
Utilizing Phonetic Similarity for Cross-source and
Cross-language Toponym Matching - a Benchmark
and Prototype
Tomer Sagi

Aalborg University

Moran Zaga
University of Haifa

Sinai Rusinek
University of Haifa

Marcell Richard Fekete
Aalborg University

Johannes Bjerva
Aalborg University

Katja Hose
TU Wien

Research Article

Keywords: Toponym Matching, Multi-lingual, Grapheme to Phoneme, Transliteration

Posted Date: March 22nd, 2024

DOI: https://doi.org/10.21203/rs.3.rs-4136375/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-4136375/v1
https://doi.org/10.21203/rs.3.rs-4136375/v1
https://creativecommons.org/licenses/by/4.0/

Utilizing Phonetic Similarity for Cross-source and
Cross-language Toponym Matching - a Benchmark

and Prototype

Tomer Sagi1*, Moran Zaga2, Sinai Rusinek2, Marcell R. Fekete1,
Johannes Bjerva1, Katja Hose1,3

1*Department of Computer Science, Aalborg University, Denmark.
2e-Lijah Lab, University of Haifa, Israel.

3Department of Informatics, TU Wien, Austria.

*Corresponding author(s). E-mail(s): tsagi@cs.aau.dk;
Contributing authors: mzaga@staff.haifa.ac.il; sinai.rusinek@gmail.com;

mrfe@cs.aau.dk; jbjerva@cs.aau.dk; khose@cs.aau.dk;

Abstract
The writings of one ancient civilization often overlap in time and space with
others. Many of these sources comprise unstructured text in ancient languages,
causing scholars studying these civilizations to be siloed, often relying on sources
in specific languages. Most recent efforts to extract structured information from
historical scripts into place (toponym) and people databases (prospographies)
have followed this pattern, focusing on one civilization and selected sources. The
path to creating a common database runs through aligning names or toponyms
between sources from disparate languages utilizing different scripts. Existing
multi-lingual orthographic (string-based) comparison often relies on translitera-
tion to a common script (Latin/English). Transliteration often creates multiple
options and even more confusion. However, when integrating sources that over-
lap in space and time, the languages often share a common phonetic background.
This commonality may prove beneficial. In this work, we present a benchmark
for comparing toponyms from two linguistically and culturally related languages,
namely Hebrew and Arabic. We provide a benchmark comprised of a set of
dataset pairs created from historical sources written in Medieval variants of these
languages, later historical Gazetteers and a modern dataset curated from Wiki-
data. We empirically evaluate several toponym comparison approaches over the
benchmark: transliteration to a common script, direct transliteration, and pho-
netic comparison using a common phonetic representation. We discuss the results
and the limitations of the various methods and outline future work.

1

Keywords: Toponym Matching, Multi-lingual, Grapheme to Phoneme, Transliteration

1 Introduction
Studying ancient civilizations requires specialization in the language, cultural back-
ground, and even specific scripts used in the period and geography under study.
Scholars must learn how to read texts in various ancient, often derelict languages, writ-
ten in scripts that are not only diverse but also archaic. This linguistic diversity poses
a significant challenge, as it leads to a compartmentalization of academic efforts, with
researchers tending to specialize in sources from specific languages or scripts. This
specialization often results in silos of knowledge that are difficult to cross-reference
and integrate, thus overlooking the interconnected nature of the studied civilizations,
especially those that existed contemporaneously and geographically proximate to each
other. Thus, the ability of scholars from disparate languages and cultural focuses to
collaborate over shared data is severely limited. A scholar in Arabic literature of the
Middle Ages will be severely challenged when attempting to incorporate information
and even raw data from repositories in Hebrew, even though they are from the same
period and may substantially overlap in the places mentioned and events referenced.
Recently, there have been several cross-lingual reconciliation efforts to create shared
repositories for toponyms (place names) and names of people, such as the Pleiades
project [1], the World Historical Gazzetteer [2], and the Historical Index of the Me-
dieval Middle East [3]. However, many of these attempts are hampered by the lack
of robust automated tools for aligning place names across languages and benchmarks
to test these over. Moreover, machine-learning-based approaches are gaining much
traction and impressive results over modern languages with a wide base for training
and testing resources available to them. However, no such capabilities are available
for ancient languages, such as Ancient Hebrew and ancient Arabic.

A critical step in overcoming these challenges lies in aligning and comparing names
and places (toponyms) across different sources and languages. This task is particularly
challenging when dealing with languages that utilize distinct scripts. The conven-
tional method of multi-lingual orthographic comparison often relies on transliterating
these texts into a common script, typically Latin or English. However, this approach
has its drawbacks, as transliteration can lead to multiple interpretations and further
confusion, especially when dealing with ancient variants of languages.

In light of these challenges, our research focuses on a novel approach to compar-
ing toponyms from two linguistically and culturally related languages: Hebrew and
Arabic. Both languages, with their Semitic roots, share a common phonetic back-
ground despite their different scripts and historical evolutions. We posit that this
phonetic commonality can be leveraged to develop more effective methods for toponym
comparison.

In this work, we present our initial foray into the complex problem of cross-lingual
toponym matching. We present a new benchmark comprised of place pairs from two
different geographical sources, originally in two different ancient languages (Hebrew

2

and Arabic), overlapping in space and time. We investigate the viability of two ap-
proaches towards cross-lingual toponym matching. The first utilizes transliteration
rules between the two languages to perform a direct orthographic comparison in one
or the other language. The second approach maps both scripts into a phonetic repre-
sentation, specifically the International Phonetic Alphabet (IPA), which allows for a
comparison based on phonology (speech sounds) rather than orthography.

We empirically evaluate these approaches both on our proposed benchmark and
on a synthetic benchmark generated by mining the labels of toponyms in modern-
day versions of these languages, i.e., modern Hebrew and modern standard Arabic
from wikidata. We thereby make the following contributions: (1) Direct Translitera-
tion method between Arabic and Hebrew; (2) Rule-enhanced grapheme to phoneme
model for Hebrew and Arabic Toponyms; (3) Wikidata-based curated toponym com-
parison benchmark; (4) Set of matched toponym datasets from historical sources in
related Semitic languages; (5) Phonetic-based toponym comparison method; and (6)
Empirical evaluation of three basic approaches to toponym matches, namely - direct
transliteration, transliteration to a common script, and phonetic comparison using
IPA representations.

The rest of the paper is structured as follows. In Section 2 we review related work
in the field of automated historical and multi-lingual toponym matching. In Section 3
we introduce our benchmark dataset and the synthetic dataset mined from wikidata.
In Section 4 we detail the matching methods using transliteration and grapheme to
phoneme conversion. Section 5 presents the experiments we performed and the results
obtained and discusses them. We conclude in Section 6.

2 Related Work
Several works have examined the efficacy of different string-based distance metrics
for toponym matching. The most relevant of these is the work by Recchia and Louw-
erse [4], which performed a comprehensive comparison between 21 different metrics
on datasets extracted from the Geographic Names Server [5]. The datasets contain
romanized toponyms from 11 countries, and the toponyms were compared with their
variants used in the same country. To the best of our knowledge, our work is the first
to present a cross-language benchmark of Semitic languages and the first attempt
to compare phoneme-based to transcription-based methods using direct comparison
rather than through romanization.

