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Kurzfassung

Diese Arbeit befasst sich mit dem Problem der ungerechten Behandlung verschiedener
Gruppen von Nutzer:innen hinsichtlich der Empfehlungen, die sie von Empfehlungsal-
gorithmen erhalten. Empfehlungssysteme, englisch „Recommender Systems“ (RS), sind
Algorithmen, die Nutzer:innen die Objekte vorschlagen, die aufgrund ihrer Interaktions-
historie mit Objekten am ehesten von Interesse sind. RS werden in vielfältigen Bereichen
eingesetzt, etwa zur Empfehlung von Musik auf Musik-Streaming-Plattformen. Frühere
Studien haben gezeigt, dass RS, basierend auf kollaborativem Filtern, besonders empfind-
lich auf Datenungleichgewicht reagieren, was zu weniger relevanten Empfehlungen für
bestimmte Gruppen von Nutzer:innen führt. Bei solchen Studien zur Gruppenfairness
werden Benutzer:innen nach einem sensiblen Attribut gruppiert, das meist auf ihren Ei-
genschaften oder demografischen Merkmalen basiert, und die gerechte Behandlung dieser
Gruppen wird dann untersucht. Diese Arbeit untersucht die Fairness von Empfehlungen,
indem sie die Unterschiede zwischen Gruppen von Nutzer:innen und verschiedenen Algo-
rithmen für kollaboratives Filtern quantifiziert, wobei ein Datensatz der österreichischen
Online-Nachrichtenplattform „DER STANDARD“ verwendet wird. Im Gegensatz zu
ähnlichen Arbeiten handelt es sich bei diesen Gruppen von Benutzer:innen um große
Gemeinschaften oder Communitys, die in einem aus Interaktionsdaten modellierten Netz-
werk entdeckt werden. Graphen mit verschiedenen Beziehungen zwischen Nutzer:innen
werden anhand von Daten zu Klicks auf Nachrichtenartikel der Nutzer:innen und deren
Community-Aktivitäten, wie Forumsbeiträge, Beitragsabstimmungen und Follower:innen,
erstellt. Die Communitys in diesen Graphen werden mit zwei Algorithmen zur Erkennung
von Gemeinschaften identifiziert. Der Graph mit der höchsten Übereinstimmung zwischen
den Community-Erkennungsalgorithmen bei der Zuordnung von Nutzer:innen zu Gemein-
schaften wird ausgewählt, und die Partition mit der höchsten Qualität wird verwendet,
um Nutzer:innen basierend auf den erkannten Gemeinschaften zu gruppieren. Es wird
untersucht, inwieweit verschiedene RS unterschiedliche Empfehlungen für Nutzer:innen
liefern, wobei der Schwerpunkt auf den Unterschieden zwischen großen Communitys
liegt. Diese Studie stellt Instabilitäten in den Community-Erkennungsalgorithmen fest,
aufgrund von erheblichen Schwankungen bei Konsens-Bewertungen für Graphpartitionen
sowie bei der Größe und Anzahl der erkannten Gemeinschaften, wenn Netzwerke anhand
verschiedener Schwellenwerte für die Kantengewichtung gefiltert werden. Die Empfehlun-
gen für die Nutzer:innen in den erkannten Communitys variieren erheblich abhängig vom
Algorithmus für kollaboratives Filtern und der Evaluierungsmetrik.
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Abstract

This work addresses the problem of unfair treatment of different user groups in the recom-
mendations they receive from recommendation algorithms. Recommender systems (RS)
are algorithms that suggest items to a user that are most likely to be of interest, based
on the user’s interaction history with items. Recommendation algorithms are used in a
variety of domains, such as recommending music on music streaming platforms. Collabo-
rative filtering RS have been shown in previous studies to be particularly sensitive to data
imbalance, resulting in less relevant recommendations for certain user groups. In such
group fairness studies, users are grouped according to a sensitive user attribute, typically
based on user traits or demographics, and the equitable treatment of these groups is
then examined. This thesis explores the fairness of recommendations by quantifying
variations between user groups and different collaborative filtering RS, using a dataset
from the Austrian online news platform “DER STANDARD”. Unlike related work, these
user groups are large user communities discovered in a user network modelled from
user interaction data. Graphs with different user relationships are built using data on
users’ clicks on news articles and users’ community activities, such as postings, votes for
postings and users’ followers. User communities in these networks are identified using two
community detection algorithms. The graph with the highest agreement between commu-
nity detection algorithms in assigning users to communities is selected, and the partition
with the highest quality is used to group users based on the communities detected. The
extent to which various RS provide different recommendations to users is evaluated, with
a focus on differences between large user communities. This study identifies instability in
community detection algorithms by observing considerable variations in consensus scores
for graph partitions, as well as in the size and number of communities discovered when
networks are filtered using different edge weight thresholds. The recommendations to
users in the detected user communities vary considerably depending on the collaborative
filtering RS and the evaluation metric.
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CHAPTER 1
Introduction

This introductory chapter provides a description of the research problem, the aim of this
thesis and the research questions. It also outlines the methodological approach that is
followed to address the research questions.

1.1 Motivation and Problem Statement
Recommender systems (RS) have become an essential part of our modern lives and are
one of the most widely used applications of machine learning. Vast amounts of data are
available on the internet, and recommender systems enable users to cope with the digital
information overload. Recommendation algorithms are used, for example, by music
streaming platforms to suggest music to users that they may like based on their previous
consumption. RS assist users by suggesting items that are tailored to their interests
and preferences. Recommender systems help users discover new items and simplify the
decision-making process. Nowadays, recommender algorithms affect many aspects of our
lives, influencing our choices of what to buy, watch or read, who to connect with and
where to travel on holiday.

Despite the benefits that recommendation systems offer, they are also associated with
risks [JZ22]. Societal risks of RS include that certain user groups may be disadvantaged
in terms of the utility of recommendations. Additionally, especially on news sites,
filter bubbles or echo chambers are an issue, where biased recommendations primarily
reflect the existing interests and opinions of individuals or user groups [JZ22]. Excessive
personalization of recommendations may lead to a lack of content diversity [SL23]. In
the case of news recommender systems, for example, there may be a tendency for
recommendations to favour certain political ideologies over others, making it difficult for
users to find a balanced range of viewpoints [LCX+23]. Accuracy and beyond-accuracy
metrics, such as diversity, novelty and serendipity, have historically been used to evaluate
RS [EDBD22]. For example, recommended news should cover a variety of topics or
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1. Introduction

viewpoints, be recent and unfamiliar to users, and be unexpected but valuable. More
recently, concerns about the fairness of recommendations have also become an important
topic in the literature [EDBD22]. Individuals or user groups should be similarly satisfied
with the recommendations they receive.

In a paper by Deldjoo et al. [DJB+23] that surveyed publications in recent years on the
topic of fairness in RS, it was found that most papers in this area contribute new fairness-
aware algorithms, but few studies compare the results of RS. Group fairness studies
examine the equitable treatment of different groups of individuals. For this purpose,
subjects are usually assigned to either a protected or an unprotected group on the basis
of a sensitive attribute. Commonly used attributes are based on demographics or traits
that are not under the control of the user, such as gender, ethnicity or age [DJB+23].
According to Ekstrand et al. [EDBD22] it is not uncommon for studies to focus on only
one attribute. Furthermore, fairness is often simplified in research by assuming that
the sensitive attribute used to categorize individuals is binary, which is not realistic in
practice because multiple features make up a person’s identity. Combining multiple
attributes or generalizing beyond two groups is rarely done [EDBD22]. For example,
Ekstrand et al. [ETA+24] compared differences in recommendation utility when users
were divided into groups by either gender or age. An alternative to using known sensitive
attributes is to compute them based on user interaction data [DJB+23], as done by
Li et al. [LCF+21], who divided users into two groups based on their level of activity on
an e-commerce platform.

Few empirical studies explore user group fairness in recommender systems, and those
that do often focus on sensitive user attributes based on demographics, such as gender,
while rarely considering domain-specific aspects. However, recommender algorithms
should also account for the fairness of general user groups, such as those with similar
behaviours, but research on this is limited. In practice, less active users or those with
specific interests should also receive good recommendations. This thesis investigates the
fairness of recommendations for users in the news domain. Given that filter bubbles are
fostered by biased recommendations for user groups, this work addresses the problem
of unfair treatment of different user communities in the recommendations generated by
recommender systems, where users within each community share similar behaviour.

1.2 Aim of the Work
The aim of this work is to quantify the extent of variation in the accuracy and diversity
of recommendations between user groups and recommendation algorithms, in order
to investigate the fairness of recommendations for different user communities, each
characterized by users with similar patterns of behaviour. These user groups are derived
from communities discovered in a user network modelled from user interaction data, and
these user communities are assumed to share common interests or behaviours. To achieve
this aim, user network construction, community detection and news recommendation are
necessary steps to analyse the differences in recommendations between user communities.
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1.3. Methodological Approach

One of the challenges is to develop the network design, that is to define the relationships
between users, which are represented as nodes in a graph. For example, links between
nodes in a graph might be established based on whether one user follows another on an
online platform. User networks with diverse user relationships are constructed and the
differences in graph partitions obtained by community detection algorithms are analysed.
The number and size of communities identified in a network by community detection
algorithms varies by network and is not predefined.

The recommendations to users of different recommendation algorithms are evaluated, with
a focus on the group fairness of large behavioural user communities identified in a selected
user network. While this work examines group fairness within behavioural communities,
it is recognized that this issue is complex to model and has been simplified for this thesis,
with many factors, such as the dynamic nature of user preferences, not taken into account.
This study investigates the extent of unfairness across user groups in recommendations
by comparing traditional recommendation algorithms and a fairness-aware recommender
algorithm using accuracy and beyond-accuracy evaluation metrics.

This thesis uses a dataset from the Austrian online news platform “DER STANDARD”1.
It includes the metadata of news articles, as well as data on news article clicks, forum
postings on articles, votes on postings and follow connections of users.

Research Questions
Specifically, the following research questions are answered.

• RQ1: To what extent does the selection of different types of user interactions for
constructing networks influence key metrics such as community size and group
centrality within the network?

• RQ2: What variations exist in the accuracy and diversity of recommended content
across identified user communities when employing non-fairness-aware recommen-
dation algorithms?

• RQ3: To what extent does a fairness-aware recommendation algorithm improve
the equitable distribution of accurate and diverse recommendations across user
communities?

1.3 Methodological Approach
The applied research methods of the thesis follow a widely used data science methodol-
ogy called “Cross-Industry Standard Process for Data Mining” (CRISP-DM [CCK+00,
MCF+21]). In the following, the methodological steps of CRISP-DM are enumerated,
and the specific actions for this work are described.

1https://www.derstandard.at
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1. Introduction

1. Business understanding
In this step, the research problem is determined, the current situation is assessed,
which then leads to the definition of objectives and the development of a project
plan. A literature review is carried out, inspired by the suggestions of Kitchen-
ham et al. [KPBB+09]. The literature is searched for state of the art fairness-aware
recommender algorithms and graph community detection algorithms.

2. Data understanding
The provided dataset is explored in this step.

3. Data preparation
The dataset is preprocessed, which includes data filtering, data consistency checks
and data exploration. User networks with diverse user relationships are constructed.
For example, a graph is created where the nodes are users and weighted edges exist
when a user positively votes for another user’s forum postings, with the weight
indicating the frequency of this interaction. Two graph community detection algo-
rithms are applied to the constructed networks and differences in graph partitions
are analysed. The user network with the highest agreement for the identified user
communities between both community detection algorithms is selected, and a graph
partition is chosen according to the assessment by partition quality functions. Users
are then assigned to user groups based on the large user communities identified in
the selected network. A user-item interaction matrix is created that records users’
views of news articles, which is then used to recommend news to users.

4. Modelling
In the modelling phase, a fairness-aware and several traditional recommender
algorithms are trained using the training set of the user-item interaction matrix.
The user’s membership of a user group is considered to be a protected user attribute.
Model hyperparameter optimization is performed using the validation set.

5. Evaluation
The recommendations generated for users by different recommendation algorithms
are evaluated on the test set using accuracy (NDCG, precision, recall) and beyond-
accuracy (coverage, diversity, novelty) metrics. Evaluation results are analysed
for users overall and at the level of the large user communities detected in the
selected graph. In particular, the evaluation focuses on quantifying the average
discrepancy in the mean evaluation scores of the user communities and the effect of
the recommender models in amplifying existing imbalances in the data with respect
to the distribution of the user communities.

6. Deployment
This step serves to document the research results.
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1.4. Structure of the Work

1.4 Structure of the Work
The remainder of this thesis is structured as follows. Chapter 2 explains the state of the
art of community detection in graphs and recommender systems, with a focus on fairness-
aware recommender algorithms, and discusses related work. The following Chapter 3
describes the experiment design, including a description of the dataset and the approach
used for data preprocessing, user network construction, user community detection, and
news recommendation. Chapter 4 presents and interprets the key results of this research.
Chapter 5 concludes the thesis with a summary of the research contribution, a discussion
of the research results and an outlook for future work.
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CHAPTER 2
State of the Art

This thesis investigates the extent to which the accuracy and diversity of recommendations
vary for user communities detected in a user network modelled from user interaction data.
User networks with diverse user relationships are constructed and the differences in the
graph partitions obtained by two community detection algorithms are analysed. The user
network with the highest agreement for the identified user communities between both
community detection algorithms is selected, and a graph partition is chosen according to
the assessment by partition quality functions. The recommendations to users of different
recommendation algorithms are evaluated, with a focus on the recommendation fairness
of large user communities identified in the selected network. This chapter explains the
state of the art of community detection in graphs and recommender systems, with a
focus on fairness-aware recommender algorithms, and discusses related work.

2.1 Community Detection in Graphs
In this thesis, networks of users are constructed based on user interactions on a news
platform, and community detection algorithms are used to identify the membership of
users to a community within a network. Graphs consist of vertices, which correspond to
users in this work, and edges, when there is a connection between two users. Clusters
in graphs can be groups of friends or people who share common interests or activities
and community detection algorithms are concerned with their discovery. According to
Fortunato et al. [FH16], a classical view of the notion of community is that they are
well separated, with higher edge density within clusters than between clusters. Com-
munities can also be defined as groups of nodes that are more likely to be connected to
each other than to members of other groups [FH16]. Recent literature on community
detection in graphs includes the work of Lancichinetti et al. [LF09], Fortunato [For10],
Barabási et al. [BP16], Newman [New18] and Fortunato et al. [FH16, FN22]. A partition
is a division of a network into groups, with each node belonging to only one cluster. In

7
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community detection, the number and size of communities are not predefined. Examining
all the partitions of a large network is computationally infeasible because the number of
partitions grows exponentially or faster with the network size. Fortunately, dedicated
community detection algorithms with polynomial runtime complexity have been devel-
oped [BP16]. Although there is no clear answer as to which method should be used [FH16],
the Louvain algorithm and Infomap are among the leading methods with reasonable
accuracy and good scalability for detecting clusters in networks [BP16, LF09, New18].
The runtime complexity of both methods is about O(n log n) for sparse graphs, where n
is the number of vertices in the graph [New18].

Infomap, by Rosvall and Bergstrom [RB08], is an information-theoretic approach for
community detection. It can be applied to weighted graphs, both undirected and directed,
and it has been extended to detect hierarchical community structures [RB11]. This
algorithm is inspired by the idea of viewing a network as an information flow and
compressing the amount of information needed to describe the dynamics of that flow.
Infomap seeks the partition that minimizes the map equation to identify communities
within a graph. The map equation [RAB09] leverages the modular structures of a network
and measures the per-step average minimal information required to track the movements
of a random walker on a network, which is equal to the entropy of a random walk.

The Louvain algorithm, proposed by Blondel et al. [BGLL08], is an agglomerative,
hierarchical community detection algorithm that greedily maximizes the Newman-Girvan
modularity. The Newman-Girvan modularity [NG04] measures the partition quality of
a particular graph by comparing the original graph with a random graph that has the
same degree sequence. Modularity compares the edge density of subgraphs in the original
graph with that expected in a random graph to determine whether the connections
within communities are stronger than they would be by chance, since random graphs
are assumed to have no community structure. In the Louvain method, vertices are
first allocated to individual clusters and then each vertex is iteratively assigned to the
neighbouring community that leads to a positive maximum gain in modularity. This
is repeated until no further improvements are possible. In the next phase, the clusters
found are converted into nodes and the edge weights are aggregated to create a more
compact graph, representing a network partition or hierarchy level. These two phases,
named a “pass”, may then be repeated on the last partition found until a level with
maximum modularity is reached, yielding increasingly larger clusters in subsequent passes.
This method can be applied to weighted graphs and has been extended by Dugué and
Perez [DP22] to directed networks.

2.2 Traditional Recommender Systems
This thesis evaluates different recommendation algorithms used to generate news article
recommendations for users, with a focus on the recommendation fairness of large user
communities. Recommender systems (RS) refer to software, or algorithms, whose purpose
is to provide a user with suggestions of items that are most likely to be of interest to
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the user. Items generally denote the objects that a system recommends to users, and
typically a recommender algorithm suggests items of a certain type [RRS22]. RS are
applied in various domains and the recommended items include, for example, films,
books, people, holidays or news articles. The items recommended to a user by an RS are
usually personalized, and the user receives a ranked list of the suggested items sorted
according to their presumed relevance to the user. Recommendation algorithms predict
the most suitable items based on the user’s preferences, either explicitly expressed by
the user or implicitly derived from the user’s interactions with the system. An example
of explicit user feedback is a rating for a product, while implicit feedback refers to user
interaction, such as visiting a product page on a website. Recommendation algorithms
can be categorized based on the technique used, with collaborative filtering, content-based
and hybrid RS being among the most common, where hybrid systems combine different
techniques to overcome the limitations of individual methods [RRS22].

A content-based RS suggests items to a user that are similar to those liked in the past,
where item similarity is calculated based on item characteristics and the user’s previous
interactions with items. In order to recommend items to a target user, a content-based
RS does not require data from other users, but item characteristics must be extracted
for each item based on the item content. For example, music genre could be a feature of
an item in the music recommendation domain, and if a user has rated music of a certain
genre positively, the system can learn to recommend other music of that genre [RRS22].

Instead of depending on content data, a collaborative filtering recommender system
suggests items to a target user by relating the target user’s interacted items to the
item interaction history of other users, leveraging patterns in user-item interactions.
Approaches for collaborative filtering can be divided into neighbourhood-based and
model-based methods. Neighbourhood-based collaborative filtering directly uses user
feedback on items to predict recommendations for unseen items by considering the items
most similar to those a target user has interacted with or the users most similar to the
target user. Model-based approaches use user-item feedback to learn a predictive model
that captures the characteristics of users and items and their relation, which is then used
to predict new items [NNDK22]. Various model-based collaborative filtering techniques
have been proposed, such as matrix factorization models, which decompose a matrix
of user-item interactions into low-rank latent user and item factors, that represent user
preferences and item characteristics in a common latent space, allowing prediction of a
user’s preference for an item [KRB22].

With the revival of neural networks, deep learning has also attracted attention in the
context of recommender systems [ZTY+22]. In particular, collaborative filtering tasks
have been transformed into a corresponding deep learning solution [RRS22]. Deep learn-
ing can be used in recommender systems to learn representations of users, items, and
their interactions, capturing the underlying patterns and relationships in the data. In
deep learning, a hierarchy of neural networks is used to perform machine learning. A
neural network is a computational model composed of layers of interconnected neurons,
and it is considered deep if it includes multiple layers between the input and output

9
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layers. Data is transferred between layers by neurons, with data flow and transforma-
tion controlled by activation functions. The parameters of deep learning models are
learned by a process called back-propagation, which adjusts the parameters of a neural
network by using the error of a loss function to update them as it propagates backwards
through the network. Based on the organization of the neurons, different neural network
architectures are distinguished, including multilayer perceptrons, convolutional neural
networks, recurrent neural networks, autoencoders, generative adversarial networks and
graph neural networks. Various methods based on deep learning have been developed for
RS, and recommendation algorithms using deep learning techniques have become the
main research focus [RRS22]. Among these, variational autoencoders (VAE) have only
recently emerged as a prominent method for recommender systems, and the number of
publications using VAE for recommendations has increased considerably in the past few
years, according to a survey by Liang et al. [LPL+24]. A variational autoencoder is a deep
generative model used in recommender systems for learning latent representations of users
and items by using Bayesian inference to model user-item interactions as probabilistic
distributions, with an encoder that maps input data into a probabilistic latent space and
a decoder that reconstructs the data [LPL+24].

Recent literature by Karimi et al. [KJJ18], Raza et al. [RD22] and Wu et al. [WWHX23]
summarize the state of the art for news recommendation algorithms and specific char-
acteristics associated with the application of RS in the news domain. An analysis of
studies shows that in academic settings, collaborative filtering is the most commonly used
approach in the literature on recommender systems, while all other approaches are used
much less frequently [KJJ18]. In contrast, content-based RS are mainly used for news
recommendations, followed by hybrid RS and collaborative filtering recommendation
algorithms [KJJ18, RD22]. News recommender systems (NRS) differ from other recom-
mendation domains, such as film recommendations, in several ways. A key difference lies
in the importance of recency and the short lifespan of news articles. News articles are
very dynamic, and their relevance quickly diminishes as new events occur and new articles
are published. This requires NRS algorithms to prioritize the most recent content and
continuously update recommendations. Strategies to address the recency aspect of news
have been proposed, such as pre-filtering for recent articles, incorporating timeliness into
the recommendation model, or using post-filtering techniques to prioritize newer content.
In addition, the interest of users in news can change based on context, such as the time
of day, current events, the user’s device or location. NRS must be highly adaptable,
balancing long-term user interests with short-term changes driven by events such as
upcoming elections or breaking news. Another challenge for NRS is the permanent item
cold-start problem, where the frequent publication and short lifespan of news articles,
combined with limited interaction data, reduce the effectiveness of collaborative filtering,
although the adoption of a content-based RS can help mitigate this issue. Furthermore,
news recommender systems need to focus on more than just accuracy and ensure diversity,
novelty and serendipity in recommendations. This means providing a mix of different
stories, the latest news and unexpected but interesting articles, which prevents users from
seeing too many similar stories and keeps the content engaging and relevant [KJJ18].
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The aim of this work is to quantify the extent of variation in accuracy and diversity
of recommendations between user communities detected in a user network. This study
focuses on collaborative filtering algorithms for two reasons. Unlike content-based RS,
which require item features to generate recommendations, collaborative filtering can rely
on implicit feedback, such as clicks on news articles, which is available for this study.
Collaborative filtering algorithms are particularly sensitive to data bias because they rely
on user interaction data from both the target user and other users, often resulting in
less relevant recommendations for certain user groups, as shown for example in studies
by Yao et al. [YH17], Ekstrand et al. [ETA+24], Melchiorre et al. [MZS20, MRP+21]
and Li et al. [LCF+21]. This thesis compares several traditional collaborative filtering
algorithms based on nearest neighbours, matrix factorization and variational autoencoder,
as well as a fairness-aware recommender model.

2.3 Fairness-Aware Recommender Systems
In contrast to traditional recommendation methods, some algorithms have been developed
that inherently incorporate fairness into their recommendations [WMZ+23]. This thesis
uses a fairness-aware recommendation model in addition to conventional recommendation
algorithms to investigate possible improvements in fairness metrics for user communities
detected in a user network. Recent literature reviews on fairness in recommendations
are conducted by Wang et al. [WMZ+23], Li et al. [LCX+23], Deldjoo et al. [DJB+23]
and Jin et al. [JWZ+23]. According to Wang et al. [WMZ+23], fairness in recommender
systems can be divided into process fairness, which addresses the fairness of the rec-
ommendation process itself, and outcome fairness, which refers to the fairness of the
recommendations provided by the system. Outcome fairness includes group fairness,
which focuses on achieving fairness between different groups, and individual fairness,
which ensures similar outcomes for similar individuals. In addition, outcome fairness can
also be understood in terms of different concepts of fairness. Researchers have different
opinions on the definition of fairness and several concepts have been proposed. Most
research emphasizes ideas such as consistent fairness, which requires that similar groups
to be treated similarly, and calibrated fairness, which seeks to allocate recommendations
to each group in proportion to their merits [WMZ+23].
Methods for fair recommendations aim to address biases and ensure fairness in recom-
mender systems through various approaches, which can be broadly categorized into
pre-processing, in-processing and post-processing techniques. Pre-processing methods
aim to modify the input data to reduce bias before it is used by a recommender system.
In-processing methods involve incorporating fairness constraints directly into RS through
techniques such as regularization and adversarial learning. Regularization modifies the
model’s objective function to balance accuracy and fairness by penalizing unfair outcomes.
Adversarial learning aims to reduce bias by training a model that challenges the system to
learn fair representations, minimizing the influence of sensitive data on recommendations.
Post-processing methods adjust recommendations after generation, such as re-ranking
the results to ensure a fair distribution across different user groups [WMZ+23].
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Collaborative filtering algorithms capture consumption patterns, and even if sensitive
user attributes are not provided directly by users, models can learn them indirectly from
users’ interactions with items [SL23, WMZ+23]. These learned biases may influence
the recommendations of RS to further separate the content offered to different user
groups [GPR+22]. Adversarial learning can be used, for example, to learn fair represen-
tations of users by removing implicit encoded sensitive information. Adversarial learning
involves training an adversary model, often a neural network, alongside the main model
to detect and penalize biases, forcing the main model to adapt and reduce its reliance on
sensitive information. Recent work by Li et al. [LCX+21], Wu et al. [WWW+21] and
Ganhör et al. [GPR+22] addresses this issue. Li et al. [LCX+21] propose a framework for
achieving personalized counterfactual fairness in RS by allowing users to specify sensitive
attributes they care about and generating user representations that are independent of
these attributes through adversarial learning, demonstrating its effectiveness with both
shallow and deep recommender models. Wu et al. [WWW+21] introduce a technique
to decompose the user interest model into bias-aware and bias-free user representations
through adversarial learning and orthogonality regularization. Ganhör et al. [GPR+22]
propose an RS called “Adversarial Variational Auto-Encoder with Multinomial Likeli-
hood”, which integrates adversarial training in a variational autoencoder to reduce biases
encoded in the learned user representations with respect to a protected user attribute.
This work investigates the fairness of user groups when using collaborative filtering RS.
Recommendations to users are compared for traditional collaborative filtering algorithms
based on nearest neighbours, matrix factorization and variational autoencoders. In
addition to conventional recommendation systems, this work also uses a fairness-aware
RS that supports more than two user groups, since the number of communities identified
in a graph is usually not limited to two. This work compares the fairness-aware recom-
mender model proposed by Ganhör et al. [GPR+22] with a non-fairness-aware variational
autoencoder for collaborative filtering.

2.4 Empirical Studies on User Group Fairness
Related work includes a study by Yao et al. [YH17], which examined recommendation
fairness in the education domain for user groups defined by gender and STEM preferences.
Ekstrand et al. [ETA+24] investigated the fairness of music and film recommendations
for users grouped by gender and age. The study by Melchiorre et al. [MZS20] explored
fairness in music recommendations by examining prejudices against user groups with
different personality traits. Melchiorre et al. [MRP+21] analysed recommendation fairness
in the music domain between male and female users and proposed the fairness metrics
RecGap, which quantifies the differences in recommendation performance between user
groups, and the Compounding Factor, which measures the extent to which an RS amplifies
data bias. Li et al. [LCF+21] studied recommendation fairness for active and less active
user groups on an e-commerce platform. Unlike previous work, this paper explores user
fairness in recommendations for user communities detected in a user network modelled
from user interaction data.

