nam-bio

Table 7.1: Experiment results showing the difference (in terms of Recall@5 and MAP)
between setups using various retrieval approaches on different dataset variations (with
and without preprocessing, with and without additional authority information).

our dataset was not included in the fine-tuning training data of the retriever model, as
the authors of NV-Retriever-v1 include a list of datasets used in their paper [MOX+24].

The second-best retrieval results are obtained with pure BM25 (with default parameters)
on the preprocessed dataset with all additional author information – display name and
Twitter bio – added (hence “pre-nam-bio”). It is, along with TF-IDF, also extremely fast
to compute due to the simplicity of the algorithm. Overall, adding the embedding model
on top of BM25 improved retrieval.

To answer Research Question 1 : The best approach we found was a re-ranking pipeline
of BM25 and NV-Retriever-v1, which worked well with any configuration of the dataset.
The highest score we obtained was a Recall@5 of 0.714475 using the default Okapi BM25
implementation, and the NV-Retriever-v1 embedding model.

7.2 Experiment Results for the Verification Stage
For each model, we evaluate and report the performance in terms of Macro-F1 and
Strict-Macro-F1. Like in the previous Section 7.1, we report the results for 4 variations
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Macro-F1 Strict-Macro-F1 Model DS Settings
0.814 0.814 Llama-3.1-8b-Instruct pre-nonam-nobio
0.943 0.943 Llama-3.1-70b-Instruct pre-nonam-nobio
0.985 0.985 Llama-3.1-405b-Instruct pre-nonam-nobio

Table 7.2: Experiment results showing the difference in performance of the three Llama-
3.1 models.

of our dataset: with and without preprocessing, with and without additional author data
(Twitter display name, and Twitter bio).

• Without preprocessing and without additional author data (nopre-nonam-nobio):
the “raw” data from the dataset.

• With preprocessing and without additional author data (pre-nonam-nobio): the
“raw” data from the dataset, but preprocessed.

• With preprocessing and with additional author data (pre-nam-bio).

• Without preprocessing but with additional author data (nopre-nam-bio).

Assuming the setting of all relevant evidence being provided (the setting of RQ2), we can
report the results of our experiment concerning model size in Table 7.2. The Llama-3.1
family of models comes in 3 sizes: 8b, 70b and 405b. The highest Macro-F1 was obtained
by the most powerful model, Llama-3.1-405b-Instruct.

This experiment gives us some insight into the “weight class” of model that is required
to tackle this task. There are some tricky rumors included in the dataset we use, and
only the most powerful 405b model got them all right (with two exceptions).

In the cases where the 405b model does not predict the correct label, it predicts “NOT
ENOUGH INFO” (the intended “failure mode”). The other models sometimes make the
worst kind of mistake in this specific task: predicting overall “SUPPORTS” on a rumor
labeled “REFUTES”, or the other way around.

Notably, the misclassified rumors largely overlap between models – the rumors misclassified
by the 405b model were also misclassified by the two other, weaker models. We further
analyze this in Section 7.5.

We conducted an experiment where the parameters “temperature” and “top_p” were set
to different values and evaluated the output, looking for changes. The models we used
here were the OpenAI model GPT-4o-mini, and the 70B variant of the Llama-3.1 family
of models. The parameter values we tested and the Macro-F1 differences are listed in
Table 7.3.

While we observed no meaningful impact in terms of Macro-F1-score across the GPT-4o-
mini runs, we observed a clear drop in performance when both temperature and top_p
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Macro-F1 temperature top_p Model Name
0.909 1 1 GPT-4o-mini
0.909 0.1 1 GPT-4o-mini
0.909 1 0.1 GPT-4o-mini
0.909 0.5 0.5 GPT-4o-mini
0.924 1 1 Llama-3.1-70B-Instruct
0.974 0.1 1 Llama-3.1-70B-Instruct
0.985 1 0.1 Llama-3.1-70B-Instruct
0.985 0.5 0.5 Llama-3.1-70B-Instruct

Table 7.3: Experiment results comparing verification models (in terms of Macro-F1)
using different values for the parameters “temperature” and “top_p”.

