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Figure 4: HT-29 cluster dynamics and morphology over time.
(A) CAN-based detected and numbered cell clusters (red contours, ΔSV at 
300 kHz), 24 h (A), 48 h (B), and 72 h (C) after seeding. (D) Tracking a 
constant-size (cluster #70) and a growing cluster (cluster #105) over 72 h 
regarding the cell-covered area (µm²) and CAN (SV in µV²/Hz).

Figure 1: Cancer cell–CMOS microelectrode array (CMOS MEA) interface.
(A) Schematic illustration of cancer cells on CMOS MEA.
(B) Equivalent electronic circuit of the cell-CMOS MEA interface. RJ contributes significantly to 
the recorded extracellular voltage VJ regarding cell adhesion noise (CAN) [2].
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CMOS-based microelectrode arrays (CMOS MEAs) are used in biotechnological
applications to record neural activity with high spatial (~15 µm) and high temporal
resolution (~20 kHz bandwidth) using thousands of densely packed sensor sites
[1]. A new application of CMOS MEAs is the label-free and noninvasive detection
of adherent cells by studying the voltage noise from the resistive adhesion cleft [2-
3]. The voltage noise is described as cell adhesion noise (CAN) and analyzed in
terms of spectral power density (SV) [4].
Here, we aim to assess cell proliferation, morphology, and motility of colorectal
cancer (CRC) cells in a 2D culture. Therefore, we designed a machine-learning (ML) 
tool to distinguish between non-cancerous fibroblasts and CRC cells. Next, we 
correlated the adhesive properties of cancer cells on the CMOS MEA and their 
morphological and motility features by tracking cells over 72 h of cultivation time.
The CAN-based cell detection is related to brightfield microscopy images. The
extracted features offer a potent tool to infer kinetic and morphological 
information about cancer cells.

CMOS MEA: 98304 hexagonal recording sites
sensor size: 5.6 µm x 6.5 µm, sensitive area: 1.6 mm x 2.5 mm

HT-29 colorectal cancer cell line
Human dermal fibroblasts

Cell proliferation, morphology, and motility

Figure 2: Non-invasive detection of cell 
attachment using cell adhesion noise 
spectroscopy (SV assessed at 300 kHz).
(left) Schematic CMOS microelectrode array 
(MEA) with high-density recording sites.
(right) Overlay of electrically identified HT-29 
cells (red contours) with brightfield microscopic 
image of the CMOS MEA with adherent HT-29 
cells (dark grey/black: cell clusters, light grey: 
sensor sites in the background). Inset: 50x 
magnification of sensor sites on the MEA. [5]

METHODS

RESULTS

Adhesion noise spectroscopy constitutes a potent tool for the label-free and non-invasive cancer cell 
detection with high correlation between electrical and brightfield microscopy imaging. Machine-
learning tools benefit from the CMOS MEA’s high spatial resolution, which allows for cell type 
identification with high accuracy. Tracking cells and clusters over many days in culture allowed us to 
extract the covered area, the cell adhesion noise, or cell motility over time. Future work aims to study 
cancer cells’ behavior after chemotherapeutic and immunotherapeutic treatment.

CONCLUSIONS

Unsupervised cell detection and tracking
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Machine-learning-based cell-type identification

Machine Learning-based cell identification: Cell Tracking:

Figure 3: Deep neural network for cell type classification. 
(A) The deep neural network processes the electrical images with a 12-
layer machine learning model through successive filters, which come 
out increasingly purified to enable cell type classification. (B) Mean 
validation accuracy (black trace) with standard deviation (grey trace) of 
five cross-validated models on cell type classification shows  84 % 
correctly predicted cell types after 20 epochs (runs). (C) Correlation 
between cell-covered area and cell type-dependent right (orange dots 
with red contours) or wrong (grey dots) predictions shows no bias in cell 
type identification. [6]
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