12



CHAPTER 3
Experiment Design

In this chapter a detailed description of the design of the experiments performed in this
thesis is provided. The widely used data science methodology “Cross-Industry Standard
Process for Data Mining” (CRISP-DM [CCK+00, MCF+21]) is followed to conduct the
experiments. First, the dataset used is described and then the preprocessing of the data
is explained. An overview of the user networks that are constructed in the course of this
work is given thereafter. This chapter concludes with an explanation of the procedure for
the detection of user communities in these networks and the recommendation of news.

3.1 Dataset

Anonymized data from the Austrian online news platform “DER STANDARD” is used
in this work1. This online medium offers daily news coverage and is free to access. News
in various sections, such as domestic, international, economic, web, sports, science, are
published. On the homepage users find an overview of current and recently published
content, displayed with a headline, and sometimes combined with an excerpt and an
image. In Figure 3.1 a screenshot of the “DER STANDARD” homepage is shown. At the
top of the website, links to overview pages for certain news sections (e.g., international
news) are shown. By clicking on one item of the overview, users can read its content.

Each news article page consists of news content and a discussion section below the article.
The latter allows registered users who decided to create a community identity to exchange
with others. In the discussion section, users can create postings, respond to postings and
share their opinion by voting for a posting either positive or negative. Screenshots of the
content and discussion area of a news article are shown in Figure 3.2 and Figure 3.3.

1https://www.derstandard.at
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Figure 3.1: Screenshot of the “DER STANDARD” homepage from 29 April 2024

Figure 3.2: Screenshot of the content of a news article from “DER STANDARD”
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Figure 3.3: Screenshot of the discussion section of a news article from “DER STANDARD”

Clicking on a user’s community identity name in the discussion area shows the corre-
sponding user profile. On a user’s profile page, the postings created and the number of
followers are displayed. A screenshot of a user’s profile page is depicted in Figure 3.4.

Registered users with a community identity can also follow other users in order not to
miss any community activity. When clicking on the number of followers on the user
profile page, the community identity names of all followers appear. Figure 3.5 shows a
screenshot of a list of followers of an active user with a community identity.

Besides discussions to news articles, users can also interact with others in a dedicated
discussion forum, which allows for an exchange on diverse topics. In this forum, users
can discuss with others on blogs, columns, commentaries, debates or even ask for their
own forum page on a certain topic.

The website of “DER STANDARD” also offers other forms of information and enter-
tainment. User can engage with live reports, videos, podcasts, recipes, or crossword and
Sudoku puzzles. Additionally, the platform integrates a job and real estate search.

In this study, data on users, news articles, users’ views of news articles and community
activities, which include postings to news articles, votes on postings and user follow
connections, are used. After an initial data exploration, the dataset is preprocessed as
part of the overall experiment workflow. A simplified flow chart of the experiment is
provided in Figure 3.6, outlining the key steps of the procedure.
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Figure 3.4: Screenshot of a user profile page on the “DER STANDARD” webpage

Figure 3.5: Screenshot of the follower list of a user on the “DER STANDARD” webpage
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3.2 Data Preprocessing
In this work, the news recommendation fairness is evaluated within detected communities
in a network of users. There are various possibilities to construct a network, where
graph nodes are users and an edge between them represents some user relationship. This
work utilizes users’ views of news pages and users’ community activities, in the form of
postings, votes and user follow connections, for modelling the relationship in networks.
Recommender algorithms rely on data about users’ views of news articles. The focus of
this study are the recommendation of news articles for registered and active users of the
online news platform “DER STANDARD”. Several data processing steps are applied to
the raw data before the preprocessed data is used as input for network construction and
news recommendation. These data preprocessing steps are described in this section.

3.2.1 Time-based Filtering
Data in the period from January 2017 to August 2019 is used. More precisely, data from
January 2017 to December 2018 is used for constructing networks and detecting user
communities. Subsequent data from January 2019 to August 2019 is used for training
and evaluation of news recommender algorithms. Assumptions in this study are that a
user’s community membership does not change in the course of the observation period
and a user belongs to only one community. The data is split and filtered, so that user
interactions, such as views of news articles, posting submissions and votes for postings,
do not overlap in both periods. News articles are used exclusively in one of the two time
frames. This time-based filtering is done based on the dates of news article publications,
posting submissions, vote creations and users’ views of news articles. The most recent
user follow connections are considered up to the end of the network construction time
period. Interactions with the content and discussion area of news articles peak in the
vicinity of the publication date and subsequently decline the following days. To take this
diminishing interaction effect into account, the news articles are filtered such that the
respective publication date must be one month earlier than the respective time frame end.
That is, only news articles are used with a date of publication in the period from January
2017 to November 2018 for the network construction. Analogously, news articles with a
publication date from January 2019 to July 2019 are used for the news recommendation.

3.2.2 News Article Filtering
As explained in Section 3.1, the Austrian online news platform “DER STANDARD”
offers users a broad spectrum of information and entertainment formats. However, this
study uses only published news articles from the editors of “DER STANDARD” and news
agencies. Advertising pages, overview pages, live reports, videos, slideshows, podcasts,
recipes, quizzes, crossword and Sudoku puzzles, as well as pages in the dedicated discussion
forum, like blogs, columns, commentaries, debates and user created forum pages, are
not taken into account. Pages that regularly appear as summaries of several news pages,
such as morning briefings, are also filtered out. Regularly published pages that provide
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an overview and recommendations for upcoming radio and television programmes are
excluded. News articles from the following news sections (“Ressorts”) from the “DER
STANDARD” news website are used: Wirtschaft, International, Panorama, Web, Sport,
Kultur, Etat, Wissenschaft, Inland, dieStandard, Lifestyle, Gesundheit, Bildung, Reisen,
Karriere, Immobilien, AutoMobil, Familie, Zukunft and Recht. In addition, a news article
must have at least 100 views from different users in order to be considered. Outliers in
news articles are removed by requiring the corresponding number of user views, postings
and votes to be below or at a quantile value of 0.997. With this quantile-based outlier
removal, news pages are ignored if they have either the highest 0.3% of the number of
postings, votes, or user views.

3.2.3 User Filtering
Users do not have to sign up, but can freely access pages of the online news platform.
Registered user of the “DER STANDARD” website can only use community features,
such as submitting postings, voting for postings, or following other users, once they have
created a community identity by entering a unique community name. Only registered
users with a community identity are used in this study because modelling networks
requires activity data on the community features. In the past, users were able to change
their community name on the online news platform, which resulted in another community
identity being linked to the user account. Should a user have more than one community
identity, only the active one’s community activity data is used. Geolocation data is used
for retaining only users whose primary country of news article interactions is Austria
during the whole observation period. The main target group are users who read and
interact with online news articles on a regular basis. Ignored are user accounts that are
only used for a short period of time, such as fake accounts that attempt to manipulate
public opinion with coordinated, often negative postings about a political candidate
ahead of an election. Exclusively active users are taken into account, i.e., users with
at least eight interactions with distinct news articles every 90 days over the entire time
period considered. The minimum number of interactions per time interval is chosen to
account for those users who may be on holiday for a few weeks and do not consume
news online. Outlier users are removed by stipulating that the corresponding number
of news article views, postings and votes for postings must be below or at a quantile
value of 0.997. Additionally, users must have interacted with a minimum of 120 and 30
different news articles during the network construction and news recommendation time
frames, respectively. This user filtering procedure ensures that the selected users are
active during the time frames of network construction and news recommendation.

3.2.4 User Follow Connection Filtering
Other users can be followed on the platform of “DER STANDARD” to stay informed
about their new postings. Follow connections can be either unidirectional or bidirectional.
Naturally, follow connections can change over time. Users can change their mind and
unfollow persons they previously followed. When constructing networks using data on
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users’ follow connections, the most recent relationships up to the end of the network
construction period are used. Follow connections are only kept for the selected active
users. Of course, user follow connections that link one and the same user are not intended.

3.2.5 Posting Filtering

Registered users can create postings below news articles or reply to other users’ postings.
Postings can contain a headline or a comment, or both. Only the postings of filtered
users who also have an active community identity are kept. The postings of filtered out
news articles are also ignored. Due to unknown inconsistencies in the database, a posting
is filtered out if there is no click interaction recorded between the author of the posting
and the corresponding news article to which the posting is associated. A simple content-
based posting filtering procedure removes postings with trivial or low informational
content, such as those that merely express emotions or acknowledgements, as they do not
contribute meaningfully to the conversation. Examples of such low informational content
are “Aha.”, “haha”, “:-D”, “rofl”, or “Oha!”. Filtering out non-informative postings speeds
up subsequent computations, reduces data noise and ensures a focus on conversations that
provide valuable contributions to the discussion. Content-based posting filtering operates
on the headline and comment of postings after removing control characters, replacing
consecutive space characters with a single space and stripping whitespace. Either the
posting headline or comment must be at least 10 characters long, as well as contain 8
characters and 5 distinct letters of the German alphabet. If a posting is removed during
preprocessing, the posting’s child postings are not removed.

3.2.6 Vote Filtering

Users on the online news platform “DER STANDARD” can cast their vote for postings.
Votes can either be positive or negative. Only the votes of active users that remain after
filtering news articles and postings are used. A vote is removed if there is no interaction
between the vote creator and the corresponding news article to which the vote is linked.

3.2.7 User Clicks of News Articles Filtering

In this study, user views of news articles, also known as page impressions, are considered
for registered active users and filtered news articles. Users can interact with a news page
for varying lengths of time and at different occasions or visits. User data on page views
and page interactions provide an estimate of how long a user stays on a news article
page. However, knowing the page views of a user is no indication of whether the user
has actually read the news articles or the postings in the related discussion area. Page
views are ignored if a user inadvertently clicks or stays very briefly on a news page on
the platform. More precisely, a user’s page impression is ignored if the total dwell time
of the user on the news page is less than 15 seconds. No distinction is made between the
time the user spends with the content and the discussion area of a news article.
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3.3 Network Construction
Preprocessing the data as described in Section 3.2 results in two data sets, one for the
network construction and the other for the news recommendation. Several possibilities
exist to design networks in which the nodes are users and the edges represent a certain
relationship between the users. The preprocessed dataset for network construction
includes user data on postings, votes for postings, follow connections and news article
views and allows for the creation of different graph variants. This section provides a
definition of the graphs used, followed by a description of the modelled networks.

3.3.1 Graph Definition
Weighted simple graphs that allow neither self-loops nor multiple edges are used in this
work. A simple graph G is formally defined as an ordered pair G = (V, E), where V is a
set of vertices, or nodes, and E is a set whose elements are edges, or links. If the edges
of a graph have a direction, it is referred to as directed, otherwise as undirected. An
edge that connects a vertex with itself, is called a self-loop. Multiple edges in a graph
are distinct edges that join the same pair of nodes, having the same direction in directed
graphs and disregarding direction in undirected graphs. In an undirected graph, the set
E ⊆ {{u, v} | (u, v) ∈ V 2 ∧ u ̸= v} contains unordered pairs of distinct vertices. For a
directed graph, links in E ⊆ {(u, v) | (u, v) ∈ V 2 ∧ u ̸= v} are ordered pairs of different
nodes. A weighted simple graph is one in which edges are assigned weights, or values, by
a weight function w. In this study, w : E → R+ assigns positive weights to each edge.

3.3.2 Modelled Networks
This section describes the various networks modelled in this work. An edge list is used
as a data structure to represent a graph as a list of edges. This work models users as
graph nodes and each link is defined by its start and end vertex and an edge weight. The
weight of each edge reflects the strength of the relationship between the connected nodes.
A higher edge weight may indicate a more frequent interaction, a stronger relation or
greater similarity between users. All networks considered use non-binary edge weights to
avoid losing information about the connection quality. Among the networks created are
both undirected and directed graphs.

Network of Users Who Vote on Postings

In the discussion area of a news article, users can vote either positively or negatively on
the postings of other users. In the Network of Users Who Vote on Postings, a weighted
link is established from the user who casts a vote to the author of the posting. The
edge weight results from the number of positive votes minus the negative votes. A link
between two users is only created if the total weight is strictly positive. Both a directed
and an undirected variant of this network are created. If there are edges with opposite
directions between two nodes in the directed network, their weights are added together
in the undirected network.
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Network of Users Who Reply to Postings

Besides casting votes on postings, users can also reply to postings of other users in the
discussion area of a news article. When a user replies to another user’s posting, an edge
weighted according to the number of replies is created in the Network of Users Who Reply
to Postings. This network is created in a directed and an undirected variant. If edges
with opposite directions exist between two nodes in the directed graph, their weights are
added in the undirected network.

Network Combining Users’ Votes and Posting Replies

This network is based on the Network of Users Who Vote on Postings and the Network
of Users Who Reply to Postings. The link weight is a weighted linear combination of the
number of votes and posting replies, and the contribution of each is determined by the
reciprocal of the respective proportion. A directed and an undirected graph are created.
For the undirected network the respective undirected variants of the Network of Users
Who Vote on Postings and the Network of Users Who Reply to Postings are used.

Network Combining Users’ Votes, Posting Replies and Followers

Similar to the Network Combining Users’ Votes and Posting Replies, this graph combines
user interactions via votes and posting replies, while also incorporating users’ followers.
Users can follow other users to keep up to date with their postings on the news platform.
A directed, weighted graph is created where the weighting of the edges between users is
a weighted linear combination of the number of votes on postings, posting replies and
the presence of a follow connection. The weights in the linear combination are calculated
from the reciprocal of the respective proportions of the individual interaction types.

Network on Voting Behaviour of Users

For the Network on Voting Behaviour of Users, the voting habits of user pairs who have
voted for the same postings by other users are modelled. The link weight for a pair of
users is calculated based on the postings they both voted for by subtracting the number
of times the users voted differently from the number of times they voted the same. Two
users vote the same way if they both vote positively on a posting or both vote negatively,
otherwise they vote differently. This network is implemented as a weighted, undirected
graph and edges are only formed if the total edge weight is strictly positive.

Network on Posting Behaviour of Users

The Network on Posting Behaviour of Users is designed to model the posting behaviour
of pairs of users who have posted in the discussion area of the same news articles. A
weighted, undirected network is constructed in which the link weight reflects the number
of news articles under which both users have posted at least once, ignoring multiple
posting by users to the same news article.

22



3.3. Network Construction

Network of Users by Similarity of News Views

In contrast to the other networks, which utilize data on users’ votes, postings or followers,
the Network of Users by Similarity of News Views uses data about the news article views
of users. In this weighted, undirected network a link between a pair of users reflects
their similarity in terms of the news articles they viewed. The similarity of a user pair is
quantified in this work by considering the news articles viewed by each user as a set and
computing the similarity of the two sets using a structural similarity measure.

Verma and Aggarwal [VA20] conducted a theoretical and empirical analysis of several
structural similarity measures akin to the Jaccard index. The authors suggest using the
Salton’s cosine index or the Overlap Coefficient, as these provided higher accuracy in
their experiments on collaborative recommendations.

For this network, three different variants are explored by using either the Jaccard index,
the Salton’s cosine index or the Overlap coefficient as similarity measure. Let A and B
be sets of news articles viewed by two users.

The Jaccard index measures the similarity between two finite sets A and B and is defined
as the size of the intersection divided by the size of the union of the sets.

Jaccard Index(A, B) = |A ∩ B|
|A ∪ B|

The Salton’s cosine index (aka Salton’s Index) measures the similarity of sets as the ratio
of the size of the intersection of two sets to the square root of the product of the sizes of
the two sets.

Salton’s cosine index(A, B) = |A ∩ B|�|A| × |B|

The Overlap coefficient measures also the similarity between two sets and is defined as
the ratio of the intersection size to the smaller of the two sets.

Overlap coefficient(A, B) = |A ∩ B|
min(|A|, |B|)

All three described similarity measures take on values in the interval [0, 1], and a higher
value indicates a greater similarity between the sets.

After the construction of various networks, the subsequent step is to use community
detection algorithms to identify community structure within these graphs.
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3.4 User Community Detection
The result of the network construction, as described in Section 3.3, is an edge list for
each graph created. An edge list contains triples consisting of the source user, the target
user and the weight of the edge between them. The aim of identifying user communities
is to determine which user community the users in a particular network are assigned to.
In this section, the procedure for detecting user communities in networks is described.

3.4.1 Procedure for User Community Detection
The procedure for detecting user communities in a graph consists of several steps. At the
beginning, a NetworkX graph instance is created based on an edge list. NetworkX [HSS08]
is a Python library used for the creation, manipulation, and study of the structure,
dynamics, and functions of networks. In this work, the NetworkX version 3.2 is used. The
type of NetworkX graph to be created, either Graph or DiGraph, is selected according
to whether the graph is undirected or directed. The weight of an edge connecting two
users in a graph is encoded as an edge attribute in the NetworkX instance. Before the
network is created, the edge list may be filtered using a threshold value for the edge
weight. In this study, several edge weight thresholds per graph are examined to analyse
the impact on the detected community structures. For community detection, a subgraph
of the NetworkX graph instance is used, resulting from the largest connected component
for an undirected graph or the largest weakly connected component for a directed graph.
Various network measures are calculated for the graph used to identify user communities,
including measures of node degree, distance and edge weights.

Two graph partitions are obtained by running the two community detection algorithms
Infomap and Louvain. A graph partition divides the nodes of a graph into disjoint
subsets, ensuring each vertex belongs to exactly one community. The consensus between
two graph partitions is quantified with the Normalized Mutual Information (NMI) and
the Rand Index, which are commonly used partition similarity measures [FH16].

Although a graph partition may contain communities of different sizes, this study focuses
on evaluating the fairness of recommendations for large communities with a minimum
size of 750 users. However, after filtering the original graph partition by a minimum
community size threshold, the result is no longer a partition of the graph. In addition
to calculating partition similarity scores for the original partitions, partition consensus
scores are also calculated for the graph partitions resulting from the original partitions by
combining all users in communities with less than 750 users into a single group. The latter
is intended to emphasize the agreement in the assignment of users to large communities
between the two community detection algorithms. Network measures, such as the number
of nodes, edges, node degree, group centrality and edge weights, are computed for each
large community within graphs that are filtered to include only users from these large
communities. Additionally, the quality of a partitioned graph, containing only users from
large communities, is quantified using the partition quality functions coverage, modularity
and performance.
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This community detection procedure is applied to all modelled networks, each filtered
with different minimum edge weight thresholds, to analyse how varying these thresholds
affects the community detection results. A network filtered by a specific edge weight
threshold is selected based on the highest agreement between two community detection
algorithms, as measured by the Normalized Mutual Information (NMI) score. For this
network, one of the two graph partitions is selected based on an evaluation with partition
quality functions.

This concludes the community detection procedure used in this thesis. The following
sections provide a more detailed explanation of specific aspects of this approach.

3.4.2 Edge Weight Filtering
The edges in the graph are only slightly filtered, as higher edge weight thresholds are
associated with a greater loss of nodes and edges. For the variants of the Network of
Users by Similarity of News Views, the values of the 0.85, 0.9 and 0.95 quantile of the
respective similarity measure are used as threshold values for the edge weights in order
to reduce the graph density to below 0.2. In networks where edge weights are determined
by a weighted linear combination of interaction counts, using the reciprocals of the
respective interaction proportions as weights, edges are filtered by retaining only those
whose weights are multiples of 1, 2, 3 or 4 times the smallest reciprocal proportion. For
all other networks, the impact of edge weight filtering on community detection is analysed
using thresholds of 1, 2, 3 and 4.

3.4.3 Network Measures
In the following, the network measures are presented, which are calculated on the graphs
used for community detection. These measures are divided into general graph measures
and specific measures for either undirected or directed graphs. Most network measures
are calculated with the NetworkX package and a few with the igraph [CN06] Python
package version 0.11.3 due to computational performance reasons. Unless otherwise
specified, the NetworkX package is used for the calculation of network measures.

The formal definition of a graph from Section 3.3.1 is used to describe the network
measures. Consider a weighted, simple graph G = (V, E), where V is a set of vertices
and E is a set of edges. The edges can either be undirected or directed and each edge is
assigned a weight by a weight function w : E → R+.

Network Measures in General

The following network measures are calculated for both undirected and directed graphs.

Number of Nodes The number of nodes in the graph, denoted as |V|.

Number of Edges The number of edges in the graph, represented by |E|.

25



3. Experiment Design

Global Clustering Coefficient (Transitivity) The global clustering coefficient, or
transitivity, C quantifies the extent of clustering, as it measures the probability that two
neighbours of a node are connected. Transitivity is defined as the ratio of the number
of closed triples, or triangles, to the total number of connected triples (both open and
closed) in a graph. A connected triple in a graph consists of three nodes where at least
two of them are connected by edges. A triangle is a connected triple where all three
vertices are mutually connected by edges, forming a closed loop. In contrast, an open
triple is a connected triple with only two edges. The factor three in the numerator arises
because each triangle is counted three times when counting the connected triples.

C = (number of triangles) × 3
(number of connected triples)

When calculating this measure, directed graphs are regarded as undirected graphs. The
implementation of this measure in the igraph package is used.

Distance Measures Before defining the average distance and the diameter, consider
the distance d(i, j) in a graph as the shortest path length in terms of the number of edges
between nodes i and j. If no such path exists, the distance is defined as d(i, j) := ∞.

The average distance in a graph is the arithmetic mean of the finite distances between all
pairs of vertices. It is calculated by summing the distances between all pairs of different
nodes that are reachable from each other and dividing by the number of such pairs.

Average Distance =
	

i,j∈V, i ̸=j, d(i,j)<∞ d(i, j)
|{(i, j) | i, j ∈ V, i ̸= j, d(i, j) < ∞}|

The diameter of a graph is defined as the longest distance between any pair of different
vertices for which a path exists. To calculate the diameter of a graph, the shortest path
between each pair of nodes is determined, and the diameter is then the length of the
longest of these shortest paths.

Diameter = max
i,j∈V, i ̸=j, d(i,j)<∞

d(i, j)

These distance measures do not take into account the weights assigned to the edges.
When calculating these measures, directed graphs are regarded as undirected graphs. For
calculating the distances of all node pairs, the igraph package is used.

Edge Weight Measures The minimum, maximum and mean value of the edge weights
are calculated for the network. The edge weight minimum wmin is the smallest weight
assigned to any edge in the graph, while the edge weight maximum wmax is the largest
weight assigned to any edge in the graph. The edge weight mean w is the arithmetic
average of the edge weights in the network.
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wmin = min
e∈E

w(e) wmax = max
e∈E

w(e) w = 1
|E|

�
e∈E

w(e)

For obtaining all edge weights in a graph the igraph package is used.

Network Measures for Undirected Graphs

Each of the subsequent network measures is calculated for undirected graphs only.

Node Degree Measures For an undirected graph, the minimum, maximum, and
average node degree are calculated. Let ki = |{j ∈ V | {i, j} ∈ E}| represent the degree
of a vertex i in an undirected graph, defined as the number of edges connected to i.

The minimum degree kmin is the smallest degree of any node in the graph, while the
maximum degree kmax is the largest. The average degree ⟨k⟩ is the arithmetic mean of
all degrees ki, or twice the number of edges divided by the number of nodes in the graph.

kmin = min
i∈V

ki kmax = max
i∈V

ki ⟨k⟩ = 1
|V |

|V |�
i=1

ki = 2|E|
|V |

Density The density ρ for a graph is the ratio of the number of edges |E| to the
maximum possible number of edges that could exist in a complete graph with the same
number of vertices. For an undirected graph, the density is calculated as follows.

ρ = 2|E|
|V |(|V | − 1)

Network Measures for Directed Graphs

All the following network measures are only calculated for directed graphs.

Node Degree Measures For a directed graph, the minimum, maximum, and average
node degree are calculated. Each vertex has two degrees in a directed graph. The
in-degree kin

i = |{j ∈ V | (j, i) ∈ E}| denotes the number of directed connections coming
to a vertex i and the out-degree kout

i = |{j ∈ V | (i, j) ∈ E}| is the number of directed
outgoing edges of i. The degree ki of a node i in a directed graph is the sum of its
in-degree and out-degree: ki = kin

i + kout
i .

The minimum in-degree kin
min is the smallest in-degree of any node in the graph, while

the maximum in-degree kin
max is the largest. Analogously, the minimum out-degree kout

min
is the smallest out-degree of any node in the graph, while the maximum out-degree kout

max
is the largest.

kin
min = min

i∈V
kin

i kin
max = max

i∈V
kin

i kout
min = min

i∈V
kout

i kout
max = max

i∈V
kout

i
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The average in-degree ⟨kin⟩ and the average out-degree ⟨kout⟩ in a directed network
are equal and defined as the arithmetic mean of either all in-degrees or all out-degrees.
Simplified, the average in-degree ⟨kin⟩ and average out-degree ⟨kout⟩ are calculated as
the number of edges divided by the number of nodes.

⟨kin⟩ = 1
|V |

|V |�
i=1

kin
i = ⟨kout⟩ = 1

|V |
|V |�
i=1

kout
i = |E|

|V |

Reciprocity The reciprocity r in a directed graph quantifies the proportion of edges
that are bidirectional. If there is a directed edge from node i to node j and an edge from
j to i in a directed network, then these edges are said to be reciprocated. The reciprocity
is the ratio of reciprocated edges to the total number of edges in the graph.

r = |{(i, j) ∈ E | (j, i) ∈ E}|
|E|

Density The density ρ for a graph is the ratio of the number of edges |E| to the
maximum possible number of edges that could exist in a complete graph with the same
number of vertices. For a directed graph, the density is calculated as follows.

ρ = |E|
|V |(|V | − 1)

3.4.4 Detecting Communities With the Infomap Algorithm
One method utilized in this study to detect communities in a graph is the Infomap
algorithm. The implementation of the algorithm in version 2.7.1 of the infomap [EHR23]
Python package is used. Infomap is a network clustering method based on the Map
equation. For this work, the algorithm is run with the standard arguments, except for the
parameters “num_trials”, which is set to 20, and “flow_model”, which is set to “directed”
in the case of a directed graph and “undirected” for an undirected graph. The weighted
graph as a NetworkX instance is loaded by the algorithm, the community detection is
performed, which then returns the assignment of the nodes to the top-level modules, i.e.,
the partition of the graph.

3.4.5 Detecting Communities With the Louvain Algorithm
This study also utilizes the Louvain algorithm to identify the community structure in
a network. The implementation of the algorithm from the NetworkX [HSS08] Python
package version 3.2 is used. The agglomerative community detection algorithm Louvain
greedily maximizes the Newman-Girvan modularity and returns a hierarchy of partitions.
Two functions for identifying community structure based on the Louvain algorithm are
provided in the NetworkX package, which return either the partition of the graph with
the highest modularity or the partitions of all levels in the hierarchy.
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Lancichinetti and Fortunato [LF09], who tested several community detection algorithms
on various benchmark graphs, suggest using the Infomap and Louvain algorithms
because they perform well and have low computational complexity. However, the authors
clarified in an erratum [LF14] that in their experiments they used the partition from the
first pass, resulting from the initial aggregations of nodes into clusters, instead of the
partition with the maximum modularity, as otherwise the performance would have been
very poor. The issue of selecting a partition of the Louvain partition hierarchy was also
discussed in [FH16]. Based on these findings, this work also uses the partition resulting
after the first Louvain pass rather than the partition with the highest modularity. As
with the Infomap method, the implementation of Louvain in the NetworkX package
also takes into account whether the graph is directed or undirected. Default function
arguments are used to obtain the graph partition with the Louvain algorithm.