Joshi et al. [6] utilize transliteration methods to power a cross-lingual toponym
search engine. However, they do not attempt to match the toponyms to each other
as we do here, nor do they handle historical data.

Aligning toponyms across large geographical databases, a task also known as en-
tity alignment, has been attempted using various methods (see review [7]). However,
none of these methods have used a matched cross-language benchmark to allow direct
matching rather than through the romanized labels. Furthermore, to our knowledge,
this work is the first to present such a benchmark for historical sources in the Mid-
dle East rather than modern place names. Geographical entity alignment algorithms
use various types of methods, including textual, semantic, structural, spatial, and

3

recently AI-based (e.g., [8]). In this work, we focus on textual methods, often em-
ployed as part of larger solutions [9]. Specifically, we suggest two methods for direct
comparison between related languages, showing them superior to methods relying on
Romanization in this setting.

Several entity alignment benchmarks have been published in the past, mostly in
the business (e.g., [10]) and web (e.g., [11]) domains. However, toponym alignment
benchmarks are few and far between. General cross-lingual entity alignment (e.g.,
[12]) benefits from the fact that most entities, such as products, organizations and
events, have descriptive labels and other properties (e.g, price, weight) that can be
translated or compared. Toponyms, especially ones extracted from historical sources,
have sparse information, often only the name of the place, the general geographical
area, and some type information (river/city). Thus, toponym matching relies heavily
on transliteration and orthographic comparison [13].

There are a few examples of same-language historical toponym-matching datasets.
For example, Hastings et al. [14] align place names in English from recent USA his-
tory. The few examples we are aware of for cross-lingual historical toponym matching
efforts are for places extracted from Dutch-German shipping maps ([15]) and the com-
prehensive World Historical Gazetteer (WHG) [2], which collects toponym data from
many different scholars. With respect to entity alignment, WHG allows the user to
perform exact match orthographic comparisons between a dataset’s toponym labels
and external sources such as Wikidata and GeoNames. However, datasets in the WHG
are not matched with each other, and thus do not enable scholars to enrich each other
with information from sources of other languages and cultural backgrounds. Here,
we present a benchmark enabling cross-cultural toponym matching and evaluation of
direct cross-lingual methods.

3 A Cross-lingual Semitic Toponym Matching
Benchmark

In this section, we present our benchmark, comprising multiple datasets matched
against each other in pairs. We shortly describe each dataset and comment on the
prospect of finding matches between them.

We utilized four distinct datasets, two in Arabic and two in Hebrew. The initial
Arabic dataset is a structured adaptation of Kitāb Mu’jam al-Buldān (The Countries
Dictionary Book)[16]. This lexical masterpiece, authored in the early 13th century
by the Muslim geographer Yāqūt al-Ḥamawī, provides a comprehensive account of
various locales, predominantly within the Muslim world. The content encompasses
diverse elements such as types of places, administrative hierarchies, geographical rep-
resentations, and historical events. In a previous study, we employed a rule-based
extraction approach to construct a systematically organized database containing many
descriptive entities related to these places. Given the extensive nature of the lexicon,
we opted to categorize the places based on geographical regions for more manageable
analysis and presentation. The second Arabic dataset is sourced from the al-Ṯurayyā
Project [17]. Extracted from the ”Atlas Du Monde Arabo-Islamique a I’Epoque Clas-
sique: IXe-Xe siècles” (The Arab-Islamic World and Classic Europe Atlas: 9th-10th

4

Centuries) by Georgette Cornu[18], this database comprises over 2,000 toponyms. The
dataset includes place names presented in both Arabic and Latin letters, accompa-
nied by information on place types and, at times, a textual description of the location.
The authors of the dataset employed a distinctive transliteration system characterized
by a ”one-to-one letter representation, with every Arabic letter transcribed distinc-
tively.” [17]. In keeping with our methodology applied to Yaqut’s gazetteer, we parsed
the al-Ṯurayyā dataset based on regional categorizations that align with our existing
datasets. The first of the two Hebrew datasets is a list of Hebrew place names from
the Medieval book of Travels of Benjamin of Tudela, composed in the 1170s. The text
was digitized and annotated, and the places were geo-referenced for the building of the
TraveLab tri-lingual digital edition TraveLab project [19]. As the main Hebrew text,
the 1840 Hebrew print edition by Adoph Asher[20] was used, but variants were added
from the aligned editions of both Arabic and English Translations and other Hebrew
manuscript and print witnesses, which present a dynamically changing tradition of
place naming. Though small (306 place entities), this dataset is closer in time to the
Medieval modern sources, and though it does entail places from a part of Benjamin’s
route in areas outside the Muslim world, there is still much overlap with the rest of
his route. The second, much larger Hebrew collection is Kima project1, a gazetteer for
historical and contemporary place names in languages written in the Hebrew script.
The gazetteer provides a stable and shared reference for linking place names in dig-
itized resources and documents and, where possible, attestation for the uses in the
toponyms. Being mainly based on Hebrew print, its sources are predominantly early
modern and modern. From Kima, we selected the toponyms from modern Spain, the
countries of North Africa, and the Middle East that would be relevant to match the
Arabic datasets.

Table 1 Dataset Pairings and Matches

Pairing Dataset 1 (size) Dataset 2 (size) #Matches

1 Yaqut - Andalus/Magreb (484) Kima - Andalus/Magreb (559) 28
2 Yaqut Al-Sham (687) Kima - Al-Sham (1899) 30
3 Kima - Al-Sham (1899) Thuraya - Al-Sham (291) 21
4 Tudela (306) Althurayya (2241) 18
5 Damast (447) Tudela (306) 32
Table 2 The five dataset pairs used in the provided benchmark and the number of
matches found between each pair.

Table 2 summarizes the pairs of datasets compared in this benchmark. For each
dataset, the number of places is mentioned in parentheses. for example, the Tudela
dataset contains 306 places. Some of the datasets are regional subsets of the original
dataset. For example, when comparing Yāqūt and Kima in dataset pair number two,
we do this within the region of Al-Sham (The Levant, greater Syria), where these
datasets contain 687 and 1899 places, respectively. We identified 30 exactly matched
places out of 1,304,613 possible matches. We also compared Yāqūt and Kima datasets

1https://data.geo-kima.org/

5

https://data.geo-kima.org/

within the regions of Andalusia and Maghreb, resulting in 28 matched locations. We
compiled the exact matches by running our tool using various combinations of its
matching algorithms (see Section 4) and different thresholds and manually reviewing
the identified matches. Verification was done by scholars familiar with the respective
datasets. However, we do acknowledge that some of the possible matches may have
been overlooked as it is not feasible to manually review over a million possible combi-
nations of places. We invite future users of this benchmark to submit matched pairs
that we may have overlooked.

4 Toponym Matching Methods
In this section, we detail our toponym matching methods, developed for direct com-
parison between closely related languages. We first detail our transliteration-based
method (Section 4.1 followed by our phoneme-based method (Section 4.2.

