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Kurzfassung

Mit dem wachsenden Bedarf an robusten Objekterkennungsalgorithmen in selbstfah-
renden Systemen ist es entscheidend, die vielfältigen Licht- und Wetterbedingungen zu
berücksichtigen, denen Fahrzeuge das ganze Jahr über ausgesetzt sind. Es ist unerläss-
lich, einem selbstfahrenden System einen zuverlässigen Objekterkennungsalgorithmus
bereitzustellen, der unter diesen unterschiedlichen Bedingungen arbeiten kann. Deep-
Learning-Methoden, insbesondere Convolutional Neural Networks (CNNs), haben sich
hierbei als effektiv erwiesen, um diesem Bedarf gerecht zu werden. Um ein CNN in
die Lage zu versetzen, diese unterschiedlichen Lichtverhältnisse zu bewältigen, ist eine
sorgfältige Auswahl des Trainingsdatensatzes erforderlich. Öffentlich zugängliche Da-
tensätze, welche für das Training von Deep-Learning-Algorithmen verwendet werden,
weisen jedoch oft eine Verzerrung zugunsten von Tageslichtszenarien auf. Das Ziel dieser
Masterarbeit ist es daher, effektive Strategien zur Auswahl und Zusammenführung von
Trainingsdaten aus öffentlich zugänglichen und selbst aufgenommenen Datensätzen zu
erforschen, um einem CNN die Erkennung von Objekten in nächtlichen Verkehrsszenen
zu ermöglichen. Zu diesem Zweck haben wir das bestehende CNN YOLOv3 neu trai-
niert, um die Auswirkungen verschiedener Kombinationen von Trainingsdatensätzen auf
die endgültigen Objekterkennungsergebnisse zu untersuchen. Unsere Ergebnisse zeigen,
dass eine geeignete Auswahl von Trainingsdaten, kombiniert mit selbst aufgenommenen
Nachtszenen, eine mittlere durchschnittliche Präzision (mean average precision, mAP)
von 63,5% erreichen kann, was eine Verbesserung von 16,7% im Vergleich zur Leistung
des ursprünglichen YOLOv3-Netzwerks darstellt.
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Abstract

As the demand for robust object detection algorithms in self-driving systems grows, it is
crucial to consider the diverse lighting and weather conditions that vehicles encounter
year-round. It is essential to provide a self-driving system with a reliable object detection
algorithm, capable of operating under these varying conditions. Deep learning method-
ologies, particularly Convolutional Neural Networks (CNNs), have proven effective in
meeting this need. To equip a CNN with the ability to handle these varying lighting
challenges, a careful selection of the training dataset is necessary. However, publicly
available traffic scene datasets used for training deep learning algorithms often have a
bias towards daylight scenarios and optimal visibility conditions. Therefore, the goal of
this master thesis is to explore effective strategies for selecting and merging training data
from publicly available and self-recorded datasets, to enable a CNN to detect objects in
night-time traffic scenes. To achieve this, we retrained the existing CNN YOLOv3, to
study the impact of different training dataset combinations on the final object detection
results. Our findings show that an appropriate selection of training data, combined with
self-recorded night scenes, can achieve mean average prevision (mAP) of 63.5%, which is
an improvement of 16.7%, compared to the performance of the original YOLOv3 network.
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CHAPTER 1
Introduction

The demand for robust object detection algorithms has been continuously increasing as
autonomous driving technology seeks to evolve from advanced driver assistance systems
(ADAS) to autonomous, self-driving systems. To this end, cars must be able to operate un-
der varying environmental influences throughout the year, at any time of day. Therefore,
it is vital to provide the cars’ self-driving systems with robust object detection algorithms
that can operate under these varying conditions. While Convolutional Neural Networks
(CNNs) are able to fulfil this need for robust object detection, their detection success
is highly dependent on the dataset used for training. When using publicly available
datasets, one should be aware that these datasets have a bias towards day-time scenes
with ideal driving environments, therefore excluding many use cases.

To overcome this issue, this master thesis focuses on methods that allow a Convo-
lution Neural Network (CNN) to detect objects under varying environmental conditions,
focussing on night-scenes. This chapter will serve as an introduction by first giving
insight into the challenges one faces when implementing object detection algorithms for
varying lighting conditions in Sections 1.1 and 1.2. This is then followed in Section 1.3 by
explaining the methodology used for this master thesis, which includes literature research,
dataset selection and development of the software, followed by evaluation. Finally, Section
1.4 gives an overview of the subsequent chapters of this master thesis.

1.1 Motivation
The field of camera-based object detection during daytime has been extensively explored
and evaluated, as evidenced, for example, by the works of Miller et al. [SBM06], Zhaowei
et al. [CFFV16], and Sivaraman et al. [ST13]. However, a comprehensive survey con-
ducted by Almagambetov et al. [AVC15] has highlighted the need for more rigorous
investigation into vision-based techniques for object detection during night-time.
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1. Introduction

In light of this, the focus of this master thesis is to delve into the realm of object
detection in night-time traffic scenes. This was tackled by retraining a Convolutional
Neural Network (CNN) using a combination of publicly available datasets and self-
recorded data. As Ulmer et al. [UGL+18] have pointed out, publicly available datasets
that provide data for deep learning algorithms are typically skewed towards daylight
and optimal visibility conditions. This necessitates careful selection of datasets when
developing self-driving systems. The incorporation of night scenes into training datasets
for CNNs has led to improved object detection results, with notable contributions from
Sivaraman et al. [ST13] and Jensen et al. [JNM17]. To overcome the limited availability
of publicly accessible datasets featuring night scenes, it may be necessary to resort to
self-recorded data. The manual annotation of these images, however, can be a laborious
and time-consuming process, particularly due to the challenging and variable illumination
conditions. To keep the need for annotating self-recorded data to a minimum, this master
thesis explores the results of progressively incorporating simulated night-scenes from the
video game GTA 5 with existing and self-recorded datasets.

1.2 Problem Statement
Deep Learning (DL) techniques have emerged as one of the fundamental building blocks of
contemporary object detection networks, with Faster R-CNN [RHGS15] coming through
as one example. However, these algorithms encounter significant challenges when tasked
with detecting objects in driving scenes, due to issues such as variations in illumination
in RGB images or the degradation of image quality at high velocities. One potential
solution to the problem of illumination variations involves the use of diverse training
images, which could facilitate a smooth transition from day to night images, as described
by Wei et al. [WHZ+19].

Convolutional Neural Networks (CNNs) for object detection applications are typically
optimized for standard RGB cameras [KSH12]. To enable a neural network to handle
varying lighting conditions, it may be necessary to adapt the training data and retrain the
entire network. The training data can be generated through several means, including the
use of images created in a virtual environment (e.g.: video games), the explicit recording
and labelling of images, or the utilization of publicly available datasets. We composed a
training dataset by progressively incorporating simulated datasets from the video game
GTA5 into existing and self-recorded datasets. The results derived from the incremental
expansion of the training dataset across various test cycles will be discussed in detail in
this master thesis.

This master thesis was carried out in cooperation with emotion3D [e3d], within the
FFG-funded project CarVisionLight (CVL): Combined 3D-Vision and Adaptive Front-
lighting Systems for Safe Autonomous Driving [cvl]. The CVL project strived to generate
a general vision system for situational awareness and environmental understanding under
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1.3. Methodological Approach

shifting illumination conditions. The contribution of this master thesis consisted of pro-
viding a more in-depth understanding of meaningful strategies for selecting and merging
training data with existing datasets.

1.3 Methodological Approach
After a review of the background and related work, this master thesis will present the
datasets used for the training and evaluation cycles. Ultimately, the results derived
from the incremental expansion of the training dataset across various test cycles will be
presented and subjected to detailed analysis.

Background and Related Work

The first step in writing this master thesis was a literature review, which served to establish
a theoretical understanding of the fundamentals of object detection. To elucidate this
process, Section 2 will present an analysis of machine learning and object recognition
methods, with a focus on the YOLOv3 [RF18] network.

Dataset Selection and Generation

From the insights gained during the Literature Research, the datasets for training the
CNN were selected accordingly. Using only publicly available datasets introduced a bias
towards daylight scenarios with good visibility conditions. The challenge was to find
suitable combinations of existing and new datasets for training. The datasets used in
this master thesis are further discussed in Chapter 3.

The selected publicly available datasets include: VIPER [RHK17], Microsoft COCO:
Common Objects in Context [LMB+14], German Traffic Signs Recognition Database
[SSSI11], Berkeley DeepDrive [YXC+18] and CityScapes [COR+16]. They will be dis-
cussed in more detail in Section 3. The self-recorded sets include data recorded by project
partner ZKW Group GmbH and labelled by TU Wien under the CarVisionLight Project.
These labelled images were then segmented into training, evaluation, and test sets. These
topics will be discussed further in Section 4.4.5.

Algorithmic Development

After taking the insights gained from the previous analysis into account, the learning
algorithm was developed by utilizing TensorFlow v1.13 [ABC+16], Python, C++, and
YOLOv3 [RF18]. The technical details will be discussed in Section 4. The main focus of
this master thesis’ implementation lies in retraining the existing CNN YOLOv3 [RF18], to
enable it to detect objects in street-specific night scenes. This was achieved by successively
augmenting the training dataset, which resulted in fifteen distinct training and evaluation
cycles.

3



1. Introduction

1.4 Structure of the Work
This master thesis is structured into several chapters. Given that object detection via
Convolutional Neural Networks (CNNs) incorporates techniques from computer vision
and other computer science disciplines, a theoretical foundation is essential prior to
delving into the implementation. Therefore, Chapter 2 introduces the reader to neural
networks, the functionality of CNNs, and their historical development in relation to
object detection. This is then followed by a detailed examination of YOLOv3, the CNN
used for this master thesis, as well as an explanation of the evaluation methods. This
chapter culminates in a review of current object detection approaches in night scenes,
providing the reader with an explanation for the approaches selected for this master thesis.
Chapter 3 provides an in-depth explanation of the datasets used for training, testing,
and evaluating the CNN. The following Chapter 4 then describes the implementation
done for this master thesis. This consists of the design concept, a initial test run, the
training and evaluation pipeline, as well as how the data has to be adapted in order to be
usable. This discussion on implementation is succeeded by Chapter 5, which presents and
analyzes the results that were achieved for each training phase. This chapter also involves
a critical reflection of the work and obtained results. The final Chapter 6 contains the
conclusion of this master thesis.

4



CHAPTER 2
Background and Related Work

This chapter introduces machine learning, object recognition, Neural Networks (NNs),
and Convolutional Neural Networks (CNNs). It begins with a brief overview of various
object recognition techniques in Sections 2.1 and 2.2. Then, it outlines the classification
techniques used in this master thesis by introducing Neural Networks in Section 2.3 and
presenting CNNs in Section 2.4. Once the reader understands the basic functionalities
used for object detection - a topic discussed in Section 2.5 - the chapter examines the
CNN used in this thesis, YOLOv3 [RF18], in Section 2.6. Section 2.7 discusses the
evaluation method used to measure the accuracy of the object detector, Intersection
over Union (IoU). Finally, Section 2.8 reviews related works on object detection in night
scenes.

2.1 Machine Learning
Conventionally, computer programs are manually programmed to execute a specific task.
However, machine learning introduces a paradigm shift by substituting a portion of the
human input with a learning algorithm, as stated by Goodfellow et al. [GBC16]. The
surge in computational power coupled with the widespread adoption of machine learning
algorithms has led to an increased use of these techniques in the realm of computer vision
[GBC16]. As described by Bishop et al. [Bis06], supervised and unsupervised learning
should be distinguished when talking about different machine learning techniques:

Supervised learning refers to a type of learning algorithm that requires human interac-
tion before the program can proceed. This process is called labelling or data annotation.
It describes the manual process of marking, for example, the location of an object on
a given image and adding the class to which this object belongs, annotating the image.
Tools like LabelImg [Lab] can be used to achieve this, as illustrated in Figure 2.1. These
annotated images are then used for training the learning algorithm. After learning from
these examples, the algorithm can then predict the locations and classes of previously

5



2. Background and Related Work

Figure 2.1: LabelImg being used for image annotation. The user can draw a rectangle along the object
and attaches a class to it - in this case “person” to the football player. Source: [Lab]

unseen data. [Bis06]

Unsupervised learning on the other hand, describes the method of learning data
properties without human interaction. In principle, unsupervised learning tries to ex-
trapolate algorithmic relationships between categories of data. This involves data that
has not been labelled, classified, or categorized. Instead, the machine learning algorithm
groups similar entities together to find common attributes. Popular examples include
clustering methods like ask-means, hierarchical clustering, and some forms of neural
networks. [Bis06]

The focus of this master thesis lies within supervised learning, as the basis for the
learning algorithm involves labelled images.

2.2 Object Recognition
Object recognition involves identifying and locating specific objects within images or
videos, as stated by Goodfellow et al. [GBC16]. The term “object recognition” en-
compasses both object detection and object classification. Object detection refers to
the task of locating objects present within an image, while object classification focuses
on identifying the class of the objects. The objects and their classes used for object
recognition must be defined in advance. The possible applications for this are manifold
and highly dependent on their final use [GBC16]. In the context of this master thesis,
these objects and their corresponding class names are: car, person, bus, bicycle, truck,
train, rider, motorbike, traffic light, and traffic sign.

6



2.2. Object Recognition

Upon successfully identifying an object, the subsequent step involves marking the object’s
location within the image [GBC16]. Optionally, the object’s location can be visually
highlighted by either drawing a bounding box around the object or through segmentation.
Segmentation is a technique that involves marking every pixel in the image that contains
the object. This master thesis will focus on the bounding box technique, in which a
rectangular box encapsulating the object is represented by a four-element vector. This
vector can either denote two corner coordinates of the box (x1, y1, x2, y2) or the box’s
center location, width, and height (x, y, w, h). Each bounding box can optionally be
accompanied by a confidence score, indicating the likelihood of the box containing the
identified object. Figure 2.2 provides an example of bounding box object detection, with
the identified classes (dog, bicycle, and truck) and their corresponding confidence scores
displayed above the box. Prior to delving into the details of Neural Networks and CNNs
in Sections 2.3 and 2.4, a brief review of object detection in the field of computer vision
will be provided in the following sections.