3.4.6 Graph Partition Similarity Measures

Two community detection algorithms are applied to a given network to obtain two
variants for a partition of the graph. Graph partition similarity measures are used to
quantify the similarity of two partitions of nodes in a graph. Such measures can be
used for comparing the results of a community detection algorithm with a ground truth
partition. According to Fortunato and Hric [FH16], there are several ways to quantify the
similarity of partitions. In this work, the Normalized Mutual Information (NMI) and the
Rand Index are used to evaluate the agreement between the two algorithms in assigning
nodes to communities. Both the NMI and the Rand Index can be used as a consensus
measure because they are symmetrical with respect to their arguments, which means
that swapping the arguments does not change the score. The values for the NMI and the
Rand Index lie in the range [0, 1]. A low value indicates minimal agreement or shared
information between the partitions, while a high value signifies strong consensus. The
scikit-learn [PVG+11] Python package version 1.4 is used to compute the Normalized
Mutual Information and the Rand Index between two graph partitions.

Normalized Mutual Information (NMI)

Mutual information (MI) is an information-theoretic measure of the dependence between
two random variables. It quantifies the shared information of the variables as the amount
of information conveyed about one random variable through the observation of the other
random variables. If two random variables are independent, knowing one variable gives
no information about the other, so the mutual information is zero. But, if there is a
dependence between two random variables, the value of one random variable provides
information about the other, resulting in a positive mutual information value.

In the context of community detection, the mutual information is used to measure
the similarity of two partitions. Based on the notations of [New18] and [FH16], let us
consider two graph partitions X = (X1, X2, ..., XqX ) and Y = (Y1, Y2, ..., YqY ), with qX

and qY clusters, respectively. Each vertex is assigned to a group in both of the partitions.
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Consider n the total number of vertices, nX
i and nY

j the number of vertices in clusters
Xi and Yj , and nij the number of vertices shared by clusters Xi and Yj : nij = |Xi ∩ Yj |.
The mutual information MI (X ; Y) measures the reduction in uncertainty about partition
X due to knowing Y, or the amount of information shared between partitions X and Y:

MI (X ; Y) = H(X ) − H(X |Y)

where H(X ) is the Shannon entropy of partition X and H(X |Y) is the conditional entropy
of X given Y. The entropy H(X ) is the total information contained in partition X :

H(X ) = −
qX�
i=1

P (Xi) log P (Xi)

where P (Xi) = nX
i /n is the probability of assigning a node to group Xi in partition X .

The conditional entropy H(X |Y) quantifies the additional information needed to describe
the cluster assignments of partition X , given knowledge of the assignments in Y:

H(X |Y) = −
qY�

j=1
P (Yj)

qX�
i=1

P (Xi|Yj) log P (Xi|Yj)

where P (Xi|Yj) = nij/nY
j represents the probability that a node is in group Xi in

partition X , given it is assigned to group Yj in partition Y.

Without normalization, the mutual information can range from 0 to min(H(X ), H(Y)).
To make this measure comparable between different networks, it is usually normalized to
the interval [0, 1]. The Normalized Mutual Information NMI (X ; Y) is most commonly
computed by dividing the mutual information MI (X ; Y) by the arithmetic average of
the entropies of partitions X and Y:

NMI (X ; Y) = 2MI (X ; Y)
H(X ) + H(Y)

Rand Index

The Rand Index is commonly used to measure the similarity between two partitions. It
is determined by calculating the number of pairs of vertices that are either in the same
or in different communities, taking both partitions into account. Based on the notations
of [FH16], let us consider two partitions X = (X1, X2, ..., XqX ) and Y = (Y1, Y2, ..., YqY )
of a network, with qX and qY clusters, respectively. Consider n as the total number of
vertices, with each vertex assigned to a group in both partitions.

Define a00 as the number of node pairs that are in different communities in both partitions
and a11 as the number of node pairs that are in the same community in both partitions.
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The symbols a10 and a01 indicate the number of pairs of nodes that are in the same
community in X (Y) but in different communities in Y (X ), respectively.

The Rand Index R(X , Y) is defined as the ratio of the number of vertex pairs correctly
assigned in both partitions (i.e., either in the same or in different groups) to the total
number of pairs:

R(X , Y) = a11 + a00
a11 + a01 + a10 + a00

= 2(a11 + a00)
n(n − 1)

Values of the Rand Index lie in the interval [0, 1], where a large value represents a high
agreement between the partitions X and Y in the assignment of node pairs to groups.

3.4.7 Community Structure Network Measures
Running a community detection algorithm on a network produces a partition of the
graph’s vertex set, dividing the nodes into distinct groups, or communities. Each node
is assigned to a specific group, with the aim of identifying clusters where nodes are
more densely connected within the community than to those in other communities. The
number of communities identified and their size varies depending on the graph and the
algorithm used to detect communities. This work focuses on large communities of at
least 750 users identified in a graph.

Various network measures commonly applied in network analysis are used to characterize
the large user communities detected by a particular community detection algorithm.
In the following, the network measures used to describe the community structure are
presented. The network measures used include those presented in Section 3.4.3, along
with additional measures. Measures of community structure are calculated for a subgraph
containing only users who belong to large communities.

For each community, the number of nodes (or users), the number of edges within the
same community (intra-community edges) and the number of edges connecting users to a
different community (inter-community edges) are determined. On group level, the graph
density and the global cluster coefficient (transitivity) are calculated. The minimum,
maximum and mean value of the weights of intra-community edges are computed. In
the case of an undirected network, the minimum degree, the maximum degree and the
average degree are determined based on intra-community edges. For directed graphs, the
minimum in-degree, the maximum in-degree, the minimum out-degree, the maximum
out-degree, as well as the average in-degree and the average-out-degree are calculated for
intra-community edges. In addition, the reciprocity is calculated for each user community
in a directed graph.

When the graph partition contains several large communities, group centrality measures
are also computed. In network analysis, centrality measures quantify the importance or
influence of nodes within a network. Everett and Borgatti [EB99] extended the centrality
measures of degree, closeness and betweenness to be applicable to groups of individuals.
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In this study, the group degree centrality and group closeness centrality are computed
using the NetworkX Python package. For computational reasons, the calculation of the
group betweenness centrality is omitted. Subsequently, the group centrality measures
computed for each user community are described.

Group Degree Centrality Group degree centrality of a group of nodes is the propor-
tion of nodes outside the group (non-group nodes) that are connected to vertices within
the group. The group degree centrality for a group of nodes S in a graph is defined as

Group Degree Centrality = |
i∈S N (i) \ S|
|V | − |S|

where N (i) is the set of adjacent vertices (neighbours) of node i.

For a directed graph, the group out-degree centrality and group in-degree centrality
are calculated. Group out-degree centrality measures the directed outgoing links from
vertices within the community to non-group nodes, while group in-degree centrality
quantifies the directed incoming links from non-group nodes to group vertices.

Values of the group degree centrality lie in the interval [0, 1], whereby a value of zero
means that there is no connection between nodes outside the group and vertices in the
group. In contrast, a high group centrality indicates that many non-group nodes are
connected with at least one vertex within the group.

Group Closeness Centrality Group closeness centrality of a group of vertices mea-
sures the closeness of the group to the other nodes in the network. It is the inverse of the
average shortest distance from nodes in group S to all nodes outside of group S. The
group closeness centrality for a group of nodes S in a graph is defined as

Group Closeness Centrality = |V \ S|	
j∈V \S dS,j

where dS,j = mini∈S d(i, j) is the minimum finite distance from any vertex i in group S
to the node j.

Edge weights are not taken into account when calculating the distance between two
nodes. For directed graphs, the incoming distances are computed using directed edges
from nodes outside of group S to the nodes in group S.

Group closeness centrality values are in the interval [0, 1]. A group closeness centrality
value of zero means that there is no connection between at least one node in group S and
any vertex outside the group. Higher group closeness centrality values indicate that the
group S is very close to all other non-group nodes in the graph in terms of the number
of edges or shortest paths.
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3.4.8 Partition Quality Functions
Partition quality functions quantify the quality of a graph partition in terms of some
criterion. Different partitions of a graph can be evaluated by comparing the quality
function scores of the partitions. While high partition quality scores generally indicate
good partitions, determining the best partition depends on the concept of a community
and the quality function used. Some quality functions used in the literature are the
coverage, modularity and performance [For10].

After running two community detection algorithms on a given network, two partitions
of the graph are obtained. Then, a subgraph of the original graph used for community
detection is created by retaining only communities that meet a minimum user size. This
means that only users who belong to a large community are kept in the subgraph. In this
work, partition quality functions are then used to quantify the quality of the partition of a
graph consisting exclusively of users belonging to large communities. All partition quality
functions are calculated with the NetworkX Python package for this study. Descriptions
of the partition quality functions coverage, performance and modularity are given next.

The following notation is used for a formal definition of the partition quality functions.
Consider a partition P = (P1, P2, ..., PqP ) of a graph G = (V, E) with qP clusters and
let ci denote the community to which node i belongs. In this network different types
of edges are present. Intra-community edges Eintra = {(i, j) ∈ E | ci = cj} are edges
where both endpoints belong to the same community in the network. Inter-community
edges Einter = {(i, j) ∈ E | ci ̸= cj} connect nodes from different communities. Inter-
community non-edges Enon-inter = {(i, j) /∈ E | ci ̸= cj} refer to pairs of nodes from
distinct communities that are not directly linked.

Coverage

The coverage of a graph partition P is the ratio of the number of intra-community edges
to the total number of edges in the graph.

Coverage(P) = |Eintra|
|E|

Values of the graph partition quality coverage lie in the interval [0, 1]. A higher value
indicates that a larger proportion of the edges in the graph are within identified commu-
nities. If all edges in the graph exist only between vertices within the same community,
the coverage of the graph partition would reach its maximum value of one.

Performance

The performance of a graph partition P is the number of intra-community edges plus
inter-community non-edges divided by the total number of potential edges in the network.
The total number of potential edges Ecomplete is |V |(|V | − 1)/2 in an undirected graph
and |V |(|V | − 1) in a directed graph, respectively.
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Performance(P) = |Eintra| + |Enon-inter|
|Ecomplete|

Values of the graph partition quality performance are within the interval [0, 1]. Unlike the
coverage of a graph partition, the performance of P not only considers intra-community
edges but also emphasizes the presence or absence of edges between nodes from different
communities. The performance of a graph partition may differ from its coverage. For
instance, if a graph partition contains a single cluster, the coverage of the partition would
reach its maximum value of one, but the performance score would be relatively low. This
is because all edges and vertices are within one cluster, and there are no inter-community
pairs of vertices.

Modularity

The modularity of Newman and Girvan [NG04] is a popular partition quality function
based on the idea that a random graph is expected to lack a community structure, and
hence, clusters can be identified by comparing the actual edge density in a subgraph to
the expected density when vertices are connected at random. Specifically, the modularity
measures the difference between the fraction of edges within communities and the expected
fraction of such edges in a random graph with the same degree distribution [For10].

If the number of edges within a community do not deviate from the expected number of
edges in a random network, the modularity is zero. A higher positive modularity score
indicates a graph with a strong community structure. Modularity values are strictly less
than one and are generally in the range from 0.3 to 0.7 [NG04]. A modularity value above
about 0.3 is a good indicator of a significant community structure in a graph [CNM04].

Although originally defined for undirected, unweighted graphs, modularity was extended
to graphs with positively weighted edges [New04] and directed links [LN08]. In this study,
weighted graphs are used, and therefore the modularity is computed by considering the
edge weights instead of just the edge count. Specifically, the sum of the weights of edges
is used instead of the number of edges, and the weighted node degree is used instead
of the node degree in the calculation of modularity. The modularity function of the
NetworkX package is used in this work.

Consider the following notation for a formal description of modularity. The weight of the
edge connecting vertices i and j is represented by Aij . The sum of all edge weights in
the graph is denoted by m. The weighted degree of node i is ki in an undirected graph,
while for directed graphs, kin

i and kout
j denote the weighted in-degree and out-degree of

nodes i and j, respectively. The Kronecker delta function δ(ci, cj) is 1 if nodes i and j
are in the same community and 0 otherwise. Lc represents the sum of weights of the
edges within community c, and kc is the sum of the weighted degrees of the vertices in
community c. For directed graphs, kin

c and kout
c are the sums of the weighted in-degrees

and out-degrees of the nodes in community c, respectively.
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The expected weight for an edge between the vertices i and j in an undirected graph is
(kikj)/(2m) and in a directed graph (kin

i kout
j )/m, respectively, if links in the graph are

randomly established and node degrees are respected.

The modularity Q for a weighted, undirected graph is defined as follows [NG04, CNM04].

Q = 1
2m

�
ij


Aij − kikj

2m


δ(ci, cj) =

qP�
c=1

�
Lc

m
−


kc

2m

2�

In the first formula of modularity, the sum is over vertex pairs and the only contribution
comes from those node pairs belonging to the same cluster, whereas the rewritten, second
modularity formula sums over the qP clusters. In the second modularity formula, the
first term of each summand is the proportion of the sum of the edge weights within
community c, and the second term is the expected fraction of the sum of the weighted
degrees of nodes within cluster c, if the graph were a random graph with the same degree
distribution as the original network [FH16].

Similarly, the modularity Q for a weighted, directed graph is defined as follows [LN08].

Q = 1
m

�
ij


Aij − kin

i kout
j

m

�
δ(ci, cj) =

qP�
c=1

�
Lc

m
− kin

c kout
c

m2

�

3.4.9 Assigning Users to a Community
Once a community structure is determined for a specific network, news recommendation
algorithms are then trained and evaluated. All registered, active users on the news
platform of “DER STANDARD” are taken into account when recommending news,
with particular attention being paid to the fairness of recommendations for large user
communities. Large communities are defined as those with 750 or more users. One
peculiarity is that the fairness-aware algorithm used in this study (ADV-VAE) requires
information about the assignment of each user to a community during model training.

It is possible that not all users are present in the graph used for community detection.
Reasons for this include users not being part of the constructed network edge list due to
a lack of interactions (e.g., users not voting on postings at all), users being omitted after
filtering the graph based on an edge weight threshold, or users not being in the largest
(weakly) connected component.

Users are assigned a label that indicates their affiliation to a community. Each user
is only assigned to one community. Those users who are not included in the graph
used for community detection for the selected network are labelled “Not in network”.
Users who are part of the original graph partition but are in communities that do not
reach the minimum community size required to be classified as large are collectively
assigned the label “Small Sized Community”. This means that all users who belong to
small communities are combined into one group. All other users who are part of a large
community are labelled accordingly to indicate their membership of this community.
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3.5 News Recommendation
This study investigates the extent to which various recommendation algorithms provide
different recommendations for news articles depending on a user’s group membership in
a constructed user network. These user groups are derived from detected communities in
a selected network of users. A graph and partition are selected based on the consensus
between two community detection algorithms and the partition quality. All registered,
active users on the online news platform of “DER STANDARD” are taken into account
when recommending news articles. Each user is associated with a user group, even if
the user does not belong to a large user community or is not part of the constructed
network, as described in the previous Section 3.4.9. User group membership is considered
a protected user attribute. News articles are recommended to users based on their
clicks on news articles. Recommendations are evaluated for all users as a whole, with
a particular focus on the fairness of recommendations received by users in large user
communities of at least 750 users discovered in the selected graph. This section presents
the experiment design used in this study for recommending news articles to users.

3.5.1 Procedure for News Recommendation

In this section, the procedure for training and evaluating news recommendation algorithms
is described in detail. This work follows the experiment design used in the studies of
Melchiorre et al. [MRP+21] and Ganhör et al. [GPR+22] for the recommendation task.
At first, the dataset obtained from the data preprocessing described in Section 3.2 is
prepared for news article recommendation. Data on users’ news article views is used to
construct a binary user-item interaction matrix, with rows representing users and columns
representing news articles. If a user has viewed a news article, the corresponding entry
in this matrix has a value of one, otherwise it is zero. For the training and evaluation of
the recommender algorithms, the user group of each user, to which the user is assigned
based on the detected user communities in a particular network, is used as a protected
user attribute. Data about the news section (or “Ressort”) to which a news article is
associated is used from the dataset to evaluate the diversity of recommendations.

A wide variety of data splitting strategies have been proposed in the literature on
recommender systems [MMMO20]. For the experiments conducted in the present study,
the dataset is split based on a user splitting strategy. The reader is referred to the work
of Melchiorre et al. [MRP+21], who also used this user splitting strategy and described it
with an appealing visualization. Accordingly, users are divided into a training, validation
and test set in a 60:20:20 ratio. Training users and their entire history of interactions with
news articles are used to train the recommendation algorithms. The recommendations are
evaluated either on the validation users or test users by providing 80% of the users’ items
sampled uniformly at random as input to the recommender algorithms and using the
remaining 20% as ground truth for calculating the recommendation evaluation measures.
This means that the items for the evaluation procedure are randomly divided into a
training and a test set in a ratio of 80:20 per user.
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In order to obtain an estimate of the effectiveness of the recommendations for all
users, cross-validation with five folds is performed, following the approach used by
Melchiorre et al. [MRP+21], but with the folds stratified to ensure balanced representation
of the user groups defined by the protected user attribute. More specifically, the users
are divided into five subsets of (roughly) equal size, three of which are used for training
(60% of users), one for validation (20% of users) and one for testing (20% of users). For
each of the five different partitions of users, the procedure for training and evaluating
the recommendation algorithms is carried out as described before. These subsets are
systematically and cyclically rotated five times, so that each user ends up in a test set
once. Even though the number of users may be unevenly distributed in different user
groups, the training data is not upsampled in this work.

Among the recommender systems studied in this work are several traditional collaborative
filtering algorithms and one fairness-aware recommendation algorithm, where the latter
aims to provide fairer recommendations by minimizing the sensitive information encoded
in the learned latent user representations with respect to a protected user attribute.
These news recommendation algorithms are compared with two baseline algorithms,
which provide either random or the most popular news articles.

Once a recommender system has been trained, it provides a list of recommended news
articles, sorted according to their presumed relevance to the user. News articles that the
user has already interacted with are typically removed from this recommendation list.
The effectiveness of the recommendation system is then evaluated based on the news
article interactions of the validation users. Optimal values for the tunable parameters,
or hyperparameters, of a recommendation algorithm are determined using a grid search
over different hyperparameter value combinations and the achieved recommendation
performance according to a recommendation evaluation metric.

After hyperparameter optimization and model selection, the performance of the recom-
mendation algorithms is assessed on the test set using various recommendation evaluation
measures of accuracy and beyond-accuracy. The recommendation results in terms of the
accuracy and beyond-accuracy metrics of the RS algorithms are reported and discussed for
all users overall and for each of the large user communities. In addition, user community
fairness metrics are used to quantify both the difference between the mean recommenda-
tion results of user groups and the extent to which a recommendation algorithm reinforces
existing imbalances in the training data with respect to the distribution of user groups.

The following sections describe in more detail the recommendation algorithms, model
selection and hyperparameter optimization, as well as the measures used to evaluate the
recommendations for users and user communities.

3.5.2 Recommender System Algorithms
This study investigates the extent to which various recommendation algorithms for implicit
data provide different recommendations for news articles depending on a user’s group
membership in a constructed network. Among the algorithms studied are traditional
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collaborative filtering algorithms based on nearest neighbours, matrix factorization and
variational autoencoder, as well as a fairness-aware recommendation algorithm based
on a variational autoencoder with adversarial training. All algorithms are applied to a
binary user-item interaction matrix. The recommendation algorithms used are briefly
described in the following.

• Random Items (RAND) serves as a non-personalized baseline that returns items
selected uniformly at random from the entire item collection.

• Popular Items (POP) is as a non-personalized method that recommends items
ranked based on their popularity among the training users. The popularity of each
news article is measured by the number of views it has received from distinct users.

• Item k-Nearest Neighbours (ITEM-KNN) [SKKR01, DK04] is an item-based col-
laborative filtering algorithm that recommends items based on item similarities
and past user interactions. The intuition behind this approach is that a user will
be interested in recommended items similar to those the user liked before. In the
model-building phase the similarity between all pairs of items are computed using a
similarity function. Then, for each item, only the top-k most similar items (nearest
neighbours) are retained in an item-item similarity matrix. In the subsequent
recommendation phase, the most similar items to those the user has interacted
with are used to generate recommendations. The recommendation scores of items
are calculated by combining the item similarity values with the user’s item interac-
tion history. Finally, the top-K items with the highest scores are selected as the
recommendations for the user. This work uses the cosine similarity for computing
item similarities.

• Alternating Least Squares (ALS) [HKV08] is a matrix factorization method, a
collaborative filtering technique that decomposes the user-item interaction matrix
into low-rank latent user and item factors, that represent user preferences and
item characteristics in a common latent space, allowing the prediction of a user’s
preference for an item by calculating the dot product of the corresponding user
and item factors. ALS alternates between optimizing the user and item factors
iteratively through regularized least squares for implicit user-item feedback data,
while taking into account different levels of confidence in the observed interactions.

• Bayesian Personalized Ranking (BPR) [RFGS09] uses Bayesian inference to provide
a model-agnostic optimization criterion and learning algorithm for predicting
personalized item rankings. BPR directly learns to rank item pairs for each user
by maximizing the difference in recommendation scores between items users have
interacted with and those they have not. BPR employs a stochastic gradient descent
algorithm with bootstrap sampling to optimize the ranking criterion. Various
collaborative filtering algorithms can be integrated with BPR to optimize model
parameters for personalized ranking. Matrix factorization is used as core predictor
within the BPR framework to learn user and item factors in this work.
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• Sparse Linear Method (SLIM) [NK11] is a linear model that generates recommen-
dations for items to a user by aggregating the items from a user’s past interaction
history with the coefficients of a sparse item-item similarity matrix. This matrix
is learned by solving a constrained ℓ1-norm and ℓ2-norm regularized optimization
problem. Coefficients in the learned item-item similarity matrix represent relations
between items. The j-th column in the item-item similarity matrix is computed by
solving a regularized regression problem, where the j-th column of the user-item
interaction matrix is estimated from the other columns.

• Variational Autoencoder with Multinomial Likelihood (VAE) [LKHJ18] is a gen-
erative recommender model that adopts a neural network architecture and uses
variational inference for model optimization. The input to the model is a vector
of item interaction data of one user, and the output is a vector of preference
probabilities over all items for that user. As it is an autoencoder, it consists
of an encoder and decoder. Unlike a traditional autoencoder, the encoder of a
variational autoencoder outputs the parameters of a Gaussian distribution for the
latent variables, while the decoder reconstructs the user’s item interaction history
as closely as possible from a sample of this latent distribution. For the encoder and
decoder, a symmetrical architecture with multilayer perceptrons is used, and their
parameters are learned by maximizing the likelihood of the observed user-interaction
data under the generative model by optimizing the evidence lower bound (ELBO)
using gradient-based optimization methods. After model training, personalized
item recommendations are generated by feeding a user’s item interactions into the
model and selecting the top-K items sorted in decreasing order of their predicted
preference probabilities from the model’s output. The VAE model used in this work
is an extension of variational autoencoders for collaborative filtering of implicit
feedback data, utilizing a multinomial likelihood distribution to model the data
and controlling regularization in the optimization objective with a parameter that
is tuned by annealing.

• Adversarial Variational Autoencoder with Multinomial Likelihood (ADV-VAE)
[GPR+22] is an extension of the VAE model used in this work that integrates
an adversarial component to reduce bias in recommendations and to provide fairer
recommendations. The key difference between ADV-VAE and VAE is the inclusion of
an adversarial network that attempts to predict a specific protected user attribute
from the latent representations produced by the encoder. During model training,
the model is presented with the item interaction history of a user as well as a
label indicating the user’s affiliation to a user group, the protected attribute. The
adversarial network, implemented as a feedforward network, learns to identify
a user’s protected attribute from the latent representation. Simultaneously, the
model is trained to optimize the objective of the variational encoder, the evidence
lower bound, and to minimize the sensitive information encoded in the latent
representation concerning the protected attribute.
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In this work, CPU-based implementations of the algorithms ITEM-KNN, ALS and BPR
from the implicit [Fre23] Python package version 0.7.2 are used. CPU-based imple-
mentation of the SLIM algorithm in the “recommendation_systems_fairness” GitHub
repository2 provided by Melchiorre et al. [MRP+21] and GPU-based implementations
of the VAE and ADV-VAE models in the “adv-multvae” GitHub repository3 provided by
Ganhör et al. [GPR+22] are used.

3.5.3 Model Selection and Hyperparameter Optimization
At first, a manual investigation of different hyperparameter configurations is performed to
get an impression of the performance of the recommendation algorithms on the validation
set. Then, the hyperparameters of the studied algorithms are selected by a grid search
over various parameter values. The Table B.1 in the appendix lists the examined values
of the hyperparameters and fixed parameters, along with a description of the parameters
for each recommender algorithm. The best hyperparameter values are determined based
on the best average results of an evaluation metric across the validation set folds.

This evaluation metric used for model selection is NDCG@10 for all models with tuneable
hyperparameters, except for the ADV-VAE. The best hyperparameters found for the VAE,
which are common with the ADV-VAE, are fixed for the ADV-VAE, and the hyperpa-
rameters specific to the ADV-VAE are selected based on the lowest value of the average
balanced accuracy (BAcc) of the adversarial network in predicting the actual protected
attribute of users across data batches. In a classification setting, the balanced accuracy
is the average of the recall values calculated for each class, with values in the range [0, 1],
where zero means no correct classifications and one indicates that the classifier is correct
for every class.

This work follows the suggestion of Ganhör et al. [GPR+22] to use BAcc for selecting
the best ADV-VAE model. It seems that Ganhör et al. selected the best ADV-VAE model
based on the lowest BAcc value and not on the highest NDCG value as for the VAE.
However, in our opinion, the description of the model selection in their study is not
entirely clear, as the exact model hyperparameters they tuned were not specified. Our
experience with ADV-VAE shows that optimizing its hyperparameters, including both
those specific to ADV-VAE and those shared with the VAE, using solely BAcc leads to the
selection of a model with very poor recommendation performance in terms of NDCG. For
this reason, we decided to optimize only the hyperparameters specific to the ADV-VAE
with BAcc and to set the common hyperparameters with the VAE to values resulting
from the selection of the VAE model using NDCG.

Early stopping is performed for the VAE and ADV-VAE models, i.e., the model with the
best performance across the training epochs is selected based on the validation results.
Following validation, the selected model with the best performance is subsequently
assessed on the test set with various recommendation evaluation measures.

2https://github.com/CPJKU/recommendation_systems_fairness/tree/4808295
3https://github.com/CPJKU/adv-multvae/tree/2dfcb41
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3.5.4 Recommendation Evaluation Measures

A news recommendation algorithm generates for each user being evaluated a ranked
list of news articles, ordered by their estimated relevance for the user according to the
algorithm. In general, the algorithm’s recommendations are compared with users’ actual
views of news articles for evaluation. In this study, the effectiveness of the recommender
system algorithms is evaluated using three measures of accuracy: normalized discounted
cumulative gain (NDCG), precision and recall. Recommendations are also evaluated using
three beyond-accuracy measures: coverage, diversity and novelty. These recommendation
evaluation measures are calculated for a ranked recommendation list up to the position K.
The length of the recommendation list provided may vary depending on the requirements
and the context or domain in which a recommendation system is used. Despite computing
the recommendation evaluation measures for the top-K recommended news articles, where
K = {5, 10, 20, 50}, this study focuses on the top K = 10 recommendations and the
results for the other evaluation levels are documented in the appendix. Next, the measures
used to evaluate the recommendations are explained.