4.1 Transliteration
It is common practice, in toponym matching, to transliterate or transcribe both to-
ponym labels to Latin/English letters. The resulting labels are often referred to as
Romanized labels (e.g., [4]). Some of these transliteration/transcription methods may
supplant standard Latin script with diacritics to signify letters and sounds that do
not exist in English. For example, many methods (e.g., [21], [22]) use an accented ī
to signify the Arabic letter ي (Ya). This may cause issues for edit-distance metrics
such as Levenshtein [23] which consider this letter to be completely different from the
regular i, which is used to transliterate the comparable Hebrew letter י (Yud). There-
fore, we created a direct transliteration library that transcribes Arabic and Hebrew
scripts using a rule-based linguistic-aware algorithm. The library is available as open-
source code [24] and as a python package [25]. The library employs simple one-to-one
translation tables where no extra rules are needed and more elaborate rule-based
transcriptions where the transliteration differs according to letter position and other
contexts. For example, the Hebrew letter ה (Heh) would normally be transliterated toه (Ta), but if it is at the end of the word, to ة (Ta Marbuta). The library also gener-
ates multiple variants when the transcription has unsolvable ambiguity. For example,
a ד (daled) letter in Hebrew may be transliterated into both د (dāl) and ض (ḍād).
The user may subsequently choose which variant to use. We arbitrarily chose the first
generated variant in this work for consistent experimental results. In the experiments
performed, we employ the Jaro [26] and Levenshtein [23] distance metrics, defined as
follows.
Definition 1 (Jaro Distance Metric). Given two strings s1 and s2, the Jaro similarity
score, J(s1, s2), is calculated using the following formula.

J(s1, s2) =
1

3

(

m

|s1|
+

m

|s2|
+

m− t

m

)

Where m is the number of matching characters (two characters from s1 and
s2 are considered matching if they are the same and not farther apart than

6

max(len(s1), len(s2))/2 − 1), t is half the number of transpositions (a transposition
occurs when the same character appears in both strings but in different orders), |s1|
and |s2| are the lengths of the strings s1 and s2, respectively. The Jaro distance is
then defined as 1− J(s1, s2).
Definition 2 (Levenshtein Distance Metric). The Levenshtein distance between two
strings, a and b, is defined as the minimum number of single-character edits (in-
sertions, deletions, or substitutions) required to change one string into the other.
Formally, the distance L(a, b) can be defined recursively as follows:

L(a, b) =







































|a| if |b| = 0,

|b| if |a| = 0,

L(tail(a), tail(b)) if head(a) = head(b),

1 + min











L(tail(a), b),
L(a, tail(b)),
L(tail(a), tail(b))

otherwise.

Here, |a| and |b| denote the lengths of strings a and b, respectively; tail(S) denotes
the string S without its first character, and head(S) denotes the first character of
string S.

4.2 Grapheme-to-Phoneme Conversion
We employ Grapheme-to-Phoneme (G2P) conversion and subsequently apply phonetic
distance measures as an alternative approach to cross-lingual toponym matching. This
allows to take into consideration the fact that phonemes, i.e., speech sounds (e.g., con-
sonants and vowels) do not differ from each other to the same extent. Contemporary
phonological theory characterizes phonemes based on phonological features, including
phonation, airstream mechanism, and manner and place of articulation [27]. When
language change distances the phonology of otherwise related languages like Arabic
and Hebrew from each other, it is more common for only a subset of phonological
features to diverge. G2P and phonetic distance measures allow a more accurate and
fine-grained comparison between toponyms than simple transliteration.

We use the g2ps library2, part of the LanguageNet project3, as our G2P con-
version tool. This is due to its coverage in our target languages of English, Hebrew
and Levantine Arabic compared to other G2P tools, which are not compatible with
all these languages or do not provide truly phonemic transcription4. Training lexi-
cons provided by g2ps can be used to train Phonetisaurus5, a weighted finite-state
transducer on mappings between graphemes and corresponding phonemes [28]. We
augment this transducer with a series of sensible post-processing rules defined to en-
able more accurate transcriptions. We examine the contribution of these rules to the
matching accuracy in Section 5.

2https://github.com/uiuc-sst/g2ps
3http://www.isle.illinois.edu/sst/research/darpa2015/index.html
4See https://github.com/topics/grapheme-to-phoneme
5https://github.com/AdolfVonKleist/Phonetisaurus

7

https://github.com/uiuc-sst/g2ps
http://www.isle.illinois.edu/sst/research/darpa2015/index.html
https://github.com/topics/grapheme-to-phoneme
https://github.com/AdolfVonKleist/Phonetisaurus

We compare the resulting phonemes using the distance module of the PanPhon
library [29]6. The library converts input phonemes (represented using IPA symbols)
into two possible representations: Dolgopolsky primes [30] and phonological feature
vectors. It also contains various distance measures based on edit distance, i.e., the
number of edit operations required to transform one string to another. Dolgopolsky
primes are groupings of individual phonemes into distinct sound classes with categories
representing labial obstruents (e.g. /p/ and /b/), laryngeals (e.g. /h/ and /H/), and
vowels (e.g. /e/ and /@/). Once the phonemes are assigned to their corresponding
prime, the resulting sequences can be compared using Levenshtein distance. The
drawback of Dolgopolsky primes is that they assign phonemes into mutually exclusive
categories, thus not directly comparing phonological features. There is, for instance,
a separate category in Dolgopolsky primes for coronal fricatives, coronal affricates,
and other coronal obstruents, sounds that are obviously similar in their manner of
articulation.

On the other hand, phonological feature vectors represent phonemes directly us-
ing abstract phonological features linguists break them down to. These may refer to
articulatory features, i.e., how a sound is formed, including categories such as lateral,
nasal, voiced, or labial among all. Additional phonological features express the con-
sonantal nature of a sound, or its syllabicity7. Features values are encoded as either
positive, negative, or unspecified. All IPA symbols can be broken down into these
feature vectors, and the library contains various distance measures that can operate
on these vectors, including feature edit distance, Hamming feature edit distance, and
weighted feature edit distance. These distance measures differ in the associated cost of
feature edits. The first two assign fixed costs to changing any features, while weighted
feature edit distance considers that certain sound changes are more common cross-
linguistically than others. For instance, voicing and devoicing a consonant from /p/
to /b/ or /g/ to /k/ is extremely common, as is the lengthening and shortening of
vowels. The low cost of changing these phonological feature values reflects this. On
the other hand, making a continuant, like an /s/ sound, into a non-continuant, such
as /t/ or vice versa, has a significantly higher cost, modeling how unlikely this sound
change is.

Toponym matching across related languages, such as Hebrew and Arabic, might
benefit greatly from considering how close the individual sounds to each other are
phonologically. When using an appropriate similarity threshold, we hypothesize
that phonologically-based toponym matching might improve on merely string-based
approaches.

5 Experiments
In the following Section, we perform two experiments. In the first experiment
(Section 5.1). We empirically evaluate the performance of our transliteration and
phonetic methods over our benchmark. We perform toponym matching and report

6https://github.com/dmort27/panphon
7The full range of phonological features included in PanPhon can be found at https://github.com/dmort27/

panphon/tree/master#ipa-character-databases-ipa_basescsv-and-ipa_allcsv.

8

https://github.com/dmort27/panphon
https://github.com/dmort27/panphon/tree/master#ipa-character-databases-ipa_basescsv-and-ipa_allcsv
https://github.com/dmort27/panphon/tree/master#ipa-character-databases-ipa_basescsv-and-ipa_allcsv

on the performance of our transliteration-based and phonetic-based methods on this
benchmark.