Predicted
Labels
Match

Evidence
Scores Run 1

Evidence
Scores Run 2

Evidence
Scores Run 3

Rumor ID

Yes [0.0, -0.95, 0.0,
0.0, -0.9]

[0.0, -0.95, 0.0,
0.0, -0.8]

[0.0, -0.95, 0.0,
0.0, -0.9]

AuRED_111

Yes [+0.95] [+0.95] [+0.9] AuRED_148
Yes [-1.0, 0.0] [-0.95, 0.0] [-0.95, 0.0] AuRED_125

Table 7.4: Experiment results from running the same OpenAI GPT-4o-mini model 3
times and calculating the differences between confidence returned in each of the runs.
Each row represents a rumor where a difference in the predictions was detected. The
values in the columns Evidence Scores Run 1-3 show the predicted values for all available
claim-evidence pairings per run.

were set to lower values. “top_p” controls the proportion of tokens considered for output,
while “temperature” controls creativity of the output. Theoretically, lower values should
influence the model output to be more predictable and deterministic. Setting lower values
for both resulted in improved performance in the Llama-3.1-70B model.

To test for hallucinations and randomness in the output of the OpenAI models, we tested
consistency between runs. These runs used the same set of settings, prompt and data
with the GPT-4o-mini model (temperature=0.01, top_p=0.5). As described in Section
6.4, a prediction of “SUPPORTS” and a confidence score of, for example, 0.95 maps to
a value of -0.95. A prediction of “REFUTES” with a confidence score of, for example,
0.95 would map to +0.95. A “NOT ENOUGH INFO” predicted label maps to a value of
0.0. The values in the columns Evidence Scores Run 1-3 show the predicted scores for a
piece of evidence, for example: a list of [-0.95, 0.0] means there were two claim-evidence
pairings, and the model predicted the first pairing as “SUPPORTS” with a confidence of
0.95, and the second pairing as “NOT ENOUGH INFO”.

We filtered the results for predictions that did not exactly match across our dataset and
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Rank Macro-
F1

Strict-
Macro-

F1

Verifier Method Model Identifier

1 0.985 0.985 llama3-1-405b Meta-Llama-3.1-405B-Instruct
2 0.960 0.960 llama3-1-70b Meta-Llama-3.1-70B-Instruct
3 0.937 0.937 openai-4o GPT-4o
4 0.903 0.903 openai-4o-mini GPT-4o-mini
5 0.803 0.803 llama3-1-8B Meta-Llama-3.1-8B-Instruct
6 0.771 0.771 transformers-roberta FacebookAI/roberta-large-mnli
7 0.705 0.705 transformers-bart facebook/bart-large-mnli

Table 7.5: Experiment results for different verification models using the preprocessed
dataset without additional authority account information, in the RQ2 setting using only
relevant, hand-labeled evidence.

found three rumors where different confidence scores were returned for the same claim-
evidence pairing. These three rumors and their respective values for each claim-evidence
pairing are reported in Table 7.4. The maximum difference in scores returned by the
OpenAI model using the same settings, prompt and data was 0.1. Even in the only cases
where predictions don’t exactly match, the difference is very small, at most between
confidences of -0.9 and -0.8.

For our final experiment in RQ2, we compare various implementations of retriever models
on the preprocessed dataset without adding additional author information. We assume
perfect evidence retrieval for RQ2, so the evidence in the claim-evidence pairings sent to
the different retrieval stages consists of the claim and evidence directly from the dataset,
which was annotated as relevant evidence by a human (the CheckThat! Lab Task 5
authors, who provided the dataset).

The models in rank 6, 7 and 8 use the transformer models identified by the strings in the
Model Identifier column, sourced from huggingface.

The LLMs (GPT-4o family, Llama-3.1 family) all take parameters, which were set to
“temperature=0.2” and “top_p=1.0”, respectively.

To answer Research Question 2 : The best approach we found through our experiments
was the Llama-3.1-405B-Instruct model, obtaining a Macro-F1-score of 0.985261. The 70B
variant of this model family follows closely behind, with a Macro-F1-score of 0.960686.