The following notation is used to define the evaluation metrics for recommendations.
Given a user u, the symbol R̂(u) denotes a ranked recommendation list of items created by
a recommender algorithm that is truncated to a length of K, i.e., |R̂(u)| = K. Consider
R̂i(u) as the item recommended at the i-th position for user u. Let R(u) represent a
ground-truth set of items, such as news articles, with which the user u has interacted.

Normalized Discounted Cumulative Gain (NDCG) Normalized Discounted
Cumulative Gain (NDCG) measures how useful the items in a top-K recommendation
list are for a user by evaluating the utility gain of each item in the list based on its
position and relevance for the user. The utility of each recommended item, such as a news
article, is discounted by a logarithmic factor based on its rank in the list. The utility of
a recommendation list, the discounted cumulative gain (DCG), is the cumulative utility
gain of the individual recommended items. The DCG is usually normalized by the ideal
DCG (IDCG), which is achieved by the ideal ranking that contains all relevant items
for the user sorted by descending order of relevance [GSY22, Ren22]. In this work, the
relevance of a news article to a user u is determined by whether u actually viewed the
news article. The NDCG, DCG and IDCG are defined as follows.

NDCG@K(u) = DCG@K(u)
IDCG@K(u)

DCG@K(u) =
K�

i=1

1R(u)(R̂i(u))
log2(i + 1) IDCG@K(u) =

min(K,|R(u)|)�
i=1

1
log2(i + 1)

where the indicator function 1R(u)(R̂i(u)) = 1 if R̂i(u) ∈ R(u) and 0 otherwise.
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Values of NDCG lie in the range [0, 1], where a NDCG value of one indicates that the
relevant items are perfectly ranked, while a value of zero means no relevant items are in
the recommendation list.

Precision Precision of a recommendation list for a user u is the proportion of rec-
ommended news article that are relevant out of the total number of news articles
recommended [HKTR04]. Precision only considers whether an item (such as a news
article) is relevant or not, without taking into account the rank or position of the item in
the recommendation list.

Precision@K(u) = |R̂(u) ∩ R(u)|
K

Precision takes values in [0, 1], where zero means none of the recommended items are
relevant and one means that all recommended items are relevant to the user, respectively.

Recall Recall of a top-K recommendation list for a user u is the ratio of recommended
news article that are relevant to the total number of relevant news articles available for
that user [HKTR04]. Like precision, recall also does not take into account the rank of
the items in the recommendation list.

Recall@K(u) = |R̂(u) ∩ R(u)|
|R(u)|

Recall values are in the range of [0, 1], where a high recall value means that many of the
user’s available relevant items are recommended, while a low recall value means few of
the user’s available relevant items are recommended.

Coverage The extent to which the generated recommendations cover the catalogue of
available items, in the case of this work news articles, is quantified with the coverage
or also referred to as catalogue coverage [KB17]. Unlike the other measures used in
this study to evaluate recommendations, coverage is evaluated for a collective of users.
Coverage is defined as the proportion of news articles that are recommended at least
once to a set of users U .

Coverage@K(U) = | 

u∈U R̂(u)|

|I|

where I represents the catalogue of all news articles.

Coverage values are in the range [0, 1], where high coverage shows that the recommender
system is able to recommend a greater variety of items, while low coverage indicates that
only few items are recommended.
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Diversity Diversity refers to the variety and distinctiveness within a collection of
items [CHV22]. In this study, diversity is computed for each user as the normalized
Shannon entropy on the level of news sections (or “Ressorts”), following the work of
Melchiorre et al. [MRP+21]. Diversity of a recommendation list for user u is defined as

Diversity@K(u) = − 1
log2 |Su|

�
si∈Su

p(si) log2 p(si)

where Su is the set of the unique news sections to which the top-K news articles
recommended to user u belong, and p(si) is the proportion of news articles in the top-K
recommendations that are classified with news section si.

Diversity takes on values in the interval [0, 1]. A value of one means that every news
article recommended to the user u is from a different news section, and zero indicates
that all top-K recommended news articles are associated with the same news section.

Novelty A recommended item is considered novel to a user if the item is unknown
to the user. The novelty of an item is commonly estimated using the inverse of its
popularity among users of the recommender system [KB17]. For example, the popularity
of news articles can be estimated by the number of views by different users, and news
articles with low popularity are more likely to be new to a target user. This definition of
novelty is also referred to as global long-tail novelty because it considers novel items to
be rare items in the long tail of the popularity distribution, independent of any individual
user [CHV22, KB17]. In this study, the novelty of recommendations is measured using a
popularity-based item novelty scheme called “Expected Popularity Complement” (EPC)
proposed by Vargas and Castells [VC11].

The popularity of a news article i respectively the probability of i being seen P (seen | i)
is estimated by the fraction of users used to train a recommender algorithm Utrain who
actually interacted with i.

P (seen | i) = |{u ∈ Utrain | i ∈ Ru}|
|Utrain|

The novelty of a top-K recommendation list for user u is

Novelty@K(u) = C
K�

i=1
rd(i)[1 − P (seen | R̂i(u))]

where rd(i) = 1/ log2(i + 1) is a rank discount and C = 1/
	K

i=1 rd(i) is a normalizing
constant. This novelty metric does not take into account whether an item is relevant for
the user, but it is rank-sensitive. In this work, the novelty of the recommended articles
decreases by a logarithmic factor of the rank, as is the case with the NDCG measure.
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In general, an item with a high novelty score is an item that few users have interacted with,
whereas an item with a low novelty score is a popular item. The novelty measure used in
this work takes values in [0, 1]. A novelty value of zero indicates that all recommended
items are well-known and have been seen by all users, while the maximum value of one
indicates that all recommended items are entirely new and have not been seen by any users.
The rank discount function ensures that items ranked higher in the recommendation list
contribute more to the EPC value.

3.5.5 User Community Recommendation Fairness Measures

This work adopts the RecGap and the Compounding Factor recommendation fairness
measures proposed in the work of Melchiorre et al. [MRP+21]. Since these measures are
applicable for evaluating the recommendation fairness among an arbitrary number of
user groups, they are used in this work to evaluate the fairness of large user communities
discovered in a network of users constructed from user interaction data. Both measures
can be computed for any evaluation measure that can be calculated at user level and
aggregated at user group level, such as NDCG, or diversity. RecGap quantifies the
gap or difference between the average recommendation evaluation scores of the various
user groups. The Compounding Factor measures the extent to which a recommendation
algorithm reinforces existing imbalances in the training data with regard to the distribution
of user groups.

Consider a recommender algorithm, which, if necessary, was trained using a training set
of users and their interactions with items. Then, the predicted recommendations for users
in a test set are evaluated separately for each user in a certain user community using
various recommendation evaluation measures based on accuracy and beyond-accuracy. In
the following, the RecGap and Compounding Factor are computed for such an evaluation
measure µ and defined for a set G of user groups that correspond to the large user
communities detected in a network within this work.

RecGap – Measuring Recommendation Unfairness Among User Groups

As in the work of Melchiorre et al. [MRP+21], a recommender system is considered fair
in this study if it performs equally well on any evaluation measure for all user groups.
RecGap [MRP+21] quantifies the average disparity between user groups with regard
to a particular recommendation evaluation measure µ, such as NDCG. More precisely,
RecGapµ is computed as the mean of the absolute differences in the evaluation measure µ
between all pairs of user groups, calculated based on the average evaluation scores of
users within each group.

RecGapµ =

	
(g,g′)∈Gpair

�����
	

u∈Ug
µ(u)

|Ug | −
	

u′∈Ug′ µ(u′)

|Ug′ |

�����
|Gpair|
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where Gpair = {(g, g′) | g, g′ ∈ G, g ̸= g′} is the set of pairs of different user groups, Ug is
the set of users in group g and µ(u) is the score of the evaluation measure µ for user u.

RecGap returns a value that is either zero or positive. A value of zero indicates that the
recommender algorithm is fair, whereas a higher positive value represents the degree of
unfairness in recommendations among user groups for a certain evaluation measure µ.

Compounding Factor – Measuring Amplified User Group Imbalances

Consider a recommendation algorithm that is to some degree unfair, applied to a dataset
with different user groups of varying sizes. Like the work by Melchiorre et al. [MRP+21],
this study also expects the performance gains from the algorithm to be proportional
to the size of each group. Fairness is assessed by quantifying the gains for each group
according to an evaluation metric µ and comparing them to their population size. If
the gains are disproportionate, it indicates the algorithm is compounding the initial
population bias present in the data. More precisely, Melchiorre et al. [MRP+21] compare
the distribution of the user groups of the population with a distribution that quantifies
an aggregate of the evaluation scores of the metric µ.

The population distribution B is the proportion of users in each group. For instance, in
a user population with two groups, a population distribution B = [0.8, 0.2] means that
80% of users belong to the first group and 20% to the second user group.

The metric scores distribution Cµ over user groups represents the portion of the score
of the metric µ regarding each group, and it is denoted by Cµ = {cµ

g | g ∈ G}. Each
element cµ

g of Cµ is a probability, defined as the sum of the evaluation scores of all users
in group g divided by the sum of the evaluation scores of all users across all groups:

cµ
g =

	
u∈Ug

µ(u)	
g′∈G

	
u′∈Ug′ µ(u′)

where Ug represents the set of users in group g and µ(u) is the score of the evaluation
measure µ for user u.

Ultimately, the difference between the two probability distributions is characterized
with the Compounding Factor measure. The Compounding Factor CompFctµ regarding
an evaluation measure µ is the Kullback-Leibler (KL) divergence of the population
distribution B from the metric scores distribution Cµ.

CompFctµ = KL (B ∥ Cµ) =
�
g∈G

B(g) log


B(g)
Cµ(g)



The value of CompFctµ is non-negative. A value of zero indicates that the two proba-
bility distributions are identical, while a higher Compounding Factor shows a greater
amplification of the imbalance of the user groups in recommendations with respect to µ
by the recommender algorithm and an intensification of the population bias.
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CHAPTER 4
Experimental Results

The key results of the experiments performed are presented and interpreted in this
chapter. Information about the dataset obtained from the preprocessing of the data is
given at the beginning. Subsequently, the results of identifying communities in different
user networks with two community detection algorithms are presented. The effect of
filtering the network edges by a minimum edge weight value on the clustering result is
examined. An analysis of the consensus of the graph partitions is performed, followed by
a discussion of the number and size of the detected user communities. In particular, the
chosen network and graph partition for categorizing users into user groups, which are used
to evaluate news recommendation algorithms, are explained. The chapter concludes with
a summary of the overall recommendation performance of different news recommendation
algorithms and an analysis of recommendation fairness at the level of user communities.

4.1 Data Preprocessing
Various data preprocessing steps are applied to the raw data, including time-based
filtering and filtering of news articles, users, postings, votes, as well as users’ views of
news articles and follow relations. The data preprocessing results in two datasets, one for
the construction of user networks and the other for the recommendation of news articles.
The data records for the former task are from an earlier time period than those for the
latter task. Data used for network construction is separate and not shared with data
used for news recommendations. Users’ views of news articles are used to recommend
news articles. Various user networks with diverse user relationships are created based on
users’ postings, votes, follow relationships and views of news articles. However, users’
postings, votes and views of news articles from both time periods are used to filter for
active users and to remove outliers.

After data preprocessing, the dataset comprises 12,724 registered and active users of the
Austrian online news platform “DER STANDARD”. Data on a total of 24,508 follow
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Table 4.1: Number of data records per entity after data preprocessing for the network
construction and news recommendation periods, as well as for the entire period. The
number of news articles, postings, users, users’ follow relations, users’ views of news
articles and votes are listed.

Entity
Network

Construction
Period

News
Recommendation

Period
Whole
Period

News Articles 58,076 16,495 74,571
Postings 5,200,254 1,666,114 6,866,368
Users — — 12,724
Users’ Follow Relations 24,508 — 24,508
Users’ News Article Views 27,238,923 8,463,142 35,702,065
Votes 15,548,772 5,157,591 20,706,363

relations is available for these users and is used to design the relations in a specific user
network. The dataset also contains 58,076 news articles for the network construction time
frame and 16,495 for the recommendation period. Without counting duplicates, there are
27,238,923 and 8,463,142 views from different users for these news articles in the graph
construction and news recommendation periods respectively. Postings and votes used to
create certain networks of users account for 5,200,254 and 15,548,772 records respectively.
Table 4.1 summarizes the number of records per entity after data preprocessing.

In Figure 4.1 the distribution of the “DER STANDARD” news sections (“Ressorts”)
of the news articles used for the network construction and news recommendation is
presented as a grouped bar plot. The data in the bar chart is sorted by the number of
news articles used for the network construction. News articles of the news sections “Web”,
“Panorama” and “Sport” are most frequently used for both time frames. The subsequent
sections “International”, “Wirtschaft” and “Inland” have fewer but still considerable
numbers of articles. Beyond these, the number of news articles drops considerably and
the values for the other sections are much lower.

4.2 User Community Detection
The Infomap and Louvain algorithms are run to identify communities, or clusters, of
users in all the weighted networks of users constructed. In these networks, the users are
the nodes and the edges represent a particular user relationship with a certain intensity
or magnitude. The effect of filtering graph edges by a minimum edge weight threshold
on the clustering result is also investigated. Community detection is performed for each
constructed network and variants of the graphs whose edges are filtered with an edge
weight threshold. Both directed and undirected graphs are used as input for community
detection, depending on the network design. Two graph partitions per network are
obtained from both community detection algorithms. For 44 out of 45 different user
networks created, both community detection algorithms yielded partitions with at least
one large user community with a minimum size of 750 users.
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Figure 4.1: Distribution of the “DER STANDARD” news sections (“Ressorts”) of the
news articles used for network construction and news recommendation
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4.2.1 Analysis of Consensus in Graph Partitions
Graph partition similarity measures are used to quantify the consensus between the
Infomap and Louvain algorithms in identifying community structure in a network.
The Normalized Mutual Information (NMI) and the Rand Index are used as consensus
measures in this work. For each network and edge weight threshold, used to filter edges,
the Table 4.2 shows the Normalized Mutual Information and Rand Index consensus scores
for the partitions obtained by the Infomap and Louvain algorithms. It turns out that
the agreement between the two community detection algorithms in assigning users to
communities is very low for most of the user networks constructed. The distribution of
NMI scores shows that 28 networks have an NMI below 0.1, 34 graphs below 0.3, 38
graphs below 0.4, and 42 graphs below 0.5. Only the undirected Network of Users Who
Vote on Postings, whose edges are filtered by either an edge weight threshold of three or
four, have high NMI scores of 0.66 and 0.73, respectively. Similarly, the distribution of
Rand Index values reveals that 21 networks have a Rand Index below 0.3, 35 graphs below
0.4, and 39 graphs below 0.6. The undirected Networks of Users Who Vote on Postings
with a filtered minimum edge weight of either three or four also achieve the highest Rand
Index of 0.84 and 0.89. Using an edge weight threshold of either two or three for the
directed variant of this network, the Rand Index is 0.78 and 0.84. In between lies the
directed Network of Users Who Reply to Postings with a minimum edge weight of three
and a value of 0.73 for the Rand Index. For those graphs where both undirected and
directed variants are constructed, the consensus between the two community detection
algorithms is generally not consistent, but network-dependent.

Interestingly, the choice of the minimum edge weight threshold used to remove edges in
the graph before community detection definitely has an effect on the partitions obtained
by Infomap and Louvain for some graphs. This can be illustrated with the undirected
Network of Users Who Vote on Postings. Both community detection algorithms have
the best agreement on the communities detected in this network when using an edge
weight threshold of three or four (NMI scores: 0.66 and 0.73, Rand Index scores: 0.84
and 0.89). However, when the minimum edge weight in this graph is either one or two,
the consensus between the Infomap and Louvain algorithms is very low (NMI scores:
0.01 and 0.07, Rand Index scores: 0.27 and 0.28). One might except that the more edges
are removed, the greater the agreement between the algorithms, but this is not always
the case, as the directed variant of this network shows. For the directed Network of Users
Who Vote on Postings, the NMI and Rand Index increase when using an edge weight
threshold of either two or three, but with a minimum edge weight of four the consensus
scores drop to values close to those when using an edge weight threshold of one. This
illustrates that the communities detected by community detection algorithms can vary
considerably depending on the minimum edge weight threshold chosen.

Another interesting observation is the effect of integrating users’ follow connections with
their votes and posting replies on the partition consensus scores. In the directed Network
Combining Users’ Votes and Posting Replies, the weight of edges between users is modelled
with a weighted linear combination of the number of votes and posting replies, and the
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contribution of each is determined by the inverse of the respective proportions. The
weights in the directed Network Combining Users’ Votes, Posting Replies and Followers
are calculated by including whether a user follows another user in the linear combination.
Since the number of follow connections is the smallest share compared to the number
of votes and posting replies, an existing follow relationship between users contributes
the most to a link’s weight. The graph partitions obtained by Infomap and Louvain
for the directed Network Combining Users’ Votes and Posting Replies show a very poor
agreement and hardly any difference for the studied edge weight thresholds (NMI scores:
0.01–0.05, Rand Index scores: 0.23–0.26). However, when users’ follower relationships are
included for the directed Network Combining Users’ Votes, Posting Replies and Followers,
both consensus measures increase to moderately low values (NMI scores: 0.31–0.41, Rand
Index scores: 0.35–0.55).

In addition to calculating partition similarity scores for the original partitions, partition
consensus scores are also calculated for the graph partitions resulting from the original
partitions by combining all users in communities with less than 750 users into a single
group. The latter is intended to emphasize the agreement between the two community
detection algorithms in assigning users to large communities. Table A.3 in the appendix
shows the Normalized Mutual Information (NMI) and Rand Index consensus scores for
the graph partitions when small user communities are grouped together. The partition
consensus scores are similar to the original graph partitions, but generally even lower
across networks. There are 40 out of 44 graphs with an NMI below 0.16 and a Rand
Index below 0.54. As for the original partitions, the undirected Networks of Users Who
Vote on Postings, whose edges are filtered by an edge weight threshold of either three or
four, have the highest agreement in assigning users to communities among the Infomap
and Louvain algorithms (NMI scores: 0.62 and 0.69, Rand Index scores: 0.83 and 0.88).
The directed variants of this network with a minimum edge weight of either two or three
follow with a moderate consensus among the community detection algorithms (NMI
scores: 0.41 and 0.47, Rand Index scores: 0.76 and 0.79). An alternative to using graph
partition similarity measures to quantify the consensus between two community detection
algorithms with respect to the detected community structure is to compare the number
and size of detected user communities.

4.2.2 Number and Size of Detected Communities

One expectation of this work is to find more than one large community of users for
which to evaluate the utility of news recommendations. This study defines a large user
community as one with 750 or more users. User networks are created based on the
interaction data of 12,724 users of the “DER STANDARD” news platform. However,
some users may not be part of certain networks that are created, for example, if they do
not post in the discussion area of news articles. The Table A.2 in the appendix shows
the number of detected communities, categorized by size intervals, for each modelled
network, whose edges may have been filtered using an edge weight threshold. In general,
the number and size of communities detected varies between user networks, with many
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Table 4.2: This table shows the Normalized Mutual Information (NMI) and Rand Index
consensus scores for graph partitions obtained by the Infomap and Louvain algorithms
for the constructed user networks, which may have been filtered with an edge weight
threshold. All scores are rounded to the second digit. Highest values are shown in bold.

Network Name
Edge

Weight
Threshold

NMI Rand
Index

Undirected Network of Users Who Vote on Postings 4.00 0.73 0.89
Undirected Network of Users Who Vote on Postings 3.00 0.66 0.84
Directed Network of Users Who Vote on Postings 3.00 0.49 0.84
Directed Network of Users Who Reply to Postings 3.00 0.48 0.73
Directed Network of Users Who Vote on Postings 2.00 0.42 0.78
Directed Network Combining Users’ Votes, Posting Replies and Followers 3.44 0.41 0.55
Directed Network Combining Users’ Votes, Posting Replies and Followers 4.59 0.38 0.44
Undirected Network of Users Who Reply to Postings 4.00 0.37 0.49
Directed Network Combining Users’ Votes, Posting Replies and Followers 2.30 0.37 0.50
Directed Network Combining Users’ Votes, Posting Replies and Followers 1.15 0.31 0.35
Undirected Network of Users Who Reply to Postings 3.00 0.28 0.38
Directed Network of Users Who Reply to Postings 2.00 0.27 0.39
Undirected Network of Users Who Reply to Postings 2.00 0.19 0.33
Undirected Network of Users by Similarity of News Views (Jaccard Index) 0.07 0.17 0.32
Undirected Network of Users by Similarity of News Views (Jaccard Index) 0.05 0.11 0.36
Undirected Network of Users by Similarity of News Views (Jaccard Index) 0.06 0.10 0.28
Undirected Network of Users by Similarity of News Views (Salton’s Index) 0.14 0.07 0.28
Undirected Network of Users Who Vote on Postings 2.00 0.07 0.28
Undirected Network of Users by Similarity of News Views (Salton’s Index) 0.12 0.06 0.35
Undirected Network of Users by Similarity of News Views (Salton’s Index) 0.11 0.06 0.35
Directed Network Combining Users’ Votes and Posting Replies 4.59 0.05 0.24
Directed Network Combining Users’ Votes and Posting Replies 3.44 0.05 0.26
Undirected Network on Voting Behaviour of Users 4.00 0.04 0.31
Undirected Network Combining Users’ Votes and Posting Replies 4.59 0.04 0.23
Directed Network of Users Who Reply to Postings 1.00 0.04 0.23
Directed Network Combining Users’ Votes and Posting Replies 2.29 0.03 0.23
Undirected Network Combining Users’ Votes and Posting Replies 3.44 0.03 0.24
Undirected Network Combining Users’ Votes and Posting Replies 2.30 0.03 0.23
Undirected Network of Users Who Reply to Postings 1.00 0.02 0.23
Directed Network of Users Who Vote on Postings 1.00 0.02 0.27
Undirected Network of Users Who Vote on Postings 1.00 0.01 0.27
Directed Network Combining Users’ Votes and Posting Replies 1.15 0.01 0.24
Directed Network of Users Who Vote on Postings 4.00 0.01 0.28
Undirected Network on Voting Behaviour of Users 3.00 0.00 0.31
Undirected Network of Users by Similarity of News Views (Overlap Coef.) 0.18 0.00 0.35
Undirected Network of Users by Similarity of News Views (Overlap Coef.) 0.20 0.00 0.35
Undirected Network on Posting Behaviour of Users 4.00 0.00 0.27
Undirected Network Combining Users’ Votes and Posting Replies 1.15 0.00 0.25
Undirected Network on Posting Behaviour of Users 3.00 0.00 0.27
Undirected Network on Posting Behaviour of Users 2.00 0.00 0.27
Undirected Network on Posting Behaviour of Users 1.00 0.00 0.28
Undirected Network on Voting Behaviour of Users 2.00 0.00 0.33
Undirected Network on Voting Behaviour of Users 1.00 0.00 0.39
Undirected Network of Users by Similarity of News Views (Overlap Coef.) 0.24 0.00 0.26
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more small communities identified than large ones. In fact, small communities of up
to a size of about 50 users, and especially those with fewer than 10 users, are the most
common. Communities with 250 to 1,000 users are the least frequent. Special cases are
the undirected Network on Posting Behaviour of Users and the undirected Network of
Users by Similarity of News Views (Overlap Coef.), where Infomap groups all users of
the respective network into one user community, while Louvain identifies three and
four large user communities, respectively. These two networks only have large user
communities. Both community detection algorithms seem to agree that the directed
Network Combining Users’ Votes, Posting Replies and Followers in particular has many
small communities with a size between [0, 50]. The Infomap community detection
algorithm finds only one large community with a size of more than 1,000 users in almost
all created networks. In contrast, the Louvain algorithm identifies three or four user
communities with a size of more than 750 users in nearly all graphs, except in some rare
cases where it detects one and two large communities once and five large communities
three times. But, in the undirected Networks of Users Who Vote on Postings, Louvain
identifies four and three large communities for minimum edge weights of three and four,
respectively, while Infomap detects three. In the directed variants of this network, the
Infomap algorithm finds three large user communities, while Louvain identifies four,
using an edge weight threshold of either two or three. After analysing the consensus scores
of the graph partitions along with the number and size of the detected user communities,
a network and graph partition are selected, which are then used to evaluate the fairness
of news recommendations for user communities.

4.2.3 Selection of a Network and Graph Partition

Based on the results of performing the user community detection for different networks
of users, a network and graph partition is selected. The selected graph and its respective
partition are used to assign users to user groups, which are then at the centre of the
evaluation of the news recommendation algorithms. An important concern in this work
is not to select just any network of users and partition. Instead, a network is selected for
which ideally more than one large user community is found and for which there is a high
degree of agreement between the two community detection algorithms.

A network whose edges may have been filtered by an edge weight threshold is selected based
on the highest agreement between the Infomap and Louvain community detection
algorithms, quantified by the Normalized Mutual Information (NMI) score. Both the
NMI and the Rand Index clearly show that both community detection algorithms return
the most similar graph partitions for the undirected Network of Users Who Vote on
Postings. Using an edge weight threshold of either three or four for this network, the
NMI values are 0.66 and 0.73 and the Rand Index scores are 0.84 and 0.89 for the original
graph partitions obtained. When evaluating the graph partitions resulting from the
original partitions by combining all small communities into a single group, these networks
also have the highest consensus scores of all networks (NMI scores: 0.62 and 0.69, Rand
Index scores: 0.83 and 0.88).
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Figure 4.2: Distribution of the size of the user communities detected by the Infomap
algorithm in the undirected Network of Users Who Vote on Postings, whose edges are
filtered with different edge weight thresholds.
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Figure 4.3: Distribution of the size of the user communities detected by the Louvain
algorithm in the undirected Network of Users Who Vote on Postings, whose edges are
filtered with different edge weight thresholds.
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The investigation of the number and size of detected communities shows that the Infomap
algorithm typically returns only a single, large community across all networks created.
However, the undirected Network of Users Who Vote on Postings is a special case,
as Louvain identifies four and three large communities for minimum edge weights of
three and four, respectively, while Infomap detects three. Figure 4.2 and Figure 4.3
visualize the distribution of the size of user communities detected by the Infomap and
Louvain algorithms in the undirected Network of Users Who Vote on Postings for
different edge weight thresholds. It is noticeable in the bar plots that Infomap finds
smaller communities up to a size of ten more often than Louvain for this network,
especially when the graph has a minimum edge weight of three or four. There seems
to be a tendency for the Infomap algorithm to find more communities the higher the
minimum edge weight used to filter the edges. Both community detection algorithms
hardly find any user clusters with a size between 250 and 1,000 users. Looking at the
larger communities with more than 1,000 users, it is noticeable that Infomap finds only
one community each for the networks with a minimum edge weight threshold of either
one or two, while Louvain finds four clusters each, but when the edge weight threshold
is three or four, both algorithms find three communities each.

Table 4.3: This table describes the undirected Network of Users Who Vote on Postings
whose edges are filtered using different edge weight thresholds with various graph measures.