In a second experiment (Section 5.2], we perform a more detailed phonetic and
orthographic distance analysis. We do so by comparing the transliteration-based
and phonetic-based metrics with state-of-the-art string-based metrics over a large
and diverse dataset, namely - Wikidata toponyms in modern variants of Arabic and
Hebrew. We perform the comparison using different distance metrics.

5.1 Toponym Matching over Historical Dataset Pairs
5.1.1 Setup and Metrics
Toponym matching experiments were performed using our prototypical MEHDIE[31]
toponym matching tool. Normally, MEHDIE employs both the transliteration-based
and the phonetic methods. However, we used the configuration options to run exper-
iments with only one of the methods at a time. Configuration settings were varied to
examine the sensitivity of the results to different threshold settings.

The MEHDIE tool allows matching a given dataset to another dataset by perform-
ing parallelized pair-wise comparisons between toponyms distributed over instances
of the matching system, which are spun up by demand by Google Cloud Run
infrastructure.

The tool first performs a preprocessing step on both datasets where toponyms (for
example, in Hebrew) and their variants, as supplied with the dataset, are transliter-
ated to the opposite language (for example, Arabic) and Romanized. The tool then
performs a blocking step to reduce the number of comparisons, which is common in
large-scale matching problems [32]. However, general-purpose blocking methods rely
on the linguistic similarity of the matched entities, which is difficult to use in our case,
where the information is limited to the entity’s name, which is often linguistically
opaque, and the entity’s location. The tool, therefore, employs a simple clustering step
where every name is assigned to groups according to the existence of one of a set of
similar-sounding letters in the name. For example, all names from both datasets with
at least one of the letters p,b,f would be grouped together and eventually matched.
The assumption is that if the pair of toponyms do not share any related letter in the
Romanized version, they are not relevant to each other. The blocking step reduces
the number of comparisons, on average, by half.

Following the blocking step, the tool performs a pairwise comparison over translit-
erated variants of the toponym from the same script language (Hebrew / Arabic)
using the Jaro metric. Results over the given thresholds continue to the next step,
which is a phonetic comparison using the Hamming feature distance metric over the
IPA representation of the toponym. Finally, if location information is available for
both matched toponyms, we filter out those pairs whose distance exceeds the given
threshold. Phonetic threshold values are varied between [0.85, 0.9, 0.95], orthographic
thresholds between [0.7, 0.8, 0.9], and distance thresholds between [10, 50, 200].

Results are provided in terms of Precision, Recall, F-1, and F-5 defined as follows.
Precision is the proportion of true positives of the number of matched pairs the tool
returns. Recall is the proportion of true positives of the number of matched pairs

9

known to be in this dataset pair. F-1 is the harmonic mean of these two measures,
penalizing imbalanced results (e.g., low recall and high precision) more than the stan-
dard mean. F-5 is a recall-favoring version of the F-measure. The equations of the
general F-measure, F-1 and F-5, are given below with P and R designating Precision
and Recall, respectively.
• F-β Score provides a means to balance precision and recall in a single metric, using

a weighted harmonic mean. It is expressed as:

Fβ = (1 + β2) ·
P ·R

(β2 · P) +R
(1)

The β parameter determines the weight of recall in this balance, with values greater
than 1 favoring recall, thus prioritizing the identification of all actual matches.

• F-1 Score is the harmonic mean of precision and recall with equal importance,
suitable for scenarios where both metrics are equally valued:

F1 = 2 ·
P ·R

P +R
(2)

• F-5 Score emphasizes recall five times more than precision by setting β = 5. This is
particularly useful in our case, where the discovery of new matches is highly sought
after, and we are willing to pay for it by reviewing more (mostly false) results:

F5 = (1 + 52) ·
P ·R

(52 · P) +R
(3)

5.1.2 Results
The complete set of results is provided as an electronic supplement to this paper. In
the following, we present some of the main findings. Figure 1 presents the different
metric values for different threshold settings applied to the two methods. As expected,
an increasing threshold improves precision at the expense of recall. The phonetic
method seems to be severely impacted by lowering the threshold. A reduction of
0.1 (from 0.95 to 0.85) in the phonetic threshold improves recall by 0.3 and reduces
precision by more than half. The transliteration-based method, by comparison, gains
a 0.06-0.14 in recall and suffers only a 0.07-0.024 reduction in precision from the same
reduction. Regarding F-1, the low precision values coupled with high recall rates cause
the F-1 measure to be relatively low in both methods at 0.1-0.32 and to be maximized
in high-threshold scenarios where the precision is maximized. Optimal F-5 values are
obtained for a threshold of 0.9 in both the orthographic and the phonetic methods.

Figure 2 compares the impact of different distance thresholds on the different
dataset pairs. The figure presents results in terms of the maximal F-5 result obtained
across all threshold settings and comparison methods. Results indicate that applying
a more restrictive distance threshold generally reduces performance. This emanates
from the reduced recall, which our users value. This general trend does not hold in
the case of Kima-Thurayya, where applying a restrictive threshold improves the F-5

10

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

Avg. Precision Avg. Recall Avg. F-1 Avg. F-5

Phonet ic - 0,85

Phonet ic - 0,9

Phonet ic - 0,95

Orthographic - 0,7

Orthographic - 0,8

Orthographic - 0,9

Figure 1 Comparison of different threshold values for both methods.

score somewhat, owing to the very low precision caused by the more lenient distance
thresholds.

In Figure 3, we compare the two matching methods across the five dataset pairs
in F-5 terms, reporting the maximal result overall threshold and distance threshold
settings. Results are mixed, with dataset pairs involving the Tudela dataset showing
better performance for the orthographic method, while in the other dataset pairs, the
phonetic method is superior.

5.1.3 Discussion
As F-5 better represents users’ preferences in our scenario, it is interesting to see
that the best F-5 is obtained at a threshold of 0.9 for both the orthographic and
phonetic methods. Combined with the inconclusive comparison results over different
dataset pairs, this result indicates that users should opt to use both methods in
combination to maximize the number of matches found. The fact that restrictive
distance thresholds harm performance can partially be attributed to our choice of
the F-5 metric owing to our users’ preference for high recall and relative tolerance
of low precision. However, it can also be traced to the fact that location data for
historical sources is inaccurate. In some cases, the historical place has a location that
is accurately mapped to research-based evidence of settlement. Still, in others, it may
be approximated using reported travel times from other locations or using inaccurate
historical maps [33]. Although it is common for place names in the ancient Middle

11

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

Damast - Tudela KimaSham -
ThurayaSham

Tudela -
AlThurayya

Yaqut - Kima
(Andalus/Magreb)

YaqutSham -
KimaSham

M
ax

im
al

 F
-5

Aksetitel

10

50

200

Distance
Threshold

Figure 2 Best result in terms of F-5 by matched dataset pair and distance threshold.