7.3 Experiment Results for an Integrated Pipeline
For each model, we evaluate and report the performance in terms of Macro-F1 and
Strict-Macro-F1. Like in the previous Section 7.1, we report the results for 4 variations
of our dataset: with and without preprocessing, with and without additional author data
(Twitter display name, and Twitter bio).
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• Without preprocessing and without additional author data (nopre-nonam-nobio):
the “raw” data from the dataset.

• With preprocessing and without additional author data (pre-nonam-nobio): the
“raw” data from the dataset, but preprocessed.

• With preprocessing and with additional author data (pre-nam-bio).

• Without preprocessing but with additional author data (nopre-nam-bio).

The LLMs we compare, namely GPT-4o and GPT-4o mini, as well as the Llama-3.1 family
of models, all take parameters, which were set to the default parameters temperature=0.2
and top_p=1.0, respectively. The other models were initialized with default parameters.
All of the runs we present the results of in Table 7.6 use the best retrieval system we
found in RQ1, the re-ranking pipeline consisting of BM25 and a re-ranking head of
NV-Retriever-v1.

To answer Research Question 3 : The best approach we found uses the GPT-4o model
and the re-ranking retrieval pipeline of BM25 and NV-Retriever-v1 (which consistently
performed the best in RQ1), achieving top scores across all four dataset variations, with
a maximum Macro-F1-score of 0.858523 (though all the variations are very close in terms
of score). Closely following is the less powerful GPT-4o-mini model, with a maximum
Macro-F1-score of 0.810380. Generally, the less powerful models (in terms of model size)
perform worse, receiving progressively lower scores.

Interestingly, the Llama-3.1-70B model sometimes outperforms the more powerful Llama-
3.1-405B model. Among the Llama-3.1 family of models the dataset settings (preprocess-
ing, additional authority information) seem to have more of an impact, broadening the
score spread between the setups using the same model but different dataset settings.

The Llama-3.1 70B and 405B models also lose more performance in the RQ3 setting
without perfect evidence. In the RQ2 setting, they outperformed the GPT-4o and
GPT-4o-mini models, which don’t lose as much Macro-F1-score compared to RQ2 Table
7.5.

7.4 CheckThat! Lab Submission Results
For completeness, we also present the results we achieved during our participation in the
CheckThat! Lab Task 5 at CLEF 2024. We have already published our paper in the
conference proceedings [KH24].

As part of the shared task, we were able to run our system on a previously unseen split
of the dataset (called “test”), for which the labels were not available. Manually looking
through the data, we think the “test” split of the dataset was harder to predict accurately
than the “dev” split, which we used to evaluate our system in our CheckThat! working
notes paper. We also think our combined “train” and “dev” dataset, which we use in this
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Rank Macro-
F1

Strict-
Macro-

F1

Verifier Model DS Settings

1 0.858 0.850 GPT-4o pre-nam-bio
2 0.854 0.846 GPT-4o pre-nonam-nobio
3 0.850 0.842 GPT-4o nopre-nonam-nobio
4 0.844 0.840 GPT-4o nopre-nam-bio
5 0.810 0.797 GPT-4o-mini nopre-nam-bio
6 0.803 0.795 GPT-4o-mini nopre-nonam-nobio
7 0.793 0.784 GPT-4o-mini pre-nonam-nobio
8 0.781 0.768 GPT-4o-mini pre-nam-bio
9 0.774 0.762 Meta-Llama-3.1-70B-Instruct pre-nonam-nobio

