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Kurzfassung

Im Laufe der letzten Jahrzehnte wurde eine Reihe von Standards, die von W3C, IETF
und WHATWG veröffentlicht wurden, konsolidiert, um die Web-Plattform zu bilden, eine
vollwertige Anwendungsplattform, im Gegensatz zum ursprünglichen Design des Webs als
eine Reihe von Hyperlink-Dokumenten. Der aktuelle Stand der Standardisierung des Webs,
fragmentiert in eine Vielzahl von Dokumenten, die von verschiedenen Organisationen
verwaltet werden, erschwert die Überlegungen zur Sicherheit der Plattform insgesamt.
Dies führte zur Einführung von Schwachstellen, die durch unvorhergesehene Interaktionen
zwischen verschiedenen Webkomponenten verursacht wurden. Diese Situation ergibt
sich aus der Tatsache, dass Webspezifikationen häufig informell definierte oder implizite
Annahmen über die Sicherheit anderer Funktionen enthalten. In dieser Dissertation
argumentieren wir für die Notwendigkeit einer strengen und formalen Definition der Web-
Sicherheit im Hinblick auf Invarianten, deren Gültigkeit auf der gesamten Web-Plattform
garantiert ist. In dieser Arbeit untersuchen wir insbesondere die Sicherheitsmechanismen
des modernen Webs und formalisieren sie in Form von Web-Invarianten. Wir schlagen zwei
Methodologien zur Validierung von Web-Invarianten in einem neuen Modell von Web-
Spezifikationen (WebSpec) und außerdem in Browser-Implementierungen (Chromium,
Firefox, Safari) vor, die es uns ermöglichten, neue Inkonsistenzen zu entdecken und
fundierte Abhilfemaßnahmen vorzuschlagen. Anschließend konzentrieren wir uns auf die
Anwendungssicherheit und untersuchen das weniger bekannte Web-Bedrohungsmodell
des related-domain Angreifers und messen dessen Auswirkungen auf die Sicherheit der
beliebtesten Websites im Web. Abschließend richten wir unsere Aufmerksamkeit auf
Cookies und ihre lange Geschichte von Schwachstellen und diskutieren neue Verletzungen
ihrer Integrität sowie neue Angriffe durch den related-domain Angreifer.
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Abstract

Over the last two decades, a set of standards published by the W3C, IETF and WHATWG
was consolidated to form the Web Platform, a full-fledged application platform as opposed
to the initial design of the Web as a set of hyperlinked documents. The current state of
the standardization of the Web, fragmented into a multitude of documents maintained
by different organizations, complicates the process of reasoning about the security of
the platform as a whole. This led to the introduction of vulnerabilities originating from
unforeseen interactions between different Web components. This situation stems from the
fact that Web specification often include informally-defined or implicit assumptions about
the security of other features. In this thesis we argue for the need of a rigorous and formal
definition of Web security in terms of invariants that are guaranteed to be valid across the
Web platform. In particular, in this work we study the security mechanisms of the modern
Web and formalize them in the form of Web invariants. We propose two methodologies
for validating Web invariants on a new model of Web specifications (WebSpec) and on
browser implementations (Chromium, Firefox, Safari) that allowed us to discover new
inconsistencies and propose sound mitigations. We then focus on application security
and study the lesser-known Web threat model of the related domain attacker, measuring
its impact on the security of the most popular sites on the Web. Finally, we turn our
attention to cookies and their long history of vulnerabilities, discussing new violations of
their integrity protections and new attacks enabled by related-domain attackers.
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CHAPTER 1
Introduction

In the early days of the Web, the World Wide Web Consortium (W3C) was established
to encourage the industry members to adopt standards that would allow for compatibility
among Web browsers. Together with the RFC documents published in collaboration with
the Internet Engineering Task Force (IETF), a set of W3C standards was consolidated
over the years to form the foundation of the Web Platform. A full-fledged application
platform, as opposed to its initial design composed of a web of hyperlinked documents.
This paradigm-shift, however required, according to two of the more important industry
players at the time (Mozilla and Opera), a corresponding shift in the development
of standards, which was considered slow and susceptible to browsers independently
developing incompatible solutions before jointly-developed specifications [FOS04]. This
sentiment and the disagreement over the evolution of HTML between industry players
and the W3C led to the establishment of the Web Hypertext Application Technology
Working Group (WHATWG). The group, lead by Apple, Mozilla, Opera, and Microsoft,
developed HTML5, which later became the accepted W3C standard for the next version
of HTML (as opposed to XHTML), and currently maintains, among others, the Living
Standards for HTML, DOM and Fetch. A Living Standard is continuously updated as
it receives feedback from the community, with new features added over time at a rate
intended to keep the standard ahead of implementations [Gro].

The current state of the standardization of the Web platform, where a multitude of
documents are maintained and independently updated by different organizations, new
features are added at a rapid pace to support more use cases, and new security mechanisms
are introduced to mitigate potential vulnerabilities, results in an ever-growing complexity
which is reflected in the complexity of browser implementations. Furthermore, the
fragmented nature of the Web platform specification, where each feature is defined as a
separate document, complicates the process of reasoning about the interactions between
distinct Web components. Specifications are often very extensive, and make implicit
assumptions about other components of the platform. Over the years, this resulted in the
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1. Introduction

introduction of vulnerabilities originating from unforeseen interactions between features
both at the design level or in their implementation [SMWL10b, ABL+10, SBR17, TTS].
In response to these vulnerabilities new mitigations had to be introduced, in the form of
explicit exceptions in existing standards or new security mechanisms (e.g., the introduction
of forbidden headers in the Fetch standard in response to the attack presented in
[SMWL10b]).

Flaws in the specifications or implementations of browsers affect the set of assumptions
that developer can make while developing applications for the Web platform. For instance,
the Same Origin Policy (SOP) [Bar11b] defines the primary security boundary between
websites in the form of their origin (i.e., the scheme, host and port of the page URL).
Thus, we can assume that all pages are unable to cross the origin boundary to, e.g., read
the content of the user mailbox loaded in a different browser tab. The combination of all
these assumptions have been abstracted in the form of three main Web threat models,
defining the capabilities of an attacker depending on their position: a network attacker
has access to the network where the victim is browsing the Web; a Web attacker controls
a site on the Web; and the related-domain attacker controls a subdomain of a target
site [CFST17].

Most of these security assumptions are, however, implicit or informally defined as part
of specific security mechanism standards, and no single document defines the set of
properties that should be seen as invariants in the Web. In this work, we argue that
these security assumptions should be explicitly stated and rigorously specified to form
the foundation of a formal definition of Web security. We name such security properties
Web invariants, that is, security properties of the Web platform that are expected to hold
across its updates and independently on how its component iteract with each other. Web
invariants are thus global, concerning the security of the platform as a whole, are proven
correct (thus not assumed), and represent the set of the security assertions all applications
should expect the platform to respect.

More specifically, in this thesis we study the security mechanisms of the modern Web
and formalize them in the form of Web invariants. We propose two methodologies to
verify such invariants, respectively, on a new model of the Web Platform specifications
(WebSpec) and on the three major browser implementations (Chrome, Firefox, Safari).
These verification pipelines allowed us to automatically discover inconsistencies that
violate the security expectation of the Web platform and to propose sound modifications
to the specifications that are guaranteed to maintain the Web security invariants. These
formal guarantees are enabled by our WebSpec model, which is the most comprehensive
to date for what concerns browser security mechanisms and supports machine-checked
formal security proofs. Additionally, we study the lesser known Web threat model of
the related domain attacker, measuring the security implications of subdomain takeover
on the most popular sites on the Web. We then focus on cookies, showing how their
integrity protections can be violated, enabling new classes of request forgery attacks
(CORF token fixation). We finally propose a formally verified mitigation for CORF token
fixation attacks enabled by a formalization of server-side Web frameworks.
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1.1. Research Goals

1.1 Research Goals

RQ1 RQ2 RQ3 RQ4 RQ5 RQ6

Web Platform Security Application Security and Threat Modeling

Web Security Invariants

Figure 1.1: Research threads and questions

The study of the security of the Web platform cannot be performed in isolation, focusing
only on browser mechanisms and their security properties, as any inconsistent behavior of
the platform has an impact on the security of Web applications. Moreover, investigating
how applications are developed in real-world scenarios and analyzing the threat models
that are used by security experts for the analysis of websites offers insights into the
security expectations and requirements of Web developers. For these reasons, we organize
the work presented in this thesis to the two research threads of Web Platform Security
and Application security and Threat modeling as depicted in Figure 1.1. Both research
threads have the goal of defining or validating Web invariants, respectively focusing
on the point of view of the browser or the applications. This highlights the role of
Web invariants as a security interface between the platform and the consumers of Web
APIs; that is, the browser offers certain security guarantees that are based on the Web
applications requirements and that applications can expect to be valid.

1.1.1 Web Platform Security
Despite the efforts of the W3C consortium and browser vendors, the current standard-
ization process for the Web platform leaves space for logical flaws to be overlooked
during the manual reviewing process. Specifications of Web components are typically
written informally and evaluated in isolation, thus, although their analysis is conducted
by experts, corner cases may be overlooked. These flaws may be caused by implicit
assumptions in the interplay between the proposed and existing Web components and
security mechanisms. For this reason, it is unclear if composing the specifications that
form the modern Web yields a consistent system that preservers the security properties
defined in the standards. This leads to the following research question.

Research Question (RQ1). Does the composition of the different components consti-
tuting the Web platform affect the security of the platform as a whole?

The above research question requires a formal and rigorous definition of security, when
applied to the Web platform. The security properties of the Web are either implicitly or
informally defined as part of the specifications of the browser mechanisms enforcing them,
and no single document defines the set of expected security properties of the platform.

3



1. Introduction

It is thus essential, as emphasized in the seminal paper by Akhawe et al. [ABL+10], to
define a set of formal properties that form the core of a more scientific understanding of
Web security.

Research Question (RQ2). Is it possible to define a set of invariants of the Web platform
that hold across its updates and independently of how its components are composed?

Once we define these invariants, we need a principled way of pinpointing logical flaws
emerging from the composition of the Web components. This methodology should
automatically detect inconsistencies in the standards defining Web security mechansisms,
taking into account the interactions between the various security mechanisms and Web
features. We thus define the following research question, which instantiates RQ1 focusing
on Web specifications.

Research Question (RQ3). Can we design a verification pipeline to automatically
detect security flaws in the specification of client-side security mechanisms?

Assuming the specifications of the Web guarantee a specific set of security properties,
additional logical flaws can be introduced by browser developer during the implementation
phase. Specifications are usually written in natural language and refer to other existing
Web components, thus correctly integrating them in browser code is challenging and error-
prone. Additionally, given the constant evolution of the Web platform, the implementation
of new updates often require non-trivial changes to existing browser components that were
not originally developed with such modifications in mind. We thus define the following
research question.

Research Question (RQ4). Can we design a practical framework to formally and auto-
matically detect security flaws in the implementation of client-side security mechanisms?

1.1.2 Application Security and Threat Modeling
The traditional threat models for the security analysis of Web applications focused
primarily on two classes of attackers. The Web attacker, which controls a malicious
website and executes attacks by means of JavaScript (including content injection); and
the network attacker, with the additional capability of monitoring and manipulating
plain-text (unencrypted) network communication.

A lesser studied threat model is the related-domain (or same-site) attacker [BBC11]:
a Web attacker controlling a sibling domain of their target Web application, making
their domain same-site with the target. This privileged position allows related-domain
attackers, for instance, to compromise the confidentiality and integrity of cookies, as
cookies can be accessed and stored by domains belonging to the same site. The notion
of site as a security boundary between websites has become progressively more relevant
in recent years. For instance, browsers recently changed the default behavior of cookies
so that they are only attached to same-site requests by default [The20, Con20]. This
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1.2. Methodology

highlights the importance of considering the related-domain attacker as a relevant threat
in the modern Web. We thus define the following research question.

Research Question (RQ5). How relevant is the threat posed by related domain (same-
site) attackers on the Web? Can we quantify their impact on Web application security at
scale?

The current draft specification of cookies [CEWW22], which all major browsers now
implement, as opposed to the 2011 standard [Bar11a], includes extended security features
focused on strengthening cookie integrity (e.g. the SameSite attribute), also incorpo-
rating defenses against same-site attackers (i.e., the __Host- and __Secure- cookie
name prefixes). These mechanisms have been proposed in response to the classes of
attacks leveraging the weaknesses of cookie confidentiality and integrity, such as session
hijacking, session fixation and cross-site request forgery (CSRF). Additional protections
are implemented on the server side, where, for instance, the synchronizer token pattern is
considered the most effective protection against CSRF [LKP21]. Given the progressively
more central role of the same-site attacker threat and the long history of integrity issues
affecting cookies, we question the effectiveness of these defenses, when used in combi-
nation, against related-domain attackers. Therefore, we define the following research
question.

Research Question (RQ6). How effective are the existing protections that enforce
cookie integrity? What are the real-world security implications of cookie integrity issues?

1.2 Methodology

Modeling

Verification

MeasurementTesting

Figure 1.2: Overall Methodology

Figure 1.2 depicts the overall methodology that was employed for the work presented in
this thesis. The testing of browser behavior and the measurement of the usage of Web
APIs in applications inform the formal modeling, which includes the definition of Web
invariants and the modeling of browser mechanisms or server-side applications. Models
are used for verification of specifications or implementations and may result in security
proofs, or counterexamples corresponding to attacks that can be validated by testing
them on implementations.

In the following, we briefly outline the requirements and the practices that characterize
each of the components of our methodology.
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1. Introduction

Modeling. The definition of Web invariants is supported by the thorough analysis
of the specifications of the respective Web security mechanism and the browser code
implementing it. In case the specifications provide ambiguous definitions of their security
guarantees, we abstract as Web invariants the community security expectations that
emerge from previous research or from our discussion with specification maintainers.
Invariants are expressed in natural language and encoded in a language suitable for
verification, for instance, we use the Coq logic (i.e., the Calculus of Inductive Construc-
tions [CH86]) for model-checking against the WebSpec model and first-order logic for the
verification of browser execution traces (see Section 1.3). Modeling the specifications that
are included in WebSpec consists of characterizing the relevant Web component behavior
at the right level of abstraction. Some specifications may, in fact, be written as a low-level
step-by-step algorithm, whereas others may only present high-level requirements. For
this reason, this step requires the conscious choice of abstracting low-level details when
irrelevant for our model as well as making implementation decisions for underspecified
behaviors.

Verification. The verification of Web invariants and the potential discovery of vul-
nerabilities is enabled by the use of automated theorem provers, such as the Z3 SMT
solver [Res]. For the verification of server-side code, we use the WebSpi [BBM12] library
for the the ProVerif protocol verifier [Bla01]. Although, automated proofs are preferred,
in the case the automated solvers are unable to prove a specific property, a machine-
checked proof is developed using the Coq proof assistant. The verification of invariants
against the WebSpec model is supported by a compiler from the language of Coq into
constrained horn clauses (CHC, a subset of first-order logic) expressed in the SMT-lib
format. The ability to compile the model into an SMT formula allows us to efficiently
check for counter examples or produce security proofs using Z3.

Testing. Expectations about the functionality of browser security mechanisms are tested
against implementation during the modeling phase. This includes manual testing of
corner cases and the validation of discovered attacks. The testing is enabled by the use
of the Web Platforms Tests [WPTb] testing framework, which supports the execution of
tests against the three major browsers (Chrome, Firefox, Safari). Additionally, for the
purpose of guaranteeing that our WebSpec model is an accurate abstraction of the Web
platform, each of the discovered invariant counterexamples is tested against multiple
browser implementations.

Measurement. The study of a specific threat model or class of vulnerabilities is
supported by the measurement of its prevalence on the Web. For the purpose of obtaining
the most realistic picture of the state of the Web ecosystem, each measurement considers
a large set of the top websites according to the Tranco [PGT+19] or Alexa rankings.
Since these measurements may require testing for vulnerable domains, special care must
be taken to not cause harm to the analyzed targets so that no site is affected by the
testing. For this reason, only the precondition of the vulnerabilities are checked and
no attack is executed against any public website. Moreover, when available, the use
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1.3. Contributions

of publicly available datasets of, e.g., open ports of all the IPv4 range [Rap20], or the
HTTP archive [Arc], is preferred instead of active probing.

1.3 Contributions
Following the research threads defined in Section 1.1, we categorize the contributions of
this thesis in two groups.

(Web Platform Security) First, we develop the most comprehensive model of the Web
platform to date for what regards the supported security mechanisms, and a methodology
for automated model checking of expected security properties (i.e., Web invariants) in
the model. We then build on the developed invariants to propose a technique to check
the validity of such properties on browser implementations, by validating the invariants
for each concrete browser execution trace.

(Threat modeling and Application Security) Second, we study the lesser-known threat
model of the related-domain attacker and present a measurement study of the impact of
such attacker on Web security. Given the dangers posed by the related-domain attackers,
we study cookie integrity issues and present a new class of vulnerabilities (CORF token
fixation) that can be exploited by a related domain attacker to bypass token-based CSRF
protections. We present a systematization of cookie integrity attacks and a formalization
of Web frameworks to verify the correctness of our proposed mitigation against CORF
token fixation attacks.

The following sections present a summary of the contributions for each chapter.

1.3.1 Model of the Web Platform
In Chapter 2, we present WebSpec, a framework for the formal analysis of browser security
mechanisms. The framework includes an extensive model of the Web browser in Coq
comprising a core set of Web platform components and security mechanisms (e.g., request
handling, cookies, SOP, and CORS) as well as recently introduced features (e.g., CSP
level 3, ServiceWorkers, and Trusted Types). WebSpec supports the definition of Web
invariants, i.e., properties of the Web platform that are expected to be valid, and allows
for machine checked proofs and model checking using the Z3 automated theorem prover.
The WebSpec verification toolchain consists in a compiler and an attack trace verifier.
The compiler translates the Coq browser model and the invariants into SMT-LIB queries
for Z3. If a violation is found, the minimal sequence of actions leading to the attack is
reconstructed and translated by the trace verifier into executable tests for cross-browser
validation of the discovered inconsistency.

We define and formally encode in our model 10 Web invariants concerning the security
properties of five Web components (cookies, CSP, Origin header, SOP, CORS). For five
invariants WebSpec is able to discover counterexamples (i.e., the invariants do not hold
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1. Introduction

on the current Web platform) corresponding to (i) a new attack on cookies caused by
the interaction with legacy APIs, (ii) a new inconsistency between CSP and a planned
change to the HTML standard, and (iii) three previously reported attacks.

Using the verifier component, we validate and confirm all discovered inconsistencies
against the latest versions of Chrome and Firefox, and propose new mitigations that we
formally prove secure in our model.

1.3.2 Verification of Web invariants against implementations

In Chapter 3, we present a technique to formally and automatically detect security
flaws in the implementation of browser security mechanisms. Specifically, we employ the
Web Platform Tests (WPT [WPTb]) cross-browser testing suite to abstract browser test
execution into sets of traces, that are then matched against Web invariants in order to
identify the components that violate important security properties of the Web.

Our methodology consists in two main stages. First, the execution traces are collected by
executing an instrumented version of Chromium, Firefox and Safari. Our instrumentation
is based on combining browser extensions with network proxies for maximum visibility
of browser events while maintaining cross-browser compatibility. Second, the obtained
traces are translated to SMT-LIB and checked against Web invariants using an SMT
solver. When the solver cannot prove the validity of an invariant for a specific browser
execution trace a violation is discovered for that browser.

We define and formalize in first-order logic 9 Web invariants about Cookies and the
Mixed Content policy and validate them against the 24k test included in the WPT suite.
Our trace verification pipeline discovered violations in 104 tests corresponding to 10
attacks against Chromium, Firefox and Safari that were responsibly disclosed.

1.3.3 Definition and measurement of the Web threat model of the
related-domain attacker

In Chapter 4, we define and measure the threat of the related-domain (or same-site)
attacker to Web application security. In particular, we first systematize the attack vectors
that can result in obtaining a same-site position and characterize the related-domain
attacker by the capabilities they can obtain depending on the exploited attack vectors. We
then develop a measurement methodology to evaluate the impact of the related-domain
attacker on real-world Web applications.

Our measurement framework includes a module to detect subdomain takeover vulnerabil-
ities deriving from expired domains, discontinued third-party services, and deprovisioned
cloud VM instances. The output of this module is used to perform an analysis of the Web
security implications that result from the discovered subdomains considering cookies, CSP,
CORS, postMessage, and domain relaxation. Specifically, the Web security analysis aims
at quantifying the number of sites that can be exploited by taking over the vulnerable
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subdomains given the additional capabilities granted to a same-site attacker for each
Web feature.

We perform a large-scale measurement study on the top 50K domains of the Tranco
list, enumerating 26M total subdomains and discovering takeover vulnerabilities in
1520 subdomains distributed across 887 sites (most of which caused by discontinued
third-party services). Our Web security analysis pictures a dire situation in which
a related-domain attacker is able to violate cookie confidentiality and integrity in the
majority of vulnerable sites (81%/99%), and CSP and CORS deployments offer additional
attack surface compared to a traditional Web attacker.

1.3.4 Study of Cookie integrity issues on the client and server sides
In Chapter 5, we study the issues that affect the integrity of cookies and present new
attacks that originate from undefined behavior in the specification, server-side parsing
vulnerabilities and flaws in browser implementations. We then define the class of CORF
(Cross-Origin Request Forgery) token fixation attacks, that allow related-domain attackers
to bypass real-world CSRF protections, and we perform a security analysis of the top 13
Web frameworks. We finally propose a mitigation for CORF attacks that we formally
verify for the affected frameworks.

We extend the threat model presented in Chapter 4 and define a taxonomy of threat
models corresponding to different levels of attacker control and visibility over the network
and sibling domains of a target website. This is done with the purpose of mapping
attacker capabilities to concrete attacks to cookie integrity.

We perform a cross-browser evaluation of cookie integrity attacks, discovering and
reporting new issues arising from (i) serialization collisions enabled by nameless cookies
and the PHP cookie parsing implementation, (ii) the desynchronization between the
cookies listed by the Document.cookie API and the browser cookie storage in Firefox,
(iii) the chaining of standard-compliant parsers when using the AWS API gateway.

Our security analysis of the top Web frameworks uncovers CORF and session fixation
vulnerabilities in 9 frameworks that were responsibly disclosed to the affected parties.
We use the ProVerif protocol verifier to formally prove the correctness of our proposed
mitigation of the synchronizer token pattern for each vulnerable framework.
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CHAPTER 2
WebSpec: Towards

Machine-Checked Analysis of
Browser Security Mechanisms

Abstract
The complexity of browsers has steadily increased over the years, driven by the continuous
introduction and update of Web platform components, such as novel Web APIs and
security mechanisms. Their specifications are manually reviewed by experts to identify
potential security issues. However, this process has proved to be error-prone due to the
extensiveness of modern browser specifications and the interplay between new and existing
Web platform components. To tackle this problem, we developed WebSpec, the first
formal security framework for the analysis of browser security mechanisms, which enables
both the automatic discovery of logical flaws and the development of machine-checked
security proofs. WebSpec, in particular, includes a comprehensive semantic model of the
browser in the Coq proof assistant, a formalization in this model of ten Web security
invariants, and a toolchain turning the Coq model and the Web invariants into SMT-lib
formulas to enable model checking with the Z3 theorem prover. If a violation is found,
the toolchain automatically generates executable tests corresponding to the discovered
attack trace, which is validated across major browsers. We showcase the effectiveness
of WebSpec by discovering two new logical flaws caused by the interaction of different
browser mechanisms and by identifying three previously discovered logical flaws in the
current Web platform, as well as five in old versions. Finally, we show how WebSpec
can aid the verification of our proposed changes to amend the reported inconsistencies
affecting the current Web platform.
This chapter presents the results of a collaboration with Benjamin Farinier, Pedro
Bernardo, Mauro Tempesta, Marco Squarcina and Matteo Maffei and has been published
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in the 44th IEEE Symposium on Security and Privacy in 2023 under the title “Web-
Spec: Towards Machine-Checked Analysis of Browser Security Mechanisms” [VFB+23].
I developed the browser model and the encoding of the 10 Web invariants, performed the
experimental evaluation and contributed to the development of the SMT-LIB compiler.
Benjamin Farinier is responsible for the compiler, and Pedro Bernardo developed the ver-
ifier component which generates executable tests. Mauro Tempesta and Marco Squarcina
contributed to the definition of the considered Web invariants and, with Matteo Maffei,
were the general advisors of the work, contributing with continuous feedback.

2.1 Introduction
Web browsers are considered among the most complex software in use today, and
the number of Web platform components, i.e., browser functionalities and security
mechanisms, is constantly increasing. These are typically proposed by browser vendors
in the form of a W3C Editor’s Draft and discussed within the community. If enough
consensus is reached, the standardization process has to progress through several maturity
levels before becoming a W3C recommendation.

While the implementation of new Web platform components is subject to extensive
compliance testing (see, e.g., the Web Platform Tests project [WPTb]), their specifications
undergo a manual expert review to identify potential issues: this is a continuous and
extremely complex process that has to consider the interplay with legacy APIs and
should, in principle, be revised whenever new components land on the Web platform.

Unfortunately, manual reviews tend to overlook logical flaws, eventually leading to critical
security vulnerabilities. For example, the HttpOnly flag was introduced by Internet
Explorer 6 [Com] as a way to protect the confidentiality of cookies with this attribute by
not exposing them to scripts. Eight years after its launch, Singh et al. discovered that
this property could be trivially violated by any scripts accessing the response headers
of an AJAX request via the getResponseHeader function [SMWL10b]. Security
vulnerabilities at the level of Web specifications have also affected CORS [ABL+10],
CSP [SBR17], and Trusted Types [TTS], to name a few.

We argue that this dire situation stems from several concurring factors: (i) Web platform
components are specified informally and therefore their analysis, albeit conducted by
expert eyes, may easily overlook corner cases; (ii) there is no precise understanding of
which security properties should be seen as invariants in the Web and, thus, be preserved
by updates of the Web platform; (iii) Web platform components are typically evaluated
in isolation, without considering their interactions, that is, the entangled nature of the
Web platform.

Our Contributions. In this work, we advocate a paradigm shift, letting Web platform
components and their interplay undergo a formal security analysis as opposed to a manual
expert review. In particular, we introduce WebSpec, the first formal framework for the
security analysis of browser security mechanisms that supports the automated detection
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Figure 2.1: The WebSpec framework

of logical flaws as well as machine-checked security proofs. As outlined in Figure 2.1,
WebSpec includes:

• a formal browser model in Coq (Section 2.2), which (i) formalizes a core set of Web
platform components, including well-established (cookies, SOP, CORS, etc.) as
well as recent ones (e.g., CSP level 3 and Trusted Types), and (ii) supports the
definition of Web invariants, i.e., properties that are expected to hold in the Web;

• the WebSpec verification toolchain (Section 2.3), encompassing a compiler and a
trace verifier. The compiler translates the browser model and the Web invariants
into SMT-lib formulas to enable model checking by the Z3 automated theorem
prover. A salient feature of WebSpec is the support for both bug finding and
proof generation. If a violation is found, Z3 reconstructs the minimal sequence
of actions leading to it, and the trace verifier displays the corresponding attack
trace and maps it to executable tests in order to systematically validate the Web
inconsistencies found in the model on major browsers. For Web invariants that
instead hold, proofs can be directly derived by Z3 against the SMT-lib encoding or
manually written and machine-checked in Coq.

We demonstrate the effectiveness of WebSpec by:

• defining ten Web invariants against which we identify (i) a new attack on cookies
caused by the interaction with legacy APIs, (ii) a new inconsistency between CSP
and a planned change to the HTML standard, as well as (iii) three previously
reported logical flaws in the current Web platform (Section 2.4);

• validating all five Web inconsistencies against the latest versions of Chrome and
Firefox;

• adjusting the model to reflect past states of the Web platform in order to identify
five previously published attacks, with the goal of showing that automated security
analysis would have prevented these vulnerabilities;
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Figure 2.2: Browser State and overview of its components (→: referenced by): rendering
components are on the left of the state, networking on the right

• writing the proofs in the Coq model for the correctness of the four fixes we propose
against the vulnerabilities on the current Web platform (Section 2.5);

• conducting an experimental evaluation to demonstrate the effectiveness of the
WebSpec toolchain and the optimizations we integrated therein (Section 2.6).

2.2 Browser Model
This section provides an overview of the main components of our browser model written
in Coq. The model focuses on Web platform components, i.e., browser functionalities
and security mechanisms, abstracting away from the network and Web servers. Our
formalization enables reasoning about all possible sequences of events leading to an
inconsistent state without necessarily having to model a specific Web application. We
are indeed interested in proving and disproving Web invariants, i.e., properties of the
Web platform that are expected to hold across its updates and independently on how its
components can interact with each other [ABL+10]. Web invariants are supposed to hold
for all Web applications, irrespectively of application-specific assumptions that attackers
could violate. For instance, scripts in our model can, in principle, execute arbitrary
sequences of any of the API calls we support, as this would be the case in presence
of cross-site scripting attacks. The model also includes configuration flags that enable
reasoning on former states of the Web platform or testing new proposals prior to their
implementation.

2.2.1 Core Abstractions
The browser is modeled as a transition system in which a state evolves from an initial
to a final configuration following a list of events and according to an inductive relation
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named Reachable parameterized by a global environment:
Inductive Reachable : Global → list Event → State → Prop.

Intuitively, given a global environment gb, a list of events evs, and a state st, Reachable
gb evs st means that, starting from a given initial state, st is reachable by executing
sequentially the events in evs under environment gb.

The Global environment contains concrete values (e.g., the browser configuration) or
symbolic variables (e.g., a set of pages) which are constant through the evolution of
the browser state. An Event represents an atomic action that modifies the state, e.g.,
sending a network request or updating the DOM, which may originate from different
sources, such as the browser itself, a script, or a service worker. A State (Figure 2.2) is
a collection of datatypes used to model browser components.

Based on these ingredients, we formalize Web invariants within our model as follows, where
hypothesis and conclusion are predicates that may refer to the global environment,
past events, or the current state of the browser:

1 Parameter hypothesis : Global → list Event → State → Prop.
2 Parameter conclusion : Global → list Event → State → Prop.
3
4 Definition Invariant (gb: Global) (evs: list Event) (st: State) := Reachable gb evs st →

hypothesis gb evs st → conclusion gb evs st.

In Section 2.4, we introduce ten Web invariants and discuss their security implications
caused by the interplay of different Web platform components.

2.2.2 Page Rendering
The main component used to model the rendering functionality is the Window datatype.
Window represents a window in terms of browsing context [WHAb, §7.1], i.e., an envi-
ronment in which the browser displays a document. The field wd_location is the URL
being visited and wd_document contains the displayed document. Since a Window can
represent either a top-level window or a frame, wd_parent contains an optional index
which, if empty, denotes a top-level window or points to the parent frame otherwise.
Similarly, wd_initiator contains an optional index which is used to track the source
browsing context of this window [WHAb, §7.11] by storing a reference to the window
responsible for starting the navigation.

The Document datatype represents a Web page loaded and rendered in a browser window.
When a page is loaded, dc_html represents the HTML code of the response, while dc_dom
contains the rendered elements of the page. Static elements, e.g., forms and possibly
other markup tags, are rendered immediately. Subresources of the page, such as frames
and scripts, require an additional request to be included in dc_dom. For instance, the
presence of a HTMLFrame in dc_html might cause three additional events to be executed
in sequence: a request (EvRequest), a response (EvResponse), followed by the update of
the DOM (EvDOMUpdate) resulting in DOMFrame being added to dc_dom. This approach
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enables fine-grained modeling of the rendering process of the browser. In particular, our
model captures the order in which resources are loaded and the presence or absence of
specific elements.

WebSpec currently supports forms with the method and action attributes, images,
scripts, and frames. Rendered frames in dc_dom contain a reference to the corresponding
Window, reflecting the tree-like structure of the DOM. Finally, Document also includes
the list of headers (dc_headers) in the HTTP response used to render the page and
dc_domain, an optional field used to model domain relaxation via the document.domain
API (Section 2.2.5).

2.2.3 Networking and Cookies
The main component used to model the networking functionality is the FetchEngine,
which abstracts network access and is responsible for sending requests and receiving
responses. ft_request contains the last emitted request, and ft_emitter maps to
the originator of the request, i.e., whether the request is top-level or generated by the
inclusion of subresources, issued by a script, a form, a worker, or it is a CORS preflight.
ft_response is a field that either contains the corresponding response or is empty if
the request is still pending. Finally, we store Emitter ∗ Request ∗ Response triples in
ft_history to track previous network accesses.

The modeling of Request and Response is rather straightforward, as shown in Figure 2.2.
We support requests and responses through HTTP and HTTPS protocols. For requests,
we model the HTTP methods GET, POST, PUT, DELETE, and OPTION. Concerning responses,
the following HTTP status codes are supported: (i) 200 OK, successful response, (ii) 204
No Content, successful response with an empty body, (iii) 302 Found, redirection with
no integrity guarantees in the redirected request over the HTTP method and the body of
the original request [Mozd], (iv) 307 Temporary Redirect, redirection enforcing that
the method and body of the original request are preserved in the redirected one.