East to be repeated (e.g., ةريطلا in Israel8, the Palestinian Authority9, and Syria10), it
seems the benefits of using a more lenient distance threshold outweigh this risk. The
phonetic similarity tool between Semitic languages proved more efficient in places like
Tiberias in the Yāqūt and Kima in al-Sham that are phonetically closer in Hebrew
(הירבט -Tveria) and Arabic (ةيربط -Tabaria) than in an orthographic comparison of the
Romanized versions. In another example Gaza (ةزغ -Ghaza in Arabic and הזע -’Aza in
Hebrew) were matched based on two criteria: phonetic title similarity by confidence
0.97222 and exact geographic similarity [34.45, 31.516]. The phonetic tool adeptly
disregards grammatical nuances such as the Arabic definite article ” لا ”, leading to
enhanced statistical accuracy. Consequently, it yields high matches in locations where
” لا ” appears in Arabic but not in Hebrew, as exemplified by Zarqa (אקרז - ءاقرزلا) and
Ramla (הלמר - ةلمرلا). Nevertheless, the transliteration-based matching tool was also
able to identify pairs that the phonetic tool missed. For example, the city of Zaragoza
in Andalusia (Spain) is spelled by Yāqūt (ةطسقرس -Saraqustah) and by Kima’s gazetteer
(הסוגרס -Saragosa). Here, the phonetic similarity is rather distant. However, since the
orthographic comparison is much more computationally efficient, we can use it over
multiple name variants supplied by the sources and take the maximal similarity score.

8https://www.wikidata.org/wiki/Q167594
9https://www.wikidata.org/wiki/Q12189847
10https://www.wikidata.org/wiki/Q12189848

12

https://www.wikidata.org/wiki/Q167594
https://www.wikidata.org/wiki/Q12189847
https://www.wikidata.org/wiki/Q12189848

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

Damast - Tudela KimaSham -

ThurayaSham

Tudela -

AlThurayya

Yaqut - Kima

(Andalus/ Magreb)

YaqutSham -

KimaSham

Phonet ic

Orthographic

Figure 3 Best result in terms of F-5 by matched dataset pair and method.

In this case, the algorithm found in one of the variants that existed in Kima originally
הטסקרס (Sarakastah) whose direct transliteration to Arabic orthographically matches

that of Yāqūt.

5.2 Comparing Orthographic Distances between modern
Toponym names in Hebrew and Arabic

5.2.1 Dataset Description
We queried wikidata using the SPARQL query depicted in Listing 1 to construct our
test case. The query uses the wdt:p625 location property to identify concepts that
may be toponyms. These are then filtered for those concepts that have a label in both
Arabic and Hebrew. The query was run over Wikidata using the qlever query engine
[34] and resulted in 41560 toponym label pairs11.

Listing 1 ”SPARQL Query to fetch Hebrew and Arabic labels”
SELECT ?place ?placeLabel_he ?placeLabel_ar WHERE {

?place wdt:P625 ?location . # P625 is the property for coordinate
location

11https://qlever.cs.uni-freiburg.de/wikidata, retrieved November 9th 2023

13

https://qlever.cs.uni-freiburg.de/wikidata

ID Hebrew HE IPA HE Translit AR Arabic AR IPA AR Translit HE

1015647 קלרקסדורפ klrksdoʁf قلرقسدورف كلیركسدورب kljrksduːrb סדורבּ כּלירכּ
1015654 סנטו

דומינגו
snto

domiŋv

سنطو دومینچو سانتو دومینغو saːntuː
dwmeːnɣw

סאנתו דומינע'ו

1015672 וואנגנוי vʔŋnvi ووانچنوي وانجانوي awaːndʒaːnwj ואנג'אנוי
1015699 לירה liʁa لیرة لیرا ljraː לירא
1015727 מבאלה mvʔla مبالة مبالي mbaːlj מבּאלי
1015773 פורירואה foriroʔa فوریرواة بوریریوا boːriːreːawaː בּוריריוא
1015796 ויקטור

הארבור
wiqtor

hʔrbor

ویقطور ھاربور فیكتور ھاربور fiːktuːr
haːrbwr

פיכּתור הארבּור

1015805 צ'אנגשו tsʔŋʃo ضانچشو تشانغشو t ʃaːnɣʃaw תשאנע'שו
101583 תבאי tbʔi تباي طیبة tˤeːba טיבּה
1015916 הדיבו hdivo ھدیبو حدیبو ħdajbuː חדיבּו

Figure 4 Result of preprocessed Wikipedia dataset

?place rdfs:label ?placeLabel_he FILTER(LANG(?placeLabel_he) = "he
") .

?place rdfs:label ?placeLabel_ar FILTER(LANG(?placeLabel_ar) = "ar
") .

}

We then perform several pre-processing steps. The processing code, as well as both
the raw and processed files, are available as an electronic appendix to this paper. We
begin by removing all places for which either the Hebrew or the Arabic label comprises
more than two words. This is done to filter out locations that are not real places
but locations of events or businesses. Such as the Academy of Social Sciences of the
Central Committee of CPSU 12 or Air France Flight 29613. Although this method may
sound restrictive, one should remember that prepositions in Hebrew and determiners
in both languages are prefixed to the word. For example, the Jordan river is in Hebrew
(transliterated to Latin characters) Nahar Hayarden where Ha is the equivalent to the
and in Arabic it is Naher Alurdun where Al is the determiner. Thus, in both Hebrew
and Arabic, this step will not remove many actual Toponyms but is very helpful to
avoid skewing the results by measuring distances between long sentences describing
events and businesses that are not common in our benchmark datasets that contain
names of places. Furthermore, these sentences are better compared with translation
as they contain common nouns and adjectives rather than proper nouns.

We remove language tags (e.g., ’@ar’) from the toponyms and then perform
transliteration of each toponym to its opposite language using the specialized middle-
east language transliteration package translit-me14. The original Arabic and Hebrew
labels are then converted into an IPA phonetic representation. Figure 4 shows an
excerpt of the result.

12https://www.wikidata.org/wiki/Q4059245
13https://www.wikidata.org/wiki/Q406486
14https://pypi.org/project/translit-me/, version 1.0.4, retrieved October 30th, 2023

14

https://www.wikidata.org/wiki/Q4059245
https://www.wikidata.org/wiki/Q406486
https://pypi.org/project/translit-me/

5.2.2 Metrics
As a baseline comparison, We use string comparison metrics for toponym matching
from those compared by Recchia and Louwerse [4]. The authors compared 21 string
comparison methods over datasets containing Romanized toponyms from 11 countries.
We chose the top three best-performing metrics the authors identified for Arabic
Toponyms (Saudi Arabia datasets) as they are the closest linguistic and geographic to
our datasets. We compare the performance of Skip-grams, Editex, and Syllable over
the Romanized versions of both Hebrew and Arabic labels. Using standard Jaro and
Levenshtein distance metrics, we also compare strings in the same character set, i.e.,
Hebrew or Arabic, where one is the original label and the other is transliterated. The
following are the definitions of these metrics based on [4]. We employ the methods as
implemented by a python port15 of the FEBRL package [35].

Skip-grams
We use the method first proposed by Keskustalo et al. [36] where common bigrams of
skip size one and two are counted and divided by the total number of these bigrams
in the shorter place name.

Smith-Waterman
This method [37] employs a variation of Levenshtein distance where letters of the
same sound group, e.g. (aeiou, bpv, dt, etc.) have a lower edit distance than if they
belong to different letter groups. This method resembles our phonetic method but is
more crude as it groups together many unrelated letters and is based on the English
language pronunciation of these characters.