Before the onset of CNNs, feature extraction for object detection was implemented
using methods such as the histogram of oriented gradients (HOG) and scale-invariant
feature transform (SIFT) [Bis06]. A feature can generally be defined as information
needed to solve the computational tasks associated with a specific application. Feature de-
tection methods identify specific image points and subsequently calculate a specific image
feature [Bis06]. It is noteworthy that in the realm of computer vision, each object class
possesses its own set of features that define the class to which the object belongs. These
feature sets, along with the object class, are stored in a database, and subsequent object
class detection algorithms can utilize this information for object recognition. Prominent
feature extraction examples include the Viola-Jones object detection framework based on
Haar features [VJ04], scale-invariant feature transform (SIFT) [Low99], and histogram
of oriented gradients (HOG) [DT05], which will be reviewed in Sections 2.2.1 - 2.2.3.

2.2.1 Viola-Jones Object Detection Framework

The Viola-Jones object detection framework, as described by Viola and Jones [VJ04],
was the first framework providing object detection rates in real-time, with the primary
focus on face detection. It exploited the fact that human faces generally share similar
proportions, therefore a basic set of rules was defined and matched using Haar features.
Haar features calculate the difference of the sum of pixels of areas inside a predefined
rectangle, which can be at any position and scale within the original image. For the
human face, the defined regions are around the eyes, nose, and mouth. Haar features are
constructed accordingly, with the nose bridge being the brightest region in the human
face, followed by the upper cheeks, and the region around the eyes being the darkest.
An example of these feature regions applied to a human face can be seen in Figure 2.3.
This detection framework is an example for how much a detection system depends on
the nature of the object it tries to identify.

7



2. Background and Related Work

Figure 2.2: This example for object detection shows three detected objects in the image: a dog, a bicycle
and a truck. Around each detected object, a bounding box, with the corresponding confidence values is
drawn. These confidence values (99.39% for the dog, 99.19% for the bicycle and 94.09% for the truck)
indicate the likelihood that this box contains the detected class. A value of 100% represents absolute
certainty that the box contains the detected object. Source: [RF18].

Figure 2.3: Haar feature applied to the image of a human face. The first feature measures the difference
in intensity between eyes and upper cheeks, the second feature shows the intensity in the eye regions
compared to the bridge of the nose. Source: [VJ04]

2.2.2 SIFT

Scale-invariant feature transform (SIFT) was first published by Lowe [Low99] in 1999.
The basic functionality involves transforming a given image into a large collection of
feature vectors at predefined key locations. In the case of the original paper, these key
locations were defined as min and max values of a Difference of Gaussians (DoG) function
applied to the image. The DoG or edge detection filter functions as a band-pass filter

8



2.2. Object Recognition

by discarding high-frequency information representing noise. It removes low-frequency
components representing homogeneous areas like the color, leaving the edges in the image.
In the next step, keypoint locations are defined, and dominant orientations are assigned
to these detected key points. This ensures that the found key points are invariant to
image translation, scaling and rotation, and partially invariant to illumination changes.
Each SIFT keypoint is specified by a 2D location (scale and orientation), which gets
stored in the database accordingly. A visualization of feature points found in an image
can be seen in Figure 2.4. [Low99]

2.2.3 HoG

Histogram of oriented gradients (HOG) is a feature descriptor developed by Dalal et al.
[DT05], which counts occurrences of gradient orientations in an image. Objects in an
image can be described by the distribution of edge directions - with similar objects having
similar edge directions. Therefore, the image is divided into small cells and for each pixel
within each cell, a histogram of gradient directions is created. These image gradients
describe intensity changes across each cell and can be calculated in any direction. In the
next step, a histogram - with the histogram bins representing the different directions
and the value of each bin corresponding to the magnitude of intensity changes in that
direction - is created. In the last step, the feature descriptor of the found object as
the concentration of these histograms is created. A visualization of the HOG feature
descriptor can be seen in Figure 2.5. [DT05]

2.2.4 Classification

Once these features have been extracted, the next step is to classify the objects in images
unknown to the system. A commonly used classification method is Bag of Words (BoW)
or Bag of Visual Words (BoVW). This method is inspired by text classifications from
Joachims [Joa98] and McCallum [MN98], where the number of occurrences of words in
a document gets counted. A frequency histogram of the words counted was created
and stored for future reference. This process was repeated for different texts in distinct
categories. The category of a new text was then classified by calculating its frequency
histogram. For a Bag of Visual Words, an image is represented as a set of features,
key points, and descriptors. These are then used to construct a “visual vocabulary”, to
represent each image as a frequency histogram of features. From this frequency histogram,
similar images can be found, or the category of the image can be predicted.

For a computer vision system to detect and classify objects, a considerable amount of
training data is required. Since it is not possible to cover every instance of an object in
every shape and form, the system has to generalize the training data to handle previ-
ously unseen data points. As described by Bishop [Bis06], a method for generalization
which is too simple can fail to capture aspects of the model (called underfitting), while
too complex methods tend to detect small details and noise as objects (named overfitting).

9



2. Background and Related Work

Figure 2.4: Visualization of SIFT feature points found in an image, after difference of Gaussians has been
applied. Source: [sif]

Figure 2.5: Visualization of HoG feature points. Subfigure (a) shows the image cells in red, in which
HoG features are calculated. Subfigure (b) visualizes the HoG descriptor computed for the same image.
Source: [FGB13]

How an algorithm performs under various conditions can be measured by both quan-
titative and qualitative evaluation. Qualitative evaluation involves the observation of
the results by human standards. Quantitative evaluation, on the other hand, assesses
the method utilizing predefined mathematical functions, which will be discussed in more
detail in Section 2.7.

10



2.3. Neural Networks

2.3 Neural Networks
Neural networks - originally called artificial neural networks (ANN) [GBC16] - are compu-
tational models that use training sets to develop a classification system. The use cases for
these classification systems vary, although this master thesis will focus solely on networks
used for object detection in images. The term artificial neural network originally stems
from researchers trying to find a mathematical representation of the human brain, with
the added prefix artificial, making the distinction explicit. Pioneering research works
start from McCulloch and Pitts in 1943 [MP43], and Rosenblatt in 1958 [Ros57].

Generally, neural networks are composed of input, output, and at least one interme-
diate layer called the hidden layer. These layers consist of elements called neurons
or perceptrons. The concept of a perceptron was first introduced in 1958 by Rosen-
blatt [Ros57], as a method for pattern recognition. It builds upon the structure of the
McCulloch-Pitts-Cell [MP43], which takes an input signal, compares it to a threshold and
produces a binary output. The Rosenblatt perceptron developed this further by taking
several inputs x0, x1, ...xn and mapping them onto a single binary output value. This is
calculated by concatenating each input while multiplying it with the corresponding weight
w0, w1, ...wn - a real number that expresses the importance of the respective input to the
output. An example for a perceptron can be seen in Figure 2.6. The perceptron’s binary
output is calculated by comparing the weighted sum �n

j=0 wjxj to a predefined threshold.
By combining several perceptrons, a network can be created (as seen in Figure 2.7). [Bis06]

As described by Grossi and Buscema [GB07], a neural network is a combination of
several neurons. These neurons are grouped into layers, with the output of one layer
being fed as input to the neurons of the next layer. A visualization of this can be seen
in Figure 2.7. Here, the leftmost part in red shows the input layer. Here, individual
input values x1, ..., x4 are given to the network. This first layer usually passes data along
without modifying it, providing the input for the network. Next are the hidden layers
(depicted in blue in Figure 2.7). The weighted connection is calculated, and the output is
passed onto the next layer as the new input. A network typically consists of one or more
hidden layers, depending on the application. Hidden layers are not visible to an outside
observer; only the input and the output layer are. The last layer in green shows the
output layer, which converts the hidden layer values to an output value, which correlates
to a predefined class. [GB07]

Neurons per definition only provide one single output [GB07] - the example in Figure 2.7
shows the output being used as input for several neurons. While the input and output of
a perceptron are binary, this is not the case for artificial neurons, whereby input and
output can take on any value between 0 and 1. In a neural network, each layer of neurons
is connected to the preceding and succeeding layer through weighted connections. Each
neuron yj computes a weighted sum of its inputs xi using weights wij and a bias bj :

yj =
�

i

xiwij + bj
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Figure 2.6: Concept of a perceptron by Rosenblatt [Ros57], which takes several inputs and maps them
onto a single output. Source: [akc]

Figure 2.7: Example of a fully-connected multi-layer neural network: Starting with several input values,
from x1 to x4, which are fed into the input layer (red nodes). This is followed by processing the input in
several hidden layers (blue nodes) and finally creating two outputs (green nodes), Class1 and Class2.

2.3.1 Backpropagation

As described by Rojas [Roj96], the learning process of a neural network is based on
a back-propagation algorithm. It involves two iterative steps called the forward and
the backward pass. First, an input vector of the training set is propagated forward
through the nodes until it reaches the end of the network. The network output is then
compared to the desired output (also called the ground truth), and the difference between
these two values is the “error” of the network. In the next phase, the error is then
propagated back through the network, starting from the output until it reaches the start
of the network. While propagating back, the weights (associated with each decision) are
updated, depending on their influence on the error. [Roj96]

In order to update the weights, a loss function is utilized, as described by Janocha
et al. [JC16] and Goodfellow et al. [GBC16]. This function, in general, optimizes the
parameters of a neural network. With this optimization problem solved by the loss
function, this “loss” is calculated by matching the target with the predicted values. The

12



2.3. Neural Networks

gradient descent method, a first-order iterative optimization algorithm for finding a local
minimum, is then used to update the weights such that the loss is minimized.

2.3.2 Loss Function
During neural network training, the model’s error is calculated as part of the weight
optimization process. For this, a loss function must be chosen. Some options include
maximum likelihood estimation, cross-entropy, mean squared error, and categorical cross-
entropy - to name a few. [WMZT20]

Maximum Likelihood Estimation (MLE) is a method for finding the best sta-
tistical estimates of parameters from historical training data. In a neural network, the
training data includes one or more input variables. As stated by Bishop [Bis96], MLE
aims to find the optimal parameter values by maximizing likelihood functions derived
from the training data. These input variables are weighted by using a model to estimate
the parameters that best map the inputs to the output during training. The model
aims to make predictions that match the data distribution of the target variable. Under
maximum likelihood, a loss function measures how closely the model’s predictions align
with the distribution of target variables in the training data [Gas19].

When tackling a classification problem, which involves mapping input variables to
a class label, the task can be viewed as predicting the probability of an example belonging
to a class. In the training dataset, the probability of an example belonging to a specific
class is either 1 or 0, since the class of each sample is known. Therefore, using maximum
likelihood estimation, the objective is to find a set of model weights that minimize the
difference between the model’s predicted probability distribution and the actual distri-
bution of probabilities in the training data. This function is called Cross-Entropy Loss.

Mean Squared Error (MSE) is calculated by taking the difference between the
predicted and actual value. MSE Loss is calculated by taking the mean squared differ-
ences between the target and predicted values, which indicates how well the network is
performing. [SW11]

Categorical Cross-entropy (log loss) is useful for multi-class classification tasks.
The final layer is passed through a softmax activation function (see below), so each node
output has a probability value between [0, 1]. [SSA17]

2.3.3 Activation Function
As described by Sharma et al. [SSA17], in the last step of each layer, an activation function
ϕ determines whether a neuron should be “activated” or not. Several possibilities for an
activation function have to be selected for each network individually, depending on the
use case [SSA17]. Previously in this chapter, the most basic activation function, the step
function, has been discussed implicitly. This step function, also called threshold-based
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activation function, selects the output depending on its position above or below a certain
threshold.

A =
�

1, x ≥ val

0, x < val

The value A represents the activation function, x the input to a neuron, and val the
threshold. The function can be seen in Figure 2.8.

This step function is often insufficient since it only allows for binary classification.
Other functions which create a softer transition between values include the sigmoid and
tangens hyperbolicus functions. These functions can be seen in Figures 2.9 and 2.10.

Another function which allows for easy computation and differentiation (a require-
ment for back-propagation) is the Rectified Linear Units (ReLUs) function. The most
basic form of this returns the output value x, if x is positive and 0 otherwise, which can
be seen in Figure 2.11. Due to the low computational costs, ReLUs have largely replaced
sigmoidal activation functions [KSH12], [sta].

Figure 2.8: Visualization of a step function, which shows a change in the input value from 0 to 1, once a
threshold has been met. In this case, the threshold is set at 0.

Figure 2.9: Visualization of a Sigmoid function, A = 1
1−e−x . The value change is more gradual when

compared to the step function shown in Figure 2.8
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Figure 2.10: Visualization of a tangens hyperbolicus function, A = 2
1+e−2x − 1.

Figure 2.11: Visualization of a Rectified Linear Units (ReLUs) function, A = max(0, x). The value of the
function is 0 below a predefined threshold and from this threshold forward (in this case 0), the value gets
mapped directly.

2.4 Convolutional Neural Networks

Within the context of a deep learning system, a Convolutional Neural Network (CNN) is a
class of neural networks, most commonly applied to analyzing images. CNNs are fully con-
nected networks, in which each neuron in one layer is connected to all neurons in the next
layer, as shown in Figure 2.7. In the context of computer vision research, a CNN takes an
input image and assigns weights and biases to various components of it. While traditional
methods for object detection were usually engineered to fit the specific use case, CNNs
learn characteristics in the image, allowing them to recognize these features in new images.

The connectivity pattern of neurons in the visual cortex of animal brains inspired
the architecture of a CNN [Fuk80]. Individual neurons respond to stimuli in a restricted
visual field region known as the receptive field instead of processing the whole input image
at once. The receptive field, in general, was previously described by Robert Burke [Bur07]
as the area of the body where a stimulus elicits a reflex. Specifically, the receptive field
of a sensory neuron is the region of the visual field in which a stimulus will trigger the
firing of that neuron.