Network Measure
Network Filtered by Edge Weight

1 2 3 4

Number of Nodes 12,535 11,745 10,424 9,092
Number of Edges 5,535,637 1,932,500 1,003,722 621,288
Graph Density 0.0705 0.0280 0.0185 0.0150
Node Degree Minimum 1 1 1 1
Node Degree Maximum 6,740 4,564 3,404 2,667
Node Degree Mean 883.23 329.08 192.58 136.67
Edge Weight Minimum 1 2 3 4
Edge Weight Maximum 2,790 2,790 2,790 2,790
Edge Weight Mean 2.11 4.18 6.20 8.17
Global Clustering Coefficient 0.29 0.26 0.25 0.24
Average Distance 1.98 2.26 2.42 2.50
Diameter 4 5 6 7

The community structure found varies for networks with different edge weights. Therefore,
it is of interest to analyse the variants of the undirected Network of Users Who Vote
on Postings whose edges have been filtered with different edge weight thresholds using
measures typically used in social network analysis. Table 4.3 lists various graph measures
for this network using different edge weight thresholds. The undirected Network of Users
Who Vote on Postings, without any edge weight filtering, contains 12,535 users and
5,535,637 edges, which corresponds to a graph density of 0.0705. In this network with
an edge weight threshold of one, some users are connected to only one other user, while
others are connected to at most 6,740 other users, and the mean node degree is around
883.23. The edge weights in this graph variant are on average 2.11, with a range of
one to 2,790. The global clustering coefficient is 0.29, the average distance is 1.98 and
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the graph diameter is four. It is obvious and can be seen from the table that filtering
the graph according to a minimum edge weight value leads to the loss of nodes and
edges. For example, using an edge weight threshold of four reduces the number of users
in the network to 9,092 and the number of links to 621,288, giving a graph density of
0.015 approximately. The higher the minimum edge weight in the undirected Network of
Users Who Vote on Postings, the lower the graph density, the mean node degree and the
global clustering coefficient, but the higher the average edge weight, the average distance
and the graph diameter. A complete description of all modelled networks using graph
measures is provided in Table A.1 in the appendix.

Table 4.4: Network properties of the user communities detected by the Infomap and
Louvain algorithms in the undirected Network of Users Who Vote on Postings when
a minimum edge weight of four is required. Several network measures are computed
for the communities of the graph, which is filtered by users belonging to communities
with a minimum size of 750 users. Both community detection algorithms find three large
user communities for this network, which are named A, B and C in order of size. The
large user communities identified in the graph are described with different community
structure parameters. For each user community, a subgraph in the network, the number
of nodes, intra-community edges and inter-community edges are computed. The graph
density, the global clustering coefficient and the parameters for node degrees and edge
weights are calculated based on intra-community edges. The importance or influence of
user groups is quantified using group centrality measures of degree and closeness.

Community Structure Parameter

Detected Communities by Algorithm

Infomap Louvain

A B C A B C

Number of Nodes 4,694 2,173 1,214 3,957 2,252 1,612
Number of Intra-Community Edges 254,114 133,290 26,193 213,616 133,654 38,031
Number of Inter-Community Edges 135,821 117,986 64,433 130,298 113,496 86,624
Graph Density 0.0231 0.0565 0.0356 0.0273 0.0527 0.0293
Global Clustering Coefficient 0.27 0.37 0.30 0.29 0.37 0.28
Node Degree Minimum 1 1 1 1 1 1
Node Degree Maximum 2,069 1,140 660 1,918 1,158 780
Node Degree Mean 108.27 122.68 43.15 107.97 118.70 47.18
Edge Weight Minimum 4 4 4 4 4 4
Edge Weight Maximum 1,179 2,790 1,836 1,179 2,790 1,836
Edge Weight Mean 7.67 9.84 11.21 7.83 9.78 10.16
Group Degree Centrality 0.79 0.69 0.60 0.77 0.68 0.64
Group Closeness Centrality 0.83 0.76 0.71 0.81 0.76 0.74

The undirected Network of Users Who Vote on Postings, whose edges are filtered by a
minimum edge weight of four, is chosen to be used for categorizing users into groups,
because it has the highest agreement between the Infomap and Louvain algorithms
according to the Normalized Mutual Information and the Rand Index consensus scores,
and both algorithms detected three large user communities. In order to assign users to
a user group, it is also necessary to select one of the two graph partitions. Table 4.4
compares the graph partitions obtained from Infomap and Louvain, focusing on the
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large communities of this network. More precisely, the graph is filtered to include only
communities with at least 750 users, with large user communities viewed as subgraphs
and analysed using various network analysis measures. In this table, it is noticeable that
the network properties of the three large communities detected by both algorithms are of
similar magnitude. Suppose the three communities discovered are named A, B and C,
in order of size. The number of users in these communities varies, with 4,694 users
in community A, 2,173 in community B and 1,214 users in community C, according
to Infomap. Similarly, the Louvain algorithm finds that community A has 3,957
users, community B has 2,252 users, while C has 1,612 users. The number of intra-
community edges and inter-community edges for the two community algorithms is also
similar across the three communities. Interestingly, the number of inter-community edges
in community C is more than twice as high as the number of intra-community edges,
whereas in the other communities intra-community edges predominate by a factor of
about 1.1–1.8. The higher level of inter-community edges in community C could be due
to several reasons. Community detection algorithms may have misclassified users in
this community. In addition, the members of community C may have weak cohesion,
i.e., they don’t form a tightly-knit group. Alternatively, this community may overlap
with other communities or have common members, leading to increased links between
communities. Community C could also play a bridging role, connecting several other
communities. However, the group centralities of degree and closeness are higher for
communities A and B than for community C, suggesting that community C is less central
or connected than the other communities. Group centralities tend to decrease as the size
of the community decreases. Although community A has more intra-community edges,
its lower density and global clustering coefficient relative to community B indicate that
it has proportionally fewer internal connections and is less cohesive, i.e., the nodes are
more loosely connected. Community C’s density and global clustering coefficient are
of similar order of magnitude to community A. The average node degree is highest in
community B and of a similar scale to community A, while community C has the lowest
value, which is less than half as large. However, the smaller the community, the larger
the average edge weight of the graph. The consistent detection of similar clusters by
both algorithms according to the network analysis also confirms that these clusters are a
stable and genuine part of the network.

The similarity of the Infomap and Louvain graph partitions of the undirected Network
of Users Who Vote on Postings, whose edges are filtered by a minimum edge weight
of four, is also evident from the partition quality scores. For the selected network,
the Louvain partition has better performance (0.63 vs. 0.58) and marginally higher
modularity (0.36 vs. 0.35) than the Infomap partition, although Infomap has slightly
better coverage (0.72 vs. 0.70). The Table A.4 in the appendix shows the scores of the
partition quality functions for all modelled networks. Since the Louvain graph partition
for the undirected Network of Users Who Vote on Postings has slightly better modularity
and performance, this graph partition is chosen as the basis for categorizing users into
groups. Figure 4.5 shows a visualization of this network, where the nodes are coloured
according to the graph partition obtained by the Louvain algorithm.
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4.2.4 Categorization of Users Into Groups
Users are categorized into user groups based on the user communities detected by the
Louvain algorithm in the undirected Network of Users Who Vote on Postings, whose
edges are filtered by a minimum edge weight threshold of four. Both the Infomap and
Louvain community detection algorithms find three large user communities with a size
of at least 750 users in this network, and the agreement in assigning users to user clusters
between the algorithms is the highest compared to other constructed networks. The
Louvain graph partition is used over the Infomap partition because of its slightly
higher partition quality, quantified in terms of modularity and performance.

Each of the 12,724 users is assigned a label. The undirected Network of Users Who
Vote on Postings, whose edges are filtered by a minimum edge weight threshold of four,
comprises a total of 9,092 users. Of these, 3,957 users (≈ 43.52%) belong to the largest
community A, another 2,252 users (≈ 24.77%) belong to the second-largest community B,
followed by 1,612 users (≈ 17.73%) who are in community C. The remaining 1,271 users
(≈ 13.98%) in the graph are detected as part of smaller clusters and are grouped together
in a group named “Small communities”. All other 3,632 users who are not included in the
graph used for community detection for the selected network are categorized in the “Not
in network” user group. Figure 4.4 visualizes the categorization of users into user groups.
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Figure 4.4: Distribution of the assignment of users to user groups based on the user
communities detected by the Louvain algorithm in the undirected Network of Users
Who Vote on Postings, whose edges are filtered with an edge weight threshold of four.
Each user is assigned to a community. Users not included in the graph used for community
detection are placed in the “Not in network” group. Communities A, B and C are the
three largest communities of users detected in the graph. All users belonging to the
remaining small communities are grouped together.

These users are then used to recommend news articles, where a user’s membership of a
user group is considered the protected user attribute. Different recommender algorithms
are trained and the recommendations they generate for users are evaluated using accuracy
and beyond-accuracy recommendation metrics. This work evaluates the extent to which
various recommendation algorithms provide users with different recommendations for
news articles, with a particular focus on the differences between large user communities
detected in a specific network constructed from user interaction data.
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Figure 4.5: Visualization of the undirected Network of Users Who Vote on Postings,
whose edges are filtered with an edge weight threshold of four. This network has a total of
9,092 nodes and 621,288 edges. The nodes are coloured according to the graph partition
obtained by the Louvain algorithm. Orange nodes represent users belonging to the
largest community with a size of 3,957 users (≈ 43.52%), green nodes belong to the
second-largest community with a size of 2,252 users (≈ 24.77%), followed by the purple
nodes which are part of a community with 1,612 users (≈ 17.73%), and the remaining
1,271 users (≈ 13.98%) from smaller communities are coloured grey. The graph is created
with Gephi version 0.10.1 using the OpenOrd graph layout algorithm.
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4.3 News Recommendation
This study investigates the extent to which various recommendation algorithms provide
different recommendations for news articles depending on a user’s group membership in a
constructed network. The user group to which a user belongs to is derived from detected
user communities in the undirected Network of Users Who Vote on Postings, whose edges
are filtered by a minimum edge weight threshold of four. User group membership is
considered a protected user attribute. Recommendations are evaluated for all users as a
whole, with a particular focus on the fairness of recommendations received by users in
large user communities of at least 750 users discovered in this network.

This news recommendation experiment uses a binary user-item interaction matrix that
records which of the 16,495 news articles each of the 12,724 users has interacted with.
Excluding duplicate article views, the dataset contains a total of 8,463,142 interactions
with news articles, which corresponds to a density of about 0.04.

This chapter presents the results of the news recommendation experiment and discusses
the findings. The overall performance of the recommendation algorithms is presented
first. This is followed by the results of measuring the fairness of recommendations for
user communities detected in a network constructed from user interaction data. Only the
results for ranked recommendation lists of length K = 10 are reported in this chapter,
while results for other list lengths (5, 20 and 50) can be found in the appendix B.

4.3.1 Overall Recommendation Performance
The overall results of news recommendations for all users are presented in this section.
Recommendation performance is measured using metrics of accuracy (NDCG, precision
and recall) and beyond-accuracy (coverage, diversity and novelty). Table 4.5 shows the
mean evaluation scores at level 10 for all users collectively for the RS algorithms studied.

Overall, SLIM achieves the best performance in terms of accuracy-based metrics, while
ITEM-KNN and BPR are the worst performers among the personalized RS algorithms.
After SLIM, the ALS, VAE and ADV-VAE models have the next best performance for
NDCG, precision and recall. The baseline algorithms are the worst for accuracy metrics.

The RAND model has the highest scores for coverage, diversity and novelty. The POP
baseline has the second-best diversity, but, as expected, the lowest coverage and novelty.
In terms of personalized recommendation systems, ITEM-KNN has the lowest coverage
and novelty, but provides the most diverse recommendations. The BPR algorithm, which
like ITEM-KNN performs the worst on accuracy-based metrics, has the highest coverage
and novelty among personalized recommenders. Notably, the coverage of the BPR model
far exceeds that of any other personalized recommender system. Although VAE and
ADV-VAE achieve the next best coverage after BPR, these models score the lowest overall
in terms of diversity. The algorithms ALS and SLIM show mediocre performance for the
coverage metric, BPR, ALS and SLIM for the diversity metric, and ALS, SLIM, VAE and
ADV-VAE for the novelty metric.
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Table 4.5: Overall results of accuracy and beyond-accuracy metrics at level 10 for the RS
algorithms studied. The values show the mean evaluation scores for all users collectively,
averaged over five cross-validation test folds. Results are rounded to the fourth digit.

Model NDCG Precision Recall Coverage Diversity Novelty

RAND 0.0084 0.0085 0.0006 0.7875 0.9446 0.9612
POP 0.0868 0.0860 0.0067 0.0024 0.9360 0.7132
ITEM-KNN 0.1617 0.1547 0.0142 0.0335 0.8644 0.7508
BPR 0.1871 0.1729 0.0167 0.5352 0.7472 0.9075
ALS 0.2887 0.2710 0.0246 0.1467 0.7551 0.8171
SLIM 0.3105 0.2900 0.0264 0.1792 0.7482 0.8334
VAE 0.2877 0.2693 0.0248 0.2472 0.7016 0.8268
ADV-VAE 0.2770 0.2602 0.0237 0.2645 0.7169 0.8282

These results show that the performance differences between VAE and ADV-VAE are
negligible. The values for the accuracy and beyond-accuracy metrics are mediocre
compared to the other algorithms analysed, except for diversity, where the performance is
the worst. Similar performance is shown by SLIM and ALS, with the former performing
slightly better in terms of accuracy, and both also having good beyond-accuracy scores.
The BPR model, like the ITEM-KNN model, has lower accuracy than the other models,
with the former being slightly better, but BPR achieves the best novelty and by far the
best coverage with good diversity, while ITEM-KNN has the worst novelty and by far the
worst coverage, but still the best diversity.

4.3.2 User Community Recommendation Fairness

The focus of this section is to present and discuss the results of the studied news
recommendation algorithms for large communities with at least 750 users detected in
the undirected Network of Users Who Vote on Postings with a minimum edge weight of
four. Recommendation results are summarized for all users in large communities and
aggregated at the community level for all evaluation metrics used. In addition, the results
of the user communities are also evaluated using the RecGap and the Compounding
Factor recommendation fairness measures proposed by Melchiorre et al. [MRP+21].
RecGap quantifies the gap between the average evaluation metric scores of different
user groups. The Compounding Factor measures the extent to which a recommendation
algorithm reinforces existing imbalances in the training data with respect to the population
distribution of user groups by comparing it with the distribution of metric scores, an
aggregation of the evaluation scores per user group. This population distribution of user
groups refers to the proportion of the three detected large communities in a network and
is defined as B = [0.5059, 0.2879, 0.2061]. The metric scores distribution over user groups
represents the share of scores for a particular evaluation metric that are distributed
across user groups. If a particular user group is gaining metric scores disproportionately
compared to the distribution of the user group population, then the respective RS
model has amplified the population bias towards that group, which is reflected by the
Compounding Factor. More precisely, the Compounding Factor for an evaluation metric
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is the Kullback-Leibler divergence of the population distribution from the metric scores
distribution. Both fairness measures are calculated for each of the recommendation
evaluation metrics used, i.e., NDCG, precision, recall, coverage, diversity and novelty.
Tables 4.6–4.11 show the recommendation results for each user community and evaluation
metric. In the following, the results for the personalized recommender systems studied
are discussed.

The tables show that, on average, the algorithms perform as well for users in communities
as for all users. Scores for users in communities are on average higher for NDCG and
precision, but lower for coverage compared to scores for all users. Statements about
general recommendation performance also apply to the subset of users in communities.

When analysing the recommendation performance per user community, trends can be
identified that appear to be related to the size of the community. In the undirected
Network of Users Who Vote on Postings, whose edges are filtered by a minimum edge
weight threshold of four, three communities with 7,821 users are detected. Of these, 3,957
users belong to the largest community A, another 2,252 users belong to the second-largest
community B, followed by 1,612 users who are included in community C. The smaller the
community size, the higher the NDCG, precision, recall and novelty, but the lower the
coverage. The diversity of recommendations is lowest for community C and similar for
communities A and B across all recommendation models, with slightly higher diversity
for community B. However, the differences in recommendations between the communities
also depend on the recommendation algorithm, and the difference between communities A
and B is often small. Depending on the metric used for evaluation, there are differences
in the utility of the recommendations for users in different communities.

The RecGap measure is used to quantify the average discrepancy in the mean evaluation
scores of the user communities with a single number. In general, the RecGap for diversity
is the highest compared to the other metrics. For accuracy-based metrics, the better
the recommendation algorithm performs, the larger the RecGap tends to be. The
same applies to the coverage metric, where the higher the score, the greater the gap in
recommendation performance between user communities. Recommendation diversity
and novelty show no clear trend for RecGap in relation to recommendation model
performance. The SLIM model has the best performance for accuracy-based metrics, but
also has the highest degree of unfairness for these, according to the RecGap. However,
ITEM-KNN has the lowest RecGap for NDCG, followed by BPR and ADV-VAE. In terms
of precision, ITEM-KNN has the smallest RecGap, followed by BPR, ADV-VAE and VAE.
For recall, ADV-VAE, followed by ITEM-KNN and BPR, have the lowest RecGap, but in
general, except for SLIM, the differences between the algorithms are small. The BPR
model achieves by far the best item coverage for recommendations, but this is associated
with the highest RecGap, while ITEM-KNN, followed by ALS and SLIM, have the worst
coverage and also the lowest RecGap. While ITEM-KNN has the highest diversity, it has
by far the lowest RecGap, while SLIM and VAE have the highest RecGap. It is similar
with the novelty, where BPR has the best results but the lowest RecGap, while SLIM has
the highest RecGap. For ADV-VAE, the RecGap is slightly smaller for accuracy-based
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metrics, where the metric scores are marginally lower compared to the VAE model. The
RecGap for ADV-VAE is slightly larger for coverage and lower for diversity and novelty,
while the scores for these metrics are actually slightly higher when compared to VAE. In
summary, SLIM has the largest RecGap for all evaluation metrics, except for coverage,
where BPR has the highest RecGap.

The Compounding Factor provides a complementary view of the unfairness of recommen-
dations by showing the effect of the model in amplifying imbalances in the data with
respect to the distribution of user communities. For the accuracy-based metrics, the Com-
pounding Factor is highest for ITEM-KNN, BPR and SLIM, while it is lowest for ADV-VAE,
VAE and ALS, which have good accuracy. The situation is less clear for beyond-accuracy
metrics. The Compounding Factor for coverage is highest for BPR, where the model also
performs best, and lowest for ITEM-KNN. Notably, the Compounding Factor for coverage
and BPR is by far the highest compared to all other models and metrics. Although
ITEM-KNN has the highest diversity, the Compounding Factor is the lowest, and instead
SLIM and VAE have the highest value. The Compounding Factor of the novelty metric
is the lowest compared to the other evaluation metrics and the differences between the
RS are negligible. It is noticeable that the Compounding Factor of ADV-VAE is slightly
lower than that of VAE across all evaluation metrics. Both ALS and ADV-VAE show only
a moderate amplification of data imbalances when compared to the other algorithms
studied. The VAE model has a mediocre Compounding Factor, except for diversity, where
it is among the highest. The BPR is among the recommender algorithms with the highest
Compounding Factor for accuracy-based metrics and coverage, but the lowest for novelty.
As with the RecGap measure, the Compounding Factor of SLIM is clearly among the
highest, except for coverage.

This concludes the chapter on the results of the news recommendations. There is no
single best recommender algorithm, as recommendation performance varies by evaluation
metric. As shown, the recommendation utility for users in different communities can
vary greatly, demonstrating once again the need to evaluate recommendation algorithms
not only on the basis of all users, but also per user group. In this study, the algorithms
that perform the worst on accuracy-based metrics perform best on some beyond-accuracy
metrics. In general, the SLIM recommendation algorithm is the best in terms of the
accuracy-based metrics used, while the recommendation fairness of the user communities
is among the worst. The ALS and ADV-VAE are among the algorithms with good
recommendation performance, with exceptions, while also having the lowest degree of
unfairness with respect to different user communities across all evaluation metrics. The
results for the fairness-aware ADV-VAE model, whose architecture combines a variational
autoencoder with adversarial learning, mostly show performance differences that are
worse for accuracy-based metrics and better for beyond-accuracy metrics, but the fairness
of user communities is slightly better compared to the VAE model results, although the
differences are smaller than expected.
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Table 4.6: NDCG@10 results for the RS algorithms studied and detected user communi-
ties in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.0099 0.0099 / 0.0095 / 0.0104 0.0006 0.0006 0.5070 / 0.2772 / 0.2158
POP 0.1010 0.1109 / 0.0834 / 0.1013 0.0184 0.0105 0.5556 / 0.2377 / 0.2068
ITEM-KNN 0.1865 0.1719 / 0.1734 / 0.2407 0.0458 0.0140 0.4664 / 0.2677 / 0.2659
BPR 0.2137 0.1913 / 0.2089 / 0.2753 0.0560 0.0148 0.4530 / 0.2815 / 0.2655
ALS 0.3301 0.3045 / 0.3214 / 0.4052 0.0671 0.0091 0.4667 / 0.2803 / 0.2529
SLIM 0.3566 0.3263 / 0.3424 / 0.4510 0.0831 0.0120 0.4629 / 0.2765 / 0.2606
VAE 0.3280 0.3030 / 0.3208 / 0.3998 0.0645 0.0086 0.4673 / 0.2816 / 0.2512
ADV-VAE 0.3162 0.2950 / 0.3069 / 0.3812 0.0575 0.0074 0.4720 / 0.2795 / 0.2485

Table 4.7: Precision@10 results for the RS algorithms studied and detected user commu-
nities in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.0101 0.0104 / 0.0095 / 0.0105 0.0007 0.0012 0.5170 / 0.2699 / 0.2131
POP 0.0998 0.1075 / 0.0862 / 0.0998 0.0143 0.0064 0.5452 / 0.2486 / 0.2062
ITEM-KNN 0.1788 0.1673 / 0.1600 / 0.2330 0.0486 0.0154 0.4736 / 0.2578 / 0.2686
BPR 0.1973 0.1766 / 0.1923 / 0.2552 0.0524 0.0152 0.4528 / 0.2806 / 0.2666
ALS 0.3104 0.2866 / 0.3023 / 0.3804 0.0625 0.0090 0.4671 / 0.2804 / 0.2525
SLIM 0.3340 0.3062 / 0.3184 / 0.4239 0.0785 0.0123 0.4638 / 0.2746 / 0.2616
VAE 0.3079 0.2860 / 0.2983 / 0.3751 0.0594 0.0083 0.4700 / 0.2789 / 0.2511
ADV-VAE 0.2977 0.2793 / 0.2846 / 0.3611 0.0545 0.0078 0.4747 / 0.2752 / 0.2500

65



4. Experimental Results

Table 4.8: Recall@10 results for the RS algorithms studied and detected user communities
in the undirected Network of Users Who Vote on Postings, whose edges are filtered with
an edge weight threshold of four. The values in the columns “All” and “Communi-
ties A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.0007 0.0007 / 0.0006 / 0.0007 0.0001 0.0026 0.5313 / 0.2629 / 0.2058
POP 0.0067 0.0072 / 0.0060 / 0.0064 0.0008 0.0050 0.5460 / 0.2573 / 0.1967
ITEM-KNN 0.0138 0.0128 / 0.0131 / 0.0173 0.0030 0.0108 0.4690 / 0.2727 / 0.2582
BPR 0.0163 0.0149 / 0.0163 / 0.0197 0.0031 0.0083 0.4634 / 0.2883 / 0.2484
ALS 0.0241 0.0224 / 0.0246 / 0.0275 0.0034 0.0048 0.4703 / 0.2942 / 0.2355
SLIM 0.0259 0.0237 / 0.0261 / 0.0312 0.0050 0.0085 0.4619 / 0.2896 / 0.2484
VAE 0.0240 0.0222 / 0.0245 / 0.0274 0.0034 0.0049 0.4694 / 0.2951 / 0.2355
ADV-VAE 0.0231 0.0218 / 0.0232 / 0.0261 0.0028 0.0035 0.4781 / 0.2890 / 0.2329

Table 4.9: Coverage@10 results for the RS algorithms studied and detected user commu-
nities in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.6131 0.3820 / 0.2389 / 0.1777 0.1362 0.0676 0.6471 / 0.2303 / 0.1226
POP 0.0024 0.0023 / 0.0019 / 0.0020 0.0002 0.0048 0.5464 / 0.2630 / 0.1906
ITEM-KNN 0.0248 0.0160 / 0.0146 / 0.0137 0.0016 0.0029 0.5351 / 0.2787 / 0.1863
BPR 0.4271 0.2790 / 0.1834 / 0.1285 0.1003 0.0650 0.6403 / 0.2396 / 0.1201
ALS 0.1303 0.0925 / 0.0783 / 0.0642 0.0189 0.0141 0.5666 / 0.2732 / 0.1602
SLIM 0.1449 0.1001 / 0.0843 / 0.0642 0.0239 0.0200 0.5744 / 0.2754 / 0.1502
VAE 0.2075 0.1311 / 0.1000 / 0.0803 0.0339 0.0269 0.5940 / 0.2577 / 0.1482
ADV-VAE 0.2214 0.1398 / 0.1063 / 0.0885 0.0342 0.0243 0.5914 / 0.2560 / 0.1526
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Table 4.10: Diversity@10 results for the RS algorithms studied and detected user commu-
nities in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.9450 0.9452 / 0.9449 / 0.9445 0.0005 0.0000 0.5061 / 0.2879 / 0.2060
POP 0.9331 0.9326 / 0.9327 / 0.9349 0.0015 0.0000 0.5057 / 0.2878 / 0.2065
ITEM-KNN 0.8706 0.8756 / 0.8860 / 0.8368 0.0328 0.0003 0.5089 / 0.2930 / 0.1981
BPR 0.7655 0.8085 / 0.8172 / 0.5880 0.1528 0.0115 0.5343 / 0.3074 / 0.1583
ALS 0.7678 0.8037 / 0.8137 / 0.6153 0.1322 0.0083 0.5296 / 0.3052 / 0.1652
SLIM 0.7515 0.8042 / 0.8159 / 0.5320 0.1892 0.0190 0.5414 / 0.3126 / 0.1459
VAE 0.7068 0.7525 / 0.7740 / 0.5008 0.1821 0.0190 0.5386 / 0.3153 / 0.1461
ADV-VAE 0.7194 0.7565 / 0.7714 / 0.5554 0.1439 0.0111 0.5321 / 0.3088 / 0.1592

Table 4.11: Novelty@10 results for the RS algorithms studied and detected user commu-
nities in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.9613 0.9609 / 0.9617 / 0.9615 0.0005 0.0000 0.5058 / 0.2881 / 0.2062
POP 0.7135 0.7138 / 0.7131 / 0.7135 0.0005 0.0000 0.5061 / 0.2878 / 0.2061
ITEM-KNN 0.7510 0.7410 / 0.7466 / 0.7813 0.0269 0.0003 0.4993 / 0.2863 / 0.2144
BPR 0.9073 0.9023 / 0.9103 / 0.9154 0.0087 0.0000 0.5032 / 0.2889 / 0.2080
ALS 0.8192 0.8083 / 0.8222 / 0.8418 0.0223 0.0002 0.4992 / 0.2890 / 0.2118
SLIM 0.8314 0.8172 / 0.8348 / 0.8615 0.0295 0.0003 0.4973 / 0.2891 / 0.2136
VAE 0.8329 0.8213 / 0.8358 / 0.8575 0.0242 0.0002 0.4989 / 0.2889 / 0.2122
ADV-VAE 0.8344 0.8250 / 0.8347 / 0.8571 0.0214 0.0002 0.5002 / 0.2880 / 0.2117
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CHAPTER 5
Conclusion

This chapter concludes the thesis with a summary of the research contribution, highlight-
ing the key findings. The following discussion reflects on the research results. An outlook
for future work is also provided, suggesting potential areas for further investigation and
possible directions for further research.