10 0.767 0.759 Meta-Llama-3.1-70B-Instruct nopre-nonam-nobio
11 0.766 0.751 Meta-Llama-3.1-405B-Instruct pre-nonam-nobio
12 0.746 0.735 Meta-Llama-3.1-405B-Instruct nopre-nonam-nobio
13 0.721 0.701 Meta-Llama-3.1-405B-Instruct pre-nam-bio
14 0.709 0.691 Meta-Llama-3.1-405B-Instruct nopre-nam-bio
15 0.708 0.696 Meta-Llama-3.1-70B-Instruct nopre-nam-bio
16 0.705 0.692 Meta-Llama-3.1-70B-Instruct pre-nam-bio
17 0.631 0.620 Meta-Llama-3.1-8B-Instruct pre-nam-bio
18 0.609 0.597 Meta-Llama-3.1-8B-Instruct pre-nonam-nobio
19 0.580 0.568 Meta-Llama-3.1-8B-Instruct nopre-nonam-nobio
20 0.507 0.500 Meta-Llama-3.1-8B-Instruct nopre-nam-bio
21 0.322 0.322 FacebookAI/roberta-large-mnli nopre-nonam-nobio
22 0.312 0.303 FacebookAI/roberta-large-mnli pre-nonam-nobio
23 0.298 0.280 facebook/bart-large-mnli nopre-nam-bio
24 0.283 0.275 facebook/bart-large-mnli nopre-nonam-nobio
25 0.270 0.270 facebook/bart-large-mnli pre-nam-bio
26 0.264 0.264 FacebookAI/roberta-large-mnli pre-nam-bio
27 0.225 0.216 FacebookAI/roberta-large-mnli nopre-nam-bio
28 0.219 0.210 facebook/bart-large-mnli pre-nonam-nobio

Table 7.6: Experiment results for combinations of different verification models and
dataset settings using retrieved evidence. All runs used the retrieved evidence from the
re-ranking pipeline consisting of BM25 and NV-Retriever-v1 from RQ1 (Section 7.1,
“rerank-nv-embed-v1” in Table 7.1).
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Team Run
Label

Macro-
F1

Strict-
Macro-

F1

Retrieval
Approach

Verification
Approach

AuthEv-LKolb
(ours)

secondary1 0.895 0.876 Embeddings +
External Data

GPT-4

AuthEv-LKolb
(ours)

primary 0.879 0.861 Embeddings GPT-4

AuthEv-LKolb
(ours)

secondary2 0.831 0.831 PL2 GPT-4

Axolotl primary 0.687 0.687 Re-Ranker
(BM25 &
Llama3-8B)

Llama3-8B

(baseline) 0.495 0.495
Team DEFAULT primary 0.482 0.454 COLBERT not published
IAI Group secondary1 0.459 0.444 Cross-Encoder not published
bigIR primary 0.458 0.428 KGAT KGAT

Table 7.7: Selected results for the English verification leaderboard. For all runs, we used
GPT-4 as the verification component. For each of the other teams, the best submission
score is presented here. Retrieval and Verification Approach shows the method(s) the
team used for the task, if the team disclosed their methods.

thesis, is more difficult than test, since our system generally got lower Macro-F1-scores
when being evaluated on this combined dataset (compared to the “dev” split).

We ran 3 configurations of the implementation of our system at the time and uploaded
our retrieved evidence and predicted labels. The authors of the shared task evaluated
each groups’ results and published the scores for both retrieval and verification, each in
English and Arabic. We only handed in results for the English part of the dataset. In
Table n, we again present the results of our 3 submissions, the baseline, and the best
results from each of the other 4 participating teams.

7.5 Fail-Case Analysis
In this section we highlight and analyze some cases where the system fails to predict the
correct overall label. We will use the results produced by running the Llama-3.1 size
comparison experiment for Research Question 2, the scores of which are presented in
Table 7.2. We use the RQ2 setting (where we have “perfect” evidence), since we want
to test the verification models, not the retrieval. We use these three models as they all
have interesting fail cases. The dataset variation used preprocessing but did not add
additional author information.

Importantly, we use only (up to) the first 5 pieces of evidence labeled as relevant by the
dataset authors, even if there are more pieces of evidence labeled as relevant. If there
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are less than 5 pieces of evidence labeled as relevant, we use as many as are available.
This is because we decided to limit ourselves to a top-k retrieval of 5 pieces of evidence
for this thesis. It is possible that crucial evidence is missing from the relevant evidence,
but this is only an issue if the other pieces of evidence are not sufficient to classify a
rumor as SUPPORTS or REFUTES on their own. We would consider this circumstance
a mislabeling of evidence as relevant.