This design made object recognition much more feasible and was therefore taken as
inspiration for CNN design. Unlike traditional neural networks, each pixel intensity in an
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image would require its own weight and neuron. A 410x410 pixel image would therefore
lead to 168.100 weights per color channel for a learning network. A model of this size is
prone to overfitting and slow to perform. Therefore, convolution was added to the basic
neural network structure. [sta]

Since not every pixel in the image can be considered, dimensionality must be reduced
before further processing is possible. Instead of using every value in an image, it is possi-
ble to single out relevant data (edges, colors, and many more) by utilizing convolution
matrices. Images can be filtered using a convolution matrix to produce visible effects,
like edge detection, sharpening, or blurring. This decreases the complexity and number
of required neurons since the number of free parameters is reduced for training. [sta]

The general expression of a convolution is

g(x, y) = w ∗ f(x, y) =
a�

s=−a

b�
s=−b

w(s, t)f(x − s, y − t)

whereas g(x, y) is the filtered image, f(x, y) is the original image, and w is the filter ker-
nel. Every element of the filter kernel is considered by −a <= s <= a and −b <= t <= b.

The theoretical concept of a CNN was first introduced by Fukushima [Fuk80] in 1979
as Neocognitron and further developed by LeCun et al. [LBD+89], who introduced
backpropagation for training increasingly complex neural networks with convolution
layers. This research was applied to the recognition of hand-written digits. Due to lack
of computational resources for training deeper and more complex networks, the first
ground-breaking result was achieved in 2012 by Krizhevsky et al. in AlexNet [KSH12],
which will be further discussed in Subsection 2.5.1.

The typical structure of a CNN can be seen in Figure 2.12. It consists of two sections:
feature extraction and classification. Feature extraction contains several convolution
layers, combining several small two-dimensional filters or feature detectors. The first layer
captures low-level features such as edges, color, and gradient orientation by applying a
filter kernel on the receptive field (the currently observed image section, which is high-
lighted in Figure 2.12 by a black circle). The architecture adapts to high-level features
like larger shapes with added layers, providing the CNN with an overall understanding
of the image [sta].
These convolution layers are alternated by subsampling or pooling layers which perform
a combination of dimensional reduction. The pooling layer is responsible for reducing
the spatial size of the convolved feature to decrease the computational power required to
process the data. Depending on the network, max-pooling (which returns the maximum
value of the convolved feature and performs de-noising along with dimensionality reduc-
tion) or average pooling (which returns the average of all values) can be chosen. Finally,
a fully connected neural network is included at the end, which results in a classification
of the found objects in the image.
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Figure 2.12: CNN example structure. An input image is processed by the network, starting with feature
extraction through alternating convolution and pooling layers. The objects in the image are then classified
by the classification layer, using a fully connected neural network.

2.5 Object Recognition CNNs

As described in Section 2.2, object recognition refers to the computer vision problem
that deals with identifying and locating a set of predefined objects in images or videos.
In a CNN, a fixed-size sliding window moves across the input image to extract features.
These features are then fed into the neural network for classification, identifying and
returning the object’s class found within the sliding window.

In the following section, several CNNs and CNN-like concepts will be described. In
particular, YOLOv3, the CNN used for this master thesis, will be discussed in more
detail in Section 2.6.

2.5.1 AlexNet

One of the earliest successful object detection algorithms using CNNs was achieved with
AlexNet by Krizhevsky et al. [KSH12]. AlexNet solved the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) by training a CNN for 1000 categories, with eight
learned layers - five convolutional and pooling layers, followed by three fully-connected
layers and overall 650,000 neurons [KSH12]. The standard way to model a neuron’s
output f with input x is with f(x) = tanh(x) [Wu17], but Krizhevsky et al. [KSH12]
chose f(x) = max(0, x), referring to the neurons utilizing this functionality as Rectified
Linear Units (ReLUs). While CNNs have been used for image classification before,
AlexNet was the first one to utilize Rectified Linear Units (ReLUs). [KSH12]

Figure 2.13 shows the AlexNet architecture, with five convolution layers, followed by
max-pooling, and finally, three fully connected layers, which classify the found object. The
original image is split between two GPUs to reduce processing time, with communication
occurring only at specific layers. [KSH12]
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Figure 2.13: AlexNet CNN Architecture. Source: [KSH12]

2.5.2 Regions with CNN Features (R-CNN)
When replacing traditional object recognition methods with CNNs, one often encounters
the problem of them being slow and computationally expensive. This issue was addressed
with the development of Regions with CNN features (R-CNN) [GDDM14], which combines
a region-wise classifier with CNNs to localize and segment objects. The object proposal
algorithm described in the original paper by Girshick et al. [GDDM14] is called “Selective
Search” and uses local cues like texture, intensity, color, and other features to generate
possible object locations, significantly reducing computational time.

2.5.3 Spatial Pyramid Pooling Net (SSPNet)
Spatial Pyramid Pooling Net (SSPNet) by He et al. [HZRS15] developed these ideas
further by introducing adaptive-sized pooling. SSPNet utilizes “Selective Search” proposed
by R-CNN and calculates the CNN representation for each possible object location only
once. Therefore the convolution is only calculated for an image section, not the whole
input image. Besides that, as the name suggests, spatial pooling instead of max pooling
is being used. Instead of returning the maximum value of the convolved feature, a region
of arbitrary size is reduced into a constant number of bins, producing a feature vector.
The problem with this system is that back-propagation is not trivial and therefore takes
more computational time. [HZRS15]

2.5.4 Faster R-CNN
Faster R-CNN [RHGS15] introduced an improvement in execution time through the use of
a region proposal network. The paper by Richter et al. [RHK17] introduces the concepts
of anchor boxes and bounding box regression. Anchor boxes are predefined bounding
boxes designed to capture the scale and aspect ratio of objects to be detected, based
on the sizes of objects in the training dataset. These are often calculated beforehand
using k-means clustering and then passed to the CNN. Bounding box regression involves
scoring each selective search detection and predicting a new bounding box for detection.
This process is applied within the anchor boxes, resulting in bounding boxes of various
sizes with different probabilities for each class. [RHK17]
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2.5.5 You Only Look Once (YOLO)
So far, all previously discussed CNNs follow the same pipeline: first, generating object
proposals, and then classifying these proposals. However, object detection can also be
approached using regression-based methods. A prime example of this is You Only Look
Once (YOLO) [RDGF16]. In YOLO, an image is first divided into several KxK grids,
and each grid predicts N bounding boxes, which can be seen in Figure 2.14. For instance,
in this example, the image is divided into 13x13 grid cells and each cell predicts one of
three possible classes (dog, bicycle, car).

Additionally, YOLO calculates a confidence score, which reflects the accuracy of the
bounding box and whether or not it contains an object. So KxKxN boxes are predicted,
and if their confidence score is too low, the box is ignored. During runtime, YOLO only
needs to process the image once, allowing it to operate in real-time [RDGF16].

2.6 YOLOv3
More specifically, YOLO in its third iteration - YOLOv3 - was chosen for this master
thesis. Its architecture can be seen in Figure 2.15 and the functionalities will be discussed
in more detail within this section.

2.6.1 Feature Vectors
YOLOv3 uses Darknet53, a 53-layered network trained on ImageNet, to which 53 more
layers are added, resulting in the 106-layered architecture of YOLOv3. One layer describes
one mathematical operation (detection, upsampling, or convolution). In contrast to
the original implementation of YOLO, this third iteration now detects objects at three
different image scales, shown in Figure 2.15 as light brown layers. The object detection
is done by applying a 1x1 detection kernel on the feature maps of three different sizes at
three different places in the network. [yola]

The shape of the detection kernel is:

1x1x(B ∗ (5 + C))

whereby B describes the number of bounding boxes a cell on the feature map can predict
(with YOLOv3, this number is 3) and C the number of classes. 5 stands for the number
of bounding box attributes. These are: the confidence followed by either (x1, y1, x2, y2),
the corner points of the bounding box, or (x, y, w, h), the center of the box, width, and
height. For example, the detection kernel for the COCO dataset would be calculated as
follows: B = 3, C = 80, which results in a kernel of 1x1x(3 ∗ (5 + 80)) =1x1x255 [yola].

YOLOv3 extracts features at three different image scales. The first extraction happens
at the 82nd layer. For the preceeding 81 layers, the image is downsampled and processed
through several convolutional layers, shown in magenta in Figure 2.15,resulting in a
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Figure 2.14: Example image of how the YOLO object detector [RDGF16] calculates bounding boxes.
The image gets segmented into grids, in which each grid predicts N bounding boxes. These are then
filtered, resulting in the final classification. Source: [RDGF16]

Figure 2.15: The YOLOv3 network architecture, as described on the TowardsDataScience webpage [yola],
processes an image of a dog by first passing it through a residual block to reduce the image scale. This
is followed by several detection layers that attempt to identify the object at the current scale. After
this, upsampling layers resize the image to a larger resolution, and the detection process is repeated.
Source: [yola]

downsampled feature map. For instance, if the original image has a resolution of 416x416,
the downsampled feature map will be 13x13x255. Next, the feature map from layer 79
undergoes convolution, before being upsampled twice (in the example used before, this
results in a 26x26 image). The upsampling is depicted in green in Figure 2.15. The
upsampled image is then concatenated with the output from layer 61 and convoluted once
more. The second feature extraction occurs at layer 94, producing another feature map
(taking the example from before, the result is a feature map of size 26x26x255). Finally,
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the output from layer 91 is upsampled, convoluted, and concatenated with the output
from layer 36, resulting in a final feature map at layer 106 (in this example, 52x52x255).

Bounding boxes are detected at those three different scales (levels), and only the boxes
with the highest confidence are selected as the final result. These different scales enable
YOLOv3 to detect small objects more effectively than the previous YOLO versions, v1
and v2. [yola]

2.6.2 Anchor Boxes

As proposed in Faster-RCNN by Richter et al. [RHGS15], YOLOv3 also utilizes anchor
boxes as well. Due to the significant variance in the scale and aspect ratio of bounding
boxes within an image, using anchor boxes improves object detection rates. These anchor
boxes have pre-defined aspect ratios, determined before training by running k-means
clustering on the training dataset [RF18].

Traditionally, object detection algorithms used a sliding window approach, scanning the
entire image and performing image classification on each window. However, this method
was inefficient. YOLOv3 improves on this by using convolutional outputs to create a grid
of feature values with resolutions of 13x13, 26x26, and 52x52. Each cell in this grid is
assigned anchor boxes. Instead of predicting boxes for each sliding window, YOLOv3
predicts boxes based on these anchor boxes. [RF18]

YOLOv3 has three anchor boxes per grid cell, as shown in Figure 2.16. The exact
scale of these anchor boxes is calculated by utilizing k-means clustering. With each object
in the anchor box, the offset (x, y, width, height) has to be predicted and a score added,
which indicates if the box contains an object.

2.6.3 Loss Function

Using the final detection output, which includes the offset from the anchor box, the score,
and the confidence, the loss function against the ground truth can be calculated. The
loss function consists of four components: centroid loss, width and height loss, score loss,
and classification loss. During training, these values are minimized, and the weights are
adjusted accordingly until training is complete. [RF18], [intb]

Bounding Box Loss
The loss for the bounding box includes centroid (x, y) loss and width and height loss.
To minimize the centroid loss, the center box location is compared to the ground truth
location. Redmon and Farhadi [RF18] suggest using mean square error for this regression
problem. The same approach is recommended for the width and height of the box.
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Figure 2.16: The YOLOv3 anchor box detection as described by the TowardsDataScience webpage [yolb].
The image gets split into several grid cells (right side of the figure), and each grid cell gets assigned three
anchor boxes (left side of the figure). Within these boxes, objects are detected.

Score Loss
Generally, the score indicates the likelihood of an object being in the current cell, with 1
meaning the cell contains an object and 0 meaning it does not. By measuring this score
loss, the network gradually learns to detect regions of interest. Redmon and Farhadi
propose using binary cross-entropy for this purpose [RF18].

Classification Loss
In YOLOv3 [RF18], a dataset can contain related labels, such as the object class “woman”
and “person”, which have a hierarchical relationship. Each output cell can be associated
with more than one class, allowing for multi-label classification. Therefore, the application
of binary cross-entropy for each class is required, followed by a summation of all class
values, since they are not mutually exclusive.

2.7 Intersection Over Union
After training a CNN, the next step is to evaluate its performance and accuracy. One
common evaluation metric is Intersection over Union (IoU), which uses bounding boxes
as described by Rezatofighi et al. [RTG+19]. IoU requires predefined ground truth
bounding boxes from the training and validation sets, and it compares these with the
predicted bounding boxes from the model being evaluated. Figure 2.17 illustrates the
comparison between the ground truth bounding box (in green) and the CNN’s predicted
bounding box (in red). To calculate the IoU, the Area of Overlap is divided by the Area
of Union:

IoU = AOverlap

AUnion

Area of Overlap describes the overlap of the predicted bounding and the ground truth
box, whereas the Area of Union describes the area encompassed by at least one of the
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Figure 2.17: The image shows an example of Intersection over Union (IoU) with predicted and ground
truth boxes. It shows a dog sitting in front of a bicycle, with two colored boxes: one red and one green.
The red box represents the predicted bounding box after the image was processed by the CNN, while the
green box represents the ground truth bounding box. The IoU is then calculated by comparing these two
boxes.

two boxes. The division of those two results in the IoU score. It shall be noted that an
IoU score above 0.5 is considered a “good” prediction, and an IoU score of 1 is nearly
impossible to achieve since it requires a pixel-perfect match between the two boxes. A
visualization of this can be seen in Figure 2.18.

Classification Evaluation

Evaluating the accuracy of an object detector is done by defining a threshold for the
IoU, in which, above a specific value, an object is counted as “detected” [sta]. These
thresholds usually range from 0.4 to 0.8, depending on the network and application.
These values are calculated by comparing the found objects by the object detector to the
“ground truth” of the validation dataset. Depending on whether an object was correctly
detected or not, it is labeled differently [inta]:

• True Positive, TP: There is an object, object detector finds it

• True Negative, TN: There is no object, object detector finds nothing

• False Positive, FP: There is no object, object detector finds one or finds a wrong
class

• False Negative, FN: There is an object, object detector finds nothing

Examples of this can be seen in Figure 2.19.
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Figure 2.18: Area of Overlap and Area of Union, needed for IoU calculation. The left image shows
the Are of Overlap (filled gray), calculated from the overlap of the predicted bounding box (red) and
ground-truth bounding box (green). The right image shows the Area of Union, calculated as the union of
predicted and ground-truth bounding boxes.