Supported headers are Origin, Cookie and Referer for requests, and Content-Type,
Set-Cookie, Location and Referrer-Policy for responses. To support CSP and
CORS, we include the Content-Security-Policy and Access-Control-Allow-Origin

headers.

Cookies are stored in the CookieJar as a list of triples in the form Domain ∗ Cookie

∗ CookieAttribute, where Domain represents the host setting the cookie, Cookie is a
pair corresponding to the name of the cookie and its value, and CookieAttribute is a
record containing the attributes. Modeled cookie attributes are Domain, Path, Secure,
HttpOnly, and SameSite. We also support cookie prefixes which enforce additional
constraints [CEWW22]: (i) __Secure- cookies must be set with the Secure attribute
and from a page served over HTTPS; (ii) __Host- cookies have all the constraints of the
__Secure- attribute, plus the Path attribute must be set to the value “/” (ensuring
that cookies will be attached to all requests) and must not contain a Domain attribute,
thus restricting the scope to the host that set it.
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2.2.4 Additional Features
Starting from the core functionalities discussed in the previous sections, our model can
be extended to support other Web components, including novel security mechanisms that
could benefit from the automated formal analysis enabled by WebSpec. We discuss in
the following six additional Web components supported by our model.

Content Security Policy. The Content Security Policy (CSP) allows Web develop-
ers to tighten the security of Web applications by controlling which resources can be
loaded and executed by the browser. Originally, the CSP was designed to mitigate
content injection vulnerabilities. Subsequently, it was extended to restrict browser nav-
igation (e.g., form-action, frame-ancestors) and protect DOM XSS sinks (via
trusted-types). A CSP policy consists of a set of directives and source expressions
specifying an allow-list of actions the page is allowed to perform. Currently modeled
CSP directives are: script-src, which defines the allow-list for JavaScript sources, and
trusted-types together with require-trusted-types-for for Trusted Types [KW]
support, as explained later in this section.

Service Workers and Cache API. A service worker [W3C19] acts as client-side proxy
between Web applications and the network. Web applications are required to register a
service worker, binding it to a specific origin and a scope. When enabled, a service worker
can intercept and modify HTTP requests and corresponding responses initiated by its
origin. Furthermore, service workers are activated also by cross-origin requests towards
their registering origin. Using the Cache API, a service worker can store HTTP responses
and serve them even when the network is unreachable. We reflect these capabilities in our
model by considering a specific kind of service worker that can perform fetch requests,
serve synthetic responses, and cache pairs of requests and responses, regardless of the
scope. To this end, we also model a lightweight Cache API and assume that service
workers have arbitrary access to it.

Local Scheme URLs. We model requests to local scheme URLs [WHAa], i.e., URLs
with a local scheme such as data: and blob:, as virtual requests that do not generate a
response from the network. We partially support the File API [W3Cb] by enabling the
creation of blob URLs via the URL.createObjectURL JavaScript method. We assume
that local URLs are accepted interchangeably with remote URLs, meaning that they can
be navigated by frames, or included as a script in a page. We thoroughly discuss the
interaction between Content Security Policy and local scheme URLs in Section 2.4.3.

Local Storage. The Web Storage API [WHAb, §12] enables JavaScript to store and
retrieve key/value pairs in the browser. The API provides two mechanisms to store
data: sessionStorage, an ephemeral storage that expires when the browser or the
page is closed, and localStorage, which persists in the browser unless cleared explicitly.
As we are interested in capturing single browser sessions, the difference between the
two mechanisms is irrelevant. For this reason, we model only localStorage, providing
methods to read and write data in the browser storage from any scripts.
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Web Messaging. Cross-origin communication is enabled by the postMessage API [WHAb].
As we are interested in modeling messages that are sent and received—while we ignore
messages that do not reach the destination—we encode the sending and receiving of a
message as a single action. We also model the origin validation process performed in the
receiving script. This way, we can capture potential security issues due to cross-origin
messages processed without validating the sender’s origin [SS20].

Trusted Types. Trusted Types are an experimental security mechanism designed to
prevent DOM XSS by restricting injection sinks to accepting only non-spoofable typed
values in place of strings [KW]. These types can be created based on application-defined
policies, allowing developers to specify via JavaScript a set of rules to protect injection
sinks. Trusted Types are controlled by two CSP directives: require-trusted-types-
for ’script’, which enables the enforcement of Trusted Types, i.e., instructs the
browser to only accept Trusted Types for all DOM XSS injection sinks, and trusted-
types, optionally followed by the name of one or more policies, which specifies the
policies that are allowed to create Trusted Types objects. When no name is specified
or when the special value ’none’ is used, no policy, and thus no Trusted Types, can
be created, effectively disabling all DOM XSS sinks. We model the enforcement of
Trusted Types on a page by mandating scripts to invoke the Trusted Type API to create
a TrustedHTML object, and use it to modify the DOM via the Element.innerHTML

property. Although we do not model the content of policies, we encode the ability
to disallow the creation of any Trusted Types via the CSP directive trusted-types

’none’.

2.2.5 JavaScript

Contrary to previous works [Boh12], instead of modeling scripts with an internal state
and precise small-step semantics, we model them in terms of actions that the browser
can perform. Since we are not interested in application-specific behavior, our abstraction
captures the execution of sequences of Web API calls and the evolution of the browser’s
state. For example, we model the fact that a script can set a cookie, or add a request-
response pair to a cache using the Cache API, but we do not model how cookie data,
requests, or responses are built. Instead, we introduce symbolic variables with constraints
following the API specification.

Scripts in our model can update the DOM, set and get cookies using Document.cookie,
or navigate frames using the Window.location setter. They can use the Fetch API to
perform network requests and read the corresponding responses up to SOP constraints,
including support for CORS. We also model the legacy Document.domain API, which
allows for cross-origin communication between windows in the same site by relaxing
their document.domain property to a common ancestor. Although this API has been
deprecated due to security concerns [Mozc], and Google announced that it will be disabled
by default starting from Chrome 109 [Kit], it is still supported by all major browsers.
Scripts can also use the APIs described in Section 2.2.4: they can update a cache from page
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context using Cache.put, communicate with other windows using Window.postMessage,
create blob URLs with URL.createObjectURL, and create Trusted Types.

2.3 WebSpec Toolchain
In the following, we present the WebSpec toolchain (Figure 2.1). This toolchain comprises
(i) a compiler (Section 2.3.1) which translates the browser model and the Web invariants
written in Coq into a query that can be automatically checked by an SMT solver – Z3 in
the current implementation (Section 2.3.2) and (ii) a verifier which reconstructs from a
SMT solution an attack trace enjoying correctness and minimality, and validates it against
real Web browser (Section 2.3.3). Finally we discuss the advantages of our approach as
compared to prior work (Section 2.3.4).

2.3.1 Compilation
To automatically verify the (in)validity of our invariants, we developed a compiler that
translates the Coq model and the invariants into SMT-lib formulas, which are then fed to
the Z3 solver. Technically, we compile Coq inductive types into CHC logic, i.e., first-order
logic with fixed-points expressed in terms of Constrained Horn Clauses [HBdM11, HB12],
in order to find inhabitants of the translated inductive types, i.e., terms of these types. In
particular, the compiler translates Reachable and all the inductive types of kind Prop

involved in the definitions of the query into relations expressed in terms of Horn clauses,
while the remaining inductive types, including the browser state, the list of events, and the
global environment, are instead translated into SMT datatypes. Note that existing tools
for automation in Coq such as CoqHammer [CK18, Cza20] and SMTCoq [AFG+11] do
not satisfy our needs: indeed, despite both relying on SMT solvers, they focus respectively
on proof reconstruction and constraint solving, but not on inhabitant finding. We refer
the interested reader to Appendix A.3 for a discussion of the fragment of the Coq logic
supported by our compiler and for further details about the compilation pipeline.

For every Web invariant that we aim to verify in our model, we define a corresponding
query as a Coq inductive type that is satisfied if a counterexample to the invariant is
found in any of the states reachable from the initial browser state. For example, let us
consider the following invariant:

Invariant. Cookies with the Secure attribute can only be set (using the Set-Cookie

header) over secure channels.

We encode this invariant in WebSpec as follows:
1 Definition SecureCookiesInvariant (gb: Global) (evs: list Event) (st: State) : Prop :=
2 ∀ rp corr _evs cookie,
3 Reachable gb evs st →
4 evs = (EvResponse rp corr :: _evs) →
5 rp_hd_set_cookie (rp_headers rp) = Some cookie →
6 sc_secure cookie = true →
7 url_protocol (rp_url rp) = ProtocolHTTPS.
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This definition says that for every reachable state where the browser handles a network
response, i.e., the state is Reachable and the current event is EvResponse (lines 2-4), if
the response contains a Set-Cookie header (line 5) with a cookie that has the Secure

attribute (lines 6), then the protocol used to serve the response is HTTPS (line 7).

We encode a query for finding a counterexample to this invariant with the following Coq
inductive type:

1 Inductive SecureCookiesQuery (gb: Global) (evs: list Event) (st: State) : Prop :=
2 | Query_state : ∀ rp corr _evs cookie,
3 Reachable gb evs st →
4 evs = (EvResponse rp corr :: _evs) →
5 rp_hd_set_cookie (rp_headers rp) = Some cookie →
6 sc_secure cookie = true →
7 url_protocol (rp_url rp) ̸= ProtocolHTTPS →
8 SecureCookiesQuery gb evs st.

This inductive type definition is essentially identical to SecureCookieInvariant, ex-
cept the negation of the conclusion (line 7, we require the protocol to be ̸= HTTPS).
The following theorem formalizes that inhabitants of SecureCookiesQuery are indeed
counterexamples of SecureCookiesInvariant:

1 Theorem secure_cookies_query_invalidates_invariant :
2 ∀ gb evs st, SecureCookiesQuery gb evs st →
3 not (SecureCookiesInvariant gb evs st).

2.3.2 SMT Solving and Trace Reconstruction
The compilation of the inductive Reachable relation results in a recursive CHC formula,
which cannot be handled by standard SMT solvers. Therefore we use the µZ extension
(satisfiability modulo least fixed-points [HBdM11]) of the Z3 theorem prover. More
precisely, we run in parallel the Spacer engine of µZ, a generalized property-directed
reachability (GPDR) model checker suitable for finding proofs [HB12], and the bounded
model checking (BMC) engine of µZ, designed to find counterexamples. The four possible
outcomes are:

Sat µZ finds a counterexample, hence the invariant does not hold. We discuss in
Section 2.4 the security implications of violating an invariant.

Unknown µZ fails to find a counterexample or to prove its absence. In such a case,
which never happened in our case studies, we cannot draw any conclusion.

Unsat µZ proves that there is no counterexample. Although this does not formally
suffice to conclude that the invariant holds in our model since neither our compiler nor
µZ are formally verified, this gives us strong confidence that this is the case. A formal
proof in Coq can be manually produced, if stronger confidence is needed.

Loop µZ does not terminate. Due to the way the BMC engine works, this means that
µZ did not find a counterexample after exploring a certain number of steps. When this
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number becomes high enough, though it is not a proof, it gives us a good intuition that
the invariant is likely to hold, and hints it is worth starting a formal proof, as shown in
Section 2.5.

When running WebSpec on SecureCookiesQuery, Spacer proves that there is no coun-
terexample within 2min, while in the same time, BMC reaches a trace size of 50 events
without detecting any attack. Moreover, we constructed a formal proof in Coq that the
invariant indeed holds [Webb].

In the case µZ finds a counterexample (Sat), we first automatically extract an attack
trace from it. It is worth noting that this attack trace enjoys the property of being
minimal. This property is due to the decision procedure implemented in the BMC engine
of µZ, which ensures that the list of events in the counterexample is the smallest one that
leads to a contradiction of the invariant. Then, we verify its correctness by automatically
translating it back into a Coq term and checking whether the trace produces an inhabitant
of the query. We take this precaution because, as mentioned previously, neither our
compiler nor µZ are formally verified. Since µZ instantiates all symbolic variables, the
proof is straightforward and mostly automatic. WebSpec then renders this trace as a
sequence diagram, making the representation of the counterexample accessible to users
unfamiliar with formal verification. Examples of such diagrams are given in Section 2.4.

2.3.3 Trace Validation
In addition to rendering sequence diagrams, WebSpec includes a verifier to validate the
discovered attack traces against real-world browser implementations (Chrome, Firefox).
Our verifier consists of approximately 3500 lines of OCaml code and leverages the Web
Platform Tests (WPT) [WPTb] cross-browser framework to map attack traces to tests,
enabling verification against all major browsers. WPT is the standard test suite for
browser and specification developers. It allows browser vendors to write tests modeling the
expected behavior of Web standards and test their implementations for compliance. Using
the common format specified by the WPT framework makes WebSpec tests compatible
with the test suite. This allows for easy triage of the attack traces extracted from
counterexamples and the inclusion of our cross-component tests into WPT.

The generated tests translate trace events to browser actions and server responses. These
actions modify the browser state to match the model’s state after a given event. To
maintain the browser and model states consistent throughout test execution, the verifier
ensures these actions execute in the correct order. The effects of these actions are collected
(directly or indirectly) and verified via WPT assertions. If all assertions succeed, the test
is passing and the trace is considered valid, whereas the test is failing if one assertion
fails. We map each event to a <Setup, Action, Verification> (SAV) tuple:

Setup. A set of pre-conditions necessary to execute an event, e.g., for EvWorkerCacheMatch
to happen, a service worker must be installed in the matched URL’s scope.
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Action. Any browser or server action, from top-level navigations and JavaScript API
calls to server responses. Actions can be implicit or explicit: Explicit actions require an
explicit API call or client-originated event, like window navigation; Implicit actions are
actions triggered by other actions (implicit or explicit), like subresource loading.

Verification. A means to ensure that an action succeeded. Explicit verifications map to
WPT assertions and are the primary mechanism for verifying attack traces. Asserting
the value of a cookie after an EvScriptSetCookie event is an example of an explicit
verification. Implicit verifications do not require a corresponding WPT assertion. Server
responses are an example of actions with implicit verifications, as they are not browser-
dependent behavior and are known before runtime.

Since events are state transitions in the model, corresponding Actions must change the
concrete state of the browser accordingly. By enforcing that Actions occur in the correct
order, we guarantee that the model and the concrete browser’s state match throughout
the test execution, reaching a final state that, e.g., violates a Web invariant. Precisely
mapping trace events to SAV tuples allows us to generate executable tests that can
perform and verify each event in a trace, thus ensuring the correspondence between test
executions and traces. We refer to Appendix A.5 for a detailed example of how an attack
trace presented in Section 2.4 is mapped to an executable test.

The following three paragraphs discuss some non-trivial implementation details necessary
for trace verification:

Script Construction and Serialization. In our model, an EvScript* event is associ-
ated with a DOMPath (Figure 2.3) which identifies the script element performing the
action in the current window’s DOM. The verifier keeps an ordered list of EvScript*
events for each script element in a trace. Since each EvScript* event maps to a specific
sequence of JavaScript methods, these events can be serialized. This serialization is also
performed in order, adding verification and synchronization code between event actions
when necessary.

Event Synchronization. To keep tests as close as possible to the attack traces, the
verifier must ensure that the actions corresponding to trace events are executed in the
correct order. For instance, assume that a script in a page caches a response to an
HTTP request, and such entry in the cache is subsequently processed by a service worker
after matching on the corresponding request. Without synchronization, the service
worker matching could occur before the cache update, leading to inconsistent test results.
Ordering is implemented by enforcing explicit dependencies between actions, e.g., action
aj must be preceded by action ai. This dependency relation is implemented by writing a
nonce to a global key-value storage from ai. Then, aj is allowed to execute only after
successfully reading the same nonce from the storage.

Content-Security-Policy Inference. Invariants regarding the CSP impose a challenge
on verification as browsers do not allow direct access to the CSP via JavaScript. Therefore,
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to verify the value of the CSP of a given browsing context, we must infer it. The verifier
generates a set of URLs that the CSP should allow or block and calculates a signature
representing this allow/block pattern. Pages updated via a EvScriptDOMUpdate then
attempt to load scripts from these URLs. The verifier adds a report-uri field to the
CSP for the server component to know both allowed and blocked requests. The server
can then calculate the CSP signature and report it to the main page, which asserts its
value. If it matches, we conclude that the CSP matches the one in the trace.

2.3.4 Discussion
The choice of Coq for the formalization of a Web browser brings two advantages: First,
using a strictly-typed higher-order language as a specification language makes it possible to
write expressive and parametrizable models which can easily and consistently be extended
to new Web features. Second, having our model specified within a proof assistant allows
us to write fully machine-checked proofs when the highest level of confidence is required.
We developed such proof for the four changes we propose to fix the vulnerabilities that
are currently affecting the Web platform.

In general, the main drawback of a model written in Coq is the lack of automation, which
becomes particularly problematic when the model is constantly evolving to reflect the
regular Web platform updates. Compiling our Web browser model from Coq to SMT
queries circumvents the issue by providing not only automatic counterexample finding as
in [ABL+10], but also automated proofs that counterexamples do not exist.

Finally, a common limitation of model-based security analysis is the lack of evidence of
compliance between models and reality. In WebSpec, we avoid this pitfall by using of
a verifier (Section 2.3.3) which allows us to execute and validate the discovered attack
traces against real browsers. In particular, we are able to validate the five vulnerabilities
found in our model of the current Web platform by running the attack traces produced
by WebSpec against the latest versions of Chrome and Firefox. Additionally, the verifier
enables automated testing of the semantic rules of the browser model, ensuring that our
model matches the observable behavior of real browsers. For every Web component in
our model, we query for a reachable state which makes use of the modeled feature. Then
we validate, using the verifier, that the obtained state maps to a reachable concrete state
across browser implementations. Although this does not correspond to a correctness proof,
it provides empirical evidence that our modeling is consistent with browser behavior.

2.4 Web Invariants and Attacks
We define 10 Web invariants concerning the security properties of 5 core Web components:
cookies, CSP, Origin header, SOP, and CORS. Table 2.1 presents an overview of the
invariants that we formally encode in our model. For each invariant that does not hold
in the current Web platform, WebSpec is able to find a counterexample that translates
to a concrete attack. When the invariant holds, WebSpec can be configured to reflect a
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Table 2.1: Web Invariants.

Feature Invariant Description Holds References

Cookies

I.1 Integrity of Secure cookies
(network)

Cookies with the Secure attribute can
only be set (using the Set-Cookie header)
over secure channels.

[CEWW22]

I.2 Confidentiality of HttpOnly
cookies (Web)

Scripts can only access the cookies with-
out the HttpOnly attribute. [SMWL10b,

Bar11a]

I.3 Integrity of __Host- cookies
A __Host- cookie set for the domain d can
be set either by d (via HTTP headers) or
by scripts included by the pages on d.

[SMWL10b,
Wes]

CSP

I.4 Interaction with SOP
The DOM of a page protected by CSP
can be read/modified only by the scripts
allowed by the policy.

[W3Ca,
SBR17]

I.5 Integrity of server-provided
policies

If a response from the server contains a
security policy, then the browser enforces
that specific policy.

[SCM21]

I.6 Access control on Trusted
Types DOM sinks

If a page has both trusted-types;
and require-trusted-types-for
’script’; directives in the CSP then no
script in the page can modify the DOM
using a Trusted Types sink.

[KW]

I.7 Safe policy inheritance
Documents loaded from a local scheme
inherit the policy of the source browsing
context.

[W3Ca]

Origin I.8 Authenticity of request ini-
tiator

If a request r includes the header Ori-
gin: o (with o ̸= null), then r was gen-
erated by origin o.

[ABL+10,
W3C14]

CORS
I.9 Authorization of non-simple

requests (i)
A non-simple cross-origin request must be
preceded by a pre-flight request. [ABL+10,

W3C09]

I.10 Authorization of non-simple
requests (ii)

The authorization to perform a non-
simple request towards a certain origin
o should come from o itself.

[ABL+10,
WHAb]

The invariant holds in the current version of the Web platform but a planned modification will invalidate it.)

past state of the Web that was affected by a vulnerability, confirming that our approach
can identify previously reported attacks.

In this section, we focus on three invariants that do not hold in the current Web platform,
showing how WebSpec is able to discover a new attack on the __Host- prefix for cookies
as well as a new inconsistency between the Content Security Policy and a planned change
in the HTML standard. We also present an attack against Trusted Types for which we
propose a mitigation in Section 2.5. We illustrate the encoding of the full set of invariants
in Appendix A.1.

2.4.1 Integrity of __Host- Cookies
The invariant stipulates that __Host- cookies ensure integrity against same-site attackers
[STV+21]. When a cookie whose name starts with __Host- is set, the browser verifies
that the Domain attribute is not present and discards the cookie otherwise, thus marking
all __Host- cookie as host-only.

Invariant I.3. A __Host- cookie set for the domain d can be set either by d (via HTTP
headers) or by scripts included by the pages on d.

We encode this invariant by splitting the two cases in which a host cookie can be set:
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(i) via HTTP headers, and (ii) via JavaScript. We present case (ii) below and refer to
Appendix A.1.1 for the full definition.

1 Definition HostInvariantSC (gb: Global) (evs: list Event) (st: State) : Prop :=
2 ∀ pt sc ctx c_idx cookie cname h _evs,
3 Reachable gb evs st →
4 (* A script is setting a cookie *)
5 is_script_in_dom_path gb (st_window st) pt sc ctx →
6 evs = (EvScriptSetCookie pt (DOMPath [] DOMTopLevel) c_idx cookie :: _evs) →
7 (* The cookie prefix is __Host *)
8 (sc_name cookie) = (Host cname) →
9 (* The cookie has been set in the script context *)

10 url_host (wd_location ctx) = Some h →
11 (sc_reg_domain cookie) = h.

For every reachable state in which a script sc is setting a cookie on the top-level window
(lines 3-6), ctx is the window (browsing context) in which the script sc is running (line
5). If the cookie has the __Host- prefix (line 8), we require (line 11) the domain on
which the cookie was registered to be equivalent to the domain of the ctx browsing
context. This corresponds to stating that a script running on a page of domain d can set
a host-prefix cookie only for the domain d.

Attack. When we run the query, our toolchain discovers a novel attack that breaks
the invariant using domain relaxation. A script running on a page can modify at
runtime the effective domain used for SOP checks through the document.domain
API. Indeed, the value of document.domain is taken into account only for DOM
access. All remaining access control policies implemented in the browser, e.g., for cookie
jar access, XMLHttpRequests, and the origin information reported when performing
a postMessage, use the original domain value [SMWL10b]. The mismatch between
the access control policies in the DOM and the cookie jar allows a script running in an
iframe to access the document.cookie property of the parent page when both pages
set document.domain to the same value. Once the inner frame performs a set cookie of
a host-prefix cookie through the parent page DOM, the browser uses the original domain
value of the parent page to perform the host prefix checks, breaking the invariant.

The trace generated by WebSpec is shown in Figure 2.4 and detailed below. In the
following, expressions of the form DOMPath _ _ represent a unique path in the DOM. In
particular, the first argument of DOMPath is the nesting level. For instance, we refer to
the window loaded inside two nested iframes as DOMPath [1,3] _, where 1 and 3 are the
indexes of the DOM elements representing the frames. The second argument is used
to refer to a specific DOM object (DOMIndex) or to the whole document loaded in the
frame (DOMTopLevel). An example is shown in Figure 2.3: the path to an image at
index 3 loaded inside two nested iframes (respectively at index 2 and 1) is represented
as DOMPath [1,2] (DOMIndex 3), while the path of the window containing the image is
DOMPath [1,2] DOMTopLevel.

The attack trace describes the following scenario: (steps 1-3) a page from origin_1

is loaded in the top-level window of the browser. Note that origin_1 is the subdo-
main 16162 of the host 13, loaded via HTTPS; (4-6) an iframe element is loaded from
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DOMPath [ 1 , 2 ] ( DOMIndex 3 )

... ( DOMTopLevel )

Figure 2.3: DOM Path Datatype

origin_4 at index 0 of the DOM in the main window (in the path DOMPath [] (DOMIndex 0)).
origin_4 is another subdomain of the same host; (7-9) a script is loaded in the main win-
dow at index 1; (10-12) a script is loaded in the iframe at index 0 (DOMPath [0] (DOMIndex 0));
(13) the script in the main window sets its document.domain to its parent domain;
(14) the script in the iframe sets its document.domain to its parent domain. The two
pages are now effectively same origin, having performed domain relaxation to the same
domain; (15) the script in the iframe (DOMPath [0] (DOMIndex 0)) sets a cookie using
document.cookie of the top-level window (DOMPath [] DOMTopLevel). The cookie has
the __Host- prefix and has been set by origin_1 for origin_4, breaking the invariant.

Although the current Web platform is still vulnerable to the attack, discontinuing the
document.domain API will eventually make the invariant hold. WebSpec can reflect
this change by specifying c_domain_relaxation (config gb)= false, allowing us to
verify that the invariant holds.

2.4.2 Access control on Trusted Types DOM sinks
Trusted Types allow for locking down a document by disabling DOM XSS sinks entirely.
This special setting corresponds to the following invariant.

Invariant I.6. If a page has both trusted-types; and require-trusted-types-
for ’script’; directives in the CSP then no script in the page can modify the DOM
using a Trusted Types sink.

We encode the invariant in our model as follows:
1 Definition TTInvariant (gb: Global) (evs: list Event) (st: State) : Prop :=
2 ∀ pt target_pt target_ctx ssrc ttypes,
3 Reachable gb evs st →
4 (* The target context has Trusted-Types enabled *)
5 url_protocol (wd_location target_ctx) = ProtocolHTTPS →
6 rp_hd_csp (dc_headers (wd_document target_ctx)) = Some
7 {| csp_script_src := ssrc; csp_trusted_types := Some ttypes |} →
8 tt_policy ttypes = Some None →
9 tt_require_for_script ttypes = true →

10 (* No script can update the dom using innerHTML *)
11 not (In (EvScriptUpdateHTML pt target_pt target_ctx) evs).
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Browser

Browser

JavaScript

JavaScript

origin_1

origin_1

origin_4

origin_4

origin_6

origin_6

origin_9

origin_9

0. EvInit

GET origin_1/1. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeHTML2. EvResponse (ResponseOk)

3. EvDOMUpdate (DOMPath [] DOMTopLevel)

GET origin_4/254104. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeHTML5. EvResponse (ResponseOk)

6. EvDOMUpdate (DOMPath [] (DOMIndex 0))

GET origin_6/253877. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeScript8. EvResponse (ResponseOk)

9. EvDOMUpdate (DOMPath [] (DOMIndex 1))

GET origin_9/2540310. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeScript11. EvResponse (ResponseOk)

12. EvDOMUpdate (DOMPath [ 0 ] (DOMIndex 0))

13. EvScriptDomainRelaxation (DOMPath [] (DOMIndex 1)) (domain 13)

14. EvScriptDomainRelaxation (DOMPath [ 0 ] (DOMIndex 0)) (domain 13)

15. EvScriptSetCookie (DOMPath [ 0 ] (DOMIndex 0)) (DOMPath [] DOMTopLevel) 4
(Set-Cookie: __Host-c_13=99891; Path=/; Secure; SameSite=Strict)

origin_1 := (ProtocolHTTPS (SomeDomain (subdomain 16162 13)) (SomeInt 25423))
origin_4 := (ProtocolHTTPS (SomeDomain (subdomain 9348 13)) (SomeInt 25411))
origin_6 := (ProtocolHTTP (SomeDomain (subdomain 16162 13)) (SomeInt 18683))
origin_9 := (ProtocolHTTP (SomeDomain (subdomain 25406 25405)) (SomeInt 25404))

Figure 2.4: Host Cookies Inconsistency

Here we assert that there cannot be an html update event (using a DOM XSS sink, e.g.,
innerHTML) for the window target_ctx, if the aforementioned directives are used to
define the policy for target_ctx.

Attack. An earlier version of the Trusted Types draft [KW, Editor’s Draft, Feb. 3,
2021] restricted Trusted Types to Secure Contexts only. This was part of an effort of
browser vendors to restrict all new APIs to secure contexts to help advance the Web
platform to default to the HTTPS protocol. The restriction, however, enabled attackers
to bypass Trusted Types by framing the protected page from a non-secure context [TTS].
This silently disabled the DOM XSS protection despite the fact that the document was
downloaded using a secure connection. When we enable the secure context restriction in
our model, WebSpec is able to rediscover the bypass.

We can disable the secure context restriction with the c_restrict_tt_to_secure_contexts
(config gb)= false configuration option. However, when we rerun the solver with this
configuration, our toolchain can still find a counterexample for which the invariant does
not hold. The trace is shown in Figure 2.5: (steps 1-3) a page protected with Trusted
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Browser

Browser

JavaScript

JavaScript

origin_1

origin_1

origin_2

origin_2

0. EvInit

GET origin_1/4301. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeHTML
CSP: trusted-types; require-trusted-types-for 'script'

2. EvResponse (ResponseOk)

3. EvDOMUpdate (DOMPath [] DOMTopLevel)

GET origin_1/73674. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeHTML
CSP: trusted-types 25809;

5. EvResponse (ResponseOk)

6. EvDOMUpdate (DOMPath [] (DOMIndex 3))

GET origin_2/143697. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeScript8. EvResponse (ResponseOk)

9. EvDOMUpdate (DOMPath [ 3 ] (DOMIndex 0))

10. EvScriptUpdateHTML (DOMPath [ 3 ] (DOMIndex 0)) (DOMPath [] (DOMIndex 1))

origin_1 := (ProtocolHTTPS (SomeDomain (subdomain 9774 429)) (SomeInt 25805))
origin_2 := (ProtocolHTTPS (SomeDomain (subdomain 16751 16752)) (SomeInt 25806))

Figure 2.5: Trusted Types bypass with same-origin iframes

Types is loaded from origin_1. In particular, no policy is allowed, so no Trusted Type
can be created; (4-6) the page contains a same-origin iframe which specifies a Trusted
Types policy (trusted-types 25809), allowing scripts loaded in this iframe to create
Trusted Types using a policy named 25809; (7-9) a script that is loaded in the iframe
modifies (10) the DOM of the parent frame using a Trusted Types sink. This is possible
because the inner frame is able to create Trusted Types that are accepted by all DOM
XSS sinks and because, being same origin, the inner frame can access the DOM of the
parent. A similar attack on related domains is possible if the parent page performs
domain relaxation, as the value of document.domain is used for DOM access control.

The Trusted Types draft [KW, §5.1] includes a brief discussion of a similar attack in which
cross-document import of nodes would bypass the enforcement of the policy. However, the
current specification does not provide any solution and suggests that other mechanisms
like Origin Policy [DW] might be used to ensure that the same policy is deployed across
the whole origin. Instead, we propose a different solution based on non-transferable
Trusted Types, and prove the correctness of our approach within our model in Section 2.5.

2.4.3 Safe policy inheritance

The Content Security Policy specification [W3Ca, §7.8] mandates that every document
loaded from a local scheme must inherit a copy of the policies of the source browsing
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context, i.e., the browsing context that was responsible for starting the navigation. This
corresponds to the following invariant.

Invariant I.7. Documents loaded from a local scheme inherit the policy of the source
browsing context.

We encode the invariant in our model as follows:
1 Definition LSInvariant (gb: Global) (evs: list Event) (st: State) : Prop :=
2 ∀ evs pt _evs frm fhtml fwd ctx lv pt_idx init_idx,
3 let get_csp wd :=
4 rp_hd_csp (dc_headers (wd_document wd)) in
5 Reachable gb evs st →
6 (* A document has just been loaded in a frame *)
7 evs = (EvDOMUpdate pt :: _evs) →
8 is_frame_in_dom_path gb (st_window st) pt frm fhtml fwd ctx →
9 is_local_scheme (wd_location fwd) →

10 (* get navigation initiator *)
11 pt = DOMPath lv (DOMIndex pt_idx) →
12 is_wd_initiator_of_idx ctx pt_idx (Some init_idx) →
13 (* The csp is equal to the req. initiator *)
14 get_csp fwd = get_csp (windows gb.[init_idx]).

When a frame has just loaded a document from a local scheme (lines 7-9), we require
that the CSP of the navigation initiator (i.e., the source browsing context) is equal to
the policy of the document loaded in the frame window (line 14).

The goal of this Web invariant is to ensure that a page cannot bypass its policy by
navigating to content that is completely under its control. One such bypasses [Chrc] was
caused by the behavior defined for the inheritance of policies in a previous version of the
CSP specification [W3Ca, Oct. 15, 2018]: documents loaded from local schemes would
inherit the policies of the embedding document or the opener browsing context.