If the system does not predict the correct label, there are three possible cases:

• CASE 1: the overall predicted label is SUPPORTS, but the actual label is RE-
FUTES, or vice-versa (“producing the opposite label”).

• CASE 2: the actual label is REFUTES or SUPPORTS, but the overall predicted
label is NOT ENOUGH INFO (“judging too cautiously”).

• CASE 3: the actual label is NOT ENOUGH INFO, but the overall predicted label
is REFUTES or SUPPORTS (“judging too easily”). This case does not come up in
the analysis presented here, as we have perfect evidence, and the system produces
a NOT ENOUGH INFO overall label if there is no evidence. Rumors labeled as
NOT ENOUGH INFO in the RQ2 setting have no evidence labeled as “relevant”,
so would only be relevant in a RQ3 setting – not in a RQ2 setting.

In each Image 7.1, 7.2 and 7.4 the claim and evidence are presented like this:

• The claim and evidence text are presented in the image, with the score in front (in
parentheses) of the evidence tweet text.

• The score indicates the label prediction and confidence score the model provided
(for the respective claim-evidence pairing). Here are some examples:

– ( 0.9) <tweet text> = positive confidence = REFUTES
– ( 0.0) <tweet text> = neutral prediction = NOT ENOUGH INFO
– (-0.9) <tweet text> = negative confidence = SUPPORTS

Llama-3.1-405B-Instruct: the model only makes two mispredictions across the entire
dataset. Both mispredictions are of the CASE 2 type. Once because 2 pieces of evidence
are judged as SUPPORTS, while 2 other pieces of evidence are judged as REFUTES,
causing a tie.

The other misprediction is a result of not judging any piece of evidence as either
SUPPORTS or REFUTES. Looking at the actual evidence tweet texts, none of them
actually appear as relevant enough to classify the rumor as SUPPORTS or REFUTES
given their text content. As we explained above, this seems to be a mislabeling of
evidence as “relevant” by the dataset authors. It is possible that the original Arabic text
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7.5. Fail-Case Analysis

Figure 7.1: Misclassifications by Llama-3.1-405B-Instruct on our dataset in the RQ2
setting.

would give enough context to accurately classify the rumor, but the machine translation
to English loses some critical information. It is also possible that not including media
content posted along with a tweet (that would be available to a human labeling the data)
contributes to missing some necessary information. In this specific case, the model was
unable to detect that the claim of a person’s death is contradicted by the fact that the
person is posting on social media. Our setup only incorporates text content, not social
media metadata like time of posting, and this is why the correct label could not be found.

Image 7.1 shows the texts passed to the model (both claim and each evidence) and the
models’ prediction and confidence represented by the score prepended to the evidence
text.

Llama-3.1-70B-Instruct: the verification stage using this model produces 6 wrong
overall labels on our dataset. 3 misclassifications of type CASE 2 (“being too cautious”),
and 3 misclassifications of type CASE 1 (“producing the opposite label”). Do demonstrate
a CASE 1 and CASE 2 misprediction, we will look at two rumors here, which are also
displayed as in Image 7.2:

• In the first rumor, the verification stage produces a “being too cautious” CASE
2 misprediction. This is due to the two available pieces of evidence receiving
opposing label predictions, causing a tie. However, both evidence tweets contain
basically the same text, except they were posted from difference accounts. A
possible interpretation is that the LLM only associated one of the account handles
with “Saudi Arabia”, which is named in the claim. Additional author information
could maybe improve the results in this type of fail case, provided the name or bio
contain the required information to successfully make this association.

• The second rumor is a misprediction, assigning the opposite label compared to the
one assigned by the human labeler. There is only one piece of evidence, so presum-
ably the human labeler deemed the evidence tweet sufficient to refute the claim.
Looking at the claim and evidence texts, it seems again that some information was
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Figure 7.2: Two selected misclassifications by Llama-3.1-70B-Instruct on our dataset in
the RQ2 setting.

lost in the machine translation from Arabic to English, and possibly by the prepro-
cessing. The claim alleges a “vaccination conspiracy” by Zain Telecommunications
Company, while the evidence tweet is a post by Zain Telecommunications Company
opposing “vaccination conspiracies”. This information, however, does not seem
to come across properly in the translated text of the tweet – especially because
wordplay is involved in the evidence tweet text. Image 7.3 shows the source tweet
on Twitter.