Figure 2.19: Examples for (a) True Positive (TP): the network correctly predicts that an object (in this
case, a “Dog”) was found. Subfigure (b) shows a False Positive (FP): The network predicts a positive
find for an object that is not actually there (in this case a “Cat”). Finally, (c) shows a False Negative
(FN): There are objects in the image that should be detected, but the network fails to find them.

It is then possible to evaluate the network’s performance using various measures:

Sensitivity evaluates the network’s ability to detect true positives (TP).

Sensitivity = TP

TP + FN

Accuracy describes how well the network is able to differentiate between objects.

Accuracy = TP + TN

TP + TN + FP + FN

Specificity describes if and how well the network is able to identify true negative (TN)
cases.

Specificity = TN

TN + FP
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2.8 Object Detection in Night Scenes Using CNNs
As Lim et al. [LHCB17] state, the training data used for a CNN has to be tailored to
allow object detection for a specific problem. For example, Kim et al. [KSK17] study the
detection of humans, and Lim et al. [LHCB17] concentrate on traffic sign recognition
under illumination variations. With regards to the YOLO network, Tung et al. [TKS+19]
examine YOLO’s ability to detect objects in shifting illumination conditions. However,
the authors do not retrain the network, which served as a starting point for this master
thesis.

While at the starting time of this project, work on object detection in night-time
traffic scenes was rather scarce, more recent investigations have also targeted solutions
to ensure stable object detection during night-time for self-driving systems and smart
headlights. Song et al. [SPL24] propose an algorithm which utilizes a candidate search
algorithm instead of an anchor box-based method. Their solution was reported to be
22ms faster compared to other state-of-the-art methods, while their mAP (mean average
precision) improved by 12% [SPL24]. Other recent works put their focus on related pre-
processing methods. For example, Ben-Shoushan and Brook [BSB23] use a combination
of multi-sensoral RGB and thermal camera data to process the image before it is fed
into the CNN for object detection. Other works seek to provide the CNN with more
information regarding the observed object - for example, in the case of Chacon-Murguia
and Guzman-Pando [CMGP23] the moving car. In that work, the authors propose the
use of a so called “Two-Frame CNN” [CMGP23], which estimates the motion of an object
using the temporal movement information. These recent results show that focussing on
different aspects of a CNN allows for further improvement of object detection rates. This
master thesis aims to improve object detection rates in night-RGB image scenes by using
a combination of publicly available and self-recorded datasets.
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CHAPTER 3
Datasets

This section describes the datasets used for this master thesis as a basis for training the
YOLOv3 network and provides insight into why they were chosen. The selected datasets
are discussed in more detail in Section 3.1. This chapter is concluded by Section 3.2,
which introduces the datasets which were recorded and annotated for this master thesis.

Publicly available datasets displaying traffic scenes that provide training data for deep
learning algorithms are traditionally biased towards daylight and environments with good
visibility [RHK17]. This bias, in turn, raises the need for a manual annotation, since
available datasets often prove not sufficient for solving the required task [RHK17]. It has
to be kept in mind that manual annotation of night scenes with demanding illumination
conditions is error-prone and time-consuming, so the challenge moves to finding a suitable
combination of existing and new datasets for training, which allow the network to detect
objects in night-scenes.

The datasets used in this master thesis include: Microsoft Common Objects in COntext
(COCO) [LMB+14], the German Traffic Sign Recognition Database (GTSRD) [SSSI11],
VIsual PERception benchmark (VIPER) [RHK17], and Berkeley Deep Drive 100k (BDD)
[YXC+18], as well as recordings taken within the CarVisionLight (CVL) project. The
following section will review the main characteristics of these datasets and explain the
motivation for incorporating them into the training set.
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3.1 Publicly Available Datasets
Microsoft Common Objects in Context (COCO)

Microsoft COCO is a large-scale object detection and segmentation dataset, which
consists of images of complex everyday scenes showing common objects in their natural
context, as exemplary shown in Figure 3.1. The COCO dataset contains 91 object types
with a total of 2.5 million labelled instances in 328k images [LMB+14]. This dataset was
not used for training, but due to its extensive coverage of everyday images, with over 80
classes, it was taken as a basis for evaluation, with YOLOv3 being initially trained with
the COCO dataset.

German Traffic Sign Recognition Database (GTSRD)

The first dataset used in the final training setup is the German Traffic Sign Recognition
Database (GTSRD), which is a combination of the German Traffic Sign Recognition
Benchmark (GTSRB) and the German Traffic Sign Detection Benchmark (GTSDB)
datasets. An example can be seen in Figure 3.2. It was created by Stallkamp et al.
[SSSI11]. It is a multi-class, single-image dataset, in which each image contains one traffic
sign. It comprises over 40 classes of different street signs and over 50k images and shows
these signs in various lighting conditions. While the dataset is called “German Traffic
Signs”, it should be pointed out that these road signs are subject to the Vienna Conven-
tion on Road Signs and Signals [UNC], which has been widely adopted in Europe and
Russia and can therefore be used to solve traffic sign recognition problems in European
and Russian street conditions.

Visual Perception Benchmark (VIPER)

The second dataset is the VIsual PERception benchmark (VIPER), which was assembled
by Richter et al. [RHK17] and can be seen in Figure 3.3. It was created while driving,
riding, and walking 184km in the virtual world of the Rockstar video game Grand Theft
Auto 5 (GTA 5). It consists of over 250k high-resolution video frames, split into training,
validation, and test sets, containing 134K, 50K, and 70K frames, respectively. Each set
contains a balanced distribution of data acquired at different times of day and in different
lighting conditions (day, sunset, rain, snow, night). The subset used for this master thesis
consists of over 15k labeled images showing night scenes with 30 classes, out of which
ten were deemed relevant and therefore incorporated for training. The simulation model
contains, for the most part, US-American street conditions.
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Figure 3.1: An example from Microsoft’s COCO [LMB+14] dataset, showing various common objects in
their natural context.

Figure 3.2: Example of German Traffic Sign Recognition Database (GTSRD) [SSSI11], showing several
street signs in different lighting situations.

Berkeley Deep Drive 100k (BDD)

The Berkeley Deep Drive (BDD) [YXC+18] dataset is a large-scale, diverse driving
video database. It contains annotated images of different scenarios, day, night, and
dusk/dawn of 100k driving videos from more than 50k rides, an example of which can
be seen in Figure 3.4. These videos were filmed in New York, San Francisco, the San
Francisco Bay Area, and Berkeley, in diverse weather conditions (sunny, rainy, snowy).
The recordings comprise six weather conditions, six scene types, and three different times
of day for each image, with an approximately equal distribution between night and day
images. This dataset provides bounding box annotations for ten different categories, all
chosen for the classification in this master thesis’ object detector.
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Figure 3.3: An example of the VIPER dataset [RHK17], showing several simulated cars in a simulated
city street.

Figure 3.4: Example of Berkeley Deep Drive dataset [YXC+18], showing several cars and a motorbike in
the city of San Francisco, waiting in front of a red traffic light.

3.2 Self Recorded Dataset
It is not enough to rely solely on publicly available datasets. While the mentioned datasets
include night scenes, they often suffer from light pollution or are recorded in city streets,
which means they lack true rural-street conditions. This reduces their effectiveness for
object detection in night scenes. Therefore, we decided to add our own self-recorded and
self-annotated data, specifically tailored to our use case.

CarVisionLight Dataset (CVL)

The CarVisionLight (CVL) dataset was recorded at dusk and during the night in the
countryside of rural Austria. The recordings contain over 50 videos, of which over 9k
images were annotated and then split into training and validation datasets. The bounding
box annotations contain three classes: person, car, and street sign. An example can be
seen in Figure 3.5.
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Figure 3.5: Example of the CarVisionLight (CVL) dataset, showing a car and two street signs at night in
the rural streets of Lower Austria.
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CHAPTER 4
Implementation

This chapter discusses the design and implementation of the software developed for this
master thesis. It begins with an overview of the design concept, followed by Section 4.1,
which details the software itself and provides guidelines for using the network to ensure
future reproducibility. The following Section 4.2 offers insights into the initial test run.
Next, Section 4.3 describes the training and evaluation pipelines. Finally, the chapter
concludes with Section 4.4, explaining how the datasets’ metadata was adapted before
training the network.

The implementation design followed a few key steps, which are illustrated in Figure 4.1,
with the first step being a system setup. This setup included installing the TensorFlow
v1.13 [ABC+16] framework on a Ubuntu 18.4 system, which enabled the retraining of
YOLOv3. How to set up the system will be described in more detail in Section 4.1. As
shown in Figure 4.1, after the system has been set up, the first step was to run an initial
test run to gain a better understanding of the YOLOv3 network, which will be explained
in Section 4.2. The centerpiece of the implementation consists of the following training
and evaluation steps, shown in Figure 4.1. Both training and evaluation are composed as
individual pipelines, which were developed for this master thesis. These pipelines will be
explained in detail in Section 4.3.
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Figure 4.1: System pipeline. First, the system has to be set up, which is then followed by an initial
test-run, to confirm it was set up correctly. After this, training and evaluation follows.

4.1 Software Description
This section describes the custom software developed specifically for this master thesis,
as well as the external software utilized. To achieve this, the setup of the system will
be discussed: how to configure the system to run the developed Convolutional Neural
Network, as well as the necessary installation steps.

System Setup

The software was developed and run on Ubuntu 16.04, Xenial Xerus, using a NVIDIA
GeForce GTX1090ti, for all graphic calculations. Initially, Python 2.5 was used, but it
was later upgraded to Python 3.6, to ensure the re-usability of this project.

Additionally, CUDA 10.0, cuDNN 7.4.2, the OpenCV Python Package, TensorFlow
1.13, NVIDIA Collective Communications Library (NCCL) 2.3.5 and YOLOv3 [RF18]
were used. Since YOLOv3 does not natively incorporate TensorFlow, an additional
implementation, written by the user wizyoung on GitHub [git], was used.

To get the system running, several components have to be installed in the right or-
der. This is vital, since installations like OpenCV and TensorFlow can compromise the
executability of the code. Installation order should be: Ubuntu 16.04, OpenCV, CUDA,
cuDNN, NCCL, TensorFlow and finally YOLOv3.

Software Packages and Installation

In the following section, the software packages used will be briefly described. This should
give the reader sufficient insight into how the system was set up and which parts of the
different software packages were used to run the final CNN.
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CUDA
CUDA - previously an acronym for Compute Unified Device Architecture - is an API
developed by the US-American company NVIDIA, which grants access to its graphics
processing units (GPU) [cuda]. In contrast to other APIs like OpenGL, Vulcan or
Direct3D, which focus on graphics programming, CUDA allows the GPU to be used
strictly as a data processing resource. It provides additional computing capacities, which
allow for parallel programming, significantly faster than a standard CPU. In the context
of this project, it was used to run the CNN. While it was not directly programmed, other
programs used the access to the GPU provided by CUDA. Therefore it has to be installed
on the computer before running or training the CNN. In the scope of this master thesis,
CUDA version 10.0 was used.

cuDNN
The CUDA Deep Neural Network library (cuDNN) is a library, provided by NVIDIA,
which enables to use CUDA for Neural Networks [cudb]. It offers implementations for
forward and backward convolution, pooling, as well as normalization. cuDNN provides
an API that allows programs to directly access multi-threading on the GPU. In this
master thesis, cuDNN was used to enable TensorFlow to perform batch-normalization
and other necessary functions. Similar to CUDA, it was not directly programmed, but
accessed through the CNN via TensorFlow.

YOLOv3
The object detection algorithm YOLOv3 [RF18] allows for real-time detection and iden-
tification of objects in videos or images. YOLOv3 is a machine learning algorithm that
utilizes features learned by a CNN for object detection. Its functionality was previously
described in more detail in Section 2.6.

TensorFlow
TensorFlow [ten] is an open-source framework developed by Google that enables effective
machine learning. It allows users to develop and use Convolutional Neural Networks
and is known for its scalability. While the framework itself is developed in C++, the
Keras (high level) API can be accessed in different languages, such as Python. The
basic operational element of TensorFlow is a graph, which is a directed diagram that
provides an abstracted depiction of a mathematical problem. In this use case, the graph
represents the mathematical operations used while calculating a CNN. It consists of edges
and nodes. The edges represent data and the nodes are the mathematical operations
themselves. The final graph represents the sequential process of all operations carried
out by TensorFlow.
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The following short code shows an example of such an operation in Python:

simple_math.py

# load the tensorflow library
import tensorflow as tf

# start a new tensorflow session
sess = tf.Session()

# x = 5, y = 4
x = tf.constant(5, dtype=tf.int8)
y = tf.constant(4, dtype=tf.int8)

# function f should multiply x by y
f = tf.multiply(x,y)

# OUTPUT
sess.run(f)
20

The above example depicts an implementation of TensorFlow in Python. After the
TensorFlow library was imported, a new “session” can be started. This session defines
the above mentioned setting of a graph, whereby different operations can be executed.
In the case above, first the different values are loaded and the function then multiplies
the two variables. After the session has been executed, the result - in this example 20
- is displayed. Although it is not essential to build TensorFlow from source, doing so
can provide a deeper understanding of the system and is recommended if additional
adjustments need to be made. To ensure that the system has been set up correctly, it is
recommended to test the installation after TensorFlow has been installed by importing
the module into Python and starting it, after YOLOv3 has been installed. This master
thesis used a Python implementation of TensorFlow. Specifically, TensorFlow was used
in conjunction with YOLOv3. However, since TensorFlow does not natively incorporate
YOLOv3, it hinders the time-effective development of a CNN. Therefore, for this master
thesis, an implementation written by the user wizyoung on GitHub [git] was used.