Recently, the concept of policy container was added to the HTML specification [WHAb,
§7.9]. A policy container is a collection of policies to be applied to a specific document and
its purpose is to simplify the initialization and inheritance of policies. The introduction
of the policy container in the specification allowed for clarifying the inheritance behavior
for local schemes, which might differ depending on the specific scheme or URL that is
used. The policy container explainer [Pol] stipulates the following behavior:

about:srcdoc An iframe element with the srcdoc attribute inherits the policies from
the embedding document, i.e., the parent frame. Note that srcdoc iframes are in the
same origin of the embedding document but their location URL is about:srcdoc.

about:, data: A document loaded from the data: or about: schemes inherits the
policies of the navigator initiator (as mandated by the CSP specification).

blob: A document loaded from a blob: URL inherits the policies from the document that
creates the URL, i.e., the document that calls the URL.createObjectURL function.
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Note that in the current version of the HTML specification [WHAb, §7.11.1] the inheri-
tance behavior for blob: URLs matches the one for about: and data:, thus following
the CSP specification. We contacted the editors of the HTML specification [Our] asking
for a clarification on the correct behavior for blob: URL and they confirmed that, be-
cause of the wrong ordering of a clause in the policy container construction for blobs, the
initiator policy container was always replacing the creator policy container. The correct
inheritance rule is to inherit the policy container of the creator of the URL [LSP], thus
introducing an inconsistency between the CSP specification and the HTML specification
(as blob: is a local scheme that is handled differently from the others).

Attack. When we configure our model to reflect a past state of the Web platform in which
policies were inherited from the embedding frame and not from the navigation initiator
(c_csp_inherit_local_from_initiator (config gb)= false), our toolchain is able
to rediscover the attack trace that allows an attacker to strip the CSP policies by
navigating a frame to a local scheme URL. The trace is shown in Figure 2.6: (steps
1-6) a document with no Content Security policy loads an iframe with a restrictive
CSP; (7-9) the iframe contains a script which navigates (10) the frame itself (e.g., using
the window.location setter) to a local scheme URL; (11-13) the iframe renders the
content of the local scheme URL and inherits the CSP from the embedding document,
which contains no policy. The resulting document has no CSP, effectively removing the
iframe’s previous policy.

We can configure our model to reflect the current state of the Web platform by inheriting
the policies from the navigation initiator for all local schemes:

c_csp_inherit_local_from_initiator (config gb) = true ∧
c_csp_inherit_blob_from_creator (config gb) = false.

We can verify (up to a finite size, see Section 2.6) that with this configuration the
invariant holds. However, when we configure our model to reflect the planned modi-
fication of inheriting the policies of the URL creator when rendering a blob: URL
(c_csp_inherit_blob_from_creator (config gb)= true), Z3 is able to find a new
counterexample. The trace is similar to the one depicted in Figure 2.6 with an ad-
ditional script loaded in the top-level window executing an EvScriptCreateBlobUrl

event: (i) a page in origin_1 with no CSP loads a same-origin iframe with a restric-
tive policy; (ii) a script running on the embedding document creates a new blob URL
(EvScriptCreateBlobUrl); (iii) a script running on the inner frame navigates the frame
itself (i.e., setting window.location) to the previously created URL. The frame loads
the content of the blob and inherits the CSP from the embedding document, which does
not have any policy. Similarly to the previous attack trace, the policy that was defined
for the iframe has been removed by navigating to local-scheme content.

Hence, the planned modification on CSP inheritance in the HTML standard would
introduce an inconsistency with the CSP specification. We responsibly reported the issue
to the working group of the HTML standard [Our], who initially deemed the security
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Browser

Browser

JavaScript

JavaScript

origin_1

origin_1

origin_4

origin_4

origin_7

origin_7

origin_8

origin_8

0. EvInit

GET origin_1/326711. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeHTML2. EvResponse (ResponseOk)

3. EvDOMUpdate (DOMPath [] DOMTopLevel)

GET origin_4/326854. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeHTML
CSP: script-src 32713:32712
CSP: trusted-types (SomeInt 32711);

5. EvResponse (ResponseOk)

6. EvDOMUpdate (DOMPath [] (DOMIndex 0))

GET origin_7/37. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeScript
CSP: script-src CSPSrcNone

8. EvResponse (ResponseOk)

9. EvDOMUpdate (DOMPath [0] (DOMIndex 1))

10. EvScriptNavigateFrame (DOMPath [0] (DOMIndex 1))
(DOMPath [] (DOMIndex 0)) (data:[11]2)

GET data:[11]211. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeHTML12. EvResponse (ResponseOk)

13. EvDOMUpdate (DOMPath [] (DOMIndex 0))

origin_1 := (ProtocolHTTP (SomeDomain (domain 2576)) (SomeInt 32672))
origin_4 := (ProtocolHTTP (SomeDomain (subdomain 9474 9475)) (SomeInt 32686))
origin_7 := (ProtocolHTTP (SomeDomain (subdomain 9477 9479)) (SomeInt 32688))
origin_8 := (0 11 0)

Figure 2.6: CSP bypass due to inheritance from the embedder document

implications of the attack as low. However, at the time of writing (August 2022), our
invariant still holds since no final decision has been taken.

2.5 Verification of Security Properties
WebSpec supports both machine-checked and automated Web invariant proof generation.
In particular, we wrote four machine-checked proofs in Coq and were able to automatically
derive two further Web invariant proofs through the Spacer engine of µZ. We show
here how to formally verify the security of the fix we present against the attack on
Trusted Types (Section 2.4.2) through a machine-checked proof in WebSpec, and refer to
Appendix A.2 and the online repository [Webb] for the remaining proofs.

According to the current draft of the Trusted Types specification, a Trusted Type object
created by a page can be assigned to DOM XSS sinks belonging to different pages. This
allows for bypassing the protection if a restricted document colludes with an unrestricted
one. This can happen, e.g., in case of same-origin iframes (see Section 2.4.2). The
specification acknowledges the issue and suggests the usage of the Origin Policy [DW] to
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address the problem, which unfortunately is not currently supported by any browser.

For this reason, we propose an alternative solution that we label non-transferable Trusted
Types, which consists in labeling each Trusted Type with the JavaScript realm (window
or worker) that created it and ensuring that a type can only be assigned to DOM XSS
sinks from the same realm. Therefore, our fix prevents the cross-document usage of
Trusted Types. We implemented this behavior in WebSpec, which can be activated by
setting the configuration option c_tt_strict_realm_check to true. The following
theorem states the validity of the invariant TTInvariant (Section 2.4.2) when our fix
is enabled:

1 Theorem strict_realm_check_implies_invariant :
2 ∀ gb evs st,
3 c_tt_strict_realm_check (config gb) = true →
4 c_restrict_tt_to_secure_contexts (config gb) = false →
5 TTInvariant gb evs st.

We recall that, according to the invariant, if a page is shipped with a CSP containing the
directives trusted-types and require-trusted-types-for ’script’, then
the list of events evs cannot contain a EvScriptUpdateHTML event that updates the
contents of the page.

We can prove the theorem by induction on the Reachable relation where all the cases
except EvScriptUpdateHTML are trivial. In this latter case we show that, by enabling
strict realm checking, it is impossible to generate the correct Trusted Type for the update,
since (i) the trusted-types directive disallows the creation of Trusted Types for the
realm in which the directive is used; and (ii) the only Trusted Types that are accepted by
a page with require-trusted-types-for ’script’ are only those labelled with
the realm of the page. This suffices to prove the correctness of the proposed solution
within our model. The whole proof in Coq spans just over 54 LOC. For comparison, the
longest of the four proofs we conducted in Coq is just 348 LOC, which demonstrates the
feasibility of writing machine-checked proofs in our model.

2.6 Evaluation
In our experimental evaluation, we used WebSpec to automatically discover the attacks
reported in Table 2.1. Additionally, when we implemented a fix to an attack, we ran
WebSpec again to confirm that the issue had been addressed. Since the µZ solver may
not terminate (see Section 2.3), we use the length of the previously discovered attack
trace plus one as the maximal search size, thus obtaining confidence that the previous
attack is not reachable anymore.

We report the time required by WebSpec to find the attacks and describe various
optimization techniques that allowed us to drastically improve the performance of our
approach. All our experiments have been conducted on a virtual machine with 32 VCPUs
(2GHz AMD EPYC) and 128GB of RAM.
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Table 2.2: Trace size and solving time for each attack.
Solving Time

# Query Trace Size Frames Enabled Frames Disabled
# Events Baseline w/ Lemmas Baseline w/ Lemmas

1 Integrity of __Host- cookies 15 58d 1h 30m 23m ⋆ × ×
2 Confidentiality of HttpOnly cookies 7 13h 35m 8m 1h 46m 1m
3 Interaction between SOP and CSP 10 42d 3h 46m ⋆ × ×
4 Integrity of server-provided policies 9 40h 35m 18m 15h 46m 3m
5 Access control on Trusted Types sinks 9 17h 50m – × ×
6 Access control on Trusted Types sinks (no sec. ctx) 10 9d 20h 18m – × ×
7 Safe policy inheritance (inherit from parent) 13 52d 10h 1h 48m × ×
8 Safe policy inheritance (inherit from creator) 17 – 6h 5m × ×
9 Authenticity of request Initiator 5 1h 49m – 14m –

10 Authorization of non-simple requests (i) 5 35m – 5m –
11 Authorization of non-simple requests (ii) 10 – 48m 35d 10h 51m 7m

×: N/A; – (Baseline): No solution could be found within 60 days;
– (w/Lemmas): None of our user-defined lemmas could be applied;

⋆: a lemma has been automatically extracted from the attack trace of a previous run of the solver.

The baseline performance is displayed on the third column of Table 2.2. We can observe
a clear correlation between the size of the attack trace and the time required to find
an attack, which is caused by the unrolling technique employed by the BMC engine of
the µZ solver used in WebSpec. In particular, time increases exponentially with respect
to the size of the attack trace, leading to running times of several days or weeks for
traces with 10 or more events. To tackle these performance issues, we have implemented
various optimizations that consist in (i) defining additional rules (or lemmas) representing
common configurations (e.g., loading of a frame containing a script) that can be used
by the SMT solver instead letting it rediscover the right list of events leading to these
configurations, and (ii) simplifying the model at compile time (e.g., by disabling frames)
so that the resulting SMT formula is easier to solve.

We describe these optimizations in the following, and we refer the reader to Appendix A.4
for a discussion on the scalability of our browser model, which confirms the effectiveness
of lemmas in mitigating the complexity that arises from the addition of new Web
components.

2.6.1 User-defined Lemmas
The key idea underlying this optimization is to enable users to define additional lemmas
that guide the solver into constructing interesting browser states that can be used as
a starting point to discover new attacks. Intuitively, lemmas represent encodings of
common Web Security threat models, which map to the general preconditions of specific
classes of Web attacks. Consider the following example:

1 Lemma script_state_is_reachable : ∀ gb,
2 script_state_constraints gb →
3 Reachable gb (script_state_events gb) script_state.

Here script_state is a Coq definition of a concrete browser state where a script is
loaded in the page rendered in the top-level window. This state maps to the threat
model in which an attacker controls a script running in the same page as the target
Web application, as a result of, e.g., XSS or the inclusion of untrusted scripts [NIK+12].
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The lemma encodes that this browser state is reachable by applying the list of events
script_state_events assuming that script_state_constraints is satisfied. Once
we prove that the state defined by a lemma is Reachable, the lemma can be compiled as
an additional model rule to CHC logic. Since the BMC engine solves queries by iterative
unrolling, it prioritizes the rules that result in the smallest amount of unrolling steps.
Lemmas exploit this property by providing a one-step solution for the generation of states
that would require multiple steps if the solver had to build them from scratch.

WebSpec includes the definition of five generic lemmas, which represent two variants of
the aforementioned attacker controlled script, one running in a secure context and the
second being served from an insecure connection, and three variants of the gadget attacker
of [BJM08b] in which a same-origin, same-site or cross-site iframe containing an attacker
controlled script is included into the target Web applications. When compiling the model
to an SMT formula, the Using Lemmas directive is used to specify which user-defined
lemmas need to be considered for the query. For our experiments, we provided every query
with all the lemmas that are included in WebSpec, since we experimentally observed that
the number of lemmas added to a query does not negatively impact solving time. This
behavior may result from the effectiveness of µZ in discarding all non applicable initial
states. For this reason, we expect only an improvement of the solver performance from
the definition of a larger library of lemmas.

The results of this optimization are highlighted in Table 2.2, where we can see that the
usage of lemmas always reduces the runtime to less than a day. It may however happen
that the solver is not able to apply any of the user-defined lemmas, as it is the case for
queries #5 and #6 (marked with –). In such cases no performance improvement can be
obtained. For the queries marked with ⋆, we automatically extracted a lemma from an
attack trace discovered by WebSpec and confirmed that it can be used by successive runs
of the solver. The extraction of lemmas from traces has several benefits: on the one hand,
it allows us to quickly test for the absence of a known attack after applying a fix to the
model; on the other hand, it allows us to add new reachable browser configurations to our
library of lemmas. Since these configurations represent the preconditions for the execution
of a specific attack, the extraction of additional lemmas augments our counter example
pipeline with a method to quickly discover novel attacks assuming known preconditions.
We leave the extension of this library and the definition of a methodology to generate
generic lemmas as future work.

2.6.2 Compile-Time Simplification

Configurable inlining of auxiliary relations. Our model relies on a Reachable
relation that models state transitions, a ScriptState relation that models scripts
knowledge, and multiple auxiliary relations that are used within Reachable to, e.g.,
recursively update the DOM. The presence of multiple relations prevents us to directly
use the best performing version of the BMC engine, the linear solver, because it requires
the model to be encoded as linear Horn clauses, i.e., clauses containing at most one
recursive term. In order to satisfy this requirement, every auxiliary relation needs to
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be inlined within the main Reachable relation. To this end, WebSpec automatically
unrolls all the applications of recursive relations that are marked for inlining. For each
relation we specify the depth of the unrolling. For instance, the declaration

Inline Relation is_script_in_dom_path With Depth 3.

says that the relation is_script_in_dom_path, which searches a script inside the DOM,
must be unrolled up to recursion level 3. Depth 0 disables all recursive calls and expands
the relation to the base case only. For instance, support for nested frames can be easily
deactivated by specifying 0 as depth for all the relations handling the DOM tree.

The recursion depth affects the solving time of µZ since multiple applications of the
relation need to be considered. Disabling nested frames for the queries which do not
require them simplifies the compiled model and allows for faster solving. When frames
are required, we set the Depth parameter so that a single level of nesting is allowed.
Although our model can handle an arbitrary number of nested frames, a single level
suffices to discover the minimum-size trace for all queries.

The effects of this optimization are shown in Table 2.2: we can see that disabling framing
for the queries that do not require multilevel DOM trees considerably lowers the solving
time.

Fixed size arrays. Our model uses functional arrays [McC62, Rey79] for the definition
of the HTML and DOM objects and the implementation of the window/frame tree.
However, functional arrays are known for significantly increasing the complexity of
queries [SJ80, SBDL01]. Therefore, in order to ease the resolution, our compiler provides
an optimization which turns functional arrays into arrays of a fixed size chosen at compile
time. Since choosing a small size could make a query unsolvable, we run in parallel
several instances of the same query with different sizes and keep the first one that
succeeds. Surprisingly, a size of 5 is enough for all the queries except those for Safe policy
inheritance (#7 and #8 in Table 2.2) which require a size of 7.

2.7 Related Work

Models of the Browser. Bohannon [Boh12] proposed Featherweight Firefox, a model
of a Web browser written in Coq for the verification of security properties concerning
JavaScript execution. The model supports several JavaScript features, such as DOM
manipulation, XHR requests, event listeners, and code evaluation via the eval function.
However, the set of modeled Web components comprises only windows, cookies, and
selected HTML tags (<script>, <div>). Bugliesi et al. [BCFK15] extended Feather-
weight Firefox to formalize the security guarantees of HttpOnly and Secure cookies
against network and Web attackers able to exploit XSS vulnerabilities. In [BCF+14]
the authors use Featherweight Firefox as a starting point to develop a pen-and-paper
model of a security-enhanced browser which enforces a Web session integrity property
that captures attacks like CSRF and credential theft via XSS.
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In contrast to WebSpec, Bohannon’s model and later extensions were developed with
machine-checked proofs in mind and have not been used to automatically detect vulnera-
bilities. They also lack support for most of the Web features considered in our invariants,
e.g., CORS, CSP, service workers. Because of their focus on Web script security, they
formalize script executions using a small-step semantics. This choice allows for a precise
modeling of JavaScript but hinders automatic verification, as it forces solvers to handle
JavaScript programs.

Models of the Web. In their seminal work, Akhawe et al. [ABL+10] developed the first
formal model of the Web ecosystem. The authors encoded in the model a set of security
goals, which include fundamental properties of the Web platform that are assumed to
hold, and a notion of session integrity capturing CSRF attacks. The validity of these
goals has been checked with the Alloy Analyzer [Jac02] and their violations pointed out
the existence of novel and previously known attacks.

Despite being similar in spirit to our proposal, there are important differences between
WebSpec and the model of Akhawe et al. First, the model cannot be used to prove
security properties, since the Alloy Analyzer uses SAT-based bounded model checking,
but just to disprove them, while WebSpec can be used also to produce automated or
machine-checked proofs. Second, being developed in 2010, it lacks many features of the
modern Web (e.g., frames, CSP and service workers) that are a fundamental part of our
model. Adding these features a posteriori would not be possible without rewriting the
model from scratch, since some of them (e.g., a faithful handling of frames) are core
components of Web browsers. Last, contrary to WebSpec, the model of Akhawe et al. is
stateless. For this reason, temporal relations between events, e.g., the correct sequencing
of requests and response pairs, need to be explicitly modeled. Considering that Web
Standards are typically written using a stateful imperative style, a more natural modeling
follows a stateful approach, as employed in our model.

Bansal et al. [BBDM14] developed WebSpi, a generic library that defines the basic
components of the Web infrastructure (browsers, HTTP servers) and enables developers
to automatically verify security properties of specific Web applications / protocols using
ProVerif [Bla01]. The browser model of WebSpi is rather primitive and includes a subset
of the features supported in WebSpec. This is in line with the intended usage of WebSpi,
i.e., the verification of Web protocols, for which it suffices to model only the features used
by the protocol under analysis. Instead, we target inconsistencies between Web features
themselves, without focusing on a specific Web protocol or application, for which we need
a much more comprehensive browser model. Similarly to WebSpi, WebSpec supports
automated security proofs: if this does not succeed, however, we can still fall back to
machine-checked proofs in Coq.

The most comprehensive and maintained model of the Web to date is the Web In-
frastructure Model (WIM), a pen-and-paper model which has been used to assess the
security of Web Payment APIs [DHK+22], Web protocols, e.g., OAuth 2.0 [FKS16],
OpenID Connect [FKS17], and the Financial-Grade APIs [FHK19]. The browser model
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of WebSpec supports most of the features of WIM browsers, except for (i) HSTS, since
in our model we abstract away the network, (ii) HTTP basic authentication, because it
is an application-specific server-side mechanism, (iii) the Web Payment APIs, since a
sensitive usage of this API would require a detailed modeling of the server-side behavior
of payment providers and merchants servers. On the other hand, WebSpec supports
several client-side mechanisms and security policies, like domain relaxation, CSP and
CORS, that are not part of WIM. Additionally, being a pen-and-paper model, WIM
can neither be used to automatically discover security vulnerabilities, nor to develop
automated or computer-assisted proofs, which are central features of our framework.

Other works. Quark [JTL12] is a WebKit-based Web browser, whose kernel has
been implemented and formally verified in Coq. The kernel is responsible for handling
input/output and offers services to the other possibly compromised components of the
browser, which deal with various operations such as the rendering of Web pages, handling
of cookies and tab management. The separation of duties between the kernel and
browser’s components, together with a set of security policies implemented in the kernel,
enables Quark developers to formally prove the enforcement of security properties, such
as tab non-interference, and integrity of cookies and responses. This is orthogonal to our
work, which instead aims at devising a formal browser model to validate Web invariants.

Automated testing is a popular methodology employed in software development processes
for bug detection. An application of this methodology in the context of Web security is
BrowserAudit [HMN15], a framework composed of over 400 automated tests, which can
be used to verify the correctness of the implementation of Web security mechanisms in
existing browsers. However, BrowserAudit cannot be used to spot bugs at the specification
level, which is the goal of our work.

QuickChick [PHD+15, LPP18] is a framework for property-based testing written in Coq.
It combines formal methods and testing to formally verify that the code of a test generated
from a given property is indeed checking its correctness. QuickChick is orthogonal to our
work since it focuses on test case generation: WebSpec relies on testing solely to prove
the validity of the counterexamples to our invariants produced by the Z3 solver.

Summary. To conclude, WebSpec is the first framework that mechanizes formal proofs
and counterexample-finding for Web invariants. In addition, our browser model is the
most comprehensive one when it comes to browser-side security mechanisms, as we further
detail in Appendix A.6.

2.8 Conclusion
In this chapter we presented WebSpec, the first formal framework for the security analysis
of Web platform components that supports the automated detection of logical flaws
and allows for the development of machine-checked security proofs. We showcased
the effectiveness of WebSpec by discovering novel attacks and inconsistencies affecting
current Web standards, and automatically validated our findings against major browsers.

37



2. WebSpec: Towards Machine-Checked Analysis of Browser Security
Mechanisms

Additionally, we discussed how WebSpec can be used to carry out machine-checked
security proofs for vulnerability fixes. As a future work, besides expanding the model
to cover more Web platform components, we plan to define additional Web invariants
by reviewing newly proposed mechanisms and engaging with the community, including
developers and editors of Web standards.
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CHAPTER 3
Web Platform Threats:

Automated Detection of Web
Security Issues With WPT

Abstract
Client-side security mechanisms implemented by Web browsers, such as cookie security
attributes and the Mixed Content policy, are of paramount importance to protect Web
applications. Unfortunately, the design and implementation of such mechanisms are com-
plicated and error-prone, potentially exposing Web applications to security vulnerabilities.
In this paper, we present a practical framework to formally and automatically detect
security flaws in client-side security mechanisms. In particular, we leverage Web Platform
Tests (WPT), a popular cross-browser test suite, to automatically collect browser execu-
tion traces and match them against Web invariants, i.e., intended security properties of
Web mechanisms expressed in first-order logic. We demonstrate the effectiveness of our
approach by validating 9 invariants against the WPT test suite, discovering violations
with clear security implications in 104 tests for Firefox, Chromium and Safari. We
disclosed the root causes of these violations to browser vendors and standard bodies,
which resulted in 8 individual reports and one CVE on Safari.

The work presented in this chapter is the result of a collaboration with Pedro Bernardo,
Valentino Dalla Valle, Stefano Calzavara, Marco Squarcina, Pedro Adão and Matteo
Maffei, and has been published in the 33rd USENIX Security Symposium in 2024 under
the title “Web Platform Threats: Automated Detection of Web Security Issues With WPT”
[BVV+24]. Pedro Bernardo and I contributed equally to this work and are considered to
be co-first authors. I am responsible for the formalization of the Web invariants about
cookies, our first-order logic model of browser execution traces and the SMT-LIB translator
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that generates queries for the theorem prover. I developed the kuberneted-based testing
pipeline and performed the experimental evaluation. Pedro Bernardo is responsible for
the browser instrumentation, he disclosed the cookies vulnerabilities to the affected parties
and contributed to the experiments and the formalization of the invariants. Valentino
Dalla Valle formalized the Mixed Content specification in the form of two Web invariants
and reported the Mixed Content vulnerabilities. Stefano Calzavara, Marco Squarcina,
Pedro Adão and Matteo Maffei were the general advisors and contributed with continuous
feedback.

3.1 Introduction

Writing secure Web applications is notoriously hard, due to the heterogeneity, complexity
and open-ended nature of the Web. To mitigate the challenges of secure Web application
development, browsers integrate a growing list of client-side security mechanisms to
assist Web developers. Examples of such mechanisms include cookie security attributes
(HttpOnly, Secure and SameSite), security headers like Origin and Sec-Fetch-Data,
mechanisms to secure mixed content (e.g., to avoid that HTTPS-served webpages fetch
content in clear over HTTP), and sophisticated client-side protection mechanisms like
Content Security Policy (CSP).

The design of such mechanisms is very delicate, as witnessed by the long list of design short-
falls (e.g., unexpected interactions with other browser components) or implementation
flaws, which led to breaking well-established Web security invariants [ABL+10, VFB+23].
Formal methods proved to be an essential tool to rigorously analyze client-side security
mechanisms, allowing for the identification of bugs and formulation of formal secu-
rity proofs in such a complex environment. All state-of-the-art techniques, however,
be they manual [FKS16], machine-checked [BP10], or automated [VFB+23, ABL+10],
apply to browser models, which suffer from two fundamental drawbacks. First, client-
side security mechanisms evolve over time and new ones are being proposed on a
regular basis, which makes browser models extremely hard to maintain. Second,
even if specifications are correct, security-critical bugs often affect the implementa-
tions [KKH+22, SNM17, SMWL10b, WNK+23]. Correctly integrating client-side se-
curity mechanisms within browsers is challenging and error-prone for various reasons.
Browsers are incredibly complicated software artifacts: for instance, the Chromium
codebase contains roughly 35 million lines of code, i.e., it is larger than the Linux kernel.
Furthermore, browser vendors are required to translate natural language specifications,
e.g., from the World Wide Web Consortium (W3C), into new code to be pushed into an
already complicated codebase. Even worse, client-side security mechanisms often cannot
be specified in isolation: most of them interact with core browser components like Fetch,
which defines requests, responses, and the process which eventually binds them. This
means that the implementation of client-side security mechanisms often requires changes
to existing browser components which were not developed with such an integration in
mind.
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We thus tackle the following research question: can we design a practical framework
to formally and automatically detect security flaws in the implementation of client-side
security mechanisms?

In this chapter, we answer in the affirmative, putting forward a novel, formally-grounded
and lightweight technique. In particular, we leverage existing community efforts in the
development of Web Platform Tests (WPT) [WPTb], a cross-browser test suite designed
to give browser vendors confidence that they are shipping software which is compliant
with specifications and compatible with other implementations. WPT includes more
than 50K tests covering a wide range of browser components, including Web security
mechanisms, thus representing the largest benchmark of the intended browser behavior
to date. Our approach consists in abstracting the test executions into sets of traces (i.e.,
sequences of relevant browser events), which are then matched against Web security
invariants (i.e., intended security properties expressed in first-order logic). This way, we
automatically identify traces breaking important security properties and thus pinpoint
browser behaviors requiring immediate attention by browser vendors, due to their clear
security implications. Furthermore, WPT is continuously updated as Web standards and
new features are introduced to the Web platform, which makes our verification pipeline
automatically applicable to the latest browser versions.

Contributions. More concretely, we contribute as follows:

• We formalize 9 Web invariants regarding core components of the Web platform
such as Cookies and Mixed Content, encoding them in first-order logic to allow
for efficient verification of browser execution traces using an automated theorem
prover (Section 3.3).

• We present an automated pipeline designed to identify security-critical inconsis-
tencies in browser implementations. Our approach leverages the WPT test suite
to acquire browser execution traces, which are then matched against Web security
invariants in order to identify any traces that violate Web security properties
(Section 3.4).

• We demonstrate the effectiveness of our approach by validating our 9 invariants
against the WPT test suite, discovering violations with clear security implications
in 104 tests (Section 3.5). In particular, we discuss 10 attacks against Chromium,
Firefox, and Safari concerning cookies and Mixed Content policy violations (Sec-
tion 3.5.2). We responsibly disclosed all the new findings to affected browser vendors
and standard bodies, which resulted in 8 individual reports and one CVE on Safari.

We publish all the artifacts developed during this research, including the definition of
the Web invariants in SMT-LIB format, and our trace verification pipeline [BVV+23].
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3.2 Background

We assume familiarity with the basic functionality of the Web platform, e.g., the HTTP
protocol, HTML and JavaScript.

Web Security Primer. The traditional threat model of Web applications considers
both Web attackers and network attackers [CFST17]. A Web attacker is the owner
of a malicious host, which is used to mount attacks against other Web applications.
Traditional examples of Web attacks include Cross Site Scripting (XSS) and Cross Site
Request Forgery (CSRF). A network attacker extends the capabilities of a Web attacker
with full control of the network traffic, i.e., everything which is unencrypted can be read
and modified by a network attacker. Encryption can be enforced through the use of
HTTPS, which provides a secure transport protocol for the Web. Browsers rely on the
notion of secure context to identify pages satisfying minimal confidentiality and integrity
requirements [W3C21].

The baseline defense mechanism of Web browsers is the Same Origin Policy (SOP), which
is intended to enforce the intuitive invariant that content owned by a Web application
should not be read or written by other Web applications. The notion of origin defines the
security perimeter of SOP: an origin is a triple including a scheme (HTTP, HTTPS...), a
host (e.g., www.foo.com) and a port (defaulting to 80 for HTTP and 443 for HTTPS).
This way, a Web page at https://evil.com cannot access content served by https://foo.com.
Since the fine-grained isolation of SOP is too restrictive for specific settings, another
common Web security concept is the notion of site, i.e., one domain part plus the effective
top-level domain as defined in the Public Suffix List [Moza] – also called registrable domain
or eTLD+1. For example, foo.com and foo.github.io (as github.io is in the PSL) are sites,
and a.foo.com and b.foo.com are two subdomains of the same site foo.com. Although
https://a.foo.com and https://b.foo.com are two different origins, their same-site position
might relax some security checks enforced by browsers (see below). The W3C Secure
Contexts specification [W3C21] also defines the notion of potentially trustworthy origins
as those that the browser can trust sending data securely. In particular, in addition to
origins whose protocol is https or wss, the localhost IP address and all subdomains of
localhost are considered potentially trustworthy even for unencrypted connections.

Cookies. Cookies are a client-side storage mechanism based on the name-value paradigm
and can be set through JavaScript or using the Set-Cookie header of HTTP re-
sponses. In their default configuration, cookies are accessible by JavaScript using the
document.cookie property and are attached by the client to all the requests sent to the
host which set them, using the Cookie header. The scope of cookies can be extended to
other subdomains by using the Domain attribute; this allows cookie sharing across sibling
domains, e.g., a.foo.com can set cookies with the Domain attribute set to foo.com, which
makes them available to b.foo.com. Since cookies may store sensitive data, e.g., session
identifiers that must be protected to prevent session hijacking, clients offer a plethora of
defensive options deployed in terms of cookie attributes and prefixes.
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Cookies marked with the Secure attribute are only attached to requests sent over secure
channels, e.g., over HTTPS, which is important to ensure their confidentiality against
network attackers. The HttpOnly attribute makes cookies inaccessible to JavaScript,
which is useful to prevent cookie theft in the presence of injection vulnerabilities like
XSS. Finally, the SameSite attribute can be used to restrict the attachment of cookies
to same-site requests, thus mitigating CSRF. If SameSite is set to Strict, no cross-site
request will ever attach the cookie; if SameSite is set to Lax, top-level navigation requests
with a safe method (e.g., GET) can attach the cookie even though they are fired from a
cross-site position.

Since cookies have weak integrity guarantees in their default configuration, Web developers
can qualify their names with special prefixes to improve protection. The __Secure-

prefix requires the cookie to be set over secure channels with the Secure attribute
activated. The __Host- prefix extends the protection of the __Secure- prefix by also
forcing the deactivation of the Domain attribute, thus scoping the cookie to a specific
host rather than to its site.

Mixed Content. When a document is loaded via a secure channel, all its subresources,
i.e., frames, scripts, etc, must also be received securely to not compromise the integrity
of the page. If any of such resources is loaded via a non-secure channel, i.e., HTTP, a
network attacker can tamper with the content of the reply, opening the possibility for,
e.g., executing malicious JavaScript code within a secure context.

The W3C Mixed Content specification [W3C23] regulates the fetching of subresources
within documents loaded via a secure channel, defining as mixed content any insecurely-
loaded subresource. Mixed content is categorized based on the corresponding security
risks. Mixed content is upgradeable when the risk of allowing its usage is outweighed by
the risk of breaking significant portions of the Web. Image, audio, and video content are
all classified as upgradeable because the usage of such resource types is sufficiently high,
while their loading is generally considered as low-risk. Upgradeable mixed content goes
through protocol autoupgrading: the URL is rewritten to use the HTTPS protocol and
an attempt is made to fetch the subresource securely. If the resource is not available via
the new URL, it will not be loaded in the page.

Any mixed content that is not upgradeable is classified as blockable. Examples of blockable
content are scripts, frames, XHR, and fetch requests. The risk of loading such content
is much higher: for example, allowing insecurely-loaded scripts within a secure context
would allow a network attacker to read or modify data accessed therein. Blockable mixed
content is filtered and the subresource is not loaded in the document.

3.3 Web Invariants
A Web invariant is an intended security property of a Web security mechanism that
should never be violated by Web browsers, i.e., any counter-example might reveal a
security-relevant bug. In this chapter, we define 9 Web invariants concerning two core
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Name Invariant Description References
C

oo
ki

es
I.1 Integrity of Secure cookies Cookies with the Secure attribute can

only be set over secure channels.
[VFB+23]

I.2 Confidentiality of HttpOnly cookies Scripts can only access cookies without the
HttpOnly attribute.

[VFB+23]

I.3 Integrity of __Host- cookies A __Host- cookie set for domain d can
only be set by d or by scripts included in
pages on d.

[VFB+23]

I.4 Integrity of SameSite cookies A SameSite=Lax/Strict cookie can
only be set for domain d through HTTP
responses to requests initiated by domains
which are same-site with d or by top-level
navigations.

[CEWW22,
§4.1.2.7]

I.5 Isolation of SameSite cookies If a SameSite=Lax/Strict cookie
should not be attached to a request to load
a page p, then it is not attached to that
request, it is not accessible by scripts in p
nor attached to requests initiated by p.