5.1 Summary
This work addresses the problem of unfair treatment of different user groups in the recom-
mendations they receive from recommendation algorithms. Recommender systems (RS)
are software algorithms that suggest items to a user that are most likely to be of interest,
based on the user’s interaction history with items. Recommendation algorithms are used
in a variety of domains, such as recommending music on music streaming platforms or
products on e-commerce platforms. Collaborative filtering RS capture the patterns of
users’ interactions with items and are particularly sensitive to data imbalance, resulting in
less relevant item recommendations for certain user groups, as shown in previous studies
by Ekstrand et al. [ETA+24], Melchiorre et al. [MZS20, MRP+21] and Li et al. [LCF+21],
for example. In such group fairness studies, users are grouped according to a sensitive
user attribute, typically based on user traits or demographics, such as gender or age,
and the equitable treatment of these groups is then examined. This thesis explores
the fairness of recommendations for users in the news domain, more specifically in the
recommendation of news articles, using a dataset from the Austrian online news platform
“DER STANDARD”. The aim of this work is to quantify the extent of variation in
accuracy and diversity of recommendations between user groups and different collabo-
rative filtering recommendation algorithms. Unlike related work, these user groups are
large behavioural user communities with a minimum size of 750 users discovered in a
user network modelled from user interaction data. To achieve this aim, user network
construction, user community detection and news recommendation are necessary steps.
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After preprocessing the dataset, data on users’ views of news articles and users’ community
activities in discussion areas, in the form of postings, votes and user follow connections,
are used to model the relationships between users, represented as nodes, in networks.
The following weighted simple graphs with different user relations are constructed.

• Directed and undirected Network of Users Who Vote on Postings

• Directed and undirected Network of Users Who Reply to Postings

• Directed and undirected Network Combining Users’ Votes and Posting Replies

• Directed Network Combining Users’ Votes, Posting Replies and Followers

• Undirected Network on Voting Behaviour of Users

• Undirected Network on Posting Behaviour of Users

• Undirected Network of Users by Similarity of News Views (Jaccard Index)

• Undirected Network of Users by Similarity of News Views (Overlap Coef.)

• Undirected Network of Users by Similarity of News Views (Salton’s Index)

Both the Infomap and Louvain algorithms are used to identify communities in all
of these networks, and each of the community detection algorithms returns a graph
partition. In addition, the effect of filtering the edges of a graph with different minimum
edge weight thresholds before community detection on the clustering result is analysed.

For 44 out of 45 different network variants created, both community detection algorithms
yielded partitions with at least one large user community with a size of at least 750
users. It turns out that the consensus between Infomap and Louvain in assigning
users to communities is very low for most of the user networks constructed according
to the Normalized Mutual Information (NMI) and the Rand Index. The distribution
of NMI scores shows that 28 networks have an NMI below 0.1, 34 graphs below 0.3, 38
graphs below 0.4, and 42 graphs below 0.5. Similarly, the distribution of Rand Index
values reveals that 21 networks have a Rand Index below 0.3, 35 graphs below 0.4, and 39
graphs below 0.6. The choice of the minimum edge weight threshold used to remove edges
in the graph before community detection definitely affects the partitions obtained by
Infomap and Louvain for some graphs. Instability in community detection algorithms
is indicated by considerable differences in the consensus scores of graph partitions, as
well as in the size and number of user communities found when filtering a network with
different edge weight thresholds. The Infomap community detection algorithm finds
only one large community with a size of more than 1,000 users in almost all the networks
created. In contrast, the Louvain algorithm identifies three or four user communities
with a size of more than 750 users in nearly all graphs. However, both the Louvain and
Infomap algorithms detect three large communities in the undirected Network of Users
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Who Vote on Postings, whose edges are filtered by a minimum edge weight of four. This
graph also has the highest agreement between community detection algorithms with an
NMI score of 0.73 and a Rand Index of 0.89, so this network is selected for categorizing
users into groups. An evaluation of the quality of the partitions for the selected network
shows that the Louvain partition has better performance (0.63 vs. 0.58) and marginally
higher modularity (0.36 vs. 0.35) than the Infomap partition, although Infomap has
slightly better coverage (0.72 vs. 0.70). The Louvain graph partition is therefore
used for assigning users to groups, as it has a slightly higher partition quality than the
Infomap partition. A characterization of the three large user communities with network
analysis measures for the selected network also shows a high similarity between the two
community detection algorithms.

Users are categorized into user groups based on the large user communities detected
by the Louvain algorithm in the undirected Network of Users Who Vote on Postings,
whose edges are filtered by a minimum edge weight threshold of four. A total of 12,724
active users of the news platform of “DER STANDARD” are used for evaluating the
fairness of news recommendations. However, the selected network consists of only 9,092
users, as some users do not vote on postings in the discussion area of news articles,
or are removed from the network due to edge weight filtering. Of these, 3,957 users
(≈ 43.52%) belong to the largest community A, another 2,252 users (≈ 24.77%) belong
to the second-largest community B, followed by 1,612 users (≈ 17.73%) who are in
community C. The remaining 1,271 users (≈ 13.98%) in the graph are detected as part
of smaller clusters and are grouped together in a group named “Small communities”.
All other 3,632 users who are not included in the graph used for community detection
for the selected network are categorized in the “Not in network” user group. A user’s
membership of a user group is considered the protected user attribute.

This work then evaluates the extent to which various recommendation algorithms provide
users with different recommendations for news articles, with a particular focus on the
differences between large user communities detected in a specific network constructed from
user interaction data. Two baseline algorithms that provide either random or the most
popular news articles are compared with traditional collaborative filtering algorithms
based on nearest neighbours, matrix factorization and variational autoencoders. Addi-
tionally, a fairness-aware RS is compared, which aims to provide fairer recommendations
by minimizing the sensitive information encoded in the learned latent user representations
with respect to a protected user attribute that must be provided during model training.
Recommendations to users are evaluated using accuracy (NDCG, precision, recall) and
beyond-accuracy (coverage, diversity, novelty) metrics. Recommendation results are
reported and discussed for all users overall and for each of the large user communities
identified in the selected network modelled from user interaction data. The RecGap
and Compounding Factor fairness measures proposed by Melchiorre et al. [MRP+21] are
used to quantify both the difference between the mean recommendation results of large
detected user communities and the extent to which a recommendation model reinforces
imbalances in the training data with respect to the distribution of user communities.

71



5. Conclusion

In general, the results for personalized RS do not show a single best algorithm, as the
recommendation performance varies depending on the evaluation metric. The SLIM
recommendation method based on neighbourhood-learning achieves the best accuracy,
and the ALS model based on matrix factorization, the variational autoencoder VAE and
the ADV-VAE, which integrates adversarial learning in a variational autoencoder, have
the next best accuracy. The ITEM-KNN, a nearest neighbour method that uses cosine
similarity as a distance metric, and the BPR model, which is based on matrix factorization,
are the worst personalized RS in terms of accuracy metrics. While ITEM-KNN provides
recommendations with the lowest novelty value and by far the worst coverage, it also
provides the most diverse recommendations. The BPR model achieves the highest novelty
and covers by far the largest number of items in the catalogue. Both VAE and ADV-VAE
score the lowest overall in terms of diversity. Negligible differences are observed in the
recommendations of the fairness-aware ADV-VAE compared to the VAE model. The metric
scores tend to be higher for NDCG and precision and lower for coverage for users in the
three large communities compared to the scores of all users. Trends in recommendation
performance related to the size of the three large discovered communities are apparent.
The smaller the community size, the higher the NDCG, precision, recall and novelty, but
the lower the coverage. The diversity of recommendations is lowest for the third-largest
community and similar for the other two communities.

An assessment of fairness using RecGap shows that the better the RS for accuracy-based
metrics and coverage, the higher the degree of unfairness between user communities. The
RecGap for diversity is clearly the highest compared to the other metrics, with SLIM
and VAE showing the largest gap between communities and ITEM-KNN the smallest. The
BPR model has the lowest RecGap for the novelty metric and SLIM has the highest.

The Compounding Factor as a complementary view of recommendation fairness is highest
for ITEM-KNN, BPR and SLIM and lowest for ADV-VAE, VAE and ALS for accuracy-
based metrics. The Compounding Factor for coverage is highest for BPR and lowest for
ITEM-KNN. In terms of diversity, the Compounding Factor is lowest for ITEM-KNN and
highest for SLIM and VAE. The Compounding Factor of the novelty metric is the lowest
compared to the other metrics and the differences between the RS are negligible.

In summary, the recommendations to users in large user communities detected in a
network modelled from user interaction data can vary considerably depending on the
collaborative filtering algorithm and evaluation metric used. In particular, algorithms that
perform well on certain metrics have an increased risk of being unfair to certain groups
of users. Both ALS and ADV-VAE generally show good recommendation performance
and have the lowest degree of unfairness towards specific user communities according
to the RecGap and Compounding Factor measures, but the differences in the fairness
measures between RS may be small. The fairness-aware ADV-VAE exhibits only marginal
differences in recommendation metrics and tends to perform slightly better on measures
of user community fairness than the VAE model in this study.
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Research Contribution

This thesis contributes to research by answering the following research questions.

• RQ1: To what extent does the selection of different types of user interactions for
constructing networks influence key metrics such as community size and group
centrality within the network?

In this work, several user networks with different types of user relationships are
constructed. The Infomap and Louvain algorithms, the former focusing on
information flow and the latter on optimizing modularity in a graph, are used
to detect user communities in a network. The effect of filtering edges of graphs
with different minimum edge weights on the clustering result is also analysed.
Section 4.2.1 discusses the consensus between community detection algorithms in
assigning users to communities, and Section 4.2.2 examines the number and size of
user communities detected in the graphs. Various measures of network analysis are
used to characterize the user networks modelled and the communities discovered in
the graphs. Section 4.2.3 discusses the effects of edge weight filtering on the selected
network for grouping users and the differences between Infomap and Louvain
for the large detected communities using network analysis measures.

It turns out that the consensus between the two community detection algorithms
in assigning users to communities is very low for most of the user networks con-
structed according to the Normalized Mutual Information and the Rand Index. The
choice of the minimum edge weight threshold used to remove edges in the graph
before community detection definitely affects the partitions obtained by Infomap
and Louvain for some graphs. Instability in community detection algorithms is
indicated by considerable differences in the consensus scores of graph partitions,
as well as in the size and number of user communities found when filtering graphs
with different edge weight thresholds.

• RQ2: What variations exist in the accuracy and diversity of recommended content
across identified user communities when employing non-fairness-aware recommen-
dation algorithms?

This work evaluates the extent to which various collaborative filtering algorithms
provide users with different recommendations for news articles, focusing on the
differences between large user communities detected in a network of users. Several
traditional algorithms based on nearest neighbours, matrix factorization and varia-
tional autoencoders are compared. Recommendations are evaluated using accuracy
(NDCG, precision, recall) and beyond-accuracy (coverage, diversity, novelty) met-
rics. The RecGap and Compounding Factor are used to quantify the fairness of
recommendations for users in large communities. Section 4.3.1 discusses the overall
recommendation results, and Section 4.3.2 presents the results at the level of large
communities with at least 750 users detected in a specific network.

73



5. Conclusion

Recommendations to users in large user communities detected in a network modelled
from user interaction data can vary considerably depending on the collaborative
filtering algorithm and evaluation metric used. Trends in recommendation perfor-
mance related to the size of the three large discovered communities are apparent.
The smaller the community size, the higher the NDCG, precision, recall and novelty,
but the lower the coverage. The diversity of recommendations is lowest in the
third-largest community and similar in the other two. RS that perform well on
certain metrics have an increased risk of being unfair to certain groups of users.

• RQ3: To what extent does a fairness-aware recommendation algorithm improve
the equitable distribution of accurate and diverse recommendations across user
communities?
In addition to conventional recommender algorithms, this work also uses a fairness-
aware RS, which aims to provide fairer recommendations by minimizing the sensitive
information encoded in the learned latent user representations with respect to a pro-
tected user attribute that must be provided during model training. This work uses
the “Adversarial Variational Auto-Encoder with Multinomial Likelihood” fairness-
aware recommender model proposed by Ganhör et al. [GPR+22], which integrates
adversarial learning into a variational autoencoder. Results of the recommendation
evaluation of this fairness-aware RS are also discussed in Section 4.3.1 for all users
overall and in Section 4.3.2 for each of the large user communities.
This fairness-aware RS exhibits only marginal differences in recommendation metrics
compared to a variational autoencoder and tends to perform slightly better on
measures of user community fairness than the VAE model in this study.

5.2 Discussion
Traditional collaborative filtering RS are designed for personalization by suggesting items
that users are most likely to engage with, based on their past preferences and those
of similar users. This type of recommender system aims to provide highly accurate
recommendations by tailoring content to users’ interests. For example, if a user prefers
sports news, a traditional RS might show the user mainly sports-related articles. In the
short term, some users may be satisfied with recommendations of conventional RS and
spend more time on the platform, as the content is highly relevant and aligned with their
specific interests. However, a drawback is that traditional RS tend to reinforce users’
existing views and interests, as recommendations are based on their past behaviour on the
platform. Excessive personalization can foster filter bubbles, where users’ access to diverse
content and opposing viewpoints is limited. For example, in news recommendations,
this bias may prevent users from encountering different political ideologies. A lack of
diversity in political news recommendations poses societal risks because people are less
exposed to various points of view. They can become trapped in narrow world views,
contributing to a more divided and intolerant society. Some individuals may even be
drawn to extreme radical views and become hostile towards other groups. Apart from
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societal risks, diversity in news recommendations helps, among other reasons, to prevent
individual users from becoming bored with similar content by offering a variety of topics.
Additionally, diverse recommendations can benefit platform providers by exposing users
to a wider range of content, such as less popular or niche items that might otherwise
remain unseen by users.

On the other hand, many fairness-aware recommender systems, such as the one used in
this study, aim to reduce the influence of sensitive user attributes, like users’ affiliation
with interest groups or demographic characteristics, on recommendations. The concept of
fair recommendations is to ensure that recommendation utility, as measured by metrics
such as accuracy and diversity, is more equitably distributed across different groups.
For instance, some user groups may receive highly accurate recommendations with low
diversity, while others may be shown more varied content. Fairness-aware algorithms can
reduce the influence of factors like user group membership on recommendations, ensuring
that certain groups are not disadvantaged by receiving less diverse content. As a result,
users are presented with more balanced and diverse news, including articles that differ
from their existing views, helping them to break out of their filter bubbles. For example,
a user who frequently reads articles supporting conservative political viewpoints would
also be recommended articles from other parts of the political spectrum, such as socialist
or progressive perspectives. However, in the short term, some users may feel less satisfied
with recommendations from fairness-aware recommender systems, as they may seem less
relevant or aligned with their views. This could potentially lead to some users spending
less time on the platform, which could be a concern for both users and platform providers.
But over time, as users are exposed to a wider range of viewpoints and become more
informed, some users may appreciate the variety of recommended content, build trust and
engage more with the platform. Ultimately, access to diverse news content can encourage
critical thinking, foster a culture of tolerance and dialogue across different perspectives,
help to reduce polarization in society and promote a better informed readership. One
could argue that platform providers have an ethical obligation to consider fairness in
their recommender systems, as this can help to reduce social divisions and promote a
more open-minded society. While this may lead to lower user engagement and a potential
short-term revenue impact due to less personalized recommendations, the long-term
societal benefits could outweigh these immediate concerns. However, if a news platform
builds a reputation for providing inclusive and diverse news, it can attract more customers
looking for in-depth news coverage.

One of the challenges of using fairness-aware recommender systems is their greater
complexity, as they require techniques that balance personalization with fairness. This
study explores the integration of adversarial learning into a recommender model based on
a variational autoencoder, with the aim of learning fairer user representations with respect
to a sensitive user attribute. Various recommendation systems have been proposed in
the literature that also take diversity and fairness into account, which makes it more
difficult to decide on a system. Recommender algorithms can be evaluated using various
metrics, but there are few measures in the literature that specifically assess the fairness of
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recommendations, especially when considering more than two groups. Beyond selecting
which fairness-aware recommender algorithm to use, another challenge for platform
providers is deciding which sensitive attributes should be considered to ensure more
diverse and fair representations. In this study, user communities, where users within each
community exhibit similar behaviour, are detected in a user network modelled from user
interaction data, and a user’s membership in a community is the only attribute considered.
These user clusters are identified in a weighted undirected network, where users are
represented as nodes and an edge is established between two users if one has voted for the
other’s post in the discussion forum of the news platform, with the edge weight reflecting
the frequency of their interactions. This is just one of many ways to analyse clusters
of users based on similar behaviour. However, the approach has certain limitations,
such as the fact that the cluster analysis in this study focuses only on registered users
who vote or post in the platform’s discussion forum. This raises the question of the
extent to which users who do not participate in forum activities benefit from fairer
recommendations. It is also likely that users belong to several interest groups rather than
just one, as assumed for simplicity in this study. It is important to bear in mind that
users’ interests change over time and their profiles need to be updated regularly based on
their current membership of user groups. To reduce the influence of group membership on
recommendations, one approach is to group users based on similar interests, while another
is to minimize the impact of demographic characteristics on recommendations. Deciding
which sensitive attributes to use in fairness-aware RS is certainly not easy for platform
providers, and it may even be worth considering allowing users to decide individually.
Depending on the domain in which the recommender algorithms are used, additional
specific challenges may arise. The news domain presents unique challenges that need
to be considered when using recommender systems, such as the short lifespan of news
articles and their frequent publication. Since collaborative filtering recommender systems
suffer from the item cold-start problem, which refers to the difficulty of recommending
new items, it may be necessary not only to use a collaborative filtering RS that provides
diverse recommendations, but also to integrate a content-based RS to address this issue.
This study contributes to the recommender systems research community by emphasizing
the importance of not only improving recommendation accuracy but also ensuring fairness
and diversity, while highlighting some challenges involved in balancing these objectives. In
conclusion, it is worth investing in the research of recommender algorithms that provide
more diverse and balanced recommendations, as in the case of news recommendations,
where they can promote exposure to a wider range of perspectives, reduce social polariza-
tion, and foster a more informed and inclusive society. However, the implementation of
such systems requires careful consideration of the ethical, societal and technical challenges
that arise in the respective domain of application.

5.3 Limitations and Future Work
While this thesis provides valuable insights into the challenge of using user interaction data
to construct user networks, the varying results of two community detection algorithms
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and their sensitivity to edge filtering with different minimum edge weight thresholds, as
well as the user group fairness of recommendations provided by collaborative filtering
algorithms in the news domain, it also has limitations. Like other research, this study
faces certain constraints that may have influenced the results or the generalizability of
the findings. This section outlines some of these limitations and offers an outlook for
future work, suggesting possible directions for subsequent research.

A challenge of this study is the skew of user interaction data, such as clicks on news
articles, submissions of postings or votes for postings. The distribution of user activity
is very uneven, with a small group of users being highly active, while most others are
much less engaged. This data skew complicates the analysis of user clusters, as they
may mainly reflect the behaviour of these highly active users. The data imbalance can
also introduce bias into recommendation algorithms, causing them to focus more on the
preferences of the most active users, limiting their generalizability to the user population.

A limitation of this study is that the large user communities identified within a network
based on user interaction data are only characterized using measures of network analysis.
While these measures provide valuable insights into the network’s structure, they do not
capture the variety of user behaviour. Future research could address this by examining
how these user communities relate to specific news reading behaviours or community
activities. This could involve analysing the topics of news articles and postings that users
interact with to understand the specific interests and behaviours within each community.

Users most frequently click on news articles that are placed at the top of the news
platform’s home page, and news articles often change throughout the day. Therefore, it
is very likely that two users will read the same articles if they visit the news platform at
the same time. One issue could be that clustering users by similarity of their clicked news
articles or community activities could lead to user communities that do not necessarily
share the same interests, but could be the result of interacting with the platform’s content
at similar times. The short lifespan and frequent publication of news articles is a challenge
for cluster analysis of users in the news domain.

This thesis is limited by its focus on text-based news articles and user activity in the
discussion areas below these articles. It does not take into account content in the dedicated
discussion forum, such as blogs, columns, commentaries, debates and user-created forum
pages, where user engagement might differ considerably. In particular, users are most
active in the dedicated discussion forum, which is not included in this work. Furthermore,
the study only considers interactions with text-based news articles, although the platform
offers multimodal content, including videos and podcasts. As a result, the findings might
not fully reflect how users interact with different content on the platform. Future work
could extend the scope to different content types and also to forum pages.

A limitation of this study is that it focuses only on the interactions of registered users who
have created a community identity. A considerable number of users who interact with
the platform anonymously or without using community features are excluded. However,
most users interact with the platform without creating an account. Since the user
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communities detected are based on data of users’ votes for postings, the study focuses on
the behaviour of active users who engage in these community activities, while neglecting
how non-registered users and less active registered users interact with the content. This
results in an incomplete understanding of the overall user interaction on the platform.

This study identified several challenges, in particular the varying results of two community
detection algorithms and their sensitivity to edge filtering with different minimum edge
weight thresholds. The poor consensus observed between the algorithms suggests that
they may be capturing different aspects of the network, leading to inconsistent results.
Future research could focus on analysing the differences between these algorithms in
more detail and investigating the reasons for their different results. In addition, it would
be valuable to investigate methods to help select appropriate edge weight thresholds for
edge filtering and to better track changes in node assignment across different thresholds.
Furthermore, alternative methods of user clustering could be explored.

The study’s reliance on implicit feedback in the form of clicks on news articles to provide
recommendations is a limitation, as a recorded click does not guarantee that the user has
actually read or engaged with the news article. For example, a user may open an article
but then move the browser window in the background to do something else, so the click
alone may not accurately reflect the user’s interest or actual content consumption.

The fairness-aware recommender algorithm ADV-VAE used in this study aims to provide
fairer recommendations by reducing the sensitive information encoded in the learned
latent user representations with respect to a protected user attribute that must be
provided during model training. In future work, the actual effect of bias mitigation of
this approach could be measured and compared with a non-fairness-aware model, such
as the VAE model. As noted by the authors of the ADV-VAE model, this study also
found that a limitation of their model is the difficulty in selecting a model that both
improves recommendation performance and reduces the bias associated with a protected
user attribute during training. As the ADV-VAE model currently only supports bias
mitigation of a single protected attribute, future work could adapt the model to support
sensitive information reduction of multiple attributes. In addition, a comparison with
alternative fairness-aware recommender algorithms could provide insights into which
methods are more applicable for providing fairer recommendations.

This thesis quantifies the fairness of recommendations for different user groups based
on the average metric values as well as the RecGap and Compounding Factor fairness
measures per user group and evaluation metric. Future work could focus on assessing
differences in recommendation performance with further fairness measures applicable to
the number of user groups studied.

In this study, the diversity of recommendations is evaluated using the Shannon entropy of
news sections. While this approach provides a useful measure of broad content diversity,
it does not take into account the finer granularity within these sections. Future work
could explore alternative methods of measuring diversity at a more granular level, such
as analysing the variety of article topics within news sections, thereby providing a
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more nuanced understanding of the diversity in recommendations. Additionally, future
research could consider assessing diversity based on the user needs model for news1,
which categorizes content according to different reader motivations. This model is built
around four main drivers. Users’ need for knowledge is met by providing updates and
factual content to keep them informed. The need for understanding is satisfied through
explanations, context and perspectives to help users grasp the significance of events.
Emotional engagement comes from stories that move, inspire or entertain. Finally,
motivation to act is supported by offering practical advice, opportunities to connect
with others and ways to participate in meaningful activities. By analysing how well
recommendations align with these varied motivations, the system can ensure that it is
not only diverse in news sections and topics but also effective in delivering what people
want from the news.

The present study does not address the various unique aspects that news recommender
systems must consider when providing recommendations on a news platform, such as the
importance of recency, the short lifespan of news articles, user interests that change based
on context, the persistent item cold-start problem, and the need to balance additional
quality factors such as diversity, novelty and serendipity. Instead, this study focuses
on evaluating the fairness of recommendations for users in large communities using
conventional collaborative filtering algorithms and comparing them with a fairness-
aware recommender algorithm designed to reduce the sensitive information encoded
in the learned latent user representations. The study aims to quantify the fairness of
recommendations for collaborative filtering techniques, which are known to be sensitive to
imbalances in the training data. Future work could explore the integration of techniques
that address the unique aspects of news recommender systems with various fairness-aware
recommender algorithms to improve both relevance and fairness of recommendations.
Content-based recommender systems, which use either manually created features like
news metadata and article topics, or neural networks to learn representations from article
text, can be integrated to overcome the limitations of collaborative filtering algorithms.

1https://smartocto.com/blog/explaining-user-needs
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Table A.1: This table describes each modelled network, whose edges may have been filtered using an edge weight threshold,
with various graph measures. These measures include the number of nodes and edges, the graph density, the mean node
degree, the average edge weight, the global clustering coefficient, the average distance and the graph diameter.