NCCL 2.3.5
NCCL stands for NVIDIA Collective Communications Library [ncc]. This library im-
plements multi-GPU and multi-node communication for NVIDIA GPUs and is used to
accelerate deep learning training methods. It is integrated with deep learning frameworks
such as PyTorch or - in case of this master thesis - TensorFlow. NCCL can be downloaded
as part of the NVIDIA HPC SDK.
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4.2. Initial Test Run

4.2 Initial Test Run

After the system has been set up, an initial test run was started to gain a more in-depth
understanding of the existing CNN and its usefulness for the target application. For this,
we provided YOLOv3, pre-trained on the COCO dataset, with new input in order to
evaluate the network’s ability to deal with previously unknown data.

Considering how the final version of YOLOv3 should be able to identify objects in
images depicting street scenarios, the Cityscapes dataset [COR+16] was chosen for the
initial test tun. It was not included in the final testing, training, or evaluation dataset,
but served as a initial test to see how the YOLOv3 network handles data specific for
this use case. The Cityscapes dataset is a large-scale dataset that contains a diverse set
of stereo video sequences recorded in street scenes from 50 different cities during the
daytime. It does contain semantic, instance-wise, and dense pixel annotation but no
bounding box annotation [COR+16]. It proved itself useful for an initial test run since it
includes over 50 cities, different seasons, and weather conditions.

As shown in Figure 4.2, the Cityscapes dataset was processed through the YOLOv3
network, to gain a basic understanding of its analytical capabilities. Since the execution
time and quality of the results were deemed sufficient, the test dataset— comprising a
combination of the GTSRD, VIPER, BDD, and CVL datasets —was also sent through
the network, following the same structure as depicted in Figure 4.2. The analysis and
evaluation setup of the YOLOv3 network on the test dataset can be found in more detail
in Section 5.1.

From these first evaluations, an initial training run was started using the final test
dataset. It consisted of over 64.000 day and night images - more details on their dis-
tribution can be found in Section 4.4. This run was evaluated with qualitative and
quantitative measures, which will be further discussed in Sections 5.2.1 and 5.2.2.

4.3 Training and Evaluation Pipeline

After evaluating the intial test run, the first training round was started, a visualization of
which can be seen in Figure 4.3. As the first step of each training session, a new dataset
was chosen and then processed through the CNN for retraining. The result of each run,
which consisted of the retrained CNN, as well as the trained weights and the parameters,
was stored, ensuring repeatability. Qualitative and quantitative evaluation was performed
for each session, and the results were stored for later comparison. The following sections
describe both training and evaluation pipelines - as depicted in Figure 4.3 - in detail.
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Figure 4.2: Initial test run of YOLOv3 using the Cityscapes dataset. First, the Cityscapes dataset is
processed through the YOLOv3 CNN. This is then followed by an evaluation of the training results.

Figure 4.3: Pipeline for CNN development. The left box shows the Training Session, in which the dataset
is loaded into the CNN. Then, the CNN is retrained and the result gets stored. This result is then sent
to the Evaluation (the right side of the image), in which each session is evaluated with qualitative and
quantitative methods. The results of each evaluation round are stored for further analysis.

4.3.1 Training Session
Each training session starts with the selection of the dataset by the user, followed by
retraining the CNN, and is concluded by the storing of the results.

Step 1: Dataset Selection

First, the dataset for the current training session has to be selected by the person who
decides to start a new training round. For the purpose of this use case, we used different
combinations of four datasets: the German Traffic Sign Recognition Database (GTSRD),
VIsual PERception benchmark (VIPER), Berkeley Deep Drive 100k (BDD), as well
as recordings from the CarVisionLight (CVL) project. The different combinations and
distributions of the dataset will be discussed in more detail in Section 4.4.4.

Step 2: Training the CNN

Once a training dataset is selected, it gets processed through the CNN retraining pipeline.
Figure 4.4 shows the pipeline for retraining YOLOv3. It starts with data preparation
- annotation of the training, test and validation data - followed by defining the classes
used for object detection. Next, the values for the anchor box have to be calculated, as
previously discussed in Section 2.5.4. Finally, the training sessions were starts.
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Figure 4.4: A closer look at the pipeline used for retraining the CNN. Here, the annotation of the dataset
is followed by the definition of the used classes, anchor calculation and finally the training itself.

Annotation

In order to enable YOLOv3 to train with the provided image data, it first has to be
annotated. This is done by creating a training-, validation- and test-file, which points
the training program to where the images can be found on the hard drive and where the
bounding boxes within each image are located. Therefore, three files named train.txt,
val.txt, test.txt file were created beforehand and stored in the ./data/my_data/ directory.

The annotation has to follow a specific format. One line of text corresponds to one image:

index image_path image_width image_height box_1 box_2 ... box_n

One box consists of the following parameters:

class_number, x_min, y_min, x_max, y_max

This results in a file of this format (numbers are merely exemplary):

File: street_train.txt

0 xxx/xxx/img1.jpg 1280 720 8 126 133 157 211 1 791 383 901 420
1 xxx/xxx/img2.jpg 1280 720 4 433 369 459 383 2 105 247 224 454

For each dataset used for training, a script was written, which automatically annotates
the data as required by the system. These scripts are named “dataset_annotation.py”,
with a corresponding name for each dataset (e.g.: “viper_annotation.py”). These scripts
read the metadata-file provided with each dataset and parse all relevant information into
the format required by YOLOv3.

Since the simulated data of the VIPER dataset can contain boxes of size zero (whereby
an object is visible in one pixel of the image), these boxes have to be removed by the
“annotation_remove_zero_boxes.py” script. This is done by calculating the dimensions
of the bounding box and if they are under a required minimum - which is given as input
by the user - they are not added to the file:
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File: annotation_remove_zero_boxes.py

for i in range(box_cnt):
class_num = meta[i*5+2]
x_min, y_min, x_max, y_max =

meta[i*5+3], meta[i*5+4], meta[i*5+5], meta[i*5+6]
width = int(x_max) - int(x_min)
height = int(y_max) - int(y_min)

if(width == user_input): continue
if(height == user_input): continue

for res in [class_num, x_min, y_min, x_max, y_max]:
result.append(str(res))

It is possible to adapt the box size that should be removed so that boxes under a
specific size are removed and therefore ignored by the training algorithm. In the code
example above, this is shown by the variable “user_input”. The default value for the use
case of the VIPER dataset is 0, but this parameter can be changed when calling the script.

The parameter “index” is the last value which is added to the file. After all datasets
have been annotated, the script “enum_images.py” iterates through each line of the final
txt-file and adds an incremental value to the front of each row.

These scripts can be executed individually to gain more insight into the annotation
system or to change the parameters or datasets which should be annotated. If the user
wishes to execute the complete annotation pipeline, it is possible to call “cnn_pipeline.py”,
which executes the individual annotation scripts and zero box removal script.

Class Definition
The training algorithm requires a file containing all class-names, which has to be named
“street-classes.names”, with each line representing one class name. If a new class is added,
it is not only required to add it in the “street-classes.names”-file, but in the annotations
scripts as well.
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The following file “street-classes.names” was used for the class definition:

File: street-classes.names

person
car
bus
bicycle
truck
motorbike
train
rider
traffic light
traffic sign

From the assessment of the first images and videos for the final application, tese classes
were able to cover most objects in the recorded test videos - with the exclusion of animals,
which can be a subject for future adaptations of the model.

Anchor Calculation
As described in Section 2.6.2, YOLOv3 utilizes anchor boxes as proposed by Richter et
al. [RHK17], which allow the faster bounding box calculation of detected objects. Since
the anchor boxes are highly dependent on the application and the position of the boxes
in the training images, they have to be calculated beforehand. For YOLOv3’s training
algorithm, this is done by using k-means clustering.

K-means clustering was first introduced by MacQueen et al. [Mac67]. It describes
a process which sorts n data-points into k clusters. In this use case, the different bound-
ing boxes of the input image are sorted into 9 clusters, also called anchor boxes. As
discussed in Section 2.5.4, anchor boxes are a set of predefined bounding boxes, which
are defined to capture the scale and aspect ratio of objects one wishes to detect. They
are calculated based on the object sizes in the dataset. The corresponding anchors of
each bounding box predict the offsets from the predetermined set of boxes and are noted
as (width, height). These calculated anchor boxes are stored with their initial size, and
the one closest in size to the found object will be resized to create a matching bounding
box - using the outputs from the neural network.

This is done by Redmon et al. within YOLOv3 [RF18] in the file “yolo_layer.c”:

File: darknet/src/yolo_layer.c, Lines 88 to 89

b.w = exp(x[index + 2*stride]) * biases[2*n] / w;
b.h = exp(x[index + 3*stride]) * biases[2*n+1] / h;
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Where x[...] is the output of the neural network, biases[...] are the pre-calculated anchors
and b.w and b.h are the resulting width and height of the bounding box that will be
shown on the result image. As can be seen, the network does not predict the final size of
the object, but only adjusts the size of the nearest anchor to the size of the object. This
provides an optimized performance, allowing for the bounding boxes to be calculated
and displayed faster than with similar CNNs [yola].

These anchors have to be calculated beforehand by using the getkmeans.py script,
which returns 9 anchors and an average IoU for all boxes. These values then have to be
saved to a .txt file, placed at “./data/yolo_anchors.txt”. It is possible to calculate these
anchors using other methods, but for reproducibility of the results, it is recommended to
use the provided methods.

Training
After the steps have been realised as described above, training can begin. This is done by
running the “train.py” script, which uses TensorFlow functions to retrain the YOLOv3
network. The script requires several parameters to be set for each training round, which
are described in detail in Table 4.1. This table shows all values which should be changed
for a new training session, for the others, the default values are sufficient.

The leftmost column of Table 4.1 lists the parameter names, followed by a parame-
ter description. This description shows how the parameters should be understood and
how they influence the training session. This column is followed by “used value”, which
shows the values that were used for the training setup of this master thesis. Depending
on the graphics card used, it is recommended to adapt the batch_size and num_threads
size.

Step 3: Storing the Training Results

After the training session has been completed, the session has to be stored. To achieve this
in a consistent manner, a folder called “checkpoint_finished_runs” has been prepared,
containing one folder for each run (named “run0”, “run1” etc.). If a new training session
is being started, it is recommended to document the runs accordingly.

These folders contain the trained weights, the “*.names” file, the annotated training
and validation files, the anchors and finally the “README.txt”. This file contains the
different parameter values set for this specific training session. Using this information, it
is possible to either use the trained weights for object detection or start a new training
session re-using these values.
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Table 4.1: Parameter description for training sessions

Parameter Description Used Value
train_file The path to the training txt file street_train.txt
val_file The path to the validation txt file street_val.txt
anchor_path The path to the anchor txt file street_anchors.txt
class_name_path The path to the class names street_classes.names
batch_size Size of the batch, or the number of

images processed in one epoch
20

img_size Images will be resized to “img_size”
and fed to the network, size format:
[width, height]

[416, 416]

letterbox_resize Whether to use the letterbox resize,
i.e., keep the original aspect ratio in
the resized image.

True

total_epoches For how many epochs the program
should run. This defines how many
times the algorithm works through
the entire training dataset

10.000

train_evaluation_step Evaluate on the training batch after
some steps

1.000

val_evaluation_epoch Evaluate on the whole validation
dataset after some epochs. Set to
None to evaluate every epoch

5.000

save_epoch Save the model after the given num-
ber of epochs

100

num_threads Number of threads for image pro-
cessing used in tf.data pipeline.

20

optimizer_name Chosen from [sgd, momentum,
adam, rmsprop]

adam

learning_rate_init Learning rate for the first few
epochs, should be set higher than
ater learning rate

1e-8

lr_type Chosen from [fixed, exponential, co-
sine_decay, cosine_decay_restart,
piecewise]

“exponential”

lr_decay_epoch Epochs after which learning rate
decays. Int or float. Used
when chosen “exponential” and “co-
sine_decay_restart” lr_type

100

lr_decay_factor The learning rate decay factor. used
when chosen “exponential” lr_type

0.96
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4.3.2 Evaluation
After the latest training run has been stored, the qualitative and quantitative evaluation
follows, as shown in Figure 4.3. It is important to distinguish between those two evaluation
types, since they both test for different demands on the trained network. For this, two
different types of scripts exist, which will be presented in more detail in the following
section.

Quantitative Evaluation

Quantitative evaluation, in case of this master thesis, consists of numeric analysis. This
assessment does not involve human observation, but returns numeric values which grant
insight into the networks’ performance. These values consist of mean average precision
(mAP), recall, precision, total loss, and loss confidence.

As described in Section 2.7, the quantitative evaluation metric used for this master
thesis is Intersection over Union (IoU), with a threshold of 0.6. In other words, objects
found with an IoU equal or greater than 0.6 result in a True Positive (TP), and everything
else in a False Positive (FP).

Using the same IoU methods, recall and precision are calculated. Recall (or “rate
of true positives”) observes how many of the found positives are true positive predictions.
It is calculated by dividing the number of detected objects by the number of ground
truths:

Recall = TP

TP + FN
= TP

goundtruth

Precision (or “positive prediction value”) shows how many of the positive predictions
made are accurate. It is calculated by dividing the number of detected objects by the
number of predictions made, including the ones labelled as false:

Precision = TP

TP + FP
= TP

predictions

Recall and precision are calculated in the script “eval.py”, which was written by the
user wizyoung on GitHub [git] and adapted to match the requirements for this use case.
Therefore, the IoU thresholds were changed and all calculations were done for each class
individually. In the original script, precision, recall and mean average precision were all
calculated over all classes to show the result of the CNN as a whole. Once recall and
precision are calculated, the mean average precision (mAP) is determined by dividing
the true positives for all classes by the sum of all detected objects.

Loss is the quantitative measure of difference between the predicted output and the actual
output. It results in a measure of mistakes made by the network in detecting objects.
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While loss is calculated for each learning step to provide a measurement on how the
network is currently performing and feedback to possible over-fitting, total loss describes
the loss over all classes and iterations. The lower the loss, the better a model has been
trained. The loss of a CNN is calculated on the validation set. Unlike accuracy, loss is
not a percentage, but a summation of the errors made for each evaluation. The main
objective in a learning model is to reduce the loss function’s value with respect to the
model’s parameters by adapting the weight vector values through different optimization
models. Loss value indicates how well or poorly a certain model behaves after each
iteration of optimization. Ideally, one would expect the reduction of loss after each, or
several iterations.