[sam]

I.6 Cookie serialization collision resis-
tance

A cookie with name n and value v is
serialized to the string "n=v" when at-
tached to requests or accessed via docu-
ment.cookie.

[SAVM23]

I.7 Confidentiality of Secure cookies Secure cookies are only attached to re-
quests (resp. accessible by scripts) to po-
tentially trustworthy URLs.

[pot]

M
ix

ed
C

on
te

nt

I.8 Blockable mixed content filtering Every request performed by the browser is
either a toplevel request, its URL is poten-
tially trustworthy, or the request context
does not prohibit mixed content.

[W3C23, §4.4]

I.9 Upgradeable mixed content filtering For every non-toplevel request performed
by the browser where the URL is not po-
tentially trustworthy, the request context
does not prohibit mixed content and the
request type is not upgradeable.

[W3C23, §4.1]

Table 3.1: Web Invariants

components of the Web Platform: cookies and Mixed Content. The selection and
definition of these invariants is based on the following methodology. First, we focus on
Web components with clear security implications and relatively compact specifications.
For each selected mechanism, we abstract the expected security properties by thoroughly
analyzing the specification. We then review the existing literature to identify invariants
already defined in prior research. In cases where specifications prove to be ambiguous, we
encode as a Web invariant the community security expectations that emerge from previous
research or from our discussion with the specification maintainers. For each of these
cases, we provide a bibliographic reference or a link to the GitHub discussion. Finally,
we express the invariants as first-order logic formulas. Table 3.1 presents an intuitive
natural language description of the invariants we encode in this work. In particular, we
define 6 new Web invariants (I.4–I.9) and propose an encoding of 3 invariants from the
literature (I.1–I.3). In this section, we focus on the 6 new Web invariants we propose,
presenting their expected security property and encoding. We first define a model to
represent browser execution traces and show how security properties can be encoded in
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this model. We then proceed with the discussion of the invariants. The encoding of the
remaining invariants is dicussed in Appendix B.1.

3.3.1 Traces and Events
We define Web invariants in terms of browser execution traces. A trace is represented as
a list of browser events, each mapping to a concrete browser action. Events are encoded
as shown in Figure 3.1 and capture JavaScript API calls (js), network requests and
responses (net), and hooks into the browser internals, e.g., cookie-jar-set triggers when
a cookie is stored in the cookie jar. JavaScript events store a reference to the browsing
context, i.e., the Window or Worker, in which the API call was executed. For each
browsing context, we store a unique identifier, its location URL, and a flag indicating
whether it is a secure context [W3C21] or not.

Invariants are encoded as first-order logic formulas, which should be true for all possible
traces.1 As an example, consider our encoding of the Confidentiality of HttpOnly Cookies
(I.2) defined in [VFB+23].

http-only-invariant(tr) :=
t1 > t0 ∧
cookie-jar-set(name, value, {http-only, secure, domain, path})@trt0 ∧
js-get-cookie(ctx, cookies)@trt1 ∧
name ++ "="++ value ∈ split-cookie(cookies) ∧
cookie-match(path, domain, secure, ctx-location(ctx)) →

http-only = false

The invariant is defined as an implication, requiring the http-only flag to be equal to
false if a set of hypotheses is satisfied. We use the e@tr t predicate to check if event e is
present in trace tr at timestamp t ∈ N. Intuitively, this invariant says that if a script
successfully uses the document.cookie getter (js-get-cookie at time t1) to obtain the
cookies string, and if cookies, after splitting on the cookie separator ";", contains the
string composed of the concatenation of name, the literal string "=", and value, then
the http-only flag present when the cookie was set (cookie-jar-set at time t0 < t1)
needs to be set to false. We use the split-cookie function to split a cookie header on the
separator character ;, returning a list, and the cookie-match predicate to consider the
case in which the cookie set at time t0 is readable by the browsing context ctx where
document.cookie is accessed. In particular, given a URL and the path, domain and
security attributes of a cookie, cookie-match is true when the domain matching and path
matching algorithms defined in the specification [CEWW22] return true and when, if the
Secure attribute is set, the URL uses a secure protocol. That is, when cookie-match
is true for a URL and a cookie, we should expect that cookie to appear in the request
headers and document.cookie for that URL.

Invariants are expressed in quantified first-order logic using the theories of uninterpreted
functions, integer arithmetic, algebraic datatypes, and strings. In particular, events

1For readability, all variables are implicitly ∀-quantified when no quantification is specified.
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T race := List Event execution trace
Ctx := ⟨id, location, secure-context⟩ browsing context
Event := browser event

js-set-cookie(Ctx, arg, ret) document.cookie setter
js-get-cookie(Ctx, ret) document.cookie getter
cookie-jar-set(name, value, cookiejar hook on

attributes, deleted) set/delete cookie
net-request(id, url, method, type, network request

origin, doc-url,
frame-ancestors,
headers, body)

net-response(id, url, headers, body) network response
js-fetch(Ctx, url) window.fetch API call

Figure 3.1: Syntax of traces: event types.

are defined as a datatype, the @tr predicate is implemented as a recursive function,
and auxiliary predicates can be defined as macros or functions. This combination of
theories gives us flexibility in the definition of Web invariants, e.g., allowing us to encode
properties about parsing and serialization, while allowing for automated verification using
the Z3 theorem prover.

Integrity of SameSite Cookies

The cookie specification explicitly forbids setting SameSite cookies (either Lax or Strict)
in response to non-top-level cross-site requests [CEWW22, §4.1.2.7]. For instance, assume
that https://good.com embeds a page at https://evil.com as an iframe. If the iframe
includes subresources from https://good.com, the browser should discard SameSite
cookies set in responses to those requests. This behavior defines additional integrity
guarantees to SameSite cookies and corresponds to the following invariant.

Invariant (I.4). A cookie whose SameSite attribute has value Strict or Lax can only
be set for domain d through HTTP responses to requests initiated by domains which are
same-site with d or by top-level navigations.

We encode this invariant as follows:
samesite-cookies-integrity(tr) :=

t1 < t2 < t3 ∧
net-request(id, url, _, type, origin-url, _, _, _, _, _)@trt1 ∧
net-response(id, url, {set-cookie-headers}, _)@trt2 ∧
set-cookie ∈ set-cookie-headers ∧
name ++ "="++ value ∈ split-cookie(set-cookie) ∧
"SameSite="++ SS ∈ split-cookie(set-cookie) ∧
(SS = "Lax" ∧ same-site = SS-Lax ∨

SS = "Strict" ∧ same-site = SS-Strict) ∧
cookie-jar-set(name, value, {same-site, path, domain})@trt3 ∧
cookie-match(path, domain, _, url)∧
url-site(url, site) →

(type = main_frame ∨ url-site(origin-url, site))
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For every net-response event that successfully sets a cookie, i.e., that is followed
by a cookie-jar-set whose parameters match the value of the response Set-Cookie

header; if the SameSite attribute is set to Lax or Strict, then either the request type
is main_frame, i.e., it is a top-level request, or the initiator of the request is same-site
w.r.t the target url of the request, i.e., origin-url, the url of the request initiator, is in
the same site of url. Here, the url-site predicate is true when its second argument is the
site of the url in the first argument.

Isolation of SameSite Cookies

SameSite cookies, especially when set with the Strict attribute, are widely considered
a robust defense against cross-site attacks such as CSRF [CEWW22] and, more recently,
XS-Leaks [SSO, RPS23, SKC20]. The protection is effective as long as these cookies
are not attached to requests initiated by an attacker operating from a cross-site page.
For instance, the specification mandates browsers to not include SameSite cookies in
requests to load cross-site iframes, nor make them available to JavaScript APIs in that
context [CEWW22, §5.2.1].

We verified instead that cross-site top-level navigations can cause same-site navigations
to be executed, thus attaching SameSite cookies to requests initially started by the
attacker. This is the case of a pop-up window opened by a cross-site page, which executes
a same-site JavaScript-based redirection via, e.g., window.location. Browsers consider
the first request as cross-site but the second as same-site, thus attaching SameSite cookies
to the second request, as captured by the specification [CEWW22, §8.8.5]. Similarly,
subresources loaded in a top-level cross-site context are considered same-site and are
loaded with SameSite cookies attached.

By carefully examining public discussions between browser vendors [cooa, coob, cooc],
we found that the current behavior is the result of a bottom-up threat modeling process,
with security implications that extend beyond what is declared in the specification:
“same-site navigations and submissions can certainly be executed in conjunction with
other attack vectors such as cross-site scripting”. Indeed, SameSite Strict cookies can
be bypassed using JavaScript-based same-site redirectors (i.e., no XSS required) [Por],
and loading authenticated subresources can introduce observable user-dependent state in
the opened page, thus enabling XS-Leaks attacks, as we discuss in Section 3.5.2. We are
currently engaging with browser vendors and specification maintainers to harmonize the
specification and the implementations, and to clarify the security properties that should
be expected from SameSite cookies based on the principle that high-sensitive resources
(e.g., cookies and authenticated resources) should not flow into low-sensitive contexts
(e.g., pages loaded from cross-site requests) [sam].

Invariant (I.5). If a cookie set for domain d with the SameSite attribute set to "Lax" or
"Strict" should not be attached to a request that loads a page p, then the cookie is not
attached to that request, it is not accessible to scripts running in p and it is not attached
to network requests initiated by p.
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We encode the invariant as:
samesite-cookies-confidentiality(tr) :=

t1 < t2 < t3 ∧
cookie-jar-set(name, value, {secure, same-site, path, domain, host-only})@trt1 ∧
(same-site = SS-Lax ∨ same-site = SS-Strict) ∧
net-request(_, url, method, type, origin, _, _, redirs, {cookies}, _)@trt2 ∧
cookie-match(path, domain, secure, host-only, url) ∧
¬cookie-match-samesite(same-site, type, origin, method, redirs, url) ∧
(

(js-get-cookie(ctx, cookies′)@trt3 ∧ url = ctx-location(ctx)) ∨
(net-request(_, url′, method′, type′, origin′, doc-url′, _, redirs′, {cookies′}, _)@trt3 ∧

doc-url′ = some(url) ∧
cookie-should-be-sent(

path, domain, secure, same-site, host-only, type′, origin′, url′, method′, redirs′))
) →

(name ++ "="++ value ̸∈ split-cookie(cookies) ∧
name ++ "="++ value ̸∈ split-cookie(cookies′))

Assume that there is a SameSite cookie set for a specific domain, that is, the trace
contains a cookie-jar-set event at time t1, and that the browser then loads a page at
time t2 for which this cookie would have been sent if it was not SameSite (i.e., for which
cookie-match is true but cookie-match-samesite is not). If there is a subsequent event at
time t3, be it a js-get-cookie where the browsing context location matches the URL
of the request at t2, or a net-request to which the cookie should be attached (i.e., for
which the cookie-should-be-sent predicate is true), then the value of the cookie header (or
the return value of document.cookie) cookies′ should not contain the cookie set at t1,
and that cookie was not attached to the request at t2.

Cookie Serialization Collision Resistance

In 2020, nameless cookies were introduced in the cookie RFC [nam] to standardize
the legacy behavior adopted by major browsers. According to the standard, cookies
with an empty name and a non-empty value must be serialized in the Cookie request
header using only their value, without the = separator. To exemplify, a nameless cookie
with value foo is serialized by compliant browsers as Cookie: foo. This serialization
strategy is known to introduce collisions, which can be leveraged to perform cookie
tossing attacks [SAVM23]. For example, a cookie set via Set-Cookie: =foo=bar,
with empty name and value foo=bar, is attached to outgoing requests as Cookie:

foo=bar resulting indistinguishable to a server from a cookie with name foo and value
bar [CEWW22, §5.5, item 3].

Browsers can prevent cookie collisions by removing support for nameless cookies altogether,
as in the case of Safari [SAVM23], or simply by including the = separator in the serialized
cookie irrespectively of the content of the name or the value fields. Building on the
previous example, the nameless cookie with value foo=bar would be serialized as Cookie:
=foo=bar, allowing servers to distinguish it from a standard named cookie. This is
captured by the following invariant.
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Invariant (I.6). A cookie with name n and value v set for domain d is serialized to the
string "n=v" when attached to requests or accessed via document.cookie.

The invariant is encoded as:
cookie-serialization-invariant(tr) :=

t2 > t1 ∧
cookie-jar-set(name, value, {secure, same-site, path, domain})@trt1 ∧
(

(net-request(_, url, method, type, origin-url, _, _, redirs, {cookies}, _)@trt2 ∧
cookie-should-be-sent(
path, domain, secure, same-site, type, origin-url, url, method, redirs)) ∨

(js-get-cookie(ctx, cookies)@trt2 ∧ url = ctx-location(ctx) ∧
cookie-match(path, domain, secure, url))

) ∧
is-effective-cookie(t2, tr, name, value, domain, path, "") →

name ++ "="++ value ∈ split-cookie(cookies)

For every request (or access to the document.cookie property) at time t2, where a
cookie stored previously in the cookie jar at time t1 should be sent (resp. retrieved),
the cookie header (or the return value of document.cookie) should contain the string
name ++ "=" ++ value after splitting on the separator ";". This invariant uses the three
predicates cookie-should-be-sent, which is true if a cookie should be attached to a request,
cookie-match, which is true if a cookie should be readable in a specific browsing context
URL, and is-effective-cookie, which makes sure that the cookie-jar-set at t1 we consider
is the event that set the cookie in the cookie jar. Specifically, the predicate makes sure
that there was no cookie-jar-set between t1 and t2 that overwrote the cookie stored in
the cookie jar.

Confidentiality of Secure Cookies

The Cookies RFC delegates the decision of which protocols are denoted as secure to the
specific user agent, requiring it to attach the cookies with the Secure attributes to URLs
using such protocols [CEWW22]. Noticing this ambiguity in the RFC, we investigated how
different browsers implement this behavior and discovered an inconsistency: Chromium
and Firefox (behind a configuration flag) deem the localhost host, its subdomains, and
its IP representation (127.0.0.1) as secure regardless of the protocol, and thus attach
Secure cookies to local requests, whereas Safari does not. Similar inconsistencies apply
to cookie prefixes, where only Firefox attaches prefixed cookies to localhost.

We contacted the HTTP Working Group [pot], notifying them about the potential
differences in handling of Secure cookies, suggesting to disambiguate the requirements
on browsers by using the potentially-trustworthy origin definition for determining secure
URLs, instead of a browser-dependent definition of secure protocol. Our proposal
is currently being discussed in the Working Group. Initial feedback suggests that
the specification editors are considering modifying the phrasing to include potentially
trustworthy origins.
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This change in the specification would align it to the de-facto standard behavior of the
majority of the top browsers, which we formalize as follows:

Invariant (I.7). Cookies with the Secure attribute are only attached to requests sent
to potentially trustworthy origins and are only readable by scripts running in browsing
contexts whose origin is potentially trustworthy.

The invariant is encoded as:

secure-cookies-confidentiality(tr) :=
t1 > t0 ∧
cookie-jar-set(name, value, {secure = true, same-site, path, domain))@trt0 ∧
(

(net-request(id, url, method, type, origin-url, _, _, _, {cookies}, _)@trt1 ∧
cookie-should-be-sent(
path, domain, false, same-site, type, origin-url, url, method, redirs)) ∨

(js-get-cookie(ctx, cookies)@trt1 ∧ url = ctx-location(ctx))
) ∧
cookie-match(path, domain, false, url) ∧
name ++ "="++ value ∈ split-cookie(cookies) ∧
is-effective-cookie(t1, tr, name, value, domain, path, "") →

is-origin-potentially-trustworthy(url)

Assume that there is a cookie in the cookie jar with the Secure attribute set, i.e., the
trace contains a cookie-jar-set event at t0. If there is a network request (or an access to
the document.cookie property) at t1 where the cookie should be sent (resp. retrieved)
and it is actually part of the attached cookies (resp. present in the return value of
document.cookie), i.e., name ++ "=" ++ value ∈ split-cookie(cookies), then the origin of
the URL of the request (or the browsing context where document.cookie is called) is
potentially trustworthy.

Blockable Mixed Content

For each request, the browser determines whether it should be blocked by applying
the steps defined in the Should fetching request be blocked as mixed content algorithm
[W3C23, §4.4]. In particular, a request is allowed when either its URL is potentially
trustworthy, the context in which the request is performed does not restrict mixed content
requests (e.g., a page loaded via HTTP making a fetch request), or when the request is
top-level. We can define the following invariant.

Invariant (I.8). For every network request performed by the browser, either: (i) the
context does not prohibit mixed content requests; or (ii) the request URL is potentially
trustworthy; or (iii) the request is top-level.
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The encoding of the invariant is:
blockable-mixed-content-filtered(tr) :=

net-request(_, url, _, type, origin, doc-url, ancestors, _, _, _)@trt1 →
(¬does-settings-prohibits-mixed-security-contexts(

origin, doc-url, ancestors) ∨
is-url-potentially-trustworthy(url) ∨
(type = main_frame ∧ nil = ancestors))

The invariant uses the predicates is-url-potentially-trustworthy, which is true if the request
URL is potentially trustworthy according to the respective algorithm of the secure context
specification, and does-settings-prohibits-mixed-security-contexts, that is the implemen-
tation of the respective algorithm defined by the Mixed Content specification [W3C23,
§4.3] and is true if the request initiator origin is potentially trustworthy, or if any ancestor
of the navigation initiator has a potentially trustworthy origin. The invariant also uses
the expression type = main_frame ∧ nil = ancestors to check if a request is a top-level
navigation.

Upgradeable Mixed Content

For upgradeable mixed content requests, e.g., loading images over insecure channels, the
browser should rewrite the URL of the request by changing its scheme from HTTP to
HTTPS. The mixed content specification defines the conditions for applying this rewriting
in the Upgrade mixed content request to a potentially trustworthy URL algorithm [W3C23,
§4.1]. This algorithm applies to every request by the Fetch specification, thus every
successful request made by the browser for upgradeable mixed content should have been
upgraded. That is, every non-top-level request whose URL is not potentially trustworthy
should not be upgradeable or should be permitted by Mixed Content. This corresponds
to the following invariant:

Invariant (I.9). For every non-toplevel network request performed by the browser whose
URL is not potentially trustworthy, the request context does not prohibit mixed content or
the request type is not upgradeable.

The invariant is encoded as:
upgradeable-mixed-content-filtered(tr) :=

net-request(_, url, _, type, origin, doc-url, ancestors, _, _, _)@trt1 ∧
¬is-url-potentially-trustworthy(url) ∧
type ̸= main_frame →

(¬does-settings-prohibits-mixed-security-contexts(
origin, doc-url, ancestors) ∨

¬is-mixed-content-upgradeable(type))

where the presence of a request in the trace whose URL is not potentially trustworthy
and whose type is different from main_frame (as upgradeable mixed content does not
restrict toplevel requests) implies that both is-mixed-content-upgradeable, which checks if
the request type is upgradeable (by implementing its definition in [W3C23, §3.1]), and
does-setting-prohibits-mixed-security-contexts are false.
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3.4 Trace Verification Pipeline
In this section, we will first motivate with an example the importance of abstracting
WPT tests into execution traces in order to automate the discovery of Web invariant
violations, and then describe our verification pipeline in detail.

3.4.1 Motivating Example

We present a simple example to motivate why looking at failed WPT tests does not already
enable reasoning about security. The WPT test /mixed-content/gen/top.meta/
unset/img-tag.https.html is a set of test cases that check the mixed content
behavior of browsers when fetching img tags. In particular, the test expects image
requests to always be performed within an HTTPS browsing context (i.e., a window with
a HTTPS URL as location). This is expected, as upgradeable mixed content requests
should be allowed when the browser is able to rewrite the request URL to use the HTTPS
scheme, i.e., performing the auto-upgrade. This test is successful on the stable versions
of Firefox and Safari, but fails on Chromium, as some of the requests fail.

The execution trace of the test contains multiple net-request events, each correspond-
ing to the requests performed by the browser during execution. Specifically, for each
embedding of an img tag, the event includes the image URL, the request type (image),
and additional fields characterizing the request, e.g., the origin of the request initiator
and the URL of the document where the new image will be loaded. The I.8 invariant
mandates that for every net-request event, at least one of three conditions must hold
for it to be compliant with the Mixed Content specification. Since the request is not
top-level, i.e., its type is image, and it originates from a page loaded via HTTPS, i.e.,
does-setting-prohibit-mixed-content is true, then its URL must be potentially trustworthy,
i.e., its scheme must be HTTPS. In the traces produced during the execution of Firefox
and Safari, the net-request event corresponding to the embedding of the image has
an insecure URL, i.e., the image is fetched via HTTP, violating the requirement of I.8.
In Chrome, on the other hand, the request is auto-upgraded and the corresponding
net-request has a potentially trustworthy URL, thus I.8 is not violated.

Since the WPT test only checks for the images to be loaded, without explicitly testing
their protocol, Firefox and Safari, which do not currently implement protocol auto-
upgrading [mc-b, mc-a] and perform the mixed content requests without blocking them,
pass the test. Chromium, on the other hand, performs the auto-upgrading as mandated
by the Mixed Content specification. However, since the image is served on a non-standard
HTTP port (8000), the browser upgrades the protocol without changing the port causing
a connection error.

This example highlights that the WPT test results alone may not always capture potential
security concerns since failed tests do not necessarily break Web invariants, and, conversely,
successful tests might break Web invariants. Tests can not only be unsuccessful because
browsers implement new security features, as in the example above, but they can also fail
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if the execution relies on unimplemented APIs. This further emphasizes that observing
a discrepancy across the WPT results of different browsers (i.e., simple WPT-based
differential testing) is not a direct indication of security issues. By verifying browser
traces obtained during the execution of WPT tests, irrespectively of test results, our
approach provides a deeper insight into each test. In particular, violating an invariant is a
clear indicator of potential security issues in the exercised browser behavior, pinpointing
the specific Web components requiring immediate attention.

3.4.2 Methodology

WPT
Tests




Execution
Traces
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Solver



Invariants
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Figure 3.2: Trace Verification Pipeline.

Our methodology for detecting security-relevant issues in browser implementations
leverages the WPT test suite and consists of two main stages, as shown in Figure 3.2.
First, the execution traces produced by executing the WPT tests on the three major
Web browsers (Chromium, Firefox, Safari) are collected into a database. Second, the
obtained traces are post-processed, translated to SMT-LIB, and checked against the Web
invariants we define in Section 3.3 using an SMT solver. When the solver cannot prove the
validity of the invariant on a test trace (SAT, i.e., a counterexample exists), a violation is
found on the specific browser. Our analysis pipeline is based on the Kubernetes container
orchestration platform, allowing us to execute multiple instrumented browsers and the
SMT solving in parallel. We detail in the following the main steps of the pipeline and
our criteria for selecting the relevant tests.

Test Selection. The tests part of the WPT project can be classified into four main cate-
gories: (i) rendering tests, which test the graphical output of the browser (by, e.g., compar-
ing it to screenshots) to verify that pages are displayed as expected; (ii) testharness.js
tests, which test JavaScript interfaces available in browsing contexts, allowing to auto-
matically check assertions about their behavior; (iii) wdspec test, which test parts of the
WebDriver protocol and are written in the Python programming language; (iv) manual
tests that require human interaction to determine their result. In this work, we focus on
testharness.js tests, since our Web invariants cover JavaScript and browser internals
behavior, ignoring most UI aspects. In particular, we consider all testharness.js
tests of the April 2023 version of the WPT test suite. We detail our test selection
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in Table B.1 (Appendix B.2), where we report the version (commit hash) of the test
suite, the considered WPT subfolders, and the respective number of tests for each folder.

Trace Collection. We run each WPT test in its own isolated ephemeral container
named runner. Each runner container includes a specific version of the tested browser,
all its run-time dependencies, our patched version of the WPT tooling, and the browser
instrumentation composed of a browser extension and a proxy (Section 3.4.3). For Safari,
the runner container executes a MacOS virtual machine containing the instrumented
browser. We build a runner container for Chromium (version 118.0.5961.0), Firefox
(version 116.0.3) and Safari (version 16.4). Once the runner container terminates the
execution of a WPT test, it stores the execution trace in JSON format in a centralized
database. Note that we ignore test assertions, storing the captured trace regardless of
the test results.

Verification. Upon completion of the runner container, the generated JSON file is
post-processed and translated to SMT-LIB format. In particular, the events that were
captured by our browser instrumentation are converted to execution traces following the
format described in Section 3.3.1. It may be the case that multiple events recorded by
the browser instrumentation happened simultaneously, i.e., the JSON stores multiple
events with the same timestamp. This may occur when, for instance, a page containing
multiple subresources is rendered: the browser may try to load all resources in parallel,
thus resulting in multiple events of type network-request to be recorded at the same time.
In such cases, the SMT-LIB translator generates multiple traces, each corresponding
to a single permutation of the simultaneous events, allowing us to consider all possible
orderings of the concurrent events. Note that, in practice, the number of concurrent
events in WPT traces rarely exceeds four events, thus having a negligible impact on the
pipeline performance.

Once execution traces are translated to SMT-LIB format, we use an SMT solver to query,
for each trace, the validity of each Web invariant. That is, we check satisfiability of the
negation of the invariant applied to each trace. This satisfiability checking may have
three possible outcomes: (UNSAT) the invariant is valid, i.e., it is true for the current
trace; (SAT) the invariant is not valid, i.e., the current trace is a counterexample for
the invariant; (UNKNOWN) the solver was not able to prove nor disprove the invariant,
hence in such cases we cannot draw any conclusion and we do not report any violation.
Whenever the solver returns SAT, we obtain a model, i.e., an instantiation of the variables
mapping them to the concrete values from the trace that make the invariant false. Being
based on the standard SMT-LIB format, our pipeline supports all standard-compliant
solvers that implement decision procedures for quantified string constraints, integer
arithmetic and algebraic data types. Specifically, we currently support both the Z3
theorem prover and CVC5.

Violating an invariant may have several security implications, and for this reason, we
manually inspect the execution trace of every SAT result and design a minimal proof of
concept (PoC) attack to showcase the vulnerability in the affected browsers. We discuss
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Instrumentation Ease of Cross-Browser ObservabilityImplementation Compatibility

Browser Extensions � � �
Service Workers � � �

WebDriver � � �
Chrome Devtools Protocol � � �

External Proxies � � �
Source Patching � � �

Table 3.2: Design space analysis: comparison of browser instrumentation methods. (� : High, �:
Medium, � : Low)

the discovered attacks in Section 3.5.2.

3.4.3 Browser Instrumentation

Browser instrumentation and trace collection are essential components of our pipeline.
Our main goal is to develop a browser instrumentation solution that provides a balance
between observability and cross-browser support, while minimizing the implementation
effort. Our instrumentation must be easily integrated into existing testing pipelines such
as the Web Platform Tests and work across different browsers.

Design Space Analysis

We consider several approaches to browser instrumentation:

Browser extensions are software modules that extend browser functionality. Extensions
are powerful as they can access internal browser structures such as the cookie jar, monitor
and intercept network traffic, and access and modify the DOM.
Service workers are scripts that run in the background and control the behavior of Web
pages. They act as proxy servers between Web applications, the browser, and the network.
However, they run on a different JavaScript context and have no access to the DOM.
WebDriver is a Web standard that describes a remote interface that allows the control
and introspection of browsers.
Chrome Devtools Protocol (CDP) is a remote debugging protocol [CDP] which provides
access to the DOM, network activity, and a JavaScript debugger.
External proxies act as intermediaries between a Web server and the browser and allow
the monitoring and intercepting of network traffic.
Browser source code patching allows access to all internal browser structures and events,
enabling the most comprehensive monitoring and trace collection.

We evaluate these options according to three criteria: (i) ease of implementation,
(ii) cross-browser compatibility, and (iii) observability, i.e., how many events the in-
strumentation method can collect, and summarize the results in Table 3.2.
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Ease of Implementation. Browser extension implementations generally depend on
the complexity of the extension, which, for our use case, is directly proportional to
the number of different events we mean to collect in the traces. However, since the
extension API is well documented, and extensions are written in JavaScript, which is not
verbose, we deem the ease of implementing our browser instrumentation using browser
extensions high. Service Workers and the remote protocols would also be high in the ease
of implementation scale for our use-case, for the same reasons as browser extensions, if
not for the fact that Service Workers and WebDriver are either testing target or testing
mechanisms of WPT, which means that the WPT framework and testing suite would
require extra modifications, making its implementation more complex. External proxies
also require low implementation effort for the same reasons as browser extensions, making
use of expressive programming languages and well-documented APIs, with a small set of
potential events to monitor. On the opposite end of the spectrum, source code patching
requires extensive manual effort in understanding browser implementations, which are
generally written in lower-level languages like C++ and are very extensive.

Cross-Browser Compatibility. Browser extension features are dictated by the
manifest versions supported by a given browser. However, all major browsers support
manifest versions v2 (Firefox and Safari) or v3 (Chromium), which significantly overlap
in the supported APIs, making it possible to write powerful cross-browser extensions.
The Service Worker API is a standard supported by all major browsers. The WebDriver
protocol is also a standard, and its core set of functionality is supported across browsers.
The Chrome Devtools Protocol is not a standard and, therefore, not supported consistently
across different browsers [Fir], [Weba]. External proxies are completely browser agnostic
and score high on compatibility. Source code patching concerns only a given browser,
significantly hindering its cross-browser compatibility

Observability. Browser extensions provide access to browser internal structures and
events, like network activity and the cookie jar, and allow the dynamic inclusion of
arbitrary JavaScript in pages using only the overlapping APIs between manifest v2
and v3, completely cross-browser and independent from WPT. However, this approach
also has some limitations. For instance, manifest v3 does not allow the inspection of
network request and response bodies for privacy reasons [Chrb, Chra], and Chromium-
based browsers no longer support manifest v2 extensions. Service workers are similar to
external proxies in observability, as they are limited to monitoring network traffic since
they do not have access to the DOM. Remote protocols like WebDriver and CDP also
provide access to browser internal structures and events, like network activity and the
cookie jar, and allow the dynamic inclusion of JavaScript in the target pages, similar in
observability to browser extensions. Source code patching provides the highest possible
level of observability since it grants access to every internal structure in the given browsers.

Implementation

Based on our design space analysis, we implemented a browser instrumentation solution
which combines a browser extension with an external proxy that improves on the
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limitations of the extension API with respect to its ability to inspect network traffic.
Our solution provides the necessary hooks to monitor internal browser state, JavaScript
API calls, and have a complete picture of the network activity when collecting browser
execution traces.

Internal Browser State Monitoring. With extensions, we gain access to the internal
browser state not available to regular scripts or external monitoring tools. This state
includes the CookieJar, and network activity such as requests and responses. This
internal state is accessible to extensions via background scripts, which have no access to
the DOM but can make full use of the extension APIs. Network events are monitored by
registering callback functions that run whenever a request is about to be sent, and when
a request is deemed completed, i.e., it has a response or it was dropped. These callbacks
provide access to the request and response headers, and additional information added
by the browser, like the tab and frame IDs of the request initiator. The CookieJar can
also be monitored via onChange callbacks, whose execution can be delayed depending
on the state of the JavaScript event loop. Due to these inherent delay inconsistencies, we
opted for polling the state of the CookieJar instead of registering callback functions,
which gives us higher precision timestamps for CookieJar events.

JavaScript API Call Monitoring. In addition to monitoring network events and
internal browser state, we focus on JavaScript API calls as another category of relevant
events for our analysis. We proxy the relevant JavaScript functions, logged as events
used in the invariants, to record function calls in a centralized structure located in the
extension’s background script. This proxying is done through Proxy objects and method
overriding, enabling us to collect all the relevant data associated with each API call,
such as its arguments and the respective browsing context. Our instrumentation logs
calls to the setter and getter of document.cookie, but more JavaScript methods could
be supported in the future using similar techniques. We adopt a dynamic approach for
our instrumentation using content scripts, which are extension scripts that run in the
context of webpages. Each webpage is injected with a content script that installs the
proxy functions according to the extension configuration. This dynamic instrumentation
is more versatile and scalable compared to code rewriting methods and allows us to
efficiently track and analyze JavaScript API calls as they occur in real-time.

External Proxy. We incorporate an external proxy into our framework to overcome
two main issues: (i) the restrictions imposed by browsers over network content deemed
sensitive and, hence, inaccessible to background scripts but visible through a network
proxy (e.g., request and response bodies); (ii) the inconsistent delay between network
events and the execution of their corresponding callback event handlers. When a network
request leaves the browser, the callback corresponding to its event handler is queued in
the extension’s JavaScript event loop and eventually executed. If the proxy intercepts
the request before the callback is executed, the proxy event’s timestamp is more accurate
and is used as the request event timestamp in the trace.
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Limitations

While our browser instrumentation technique based on extensions and proxies offers a
powerful means to monitor internal browser state, JavaScript API calls, and network
events, enabling comprehensive browser security analysis with cross-browser compatibility
and minimal code modification or rewriting, it is essential to acknowledge the inherent
limitations of this approach. These limitations include:

Browser Discrepancies. In our instrumentation, we strive to use only browser extension
APIs that are compatible across browsers. However, browser behavior varies across
implementations, which can introduce limitations to our approach. These inconsistencies
are detected by manual inspection of our results, and whenever possible, we implement
specific workarounds. But, some issues require changes to the browsers’ source code and
bug fixes. For example, a bug in Firefox’s URL matching prevents the content scripts
from being injected into opaque origins, such as data URL iframes. This limitation
hinders our ability to monitor JavaScript API calls in these frames, negatively impacting
the comprehensiveness of our analysis, and it cannot be circumvented without changes to
Firefox’s source code. For our current usage, this translates to missing events executed
in iframes with opaque origins, which can lead to false negatives. Another example is
Safari’s resource isolation for WebDriver-controlled instances, which isolates resources
such as the cookie jar. This isolation prevents our extension from effectively monitoring
specific resources such as the CookieJar within Safari instances controlled by WebDriver,
which translates to missing CookieJar-related events for Safari execution traces, leading
to false negatives.