Network Name
Edge

Weight
Threshold

Number
of

Nodes

Number
of

Edges
Graph

Density
Node

Degree
Mean

Edge
Weight

Mean

Global
Clustering
Coefficient

Average
Distance Diameter

Directed Network of Users Who
Vote on Postings

1.00 12,535 6,105,250 0.0389 487.06 1.93 0.30 1.98 4
2.00 11,660 1,914,247 0.0141 164.17 3.97 0.25 2.27 5
3.00 10,252 950,809 0.0090 92.74 5.97 0.23 2.45 6
4.00 8,873 573,512 0.0073 64.64 7.93 0.22 2.54 6

Undirected Network of Users Who
Vote on Postings

1.00 12,535 5,535,637 0.0705 883.23 2.11 0.29 1.98 4
2.00 11,745 1,932,500 0.0280 329.08 4.18 0.26 2.26 5
3.00 10,424 1,003,722 0.0185 192.58 6.20 0.25 2.42 6
4.00 9,092 621,288 0.0150 136.67 8.17 0.24 2.50 7

Directed Network of Users Who
Reply to Postings

1.00 11,643 1,247,835 0.0092 107.17 1.39 0.17 2.43 5
2.00 8,577 241,682 0.0033 28.18 2.99 0.13 2.91 7
3.00 5,915 87,934 0.0025 14.87 4.72 0.11 3.14 7

Undirected Network of Users Who
Reply to Postings

1.00 11,643 996,951 0.0147 171.25 1.73 0.17 2.43 5
2.00 10,125 313,706 0.0061 61.97 3.33 0.13 2.79 6
3.00 8,061 135,724 0.0042 33.67 5.08 0.11 3.01 7
4.00 6,484 73,635 0.0035 22.71 6.83 0.10 3.16 8

Directed Network Combining
Users’ Votes and Posting Replies

1.15 12,540 6,961,250 0.0443 555.12 3.89 0.32 1.97 4
2.29 12,241 2,957,605 0.0197 241.61 7.59 0.27 2.19 5
3.44 12,067 2,066,396 0.0142 171.24 9.88 0.25 2.29 5
4.59 11,967 1,726,637 0.0121 144.28 11.15 0.22 2.33 5

Undirected Network Combining
Users’ Votes and Posting Replies

1.15 12,540 6,104,458 0.0776 973.60 4.39 0.32 1.97 4
2.30 12,243 2,672,075 0.0357 436.51 8.57 0.28 2.18 5
3.44 12,068 1,825,574 0.0251 302.55 11.47 0.26 2.28 5
4.59 11,967 1,489,253 0.0208 248.89 13.29 0.23 2.33 5

Directed Network Combining
Users’ Votes, Posting Replies and
Followers

1.15 12,551 6,967,492 0.0442 555.13 5.83 0.32 1.97 4
2.30 12,277 2,965,720 0.0197 241.57 12.15 0.27 2.19 5
3.44 12,125 2,075,475 0.0141 171.17 16.38 0.25 2.29 5
4.59 12,043 1,736,362 0.0120 144.18 18.90 0.22 2.34 5

Continued on the next page
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Network Name
Edge

Weight
Threshold

Number
of

Nodes

Number
of

Edges
Graph

Density
Node

Degree
Mean

Edge
Weight

Mean

Global
Clustering
Coefficient

Average
Distance Diameter

Undirected Network on Voting
Behaviour of Users

1.00 12,377 14,177,590 0.1851 2,290.96 6.33 0.49 1.83 4
2.00 11,902 8,035,149 0.1135 1,350.22 10.40 0.46 1.94 4
3.00 11,275 5,638,645 0.0887 1,000.20 13.97 0.44 1.99 4
4.00 10,712 4,339,848 0.0756 810.28 17.25 0.43 2.03 4

Undirected Network on Posting
Behaviour of Users

1.00 11,981 25,347,901 0.3532 4,231.35 6.31 0.67 1.65 3
2.00 11,528 16,157,018 0.2432 2,803.09 9.34 0.63 1.77 4
3.00 10,940 12,023,553 0.2009 2,198.09 11.86 0.62 1.83 4
4.00 10,376 9,576,761 0.1779 1,845.94 14.12 0.60 1.86 4

Undirected Network of Users by
Similarity of News Views
(Jaccard Index)

0.05 10,872 12,130,220 0.2053 2,231.46 0.07 0.65 1.95 7
0.06 10,075 8,086,799 0.1594 1,605.32 0.08 0.61 2.04 9
0.07 8,646 4,043,390 0.1082 935.32 0.09 0.56 2.18 9

Undirected Network of Users by
Similarity of News Views
(Overlap Coef.)

0.18 12,724 12,131,307 0.1499 1,906.84 0.23 0.28 1.85 2
0.20 12,724 8,086,885 0.0999 1,271.12 0.25 0.21 1.90 2
0.24 12,724 4,043,406 0.0500 635.56 0.29 0.12 1.95 3

Undirected Network of Users by
Similarity of News Views
(Salton’s Index)

0.11 11,846 12,130,209 0.1729 2,047.98 0.14 0.57 1.87 5
0.12 11,210 8,086,799 0.1287 1,442.78 0.15 0.53 1.95 5
0.14 9,976 4,043,395 0.0813 810.62 0.17 0.48 2.06 7
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Table A.2: Distribution of the size of the communities detected in the constructed user networks. The table shows the
number of detected communities categorized by size intervals for each modelled network, whose edges may have been filtered
using an edge weight threshold. Each interval represents a specific range of community sizes.

Network Name
Edge

Weight
Threshold

Community
Detection
Algorithm

Distribution of Detected Communities by Size

(0,
2]

(2,
10]

(10,
50]

(50,
100]

(100,
250]

(250,
500]

(500,
750]

(750,
1000]

(1000,
∞)

Directed Network of Users Who Vote on
Postings

1.00 Infomap 12 14 0 0 0 0 0 0 1
Louvain 1 10 3 0 1 0 0 0 4

2.00 Infomap 530 79 24 2 3 0 0 0 3
Louvain 9 11 7 1 1 0 0 1 3

3.00 Infomap 585 98 32 6 4 0 0 1 2
Louvain 21 17 5 3 2 0 0 0 4

4.00 Infomap 0 2 0 0 0 0 0 0 1
Louvain 25 19 11 3 2 1 0 0 3

Undirected Network of Users Who Vote on
Postings

1.00 Infomap 1 3 0 0 0 0 0 0 1
Louvain 2 8 3 0 1 0 0 0 4

2.00 Infomap 8 7 2 0 0 0 0 0 1
Louvain 11 7 3 2 1 0 0 0 4

3.00 Infomap 38 21 5 2 2 0 0 0 3
Louvain 16 13 7 1 2 1 0 1 3

4.00 Infomap 36 27 10 1 2 0 0 0 3
Louvain 22 20 9 3 2 1 0 0 3

Directed Network of Users Who Reply to
Postings

1.00 Infomap 15 7 3 1 0 0 0 0 1
Louvain 7 9 7 1 1 1 0 1 4

2.00 Infomap 116 88 10 1 2 1 0 0 1
Louvain 52 62 30 5 5 2 1 1 3

3.00 Infomap 67 107 45 2 5 1 0 0 1
Louvain 71 90 58 8 3 0 2 2 0

Continued on the next page
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Network Name
Edge

Weight
Threshold

Community
Detection
Algorithm

Distribution of Detected Communities by Size

(0,
2]

(2,
10]

(10,
50]

(50,
100]

(100,
250]

(250,
500]

(500,
750]

(750,
1000]

(1000,
∞)

Undirected Network of Users Who Reply to
Postings

1.00 Infomap 12 2 1 0 0 0 0 0 1
Louvain 10 10 8 1 1 0 0 0 5

2.00 Infomap 81 43 7 0 2 1 0 0 1
Louvain 37 29 23 3 4 1 1 0 4

3.00 Infomap 100 70 9 0 2 1 0 0 1
Louvain 50 55 31 5 4 1 2 2 2

4.00 Infomap 85 104 21 1 2 1 0 0 1
Louvain 61 77 58 3 5 4 2 1 0

Directed Network Combining Users’ Votes and
Posting Replies

1.15 Infomap 4 1 0 0 0 0 0 0 1
Louvain 4 9 5 1 0 1 0 0 4

2.29 Infomap 21 3 1 2 0 0 0 0 1
Louvain 6 9 3 0 1 1 1 0 4

3.44 Infomap 18 4 2 2 0 0 0 0 1
Louvain 4 11 5 0 2 0 1 0 4

4.59 Infomap 14 3 1 2 0 0 0 0 1
Louvain 10 10 5 1 2 1 0 1 4

Undirected Network Combining Users’ Votes
and Posting Replies

1.15 Infomap 0 0 0 0 0 0 0 0 1
Louvain 4 12 2 1 1 0 0 0 4

2.30 Infomap 7 0 1 0 0 0 0 0 1
Louvain 9 10 4 0 1 1 1 0 4

3.44 Infomap 10 0 1 0 0 0 0 0 1
Louvain 7 11 6 0 2 2 0 0 4

4.59 Infomap 8 1 2 0 0 0 0 0 1
Louvain 10 13 5 1 2 1 1 0 4

Continued on the next page
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Table A.2: Continued from the previous page

Network Name
Edge

Weight
Threshold

Community
Detection
Algorithm

Distribution of Detected Communities by Size

(0,
2]

(2,
10]

(10,
50]

(50,
100]

(100,
250]

(250,
500]

(500,
750]

(750,
1000]

(1000,
∞)

Directed Network Combining Users’ Votes,
Posting Replies and Followers

1.15 Infomap 143 97 13 3 2 0 0 0 1
Louvain 263 353 65 1 5 1 0 0 3

2.30 Infomap 158 132 25 0 3 1 0 0 1
Louvain 255 352 76 1 4 0 0 0 3

3.44 Infomap 135 162 29 1 4 1 0 0 1
Louvain 257 388 64 2 4 0 0 0 3

4.59 Infomap 133 159 35 0 3 1 0 0 1
Louvain 254 351 69 1 5 0 0 0 4

Undirected Network on Voting Behaviour of
Users

1.00 Infomap 0 0 0 0 0 0 0 0 1
Louvain 0 0 1 0 0 0 0 0 3

2.00 Infomap 0 0 0 0 0 0 0 0 1
Louvain 0 0 1 0 0 0 0 0 4

3.00 Infomap 0 1 0 0 0 0 0 0 1
Louvain 0 0 1 0 0 0 0 0 4

4.00 Infomap 2 1 1 0 0 0 0 0 1
Louvain 1 1 1 0 0 0 0 0 4

Undirected Network on Posting Behaviour of
Users

1.00 Infomap 0 0 0 0 0 0 0 0 1
Louvain 0 0 0 0 0 0 0 0 4

2.00 Infomap 0 0 0 0 0 0 0 0 1
Louvain 0 0 0 0 0 0 0 0 4

3.00 Infomap 0 0 0 0 0 0 0 0 1
Louvain 0 0 0 0 0 0 0 0 4

4.00 Infomap 0 0 0 0 0 0 0 0 1
Louvain 0 0 0 0 0 0 0 0 4

Continued on the next page
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Network Name
Edge

Weight
Threshold

Community
Detection
Algorithm

Distribution of Detected Communities by Size

(0,
2]

(2,
10]

(10,
50]

(50,
100]

(100,
250]

(250,
500]

(500,
750]

(750,
1000]

(1000,
∞)

Undirected Network of Users by Similarity of
News Views (Jaccard Index)

0.05 Infomap 9 15 3 0 0 0 0 0 1
Louvain 6 6 2 0 0 0 0 0 3

0.06 Infomap 10 15 4 0 0 0 0 0 1
Louvain 3 7 2 0 0 0 0 0 4

0.07 Infomap 7 12 6 1 0 1 0 0 1
Louvain 2 7 3 0 0 0 0 0 4

Undirected Network of Users by Similarity of
News Views (Overlap Coef.)

0.18 Infomap 0 0 0 0 0 0 0 0 1
Louvain 0 0 0 0 0 0 0 0 3

0.20 Infomap 0 0 0 0 0 0 0 0 1
Louvain 0 0 0 0 0 0 0 0 3

0.24 Infomap 0 0 0 0 0 0 0 0 1
Louvain 0 0 0 0 0 0 0 0 4

Undirected Network of Users by Similarity of
News Views (Salton’s Index)

0.11 Infomap 3 4 2 0 0 0 0 0 1
Louvain 1 1 2 0 0 0 0 0 3

0.12 Infomap 7 4 1 0 0 0 0 0 1
Louvain 2 2 1 0 0 0 0 0 3

0.14 Infomap 3 9 2 0 0 0 0 0 1
Louvain 3 3 1 0 0 0 0 0 4
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Table A.3: This table shows, for each constructed user network, the Normalized Mutual
Information (NMI) and Rand Index consensus scores for the graph partitions resulting
from the original partitions obtained by the Infomap and Louvain algorithms by
combining all users in communities with less than 750 users into a single group. All
scores are rounded to the second digit. Highest values are shown in bold.

Network Name
Edge

Weight
Threshold

NMI Rand
Index

Undirected Network of Users Who Vote on Postings 4.00 0.69 0.88
Undirected Network of Users Who Vote on Postings 3.00 0.62 0.83
Directed Network of Users Who Vote on Postings 3.00 0.47 0.79
Directed Network of Users Who Vote on Postings 2.00 0.41 0.76
Directed Network Combining Users’ Votes, Posting Replies and Followers 3.44 0.15 0.52
Directed Network Combining Users’ Votes, Posting Replies and Followers 2.30 0.14 0.49
Directed Network Combining Users’ Votes, Posting Replies and Followers 4.59 0.12 0.42
Undirected Network of Users Who Reply to Postings 3.00 0.11 0.44
Directed Network of Users Who Reply to Postings 2.00 0.11 0.44
Undirected Network of Users Who Reply to Postings 2.00 0.11 0.36
Directed Network Combining Users’ Votes, Posting Replies and Followers 1.15 0.10 0.36
Undirected Network of Users by Similarity of News Views (Jaccard Index) 0.07 0.07 0.32
Undirected Network of Users by Similarity of News Views (Jaccard Index) 0.05 0.07 0.36
Undirected Network of Users by Similarity of News Views (Jaccard Index) 0.06 0.06 0.28
Undirected Network of Users by Similarity of News Views (Salton’s Index) 0.12 0.05 0.35
Undirected Network of Users by Similarity of News Views (Salton’s Index) 0.11 0.05 0.35
Undirected Network of Users by Similarity of News Views (Salton’s Index) 0.14 0.04 0.28
Undirected Network of Users Who Reply to Postings 4.00 0.04 0.53
Directed Network of Users Who Reply to Postings 3.00 0.04 0.51
Undirected Network on Voting Behaviour of Users 4.00 0.04 0.31
Undirected Network of Users Who Vote on Postings 2.00 0.03 0.28
Directed Network Combining Users’ Votes and Posting Replies 4.59 0.02 0.24
Directed Network Combining Users’ Votes and Posting Replies 2.29 0.02 0.24
Directed Network Combining Users’ Votes and Posting Replies 3.44 0.02 0.27
Directed Network of Users Who Reply to Postings 1.00 0.01 0.24
Undirected Network Combining Users’ Votes and Posting Replies 4.59 0.01 0.24
Undirected Network Combining Users’ Votes and Posting Replies 3.44 0.01 0.24
Undirected Network Combining Users’ Votes and Posting Replies 2.30 0.01 0.23
Undirected Network of Users Who Vote on Postings 1.00 0.01 0.27
Undirected Network of Users Who Reply to Postings 1.00 0.01 0.23
Directed Network of Users Who Vote on Postings 1.00 0.00 0.27
Directed Network Combining Users’ Votes and Posting Replies 1.15 0.00 0.25
Directed Network of Users Who Vote on Postings 4.00 0.00 0.30
Undirected Network on Voting Behaviour of Users 3.00 0.00 0.31
Undirected Network of Users by Similarity of News Views (Overlap Coef.) 0.18 0.00 0.35
Undirected Network of Users by Similarity of News Views (Overlap Coef.) 0.20 0.00 0.35
Undirected Network on Posting Behaviour of Users 4.00 0.00 0.27
Undirected Network Combining Users’ Votes and Posting Replies 1.15 0.00 0.25
Undirected Network on Posting Behaviour of Users 3.00 0.00 0.27
Undirected Network on Posting Behaviour of Users 2.00 0.00 0.27
Undirected Network on Posting Behaviour of Users 1.00 0.00 0.28
Undirected Network on Voting Behaviour of Users 2.00 0.00 0.33
Undirected Network on Voting Behaviour of Users 1.00 0.00 0.39
Undirected Network of Users by Similarity of News Views (Overlap Coef.) 0.24 0.00 0.26
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Table A.4: This table shows, for each constructed user network, the scores of the partition quality functions coverage,
modularity and performance for the graph partitions resulting from the original partitions obtained by the Louvain and
Infomap algorithms by keeping only communities that satisfy a minimum size of 750 users. This quantifies the quality of the
graph partitions, consisting only of the large user communities. All scores are rounded to the second digit.

Network Name
Edge

Weight
Threshold

Community
Detection
Algorithm

Coverage Modularity Performance

Directed Network of Users Who Vote on Postings

1.00 Infomap 1.00 0.00 0.04
Louvain 0.45 0.23 0.72

2.00 Infomap 0.70 0.29 0.50
Louvain 0.59 0.30 0.67

3.00 Infomap 0.74 0.36 0.57
Louvain 0.61 0.34 0.71

4.00 Infomap 1.00 0.00 0.01
Louvain 0.72 0.38 0.62

Undirected Network of Users Who Vote on Postings

1.00 Infomap 1.00 0.00 0.07
Louvain 0.44 0.23 0.72

2.00 Infomap 1.00 0.00 0.03
Louvain 0.54 0.29 0.71

3.00 Infomap 0.70 0.31 0.55
Louvain 0.63 0.33 0.68

4.00 Infomap 0.72 0.35 0.58
Louvain 0.70 0.36 0.63

Directed Network of Users Who Reply to Postings

1.00 Infomap 1.00 0.00 0.01
Louvain 0.39 0.18 0.75

2.00 Infomap 1.00 0.00 0.00
Louvain 0.53 0.33 0.74

3.00 Infomap 1.00 0.00 0.01
Louvain 0.82 0.33 0.50

Continued on the next page
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Table A.4: Continued from the previous page

Network Name
Edge

Weight
Threshold

Community
Detection
Algorithm

Coverage Modularity Performance

Undirected Network of Users Who Reply to Postings

1.00 Infomap 1.00 0.00 0.01
Louvain 0.37 0.18 0.76

2.00 Infomap 1.00 0.00 0.01
Louvain 0.46 0.25 0.74

3.00 Infomap 1.00 0.00 0.01
Louvain 0.55 0.36 0.74

4.00 Infomap 1.00 0.00 0.01
Louvain 1.00 0.00 0.01

Directed Network Combining Users’ Votes and Posting Replies

1.15 Infomap 1.00 0.00 0.04
Louvain 0.38 0.18 0.72

2.29 Infomap 1.00 0.00 0.02
Louvain 0.42 0.21 0.73

3.44 Infomap 1.00 0.00 0.01
Louvain 0.43 0.21 0.71

4.59 Infomap 1.00 0.00 0.01
Louvain 0.38 0.20 0.75

Undirected Network Combining Users’ Votes and Posting Replies

1.15 Infomap 1.00 0.00 0.08
Louvain 0.37 0.17 0.71

2.30 Infomap 1.00 0.00 0.04
Louvain 0.41 0.20 0.72

3.44 Infomap 1.00 0.00 0.03
Louvain 0.42 0.20 0.72

4.59 Infomap 1.00 0.00 0.02
Louvain 0.43 0.21 0.71

Continued on the next page
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Table A.4: Continued from the previous page

Network Name
Edge

Weight
Threshold

Community
Detection
Algorithm

Coverage Modularity Performance

Directed Network Combining Users’ Votes, Posting Replies and Followers

1.15 Infomap 1.00 0.00 0.05
Louvain 0.47 0.20 0.65

2.30 Infomap 1.00 0.00 0.02
Louvain 0.60 0.29 0.48

3.44 Infomap 1.00 0.00 0.02
Louvain 0.61 0.31 0.48

4.59 Infomap 1.00 0.00 0.01
Louvain 0.43 0.32 0.72

Undirected Network on Voting Behaviour of Users

1.00 Infomap 1.00 0.00 0.19
Louvain 0.47 0.24 0.59

2.00 Infomap 1.00 0.00 0.11
Louvain 0.45 0.24 0.66

3.00 Infomap 1.00 0.00 0.09
Louvain 0.47 0.25 0.68

4.00 Infomap 1.00 0.00 0.08
Louvain 0.48 0.26 0.69

Undirected Network on Posting Behaviour of Users

1.00 Infomap 1.00 0.00 0.35
Louvain 0.30 0.09 0.58

2.00 Infomap 1.00 0.00 0.24
Louvain 0.32 0.09 0.64

3.00 Infomap 1.00 0.00 0.20
Louvain 0.32 0.10 0.66

4.00 Infomap 1.00 0.00 0.18
Louvain 0.33 0.10 0.67

Continued on the next page
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Table A.4: Continued from the previous page

Network Name
Edge

Weight
Threshold

Community
Detection
Algorithm

Coverage Modularity Performance

Undirected Network of Users by Similarity of News Views (Jaccard Index)

0.05 Infomap 1.00 0.00 0.21
Louvain 0.48 0.16 0.65

0.06 Infomap 1.00 0.00 0.17
Louvain 0.43 0.18 0.72

0.07 Infomap 1.00 0.00 0.12
Louvain 0.48 0.22 0.74

Undirected Network of Users by Similarity of News Views (Overlap Coef.)

0.18 Infomap 1.00 0.00 0.15
Louvain 0.50 0.16 0.65

0.20 Infomap 1.00 0.00 0.10
Louvain 0.52 0.19 0.65

0.24 Infomap 1.00 0.00 0.05
Louvain 0.49 0.22 0.74

Undirected Network of Users by Similarity of News Views (Salton’s Index)

0.11 Infomap 1.00 0.00 0.17
Louvain 0.49 0.17 0.66

0.12 Infomap 1.00 0.00 0.13
Louvain 0.52 0.20 0.66

0.14 Infomap 1.00 0.00 0.08
Louvain 0.49 0.23 0.73
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Table B.1: Investigated hyperparameters and fixed parameters of the RS algorithms ITEM-KNN, BPR, ALS, SLIM, VAE, and
ADV-VAE. The table shows for each model the explored values of the hyperparameters, the best values found in a grid search,
and the fixed parameters, along with descriptions of the parameters. The best hyperparameter values are determined based
on the best mean recommendation evaluation scores across all validation sets and when for the protected user attribute the
group is used to which a user is assigned based on the detected user communities in the undirected Network of Users Who
Vote on Postings, whose edges are filtered with an edge weight threshold of four.

Model Type Parameter Explored Values Best
Value Description

ITEM-KNN Search k {5, 10, 15, 20, 25,
50, 75, 100}

5 Number of neighbours to include when calculating the item-
item similarity matrix

BPR Search factors {50, 100, 250, 500} 250 Dimensionality of latent user and item factors to compute
iterations {100, 500, 1000} 500 Number of training epochs to use when fitting the data
learning_rate {1e-3, 1e-4} 1e-3 Learning rate to apply for SGD updates during training
regularization {1e-4, 1e-5} 1e-5 Regularization factor to use

ALS Search alpha {1, 2, 4, 6} 2 Weight to give to positive examples
factors {100, 125, 150} 125 Dimensionality of latent user and item factors to compute
iterations {15, 50, 100} 100 Number of ALS iterations to use when fitting data
regularization {1e-2, 1e-3} 1e-3 Regularization factor to use

SLIM Fixed max_iter 50 — Maximum number of elastic net iterations to perform

Search alpha {2e-1, 1e-1, 5e-2,
1e-2, 5e-3, 1e-3,
5e-4, 1e-4}

1e-2 Controls the overall regularization strength in elastic net

l1_ratio {2e-1, 1.5e-1, 1e-1,
5e-2, 2e-2}

5e-2 Elastic net mixing parameter which controls the balance
between ℓ1 and ℓ2 regularization

VAE Fixed beta_cap 1 — Maximum value of beta in beta annealing process
beta_patience 5 — Number of steps without improvement in the validation

score, after which beta annealing should be stopped
latent_dropout_rate 0 — Dropout to apply on the latent space (before the decoder)
n_epochs 150 — Number of training epochs
normalize_gradients false — Whether to clip the gradients of the model’s parameters
normalize_inputs true — Whether the input to the encoder should be normalized
opt_learning_rate 5e-4 — Adam learning rate for optimizing VAE model parameters
opt_weight_decay 1e-4 — Adam weight decay (ℓ2 regularization) for optimizing VAE

model parameters

Continued on the next page
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Table B.1: Continued from the previous page

Model Type Parameter Explored Values Best
Value Description

Search beta_steps {20, 40, 60} 20 Maximum number of beta update steps in beta annealing
input_dropout_rate {1e-1, 5e-1} 1e-1 Dropout to apply on the input (before encoder)
p_dims {[200], [500], [800],

[1000], [200, 1000]}
[1000] Defines the linear layer structure of the decoder network.

The first element in the list is the dimensionality of the
latent space. The decoder’s output dimensionality (i.e., the
number of items) is automatically appended to the list as
the last element. The linear layer structure of the encoder
is the reverse of that of the decoder.

ADV-VAE Fixed adv_earlystop true — Whether to perform early stopping on the balanced accuracy
of the adversarial network in predicting the actual protected
attribute of users

adv_earlystop_min_epochs 50 — Minimum number of epochs before early stopping on the
adversarial balanced accuracy

adv_in_use true — Whether adversarial training should be performed
adv_latent_dropout 1e-1 — Dropout to apply before the adversarial network
adv_loss_weight 1 — Scaling factor for the adversarial loss when added to the

objective loss of the VAE
adv_opt_learning_rate 1e-4 — Adam learning rate for optimizing adversarial network model

parameters
adv_opt_weight_decay 1e-4 — Adam weight decay (ℓ2 penalty) for optimizing adversarial

network model parameters
adv_warmup true — Whether to train the VAE and the adversarial network

separately for a certain number of epochs before training
them together

adv_warmup_n_epochs 15 — Number of epochs to train the VAE and the adversarial
network separately before training them together

beta_cap 1 — Maximum value of beta in beta annealing process
beta_patience 5 — Number of steps without improvement in the validation

score, after which beta annealing should be stopped

Continued on the next page
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Table B.1: Continued from the previous page

Model Type Parameter Explored Values Best
Value Description

beta_steps 20 — Maximum number of beta update steps in beta annealing
input_dropout_rate 1e-1 — Dropout to apply on the input (before encoder)
latent_dropout_rate 0 — Dropout to apply on the latent space (before the decoder)
n_epochs 150 — Number of training epochs
normalize_gradients false — Whether to clip the gradients of the model’s parameters
normalize_inputs true — Whether the input to the encoder should be normalized
opt_learning_rate 5e-4 — Adam learning rate for optimizing VAE model parameters
opt_weight_decay 1e-4 — Adam weight decay (ℓ2 regularization) for optimizing VAE

model parameters
p_dims [1000] — Defines the linear layer structure of the decoder network.

The first element in the list is the dimensionality of the
latent space. The decoder’s output dimensionality (i.e., the
number of items) is automatically appended to the list as
the last element. The linear layer structure of the encoder
is the reverse of that of the decoder.

Search adv_dims {[ ], [10]} [ ] Defines the linear layer structure of an adversarial network.
The adversarial network’s output dimensionality (i.e., the
number of user groups) is automatically appended to the
list as the last element.

adv_grad_scaling {100, 200, 400, 600,
800}

800 The gradient reversal scaling factor is used in the gradient
reversal layer between the latent space and the adversarial
network. It negatively scales the gradients by this factor
during the backward pass when optimizing the model. This
factor controls the removal of sensitive information about
the protected attribute of users from the learned latent
representations.

adv_n_adv {1, 3} 1 Number of adversarial networks to train in parallel. The loss
and the balanced accuracy of the adversaries is averaged.
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Table B.2: Overall results of accuracy and beyond-accuracy metrics at level 5 for the RS
algorithms studied. The values show the mean evaluation scores for all users collectively,
averaged over five cross-validation test folds. Results are rounded to the fourth digit.

Model NDCG Precision Recall Coverage Diversity Novelty

RAND 0.0083 0.0085 0.0003 0.5381 0.9625 0.9612
POP 0.0881 0.0875 0.0034 0.0015 0.9372 0.7102
ITEM-KNN 0.1711 0.1654 0.0078 0.0183 0.8640 0.7433
BPR 0.2076 0.1972 0.0096 0.3593 0.7513 0.9007
ALS 0.3150 0.3028 0.0141 0.1057 0.7487 0.8119
SLIM 0.3400 0.3250 0.0151 0.1246 0.7390 0.8304
VAE 0.3157 0.3036 0.0144 0.1749 0.6854 0.8259
ADV-VAE 0.3019 0.2903 0.0136 0.1854 0.7018 0.8277

Table B.3: Overall results of accuracy and beyond-accuracy metrics at level 20 for the RS
algorithms studied. The values show the mean evaluation scores for all users collectively,
averaged over five cross-validation test folds. Results are rounded to the fourth digit.