The script “eval.py” returns the total loss value, as well as the average loss of con-
fidence - which indicates how confident the network is the detected object is correct. All
results were calculated using the validation and test datasets, which used a combination
of 4 datasets (GTSRD, CVL, VIPER, and BDD). All possible set permutations were used
to create 15 distinctive training rounds. After each round, the evaluation was performed
and the results stored for further analysis. These different permutations and therefore
resulting training rounds can be seen in a more detailed breakdown in Figure 4.5.

Qualitative Evaluation

In case of this master thesis, qualitative evaluation distinguishes itself by evaluating the
results based on visual criteria. This involves sending an image through the trained
network and evaluating it based on subjective standards. While this qualitative evaluation
involves human observation (along criteria such as: how many objects were detected,
were they labelled correctly, etc.), it also includes the knowledge the evaluator gained
from previous runs. This allows for a more in-depth comparison to the effectiveness of
the training compared to the quantitative evaluation, which only observes the current
run. Since qualitative evaluation allows for comparisons between runs, it is possible to
see the impact of changing a training set on the final result immediately.

To start qualitative evaluation, either the script “eval_single_image.py” or “eval_
multiple_ images.py” should be executed, depending on the number of images the user
wants to evaluate. As a parameter, either the path to the image or the folder containing
the evaluation images has to be given, for example: “python eval_single_image.py
test_img.png”. This then calls the evaluation function, which starts a TensorFlow session,
sends the image through the network and returns the bounding box coordinates, scores
and labels. These are then displayed in the image and stored in the folder “ṙesult”.

It is also possible to evaluate a video, by starting the script called “eval_video.py”. First,
the video gets split into different single images, which then get analyzed one by one. The
result is another video, where the images are put back into the stream. In the upper
left corner, the processing time for each frame is displayed, as can be seen in Figure 4.6.
Please note that since the input video is split into single images, the results may vary
from frame to frame. These qualitative results will be discussed in Section 5.2.2.
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Figure 4.5: This graph shows the different dataset combinations for each of the 15 training rounds, with
each dataset in a different color. The color for each dataset, as well as the exact number of images in
each set (not split by day/night), can be seen in the legend below the graph.

4.4 Data Handling
Four datasets were used in this master thesis: The German Traffic Sign Recognition
Database (GTSRD), VIsual PERception benchmark (VIPER), Berkeley Deep Drive 100k
(BDD), as well as recordings taken within the CarVisionLight project (CVL). While the
datasets themselves have been described in Section 3.2, the following sections will take
a look at the file structure, explain annotation files and present the annotation scripts
created for each dataset.

4.4.1 GTSRD
The training set of the German Traffic Sign Recognition Database contains one directory
per class, for over 40 classes. Each directory contains one CSV-file with annotations,
named “GT-<ClassID>.csv”. One image can contain several traffic signs, which are
annotated with a border of 10% (around 5 pixels), to allow for edge-based object detection
processes.
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Figure 4.6: Video processing example image. This image shows the result of a qualitative evaluation
performed on a video. The upper left corner displays the processing time. The boxes show the detected
objects, with a percentage showing the confidence.

For each image in the GTSRD dataset, annotations are provided in CSV-files, containing
the following information:

Filename, Width, Height, Roi.X1, Roi.Y1, Roi.X2, Roi.Y2, ClassId
00001.ppm, 1360, 800, 983, 388, 1024, 432, 40

The image “00001.ppm”, corresponding to the parameters above, can be found in Figure
4.7.

Within each file, “Width” and “Height” describe the scale of the image, not the objects
found within. “Roi” - the Region of Interest pixel locations - represents the corner
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Figure 4.7: Example of the GTSRD dataset, with one car and several street signs in a city environment
during day.

Figure 4.8: Example annotation of the GTSRD dataset, showing a street sign in a green bounding box,
with the corners denoted as (x1, y1) and (x2, y2).

coordinates of the bounding box, as can be seen in Figure 4.8. In the annotated file, the
value Roi.X1 corresponds to x_min, Roi.Y1 to y_min, Roi.X2 to x_max, and Roi.Y2 to
y_max. Finally, “ClassId” describes the class the object belongs to. Since this dataset
is only concerned with street signs, each class corresponds to one of the 40 street signs
selected for this dataset.

The script “gtsrd_annotation.py”, which automatically restructures the provided data
into the format required by YOLOv3, ignores the field “ClassId” but assigns them all
the same “Street Sign” class. In a first run - discussed in more detail in Section 5.3.1 -
these classes were kept individually for training, but this resulted in false positives, an
example of which is shown in Figure 4.9.

48



4.4. Data Handling

Figure 4.9: Example result of training the network with individual classes for traffic signs, tested on the
CVL test dataset. Several false positives were found, with a multitude of street signs being detected.

4.4.2 VIPER
The VIsual PERception benchmark (VIPER) dataset is split into training, validation
and test sets. Each subset contains images which were recorded in one of five different
environmental conditions (day, sunset, rain, night, snow). For this master thesis, only
night scenes were used. Each image was recorded at a resolution of 1920x1080. While
the dataset provides camera poses, semantic class segmentation labels and semantic in-
stance segmentation labels, for this use case, only 2D bounding boxe information was used.

The bounding box annotations are stored in a CSV file, where each row of the file
corresponds to a single object in the image. The format can be found below, the
corresponding example image can be seen in Figure 4.10:

instanceID, classID, x_min, y_min, x_max, y_max,
2, 24, 1009, 450, 1053, 478

For the 2D bounding box coordinates, no further transformations are needed. InstanceID
was not taken into account, since it encodes the recorded instance, as described by Kim
et al. [KWLK20], which was not of further interest for the CNN used in this master thesis.

The VIPER dataset contains 31 classes, from which only ten were chosen, since they
corresponded to the classes required for detection by the overarching CVL project [cvl].
The original class number is noted in parenthesis next to the class: traffic light (#13),
traffic sign (#14), person (#20), bicycle (#22), motorcycle (#23), car (#24), van -
labelled as car (#25), bus (#26), truck (#27), train (#29).
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Figure 4.10: Example from the VIPER dataset, showing a night scene with cars and a street sign.

The script “viper_annotation.py” requires the names of the folders which have to be
annotated as an additional parameter. This allows for the selection of different folders
with distinctive properties, like solely selecting night-scenes. This selection can then
be added to the script by stating the folder number next to the starting command, for
example: “python viper_annotation.py 008 009 010 011”. The script then takes the
corresponding CSV-files, adds the image path to the file - relative from the location of the
script, which has to be placed in the same folder as the data - selects the corresponding
class and adds the box coordinates as provided.

As mentioned before, after the images have been annotated, some boxes with size
zero can occur. Since the underlying data consists of simulated images, the system can
label boxes for objects where there should theoretically be an object, but in reality they
are too small to be detected. Therefore, the script “remove_zero_boxes.py” was written,
which should be executed immediately after “viper_annotation.py”.

4.4.3 BDD
For the Berkeley Deep Drive (BDD) dataset, two JSON-files for training and validation
are provided alongside with the images. These contain bounding box annotations of
10 classes: car, traffic sign, traffic light, person, truck, bus, bicycle, rider, motorbike, train.
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As an example, the JSON format for the image “b1c66a42-6f7d68ca.jpg” for one traffic
sign is as follows:

name: b1c66a42-6f7d68ca.jpg,
attributes: {

weather: overcast,
scene: city street,
timeofday: daytime

},
timestamp: 10000,
labels: [

{
category: traffic sign,
attributes: {

occluded: false,
truncated: false,
trafficLightColor: none

},
manualShape: true,
manualAttributes: true,
box2d: {

x1: 1000.698742,
y1: 281.992415,
x2: 1040.626872,
y2: 326.91156

},
id: 0

}
]

The corresponding image for this JSON file example can be seen in Figure 4.11. This
JSON file first shows the name of the image, the weather, scene it depicts, time of
day, followed by labels for each found object. These labels concern the occlusion and
truncation of the object, as well as the colour of the traffic light. These descriptions
are then followed by the coordinates of the 2D box values x1, y1, x2, y2, which encode
the corner pixels of the bounding box. These values were automatically generated by
the creators of the dataset [YXC+18] and contain several decimal numbers, which could
not be used any further and were therefore rounded up or down to the next full value,
depending whether it is a upper or lower corner.

The script “bdd_annotation.py” reads the JSON files for training and validation and
adds the data path, followed by the corresponding class and coordinates for the bounding
box (x1, y1) and (x2, y2).
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Figure 4.11: Image from the BerkeleyDeepDrive training dataset, depicting a street in a rural area.

4.4.4 CVL Data

The CarVisionLight (CVL) dataset was recorded at dusk and during night-time in the
countryside of rural Austria. The recordings contain over 50 videos, of which over 9k
images were annotated. While the recordings were originally videos, single images were
extracted, in order to provide the CNN with a training, validation and test dataset. The
videos were collected by the project partner ZKW, and annotated by TU Wien with an
annotation tool developed by Groh et al. [GSG20].

This annotation tool presented the annotation data in JSON format, an example of which
can be found below, with the corresponding Figure 4.12:

name: dataset/180409_Test37.avi/0001.png,
url: dataset/180409_Test37.avi/0001.png,
videoName: CVL1_000000,
attributes: null,
timestamp: 10000,
index: 0,
labels: [
{
id: 0,
category: traffic sign,
attributes: {
Occluded: false,
Traffic Light Color: [
0,
NA
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],
Truncated: false

},
manualShape: true,
box2d: {
x1: 762.1229462321161,
x2: 784.7505793281514,
y1: 620.8277516585634,
y2: 640.1168815109214

},
poly2d: null,
box3d: null

}
]

First, the name of the file to which the annotation belongs to is listed, followed by more
attributes belonging to the image like path (called url), time-stamp, and the name of
the original video. The next information relevant for the network to be trained concerns
the attribute “category”, which describes the bounding box annotations and can contain
three possible classes: person, car and traffic sign - the latter corresponds to the class
“street sign” in the trained network.

The script “cvl_annotation.py” first distinguishes between the different video names
(in the example above “180409_Test37.avi”), since every recording session can have
a slightly different resolution - they range from 1936 x 882 to 1936 x 938. Then, the
category “labels” is extracted from the JSON file and different values, including category
and box2d, are added in the format required for annotation.

4.4.5 Dataset Distribution
This section discusses the dataset distribution in more detail. The examination on how
the different datasets contribute to the final training, validation and test sets allows for a
deeper understanding on how the network was trained and ensures the reproducibility of
the results.

The distribution of day and night images in the previously discussed datasets (GTSRD,
VIPER, BDD, CVL) and their contributions to the final dataset (Final) can be seen
in Figure 4.13. Subfigure (a) shows the training dataset, with over 130k images in the
final set. The largest contributor of data is BDD, with a greater contribution of day
images. The other datasets consist exclusively of day (GTSRD) or night (VIPER, CVL)
images. The validation dataset in Subfigure (b) contains over 26k images in the final set.
These images were exclusively selected for validation to assess the models performance
and distinct from the training dataset. Finally, the test dataset, shown in Subfigure (c),
contains over 64k images, neither used for training nor validation. Images from this test
set were used for qualitative evaluation as well.
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(a) This image shows a street at night on country road in rural Lower Austria. A car and
street sign can be seen.

(b) Rural village in Lower Austria, with street lamps being lit, which significantly brightens
the scene.

Figure 4.12: Here are two sample images from the CVL dataset. They were captured during the same
acquisition drive for the training dataset.
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(a) Training dataset distribution

(b) Validation dataset distribution

(c) Test dataset distribution

Figure 4.13: Distribution of day and night images in the original datasets (GTSRD, VIPER, BDD, CVL)
and contribution to the final dataset (Final).

55





CHAPTER 5
Evaluation and Results

This chapter presents the results that were achieved by retraining the existing Convo-
lutional Neural Network (CNN) YOLOv3, by using different combinations of publicly
availably and self-recorded datasets, to enable object detection in night-scenes. The
recognition rates of different object classes, relevant for street-specific contexts, were
recorded and evaluated for each training cycle. We provide an in-depth view of the
evaluation process and compare the results for each training step. Section 5.1 presents
the evaluation setup, which distinguishes between the initial test-run and the fifteen
consecutive training sessions. Section 5.2 discusses the results of the evaluation process,
reviewing both qualitative and quantitative evaluation results. Finally, Section 5.3 pro-
vides the reader with a critical reflection on the work done within this master thesis, as
well as present an outlook on possible future works.

5.1 Evaluation Setup
Training and evaluation of the YOLOv3 network consisted of several phases, named
“phase 0-15”. The evaluation process started with “phase 0” - named so for being the first
evaluation run which would provide a baseline for the following training and evaluation
cycles. “Phase 0” evaluated the object detection rate of the unaltered YOLOv3 network,
which means the version of YOLOv3 which was pre-trained on the Microsoft COCO
dataset, as previously described in Section 3.1. In order to create baseline values against
which the results of the “phases 1-15” could be compared to, the unaltered CNN was
evaluated using the same evaluation methods and test-dataset used in the following
phases. As previously discussed in Section 4.4.5, the test dataset consisted of over 64k
images, with 24k depicting night- and 40k showing day-time scenes. As can be seen in
Figure 5.1, the test dataset was processed through the YOLOv3 network. Qualitative and
quantitative evaluations were done in order to create a baseline for future comparison.
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Figure 5.1: Pipeline of “phase 0”, the first evaluation phase. First, the test dataset is loaded into the
YOLOv3 network. The results are then evaluated and create a baseline for future comparison.

The following phases - “phase 1-15” - follow a more elaborate training and evaluation
structure, which can be seen in Figure 5.2. Each phase follows the same pipeline, split
into training and evaluation sessions. During each training session, one of fifteen possible
dataset combinations is used to retrain YOLOv3. The resulting network and the parame-
ters used are then stored for further evaluation. This newly trained network is assessed
using both qualitative and quantitative methods, and the results are stored as well.