API Constraints. Currently our instrumentation is able to monitor the necessary com-
ponents and collect the events required to reason about our invariants, i.e., CookieJar,
network, and some JavaScript API call events. While some extensions to our instrumen-
tation are possible, they are constrained by the availability of APIs in both JavaScript
and the extension environment, and by the Same Origin Policy which is applied to
the injected content scripts. For example, information such as the effective Content
Security Policy (CSP) of a frame cannot be directly monitored as it is not accessible
to scripts running in pages, nor to browser extensions. To support the analysis of the
CSP mechanism with our approach, we must develop inference and heuristic techniques,
which we could use alongside other artifacts of our instrumentation, such as response
headers, to infer the CSP enforced on a given frame. Another constraint to our approach
is monitoring the DOM. Content scripts injected by the extension are still subject to the
Same Origin Policy. Therefore, a full picture of the DOM may prove difficult to obtain
without heuristics over other events such as network activity and DOM mutation.

In summary, while our browser instrumentation technique was proven effective in collecting
security-relevant browser execution traces, these limitations underline the importance
of developing better introspection and instrumentation mechanisms for browser testing.
These mechanisms would benefit not only our approach but also testing frameworks like
WPT, which currently uses incomplete workarounds to test features like cookies and the
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Content Security Policy.

3.4.4 Discussion: Extensibility

The methodology we propose is meant to enable specification maintainers and browser
developers to check their security expectations, expressed as Web invariants, against
multiple implementations. This way, security issues can be identified early during
development and across Web platform or browser updates, e.g., for regression testing.

In this chapter, we encode 9 invariants, as discussed in Section 3.3, showing that the
verification pipeline is not bound to a single security mechanism and can be extended to
support additional Web features. Although we do not consider the required expertise
to develop new invariants a limiting factor, given that specification maintainers already
possess this knowledge, the expressiveness of the invariants may be limited by the
introspection capabilities of our instrumentation. Specifically, every JavaScript API or
property access that can be wrapped with Proxy objects can easily be traced, encoded
as an event (as in Figure 3.1), and used in the definition of new invariants. Instead,
monitoring internal browser state which is not exposed to pages or extensions, e.g,
CSP, may prove to be difficult to trace without relying on heuristics or a different
instrumentation approach (e.g., browser code patching [JK19]).

Automated generation. The definition of new Web invariants relies on the manual
effort of understanding the security requirements of a specification and encoding them
into a logical proposition. Automation could be beneficial for aiding the process, allowing
more properties to be covered. Previous work on Web invariants identifies the importance
of clearly defining the security properties of the Web as a way to have a sound scientific
understanding of Web security [ABL+10]. Thus, the generation of Web invariants presents
the challenge of retaining soundness while characterizing the relevant Web mechanisms.
We leave the development of a methodology to automatically extend the set of invariants
as future work.

3.5 Evaluation Results

We evaluate our methodology by verifying, using our pipeline, the 9 Web invariants we
define in Section 3.3 against the execution traces of the 24896 testharness tests from the
April 2023 version of the WPT suite. Note that every browser is executed 24896 times,
totaling 74688 traces. We use the Z3 theorem prover as the SMT solver component since
it proved to be the best performing for our invariants. We set a timeout of 10 minutes
for the execution of the browser for each test, and 10 minutes for each Z3 query. When
Z3 is not able to return an answer within the timeout it returns UNKNOWN. All our
experiments have been conducted on a cluster with 132 VCPUs (AMD EPYC 2.0GHz)
and 382GB of RAM.
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Invariant SAT UNK. SAT UNK. SAT UNK.

I.1 0 0 0 0 – –
I.2 0 0 0 0 – –
I.3 0 0 0 0 – –
I.4 0 0 1 0 – –
I.5 10 0 6 0 – –
I.6 15 0 9 0 – –
I.7 0 0 0 0 – –
I.8 0 448 24 643 21 692
I.9 0 355 18 509 0 628

Table 3.3: Trace verification results.

3.5.1 Preliminary Results
Table 3.3 reports the outcome of our analysis of the three major browsers on the WPT test
suite, showing the number of tests for which Z3 found violation of a Web invariant (SAT).
Additionally, we report the number of UNKNOWN results, for which our pipeline could
not generate a definitive answer. Note that, given the limitations of Safari instrumentation
(see Section 3.4.3), invariants about cookies are expected to always return UNSAT there
(marked as – in Table 3.3), since the Safari traces never contain the cookie-jar-set event,
which is used in the premises of our cookie invariants.

Five invariants have at least one violation. The results confirm our expectation that
different implementations may exhibit different behaviors with respect to the implemented
security mechanisms. In particular, although there is overlap in some of the SAT traces
between different browsers, Table 3.3 highlights that some SAT results are browser-specific.
We discuss in Section 3.5.2 the security implications of violating each invariant, where
we group SAT results into concrete attacks against specific browsers that we present as
case studies.

For four invariants our pipeline does not report any violation, so they are valid on
the entirety of the execution traces produced by WPT. This may happen in the cases
where the invariants are well-known and expected to hold by the literature (I.1, I.2).
Additionally, we may obtain no violation if the traces generated by the test suite do
not cover the specific preconditions for an attack to be performed. As an example, I.3
does not hold in the current Web platform [VFB+23] because of an attack that requires
combining domain relaxation, i.e., assignment to the Document.domain property, with
__Host- cookies. This invariant may have no SAT results because the WPT test suite
never uses the two Web features together in the same test. A similar consideration
applies to I.7, as the localhost URL is never used in cookie-related tests. We discuss
these cases in Section 3.5.4, where we explore additional tests beyond what is included in
WPT.

Z3 returned UNKNOWN during the verification of the Mixed Content invariants I.8 and
I.9. These are caused by the complex checks that are mandated by the Mixed Content

60



3.5. Evaluation Results

Trace Collection Verification Totalavg std total avg std total

28s 6s 23h 29m 19s 1m 42s 23h 05m 1d 22h 35m
40s 8s 1d 07h 18m 27s 2m 06s 1d 08h 34m 2d 15h 52m
27s 8s 1d 06h 34m 32s 2m 28s 1d 14h 33m 2d 21h 07m

Table 3.4: Trace verification execution times.

specification, in particular the recursive checking of the entire ancestor chain for each
network request, which may negatively affect the solver speed and result in UNKNOWN
if the execution time exceeds the verification timeout.

Performance. The performance of our trace verification pipeline is shown in Table 3.4.
The total run-time for each of the three major browsers is reported together with the time
required for executing the browser (collecting execution traces) and the Z3 verification
time. Executing a single WPT test on each of the browsers consistently requires less than
one minute, whereas the verification with the Z3 theorem prover shows more variability,
while still requiring less than a minute on average. This confirms that verifying Web
invariants on the traces generated by WPT does not add substantial overhead to the
execution of the testing suite, but supplements the result obtained from each WPT test
with an assessment of the security of the exercised browser functionality.

3.5.2 Attacks on Major Browsers
Every SAT result obtained as the output of the Z3 theorem prover corresponds to a
violation of a Web invariant on the execution trace of a specific browser, as captured by
our instrumentation. These results require a manual analysis to identify and aggregate
similar issues, organizing them into concrete inconsistencies. This effort is supported
by the model obtained from Z3, which provides the concrete values from the trace that
violate the invariant, highlighting problematic events in the trace and allowing us to
easily discern the cause of the violation. A goal of our analysis of SAT results is to
determine the root causes underlying these inconsistencies and to quantify their security
impact, and in particular, if they can lead to concrete real-world attacks. This step is
also critical in identifying any false positives introduced by the observability limitations
of our browser instrumentation (Section 3.4.3). For instance, the inability to correctly
observe a specific browser event may lead to the generation of a violating trace for an
otherwise compliant browser. For example, a missing cookie deletion event may result
in a violating trace if we expect that cookie to be attached to a subsequent network
request.

We now present all the attacks resulting from the analysis of the SAT results, discussing
them in the form of case studies. In particular, we aggregated all 104 invariant violations
into 10 confirmed attacks and 5 false positives as shown in Table 3.5.

Framed Pages Mixed Content Bypass
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Invariant Total SAT SAT Traces Type Description (causes of SAT)

I.4 1 – 1 – � SameSite cookie integrity violation

I.5 18⋆

1 2 – � SameSite cookies attached to (favicon, subresource, fetch) requests (requests)
10 5 – � SameSite cookies accessible via Document.cookie (non-HTTP)
1 – – � SameSite cookies attached to location.reload() network requests (reload)
1 – – � Incorrect event ordering

I.6 16

2 3 – � Nameless cookies serialization collision
2 1 – � Missing events from sandboxed iframes
5 2 – � Missing delete cookie event
1 – – � Incorrectly tagged requests: missing request initiatior origin

I.8 45

– – 1 � Framed pages mixed content bypass
– – 1 � Sandbox attribute mixed content bypass
– – 7 � Mixed content beacon requests not blocked
– 11 – � Mixed content Websocket requests not blocked
– 13 10 � Mixed content autoupgrade not performed
– – 3 � Incorrectly tagged requests: missing request type

I.9 18 – 18 – � Mixed content autoupgrade not performed

Table 3.5: Aggregated SAT results. (�: attack; �: false positive; ⋆: the same trace may contain
multiple attacks)

Z3 reported SAT for Safari for the trace of the mixed-content/nested-iframes.window.html
test, where the browser successfully performs a fetch request to an insecure endpoint
coming from a frame whose origin is potentially trustworthy, violating the I.8 invari-
ant. After some investigation, we concluded that Safari incorrectly performs mixed
content checks, i.e., secure pages embedded in insecure origins were not considered
potentially trustworthy, and therefore, mixed content was not blocked except for re-
quests to load scripts, stylesheets, or requests to insecure WebSocket. For example, if
https://bank.com contains an authenticated mixed content request (i.e. via fetch),
framing it over http://attacker.com will cause the request to not be filtered. This
behavior might incorrectly expose non-Secure cookies in clear over the network to passive
network attackers. Moreover, the integrity of the fetch request (and its response) would
not be ensured against network attackers, meaning that attackers could tamper with
its contents to, for example, alter the control flow of JavaScript execution on the target
page.

Disclosure. We disclosed the attack to the Safari developers. The issue has been fixed in
Safari 16.6.

Sandbox Attribute Mixed Content Bypass
The test mixed-content/csp.https.window.html consists in a webpage using the
sandbox allow-scripts CSP directive. The page is loaded via HTTPS so mixed
content should be prohibited, nevertheless, a fetch request targeting an HTTP endpoint is
not blocked in Safari, violating I.8. In the trace, the CSP directive is effectively setting the
origin of the page to null. Since the null origin is not potentially trustworthy, the requests
are not filtered. This vulnerability can be combined with the previous one to obtain a
complete bypass of the mixed content policy: the presence of the sandbox directive makes
the browser allow mixed content requests to scripts, stylesheets, and insecure WebSockets,
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which are otherwise blocked. As a consequence, if https://bank.com contains a mixed
content script, framing it with the sandbox attribute over http://attacker.com will
allow the request to the script to be sent. A network attacker can tamper with its content
to obtain code execution on https://bank.com, in a context where the origin is null.
In this scenario SOP prevents certain operations (e.g., cookies access) but other attacks,
such as user input tracking, and DOM modifications can still be performed. For instance,
an attacker embedding the login page of bank.com can track user inputs by registering
new listeners through the injected script and exfiltrate user credentials whenever a user
is tricked into logging in.

Disclosure. We disclosed this attack to the Safari developers. The issue has been fixed in
Safari 16.6 and CVE-2023-38592 was assigned to this and the previous vulnerability.

Mixed Content Beacon Requests Not Blocked
A beacon request is a non-blocking POST request sent using the navigator.sendBeacon
API. Mixed content beacon requests are blockable and therefore should be filtered.
However, our pipeline SAT results show that Safari performs such requests, violating
I.8. When a mixed content beacon request is not blocked, attached cookies and the data
attached to the request are leaked even to passive network attackers.

Disclosure. We reported the problem to the Safari developers and we are waiting for
confirmation.

Nameless Cookies Serialization Collisions
Part of the SAT results reported for I.6 are caused by the serialization of nameless
cookies. Our invariant expects every cookie with name n and value v to be serialized
as n = v. However, Chromium and Firefox serialize nameless cookies where n = ""
simply as v. Consequently, our pipeline will report a violation whenever I.6 matches a
trace where a nameless cookie is serialized. The higher number of SAT results related to
nameless cookies in Firefox compared to Chromium stems from an inconsistency between
the browsers: whenever Firefox encounters the JavaScript API call document.cookie
= "", a cookie with an empty name and value is set, unlike Chromium, which does
not set any cookie. The serialization of nameless cookies enables attackers to shadow
arbitrary cookies. This capability includes shadowing Secure cookies from insecure
origins, relaxing an attacker’s requirements to perform cookie tossing or eviction attacks
on Secure cookies, which would typically require a secure origin [SAVM23].

Disclosure. The issue was already reported to the IETF HTTP Working Group by
Squarcina et al. [SAVM23] during their study of cookie integrity.

SameSite Cookie Integrity Violation
Our pipeline returned SAT for Firefox in the trace of the cookies/samesite/setcookie-
navigation.https.html test, where a cookie with the SameSite attribute set to
Strict is successfully set in the response to a cross-site network request initiated from an
iframe, violating the I.4 invariant. In particular, an iframe loading https://attacker.com
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within https://bank.com might navigate itself to some page at https://bank.com,
which sets SameSite cookies in the response to the navigation request. Note that this
applies to both Strict and Lax SameSite cookies. A gadget attacker [BJM08b, ABL+10]
can thus leverage this behavior to overwrite cookies to perform, e.g., de-authentication
attacks.

Disclosure. We reported this vulnerability to Firefox developers [wpta] who confirmed the
issue assigning it a severity rating of Normal (blocks non-critical functionality), planning
a fix for the next release.

SameSite Cookies Isolation
The SAT results returned from our pipeline for I.5 fall into three categories: request,
non-HTTP, or reload. Traces in these categories all have a similar setup but differ
in how the cookie is retrieved. The setup follows this structure: (i) a cookie c with
SameSite attribute set to Strict or Lax is set for domain d; (ii) a top-level request
initiated by domain d′, where c is not attached, opens page p with domain d, which is
cross-site with d′. From this point, request traces perform a network request, initiated
by d (from page p) that is considered same-site and attaches c, violating I.5. This
request can be, for example, a subresource load, a request to load the favicon, or a
request generated by a call to the fetch JavaScript API. Non-HTTP traces retrieve the
cookie c through a call to document.cookie from p, violating I.5. Finally, reload traces
perform a call to location.reload, triggering a same-site request that reloads page
p and attaches c, which violates I.5. Note that reload traces are not SAT for Firefox.
By manually investigating this inconsistency, we discovered that Firefox does not attach
SameSite cookies to network requests initiated from calls to location.reload, as it
considers these requests cross-site.

Setting the SameSite attribute of cookies to Strict is considered an effective defense
against CSRF and XS-Leak attacks as these cookies are not attached to cross-site
requests. However, attackers can exploit the browser behavior highlighted by I.5 SAT
results to bypass these restrictions. In particular, attackers can forge same-site requests
starting from a cross-origin position by abusing, e.g., redirection gadgets that trigger
attacker-controlled same-site navigation requests, effectively enabling CSRF attacks.
Another security implication is the possibility of performing XS-Leaks. Consider a
page that loads a script depending on whether the subresource load request attaches
SameSite=Strict cookies and that this script modifies the DOM of the target page,
altering window.length. An attacker could navigate to this page through window.open,
and even though SameSite=Strict cookies are not attached to the top-level request,
they will be included in subresource loads in the target page. An attacker can then use
the length property of the window handler to infer the authentication status of the
victim.

Disclosure. We are currently engaging with the HTTP Working Group to clarify the
security properties that should be expected from SameSite cookies [sam].
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Mixed Content WebSockets Requests Not Blocked
These SAT results refer to a set of tests for the following scenario: WebSocket requests
sent from a Worker using the ws protocol. If the Worker is created from a secure page,
so its origin is potentially trustworthy, we expect the request to be blocked as mixed
content. However, in Firefox it is not, violating I.8. Investigating the issue uncovered
that Firefox incorrectly implements the filtering for WebSocket requests. In particular,
filtering is not performed if either the origin’s scheme is blob: or the request is sent from
a Worker created in a trustworthy origin using a data: URI.

Disclosure. We disclosed the problem to Mozilla. The issue has been fixed in Firefox 120.

Mixed Content Autoupgrade Not Performed
From the analysis of these SAT results, we observed how both Safari and Firefox do
not perform protocol autoupgrading, and as a consequence, upgradeable mixed content
requests are sent over the network, violating I.8 or I.9. When this happens, network
attackers can tamper with the content of upgradeable requests to attempt phishing users
by e.g. swapping the icons of two buttons tricking them into performing destructive
operations (e.g., delete message instead of send message). To prevent these attacks, the
latest revision of the specification forbids loading upgradeable mixed content, but, as of
today, neither Firefox nor Safari are compliant. However, they are aware of the issue and
are planning a fix [mc-b, mc-a].

3.5.3 False Positives
In this section, we examine the false positives we obtained during our evaluation of the
Web invariants against WPT traces and discuss their causes.

Incorrect event ordering
For one trace, our pipeline returned SAT for I.5 due to out-of-order events. Since our
monitoring of network events is based on callbacks, which are subject to scheduling delays,
and our monitoring of CookieJar events is polling-based, the order in which these events
are collected may not match the concrete browser execution. Invariant I.5 matches a
specific order of events, i.e., a cookie-jar-set event setting cookie c, followed by a
cross-site network request that opens a page p where cookie c is not attached, and an
access to cookie c from page p. Consider a concrete browser execution where a first
network request leads to a cookie being set, which is then attached to a subsequent
request. If the first two events are swapped in the trace, this incorrect trace can be
matched by invariant I.5, leading to a violation.

Missing events from sandboxed iframes
Our pipeline reported SAT for the traces of the test cookies/samesite/sandbox-iframe-
subresource.https.html on Chromium and Firefox for I.6. In this trace, a previously
set cookie is expected to be attached to a network request from an iframe. However,
since the iframe has the sandbox attribute, it cannot attach existing cookies to network
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requests. Since our instrumentation cannot observe events originating from sandboxed
iframes, nor detect whether an iframe is sandboxed, invariant I.6 cannot account for
this behavior. In this trace, browsers correctly withheld a cookie that I.6 expects to be
attached to a network request, leading to an invariant violation.

Missing delete cookie event
In some cases, our browser instrumentation is unable to detect cookie deletion events.
Missing cookie deletion events cause some of the SAT results for I.6. Consider an
execution where a previously set cookie c is deleted before a network request that would
attach c, but the cookie deletion event is missing from the trace. I.6 will expect the
cookie to be attached to the network request since, according to the trace, that cookie
is still in the Cookiejar. However, since in the browser execution the cookie no longer
exists, it is not attached to the network request, leading to an invariant violation.

Incorrectly tagged requests
For three traces, Z3 returned SAT for I.8 on Safari. These are caused by the lack of the
request-type field in the Request object returned by the instrumentation for network
events. In particular, a toplevel request to a URL which is not potentially trustworthy
should be allowed. However, the absence of the request type makes the expression
type = main_frame false in I.8, violating the invariant. Similarly, one Chromium trace
violates I.6 since a network event in the trace is missing the origin field, i.e., the origin of
the request initiator. Since the origin field is used by cookie-should-be-sent to determine
if a SameSite cookie should be attached to a request, a request missing the initiator
origin information and containing no cookie can be incorrectly tagged as violating when
cookie-should-be-sent incorrectly (because of the missing origin) determines that cookies
should be present.

3.5.4 Comprehensiveness of Tests
In this section, we explore additional tests beyond those in WPT, to (i) show that our
pipeline can generalize to different test suites without modifications, and (ii) to assess
how the comprehensiveness of the individual tests, in terms of the usage of Web features,
affects the discovery of inconsistencies. As mentioned in Section 3.5.1, the limited scope
of tests may prevent our pipeline from discovering violations. This is the case when tests
do not include actions that are preconditions for the attack, e.g., when a violation is
enabled by the combination of multiple Web features.

We construct a separate test suite comprising 9 tests to exercise behavior not covered
by WPT. The selected tests are shown in Table 3.6. The first group (1-5) corresponds
to the violations discovered by Veronese et al. [VFB+23] affecting the current Web
platform. These tests combine multiple features to reproduce the attack traces generated
by WebSpec. For instance, the first test uses domain relaxation to allow a subframe
to set a __Host- cookie for a different origin. The remaining webspec_* tests use a
combination of CSP, Service Workers, and Trusted Types. Given that our invariants
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only focus on cookies and Mixed Content, these tests are not expected to reveal new
violations. The second group of tests (6-7) reproduces the browser testing performed by
Squarcina et al. [SAVM23]. In particular, the tests try to perform cookie tossing, eviction
based on cookie jar overflow, and serialization collisions based on nameless cookies. Each
test is composed of multiple sub-tests that correspond to various combinations of cookie
properties, e.g., tossing of Secure cookies over insecure channels, or eviction of __Host-
cookies. Note that these tests are actively abusing undefined behavior to perform eviction,
as the RFC does not impose a specific limit to the number of entries in the cookie jar
(although implementations are allowed to set one). Finally, the last two (8-9) tests use
features that are not covered by WPT. The localhost_cookies test sets Secure,
__Secure-, and __Host- cookies for the localhost domain, which is never used
in WPT. The multi_nested_frames test sets cookies using mixed-content resources
loaded across multiple levels of frames, as WPT does not include cookies in mixed-content
tests and uses up to two levels of nesting.

Table 3.6 reports the results of running our pipeline on the traces produced by the
new test suite. The experiment confirms that new violations can be discovered using
more comprehensive tests. In particular, I.3 does not hold for Firefox, where domain
relaxation allows compromising __Host- cookies integrity. Interestingly, Chrome satisfies
the invariant, since starting from version 115, the document.domain property is
immutable [imm], preventing pages from relaxing the SOP. The I.1 invariant does not
hold for Chrome, as it is possible to set Secure cookies over an insecure connection
when the URL is localhost. This matches the behavior we discuss in Section 3.3.1
and encode in I.7. Note that Firefox violates the invariant only when a specific setting
flag is enabled. The new test suite, additionally, allows us to rediscover a violation for
I.6, since the crumbles_tossing test uses nameless cookies. Similarly, I.8 and I.9 are
SAT because upgradeable mixed content is not upgraded nor blocked in both Firefox
and Safari. Safari also incorrectly loads mixed-content frames if the top-level window
is loaded via HTTP, regardless of the protocol used to load any intermediate frame.
Specifically, in multi_nested_frames, the test opens a window with three nested
frames, where the top-level window is loaded via HTTP, the intermediate frames are over
HTTPS, and the innermost frame is over HTTP, which should be blocked.

This experiment shows that employing a more comprehensive test suite has the potential
to identify additional violations. While our focus for this work is WPT, as it is currently
the most complete and regularly updated browser testing suite available, our pipeline
can be applied to any alternative testing suites, potentially improving its efficacy.

3.6 Related Work

Browser Testing. BrowserAudit is a test suite designed to assess the implementation of
Web security mechanisms in Web browsers [HMN15]. It includes more than 400 automated
test cases for SOP, CSP, CORS, cookies and security headers. While the approach is
undeniably useful to detect bugs, it suffers from significant limitations compared with
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Test Name SAT
I.1 I.3 I.6 I.7 I.8 I.9

1 webspec_host_frames – – – – –
2 webspec_csp_sw – – – – – –
3 webspec_csp_sop – – – – – –
4 webspec_tt_frames – – – – – –
5 webspec_csp_blob – – – – – –

6 crumbles_tossing (5) – – – – –
7 crumbles_eviction (8) – – – – – –

8 localhost_cookies (3) – – – – –
9 multi_nested_frames – – – –

Table 3.6: Additional tests and new violations.

our proposal. First, test cases in BrowserAudit were manually created by the authors.
Our approach instead leverages WPT, which is an actively maintained existing test
suite backed up by a large community (to date, its GitHub repository counts more than
1,500 contributors). Moreover, the security implications of failed BrowserAudit tests are
also manually identified: failures are categorized by the authors as warning or critical,
supposedly based on their security impact according to the authors’ understanding. Our
approach instead detects effective violations of Web security invariants, i.e., deviant
behavior clearly contradicting existing specifications. Concretely, the latest versions of
Chromium and Firefox pass all the tests in BrowserAudit except for a few warnings,
showing that the current set of test cases cannot identify relevant bugs in existing
browsers, as opposed to our pipeline.

Other work on the automated detection of security bugs in browsers targeted specific
mechanisms or vulnerabilities. For example, DiffCSP can detect bugs in CSP implemen-
tations [WNK+23], while other work investigated incoherencies in the implementation of
SOP [SMWL10b, SNM17]. Automated testing has also been used to detect new cross-site
leaks in browsers [RPS23] and to study the support of Web security mechanisms in
mobile browsers [LLHN19]. All these proposals proved effective to identify new bugs, yet
they are tailored to specific needs and do not leverage general security notions like the
concept of Web security invariant adopted in this chapter.

Browser Instrumentation. VisibleV8 (VV8) [JK19] is a browser instrumentation
framework, implemented as a set of patches for the Chromium browser, that allows
for tracing JavaScript function calls and property access during navigation. The VV8
patches are designed to minimize the modified lines of code, so that they can be easily
applied to updated browser versions. Browser instrumentation implemented as patches
to the JavaSript engine, compared to in-band JavaScript instrumentation (e.g., prototype
patching), has the unique advantage of being tamper-proof and impossible to detect by
malicious scripts. However, it suffers from being tied to a specific browser implementation
and requires additional manual work to be ported to new browser versions. For this
reason, in this work we opted for browser extensions, which allow, via the WebExtension
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API, cross-platform instrumentation that requires minimal to no effort to be applied to
any extension-supporting browsers.

Similarly to VV8, JSgraph [LVLP18] is a patch to the Chromium source code that
instruments the interface between Blink and V8, allowing for the recording of audit logs
related to the execution of JavaScript in the browser. JSgraph aims to provide a detailed
JS and DOM-related event log to aid in analyzing and reconstructing Web attacks. To
this end, the tool includes a visualization component that shows the captured events in
the form of a graph, highlighting causal relationship between events. JSgraph shares its
main limitations with VV8, being tied to the specific implementation of the Chromium
browser, requiring a substantial amount of manual work to keep up with the constantly
evolving browser code.

Formalization of Web Invariants. In their 2010 paper, Akhawe et al. [ABL+10]
presented a formal model of the Web platform for the Alloy analyzer and used it to verify
the security of Web mechanisms such as CORS, the Origin header and HTML5 forms,
discovering three new vulnerabilities. The authors encode in the model a set of security
goals which are grouped into security invariants and session integrity. In particular,
they emphasize the importance to identify clear Web security invariants that define the
desired security goals of the Web platform, proposing the definition of 4 invariants. More
recently, Veronese et al. proposed WebSpec [VFB+23], a framework for the analysis
of Web security mechanisms composed of a model of the browser in the Coq proof
assistant and a toolchain for automated model-checking against Web security invariants.
In particular, the authors define 10 Web invariants concerning cookies, the CSP and
the CORS, discovering two new attacks and presenting a formal proof of the correctness
of their proposed mitigations. Although our approach for the definition of new Web
invariants presents some similarities to both works, previous research focused on models
of the browser and not on specific implementations. By leveraging the WPT test suite, we
can (i) automatically check the actual browser implementation behavior (i.e., execution
traces) against Web invariants; and (ii) sidestep the issue of requiring to manually update
a browser model to match the updates of the Web platform. Additionally, compared to
previous works, we are the first to support Mixed Content, modeling its specification by
defining two new Web invariants.

3.7 Conclusion
This chapter presents a novel methodology for formally and automatically detecting
security issues in browser implementations of client-side Web security mechanisms.
Leveraging the WPT test suite, our framework collects browser execution traces and
validates them using the Z3 theorem prover against Web security invariants. We formalized
and encoded a total of 9 Web invariants and discovered violations within WPT, resulting
in 10 unique attacks. We reported all our findings to the affected parties and kickstarted
discussions with standardization bodies to address shortcomings at the specification level.
This research positively answers our initial research question, showing that the proposed
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automated approach can provide valuable guidance to browser vendors in identifying
vulnerable Web components requiring immediate attention.
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CHAPTER 4
Can I Take Your Subdomain?

Exploring Same-Site Attacks in
the Modern Web

Abstract
Related-domain attackers control a sibling domain of their target Web application, e.g.,
as the result of a subdomain takeover. Despite their additional power over traditional
Web attackers, related-domain attackers received only limited attention from the research
community. In this paper we define and quantify for the first time the threats that
related-domain attackers pose to Web application security. In particular, we first clarify
the capabilities that related-domain attackers can acquire through different attack vectors,
showing that different instances of the related-domain attacker concept are worth attention.
We then study how these capabilities can be abused to compromise Web application
security by focusing on different angles, including cookies, CSP, CORS, postMessage, and
domain relaxation. By building on this framework, we report on a large-scale security
measurement on the top 50k domains from the Tranco list that led to the discovery of
vulnerabilities in 887 sites, where we quantified the threats posed by related-domain
attackers to popular Web applications.

This chapter presents the results of a collaboration with Marco Squarcina, Mauro Tempesta,
Stefano Calzavara and Matteo Maffei and has been published at the 30th USENIX Security
Symposium in 2021 under the title “Can I Take Your Subdomain? Exploring Same-Site
Attacks in the Modern Web” [STV+21]. Marco squarcina is responsible for the definition
of the threat model, the design of the vulnerability scanner pipeline and the DNS scanner.
Mauro tempesta is responsible for the Web analyzer component of the pipeline. I am
responsible for the analysis of discontinued third-party services and contributed to the
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analysis of deprovisioned cloud instances. Stefano Calzavara and Matteo Maffei were the
general advisors and contributed with continuous feedback.

4.1 Introduction
The Web is the most complex distributed system in the world. Web security practitioners
are well aware of this complexity, which is reflected in the threat modeling phase of most
Web security analyses. When reasoning about Web security, one has to consider multiple
angles. The Web attacker is the baseline attacker model that everyone is normally
concerned about. A Web attacker operates a malicious website and mounts attacks by
means of standard HTML and JavaScript, hence any site operator in the world might act
as a Web attacker against any other service. High-profile sites are normally concerned
about network attackers who have full control of the unencrypted HTTP traffic, e.g.,
because they operate a malicious access point. Both Web attackers and network attackers
are well known to Web security experts, yet they do not capture the full spectrum of
possible threats to Web application security.

In this chapter we are concerned about a less known attacker, referred to as related-domain
attacker [BBC11]. A related-domain attacker is traditionally defined as a Web attacker
with an extra twist, i.e., its malicious website is hosted on a sibling domain of the target
Web application. For instance, when reasoning about the security of www.example.com,
one might assume that a related-domain attacker controls evil.example.com. The
privileged position of a related-domain attacker endows it, for instance, with the ability to
compromise cookie confidentiality and integrity, because cookies can be shared between
domains with a common ancestor, reflecting the assumption underlying the original
Web design that related domains are under the control of the same entity. Since client
authentication on the Web is mostly implemented on top of cookies, this represents a
major security threat.

Despite their practical relevance, related-domain attackers received much less attention
than Web attackers and network attackers in the Web security literature. We believe
there are two plausible reasons for this. First, related-domain attackers might sound very
specific to cookie security, i.e., for many security analyses they are no more powerful than
traditional Web attackers, hence can be safely ignored. Moreover, related-domain attack-
ers might appear far-fetched, because one might think that the owner of example.com
would never grant control of evil.example.com to untrusted parties.

Our research starts from the observation that both previous arguments have become
questionable, and this is the right time to take a second look at the threats posed by
related-domain attackers, which are both relevant and realistic. A key observation to
make is that a related-domain attacker shares the same site of the target Web application,
i.e., sits on the same registrable domain. The notion of site has become more and more
prominent for Web security over the years, going well beyond cookie confidentiality and
integrity issues. For example, the Site Isolation mechanism of Chromium ensures that
pages from different sites are always put into different processes, so as to offer better
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security guarantees even in presence of bugs in the browser [RMO19]. Moreover, major
browsers are now changing their behavior so that cookies are only attached to same-site
requests by default, which further differentiates related-domain attackers from Web
attackers. In the rest of the chapter, we discuss other (normally overlooked) examples
where the privileged position of related-domain attackers may constitute a significant
security threat. Finally, many recent research papers showed that subdomain takeover is
a serious and widespread security risk [LHW16, BFH+18]. Large organizations owning a
huge number of subdomains might suffer from incorrect configurations, which allow an
attacker to make subdomains resolve to a malicious host. This problem also received
attention from the general media [Osb17] and the industry [Bia15]. Though these studies
proved that related-domain attackers are a realistic threat, they never quantified their
impact on Web application security at scale.