Llama-3.1-8B-Instruct: the verification stage using this model produces 21 wrong
overall labels on our dataset. 11 misclassifications of type CASE 2 (“being too cautious”),
and 10 misclassifications of type CASE 1 (“producing the opposite label”). To sample
another type of misprediction, here we will be looking at one individual rumor for this
model, displayed in Image 7.4. This example shows that the model is simply weaker than
the other models with more parameters in this family of models. The evidence tweet
is very clearly opposing the claim, even saying verbatim “[. . . ] This rumor is not true”.
The model still classified this claim-evidence pairing as SUPPORTS.

In Table 7.8 we list all the misclassifications (and their type) produced by each model,
grouped by rumor id. We can see that every rumor that the most powerful 405B got
wrong, the weaker models also got wrong, while the 405B model judged everything else
correctly (based on the overall rumor label generated). This gives us an idea of the
performance other than pure Macro-F1-score. The more powerful models make fewer
errors, and they are generally of the more “benign” error type CASE 2 (“judging too
cautiously”).

Some of the issues highlighted here will be further discussed in Section 8.2.

7.6 Inclusion in GPT Training Data
Another basic experiment we conducted aims to find our if the predictions the GPT
models produce are simply memorized, or if they are actually generated depending on
the data we provide via the prompt. To examine the inclusion of our CheckThat! Lab
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Figure 7.3: Original tweet from “Zain Telecommunications Company” oppos-
ing “vaccination conspiracies” (https://twitter.com/ZainKuwait/status/
1376975348114526215, accessed 22.09.2024).

Figure 7.4: One selected misclassification by Llama-3.1-8B-Instruct on our dataset in the
RQ2 setting.
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Rumor ID 405B 70B 8B
AuRED_014 Case 1
AuRED_089 Case 1
AuRED_135 Case 2
AuRED_141 Case 1
AuRED_152 Case 1
AuRED_157 Case 2 Case 1 Case 1
AuRED_094 Case 1
AuRED_002 Case 1
AuRED_051 Case 2
AuRED_096 Case 2
AuRED_149 Case 1
AuRED_098 Case 2
AuRED_138 Case 2
AuRED_087 Case 2
AuRED_079 Case 2
AuRED_159 Case 2 Case 2 Case 2
AuRED_131 Case 1
AuRED_041 Case 1 Case 2
AuRED_142 Case 2
AuRED_099 Case 2
AuRED_083 Case 1
AuRED_085 Case 2
AuRED_124 Case 2
AuRED_116 Case 1

Table 7.8: Rumors each Llama-3.1 model variant misclassified in the RQ2 setting described
in Section 7.2.

Task 5 dataset (and its labels) in the OpenAI GPT models’ training data, we took the
following steps:

1. We flip the labels from SUPPORTS to REFUTES, and vice versa. We also drop
any rumors with labels that are NOT ENOUGH INFO, and drop the timeline
part of the data. We will only need the claim, label and relevant evidence for this
experiment.

2. We manually alter the text contents of the new rumors so that the claim-evidence
pairings match the inverted, new labels semantically. The changes made to the
rumors can be checked on our GitHub repository1. We also tried to keep the

1The individually edited rumor JSON files are located under the /data folder at this link:
github.com/LuisKolb/thesis/tree/main/lkae/RQ2/inverting-check
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changes minimal, like inverting or negating a verb to invert the meaning of an
entire sentence.

3. Run the verification stage as in RQ2, with claim-evidence pairings that consist of
our manually altered data.

If our dataset is included in the GPT models, and the label predictions to our claim-
evidence pairings are “memorized” instead of actually inferred from the input text we
provide, we would expect to observe an overall pattern across overall predictions on a
rumor where the GPT model predicts the original label, instead of the “new” inverted
label.