The names “phase 1-15” correspond to the different dataset combinations which were
used for the training datasets. They are a composite of four distinct datasets: GTSRD,
CVL, VIPER, and BDD. A more comprehensive breakdown of these dataset combinations
can be seen in Figure 5.3. In total, fifteen distinct training phases were created, each
using a unique combination of these datasets. The initial four rounds used each dataset
individually, followed by subsequent rounds that incorporated various combinations of
the four datasets, culminating in fifteen distinct training datasets. The results of these
different training phases will be discussed in Section 5.2.

An early objective of the project was to evaluate a pre-existing Convolutional Neu-
ral Network (CNN) without any additional training, thereby establishing a baseline for
further work. The intention was to delve deeper into the intricacies of the existing CNN
and assess its applicability to the intended use case, therefore naming this first step
“phase 0”. As detailed in Section 4.2, the original YOLOv3 network, trained on the
Microsoft COCO dataset, was used for this phase. It was then evaluated using the test
dataset, with both qualitative and quantitative methods. Figure 5.4 shows two exemplary
result images. Subfigure (a) shows an example, where the untrained YOLOv3 network
produces satisfactory results for these daytime scenes, whereas some problems can be
seen Subfigure (b). While the traffic light in Subfigure (b) on the left side of the image
was detected, the traffic light on the right side, as well as all traffic signs were missed.

In addition to the day-time scenes shown in Figure 5.4, a CNN used for the final applica-
tion must be able to operate during the night as well, with only street lamps and the
cars headlights illuminating the scene. Therefore, the test-dataset consisted of both day
and night images - two exemplary results can be seen in Figure 5.5. In this example,
the “phase 0” CNN was unable to correctly detect objects under challenging lighting
conditions. Both the car and the street signs were overlooked by the object detection
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Figure 5.2: Pipeline for CNN development. The left box shows the Training Session, in which the dataset
is loaded into the CNN. Then, the CNN is retrained and the result is stored. This result is then sent
to the Evaluation (the right side of the image), in which each session is evaluated with qualitative and
quantitative methods. The results of each evaluation round are stored for further analysis.

Figure 5.3: This graph shows the different dataset combinations for each of the 15 training rounds, with
each dataset in a different color. The color for each dataset, as well as the number of images in each set
(not split by day/night), can be seen in the legend below the graph.

algorithm in Subfigure (a), a phenomenon attributable to the characteristics of the
training dataset. For example, the absence of the class “street sign” from the dataset
may explain its inability to detect it. Subfigure (b) shows an example of false detection,
with the back light of the front car being erroneously labelled as a traffic light.

“Phase 0” showed that while the pre-trained YOLOv3 network performed well on day-time
and bright city images, during night-time scenes, it struggled with object detection and
for example missed the street sign class. The results gained from this phase’s quantitative
analysis became the baseline, against which the results of the other phases were compared.
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(a) Image of cars driving on a highway in America.

(b) Image of a crossing in a town in Germany, showing cars, traffic lights and traffic signs.

Figure 5.4: Results from applying the pretrained YOLOv3 object detection network on two Cityscapes
example images.
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(a) Image from the self-recorded dataset (CVL). The car in the distance is highlighted by a red box to improve
visibility for the reader.

(b) Image from the VIPER dataset, showing a street during night with several cars.

Figure 5.5: Results from applying the pretrained YOLOv3 object detection network on two night-time
example images.
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5.2 Results and Discussion

This section delves into the results gained after retraining the YOLOv3 network using
the different dataset combinations. As explained in Section 5.1 and shown in Figure 5.3,
“phases 1-15” each correspond to a unique dataset combination from the four datasets:
GTSRD, CVL, VIPER and BDD. Each phase was subjected to the training and evaluation
pipeline, using both quantitative and qualitative methods. While the theory behind
these methods has been previously discussed in Section 4.3.2, this section will present
and discuss the results. In Section 5.2.1, the quantitative results will be discussed, by
showing the improvement that was achieved over all fifteen training rounds. In Section
5.2.2, the qualitative results will be shown, by providing the reader with an insight into
the different cases.

5.2.1 Quantitative Evaluation

As discussed previously in Section 4.3.2, the metric used for the assessment of the object
detection accuracy in this master thesis is Intersection over Union (IoU), with a threshold
value set at 0.6. Any objects identified with an IoU of 0.6 or higher were classified as True
Positive (TP) detections, while all other detections were categorized as False Positives
(FP). From these results, the mean average precision (mAP) was computed by dividing
the number of true positives by the total number of detected objects.

Beginning with “phase 0”, the mAP was calculated for each class individually, in order
to gain baseline values. This allows the comparison of the results after each phase. The
mAP values were stored for each run in a txt-file, which showed the IoU and mAP for
each class. The results were then evaluated manually by us, to see and discuss the various
changes. As a selected example, Table 5.1 compares the results of “phase 0” with those
obtained by using a combination of all datasets in “phase 15”.

It can be seen that in the first column titled “mAP, phase0”, six classes (Person, Car,
Bicycle, Rider, Motorbike and Traffic Light) had a mean Average Precision (mAP) over
50. However, the classes labeled as “Bus”, “Truck”, “Train”, and “Traffic sign” deviated
from this trend. Their under-performance in “phase 0” may be attributed to their sparse
representation in the COCO dataset, with traffic signs being entirely absent.

The second column of Table 5.1 titled “mAP, phase 15” shows an improvement of
the detection rate for individual classes at around 10%, with the two odd cases out
being the classes “Rider” and “Traffic Sign”. For the class “Traffic Sign”, the recognition
rate was improved by 81%, while “Rider” exhibits a decrease of 10%. We attribute
this improvement to the nature of the training datasets used. They contained over 66k
images recorded at night-time, which contain fewer images showing riders on motorbikes
or bicycles. Stationary motorbikes and bicycles, on the other hand, can still be found
during night-time, and were successfully detected and labelled.

62



5.2. Results and Discussion

Table 5.1: Classification results (mean average precision in %) obtained from “phase 0” and “phase 15”.
The results are split for each class, with the final line showing the results for all classes.

Class mAP, phase0 mAP, phase15
Person 61 70
Car 68 83
Bus 34 44
Bicycle 59 62
Truck 43 59
Train 31 43
Rider 61 51
Motorbike 52 63
Traffic light 59 79
Traffic sign 0 81
All classes 46.8 63.5

When comparing the improvement of mAP for all classes, an overall enhancement of
16.7% was achieved, starting from a detection rate of 46.8% for all classes in “phase 0”,
to a detection rate of 63.5% in “phase 15”. While the evaluations shown in Table 5.1
compare the results of “phase 0” with the final “phase 15”, the individual results for
each phase were noted after each evaluation session. These results can be seen in Table
5.2, and are visualized in Figure 5.6. Table 5.2 shows the mAP in % for each individual
phase, split for each class. The row “All classes” shows the combined recognition rate
per phase over all classes. The bottom row “Datasets” shows which datasets were used
for each training phase. Figure 5.6 visualizes the aforementioned table, one line in the
graph representing one class.

While a general improvement can be observed for the detection rates of all classes,
some cases - for example the class “Train” - fluctuate between different detection rates
with new dataset combinations. The decrease in the detection rate for the case “Rider”
can be attributed to a lack of training data, which is explicitely stated in the second case
description: “Case 2: Class “Rider” ”. Other specific use cases are highlighted in the
following case descriptions.

Case 1: Variations in Classes “Train” and “Person”

As visualized in Figure 5.7, the detection rates for the class “Train” vary for each round
between 29% and 43%. We attribute this to the nature of the datasets used for each
training round. If we take a look at “phase 1”, the detection rate of 0% can be ex-
plained by the composition of the GTSRD dataset: this dataset consists of images of
street signs, meaning the only detectable class is “Traffic Sign”. This can be observed for
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Figure 5.6: Detection results (mAP) in % shown for each class, split per training phase. Each class has a
different colour, which can be found in the legend below the graph.

all classes in “phase 1”. Here, all detection rates are 0, with the exception of “Traffic Sign”.

The detection of trains decreases from “phase 2” (37%) to “phase 3” (28%) and “phase
4” (27%). Taking a look at Table 5.2 and Figure 5.3, the datasets that contribute to
each phase reveal that “phase 2” used the VIPER training set, which consists of images
from the videogame GTA 5. Whereas “phase 3” consists of the BDD dataset - which
depicts streets in the San Francisco Bay area. The class “Train” can be found in this
dataset, but is less frequent than with the VIPER dataset. This is similar in “phase
4” with the CVL dataset, which faces the same issue with “Train” being one of the
classes that is less represented. This issue persists with each phase that uses either
the GTSRD, BDD or CVL dataset, resulting in lower results in phases 6, 7, 10 and 13.
Adding the VIPER dataset to one of these combinations results in a better detection
rate. Phases 10 and 13 have the same detection results, with “phase 10” being a combi-
nation of the BDD and CVL datasets, and “phase 13” additionally adding the GTSRD set.

Similar observations can be made for the class “Person”, as visualized in Figure 5.8. The
VIPER dataset contains less data on the class “Person”, when compared to the BDD
dataset. Similar arguments apply to the CVL dataset, with it being recorded during
night-time, with fewer people being present on the street during that time of day. These
dataset combinations result in lower detection rates in phases 4, 5, 7, 9 and 11, being
combinations of the aforementioned datasets. The inclusion of the BDD dataset improves
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Figure 5.7: Detection results (mAP) in % split by class and phase. The focus of this graph is the class
“Train”, shown in green, with each mAP shown for each phase.

the detection rates, which can be observed in phases 12, 13 and 14, which all contain the
BDD dataset.

Case 2: Class “Rider”

The class “Rider” is the only case where the detection declined during the training
process. As can be seen in Figure 5.9, phases 1, 2 and 5 show a detection rate of 0. This
is due to the fact that both the GTSRD and the VIPER dataset are missing the class
“Rider”. The reduction in the detection rate can be explained by the composition of the
datasets and the fact that fewer people ride their motorbikes and bicycles at night. With
less training data available, the class “Rider” becomes more difficult to detect. Overall,
a decrease of 10% of mAP can be observed. For future implementations, it could be
considered to combine the classes “Rider” with “Person” - depending on the final use
case.

Case 3: GTSRD Dataset

The GTSRD dataset only contains images showing German street signs. Therefore, the
only class a network trained with this dataset is able to detect, are different representations
of street signs. As Table 5.3 shows, if this dataset is combined with others, for example
in “phase 5”, the main value that improves is the one where the GTSRD dataset can
contribute - “Traffic Sign”. For most of the other phases, the values remain unchanged,
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Figure 5.8: Detection results (mAP) in % split by class and phase. The focus of this graph is the class
“Person”, shown in blue, with each mAP shown for each phase.

with the exception from “phase 14” to “phase 15”, which is discussed separately in Case
4.

When comparing phases 11 and 12, it can be observed that the differences in detection
rates are caused by the addition of the different third dataset - in this case CVL or
BDD. When combining all four datasets, an overall improvement can be seen, with the
exception of the class “Rider” as was discussed in “Case 2”.

While the addition of GTSRD to the training dataset does not result in a general
improvement of the detection rate, the improvement gained for the class “Traffic Sign” is
significant. Specifically for the use case of this master thesis, traffic sign recognition was
an important factor. The GTSRD dataset was added with this specific implementation
in mind, and while an overall improvement in detection rates could not be achieved,
there was no aggravation regarding detection rates. This can be seen in Table 5.3 when
comparing phase 14 and 15. When the training is done without the GTSRD dataset,
the detection rate for the class “Traffic Sign” decreases by 8%. As soon as this is added
again in “phase 15”, the detection rate of the class “Traffic Sign” improves by 10% to 81%.

This can also be seen in Figure 5.10. Here, the “Traffic Sign” class is emphasized,
with a blue highlight where the GTSRD dataset has been added. This graph once again
highlights the improvement that can be achieved by adding a dataset that was selected
for one specific use case.
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Figure 5.9: Detection results (mAP) in % split by class and phase. The focus of this graph is the class
“Rider”, shown in dark blue, with each mAP displayed for each phase.

Table 5.3: Classification results (mean average precision in %) obtained from phases 1, 2, 5, 11, 12, 14
and 15.

Class phase 2 phase 5 phase 11 phase 12 phase 14 phase 15
Person 46 46 49 68 70 70
Car 74 74 79 79 76 83
Motorbike 53 53 55 60 60 63
Bicycle 47 47 56 58 61 62
Truck 49 49 47 58 57 59
Train 37 37 36 41 42 43
Rider 0 0 37 52 51 51
Bus 38 38 39 41 39 44
Traffic Light 68 68 74 76 75 79
Traffic Sign 59 73 75 78 71 81
Datasets VIPER GTSRD GTSRD GTSRD VIPER GTSRD

VIPER VIPER VIPER BDD VIPER
CVL BDD CVL BDD

CVL
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Figure 5.10: Detection results (mAP) in % split by class and phase. The focus of this graph is the class
“Traffic Sign”, shown in light brown, with each mAP shown for each phase. The blue highlighted data
points shows where the GTSRD dataset was added to the training dataset.

Case 4: Phase 14 to 15

As can be seen in Table 5.3, the recognition rates for some classes improve from “phase 14”
to “phase 15”. The expected behaviour would be only the class “Traffic Sign” changing,
as the GTSRD dataset is the only one added to “phase 15” and as it only contains images
of traffic signs, but no other objects. But it can be observed that the classes “Car”,
“Motorbike”, “Bicycle”, “Truck”, “Bus” and “Traffic Light” improve as well.

An example of a related misclassification is shown in Figure 5.11. The traffic sign on the
left side of the image shares shape and brightness with the headlights of an oncoming
car. In “phase 14”, it therefore falsely labels the headlight of the car as a “Traffic Sign”,
missing the actual object “Car”. Once the GTSRD set is added to the training dataset in
“phase 15”, the CNN has more information about traffic signs, their possible forms and
occurrences. Therefore, it labels the oncoming car correctly as “Car”, as can be seen in
Figure 5.12. Figure 5.11 and Figure 5.12 both show the same cars, the car on Figure 5.11
is merely zoomed in for better visibility. This case shows that an improvement in other
classes can be achieved as well, even though the GTSRD dataset only contains data for
one specific class.
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Figure 5.11: The left image shows a traffic sign on the road. The image on the right side shows an
oncoming car being falsely labelled as “Traffic Sign”. This image highlights the similarity between a
traffic sign at night with the headlights of an oncoming car.