Contributions
In this work, we perform the first scientific analysis of the dangers represented by
related-domain attackers to Web application security. In particular:

1. We introduce a fine-grained definition of related-domain attacker that captures the
capabilities granted to such attackers according to the position they operate and the
associated Web security threats. In particular, we systematize the attack vectors
that an attacker can exploit to gain control of a domain, and we present the attacks
that can be launched from that privileged position, discussing the additional gain
with respect to a traditional Web attacker (§4.3).

2. We implement a toolchain to evaluate the dangers that related-domain attackers can
pose to Web application security. Our toolchain builds on top of an analysis module
for subdomain takeover, which significantly improves over previous results [LHW16].
We use the output of this module to perform automated Web application security
analyses along different angles, including cookies, CSP, CORS, postMessage, and
domain relaxation (§4.4).

3. We report on experimental results established through our toolchain. In particular,
we enumerate 26M subdomains of the top 50k registrable domains from the Tranco
list and discover practically exploitable vulnerabilities in 887 domains, including
major websites like cnn.com, nih.gov, harvard.edu, and cisco.com. We
also study the security implications of 31 third-party service providers and dynamic
DNS and present a novel subdomain hijacking technique that resulted in a bug
bounty of $1,000. Importantly, we quantify for the first time the impact of these
vulnerabilities on Web application security, concluding that related-domain attackers
have an additional gain compared to Web attackers that goes beyond well-studied
issues on cookies (§4.5).

We have responsibly disclosed the identified vulnerabilities to the respective site operators.
The results of the notification process are presented in §4.6.
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Table 4.1: Main DNS record types.
Record Type Description

A Returns the IPv4 address of a domain
AAAA Returns the IPv6 address of a domain
CNAME Maps an alias name to the canonical domain name
NS Defines the authoritative DNS record for a domain
CAA Specifies the allowed certificate authorities for a domain

4.2 Background
DNS Resolution. DNS is a protocol that stands at the core of the Internet [Moc87].
It translates mnemonic domain names to IP addresses used by the underlying network
layer to identify the associated resources. The translation process, called DNS resolution,
is done transparently to applications. For instance, when a browser attempts to visit
a fully qualified domain name (FQDN), such as www.example.com, the local resolver
forwards the request to one of the DNS servers designated by the operating system. In
case the DNS server has no information on the requested domain name, it initiates the
recursive resolution from the root DNS server until the authoritative DNS server for the
domain is reached, following the subdomain hierarchy of the DNS system. Eventually, the
authoritative DNS server returns to the client a set of Resource Records (RRs) with the
format: name, TTL, class, type, data. A list of relevant DNS record types is summarized
in Table 4.1.

DNS also supports wildcard RRs with the label *, such as *.example.com. Wildcard
RRs are not matched if an explicit RR is defined for the requested name. In general,
wildcard RRs have a lower priority than standard RRs [Lew06]. For instance, given
a wildcard A record *.example.com and an A record for a.example.com, requests
to b.example.com and c.b.example.com are resolved by the wildcard, while re-
quests to a.example.com are matched by the corresponding A record. Notice that
c.a.example.com is not resolvable.

Public Suffix List. While DNS defines the hierarchical structure of domain names, the
Public Suffix List (PSL) is a catalog of domain suffixes controlled by registrars [Moza]. In
contrast to Top-Level Domains (TLDs) that are defined in the Root Zone Database [IAN],
such as .com, .org, .net, the suffixes listed in the PSL are called effective TLDs
(eTLDs) and define the boundary between names that can be registered by individuals
and private names. A domain name having just one label at the left of a public suffix is
commonly referred to as registrable domain, eTLD+1, or apex domain. Domains sharing
the same eTLD+1 are said to belong to the same site.

Cookies are scoped based on the definition of site, i.e., subdomains of the same site can
share cookies (domain cookies) by setting their Domain attribute to a common ancestor.
This attribute can never be set to a member of the PSL: for instance, since github.io is
in the PSL, foo.github.io is not allowed to set cookies for github.io. This means
that there is no way to share cookies between different GitHub Pages hosted sites.
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Figure 4.1: Summary of related-domain attacker instances for dangling DNS records.

4.3 The Related-Domain Attacker
We revise the threat model of the related-domain attacker in light of the directions that
the Web has taken in recent years. In particular, we systematize for the first time the
different attack vectors that can be exploited to escalate to a related-domain position.
We also factorize the related-domain attacker into a set of capabilities and we express
prerequisites of Web attacks in terms of them, as presented below and summarized in
Figure 4.1 for the most common subdomain takeover vulnerabilities [LHW16]. This
systematization allows for a quantification of the related-domain attacker problem, which
we conduct in §4.5 by a large-scale measurement in the wild.

4.3.1 Threat Model
In its original definition, the related-domain attacker is a Web attacker who operates a
malicious website that is hosted on a related domain of the target website [BBC11]. Two
domains are related if they share a suffix that is not included in the PSL. For instance,
consider the target site example.com: all its subdomains are related to the target, as
well as being related to each other. Network attackers are traditionally considered out of
scope, given that they could mount person-in-the-middle attacks via, e.g., ARP spoofing
and DNS cache poisoning, which allow to easily control the IP address of any hostname
accessed by the victim [CFST17].

Subdomain takeovers are often caused by DNS misconfigurations [LHW16, BFH+18],
with consequences ranging from altering the content of a page to full host control.
Additionally, organizations frequently assign a subdomain of their corporate domain to
their users, who could maliciously take advantage of this implicit trust. Vulnerable Web
applications can also be infiltrated to increase the privileges of attackers interested in
exploiting their related domains.

As we elaborate in the following, the attack vector exploited to acquire a related-domain
position is not a detail, but has an impact on the capabilities granted to the attacker.
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Table 4.2: Capabilities of the related-domain attacker.
Capability Description

headers access and modify HTTP headers
js arbitrary JavaScript code execution
html alter the markup of the website with the exclusion of JavaScript
content alter the textual content of the website with the exclusion of embed tags,

frames and JavaScript code
file host arbitrary files
https operate a website under HTTPS with a valid certificate

Note: js subsumes both html and content, since it is possible to edit the DOM by using JavaScript.
Similarly, html subsumes content.

While full control of the host grants the attacker the ability to configure the Web server to
host arbitrary content, other attack scenarios only grant more limited power. For example,
exploiting a reflected XSS on a subdomain of a company poses several restrictions on
the actions that can be undertaken by the attacker. This motivates the need for a new,
fine-grained definition of related-domain attacker, which precisely characterizes its power
based on the acquired capabilities. In §4.3.2, we map concrete attack vectors to the
set of capabilities (see Table 4.2) that the attacker may acquire when escalating to a
related-domain position. In §4.3.3, we link such capabilities to Web security threats,
giving rise to a granular framework that defines different instances of the related-domain
attacker.

4.3.2 Abusing Related Domains

We provide a comprehensive characterization of the attack vectors that can be exploited
to acquire a related-domain position and identify the set of associated capabilities. While
some of these attack vectors have been already analyzed in the literature in isolation
(e.g., dangling DNS records [LHW16] and domain shadowing [Bia15, LLD+17]), it is the
first time they are systematized to cover the possible abuses which enable escalation
to a related-domain position. Furthermore, we introduce a novel attack vector that
exploits DNS wildcards, and we point out concrete instances of roaming services, hosting
providers, and dynamic DNS services which are vulnerable to the threats described in
this work.

Dangling DNS Records

Dangling DNS records refer to records in the authoritative DNS servers of a domain that
point to expired resources. These records should be purged right away after releasing the
pointed resources. Unfortunately, this practice is often overlooked, resulting in dangling
DNS records to persist indefinitely. Possible reasons include lack of communication
between the person who releases the resource and the domain owner or when the pointed
resource expires automatically after a certain period of time, passing unnoticed. A
dangling DNS record is considered vulnerable if an unintended party can take control of
the expired resource [LHW16].

76



4.3. The Related-Domain Attacker

Expired Domains. A DNS CNAME record maps a domain name (alias) to another
one called canonical name. If the canonical name is expired, a third party can simply
register the domain and serve arbitrary content under the alias domain. Attackers
exploiting this vulnerability have full control of the host and generally can rely on all the
capabilities listed in our framework. One exception is https in presence of a CAA DNS
record [HBSHA19]: this record defines a list of Certificate Authorities (CAs) which are
allowed to issue certificates for a given domain, possibly preventing attackers to rely on
automated CAs like Let’s Encrypt [ABC+19].

Discontinued Services. Third-party services are widely used to extend the functional-
ities of a website. Domain owners can integrate rich platforms by making them accessible
under a subdomain of their organization, e.g., blog.example.com could show a blog
hosted by WordPress and shop.example.com could be an e-shop run by Shopify. To
map a (sub)domain to a service, an integrator typically has (i) to configure a DNS record
for the (sub)domain, such as A/AAAA, CNAME or NS, to point to a server controlled by
the service provider, and (ii) to claim the ownership of the (sub)domain in the account
settings of the service. If the service provider does not verify the domain ownership
explicitly, i.e., a DNS record pointing to the service is the only condition required to claim
the ownership of a (sub)domain, an attacker could map to their account any unclaimed
(sub)domain with a valid DNS record in place [LHW16].

In addition, we observe that dangling records can also occur due to the presence of
DNS wildcard. Consider, for example, a site operator configuring a DNS wildcard such
as *.example.com pointing to a service provider IP to enable multiple websites to
be hosted under subdomains of example.com. An attacker could bind a subdomain
of their choice, e.g., evil.example.com, to a new account on the service provider.
Surprisingly, we discovered that some service providers do not verify the ownership of a
subdomain even if the parent domain has been already mapped to an existing account. In
practice, this allows an attacker to claim evil.proj.example.com also in presence
of a legitimate binding for proj.example.com. Even worse, we found that some
service providers perform an automatic redirection of the www-prefixed subdomains to
their parent domains without preventing the www subdomain from being associated to a
different account. We report on this novel attack in §4.5.1.

Attackers’ capabilities vary depending on the platform and range from altering the content
of a single page to full host control. We refer to §4.5 for the result of a thorough security
investigation conducted on 31 service providers.

Deprovisioned Cloud Instances. The ephemeral nature of resources allocated in
Infrastructure as a Service (IaaS) environments is known to facilitate the spread of
dangling DNS records. DNS records pointing to available IP addresses in the cloud can
be abused by a determined attacker who rapidly allocates IP addresses in order to control
the target of the dangling DNS record [LHW16, BFH+18]. Similarly to expired domains,
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the presence of a CAA DNS record in a parent domain could hinder the capability of
obtaining a valid TLS certificate.

Corporate Networks and Roaming Services

Large organizations often assign fully qualified domain names (FQDNs) to devices in their
network. This practice allows to statically reference resources in the network, irrespective
of the assignment of IP addresses that may change over time. Although hosts might
be inaccessible from outside of the organization network, internal users are put in a
related-domain attacker position with full capabilities, excluding https that depends on
the network configuration of the organization.

Institutions providing roaming services are similarly prone to the same issue. This is the
case of eduroam, a popular international education roaming service that enables students
and researchers to have a network connection provided by any of the participating
institutions. As a novel insight, we discovered that system integrators at some local
institutions are assigning eduroam users a subdomain of the main institution, such as
ip1-2-3-4.eduroam.example.com, where 1.2.3.4 is a placeholder for the public
IP assigned to the user connected to the eduroam network. This practice ultimately
promotes any eduroam user to a related-domain attacker with full control of the host
that is pointed by the DNS record. Firewall restrictions might hinder complete visibility
on the Internet of the personal device of the user. Still, users’ devices might be accessible
within the institution network.

Hosting Providers and Dynamic DNS Services

Many service providers allow users to create websites under a specific subdomain, e.g.,
<username>.github.io on GitHub. Subdomains hosting user-supplied content are
not related to each other if the parent domain is included in the PSL, as in the case of
github.io. Unfortunately, several service providers that we reviewed did not include
their domains in the PSL, turning any of their users into a related-domain attacker for
all the websites hosted on the same platform.

A similar consideration applies to dynamic DNS providers. The race to offer a huge
variety of domains under which users can create their custom subdomains, made it
unfeasible for certain providers to maintain a list of entries in the PSL. The FreeDNS
service [Fre20] pictures well the problem, with 52,443 offered domains and a declared user
base of 3,448,806 active users as of October 2020, who are in a related-domain attacker
position to all the subdomains and domains of the network, since none of them has been
added to the PSL.

While in the case of hosting and service providers, the capabilities granted to the attacker
largely depend on the specific service (see §4.5.1 for more details), a dynamic DNS
service allows users to point a DNS record to a host they fully control, capturing all the
capabilities discussed in Table 4.2.
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Compromised Hosts/Websites

Aside from scenarios in which attackers gain control of a resource that is either abandoned
or explicitly assigned to them, another way to obtain a related-domain attacker position
is the exploitation of vulnerable hosts and websites. Intuitively, attackers achieving code
execution on the vulnerable application have capabilities ranging from serving arbitrary
content to full host control. If the exploited vulnerability is an XSS, attackers could take
advantage of the ability to execute JavaScript code from a privileged position to escalate
the attack against a more sensitive website.

Furthermore, attackers have been found employing a technique called domain shad-
owing [Bia15, LLD+17] to illicitly access the DNS control panel of active domains to
distribute malware from arbitrary subdomains. Alowaisheq et al. recently discovered
that stale NS records [ATW+20] could also be abused by attackers to take control of
the DNS zone of a domain to create arbitrary DNS records. Controlling the DNS of a
domain is the highest privileged setting for a related-domain attackers, since they can
point subdomains to hosts they fully control and reliably obtain TLS certificates.

4.3.3 Web Threats

We identify for the first time a comprehensive list of Web security threats posed by
related-domain attackers, discussing in particular the scenarios where a related-domain
attacker might have an advantage over traditional Web attackers. While there exists
ample literature on threats to cookies confidentiality and integrity posed by related-
domain attackers [ZJL+15, CRB18], in this work we focus on a complete account of
how related-domain attackers affect Web application security by exploring less-studied
mechanisms.

Inherent Threats

Related-domain attackers sit on the same site of their target Web application. This is
weaker than sharing the same origin of the target, which is the traditional Web security
boundary, yet it suffices to abuse the trust put by browser vendors and end users on
same-site content. We discuss examples below.

Trust of End Users. End users might trust subdomains of sites they are familiar
with more than arbitrary external sites. For instance, attackers could exploit the residual
trust associated with the subdomain’s prior use [LWN+16] or deceive users into inserting
their passwords provided by a password manager [Wal]. This is particularly dangerous
on some mobile browsers, which display only the rightmost part of the domain due to
the smaller display size, hence a long subdomain might erroneously look like the main
site. Attackers could similarly abuse the trust inherited from the apex domain to use
compromised subdomains for the distribution of malware or other types of dangerous
content [LLD+17].

79



4. Can I Take Your Subdomain? Exploring Same-Site Attacks in the Modern Web

Site Isolation. Site Isolation is a browser architecture first proposed and implemented
by the Google Chrome browser, which treats different sites as separate security principals
requiring dedicate rendering processes [RMO19]. These processes can access sensitive
data for a single site only, which mitigates the leakage of cross-origin data via memory
disclosure and renderer exploits, including attacks based on Spectre [KHF+19, RJ21]. As
acknowledged in the original Site Isolation paper [RMO19], “cross-origin attacks within
a site are not mitigated”, hence related-domain attackers can void the benefits of this
security architecture.

Same Site Request Forgery. The introduction of same-site cookies [WW20] and the
recent enforcement of this security feature by default on major browsers [The20, Con20]
received high praise as an effective countermeasure against CSRF [Hel17]. In the absence
of other defenses [BJM08a], the restrictions introduced by same-site cookies are voided
by a related-domain attacker who can mount a same-site request forgery attack just by
including an HTML element pointing to the target website in one of their Web pages.

Cookie Confidentiality and Integrity

Cookies can be issued with the Domain attribute set to an ancestor of the domain
setting them, so as to share them with all its subdomains. For example, good.foo.com
can issue a cookie with the Domain attribute set to foo.com, which is sent to both
good.foo.com and evil.foo.com. Hence, related-domain attackers can trivially
break cookie confidentiality and abuse of stolen cookies [ZJL+15], e.g., to perform session
hijacking. The Domain attribute poses risks to cookie integrity too: evil.foo.com
can set cookies for good.foo.com, which can be abused to mount attacks like session
fixation. Note that the integrity of host-only cookies is at harm too, because a related-
domain attacker can mount cookie shadowing, i.e., set a domain cookie with the same
name of a host-only cookie to confuse the Web server [ZJL+15].

Site operators can defend against such threats by careful cookie management. For
example, they can implement (part of) the session management logic on top of host-only
cookies, which are not disclosed to related-domain attackers. Moreover, they can use
the __Host- prefix to ensure that security-sensitive cookies are set as host-only, thus
ensuring their integrity against related-domain attackers.

Capabilities. The capabilities required by a related-domain attacker to break the
confidentiality of a domain cookie depend on the flags enabled for it: if the cookie is
HttpOnly, it cannot be exfiltrated via JavaScript and the headers capability is needed
to sniff it; otherwise, just one between headers and js suffices. If the Secure flag is
enabled, the cookie is sent only over HTTPS, hence the https capability is also required.
As to integrity, all cookies lacking the __Host- prefix have low integrity against a
related-domain attacker with the headers or js capabilities, since they are affected by
cookie shadowing. There is one exception: cookies using the __Secure- prefix have
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low integrity only against related-domain attackers which additionally have the https
capability, since these cookies can only be set over HTTPS.

Bypassing CSP

Content Security Policy (CSP) is a client-side defense mechanism originally designed
to mitigate the dangers of content injection and later extended to account for different
threats, e.g., click-jacking. CSP implements a whitelisting approach to Web application
security, whereby the browser behavior on CSP-protected Web pages is restrained by
binding directives to sets of source expressions, i.e., a sort of regular expressions designed
to express sets of origins in a compact way. To exemplify, consider the following CSP:

script-src foo.com *.bar.com;
frame-ancestors *.bar.com;
default-src https:

This policy contains three directives, script-src, frame-ancestors and default-
src, each bound to a set of source expressions like foo.com and *.bar.com. It
allows the protected page to: (i) include scripts from foo.com and any subdomain
of bar.com; (ii) be included in frames opened on pages hosted on any subdomain of
bar.com; (iii) include any content other than scripts over HTTPS connections with any
host.

Since the syntax of source expressions naturally supports the whitelisting of any subdo-
main of a given parent, related-domain attackers represent a major threat against the
security of CSP. For example, if an attacker could get control of vuln.bar.com, then
they would be able to bypass most of the protection put in place by the CSP above. In
particular, the attacker would be able to exploit a content injection vulnerability on the
CSP-protected page to load and execute arbitrary scripts from vuln.bar.com, thus
voiding XSS mitigation. Moreover, the attacker could frame the CSP-protected page on
vuln.bar.com to perform click-jacking attacks. To avoid these threats, site operators
should carefully vet the subdomains included in their CSP whitelists.

Capabilities. A related-domain attacker requires the capability to upload arbitrary
files on the website under its control to void the protection offered by CSP against content
inclusion vulnerabilities, with the only notable exception of frame inclusion which requires
only the html capability. For active contents [W3C23], i.e., those that may have access
to the DOM of the page, the attacker also needs the https capability if the target page
is hosted over HTTPS. Regarding click-jacking protection, attackers only requires the
html capability to include the target website on a page under their control.

Abusing CORS

Cross-Origin Resource Sharing (CORS) is the standard approach to relax the restric-
tions enforced by SOP on cross-origin communications, i.e., preventing JavaScript
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from reading the content of responses to cross-origin requests. Consider a service at
https://www.example.com, which needs to fetch sensitive data from api.example.com
via JavaScript: to enable CORS, https://api.example.com can inspect the Origin
header of incoming requests to detect if they come from https://www.example.com
and, in such a case, set a CORS header Access-Control-Allow-Origin with the
value https://www.example.com in the response. As an additional layer of protec-
tion, the server must also set the Access-Control-Allow-Credentials header to
true if the request includes credentials, e.g., cookies, since the associated response is
more likely to include sensitive content.

Related-domain attackers can abuse CORS to bypass the security restrictions put in place
by SOP when the aforementioned server-side authorization checks are too relaxed, i.e., read
access is granted to arbitrary subdomains. For example, if https://api.example.com
was willing to grant cross-origin access to any subdomain of example.com besides
www.example.com, a related-domain attacker could get unconstrained access to its
data. To avoid these threats, site operators should be careful in the security policy
implemented upon inspection of the Origin header, e.g., restricting access just to a few
highly trusted subdomains.

Capabilities. To exploit CORS misconfigurations, an attacker needs the js capability
to issue requests via JavaScript APIs like fetch and access the content of the response.
The https capability may be required depending on the CORS policy deployed by the
site operator.

Abusing postMessage

The postMessage API supports cross-origin communication across windows (e.g., between
frames or between a page and the popup opened by it). The sender can invoke the
postMessage method of the target window to transmit a message, possibly restricting
the origin of the receiver. The receiver, in turn, can use event handlers to listen for the
message event and process incoming messages.

Despite its apparent simplicity, the postMessage API should be used with care, as shown
by prior research [SS13, SS20]. In particular, when sending confidential data, one should
always specify the origin of the intended receiver in the postMessage invocation. When
receiving data, instead, one should check the origin of the sender (via the origin
property of the received message) and appropriately sanitize the content of the message
before processing it.

Related-domain attackers can undermine Web application security when site operators
put additional trust in subdomains. In particular, related-domain attackers can try to
abuse their position to void the aforementioned origin checks and communicate with
inattentive receivers that might process messages in an unsafe way, e.g., messages are
provided as input to eval or stored in a cookie, opening the way to session hijacking
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attacks. Site operators can defend against such attacks by carefully vetting authorized
subdomains for communication between windows.

Capabilities. An attacker requires scripting capabilities (js) to open a new tab
containing the vulnerable page and communicate with it via the postMessage API.
Similarly to CORS, https may be needed depending on the origin checking performed
by the receiver.

Abusing Domain Relaxation

Domain relaxation is the legacy way to implement communication between windows
whose domains share a common ancestor. Assume that a page at a.example.com
opens a page at b.example.com inside a frame. Besides using the postMessage API
as explained, the two frames can communicate by relaxing their document.domain
property to a common ancestor. In this case, both frames can set such property to
example.com, thus moving into a same-origin position.1 After that, SOP does not
enforce any isolation between the two frames, which can communicate by writing on
each other’s DOM. Note that example.com must explicitly set the document.domain
property to example.com if it is willing to engage in the domain relaxation mechanism,
although this is apparently a no-op.

Domain relaxation can be abused by related-domain attackers, who can look for pages
which are willing to engage in such dangerous communication mechanism and abuse
it. In particular, when the attacker moves into a same-origin position, SOP does not
provide any protection anymore, which voids any confidentiality and integrity guarantee.
Websites that are willing to communicate with a selected list of related domains should
refrain from using this mechanism – which is deemed as insecure – and should implement
cross-origin communication on top of the postMessage API.

Capabilities. Besides the js capability needed to perform the relaxation and access
the DOM of the target page, attackers need to setup their attack page on the same
protocol of the target, hence the https capability may also be required.

4.4 Analysis Methodology
We performed a large-scale vulnerability assessment to measure the pervasiveness of the
threats reported in this work, first by identifying subdomains of prominent websites that
can be abused by a related-domain attacker exploiting dangling DNS records, and second
by evaluating the security implications on Web applications hosted on related domains
of the vulnerable websites. Our methodology is based on the pipeline summarized in
Figure 4.2 and further described in this section.

1We assume here that the two frames share the same protocol and port.
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Figure 4.2: Vulnerability scanning pipeline.

4.4.1 DNS Data Collection
We enumerated the subdomains of the top 50k domains in the Tranco list [PGT+19]
from March 2020.2 The enumeration phase was based on amass [OWA20], a state of
the art information gathering tool backed by the OWASP project. The tool supports
several techniques to maximize the chances of discovering subdomains of a target. In our
configuration, we extracted subdomains using the following approaches: (i) fetch data from
publicly available sources, such as Censys [Cen20], certificate transparency logs [Sec20],
search engines, etc.; (ii) attempt DNS zone transfer to obtain the complete list of RRs
defined for a certain DNS zone; (iii) inspect fields of TLS certificates, e.g., Subject
Alternative Name and Common Name. To speed up the enumeration phase and
lower the number of network requests, we avoided bruteforcing DNS resolvers against
domain name wordlists. Similarly, we explicitly disabled the resolution of subdomain
alterations.

We modified amass to compute the DNS resolving chains of all the domains obtained in
the previous step. Similarly to [LHW16], we define a resolving chain as a list of DNS
RRs in which each element is the target of the previous one, starting from a DNS record
of type A/AAAA, CNAME or NS. We ignore MX records because we focus on Web attacks
in this study. For CNAME and NS records, we recursively perform a DNS resolution until
an A/AAAA RR is detected. Unterminated DNS resolving chains can occur in presence of
a record pointing to an unresolvable resource or due to the abrupt termination of amass
after reaching the execution timeout limit of 5 minutes. To ensure the correctness of the
results, we recompute unterminated DNS resolving chains using the dig utility.

Starting from the set of 50k domains in the Tranco list, our framework identified 26
million valid subdomains. In a previous study, Liu et al. [LHW16] used a relatively small
wordlist of 20,000 entries to find possible subdomains of the Alexa top 10k list, 2,700
.edu domains, and 1,700 .gov domains. Compared to their work, our domain selection is
penalized given that we do not restrict to specific TLD zones. For instance, .edu domains

2https://tranco-list.eu/list/ZKYG/1000000
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typically have a high number of subdomains in contrast to other categories (see §4.5.1).
Nevertheless, our results outperform the findings of Liu et al. by discovering on average
13 times more subdomains.

4.4.2 RDScan
After populating a database with the DNS records of the discovered subdomains, the
framework detects dangling records and verifies that all the preconditions to mount a
subdomain takeover attack are met. By doing so, false positives are minimized in the
analysis. This component, that we call RDScan, has three different modules that test for
the presence of the vulnerable scenarios described in §4.3.2.

Expired Domains. The detection of expired domains is performed according to the
following procedure: given a resolving chain that begins with a CNAME record, our tool
checks if it points to an unresolvable resource and extracts the eTLD+1 of the canonical
name at the end of the chain, that we call apex for brevity. Then, if the whois command
on the apex domain does not return any match, RDScan queries GoDaddy to detect if
the domain can be purchased. In this case, we consider the domain of the resolving chain,
i.e., the alias of the first record of the chain, as vulnerable. Notice that we only tested
domains that can be registered without special requirements, i.e., we did not consider
.edu domains and other specific eTLDs not offered by the registrar.

Discontinued Services. The process of finding discontinued services is summarized in
Algorithm 1. RDScan traverses each resolving chain to identify whether it points to one
of the services supported by our framework. This step is implemented according to the
documentation provided by individual services, and typically relies on checking for the
presence of (i) an A record resolving to a specific IP address, (ii) the canonical name of a
CNAME record matching a given host, or (iii) the existence of a NS record pointing to the
DNS server of a service. (Sub)domains mapped to services are then checked to verify if
the bindings between user accounts and (sub)domains are in place. For the majority of
the services considered in this study, a simple HTTP request suffices to expose the lack of
a correct association of a (sub)domain. Other services require active probing to determine
whether a domain can be associated to a fresh test account that we created. This has been
done using the automated browser testing library puppeteer with Chromium [Pup20].
RDScan also performs the detection of DNS wildcards that might be abused as described in
§4.3.2. A DNS wildcard for a domain such as test.example.com can be easily detected
by attempting to resolve a CNAME or A DNS record for <nonce>.test.example.com,
where nonce refers to a random string that is unlikely to match an entry in the DNS
zone of the target domain.

Deprovisioned Cloud Instances. The detection of potentially deprovisioned cloud
instances has been performed similarly to the probabilistic approach adopted by [LHW16,
BFH+18]. We did not create any virtual machine or registered any service at cloud
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Algorithm 1 Detection of Discontinued Services
Input: Set of DNS resolving chains RC, set of supported services S
Output: Set of vulnerable subdomains Vs

1: procedure discontinued_services(RC, S)
2: Vs ← ∅
3: for each chain ∈ RC do
4: for each service ∈ S do
5: ▷ Check if a record in the chain points to the service
6: if chain points to service then
7: d ← target_domain(chain)
8: if d is unclaimed at service then
9: Vs ← Vs ∪ {d}

10: ▷ Detect wildcard if the service allows a subdomain of a
11: ▷ claimed domain to be mapped to a different account
12: else if service vulnerable to wildcard issue then
13: r ← generate_nonce()
14: rd_chains ← compute_resolving_chains(r.d)
15: for each rd_chain ∈ rd_chains do
16: if rd_chain points to service then
17: Vs ← Vs ∪ {r.d}

providers in this process. Instead, we collected the set of IP ranges of 6 major providers:
Amazon AWS, Google Cloud Platform, Microsoft Azure, Hetzner Cloud, Linode, and
OVHcloud. We tested each (sub)domain in our dataset to check whether the pointed IP
was included in any of the cloud IP ranges. In case the IP falls within the address range
of a cloud provider, we make sure that it does not point to a reserved resource such as
a proxy or a load balancer. As the last step, we perform a liveness probe to determine
if the IP is in use. This is done by executing a ping to the IP: if no answer is received,
we use a publicly available dataset [Rap20] comprising a scan of the full IPv4 range on
148 ports (128 TCP, 20 UDP). If no open ports for the given IP are found, we deem the
resource as potentially deprovisioned.

4.4.3 Web Analyzer

Our Web security analysis aims at quantifying the number of domains hosting Web
applications that can be exploited by taking over the vulnerable domains discovered by
RDScan. In particular, for every apex domain with at least one vulnerable subdomain,
we selected from the CommonCrawl dataset [Com20] the list of 200 most popular related
domains according to the Pagerank score [BP98]. From the homepage of these domains,
we extracted the same-origin links that appear in the HTML code. For each related
domain, we considered the homepage and up to 5 of these URLs as the target of our
Web analysis, and we accessed these links using the Chromium browser automated by
puppeteer. In the following, we present the data collection process and the security
analyses we have conducted to identify the threats discussed in §4.3.3. We postpone the
summary of the results to §4.5.
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Analysis of Cookies

We used the puppeteer API to collect cookies set via HTTP headers and JavaScript. Our
goal is to identify cookies affected by confidentiality or integrity issues. In particular, we
flag a cookie as affected by confidentiality issues if, among the related domains vulnerable
to takeover, there exists a domain d such that:

• d is a subdomain of the Domain attribute of the cookie;
• by taking over d, the attacker has acquired the capabilities required to leak the

cookie.

We mark a cookie as affected by integrity issues if:

• the name of the cookie does not start with __Host-;
• we identified a vulnerable domain that grants the capabilities required to set the

cookie.

We also rely on a heuristic proposed by Bugliesi et al. [BCFK15] to statically identify
potential (pre-)session cookies, i.e., cookies that may be relevant for the management of
user sessions.

The capabilities required to perform these attacks depend on the security flags assigned
to the cookie and the usage of cookie prefixes (see §4.3.3). For instance, to compromise
integrity either the capability js or headers is required and, if the prefix __Secure-
is used, https is also necessary.

Analysis of CSP policies

For this analysis, we implemented a CSP evaluator according to the draft of the latest
CSP version [W3C18], which is currently supported by all major browsers. This is not a
straightforward task, due to the rich expressiveness of the policy and various aspects that
have been introduced into the specification for compatibility purposes across different CSP
versions, e.g., for scripts and styles, the ’unsafe-inline’ keyword, which whitelists
arbitrary inline contents in a page, is discarded when hashes or nonces are also specified.

In our analysis, we focus on the protection offered against click-jacking and the inclusion
of active contents [W3C23], i.e., resources that have access to (part of) the DOM of the
embedding page. This class of contents includes scripts, stylesheets, objects, and frames.

For each threat considered in our analysis, we first check if the policy is unsafe with
respect to any Web attacker. This is the case for policies that allow the inclusion of
contents from any host (or framing by any host, when focusing on click-jacking protection).
For scripts and styles, the policy is also deemed unsafe if arbitrary inline contents are
whitelisted. If the policy is considered safe, we classify it as exploitable by a related
domain if one of the vulnerable domains detected by RDScan is whitelisted and the
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attacker acquires the relevant capabilities to perform the attack, which vary depending
on the threat under analysis (see §4.3.3). For instance, script injection requires the file
capability, given that attackers need to host the malicious script on a subdomain they
control. Moreover, if the page to attack is served over HTTPS, the https capability is
required due to the restrictions imposed by browsers on mixed content [W3C23].

Analysis of CORS

To evaluate the security of the CORS policy implemented by a website, we perform
multiple requests with different Origin values and inspect the HTTP headers in the
response to understand whether CORS has been enabled by the server.