Model NDCG Precision Recall Coverage Diversity Novelty

RAND 0.0083 0.0083 0.0012 0.9545 0.9254 0.9612
POP 0.0836 0.0816 0.0128 0.0041 0.9019 0.7196
ITEM-KNN 0.1533 0.1455 0.0261 0.0600 0.8388 0.7615
BPR 0.1661 0.1494 0.0282 0.7261 0.7193 0.9146
ALS 0.2597 0.2376 0.0421 0.1985 0.7359 0.8234
SLIM 0.2777 0.2524 0.0447 0.2504 0.7295 0.8370
VAE 0.2592 0.2369 0.0423 0.3353 0.6905 0.8281
ADV-VAE 0.2489 0.2277 0.0405 0.3597 0.7063 0.8290

Table B.4: Overall results of accuracy and beyond-accuracy metrics at level 50 for the RS
algorithms studied. The values show the mean evaluation scores for all users collectively,
averaged over five cross-validation test folds. Results are rounded to the fourth digit.

Model NDCG Precision Recall Coverage Diversity Novelty

RAND 0.0083 0.0082 0.0029 0.9995 0.8952 0.9613
POP 0.0650 0.0550 0.0240 0.0092 0.8385 0.7644
ITEM-KNN 0.1403 0.1273 0.0548 0.1298 0.7942 0.7819
BPR 0.1411 0.1196 0.0551 0.9200 0.6809 0.9240
ALS 0.2218 0.1917 0.0826 0.2932 0.7102 0.8336
SLIM 0.2344 0.2008 0.0858 0.3748 0.7054 0.8436
VAE 0.2210 0.1906 0.0820 0.4733 0.6751 0.8312
ADV-VAE 0.2134 0.1849 0.0794 0.5088 0.6913 0.8314
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Table B.5: NDCG@5 results for the RS algorithms studied and detected user communities
in the undirected Network of Users Who Vote on Postings, whose edges are filtered with
an edge weight threshold of four. The values in the columns “All” and “Communi-
ties A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.0099 0.0097 / 0.0099 / 0.0103 0.0004 0.0004 0.4970 / 0.2882 / 0.2147
POP 0.1024 0.1153 / 0.0784 / 0.1045 0.0246 0.0190 0.5694 / 0.2204 / 0.2102
ITEM-KNN 0.1973 0.1786 / 0.1897 / 0.2537 0.0501 0.0141 0.4580 / 0.2769 / 0.2651
BPR 0.2371 0.2120 / 0.2329 / 0.3045 0.0617 0.0146 0.4524 / 0.2828 / 0.2647
ALS 0.3590 0.3310 / 0.3498 / 0.4407 0.0731 0.0092 0.4665 / 0.2805 / 0.2530
SLIM 0.3894 0.3560 / 0.3760 / 0.4900 0.0893 0.0116 0.4626 / 0.2780 / 0.2594
VAE 0.3580 0.3278 / 0.3540 / 0.4379 0.0733 0.0092 0.4633 / 0.2847 / 0.2521
ADV-VAE 0.3434 0.3189 / 0.3375 / 0.4116 0.0618 0.0072 0.4700 / 0.2830 / 0.2471

Table B.6: Precision@5 results for the RS algorithms studied and detected user communi-
ties in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.0103 0.0103 / 0.0100 / 0.0104 0.0003 0.0001 0.5087 / 0.2818 / 0.2095
POP 0.1009 0.1117 / 0.0794 / 0.1042 0.0215 0.0151 0.5603 / 0.2267 / 0.2130
ITEM-KNN 0.1912 0.1753 / 0.1768 / 0.2504 0.0501 0.0158 0.4638 / 0.2663 / 0.2699
BPR 0.2248 0.2007 / 0.2207 / 0.2897 0.0594 0.0150 0.4516 / 0.2827 / 0.2656
ALS 0.3451 0.3186 / 0.3365 / 0.4220 0.0689 0.0088 0.4672 / 0.2808 / 0.2520
SLIM 0.3729 0.3420 / 0.3574 / 0.4704 0.0855 0.0117 0.4641 / 0.2760 / 0.2600
VAE 0.3444 0.3162 / 0.3385 / 0.4221 0.0706 0.0092 0.4645 / 0.2829 / 0.2526
ADV-VAE 0.3303 0.3086 / 0.3199 / 0.3982 0.0597 0.0074 0.4727 / 0.2789 / 0.2484
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Table B.7: Recall@5 results for the RS algorithms studied and detected user communities
in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.0003 0.0003 / 0.0003 / 0.0004 0.0000 0.0004 0.5066 / 0.2792 / 0.2142
POP 0.0034 0.0038 / 0.0028 / 0.0033 0.0007 0.0116 0.5633 / 0.2381 / 0.1986
ITEM-KNN 0.0076 0.0069 / 0.0073 / 0.0097 0.0018 0.0129 0.4616 / 0.2757 / 0.2627
BPR 0.0094 0.0086 / 0.0094 / 0.0113 0.0018 0.0084 0.4627 / 0.2888 / 0.2485
ALS 0.0137 0.0127 / 0.0139 / 0.0157 0.0020 0.0049 0.4700 / 0.2936 / 0.2364
SLIM 0.0147 0.0134 / 0.0149 / 0.0178 0.0029 0.0088 0.4601 / 0.2914 / 0.2485
VAE 0.0138 0.0128 / 0.0143 / 0.0160 0.0021 0.0057 0.4660 / 0.2964 / 0.2376
ADV-VAE 0.0131 0.0123 / 0.0132 / 0.0148 0.0017 0.0037 0.4763 / 0.2902 / 0.2336

Table B.8: Coverage@5 results for the RS algorithms studied and detected user commu-
nities in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.3783 0.2141 / 0.1279 / 0.0932 0.0806 0.0799 0.6590 / 0.2241 / 0.1169
POP 0.0015 0.0014 / 0.0012 / 0.0012 0.0001 0.0030 0.5382 / 0.2714 / 0.1904
ITEM-KNN 0.0137 0.0087 / 0.0076 / 0.0077 0.0008 0.0033 0.5396 / 0.2666 / 0.1939
BPR 0.2710 0.1651 / 0.1034 / 0.0735 0.0611 0.0729 0.6503 / 0.2318 / 0.1179
ALS 0.0921 0.0630 / 0.0520 / 0.0413 0.0145 0.0188 0.5759 / 0.2702 / 0.1538
SLIM 0.0994 0.0669 / 0.0541 / 0.0398 0.0181 0.0274 0.5875 / 0.2701 / 0.1424
VAE 0.1439 0.0883 / 0.0644 / 0.0504 0.0253 0.0353 0.6069 / 0.2520 / 0.1411
ADV-VAE 0.1512 0.0924 / 0.0678 / 0.0556 0.0245 0.0302 0.6014 / 0.2511 / 0.1475
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Table B.9: Diversity@5 results for the RS algorithms studied and detected user communi-
ties in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.9624 0.9622 / 0.9620 / 0.9636 0.0011 0.0000 0.5058 / 0.2878 / 0.2064
POP 0.9361 0.9360 / 0.9339 / 0.9395 0.0037 0.0000 0.5059 / 0.2873 / 0.2069
ITEM-KNN 0.8759 0.8787 / 0.8932 / 0.8451 0.0320 0.0003 0.5075 / 0.2936 / 0.1989
BPR 0.7723 0.8179 / 0.8279 / 0.5828 0.1634 0.0130 0.5358 / 0.3086 / 0.1555
ALS 0.7632 0.8024 / 0.8131 / 0.5974 0.1438 0.0100 0.5319 / 0.3068 / 0.1613
SLIM 0.7458 0.8045 / 0.8167 / 0.5027 0.2093 0.0243 0.5457 / 0.3153 / 0.1389
VAE 0.6894 0.7394 / 0.7637 / 0.4630 0.2005 0.0248 0.5426 / 0.3190 / 0.1384
ADV-VAE 0.7034 0.7449 / 0.7602 / 0.5220 0.1588 0.0145 0.5358 / 0.3112 / 0.1530

Table B.10: Novelty@5 results for the RS algorithms studied and detected user communi-
ties in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.9614 0.9609 / 0.9620 / 0.9618 0.0007 0.0000 0.5057 / 0.2881 / 0.2062
POP 0.7104 0.7106 / 0.7100 / 0.7104 0.0004 0.0000 0.5061 / 0.2878 / 0.2061
ITEM-KNN 0.7434 0.7339 / 0.7384 / 0.7737 0.0265 0.0003 0.4995 / 0.2860 / 0.2145
BPR 0.9005 0.8950 / 0.9035 / 0.9100 0.0099 0.0000 0.5028 / 0.2889 / 0.2083
ALS 0.8140 0.8032 / 0.8173 / 0.8361 0.0219 0.0002 0.4992 / 0.2891 / 0.2117
SLIM 0.8284 0.8144 / 0.8318 / 0.8579 0.0290 0.0003 0.4974 / 0.2891 / 0.2134
VAE 0.8323 0.8207 / 0.8353 / 0.8566 0.0239 0.0002 0.4989 / 0.2890 / 0.2121
ADV-VAE 0.8342 0.8244 / 0.8346 / 0.8573 0.0219 0.0002 0.5001 / 0.2881 / 0.2118
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Table B.11: NDCG@20 results for the RS algorithms studied and detected user commu-
nities in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.0098 0.0098 / 0.0097 / 0.0100 0.0002 0.0001 0.5053 / 0.2838 / 0.2109
POP 0.0970 0.1067 / 0.0803 / 0.0964 0.0176 0.0104 0.5567 / 0.2385 / 0.2048
ITEM-KNN 0.1766 0.1646 / 0.1622 / 0.2260 0.0426 0.0131 0.4718 / 0.2644 / 0.2638
BPR 0.1893 0.1692 / 0.1843 / 0.2457 0.0510 0.0156 0.4522 / 0.2803 / 0.2675
ALS 0.2973 0.2758 / 0.2865 / 0.3652 0.0596 0.0090 0.4694 / 0.2774 / 0.2532
SLIM 0.3193 0.2935 / 0.3042 / 0.4036 0.0734 0.0118 0.4651 / 0.2744 / 0.2605
VAE 0.2964 0.2752 / 0.2865 / 0.3621 0.0579 0.0086 0.4699 / 0.2783 / 0.2518
ADV-VAE 0.2846 0.2671 / 0.2746 / 0.3416 0.0496 0.0070 0.4748 / 0.2778 / 0.2474

Table B.12: Precision@20 results for the RS algorithms studied and detected user
communities in the undirected Network of Users Who Vote on Postings, whose edges
are filtered with an edge weight threshold of four. The values in the columns “All”
and “Communities A / B / C” represent the mean evaluation scores of all users in
the communities collectively and for each user community individually, averaged over
five cross-validation test folds. The RecGap quantifies the mean disparity between the
average evaluation scores of the user communities. The Compounding Factor shows the
effect of the model in amplifying data imbalances. The metric scores distribution over
user communities is shown in the rightmost column. The population distribution of user
communities is B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum
size of 750 users are considered. The RecGap and the Compounding Factor are calculated
using the combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.0099 0.0099 / 0.0097 / 0.0100 0.0002 0.0001 0.5088 / 0.2829 / 0.2083
POP 0.0944 0.1030 / 0.0802 / 0.0933 0.0152 0.0081 0.5518 / 0.2445 / 0.2037
ITEM-KNN 0.1679 0.1587 / 0.1503 / 0.2152 0.0433 0.0136 0.4781 / 0.2577 / 0.2642
BPR 0.1703 0.1520 / 0.1651 / 0.2224 0.0469 0.0163 0.4517 / 0.2792 / 0.2692
ALS 0.2729 0.2540 / 0.2615 / 0.3353 0.0542 0.0090 0.4709 / 0.2759 / 0.2532
SLIM 0.2914 0.2689 / 0.2752 / 0.3692 0.0668 0.0120 0.4669 / 0.2720 / 0.2611
VAE 0.2722 0.2544 / 0.2600 / 0.3331 0.0525 0.0086 0.4728 / 0.2750 / 0.2522
ADV-VAE 0.2614 0.2468 / 0.2491 / 0.3145 0.0451 0.0071 0.4777 / 0.2743 / 0.2480
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Table B.13: Recall@20 results for the RS algorithms studied and detected user communi-
ties in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.0013 0.0013 / 0.0012 / 0.0012 0.0001 0.0011 0.5245 / 0.2807 / 0.1947
POP 0.0127 0.0140 / 0.0111 / 0.0117 0.0019 0.0080 0.5575 / 0.2520 / 0.1904
ITEM-KNN 0.0254 0.0240 / 0.0240 / 0.0309 0.0046 0.0080 0.4779 / 0.2715 / 0.2507
BPR 0.0276 0.0250 / 0.0279 / 0.0337 0.0058 0.0099 0.4577 / 0.2908 / 0.2515
ALS 0.0414 0.0388 / 0.0413 / 0.0477 0.0059 0.0046 0.4747 / 0.2874 / 0.2378
SLIM 0.0441 0.0408 / 0.0435 / 0.0532 0.0082 0.0077 0.4679 / 0.2839 / 0.2482
VAE 0.0413 0.0388 / 0.0415 / 0.0472 0.0057 0.0043 0.4749 / 0.2893 / 0.2358
ADV-VAE 0.0397 0.0377 / 0.0396 / 0.0446 0.0046 0.0030 0.4811 / 0.2871 / 0.2318

Table B.14: Coverage@20 results for the RS algorithms studied and detected user
communities in the undirected Network of Users Who Vote on Postings, whose edges
are filtered with an edge weight threshold of four. The values in the columns “All”
and “Communities A / B / C” represent the mean evaluation scores of all users in
the communities collectively and for each user community individually, averaged over
five cross-validation test folds. The RecGap quantifies the mean disparity between the
average evaluation scores of the user communities. The Compounding Factor shows the
effect of the model in amplifying data imbalances. The metric scores distribution over
user communities is shown in the rightmost column. The population distribution of user
communities is B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum
size of 750 users are considered. The RecGap and the Compounding Factor are calculated
using the combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.8505 0.6178 / 0.4213 / 0.3240 0.1959 0.0477 0.6243 / 0.2423 / 0.1334
POP 0.0041 0.0040 / 0.0033 / 0.0035 0.0005 0.0058 0.5499 / 0.2572 / 0.1929
ITEM-KNN 0.0456 0.0309 / 0.0287 / 0.0252 0.0038 0.0043 0.5372 / 0.2842 / 0.1786
BPR 0.6187 0.4403 / 0.3083 / 0.2157 0.1497 0.0536 0.6258 / 0.2493 / 0.1249
ALS 0.1796 0.1331 / 0.1158 / 0.0966 0.0243 0.0108 0.5585 / 0.2764 / 0.1651
SLIM 0.2084 0.1509 / 0.1273 / 0.0993 0.0344 0.0180 0.5720 / 0.2746 / 0.1534
VAE 0.2864 0.1892 / 0.1499 / 0.1208 0.0456 0.0221 0.5846 / 0.2634 / 0.1520
ADV-VAE 0.3079 0.2022 / 0.1605 / 0.1349 0.0449 0.0187 0.5802 / 0.2621 / 0.1577
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Table B.15: Diversity@20 results for the RS algorithms studied and detected user
communities in the undirected Network of Users Who Vote on Postings, whose edges
are filtered with an edge weight threshold of four. The values in the columns “All”
and “Communities A / B / C” represent the mean evaluation scores of all users in
the communities collectively and for each user community individually, averaged over
five cross-validation test folds. The RecGap quantifies the mean disparity between the
average evaluation scores of the user communities. The Compounding Factor shows the
effect of the model in amplifying data imbalances. The metric scores distribution over
user communities is shown in the rightmost column. The population distribution of user
communities is B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum
size of 750 users are considered. The RecGap and the Compounding Factor are calculated
using the combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.9255 0.9255 / 0.9254 / 0.9258 0.0003 0.0000 0.5059 / 0.2879 / 0.2062
POP 0.8956 0.8942 / 0.8971 / 0.8969 0.0019 0.0000 0.5052 / 0.2884 / 0.2064
ITEM-KNN 0.8437 0.8483 / 0.8602 / 0.8094 0.0338 0.0003 0.5087 / 0.2936 / 0.1977
BPR 0.7368 0.7771 / 0.7878 / 0.5665 0.1475 0.0114 0.5336 / 0.3079 / 0.1585
ALS 0.7448 0.7751 / 0.7910 / 0.6060 0.1233 0.0073 0.5265 / 0.3058 / 0.1677
SLIM 0.7310 0.7765 / 0.7908 / 0.5355 0.1702 0.0157 0.5375 / 0.3115 / 0.1510
VAE 0.6932 0.7328 / 0.7548 / 0.5100 0.1632 0.0154 0.5348 / 0.3135 / 0.1517
ADV-VAE 0.7075 0.7376 / 0.7545 / 0.5678 0.1245 0.0082 0.5275 / 0.3071 / 0.1654

Table B.16: Novelty@20 results for the RS algorithms studied and detected user commu-
nities in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.9613 0.9611 / 0.9616 / 0.9615 0.0003 0.0000 0.5058 / 0.2880 / 0.2061
POP 0.7202 0.7206 / 0.7195 / 0.7200 0.0008 0.0000 0.5063 / 0.2877 / 0.2061
ITEM-KNN 0.7613 0.7511 / 0.7579 / 0.7912 0.0267 0.0003 0.4992 / 0.2866 / 0.2142
BPR 0.9143 0.9098 / 0.9169 / 0.9216 0.0079 0.0000 0.5035 / 0.2888 / 0.2078
ALS 0.8254 0.8146 / 0.8282 / 0.8479 0.0222 0.0002 0.4993 / 0.2889 / 0.2117
SLIM 0.8353 0.8214 / 0.8381 / 0.8655 0.0294 0.0003 0.4975 / 0.2889 / 0.2136
VAE 0.8340 0.8226 / 0.8366 / 0.8584 0.0239 0.0002 0.4990 / 0.2888 / 0.2121
ADV-VAE 0.8349 0.8259 / 0.8350 / 0.8571 0.0208 0.0001 0.5005 / 0.2880 / 0.2116
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Table B.17: NDCG@50 results for the RS algorithms studied and detected user commu-
nities in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.0098 0.0098 / 0.0097 / 0.0098 0.0001 0.0000 0.5063 / 0.2868 / 0.2069
POP 0.0733 0.0791 / 0.0640 / 0.0723 0.0101 0.0059 0.5456 / 0.2512 / 0.2032
ITEM-KNN 0.1603 0.1506 / 0.1478 / 0.2017 0.0360 0.0112 0.4753 / 0.2654 / 0.2593
BPR 0.1594 0.1430 / 0.1553 / 0.2055 0.0417 0.0147 0.4538 / 0.2805 / 0.2657
ALS 0.2523 0.2357 / 0.2420 / 0.3074 0.0477 0.0082 0.4727 / 0.2762 / 0.2511
SLIM 0.2673 0.2476 / 0.2537 / 0.3348 0.0581 0.0108 0.4686 / 0.2733 / 0.2581
VAE 0.2505 0.2345 / 0.2415 / 0.3023 0.0452 0.0074 0.4737 / 0.2776 / 0.2487
ADV-VAE 0.2418 0.2287 / 0.2319 / 0.2877 0.0394 0.0062 0.4785 / 0.2762 / 0.2453

Table B.18: Precision@50 results for the RS algorithms studied and detected user
communities in the undirected Network of Users Who Vote on Postings, whose edges
are filtered with an edge weight threshold of four. The values in the columns “All”
and “Communities A / B / C” represent the mean evaluation scores of all users in
the communities collectively and for each user community individually, averaged over
five cross-validation test folds. The RecGap quantifies the mean disparity between the
average evaluation scores of the user communities. The Compounding Factor shows the
effect of the model in amplifying data imbalances. The metric scores distribution over
user communities is shown in the rightmost column. The population distribution of user
communities is B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum
size of 750 users are considered. The RecGap and the Compounding Factor are calculated
using the combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.0097 0.0097 / 0.0097 / 0.0096 0.0000 0.0000 0.5064 / 0.2883 / 0.2054
POP 0.0620 0.0659 / 0.0559 / 0.0610 0.0067 0.0036 0.5379 / 0.2595 / 0.2026
ITEM-KNN 0.1474 0.1399 / 0.1335 / 0.1853 0.0345 0.0114 0.4802 / 0.2607 / 0.2590
BPR 0.1369 0.1228 / 0.1323 / 0.1781 0.0368 0.0156 0.4538 / 0.2782 / 0.2680
ALS 0.2214 0.2079 / 0.2099 / 0.2707 0.0418 0.0084 0.4751 / 0.2730 / 0.2520
SLIM 0.2324 0.2166 / 0.2176 / 0.2917 0.0500 0.0109 0.4717 / 0.2696 / 0.2587
VAE 0.2195 0.2071 / 0.2085 / 0.2653 0.0388 0.0074 0.4774 / 0.2735 / 0.2491
ADV-VAE 0.2125 0.2024 / 0.2007 / 0.2538 0.0354 0.0065 0.4819 / 0.2720 / 0.2461
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Table B.19: Recall@50 results for the RS algorithms studied and detected user communi-
ties in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.0030 0.0031 / 0.0030 / 0.0028 0.0002 0.0015 0.5250 / 0.2853 / 0.1897
POP 0.0232 0.0249 / 0.0219 / 0.0209 0.0027 0.0042 0.5430 / 0.2715 / 0.1855
ITEM-KNN 0.0541 0.0516 / 0.0513 / 0.0640 0.0085 0.0059 0.4831 / 0.2729 / 0.2441
BPR 0.0541 0.0497 / 0.0545 / 0.0646 0.0100 0.0076 0.4643 / 0.2897 / 0.2460
ALS 0.0817 0.0776 / 0.0810 / 0.0927 0.0101 0.0034 0.4807 / 0.2853 / 0.2339
SLIM 0.0851 0.0800 / 0.0832 / 0.1004 0.0136 0.0058 0.4753 / 0.2815 / 0.2432
VAE 0.0804 0.0765 / 0.0802 / 0.0904 0.0093 0.0030 0.4813 / 0.2870 / 0.2317
ADV-VAE 0.0780 0.0750 / 0.0770 / 0.0869 0.0080 0.0024 0.4862 / 0.2841 / 0.2297

Table B.20: Coverage@50 results for the RS algorithms studied and detected user
communities in the undirected Network of Users Who Vote on Postings, whose edges
are filtered with an edge weight threshold of four. The values in the columns “All”
and “Communities A / B / C” represent the mean evaluation scores of all users in
the communities collectively and for each user community individually, averaged over
five cross-validation test folds. The RecGap quantifies the mean disparity between the
average evaluation scores of the user communities. The Compounding Factor shows the
effect of the model in amplifying data imbalances. The metric scores distribution over
user communities is shown in the rightmost column. The population distribution of user
communities is B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum
size of 750 users are considered. The RecGap and the Compounding Factor are calculated
using the combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.9902 0.9018 / 0.7317 / 0.6107 0.1941 0.0169 0.5755 / 0.2657 / 0.1588
POP 0.0090 0.0087 / 0.0083 / 0.0081 0.0004 0.0006 0.5202 / 0.2812 / 0.1986
ITEM-KNN 0.1024 0.0742 / 0.0678 / 0.0567 0.0116 0.0074 0.5459 / 0.2840 / 0.1701
BPR 0.8576 0.6978 / 0.5432 / 0.3947 0.2020 0.0334 0.5975 / 0.2648 / 0.1377
ALS 0.2671 0.2083 / 0.1875 / 0.1599 0.0322 0.0073 0.5479 / 0.2807 / 0.1714
SLIM 0.3185 0.2413 / 0.2137 / 0.1699 0.0476 0.0125 0.5585 / 0.2814 / 0.1601
VAE 0.4162 0.2924 / 0.2419 / 0.1960 0.0643 0.0171 0.5734 / 0.2700 / 0.1566
ADV-VAE 0.4488 0.3131 / 0.2600 / 0.2183 0.0632 0.0143 0.5692 / 0.2691 / 0.1617

105



B. News Recommendation

Table B.21: Diversity@50 results for the RS algorithms studied and detected user
communities in the undirected Network of Users Who Vote on Postings, whose edges
are filtered with an edge weight threshold of four. The values in the columns “All”
and “Communities A / B / C” represent the mean evaluation scores of all users in
the communities collectively and for each user community individually, averaged over
five cross-validation test folds. The RecGap quantifies the mean disparity between the
average evaluation scores of the user communities. The Compounding Factor shows the
effect of the model in amplifying data imbalances. The metric scores distribution over
user communities is shown in the rightmost column. The population distribution of user
communities is B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum
size of 750 users are considered. The RecGap and the Compounding Factor are calculated
using the combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.8955 0.8946 / 0.8966 / 0.8962 0.0013 0.0000 0.5054 / 0.2883 / 0.2063
POP 0.8409 0.8443 / 0.8364 / 0.8389 0.0053 0.0000 0.5080 / 0.2864 / 0.2056
ITEM-KNN 0.7988 0.8087 / 0.8162 / 0.7503 0.0439 0.0007 0.5122 / 0.2942 / 0.1936
BPR 0.6968 0.7368 / 0.7424 / 0.5348 0.1384 0.0116 0.5350 / 0.3068 / 0.1582
ALS 0.7177 0.7451 / 0.7589 / 0.5928 0.1107 0.0063 0.5253 / 0.3045 / 0.1702
SLIM 0.7074 0.7480 / 0.7604 / 0.5337 0.1511 0.0130 0.5350 / 0.3095 / 0.1555
VAE 0.6765 0.7109 / 0.7311 / 0.5160 0.1434 0.0122 0.5316 / 0.3112 / 0.1572
ADV-VAE 0.6908 0.7159 / 0.7295 / 0.5753 0.1028 0.0058 0.5243 / 0.3041 / 0.1717

Table B.22: Novelty@50 results for the RS algorithms studied and detected user commu-
nities in the undirected Network of Users Who Vote on Postings, whose edges are filtered
with an edge weight threshold of four. The values in the columns “All” and “Commu-
nities A / B / C” represent the mean evaluation scores of all users in the communities
collectively and for each user community individually, averaged over five cross-validation
test folds. The RecGap quantifies the mean disparity between the average evaluation
scores of the user communities. The Compounding Factor shows the effect of the model
in amplifying data imbalances. The metric scores distribution over user communities
is shown in the rightmost column. The population distribution of user communities is
B = [0.5059, 0.2879, 0.2061]. Only users in communities with a minimum size of 750
users are considered. The RecGap and the Compounding Factor are calculated using the
combined metric scores of all test folds. Values are rounded to the fourth digit.

Model All Communities
A / B / C RecGap Comp.

Factor
Score Distribution

Communities

RAND 0.9615 0.9614 / 0.9615 / 0.9615 0.0001 0.0000 0.5059 / 0.2880 / 0.2061
POP 0.7691 0.7720 / 0.7646 / 0.7683 0.0049 0.0000 0.5078 / 0.2863 / 0.2059
ITEM-KNN 0.7816 0.7719 / 0.7787 / 0.8093 0.0250 0.0002 0.4997 / 0.2869 / 0.2134
BPR 0.9236 0.9198 / 0.9257 / 0.9299 0.0067 0.0000 0.5039 / 0.2886 / 0.2075
ALS 0.8354 0.8254 / 0.8377 / 0.8568 0.0210 0.0002 0.4999 / 0.2887 / 0.2114
SLIM 0.8419 0.8288 / 0.8445 / 0.8706 0.0279 0.0003 0.4980 / 0.2888 / 0.2131
VAE 0.8366 0.8259 / 0.8387 / 0.8601 0.0228 0.0002 0.4995 / 0.2887 / 0.2119
ADV-VAE 0.8369 0.8288 / 0.8365 / 0.8572 0.0189 0.0001 0.5011 / 0.2878 / 0.2111
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