Syllable
The syllable alignment algorithm [38] analyzes syllables instead of individual char-
acters. It transforms characters in place names into groups, forming sequences that
represent syllables. The algorithm then calculates the least costly way to change one
sequence into another, using a set of weighted operations on both character groups
and syllables.

Phonological distance measures
In order to carry out toponym matching based on phonological similarity, we convert
candidate toponyms to phonological vectors, where each element is a phonological
feature of the sound (e.g., labial). We then use various distance measures in the
PanPhon library [29] to compare them as described in Section 4.2. All of these distance
measures are based on the concept of edit distance, i.e., the number of substitutions
required to transform one toponym into another. In the following, we describe the
fundamental categories.

For the feature edit distance, every substitution has an associated cost of 1/24:
i.e., normalized by the total number of phonetic features. The same cost is associated
with any insertion or deletion. In cases where the edit goes from an unspecified to a

15https://github.com/thomaswyrick/febrl, retrieved November 12th, 2023

15

https://github.com/thomaswyrick/febrl

specified phonological feature, the edit cost is half of the above. This is necessary since
certain features only make sense in the context of other features. Obstruents like /t/,
for instance, cannot be specified for the feature strident, but once they change into
a fricative such as /T/, they have to become specified. Since this involves additional
feature changes anyway – from -continuant to +continuant –, this prevents inflating
edit costs.

dfeature(ins, del, sub) = 1

||f|| (
∑

i

∑

j

1

2
||si − tj ||) (4)

The cost of all edit operations between two phonemes is captured in Equation 4.
Vectors si and tj stand for the i-th and j-th members of the phonological vectors s
source phoneme and t target phoneme. The vector f represents all possible feature
values, and its magnitude is 24. Since 1, −1, and 0 represent positive, negative, and
unspecified values for each feature, the normalizer term 1

2
ensures that the cost of

changing from specified to unspecified and vice versa is less than changes between
specified values. Again, this prevents the inflation of edit costs when certain feature
changes are necessarily accompanied by other feature changes.

In the case of Hamming feature edit distance, insertions and deletions cost 1 with-
out normalization, while feature edits and edit from unspecified to specified all cost
1/24 (see Equation 5).

Difference =

{

1 if si 6= ti
0 if si = ti

dhamming(sub) = 1

||f|| (
∑

i

Difference(si, ti)) (5)

Finally, weighted feature edit distance takes into account the probability of the
kinds of feature edits determined by how likely these are cross-linguistically, but does
not carry out normalization. Cross-linguistically frequent feature changes, such as
changes in voicing or vowel length, have an associated cost of 0.125, less common
changes come with a cost of 0.25 or 0.5, whereas rarer ones such as change in syllabicity
have a cost of 1.

See Table 3 for a comparison between the categories.

Edit distance Substitution (specified) Substitution (unspecified) Insertion/deletion
Feature 1/24 1/48 1/24
Hamming feature 1/24 1/24 1
Weighted feature 1/8, 1/4, 1/2 or 1* 1/8, 1/4, 1/2 or 1* 1/8, 1/4, 1/2 or 1*

Table 3 Comparison of the costs associated with the edit distances defined in the PanPhon library. The
asterisk marks that the exact edit cost depends on the associated features.

5.2.3 Results
Figure 5 and Figure 6 present the box plots and density plots of the different metrics
over the wikidata datasets. ar-prefixed metrics are measured between the original

16

Figure 5 Box plots of string similarity and phonetic similarity Metrics over Wikidata toponyms.

Arabic place name and the Hebrew place name that was transliterated into Ara-
bic. Similarly, he-prefixed metrics compare between the original Hebrew toponym
and the one translitered into Hebrew. Romanized-prefixed metrics compare between
the romanized versions of both labels (i.e., romanized Hebrew and romanized Ara-
bic). Metrics prefixed with phonetic are calculated over the IPA representations
of the toponyms. In general, a result closer to one is more desirable. Thus the
perfect distribution in Figure 5 would be a dot on the 1.0 horizontal line, and in
Figure 6, it would be a vertical line at 1.0. Table 4 summarizes the information
shown in the box plots in numerical form. In bold, we https://www.overleaf.com/pro-
ject/643e50c261715e99c1f76c9bhighlight the highest value for the quartile, mean, and
minimum values which is consistently that of the phonetic feature edit distance metric.
A close second and third best are the two Jaro metrics directly comparing Hebrew and
Arabic labels with their transliterated counterparts with very similar performance.

5.2.4 Discussion
Both the direct transliteration (Hebrew ↔ Arabic) with Jaro and the IPA phonetic
algorithms perform considerably better than the distance metrics applied over the
Romanized toponyms. Jaro is somewhat hindered by the limitations of the Jaro
algorithm, which handles very short strings, and the limitations of the dataset, which
contains many non-Middle-eastern names that require various apostrophes and forced

17

Figure 6 Density plots of string similarity and phonetic similarity Metrics over Wikidata toponyms.

Metric AR Ln HE Ln AR Jaro HE Jaro Skip-G SW Syllable φ ED φ Hg

mean 0.53 0.51 0.71 0.71 0.45 0.50 0.29 0.74 0.70
std 0.23 0.22 0.16 0.16 0.26 0.24 0.33 0.15 0.16
min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.08
25% 0.36 0.33 0.61 0.60 0.25 0.33 0.00 0.65 0.61
50% 0.50 0.50 0.72 0.71 0.41 0.49 0.15 0.76 0.73
75% 0.70 0.67 0.82 0.82 0.62 0.67 0.52 0.84 0.81
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4 Descriptive statistics of Similarity metrics over the wikidata dataset.
Abbreviations used - Ln: Levenstein Distance, Skip-G: skip Grams, SW: Smith-Waterman, φ:
Phonetic, ED: Edit Distance, Hg: Hamming Distance

letter pairs. For example, the Chinese city of Changshu16 (Figure 4 third to last
row) whose first sound is transliterated by the editors of wikidata using the available
letters in Arabic and Hebrew to a T+Sh construct. These letter combinations cause
the match distance to grow artificially in replacement-based algorithms such as Jaro.
Interestingly, the Levenstein distance metric performs poorly in both languages.

16https://www.wikidata.org/wiki/Q1015805

18

https://www.wikidata.org/wiki/Q1015805

We inspected the cases with the largest gaps between the phonetic and the Jaro
distance metric. All of the results could be explained by one or more of the following
reasons.

Several cases reveal actual errors in Wikidata (as, for example, the case of ”Beth-
lehm, Georgia”(Q3261160) which was erroneously named ’Georgia’ in Hebrew (we
corrected it on Dec.19, 2023) or ”Jaffa port”(Q2911475) which erroneously contained
the Hebrew word for Israel in the field of the Arabic variant (corrected Dec.29 2023).
The distance criterion even tracked cases of Wikidata vandalism, as in the case
of the town Yeruham (Q1687708), that in early November 2023 was renamed ฀฀฀฀฀฀
(Palestine), a renaming that was reverted since.