Figure 5.12: Oncoming car on a rural street in Lower Austria being classified as “Car”.
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5.2.2 Qualitative Evaluation

The second evaluation method, as described in Section 4.3.2, focuses on the subjective
observation of the object detection done by the CNN. For the purposes of this master
thesis, qualitative evaluation entails running the object detection algorithm of the Con-
volutional Neural Network (CNN) on an image that has not been previously used in
training, followed by a visual assessment of the resulting image. The identified objects
are superimposed on a replica of the original image, marked by bounding boxes, with the
detected class annotated above each box. This approach was adopted to provide the user
with means to evaluate the work beyond metrics such as mean Average Precision (mAP),
offering a visual depiction of the object detection process. Although qualitative and quan-
titative evaluations are discussed in separate subsections, they should not be considered
in isolation. Rather, these two evaluation methodologies were interwoven throughout
the process. As outlined in Section 5.1, training and evaluation of the YOLOv3 network
consisted of sixteen phases, named “phase 0-15”. The exact distribution for each phase
was shown in Figure 5.3. Each dataset combination was used to retrain the dataset and
afterwards, and the CNN was subject to both quantitative and qualitative evaluations.
This section concerns itself with the results given by the qualitative evaluation process.

The test dataset used for qualitative evaluation is composed of a combination of images
taken from the BDD, GTSRD, VIPER and CVL datasets. These images were not used
for training or validation. The exact image distribution was shown in Figure 4.13. As
described in Section 5.2.1, an improvement of 16.7% mAP was achieved, when comparing
the result of “phase 15” with the baseline “phase 0”. The visual representation of this
can be found in Figures 5.13 and 5.14. The first Figure 5.13 shows two images taken
from the test dataset, both depicting streets at different times of day. Subfigures 5.13
(a) and (b) show the results of “phase 0”, while (c) and (d) show the results of “phase
15”. Subfigures 5.13 (a) and (b) show that the CNN trained with the COCO dataset was
not able to detect any objects. With the “Street Sign” class completely missing from
the COCO dataset, this is an expected outcome. But “phase 0” also missed the car in
Subfigure5.13 (a), which was detected in “phase 15”, as shown in Subfigure 5.13 (c). This
can probably be attributed to the lighting conditions, since the COCO dataset is missing
images recorded at night-time and therefore has difficulty detecting the car in the distance.

Similar to the previously discussed figure, Figure 5.14 also compares the results of
“phase 0” (in Subfigures 5.14 (a) and (b)) with the results of “phase 15” (Subfigures 5.14
(c) and (d)). Here it can be observed that while a car in Subfigure 5.14 (a) was detected
in “phase 0”, the other cars, as well as the traffic light were missed. However, “phase
15” falsely classified one car in Subfigure (c) as “Truck”. We noticed that the “phase
15” CNN has an issue with falsely classifying cars as trucks. A possible explanation
is that the distinction between them becomes more difficult with cars growing in size
and the increasing numbers of SUVs on city streets. Subfigure 5.14 (b) shows that the
“phase 0” CNN is able to detect cars, traffic lights and people on the side-walk correctly,
with only the street sign on the right side missing, which is corrected in Subfigure 5.14
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Figure 5.13: Examples of object detection results for different images. Subfigure (a) and (b) were the
result of “phase 0”, while Subfigure (c) and (d) were the results of “phase 15”. While no objects are
detected in Subfigure (a) and (b), all objects are detected in Subfigures (c) and (d).

(d) (“phase 15”). It should be noted that these largely correct results were achieved for
images depicting day-time scenes. As previously mentioned, the COCO dataset only
shows object recorded during the day, with street-specific images depicting night-time
scenes completely missing from the dataset.

The final “phase 15” CNN was not solely evaluated on images from the test dataset.
Given that the intended application of the CNN was to function in a vehicle navigating
live traffic and processing a real-time video feed, the network was also assessed using
videos. These videos depicted various rural roads in Upper Austria at different times
of the day. As an example, Figure 5.15 demonstrates the object detection capabilities
of the network when applied to these videos. It highlights the network’s proficiency in
identifying objects under varying lighting conditions and also displays the confidence
value associated with each detected object. To facilitate the processing of these videos,
the network segmented them into individual frames and applied the object detection
algorithm to each frame. The time taken to analyze each frame, measured in milliseconds
(ms), is displayed in the upper left corner of the frame to ensure real-time applicability.
The outcomes of this video processing are detailed as follows: Subfigure 5.15 (a) depicts
a country road at dusk where one traffic sign is detected with a confidence of 97.03%.
Subfigure 5.15 (b) illustrates a highway at night with two trucks (confidence values of
98.63% and 37.51%) and a car (56.97%) being detected. Subfigure 5.15 (c) presents a
village during the day where several cars (confidence values of 96.36%, 99.30%, 85.19%,
and 96.64%) and a person (93.59%) are detected. Lastly, Subfigure 5.15 (d) portrays a
country road at night with one traffic sign detected (confidence of 96.85%).
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Figure 5.14: Examples of object detection results for different images. This graph compares the results of
“phase 0” in Subfigures (a) and (b) with the results of “phase 15” in Subfigures (c) and (d).

While the visual results show an overall improvement, one special case requires dis-
tinct discussion. To provide insight into the functionality of the CNN as well as discuss
the individual training steps, the following case description highlights this specific case
that occurred during training.

Case: Street Sign Recognition

Since “phase 0” was missing the “Traffic Sign” class completely, it was decided to train
the network using the GTSRD dataset in “phase 1”. The GTSRD dataset differentiates
between 40 different street sign classes, which were kept unchanged for the retraining
and evaluation “phase 1”. As can be seen in Figure 5.16, training the CNN with only the
GTSRD dataset resulted in a lot of false positives. It falsely detected the whole image as
different street signs, with not being able to detect the actual street signs.

In order to see if this error would persist, the network was retrained by adding the CVL
dataset. The issue of false positives persisted, but the addition of the CVL dataset
enabled the CNN to detect some traffic signs. Therefore, we decided to merge the over
40 different traffic signs classes from the GTSRD dataset into one singular “Traffic Sign”
class and run the evaluation again. This resulted in Figure 5.17. As can be seen, the
system was now able to detect various traffic signs (but not the car).
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Figure 5.15: Examples of object detection results of the final network under different lighting conditions,
with computed confidence values. The images shown were taken from a CVL test video. The confidence
values are displayed above each object.

From this on, only one “Traffic Sign” class was available in the CNN. The system was
retrained, with “phase 7” being a combination of the CVL and GTSRD dataset, which
resulted in Figure 5.18. Now, aside from detecting both traffic signs, the network was
able to detect the car as well. Merging different traffic sign classes into one singular
“Traffic Sign” class, produced satisfactory results. for the use case of this master thesis.

5.3 Critical Reflection and Future Work
This section is dedicated to a critical reflection of the work done for this master thesis
and investigates open questions for future implementations.

5.3.1 Street Conditions
Upon examining the training data, it can be seen that there is a lack of data depicting
streets covered in snow. While there are plenty of images captured during night-time and
while raining, we advocate for the future inclusion of snow scene images in the training
dataset.
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Figure 5.16: Example of false positive object detection for different traffic sign classes. The whole image
was labelled as different street signs, while the street signs and car in the image were not found.

Figure 5.17: Example of object detection from “phase 1”, after merging the 40 different traffic sign classes
into one class “Traffic Sign”.

Additionally, there exists a bias towards American street scenes in the training datasets
used, particularly those from the Bay Area in California. Except for the German Traffic
Signs Dataset (GTSRD), the two largest datasets, BDD and VIPER, predominantly
feature images depicting American streets. We suggest addressing this bias and possibly
adjusting the training dataset accordingly in future studies.
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Figure 5.18: Example of a result gained from “phase 7”, which combines the GTSRD and CVL datasets.
Both traffic signs and the car are found and labelled correctly.

5.3.2 Rider Detection
As presented in Section 5.2.1, rider detection was the sole category that exhibited a 10%
decline in mAP. This could possibly be attributed to the characteristics of the dataset
used for training the CNN, which contained night-time images. Consequently, there were
fewer riders on motorbikes and bicycles, making them more challenging to detect. In
contrast, stationary motorbikes and bicycles (without a rider) were considerably more
prevalent and therefore easier for the CNN to detect.

5.3.3 Distinction Car and Truck
The CNN was trained to differentiate between the two classes “Truck” and “Car”. Partly
due to the increasing prevalence of SUVs on the roads, the distinction between a truck
and a car can sometimes be challenging, particularly when the car is at a distance. An
example of this can be seen in Figure 5.19. This could raise a broader discussion about
whether this differentiation between a truck and a car is always necessary or beneficial.

5.3.4 Video Detection
When dealing with object detection in videos, one option is to process each frame
individually. Consequently, an object that is accurately detected in one frame might
be missed in a following frame. This phenomenon can be observed in Figure 5.20. In
Subfigure 5.20 (a), the traffic light situated above the bus on the right-hand side is
overlooked, while it is correctly detected and labelled in Subfigure 5.20 (b). To mitigate
this issue, it would be beneficial to incorporate additional information during processing
individual frames. For instance, storing the locations of detected objects and updating
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Figure 5.19: Night scene, depicting a parked car on the right hand side. The object detection algorithm
labels the object as a “truck”.

them with a movement vector could prevent them from being lost in the next image. On
the other hand, each additional computational and data processing step could potentially
slow down the system, thereby limiting the real-time applicability of the CNN. Bearing
these considerations in mind, it will be a subject for future research to delve deeper into
potential adaptations.

5.3.5 False Positives
The final topic of discussion concerns the occurrence of false positives, which often arise
in object detection systems. However, their analysis can sometimes offer valuable insights
into the systems operation and potentially yield solutions to prevalent issues.

During qualitative analysis, we sometimes observed the misidentification of an oncoming
vehicle’s headlights as a street or traffic sign. Figure 5.21 provides an example of such
a scenario. In Figure 5.21, the vehicle’s left headlight is falsely classified as a traffic
sign with a confidence level of 81.44%, indicating a relatively high degree of certainty
from the network that the detected object is a street sign. We observed that street signs
sometimes bear a striking resemblance with an oncoming car’s headlights. This issue
can potentially be mitigated by incorporating contextual information into the network.
Additionally, integrating information about the distance from the ground could further
enhance the system’s accuracy and prevent such misclassification in the future.
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(a) One frame taken from a test video. It depicts a city street in the evening.

(b) A second frame, taken from the same test video as Subfigure (a). This image was taken a few frames after the
one depicted in Subfigure (a), whereby the person next to the bus and one traffic light were not detected.

Figure 5.20: Example images from running the object detection CNN on a test video by CVL. While
depicting the same streets a few frames apart from each other, slightly different objects are detected in
each frame.
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Figure 5.21: Image showing a car with one of the front headlights being detected as a traffic sign with
81.44% accuracy.

Another common error concerns reflections on the wind-shield. The camera’s placement,
which is behind a glass surface that reflects incoming traffic, results in the creation of
unwanted artefacts. These artefacts may subsequently be misclassified, as depicted in
Figure 5.22. In this example, the car is also incorrectly classified due to the distortion of
the entire object. Such an error can be mitigated by adjusting the camera’s placement to
eliminate unwanted reflections as far as possible. It may also be necessary to incorporate
contextual information, as also indicated in the previous example. However, it is important
to consider that the real-time applicability of the system may be compromised as a result.
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Figure 5.22: Reflections of an approaching car being wrongely classified as traffic lights. The left headlight
is misclassified as the complete car.
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CHAPTER 6
Conclusion

The aim of this master thesis was to train the Convolutional Neural Network (CNN)
YOLOv3, to enable it to detect objects in night-time traffic scenes. The development
process started with the selection of the classes and matching datasets for this task,
which were gradually introduced to the training set. This resulted in fifteen distinct
training phases, each of which was evaluated individually. While the task of retraining
the YOLOv3 network was rather straight-forward, the selection of the datasets presented
itself to be more challenging. Since most publicly available datasets have an inherent
bias towards day-time scenes, the first step was to find suitable datasets that represent
night-time scenes. Aside from introducing virtual data from the videogame GTA5, we
also added self-recorded data, which enabled the network to detect objects more reliable.
Overall, we observed a 16.7% improvement between the initial and final training outcomes.
Notably, the classes “Car”, “Traffic Light”, and “Traffic Sign” achieved detection rates
of 80% or higher. Each training session was followed by an evaluation of the current
training phase. Initially, we started with visual evaluation, which quickly proved itself to
be not sufficient. Therefore, we split the evaluation into “quantitative” - analysing the
detection rates, recall and precision - and “qualitative” - evaluating the results based
on visual criteria. Each evaluation method provided information for the system: first,
the selection of the datasets and after the selection was done, the improvement of the
detection rates of each phase. There, we were able to find that the introduction of a
dataset only containing traffic signs, improved the detection rate of other classes (“Car’,
“Truck”, “Bus” and “Traffic Light”) as well. Introducing a dataset only depicting one
type of objects enabled the network to distinguish between - for example - a traffic sign
and an oncoming car at night, which due to their shape and brightness can easily be
confused.

While this trained network is able to detect objects during day-time as well as night-time
scenes, there are still open issues to be tackled in future implementations. First, the
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training data lacks images depicting snow, which should be introduced in future imple-
mentations. The largest issue that still has to be tackled in future implementation is the
detection of false positives. The headlights of an oncoming car are often falsely classified
as traffic signs. While we were able to improve this error rate with the introduction of a
street sign-specific dataset, the issue can also potentially be avoided by taking additional
spatial information - like the distance from the bottom of the street to the car’s headlight
- into account. The final issue was the placement of the camera in the car itself. If the
camera is placed behind the windshield or next to the headlights, the glass can distort
the oncoming image and create unwanted artefacts. Camera placement should therefore
be one of the first issues to consider for future implementations. In conclusion, while the
training process was tailored to our specific use case, we were able to gain information on
which datasets should be used and how they should be combined to allow for successful
object detection in night-scenes.
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Overview of Generative AI Tools
Used

No generative AI tools were used in creation of this work.
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