Inspired by the classes of CORS misconfigurations identified in [CJD+18], we test 3
different random origins with the following characteristics: (i) the domain is a related
domain of the target URL; (ii) the domain starts with the registrable domain of the
target URL; (iii) the domain ends with the registrable domain of the target URL. While
the first test verifies whether CORS is enabled for a related domain, the other two detect
common server-side validation mistakes. Such errors include the search of the registrable
domain as a substring or a suffix of the Origin header value, which results in having, e.g.,
www.example.com whitelisting not only a.example.com but also atkexample.com.
For each test, we check if the Access-Control-Allow-Origin header is present in
the response and if its value is either * or that of the Origin header contained in the
request. We also control if the Access-Control-Allow-Credentials header is
present and set to true (when Access-Control-Allow-Origin differs from *) to
identify the cases in which requests with credentials are allowed.

We report a CORS deployment as vulnerable to Web attackers if either the second or the
third test succeeds. Instead, a page is exploitable exclusively by a related-domain attacker
if only the first test succeeds and, among the vulnerable related domains discovered by
RDScan, one grants the js capability to the attacker. Since in our tests we use the same
protocol of the page under analysis in the Origin header, we conservatively require the
https capability when HTTPS is used.

Analysis of postMessage Handlers

PMForce [SS20] is an automated in-browser framework for the analysis of postMessage
event handlers. It combines selective force execution and taint tracking to extract the
constraints on the message contents (e.g., presence of a certain string in the message) that
lead to execution traces in which the message enters a dangerous sink that allows for code
execution (e.g., eval) or the alteration of the browser state (e.g., document.cookie).
A message satisfying the extracted constraints is generated using the Z3 solver and the
handler under analysis is invoked with the message as a parameter to ensure that the
exploit is successfully executed.

We integrated PMForce in our pipeline and modified it to generate, for each handler,
multiple exploit messages with the same contents but a different origin property, e.g.,
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a related-domain origin and a randomly-generated cross-site origin. We consider a page
vulnerable to any Web attacker if any of its handlers is exploitable from a cross-site
position. Instead, we consider a page exploitable by a related-domain attacker if its
handlers can be exploited only from a related-domain position and one of the vulnerable
domains discovered by RDScan grants the js capability to the attacker, which is required
to open a tab and send messages to it. If the handlers whitelist only HTTPS origins,
then the capability https is also required to mount the attack.

Analysis of Domain Relaxation

As a first step, the analyzer detects whether the property document.domain is set
after the page is loaded. This task is straightforward except for the case in which the
page sets the property to its original value (see §4.3.3) since this cannot be detected
just by reading the value of document.domain. To identify this particular case, we
leverage puppeteer APIs to:

• inject a frame from a (randomly generated) subdomain of the page under analysis;
• intercept the outgoing network request and provide as response a page with a

script that performs domain relaxation and tries to access the parent frame, which
succeeds only if the parent has set document.domain.

The relaxation mechanism is exploitable by a related-domain attacker if RDScan discov-
ered a vulnerable subdomain (which is a subdomain of the value of document.domain)
that grants the js capability to the attacker. If the webpage is hosted over HTTPS, the
https capability is also required.

4.4.4 Heuristics and False Positives
Our methodology is based on testing sufficient preconditions to execute the reported
attacks, thus minimizing false positives. Nevertheless, the scanning pipeline makes use
of two heuristics in the RDScan and Web analyzer modules to, respectively, detect
potentially deprovisioned cloud instances and label security-sensitive cookies; moreover,
we identify a potential TOCTOU issue between the two modules of the analysis pipeline.
We discuss below why this has only a marginal effect on the overall results of the analysis.

RDScan. We developed automated procedures to test sufficient preconditions for a
takeover. Expired domains are trivially verified by checking if the target domain can be
purchased. For discontinued services, we created personal testing accounts on each service
considered in the analysis and used these accounts to probe the mapping between the
target subdomain and the service. If we detect all necessary conditions to associate the
subdomain to our account, we deem it as vulnerable. We manually vetted these conditions
against our own domain. Due to ethical concerns, we did not mount attacks against
real websites, but we reviewed all the occurrences of subdomain takeover vulnerabilities
before disclosing them to the affected sites and found no false positives in the results (see
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Section 4.6). The detection of subdomains pointing to deprovisioned cloud instances relies
instead on a heuristic which might introduce false positives, as discussed in §4.4.2. We
performed this investigation to capture the magnitude of the problem, but we excluded
the results on deprovisioned cloud instances from the pipeline to avoid false positives
in the Web analyzer. To avoid misunderstandings in this chapter, we refer to domains
matching our heuristic as potentially vulnerable.

Web Analyzer. The Web vulnerabilities discovered by this module have been identified
via dynamic testing and analysis of the data collected by the crawler. We manually
verified samples of each detected vulnerability to ensure the correctness of the results and
confirmed the absence of false positives. The usage of heuristics is limited to the labeling
of cookies which likely contain session identifiers and are thus particularly interesting
from a security standpoint; this approach has been proved reasonably accurate in prior
work [BCFK15].

Interplay between the modules. The modules of the pipeline described in Figure 4.2
have been executed in sequence at different points in time. The DNS enumeration phase
terminated in June 2020, while RDScan ran during the first half of July 2020. The severity
of the discovered issues motivated us to immediately report them to the affected parties.
Therefore, we launched a large-scale vulnerability disclosure campaign in the second half
of the month. We executed the Web scanner right after that. Having the DNS data
collection running first, RDScan might have missed new subdomains that were issued
after the completion of the DNS enumeration. This leads to a possible underestimation
of the threats in the wild concerning unresolvable domains and expired services. On
the other hand, subdomain takeover vulnerabilities might have been fixed prior to the
Web security analysis. We performed a second run of RDScan 6 months later to verify
the fix rate of notified parties. Surprisingly, we discovered that, as of January 2021,
85% of the subdomains that we tested are still affected by leftover subdomain takeover
vulnerabilities, confirming that the early remediation of the reported vulnerabilities had a
marginal effect on the Web analysis. We provide more details on our large-scale disclosure
campaign in Section 4.6.

4.5 Security Evaluation
We report on the results of our security evaluation on the top 50k domains from the
Tranco list. We quantify the vulnerabilities that allow an attacker to be in a related-
domain position, and we provide a characterization of the affected websites. Then, we
delve into the security of 31 service providers by discussing common pitfalls and the
capabilities that could be abused by an attacker. Finally, we present the outcome of our
Web analysis, and we identify practical vulnerabilities by intersecting the capabilities on
vulnerable domains with the threats found on Web applications hosted on their related
domains. Table 4.3 provides a breakdown of the results by combining attack vectors
and Web threats: the values reported in the cells represent the number of vulnerable
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Table 4.3: Breakdown of the results in terms of affected domains/sites.

Attack Vector Takeover Web mechanisms exploitable exclusively by related-domain attackers
Cookies CSP CORS Relaxation

Domains Sites Domains Sites Domains Sites Domains Sites Domains Sites

Expired Domains 260 201 5,394/5,394 195/195 35/141 13/28 35/317 16/107 9/11 6/8

Discontinued Services 1,260 699 18,798/19,020 662/674 104/294 32/75 196/1,980 37/392 49/88 24/55↰WordPress 466 320 13,803/13,803 312/312 43/168 23/52 164/1,221 21/186 30/49 14/28↰Shopify 326 254 2,638/2,638 244/244 32/66 5/12 26/459 11/153 7/19 5/15↰Tumblr 310 24 404/404 23/23 1/2 1/2 5/29 2/12 1/2 1/2↰GitHub 42 25 899/899 24/24 22/49 1/5 2/116 2/18 2/3 2/3↰Webflow 24 20 601/601 18/18 0/0 0/0 2/122 2/14 1/3 1/3↰Ngrok 22 13 250/250 13/13 7/9 2/2 0/17 0/5 8/11 1/3↰Helpscout 18 17 425/425 16/16 1/4 1/3 0/28 0/6 0/2 0/2↰Others 52 37 464/724 22/35 1/7 1/3 0/25 0/8 9/10 2/3

Total 1,520 887 23,178/23,400 845/857 139/428 45/100 224/2,25451/488 57/97 29/61

Note: Deployment of CSP only considers policies that are not trivially exploitable by a Web attacker
(§4.4.3) and whitelist one or more related domains. CORS policies are only exposed to requests coming from
whitelisted origins [CJD+18]: for the deployment we report the count of domains/sites vulnerable either to Web
attackers or related-domain attackers that were discovered during dynamic testing. postMessage is omitted since
related-domain attackers have no gain compared to Web attackers.

domains/sites compared to those deploying the corresponding Web mechanism. We
discuss these results in the following.

4.5.1 Attack Vectors and Capabilities

RDScan identified 1,520 subdomains exposed to a takeover vulnerability, distributed
among 887 domains from the top 50k of the Tranco list. Most of the vulnerabilities are
caused by discontinued third-party services (83%), with expired domains being responsible
for the remaining 17%. The analysis of deprovisioned cloud instances discovered 13,532
potentially vulnerable domains, confirming the prevalence of this threat as reported in
previous work [LHW16].

Characterization of Vulnerable Domains

As expected, the likelihood of a domain to be vulnerable is directly related to the breadth
of its attack surface, i.e., the number of subdomains we found. Figure 4.3a pictures
well this correlation, showing that around 15% of the domains with more than 50,000
subdomains are vulnerable. Figure 4.3b outlines the distribution of vulnerable domains
depending on the rank of each site in the Tranco list. Sites in top positions are more
likely to have a vulnerable subdomain than those with a lower rank.

The analyzed websites have been further partitioned into categories in Figure 4.3c.
Special care has to be taken when considering dynamic DNS: the 49 domains listed in
this category are those used by dynamic DNS services, such as ddns.net, noip.com,
afraid.org. RDScan identified vulnerable subdomains belonging to 8 domains, but 4
of them were listed in the PSL. We excluded these domains from our analysis, given that
taking control of one of their subdomains would not put the attacker in a related-domain
position with respect to the parent domain. The same principle has been adopted when
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Figure 4.3: Characterization of vulnerable domains.

evaluating service and hosting providers offering subdomains to their users. We refer to
§4.5.1 for a detailed analysis of Dynamic DNS services and hosting providers.

The second most affected category concerns education websites. We found that academic
institutions generally have complex and heterogeneous public-facing IT infrastructures
that translate into a high number of subdomains. By restricting the analysis to the
.edu TLD, we observed 1,229 domains having on average 6,033 subdomains each.
The percentage of domains with at least one vulnerable subdomain is 7.32%, which is
substantially higher than any other TLD considered. For comparison, the percentage in
.com is 1.81%.

Overall, we identified vulnerabilities affecting top domains across all categories. To
exemplify, we found subdomain takeover vulnerabilities on news websites like cnn.com
and time.com, university portals like harvard.edu and mit.edu, governmental
websites like europa.eu and nih.gov, and IT companies like lenovo.com and
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Table 4.4: Attackers’ capabilities on vulnerable services.
Service Wildcard Redirect (www) PSL Capabilities

agilecrm � − � js https
anima � − − js https
campaignmonitor � − � content
cargo � ✓ � js
feedpress � − − html
gemfury � − − file https
github � − ✓ js file https
helpscout � − � js file https
jetbrains ✓ − � content
launchrock � � � js https
ngrok ? ? ✓ js file headers https
persona � ✓ � js https
pingdom � − − js
readme.io � − � js https
shopify � � � js https
smartjobboard � ✓ � js https
statuspage ✓ − � js https
strikingly ? ? � js https
surgesh ✓ ✓ � js https
tumblr � − � js file https
uberflip ? ? − js https
uptimerobot � − − content
uservoice ? ? � js https
webflow ? ? � js https
wordpress ✓ ✓ � js https
worksites � ✓ � js https

Note: We use the following notation: service not affected (✓); service is vulnerable (�); the conditions of
redirect and PSL do not apply (−); could not evaluate, e.g., due to payment required, no public registration form,

etc. (?). Helpscout allows to host only arbitrary active content files (js, css); Gemfury allows to host only
arbitrary passive content files (images, media, ...); Launchrock implicitly associates every subdomain to the

mapped domain, not only the www subdomain.

cisco.com. Although most of the discovered issues could be easily fixed by routinely
checking the validity of DNS records, our large-scale vulnerability assessment raises
concerns due to the number and pervasiveness of the identified threats.

Analysis of Third-Party Services

We examined 26 service and hosting providers and 5 dynamic DNS services for a total
of 31 third-party services. Our selection comprises services mentioned in previous
work [LHW16] and community efforts [EdO], excluding those that required payment to
carry out our analysis.

The results are summarized in Table 4.4. We combined manual testing and review of
the documentation to assess the capabilities available to a registered user of each service.
We also evaluated the considered services against the security pitfalls described in §4.3.2:
(i) wildcard, the domain ownership verification allows attackers to claim subdomains of an
already mapped domain, e.g., due to the presence of a wildcard DNS entry; (ii) redirect,
if the www subdomain of a mapped domain automatically redirects to the parent domain,
e.g., www.shop.example.com redirects to shop.example.com, whether the former
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can be claimed by a different account; (iii) PSL, if the service allows users to create a
website under a specific subdomain, whether the parent domain of the assigned website
is included in the PSL.

Table 4.3 shows the distribution of the vulnerable subdomains across service providers.
The majority of the vulnerable subdomains (93%) are hosted on the first four most used
services: WordPress, Shopify, Tumblr, and GitHub Pages. These prominent services give
users the ability to host a website with a valid TLS certificate for the associated domain.
Users are allowed to customize the markup and JavaScript code of the pages, and for
Tumblr and GitHub Pages, users are allowed to upload arbitrary files to their websites.
In general, the capabilities obtained by an attacker controlling a service vary depending
on the specific platform, ranging from content only (UptimeRobot) to full host control
(ngrok). We found that 19 out of 26 services grant the js and https capabilities, while
21 provide the js capability alone. The file capability is the most uncommon, being
available for 4 services only.

Surprisingly, we discovered that in 20 out of the 31 analyzed services, any registered user
controls a website that is in a related-domain position to all the other websites hosted
on the platform. Tumblr and WordPress, along with 11 additional services, even share
their primary domain with user-controlled websites, e.g., attacker.tumblr.com is
related to tumblr.com. Only GitHub and ngrok prevent this threat by including the
apex domains assigned to their users in the PSL.

Lastly, we found that 17 services have issues with the ownership verification mechanism.
Among the four most used services, only WordPress prevents attackers from claiming
subdomains of an already mapped domain. Moreover, 8 service providers perform an
automatic redirection from the www subdomain to the parent domain. Therefore, users
of these services might erroneously assume that the www subdomain is implicitly bound
to their account and cannot be claimed by others. Only Shopify and Launchrock do
not prevent this subdomain from being mapped to different accounts. We reported to
GitHub and Shopify, two of the major service providers, the vulnerabilities discovered
on the domain ownership verification process. GitHub acknowledged the problem and
told us that they “[...] are exploring various changes to the custom domain flow that
will improve this situation by requiring formal domain ownership verification”. Shopify
awarded us $1,000 for the report and shipped a fix on April 12, 2021.

Dynamic DNS Services. The adoption of the PSL across different dynamic DNS
providers is shown in Table 4.5, together with the number of domains that a user can
choose from. We observed that only 2 providers listed all their domains in the PSL. Noip
and DynDNS left out a small number of the domains they offer, but it is not clear to us
whether this is due to negligence or if this is a deliberate choice. Instead, FreeDNS, with
more than 50k domains, did not include any of them in the list, leaving their massive user
base at risk. We reported this major flaw to the FreeDNS maintainer, who acknowledged
it but took no action, as it would be impossible to maintain an updated list of thousands
of domains in the PSL, given the lack of an API to manage PSL entries.
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Table 4.5: PSL on dynamic DNS services.
Service # Domains PSL

afraid
(FreeDNS)

52,443 � 0/52,443

duckdns 1 ✓ 1/1
dyndns 293 � 287/293
noip 91 � 85/91
securepoint 10 ✓ 10/10

Table 4.6: Web security abuses by related-domain attackers (RDA).

Mechanism Deployed Exploitable by RDA
Domains Sites Domains Sites

C
oo

ki
es all 23,400 857 C 15,025 826

I 23,178 845

session 15,179 846 C 5,051 687
I 14,964 834

C
SP

script inclusion 1,144 260 901 (0) 212 (0)
style inclusion 961 232 930 (0) 225 (0)
object inclusion 1,027 250 598 (+12) 123 (+5)
frame inclusion 967 229 664 (+45) 152 (+12)
framing control 1,676 360 344 (+97) 59 (+21)

C
O

R
S all - - 2,254 (+224) 488 (+51)

with credentials - - 179 (+63) 71 (+27)

postMessage 14,045 823 14 (0) 11 (0)

Domain Relaxation 97 61 57 29

Note: C and I denote cookie confidentiality and integrity. Numbers within parenthesis represent the
improvement compared to a Web attacker; when missing, the Web attacker cannot perform the attack.

4.5.2 Web Threats
We now turn the attention to the Web application security implications of our analysis,
as summarized in Tables 4.3 and further detailed in Table 4.6.

We start by discussing confidentiality and integrity of session cookies. Overall, our crawler
collected 85,169 cookies, out of which 24,924 have been labeled as session cookies by our
heuristic. Among these, we identify 3,390 (14%) cookies from 5,051 (33%) domains on
687 sites (81%) whose confidentiality can be violated by a related-domain attacker. This
shows that related-domain attackers can often get access to session cookies, which may
enable attacks like session hijacking. Our analysis also shows that the state of cookie
integrity is even worse: in particular, we identify 24,689 (99%) session cookies from 14,964
(99%) domains on 834 (99%) sites which do not have integrity against a related-domain
attacker, hence may enable attacks like session fixation and cookie forcing. This increase
comes from the fact that related-domain attackers can compromise the confidentiality
of domain cookies alone, while they can break the integrity of any cookie by exploiting
cookie shadowing [ZJL+15]. The fraction of domains not affected by integrity issues is
only due to the lack of capabilities available for the subdomain we could possibly take
over. The only robust way to improve cookie integrity in this setting is the adoption of

95



4. Can I Take Your Subdomain? Exploring Same-Site Attacks in the Modern Web

the __Host- prefix, which is unfortunately negligible in the wild: we only identified one
cookie using it in our dataset.

Concerning CSP, the first observation we make is that, as reported by previous stud-
ies [WSLJ16, CRB18, RBC+20], the majority of CSPs in the wild suffer from incorrect
configurations, voiding their security guarantees even against Web attackers. Remarkably,
however, related-domain attackers are more powerful than traditional Web attackers
for real-world CSPs, being able to bypass the protection mechanism on 139 additional
domains. This is apparent for object injection, frame injection, and framing control.
For example, we quantified the following increase in the attack surface for frame injec-
tion: 45 (+7%) domains are exploitable exclusively by controlling one of the vulnerable
subdomains identified in our dataset.

As to the other mechanisms, CORS deployments are significantly more at risk against
related-domain attackers rather than against traditional Web attackers. In particular, we
identify 224 (+11%) new exploitable cases, including 63 (+54%) cases with credentials.
Note that the use of CORS with credentials is particularly delicate from a security
perspective, hence the strong percentage increase in the number of vulnerable cases is
concerning. Domain relaxation, instead, can be abused by related-domain attackers in 57
out of 97 domains (59%) making use of this mechanism. Exploiting domain relaxation
puts a related-domain attacker in the same origin of the target Web application, hence
bypassing all Web security boundaries: this is a critical vulnerability, which deserves
attention. Domain relaxation is a bad security practice, which should better be avoided
in the modern Web. Finally, our analysis of postMessage shows that all sites suffering
from unsafe programming practices are already vulnerable against Web attackers, i.e., for
this specific attack vector related-domain attackers are no more powerful than traditional
Web attackers, at least based on the collected data. In other words, sites either do not
enforce any security check or restrict communication to selected individual origins: this
might be a consequence of the postMessage API granting access to origin information,
rather than site information directly.

4.6 Disclosure and Ethical Considerations
RDScan identified 1,520 vulnerable subdomains on 887 distinct domains, of which 260 are
subdomains pointing to an expired domain and 1,260 are those mapped to a discontinued
service (see §4.4.2). Besides disclosing the vulnerabilities found on service providers
(§4.5.1), we also attempted to notify all the websites affected by the issues we discovered.
Prior work [LDC+16, SPR+16, SPL+18] showed that the identification and selection
of correct security contact points is the main issue behind an overall unsatisfactory
remediation rate. To maximize the chances of a successful notification campaign, we
examined the following sources until a valid point of contact was found: (i) the list of
bug bounty and security disclosure programs maintained by Bugcrowd [Bug20]; (ii) the
security.txt file [FS20] in the root directory of the vulnerable domains and under
the /.well-known/ folder [Not19]; (iii) the Abusix [Abu20] database, queried with the
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ip addresses of the vulnerable domains to collect the associated email contacts; (iv) a
WHOIS lookups [Dai04]. We validated the obtained email addresses to avoid reporting
vulnerabilities to unrelated parties, e.g., by checking whether the domain part of the
email address matches any of the input domains. Unfortunately, using this procedure we
could not find any security contact for the majority of the considered domains (62%). To
inform them about their security vulnerabilities, we contacted our national CERT that
willingly agreed to disclose the issues to the affected parties on our behalf. Among the
few contacted websites with a bug bounty program, F-Secure awarded us with €250 for
the reported subdomain takeover vulnerability.

Aside from vulnerability disclosure programs, our notification campaign is fully automatic:
we sent an email to all the identified contacts containing a high-level description of the
vulnerabilities and a link to the security advisory on our Web application which contains
a detailed description of the problems found for a given domain, the required actions to
fix the reported vulnerabilities, and instructions to opt out from future scans.

4.6.1 Outcome of the Notification Campaign
We performed a second run of RDScan on January 2021, 6 months after the first analysis,
to picture the state of vulnerable instances left in the wild after our disclosure. We repeated
the test for the whole set of expired domains instances. Concerning discontinued services,
we focused on the 3 largest providers (WordPress, Shopify and Tumblr), representing
87% of the vulnerable subdomains found in the first round. Overall, we covered 1362
out of the original 1520 vulnerable subdomains (90%), which translates to 781 out of
887 sites (88%). To account for possible changes in services occurred in the meanwhile,
we verified the takeover preconditions included in RDScan. After the conclusion of the
analysis, we manually assessed a random sample of 10% of the results to ensure the
correctness of the procedure without finding any discrepancy.

We discovered that only 200 out of 1362 subdomains (15%) have been fixed during this
time frame, for a total of 125 sites over 781 (16%). We noticed that the sites which we
contacted directly exhibit a noticeably higher fix rate (31% subdomain, 22% sites) than
those alerted by our national CERT (10% subdomains, 14% sites). Unfortunately, we
also observed that a considerable amount of sites fixed only a subset of their vulnerable
subdomains, resulting still affected by threats posed by related-domain attackers.

The overall remediation rate of our notification campaign is in line with previous stud-
ies [SPR+16]. Nonetheless, we report that our procedure to identify appropriate contact
points turned out to be successful considering that 34% of the contacted parties accessed
the full vulnerability report on our Web application.

4.6.2 Ethical Considerations
We consciously designed our vulnerability scanning framework to avoid raising network
alerts or causing harm to the analyzed targets. Specifically, the subdomain takeover
assessment phase has been carried out mostly by DNS queries and simple HTTP requests.
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Active websites have never been affected by our tests since we restricted the analysis to
abandoned DNS records. We did not perform any large-scale portscan, but we opted,
instead, for using a public dataset consisting of a scan of the full IPv4 range on 148 ports.

We also avoided checking the availability of IP addresses on cloud providers by iterating
over the creation of multiple virtual machines, since this practice could interfere with the
normal operations of the cloud platforms. Similarly, the Web analysis module did not
execute attacks against the targets, but limited its operations to the passive collection
of data (cookies and security policies), simple HTTP requests, and client-side testing.
Overall, our approach proved to be lightweight and unobtrusive: we did not receive
requests from the analyzed websites to opt out from future scans, and no complaints
concerning our activity were sent to the abuse contact of the IPs used to perform the
analysis.

4.7 Case Studies

We report on manually vetted case studies of confirmed attacks. All vulnerable parties
have been promptly informed of the discovered issues, as discussed in §4.6.

4.7.1 Site Impersonation

We provide a concrete example of how the Shopify vulnerability described in §4.5.1 could
have been abused to impersonate a major website. As of September 2020, the e-shop of
fox.com was hosted on Shopify and made available at shop.fox.com using a custom do-
main mapping. Our scan verified the two preconditions to connect www.shop.fox.com
to a Shopify store under our control, i.e., the existence of a DNS A record pointing the
domain www.shop.fox.com to 23.227.38.65 (the IP address owned by Shopify to map
custom domains) and that www.shop.fox.com was not associated with any registered
store on Shopify.

We manually investigated the e-shop of fox.com and found that the redirection per-
formed by Shopify from www.shop.fox.com to shop.fox.com caused the www-
prefixed subdomain to be referenced in the store as a legitimate URL3. By taking over
www.shop.fox.com, criminals could have abused this implicit trust to mount severe
attacks against the legitimate store, such as phishing, reputation damage, and credential
stealing. We notified the vulnerability to Shopify on August 27, 2020 and received a
bounty for our disclosure. Around one month after the report, we noticed that FOX moved
its e-shop to a different domain (maskedsingershop.com). We have no evidence to
assert whether this change is connected to our disclosure.

3See https://web.archive.org/web/20200113052608/https://shop.fox.com/pages/
faq for a page mentioning www.shop.fox.com.
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4.8. Related Work

4.7.2 Session Hijacking
We describe an example of a subdomain takeover vulnerability that could have been
exploited to hijack authenticated user sessions at the FedEx website. RDScan discovered
a dangling DNS affecting the cn.grantcontest.fedex.com subdomain due to a
CNAME record pointing to the purchasable domain cngrantcontest.com.

After taking control of the subdomain, attackers could escalate their privileges by
exploiting the insecure configuration of session cookies on the main website. We manually
verified that authenticated sessions with www.fedex.com were built upon domain
cookies, which are sent by default to all subdomains (see §4.3.3). Thus, authenticated
users would disclose their session cookies to the attackers just by visiting the compromised
subdomain. After acquiring the victim’s cookies, an attacker could automatically break
into the victim’s session and access confidential data stored on the Web portal. We notified
FedEx about the takeover vulnerability in August 2020. The company acknowledged our
findings and, as of January 2021, we confirmed that the vulnerability was fixed.

4.7.3 Leakage of PII data
Now we show how a related-domain attacker can abuse misconfigurations in the CORS
policy to access personally identifiable information (PII) of a user on the F-Secure website.
Our vulnerability scanning pipeline detected a CNAME record uk.safeandsavvy.f-
secure.com pointing to the deleted WordPress blog at safeandsavvyuk.wordpress.com.
Notice that subdomains of deleted blogs still resolve to a WordPress IP thanks to a
CNAME wildcard for *.wordpress.com. To take over the F-Secure subdomain, an at-
tacker could simply create an account on wordpress.com and set uk.safeandsavvy.f-
secure.com as a custom domain.

We observed that WordPress allows paid accounts to install plugins which enable the
inclusion of arbitrary scripts as part of the blog’s theme. The ability to execute JavaScript
from a subdomain of f-secure.com would allow attackers to exploit a CORS vul-
nerability identified by our Web analyzer on api.my.f-secure.com. Such domain
was configured to relax the SOP on requests originating from any subdomain of f-
secure.com, even when cookies are attached. An attacker could trick a victim into
visiting a page on the compromised subdomain which performs a fetch request to,
e.g., the https://api.my.f-secure.com/get_userinfo endpoint to read private
information such as past billing details, tokens, etc. We notified F-Secure through their
bug bounty program in August 2020 and received €250 for the report.

4.8 Related Work
Related-Domain Attackers. The notion of related-domain attacker was first intro-
duced by Bortz, Barth, and Czeskis [BBC11]. Their work identified the security risks
posed by related domains against (session) cookies and proposed a possible solution called
origin cookies. A similar defense mechanism, i.e., the __Host- prefix, was eventually
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integrated into major Web browsers. Other than that, related-domain attackers received
only marginal attention from the security community, with a few notable exceptions.
Zheng et al. discussed the security implications of the lack of cookie integrity in many top
sites, considering both network and related-domain attackers [ZJL+15]. Calzavara et al.
presented black-box testing strategies for Web session integrity, including related-domain
attackers in their threat model [CRRB19]. Related-domain attackers have also been
considered in formal Web security models, again in the context of Web sessions [CFG+20].
Our work significantly advances the understanding of related-domain attackers by dis-
cussing new security threats, which go beyond Web sessions and have been quantified in
the wild through a large-scale measurement.

Attacking Subdomains. Subdomain takeover is an infamous attack, which has been
covered by a body of work. Liu et al. [LHW16] studied the threat posed by dangling
DNS records, e.g., records that contain aliases to expired domains or pointing to IP
addresses hosted on cloud services. The authors performed a large-scale analysis that
uncovered the existence of hundreds of dangling records among the subdomains of the
top 10k sites of Alexa and under the .edu and .gov zones. With respect to [LHW16],
we improved the subdomain enumeration part by a factor of 13 and increased the number
of analyzed services from 9 to 31. Also, the paper does not extensively analyze the Web
security implications of subdomain takeover. Borgolte et al. [BFH+18] improved on the
results of [LHW16] concerning deprovisioned cloud instances and proposed an extension
of the ACME protocol used by some CAs for domain validation (e.g., Let’s Encrypt).
Schwittman et al. [SWW19] studied these domain validation techniques and discovered
several vulnerabilities that could be exploited by attackers to obtain valid certificates for
domains they do not own.

Liu et al. [LLD+17] proposed a technique to detect shadowed domains used in malware
distribution campaigns, i.e., legitimate domains that are compromised to spawn an
arbitrary number of subdomains after taking control of the DNS configuration panel at
the registrar. Alowaisheq et al. [ATW+20] recently demonstrated a domain hijacking
attack that relies on the exploitation of stale NS records. Zhang et al. [ZZS+20] showed
how a domain with HTTPS misconfigurations can be abused by a network attacker to
force the communication over HTTP with its related domains. However, the authors
consider two domains as related if they share the same TLS certificate, which differs
from the definition considered in this work. A large body of works studied the problem
of domain impersonation (e.g., [AJPN15, KML+17, RGW+19]) where attackers trick
users to interact with their malicious websites by using domain names that mimic those
of honest sites. An example is provided by doppelganger domains [Wir11] which are
spelled similarly to legitimate subdomain names except for the dots that separate the
components of the domain name. We consider all these threats out of the scope of our
analysis, as they have different security implications than the vulnerabilities we discuss.

Web Measurements. Meiser et al. [MLS21] studied the cross-origin data exchange
practices of 5k websites to assess to which extent their security could be affected by
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the presence of an XSS vulnerability on one of their communication partners. In our
work, we study a similar problem, but we restrict our focus to related domains, and
we consider other mechanisms that are out of scope for [MLS21], e.g., CSP. Chen et
al. [CJD+18] performed a large-scale measurement of CORS misconfigurations. Among
the 480k domains that they analyzed, they discovered that 27.5% of them are affected by
some vulnerability and, in particular, 84k trust all their subdomains and can thus be
exploited by a related-domain attacker. Son and Shmatikov [SS13] analyzed the usage of
the Messaging API on the top 10k Alexa websites. The authors found that 1.5k hosts
do not perform any origin checking on the receiving message, while 261 implement an
incorrect check: (almost) all these checks can be bypassed from a related-domain position,
although half of them can also be bypassed from domains with a specially-crafted name.
More recently, Steffens and Stock [SS20] proposed an automated framework for the
analysis of postMessage handlers and used it to perform a comprehensive analysis of
the first top 100k websites of the Tranco list. The authors discovered 111 vulnerable
handlers, out of which 80 do not perform any origin check. Regarding the remaining
handlers, the authors identified only 8 incorrect origin validations, showing an opposite
trend with respect to [SS13]. Finally, insecure configurations of CSP have been analyzed
in a number of research papers [WLR14, WSLJ16, CRB18, RBC+20]. However, none of
these works considered the problem of related-domain attacks.