In many other cases, the names given in the different languages are in fact dif-
ferent names for the same place. Two examples are revealing: the island of Imbros
(wikidata entity Q658437) bears the same name (سوربمإ) in Arabic as in English and
other Wikipedia languages, which chose to follow the older Greek name Ίμβρος. The
Hebrew name הדא'צקג , however, follows the official current Turkish name of the is-
land Gökçeada since 1970. Another example is Wikidata entity Q581478: The Arabic
name is derived from the Czech name, Břeclav, which in turn is named after the
founder of the local castle, Duke Bretislav I. The Hebrew form preserves the former
German name which was probably derived from the name of a Slavic tribe which lived
in the area. The example of Q826132 shows another known phenomenon in toponym
history, in which a hyponym (a name that refers to a part of a certain region) like
(Lagat/Laja, ةاجللا) became synonymous with its hypernym (the name of the entire re-
gion), as in this case Trachon / ןוכרט). The Arabic and Hebrew choices of the name
each corresponds with one of the options. Behind most of these cases lies the cultural
and political history of place naming, which is occasionally reflected in the choice of
Wikidata editors.

Another common reason for large reported differences between the Arabic and
Hebrew names occurs when the root name is basically the same, but in one of the
languages the name includes a type word (such as Wadi, Bridge, Mountain, Mound,
River, cave) and not in the other. Thus while the ’Fengtai District’ of Beijing
(Q393831) is named simply ياتغنف in Arabic, the Hebrew name includes also the He-
brew word for ’district’: יאטגנפעבור . The river Soča, on the other hand, is simply
named ה׳צוס in Hebrew while the Arabic includes the term for ’river’, اكوسرهن .

While the choice to include the type word in the name seems random and occurs
in both languages, a similar reason for large distance between the variants stems from
linguistic reasons: often, the Arabic name of a place will include the determiner لا as
an inherent part of the toponym. Thus the Iraqi city of Najaf (Q168193) is named
simply ף׳גנ) in Hebrew but فجنلا - ”the Najaf” in the Arabic, and the determiner
letters prefixed to the Arabic version cause the distance between matching letters to
be too great for the Jaro algorithm to take into account. Here, we encounter a peculiar
property of the Jaro metric where the allowable distance between matching letters
is proportional to the length of the shortest comparison term. This may emanate
from the fact that Jaro was developed for comparing paragraphs of text rather than
single words. Thus, for a three-letter word like the Hebrew version of this toponym,
the two-letter determiner prefix distances the matching Arabic letters too far away

19

to be included in the Jaro calculation, resulting in a Jaro score of zero. For the
phonetic versions of these two toponyms, this problem does not exist since we have
implemented, as one of the post-processing rules, a rule that removes the determiner
from the phoneme. Applying a similar rule for type names (river, county, etc.) could
improve both metrics’ performance and be justified in a toponym-focused matching
system such as ours.

A third type of difference between the names in the two languages stems from the
inclusion of Matres Lectionis. While both the Arabic and Hebrew scripts lack vowel
letters in principle, they may occasionally use specific letters to indicate vowels. In
Modern Hebrew, the adoption of full spelling means that the Hebrew name is more
likely to include more letters, as the case of Kutum (Q3317346), for which the Hebrew
name includes the five letters parallel to the English name, and the Arabic name only
the three consonants k,t,m. While for string similarity metrics the distance of two
letters, the phonetic distance metrics accords smaller weights to differences in vowel
letters, and thus is more likely to match the two names.

The most frequent explanation for the differences between the phonetic and Jaro
similarity metrics also exhibits the strength of the phonetic approach: the case of
Pest (Q210205), the eastern part of Budapest, is a clear example: in both Hebrew
and Arabic the name is written with three letters for the consonants, but though
the names are in principle the same, neither letter can, however, be unequivocally
transliterated to its parallel letter in the other language. The phonetic approach is
sensitive to the closeness between the bilabial plosives p (פ) and b ,(ب) between the
sibilant second letters and the Voiceless alveolar plosive third letters.

6 Conclusion
In this work, we have presented a first-of-its-kind benchmark for cross-language to-
ponym matching between Hebrew and Arabic historical toponyms. The benchmark
comprises five dataset pairs from four different gazetteers of the Middle East, Magreb,
and Andalus areas. We have further presented and evaluated two novel approaches to
this problem. Our transliteration-based approach and our phonetic-based approach
were explained and evaluated, both on our benchmark task and on a large-scale syn-
thetic task created using Wikidata, and compared to traditional methods relying on
the romanization of toponyms and the use of edit-distance and n-gram-based string
comparison methods. Results indicate that both approaches perform well on this task,
especially when considering our potential users’ preference for high recall and toler-
ance for low precision. In future research, we hope to explore the use of multi-lingual
embeddings and other machine-learning-based methods on this benchmark and con-
struct similar benchmarks for other language pairs that share a common historical and
linguistic background. The benchmark and full results are provided as an electronic
supplement to this work.

References
[1] Pleiades Team: Pleiades. https://pleiades.stoa.org/. Accessed: 01/01/2024

20

https://pleiades.stoa.org/

[2] Grossner, K., Mostern, R.: Linked places in world historical gazetteer. In: Pro-
ceedings of the 5th ACM SIGSPATIAL International Workshop on Geospatial
Humanities. GeoHumanities ’21, pp. 40–43. Association for Computing Machin-
ery, New York, NY, USA (2021). https://doi.org/10.1145/3486187.3490203

[3] Thomas A. Carlson: HIMME. https://medievalmideast.org/index.html. Ac-
cessed: 01/01/2024

[4] Recchia, G., Louwerse, M.: A comparison of string similarity measures for to-
ponym matching. In: Proceedings of The First ACM SIGSPATIAL International
Workshop on Computational Models of Place. COMP ’13, pp. 54–61. Associa-
tion for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.
1145/2534848.2534850

[5] National Geospatial-Intelligence Agency: Geographic Names Server. https://
geonames.nga.mil/geonames/GNSHome/index.html. Accessed: 01/01/2024

[6] Joshi, T., Joy, J., Kellner, T., Khurana, U., Kumaran, A., Sengar, V.: Crosslin-
gual location search. In: Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. SI-
GIR ’08, pp. 211–218. ACM, New York, NY, USA (2008). https://doi.org/10.
1145/1390334.1390372

[7] Sun, K., Zhu, Y., Song, J.: Progress and challenges on entity alignment of geo-
graphic knowledge bases. ISPRS International Journal of Geo-Information 8(2)
(2019) https://doi.org/10.3390/ijgi8020077

[8] Santos, R., Murrieta-Flores, P., Calado, P., Martins, B.: Toponym matching
through deep neural networks. International Journal of Geographical Information
Science 32(2), 324–348 (2018)

[9] Santos, R., Murrieta-Flores, P., Martins, B.: Learning to combine multiple string
similarity metrics for effective toponym matching. International journal of digital
earth 11(9), 913–938 (2018)

[10] Zhang, Z., Liu, H., Chen, J., Chen, X., Liu, B., Xiang, Y., Zheng, Y.: An
industry evaluation of embedding-based entity alignment. In: Proceedings of the
28th International Conference on Computational Linguistics: Industry Track, pp.
179–189 (2020)