In our results, this does not occur often. Performance scores are somewhat degraded
overall (compared to the experiments with the original datasets), but this is likely caused
by the manual edits we added. Since we also drop NOT ENOUGH INFO labels, this
is not a valid choice anymore, but it is still available in the prompt to the GPT model.
Overall, we can state that the predictions don’t seem to be produced from the latent
knowledge (or “memory”) available to the GPT model via its training data, but rather
are generated based on the supplied evidence.
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CHAPTER 8
Conclusion and Discussion

In this chapter, we summarize the findings and contributions of this thesis, discuss
important aspects and concerns relevant to the approach we present, and highlight
avenues for further research.

8.1 Contributions
We present an approach to verifying authority support or denial of rumors using evidence
retrieved from the authorities’ account.

We also contribute the conference paper (working notes) we published with our partic-
ipation in the CheckThat! Lab at CLEF 2024: “AuthEv-LKolb at CheckThat! 2024:
A Two-Stage Approach To Evidence-Based Social Media Claim Verification” [KH24].
The code we used in that paper is available as open-source online via GitHub1 under a
GPL-3.0 license.

The code we produced for this thesis, along with our results, is also available as open-
source online via GitHub2 under an MIT license. However, the main contributions of
this thesis are the answers to our research questions, which we summarize again here:

• Research Question 1: To what extent can tweets (“evidence”) relevant to a
claim be retrieved from timelines of authority accounts, given an initial claim, a
set of authority accounts and the timelines of those authority accounts? The best
approach we found was a re-ranking pipeline of BM25 and NV-Retriever-v1, which
worked well with any configuration of the dataset. The highest score we obtained
was a Recall@5 of 0.714 using the default Okapi BM25 implementation, and the
NV-Retriever-v1 embedding model.

1github.com/LuisKolb/clef-2024-authority
2github.com/LuisKolb/thesis
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• Research Question 2: To what extent can a claim, given a list of tweets (“evi-
dence”), accurately be identified as being supported by the evidence (true), being
refuted by the evidence (false), or being unverifiable (not enough evidence to verify
it being available)? The best approach we found given the RQ2 setting with per-
fect evidence was the Llama-3.1-405B-Instruct model, obtaining a Macro-F1-score
of 0.985. The 70B variant of this model family follows closely behind, with a
Macro-F1-score of 0.960.

• Research Question 3: To what extent can a pipeline combining the approaches
from RQ1 and RQ2 refute or support a claim, automatically retrieving evidence
from the timelines of authority accounts? The best approach we found uses the
GPT-4o model and the re-ranking retrieval pipeline of BM25 and NV-Retriever-v1,
achieving top scores across all four dataset variations, with a maximum Macro-F1-
score of 0.858. Closely following is the less powerful GPT-4o-mini model, with a
maximum Macro-F1-score of 0.810. Generally, the less powerful models (in terms
of model size) perform worse, receiving progressively lower scores.

8.2 Discussion
There are some caveats and issues, some of which we already mentioned in previous
Sections. Here, we want to highlight and discuss some possible benefits and drawbacks
of our approach:

Dataset issues & preprocessing: as we stated in Section 7.8, some misclassifications
could have been caused by the way the data was machine translated, and possibly via
our preprocessing. The original evidence tweets were all posted in Arabic, and the
machine translation provided by the dataset authors contains texts that are sometimes
ambiguous in English, while they might not be ambiguous in the original language.
Preprocessing could also have lost some necessary information within the texts, which
might be exacerbated by the unnatural sentence structure inherent to the translations
from Arabic to English.

Media & social network metadata in evidence tweets: while some evidence tweets
might obviously contain the information necessary to verify a claim, the human viewer
(or labeler, in our case) has access to more information than we provide to our verification
stage. We don’t make use of images attached to evidence to verify a claim, nor do we
include time of posting or whether the evidence tweet is a reply to a tweet containing
the claim.

In general, the dataset construction is not ideal or representative of how the approach to
fact-checking with authority evidence would be implemented in a real, production system
(for example, at a social media company or as a tool for professional fact-checkers). More
information or signals would need to be included, as we discussed earlier.