[11] Zhang, R., Trisedya, B.D., Li, M., Jiang, Y., Qi, J.: A benchmark and compre-
hensive survey on knowledge graph entity alignment via representation learning.
The VLDB Journal 31(5), 1143–1168 (2022)

[12] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-
preserving embedding. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue, F.,
Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) The Semantic Web

21

https://doi.org/10.1145/3486187.3490203
https://medievalmideast.org/index.html
https://doi.org/10.1145/2534848.2534850
https://doi.org/10.1145/2534848.2534850
https://geonames.nga.mil/geonames/GNSHome/index.html
https://geonames.nga.mil/geonames/GNSHome/index.html
https://doi.org/10.1145/1390334.1390372
https://doi.org/10.1145/1390334.1390372
https://doi.org/10.3390/ijgi8020077

– ISWC 2017, pp. 628–644. Springer, Cham (2017)

[13] Martins, B.: A supervised machine learning approach for duplicate detection
over gazetteer records. In: International Conference on GeoSpatial Sematics, pp.
34–51 (2011). Springer

[14] Hastings, J.: Automated conflation of digital gazetteer data. International
Journal of Geographical Information Science 22(10), 1109–1127 (2008)

[15] Ardanuy, M.C., Sporleder, C.: Toponym disambiguation in historical documents
using semantic and geographic features. In: Proceedings of the 2nd International
Conference on Digital Access to Textual Cultural Heritage. DATeCH2017, pp.
175–180. Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3078081.3078099

[16] Yāqūt, al-Rūmī al-Hamawī: Kitāb Mu’jam al-Buldān (The Countries Dictionary
Book). Dār Ṣādir, Beirut (1977). Original work published in the 13th Century. 5
vols.

[17] Maxim Romanov: al-Ṯurayyā Project. https://althurayya.github.io/. Accessed:
01/01/2024

[18] Cornu, G.: Atlas Du Monde Arabo-Islamique a I’Epoque Classique: IXe-Xe
Siècles (The Arab-Islamic World and Classic Europe Atlas: 9th-10th Centuries).
Brill, Leiden (1983)

[19] TravelLab: Benjamin of Tudela. Accessed: March 1st, 2024 (n.d.). https://
teipublisher.info/exist/apps/TraveLab/Benjamin%20of%20Tudela.xml

[20] Benjamin, Asher, A., Zunz, L., Lebrecht, F.: The Itinerary of Rabbi Benjamin
of Tudela. A. Asher & co

[21] Gibb, H.A.R.: The Encyclopaedia of Islam. Brill Archive, ??? (1998)

[22] Wehr, H.: A Dictionary of Modern Written Arabic. Otto Harrassowitz Verlag,
Wiesbaden (1979)

[23] Levenshtein, V.I., et al.: Binary codes capable of correcting deletions, insertions,
and reversals. In: Soviet Physics Doklady, vol. 10, pp. 707–710 (1966). Soviet
Union

[24] MEHDIE Project: The translit-me source code repository. https://gitlab.com/
m8417/hebrew-transliteration-service. Accessed: 01/01/2024

[25] MEHDIE Project: The translit-me Python Package. https://pypi.org/project/
translit-me/. Accessed: 01/01/2024

[26] Jaro, M.A.: Advances in record-linkage methodology as applied to matching the

22

https://doi.org/10.1145/3078081.3078099
https://althurayya.github.io/
https://teipublisher.info/exist/apps/TraveLab/Benjamin%20of%20Tudela.xml
https://teipublisher.info/exist/apps/TraveLab/Benjamin%20of%20Tudela.xml
https://gitlab.com/m8417/hebrew-transliteration-service
https://gitlab.com/m8417/hebrew-transliteration-service
https://pypi.org/project/translit-me/
https://pypi.org/project/translit-me/

1985 census of tampa, florida. Journal of the American Statistical association,
414–420 (1989)

[27] Catford, J.C., Esling, J.H.: Articulatory phonetics. Encyclopedia of Language
and Linguistics 9, 425–442 (2006)

[28] Novak, J.R., Minematsu, N., Hirose, K.: Phonetisaurus: Exploring grapheme-
to-phoneme conversion with joint n-gram models in the wfst framework. Natural
Language Engineering 22(6), 907–938 (2016)

[29] Mortensen, D.R., Littell, P., Bharadwaj, A., Goyal, K., Dyer, C., Levin, L.:
Panphon: A resource for mapping ipa segments to articulatory feature vec-
tors. In: Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pp. 3475–3484 (2016)

[30] Dolgopolsky, A.B.: A probabilistic hypothesis concerning the oldest relationships
among the language families of northern eurasia. Typology, relationship and time:
a collection of papers on language change and relationship by soviet linguists,
27–50 (1986)

[31] MEHDIE: The MEHDIE toponym matching tool. https://tool.mehdie.org/.
Accessed: 01/01/2024

[32] Papadakis, G., Skoutas, D., Thanos, E., Palpanas, T.: Blocking and filtering
techniques for entity resolution: A survey. ACM Computing Surveys (CSUR)
53(2), 1–42 (2020)

[33] Tucci, M., Giordano, A.: Positional accuracy, positional uncertainty, and feature
change detection in historical maps: Results of an experiment. Computers, En-
vironment and Urban Systems 35(6), 452–463 (2011) https://doi.org/10.1016/j.
compenvurbsys.2011.05.004

[34] Bast, H., Buchhold, B.: Qlever: A query engine for efficient sparql+text search.
In: Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management. CIKM ’17, pp. 647–656. Association for Computing Machinery,
New York, NY, USA (2017). https://doi.org/10.1145/3132847.3132921

[35] Christen, P.: Febrl- an open source data cleaning, deduplication and record link-
age system with a graphical user interface. In: Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1065–1068 (2008)

[36] Keskustalo, H., Pirkola, A., Visala, K., Leppänen, E., Järvelin, K.: Non-adjacent
digrams improve matching of cross-lingual spelling variants. In: String Processing
and Information Retrieval: 10th International Symposium, SPIRE 2003, Manaus,
Brazil, October 8-10, 2003. Proceedings 10, pp. 252–265 (2003). Springer

23

https://tool.mehdie.org/
https://doi.org/10.1016/j.compenvurbsys.2011.05.004
https://doi.org/10.1016/j.compenvurbsys.2011.05.004
https://doi.org/10.1145/3132847.3132921

[37] Smith, T.F., Waterman, M.S., et al.: Identification of common molecular
subsequences. Journal of molecular biology 147(1), 195–197 (1981)

[38] Gong, R., Chan, T.K.: Syllable alignment: A novel model for phonetic string
search. IEICE transactions on information and systems 89(1), 332–339 (2006)

24

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

benchmark.zip

https://assets.researchsquare.com/files/rs-4136375/v1/6e1b90c73913e00dc6d212cd.zip

	Introduction
	Related Work
	A Cross-lingual Semitic Toponym Matching Benchmark
	Toponym Matching Methods
	Transliteration
	Grapheme-to-Phoneme Conversion

	Experiments
	Toponym Matching over Historical Dataset Pairs
	Setup and Metrics
	Results
	Discussion

	Comparing Orthographic Distances between modern Toponym names in Hebrew and Arabic
	Dataset Description
	Metrics
	Skip-grams
	Smith-Waterman
	Syllable
	Phonological distance measures

	Results
	Discussion

	Conclusion