Public Trust in AI Systems and LLMs: for any fact-checking system to be effective,
there needs to be trust by the user. Given that we explore the application of LLMs to the
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domain of fact-checking, it is crucial to be transparent how we use these new technologies,
building trust [FAI+24]. It is also important to stress that our approach does not use
LLMs as a source of truth. We utilize LLMs as highly capable models that have learned
complex patterns of natural language better than other available approaches, and are
more capable of dealing with the casual, informal language used on social media, for
example. These models perform very well as Natural Language Inference machines, as
our results have shown – and this is all we are using them for.

Implications of using Authority Sources for Fact-Checking: another important
point we will reiterate here is that our approach does not do “fact-checking” as it is
traditionally understood. We don’t use knowledge bases or similar information providers
as sources of truth to verify factual claims about our world. Rather, our approach should
give users the ability to easily find the stance that authorities relevant to a claim have
toward that claim: whether the authorities support or refute (“deny”) a rumor. Whether
the user actually trusts the authority, or whether they themselves would consider the
authority account an actual authority on a given rumor is up to the user to decide. As
we have mentioned previously, finding authorities is a separate task and not covered in
this thesis. However, in this thesis we work under the premise that an authority is not
necessarily a government account on social media, but we use a broader definition of
“authority” that is described in Section 4.2.1, along with some illustrative examples and
references.

Usage in the Real World: Deploying our approach as-is using a relatively large model
like Llama-3.1-405B would likely be very expensive computationally. There is definitely
still a cost-benefit trade-off, both in verification and retrieval (Could BM25 be “good
enough”? Is re-ranking with NV-Retriever-v1 beneficial enough for the desired use case
to justify the added computational cost?). Depending on the use case and “narrowness”
of topics expected when using our approach in a real production environment, it could
be beneficial to use a weaker model with fewer parameters and fine-tune it on the task
and the platforms’ own data, potentially improving performance and lowering cost.

8.3 Future Work
This area of research is rapidly evolving, attempting to address some of the concerns
arising from the ever-increasing influence social media has both on our lives and public
discourse. For future work, we propose the following issues for investigation:

Multimodality: tweets (and posts on social media in general) often include images or
videos. In some cases, these may contain information that is required to verify a claim
accurately. Extracting this information is possible in multiple ways, depending on the
architecture of the systems for retrieval and verification. For example, a simple approach
could be Optical Character Recognition (OCR) to extract text from images, which could
then be added to the post. Some accounts even provide alt-text for media in their posts,
which should be descriptive. Even directly including images or video would be feasible
given the multimodal capabilities of popular LLMs today.
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8. Conclusion and Discussion

Integration of social media-specific signals: posts (and authority evidence) on
social media platforms are uploaded or created within a context, for example as a reply
to another post, or (on Twitter specifically) as a “quote tweet”. These social network,
social-media specific signals could be very pertinent to include – especially for relevance
to the claim and possibly useful in the verification stage [HAAY23].

Multilingualism: the dataset we used for this thesis was provided both in Arabic and
English, where the English version was translated using Machine Translation (MT). Our
general approach is not specific to data in the English language, and could be adapted
and evaluated in other languages.

Explainability: trust in fact-checking systems is important for their acceptance by the
general public. Trust and confidence in “AI” and LLMs by the general public are not
well-established due to issues like, for example, hallucinations in LLMs. It is important
to mention that our approach does not verify factual truths about our world but aims
to classify support or refutal of claims from accounts with unique qualification to opine
on a topic. Generating explanations along with a claim-evidence label prediction could
improve explainability, as those textual explanations could be provided along with the
prediction, helping humans understand how this specific predicted label came to be –
increasing trust in the system.

Chain-of-Thought Prompting: as mentioned in the previous suggestion on explain-
ability, generating explanations before generating the label prediction on a claim-evidence
pairing could improve the results as a side-effect of generating explanations. Wei et al.
[WWS+23] explored the pattern “chain-of-thought” prompting to improve reasoning in
conversational models and saw improved results. The paper by Cruickshank et al. [CN24]
evaluated multiple prompting schemes, and found that chain-of-thought prompting (and
few-shot prompting, where representative examples are given to the LLM before the
actual input) improve LLM performance.
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