4.9 Conclusion
In this chapter, we presented the first analysis tailored at quantifying the threats posed
by related-domain attackers to the security of Web applications. We first introduced a
novel framework that captures the capabilities acquired by such attackers, according to
the position in which they operate, and we discuss which Web attacks can be launched
from that privileged position, highlighting the advantages with respect to traditional Web
attackers. We also studied the security implications of 31 third-party service providers
and dynamic DNS to identify the capabilities that a related-domain attacker acquires
when taking over a domain hosted by them, and presented a novel subdomain hijacking
technique that resulted in a bug bounty of $1,000. Then, we described the design of our
automated toolchain used to assess the pervasiveness of these threats in the wild. The
toolchain consists of an analysis module for subdomain takeover that identifies which
subdomains can be hijacked by an attacker. Next, the Web security module quantifies
how many related domains can be attacked from the domains discovered in the previous
step. We performed a large-scale analysis on the 50k most popular domains, and we
identified vulnerabilities in 887 of them, including major websites like cnn.com and
cisco.com. Then, we correlated for the first time the impact of these vulnerabilities
on the security of Web applications, showing that related-domain attackers have an
additional gain compared to Web attackers that goes beyond the traditional cookie
issues.
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CHAPTER 5
Cookie Crumbles: Breaking and

Fixing Web Session Integrity

Abstract
Cookies have a long history of vulnerabilities targeting their confidentiality and integrity.
To address these issues, new mechanisms have been proposed and implemented in browsers
and server-side applications. Notably, improvements to the Secure attribute and cookie
prefixes aim to strengthen cookie integrity against network and same-site attackers,
whereas SameSite cookies have been touted as the solution to CSRF. On the server,
token-based protections are considered an effective defense for CSRF in the synchronizer
token pattern variant. In this paper, we question the effectiveness of these protections and
study the real-world security implications of cookie integrity issues, showing how security
mechanisms previously considered robust can be bypassed, exposing Web applications
to session integrity attacks such as session fixation and cross-origin request forgery
(CORF). These flaws are not only implementation-specific bugs but are also caused
by compositionality issues of security mechanisms or vulnerabilities in the standard.
Our research contributed to 12 CVEs, 27 vulnerability disclosures, and updates to the
cookie standard. It comprises (i) a thorough cross-browser evaluation of cookie integrity
issues, that results in new attacks originating from implementation or specification
inconsistencies, and (ii) a security analysis of the top 13 Web frameworks, exposing
session integrity vulnerabilities in 9 of them. We discuss our responsible disclosure and
propose practical mitigations.

This chapter presents the results of a collaboration with Marco Squarcina, Pedro Adão
and Matteo Maffei and has been published at the 32nd USENIX Security Symposium
in 2023 under the title “Cookie Crumbles: Breaking and Fixing Web Session Integrity”
[SAVM23]. Marco Squarcina is responsible for the cross-browser evaluation of cookie
integrity attacks, the discovery of new cookie integrity vulnerabilities and the definition
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of the CORF attack. Pedro Adão is responsible for the security analysis of the top Web
frameworks and the responsible disclosure of the discovered issues. I am responsible for
the formalization of the Web frameworks in applied pi calculus and the verification of the
correctness of our proposed mitigation for all frameworks. Matteo Maffei was the general
advisor and contributed with continuous feedback.

5.1 Introduction
HTTP cookies are the oldest and most widely used mechanism for state sharing between
Web clients and servers. They are a cornerstone of Web sessions and play a crucial
role in the authentication and authorization of users. Despite their prominence in
Web applications, cookies have a long history of vulnerabilities and several known
pitfalls [BJM08a, BBC11, Lun13, SMWL10a, Zal11].

Entire classes of attacks revolve around compromising either the confidentiality or the
integrity of cookies [CFST17]. For instance, session hijacking attacks aim to leak the value
of a session cookie (e.g., via cross-site scripting) and use it to obtain unauthorized access
to a website [OWAb]. Session fixation attacks involve compromising cookie integrity to
force an attacker-controlled cookie in the victim’s browser, and then impersonate the
victim on the target website [Kol02]. Cross-site request forgery (CSRF) attacks, instead,
are a typical session integrity violation problem where the attacker issues cross-site
requests from the victim’s browser to execute unwanted actions on a website in which
the victim is authenticated [BJM08a].

In response to these attacks, new mechanisms have been proposed on both the client
and the server side. On the client side, major browsers now support the updated cookie
standard RFC6265bis [CEWW22] which includes extended security features compared
to the original RFC from 2011 [Bar11a]. A notable example is the SameSite attribute,
which has been touted as a robust solution against CSRF attacks [Hel17, Hel19]. Other
changes focused on strengthening cookie integrity against same-site and network attackers,
with improvements to the Secure flag and the introduction of __Host- and __Secure-
cookie name prefixes [Netb]. On the server side, traditional protections against CSRF
attacks include the usage of a secret token shared between browsers and servers [BJM08a].
This approach has been widely adopted by popular Web frameworks and considered an
effective defense in the synchronizer token pattern variant [OWAa, LKP21].

In this chapter, we question the effectiveness of existing protections and study the
real-world security implications of cookie integrity issues. In particular, we focus on
network and same-site attackers [BBC11], a class of attackers increasingly becoming
a significant threat to Web application security [STV+21]. We show how security
mechanisms considered to be robust against these threat models can be bypassed, exposing
Web applications to session integrity attacks such as session fixation and cross-origin
request forgery (CORF). We suggest that these vulnerabilities are due to compositionality
challenges between Web standards, browsers, and servers, and we propose a set of
countermeasures to reconcile these issues. Overall, our research contributed to 12 CVEs,
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27 vulnerability disclosures, and updates to the RFC of the cookie standard [CEWW22].
We identified novel attack vectors that bypass modern cookie protections and precisely
characterize a class of attacks called CORF token fixation that highlights weaknesses
in current CSRF protections. We performed a systematic security analysis of the
top 13 Web frameworks, exposing session integrity vulnerabilities in 9 of them. We
showed that these vulnerabilities are not only implementation-specific bugs but are caused
by compositionality issues of security mechanisms or flaws in the standard. We also
discussed the response of developers to our responsible disclosure and proposed mitigation
strategies to improve the security of the Web ecosystem.

Contributions. Our contributions are summarized as follows:

• We extend the work of Squarcina et al.[STV+21] to propose a taxonomy of threat
models that describes network and same-site attackers in terms of their capabilities
and goals (Section 5.3).

• We perform a thorough cross-browser evaluation of known cookie integrity attacks
and introduce new attacks classified along 4 different categories: serialization
collisions due to nameless cookies, server-side parsing vulnerabilities, cookie jar
desynchronization issues, and broken composition of (compliant) parsers. We present
our methodology and discuss the result of a measurement study on nameless and
prefixed cookies (Section 5.4).

• In Section 5.5, we precisely define the class of CORF token fixation attacks which
captures known and novel bypasses of real-world CSRF protections, including
the synchronizer token pattern which is considered robust against same-site and
network attackers.

• Section 5.6 presents a systematic security analysis of the top 13 Web frameworks,
exposing CORF and session fixation vulnerabilities in 9 of them. We discuss the
response of developers to our responsible disclosure and propose a set of practical
countermeasures to prevent our attacks.

• We formally verify the correctness of our proposed mitigation to the synchronizer
token pattern using the ProVerif protocol verifier [Bla01] (Section 5.7).

We publish all artifacts developed during this research, including the browser test suite
(Section 5.4.3), the dataset and processing code of our measurement (Section 5.4.4), the
ProVerif models and scripts (Section 5.7), as well as the reproducible proof-of-concept
attacks against Web frameworks (Section 5.6) [BVV+23].

5.2 Background
In the following, we provide an overview of cookie attributes, including existing mecha-
nisms for cookie integrity, and CSRF protections. We first revise standard notions such
as origins and sites being instrumental to the rest of the chapter.
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5.2.1 Origins and Sites
The same-origin policy (SOP) [Bar11b] defines the traditional Web security boundary
between websites. The SOP is based on the notion of origin, defined as a tuple of
scheme, host, and port. For instance, the origin of https://example.com:443 is <https,
example.com, 443>. The SOP prevents an origin from reading or modifying the
contents of a different origin. However, some components of the Web platform have a
different scope. Cookies, for instance, are scoped to the registrable domain of the website
that set them. A registrable domain is a domain name with one label on the left side of
an effective top-level domain, as defined by the Public Suffix List (PSL) [Moza]. Hosts
sharing the same registrable domain are considered to be same-site, e.g., example.com,
auth.example.com, and api.staging.example.com all belong to the same site example.com.
Same-site hosts are also called sibling domains.

In recent years, the definition of same-site evolved to include the URL scheme [webc].
Hence, sibling domains with different schemes are considered same-site, but not schemeful
same-site. To avoid ambiguities, we maintain both terminologies and refer to same-site
only when the scheme is irrelevant.

5.2.2 Cookies
Cookies are the main state management mechanism of the Web, allowing servers to
maintain a stateful session over the stateless HTTP protocol [CEWW22]. Servers can set a
cookie in the browser through the Set-Cookie header. This cookie is then automatically
attached by the browser to all following HTTP requests to the server via the Cookie

header. Additionally, JavaScript code running in Web pages can access and set the
value of cookies using the traditional Document.cookie property or the new Cookie Store
API [Neta].

Attributes. Cookies can be configured with attributes, or flags, which specify additional
properties or constraints. The Path attribute allows to limit the cookie to a set of URL
paths, i.e., the browser will include the cookie in HTTP requests if the path of the request
URL matches or is a subdirectory of the Path attribute. The Domain attribute broadens
the scope of a cookie. The value of this attribute can be assigned to any of the parent
domains of the origin that sets the cookie, up to the registrable domain. For instance, a
server at foo.example.com can set a cookie with Domain=example.com to specify that
the cookie should be attached to all subdomains of example.com. If the attribute is
omitted, the browser will send the cookie only to the host that set it. HttpOnly prevents
the cookie from being accessed by JavaScript, e.g., via the Document.cookie property.
The Secure attribute limits the scope of the cookie to secure connections. Browsers
must reject the insertion of a cookie from a non-secure origin if the cookie jar already
contains a secure cookie with the same name and scope.

Same-Site Cookies. The SameSite attribute has been introduced in 2016 as a
defense in depth protection against CSRF attacks by confining cookies to same-site
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requests [WG16]. In particular, the standard defines three same-site policies: Strict,
cookies are attached to same-site requests only, i.e., no cookie is attached to cross-
site requests; Lax, cookies are attached to same-site requests and cross-site top-level
navigations, e.g., clicking on a link, using the GET request method; None, cookies are
attached to all requests, cross-site included. According to the standard, SameSite cookies
follow the schemeful same-site definition to determine whether a request is cross-site.
This is in contrast to Domain cookies which do not consider the URL scheme, unless used
in combination with the Secure attribute. SameSite cookies also represent one of the most
effective protection against XS-Leaks, an emerging class of attacks that exploits gaps in
the same-origin policy (SOP) to infer information such as PII and the authentication
status of a user from a cross-site position [SKC20, SRBS19, GPJV20, VGFSR+22]. The
SameSite attribute restricts the ability to initiate authenticated requests to same-site
attackers, thus preventing traditional Web attackers from leaking the user’s state on a
website.

Cookie Prefixes. Cookie prefixes, originally introduced in 2015 [Wes], enable additional
security constraints on cookies based on their name. The specification defines two prefixes:
when a cookie name begins with __Secure-, the cookie must be set with the Secure

attribute and from a page served over HTTPS; when the name of a cookie starts with
__Host-, in addition to all restrictions of the __Secure- attribute, the Path attribute
must be explicitly set to /, and it must not contain the Domain attribute, locking the
scope of the cookie to the host that created it. These additional constraints guarantee the
integrity of __Host- cookies against same-site attackers, as such cookies are unaffected
by shadowing attacks performed from a same-site position (see Section 5.4).

5.2.3 CSRF Protections
CSRF attacks are a well-known class of attacks where the adversary executes unauthorized
state-changing actions under the victim’s authenticated session. A CSRF attack is always
preceded by a setup phase where the attacker prepares a malicious website that silently
performs a cross-site request to the target website to execute the unauthorized action,
e.g., via an automatic form submission or the fetch API.

Over the years, many types of CSRF defenses have been proposed in the literature, in-
cluding (i) origin/referrer checks, (ii) token-based mechanisms to ensure request unguess-
ability, (iii) the SameSite cookie attribute, and (iv) explicit user interaction such as
CAPTCHAs[BJM08a, LKP21]. All these protections have some limitations and draw-
backs. For instance, SameSite cookies are not effective against attacks performed from a
same-site position. To avoid ambiguity, we use the term Cross-Origin Request Forgery
(CORF) in the rest of the chapter, as it includes the attack scenario of a network or
same-site attacker. We focus our analysis on token-based protection techniques as they
are the most common defense adopted by Web frameworks [LKP21], and – as shown
in Section 5.7 – can offer robust protection if correctly implemented. The main idea is
to send an unguessable parameter t, commonly named CSRF token, with every state-
changing request, typically as a hidden input field in a form. By ensuring that t remains
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secret to the attacker, cross-origin forged requests will be discarded by the target website,
as the token t is missing. Below, we discuss the two most popular token-based protection
patterns [OWAa, LKP21].

Synchronizer Token Pattern (STP). In STP, the server generates CSRF tokens and
inserts them in every webpage that may lead to a state-changing operation, e.g., as a
hidden field in a form for transferring funds. This token is then bound to the user’s
session and the server validates newly received tokens by verifying the correctness of this
binding. Multiple implementations (see Section 5.6) generate a fixed CSRF secret s per
session, and use it to derive CSRF tokens t(s). Other implementations generate a fresh
CSRF secret s per request, and derive CSRF tokens t(s) similarly to the previous case.
In this pattern, secrets are always linked to the user session, irrespective of whether it is
stateful or stateless. In the former case, secrets are stored in the server session, whereas
in the latter, client-side storage mechanisms, e.g., cookies, are used to synchronize the
secret between the server and the browser.

Double Submit Pattern (DSP). In this pattern, the CSRF token is a random value
stored in a cookie other than the session cookie. The server typically renders the CSRF
token in the HTML page as a hidden input field, and the browser sends it back to
the server as part of the authenticated request. The server then verifies the validity of
the request by checking the equivalence between the cookie value and the CSRF token.
This makes DSP more suitable for stateless sessions, as it does not require the server
to store the CSRF secrets or tokens in the session. Notice that CSRF cookies can be
encrypted or signed with a fixed key or secret stored on the server. In this case, the
server-side validation should account for an additional decryption or validation step
before performing the comparison. Additionally, servers could store a CSRF secret in a
cookie and use it to derive the CSRF token: whenever the CSRF secret or token is not
cryptographically bound to the current session identifier, we still refer to this pattern as
DSP.

5.3 Threat Model
In this work, we aim to investigate the security risks that arise from the interaction
between a website and a victim’s browser when a network or a same-site attacker can forge
cookies scoped to the target website. As shown in recent works, these two threat models
are still relevant today. According to Zheng et al. [ZJL+15], only 0.13% of the top 1M
websites in 2015 were protected from network attackers thanks to full HSTS deployment.
The situation improved in 2022, although 90% of websites remain vulnerable [bHA22].
Large-scale studies on subdomain takeover vulnerabilities demonstrated the impact of
same-site attackers. In 2016, Liu et al. [LHW16] identified 227 of the Alexa top-10K
sites affected by vulnerable subdomains. Borgolte et al. [BFH+18] studied deprovisioned
cloud instances, finding 700K vulnerable domains. Squarcina et al.[STV+21] estimated
13K potentially vulnerable domains due to deprovisioned cloud instances and discovered
887 sites with other subdomain takeover vulnerabilities among the top 50K sites in the
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Capability Description

headers Control arbitrary HTTP response headers at wa.
js Execute arbitrary JavaScript on a page at wa.
https The scheme of wa is https.

Table 5.1: Capabilities required to set cookies in the victim’s browser from a sibling domain of
the target (wa).

Tranco list. They also discussed the dangers posed by corporate networks, roaming
services, and dynamic DNS providers, which put users in a same-site position without
carrying out attacks.

We consider a range of threat models corresponding to different levels of control and
visibility that an attacker may have over the network and sibling domains of the website.
To exclude trivially vulnerable scenarios, we assume that the victim accesses the target
website over a correctly-configured secure channel. We do not discuss specific attack
vectors that can be exploited to acquire a certain position since they have been extensively
covered in the past [Det14, LHW16, BFH+18, STV+21]. We focus, instead, on the
capabilities of standard threat models that are relevant to violations of cookie integrity.
To do so, we build on the framework introduced by Squarcina et al. [STV+21]. Table 5.1
outlines the capabilities that are relevant to set cookies, assuming a target website w, the
set of its sibling domains Sw, a website controlled by an attacker wa ∈ Sw, and the victim’s
browser B. Different combinations of these capabilities enable precise characterization of
the threat models considered in this work, as shown in Figure 5.1.

SS-HOST-S maps to a same-site attacker, also called related-domain attacker, with full
control over a sibling domain of the target with a valid TLS certificate. This attacker can
render arbitrary content over a secure channel, having the full set of capabilities https ,
js , and headers .
SS-HOST-I is similar to SS-HOST-S, excluding the ability to host pages over a secure
channel. This threat model captures the case where an attacker controls a sibling domain
of the target but cannot obtain a valid TLS certificate, e.g., due to the presence of a CAA
DNS record defining a strict allow-list of permitted CAs [STV+21]. The capabilities are
js and headers .
SS-XSS-S is a same-site attacker obtaining indirect control over a sibling domain via a
script injection vulnerability (XSS) on a page served via HTTPS. Since the attacker is
not in control of the response headers returned by the page, the capabilities are https

and js .
SS-XSS-I is an attacker with an XSS vulnerability on a sibling domain served over an
insecure connection. The only available capability is js .
NET maps to a standard network attacker who can fully control cleartext traffic
generated by the victim’s browser. This attacker is able to intercept, modify, and inject
network traffic of any sibling domain of the target domain, including the target domain
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SS-HOST-S
{https , js , headers}

SS-XSS-S
{https , js}

NET, SS-HOST-I
{headers , js}

SS-XSS-I
{js}

Figure 5.1: Taxonomy of threat models for cookie integrity violations.

itself. These capabilities translate into the headers and js , similarly to the SS-HOST-I
attacker. Notice that network attackers cannot manipulate cleartext network traffic
if the domain enforces a strict HSTS policy that includes the includeSubDomains

directive [ZJL+15].

We also formulate a precise definition of cookie integrity violations, taking into account
the cookie’s intended recipient. We assume that the attacker aims to compromise a
cookie c = ⟨n, v⟩ with name n and value v, stored in the victim’s browser B for the
origin o. In a server-side integrity violation, the attacker implants a cookie c′ = ⟨n′, v′⟩
in the victim’s browser B with the goal of forcing the browser B to send c′ to o. The
server at o parses the Cookie header obtaining a cookie with name n but tampered
value v′ ≠ v. We refer to a client-side integrity violation when the attacker causes the
JavaScript Document.cookie property on o to return a key=value pair where the key
corresponds to n and the value is chosen by the attacker. Additionally, we consider cookie
eviction attacks as integrity violations, i.e., attacks that evict the cookie c from requests
to o or remove the cookie from the key=value pairs returned by the Document.cookie
API on o.

5.4 Violationg Cookie Integrity
In this section, we show how attacker capabilities, and therefore the standard threat
models discussed in Section 5.3, map to concrete attacks. First, we systematize known
cookie integrity pitfalls and evaluate them on the top 3 Web browsers. Then, we introduce
a range of novel attacks along 4 attack classes enabled by inconsistencies between servers,
browsers, and the cookie specification. We show that these attacks are possible in practice
and can be used to break cookie integrity in unprecedented ways. Finally, we discuss
the methodology adopted to discover these issues and report on a measurement study
performed using the HTTP Archive dataset [Arc].

5.4.1 Weak Integrity
Due to their legacy design, cookies have a long history of integrity issues, as documented
in the cookie specification [CEWW22]. A comparison of the top 3 browsers on the
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RFC Browsers

Attack �

Tossing (creation date, latest first) � ✓ ✓ �

Tossing (insecure over secure cookie) � ✓ ✓ �

Eviction (cookie jar overflow) � � � ✓

Eviction (__Host- via secure cookies) � � � ✓

Serialization collision (=a=b→a=b) �≥04 � � ✓

Serialization collision (__Host-) �≥11 �<104 �<105 ✓

Cookie jar desynchronization � ✓ � ✓

Server-side parsing issues � − − −

Parser-chaining � − − −

Table 5.2: Evaluation of cookie integrity attacks against the cookie standard RFC6265bis-11
and browsers: Chrome (v109), Firefox (v109), and Safari (v16.0). � compliant, � violation, ✓
unaffected, � vulnerable, − does not apply.

integrity pitfalls discussed below is included in Table 5.2 together with the new attacks
introduced in this section.

Cookie Tossing

Cookies scoped for a target origin o are sorted by standard-compliant browsers by the
most-specific matching Path attribute, meaning that cookies set with Path=/foo are
sent before cookies with Path=/. When Path attributes are equal, cookies are sorted by
creation time, i.e., cookies set first are sent before cookies that are set later. Although
the standard states that servers should not rely on the order of cookies sent by browsers,
most implementations only consider the first occurrence of a cookie name in the Cookie

header field [ZJL+15]. Since attributes are not sent along with cookies, duplicated
cookies with the same name but different Path attributes are indistinguishable to the
server [CEWW22, §5.7.3].

Attackers can exploit this behavior to violate cookie integrity. For example, consider
a Web application at https://site.tld/login/index.php that sets a cookie via the re-
sponse header Set-Cookie: sid=good; Path=/. Assume also an attacker in control
of http://atk.site.tld/. The attacker can set a domain cookie for site.tld with name sid

and value evil. By setting a more specific path in the new cookie, the attacker can
cause the victim’s browser to send the attacker’s controlled cookie first, as in Figure 5.2.
This specific attack is called cookie tossing, or shadowing.

As mentioned in Section 5.2, __Host- prefixed cookies are considered to be unaffected
by shadowing attacks from a same-site position. Furthermore, the standard specifies that
secure cookies have strong integrity against non-secure origins. To summarize, cookie
tossing requires the https capability only for cookies with the Secure flag. Otherwise,
either the headers or the js capability is needed.
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Browser
Victim

Application
site.tld

Attacker
atk.site.tld

GET /

Set-Cookie: sid=good; Path=/

GET /

Set-Cookie: sid=evil; Path=/login; Domain=site.tld

POST /login/index.php
Cookie: sid=evil; sid=good

!
Figure 5.2: Cookie tossing attack.

Eviction Techniques

Cookies are evicted from the browser’s storage when the storage limit is reached. The
eviction policy and precise limits are not specified by the standard, and are left to browser
vendors to decide. In practice, recent versions of Firefox and Chrome limit the size of
the cookie jar to 180 cookies per schemeful site, while Safari does not enforce any limit.
In addition, browsers evict cookies in a least-recently-used (LRU) fashion, i.e., the oldest
cookies are evicted first. This is problematic because it allows attackers to control the
eviction of cookies by overflowing the cookie jar, and then use cookie tossing to replace
the evicted cookies with their own. It is worth mentioning that the HttpOnly flag does
not provide integrity against an attacker with the js capability. Indeed, while HttpOnly
cookies cannot be read via JavaScript, they can be evicted by any of the threat models
considered in this work. On the other hand, the Secure flag does provide integrity
against attackers without the https capability, since modern browsers partition cookies
by scheme.

5.4.2 Novel Attacks
The cookie standard evolved in recent years to provide stronger integrity guarantees.
In particular, the __Host- prefix was proposed in 2015 [Wes] to prevent cookie tossing
attacks. In the following, we present a range of novel cookie integrity attacks that
exploit issues in the cookie standard, server and client implementation problems, and the
combination of both.

Nameless Cookies and Serialization Collisions

In 2020, a change to the cookie standard1 added support to nameless cookies, i.e., cookies
set with empty name and non-empty value. This change was motivated by some servers

1RFC6265bis, Accept nameless cookies: https://github.com/httpwg/http-extensions/
commit/0178223
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Browser
Victim

Application
site.tld

Attacker
atk.site.tld

GET /

Set-Cookie: __Host-sid=good; Secure; Path=/

GET /

Set-Cookie: =__Host-sid=evil; Path=/login; Domain=site.tld

POST /login/index.php
Cookie: __Host-sid=evil; __Host-sid=good

!
Figure 5.3: __Host- cookie bypass via nameless cookies.

setting cookies with empty names, and the cookie standard did not specify how to parse
them. As a result, the standard now mandates browsers to parse the Set-Cookie:

token header as a nameless cookie with value token. This cookie must be serialized as
Cookie: token, without any = character.

We found that this design introduces a novel attack vector that can bypass even the
__Host- prefix. Consider, for instance, a page at site.tld that sets a named cookie
sid=good. A same-site attacker can set a nameless cookie scoped to site.tld with
value sid=evil. This can be done via either the Document.cookie property or the
HTTP response header Set-Cookie: =sid=evil; Domain=site.tld, which is a
valid header. According to the standard, the attacker-controlled cookie is serialized
as Cookie: sid=evil, resulting indistinguishable to the server, or to frontends using
the Document.cookie getter, from a cookie named sid.

This attack is particularly dangerous because it can violate the integrity guarantees
enforced by __Host- cookies. Indeed, any attacker in our taxonomy can shadow a cookie
__Host-<name>=<value> by forcing in the victim’s browser a nameless cookie via Set-

Cookie: =__Host-<name>=<value>; Domain=<domain>. An example of the attack
flow is in Figure 5.3.

The same attack vector can shadow arbitrary secure cookies from an insecure origin. As
explained in Section 5.2, browsers must reject a cookie set from a non-secure origin if the
cookie jar contains a secure cookie matching the name of the new cookie scoped to the
same site. Since secure cookies are partitioned differently from insecure ones, the https

capability is typically required to perform an eviction or a cookie tossing attack against
a secure cookie. This attack, however, lowers the preconditions for the integrity violation
of secure cookies, requiring only the headers or the js capability.

Disclosure. The attacks above are representative of a larger class of serialization issues
that we reported to the IETF HTTP Working Group on the cookie standard [HTT22] and
jointly disclosed the __Host- cookie bypass to the Chrome [Chr22a] and Firefox [Moz22c]
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security teams who issued CVE-2022-2860 and CVE-2022-40958, respectively.2 Chrome
fixed the issue in version 104 and Firefox in version 105. Safari is not affected by this
vulnerability because it deviates from the standard since it serializes nameless cookies
by prefixing the value with =. Our contributions and extensive discussion with browser
maintainers [Chr22b] led to updates to the cookie standard [CEWW22, §5.6, point 22]
that now mandates browsers to reject nameless cookies with a value starting with a
case-insensitive match for __Host- or __Secure-.

Server-Side Parsing Issues

The cookie standard [CEWW22, §5.5] describes a set of parsing rules for the Set-Cookie
header that user agents must follow. Unfortunately, the standard does not clearly specify
how servers should parse cookies received via the Cookie header. This discrepancy causes
server-side cookie integrity violations whenever servers parse two distinct cookies as the
same one.

Although the problem is not new per se [ZJL+15], we discovered a new vulnerability
that bypasses __Host- cookies in PHP [PHP22], the server-side language used by 78%
of websites [W3T23]. Due to the legacy design derived from register_globals [PHP],
PHP replaces spaces, dots, and open square brackets with the underscore symbol _
in the keys of $_POST and $_GET superglobal arrays. The same string transforma-
tion applies to the keys of the $_COOKIE superglobal array. As a result, an attacker
can fixate a cookie in the victim’s browser via Set-Cookie: ..Host-sid=evil; Do-

main=site.tld, that is parsed by PHP as Cookie: __Host-sid=evil. This vul-
nerability extends integrity concerns to all cookies that contain the underscore sym-
bol, e.g., non-secure origins can use this bug to shadow secure cookies. Similarly,
the HTTP server component of the ReactPHP library incorrectly parses the Cookie

header by url-decoding cookie names [Dat22]. This vulnerability can be exploited
to bypass __Host- cookies using percentage-encoded names, e.g., a cookie set via
Set-Cookie: %5F%5FHost-sid=evil; Domain=site.tld is parsed by ReactPHP as
Cookie: __Host-sid=evil.

We also discovered a vulnerability in the Werkzeug library, the HTTP middleware used
by the popular Flask framework [Dat23]. The Cookie header is incorrectly parsed by
stripping all leading = symbols. To exemplify, a nameless cookie set via Set-Cookie:

==__Host-sid=evil; Domain=site.tld is parsed by Werkzeug as a name-value pair
corresponding to (__Host-sid, evil).

All threat models discussed in Section 5.3 can mount these attacks that exploit server-side
parsing issues, meaning that only the headers or js capabilities are required.

Disclosure. The PHP vulnerability was assigned CVE-2022-31629 and fixed in PHP
7.4.31, 8.0.24, and 8.1.11. ReactPHP issued CVE-2022-36032 after our report and fixed

2The __Host- bypass vulnerability was reported 3 weeks earlier as an independent effort by Axel
Chong who is credited on both CVEs. Our issues were merged into the previous vulnerability reports to
jointly discuss the mitigation and additional edge cases.
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Listing 5.1: Cookie jar overflow desynchronization in Firefox.
// Assume an empty cook ie j a r then s e t 181 cook i e s
for ( l e t i =1; i <=181; i++)

document . cook i e = ’ a ’+i+’=_’ ;
// Count the number o f cook i e s
document . cook i e . s p l i t ( " ; ␣ " ) . l ength
> 181 // Higher than the l i m i t o f 180 cook i e s per s i t e

the vulnerability in version 1.7.0. The Werkzeug vulnerability obtained CVE-2023-23934
and has been patched in version 2.2.3.

Cookie Jar Desynchronization

We identified two vulnerabilities in Firefox that cause a desynchronization between
the cookies listed by Document.cookie and the actual content of the cookie jar. We
experimentally discovered that a cookie jar overflow operated via JavaScript sets more
cookies than the maximum number of cookies allowed on a single site. Surprisingly, these
cookies can only be retrieved via the Document.cookie API and are not effectively set in
the cookie jar, i.e., they are not attached to subsequent HTTP requests [Moz22a].

The issue can be easily reproduced using the JavaScript code snippet in Listing 5.1. This
example stores 181 cookies (a1 to a181) in Document.cookie, however, manual inspection
of the cookie jar reveals that only 151 cookies are set (a31 to a181). Attempts to clear the
cookie jar via the Firefox storage inspector, setting an expiration date in the past via the
Set-Cookie header, or using the Clear-Site-Data header [W3C17], fail to remove the first
30 cookies (a1 to a31). This set of cookies survives page reloads and schemeful-same-site
navigations. It is also preserved in new schemeful-same-site windows created via the
Window.open method. The only way to remove them is to set a past expiration date via
JavaScript, or by closing the browser tab.

The described issue can be exploited to violate client-side cookie integrity and requires the
js capability, with the optional https capability if the target website is on a secure origin.
Notice also that this inconsistent state could introduce vulnerabilities in applications
trusting cookies read from Document.cookie, providing a novel avenue for attacks. For
instance, frontends often set custom HTTP headers using the values of specific cookies
read via the Document.cookie property. Notable examples are ASP.NET [Mic22] and
Angular [Ang22].

The second desynchronization issue happens when there is a secure cookie set by a
domain, and a page on a same-site non-secure origin tries to set another cookie with the
same name using Document.cookie [Moz22b]. We discovered that the insecure cookie is
not stored as required by the standard, but it is listed by the Document.cookie property.
This inconsistency can create confusion on frontends that rely on Document.cookie to
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read cookies. However, the security impact of this second desynchronization issue is
limited since it only affects insecure origins that are trivially vulnerable to cookie integrity
attacks.

Disclosure. We reported both issues to the Firefox security team in June 2022. Ac-
cording to Firefox developers, the root cause of these problems is the composition of
cookies’ access control policies with Firefox’s implementation of Site Isolation, project
Fission [Moz22d]. The second issue has been fixed in Firefox 112 and obtained CVE-
2023-29547, whereas the first one is still under active investigation as of May 2023.

Parser Chaining Vulnerabilities

The serialization collision previously discussed introduces a new attack vector against
chains of cookie parsers. We investigated the presence of this configuration in real-world
applications by studying the AWS API Gateway, a service that acts as a frontend for
other AWS services. The AWS Lambda proxy integration for HTTP APIs enables
developers to bridge an API route with a Lambda function, passing request payloads
to the Lambda function using a JSON message exchange format. According to the
documentation [Ser22]: “Format 2.0 includes a new cookies field. All cookie headers in
the request are combined with commas and added to the cookies field. In the response
to the client, each cookie becomes a set-cookie header.”

From our tests, this proxy introduces an additional parser that serializes the cookies
in the request payload. As a result, a cookie attached to a request, such as Cookie:

=__Host-sid=evil corresponding to a nameless cookie with value =__Host-sid=evil,
is serialized by the AWS Lambda proxy as {"cookies": ["__Host-sid=evil"],

...}, resulting indistinguishable from a legitimate cookie named __Host-sid. Notice
that this specific attack is not prevented by recent Chrome and Firefox mitigations
against __Host- cookie collisions, since the cookie value starts with the = symbol.

Disclosure. We reported the issue to the AWS security team in October 2022 that
deployed a fix in November 2022. The mitigation consists of discarding key-value cookie
entries starting with the = symbol followed by a case-insensitive match for __Host- or
__Secure-. This approach, combined with modern browsers that adhere to the latest
draft of the cookie standard [CEWW22], effectively protects against the threat described
in this section.

5.4.3 Discovering Cookie Integrity Issues
The methodology used to discover these attacks consisted of three main stages.

Browser Testing. We performed a comprehensive evaluation of known cookie integrity
attacks across the top-3 browsers (Chrome, Firefox, and Safari). Inspired by the WPT
project [WPTb], we developed a suite of test cases that simulated various types of attacks
and evaluated the behavior of the browsers. The test cases were designed to cover all
possible combinations of secure and insecure origins between the victim and a same-site
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attacker. We also tested different ways to set cookies, i.e., via the Set-Cookie header or
using the JavaScript Document.cookie property. The test cases were run on the latest
browser versions, and the results were analyzed to identify any inconsistencies between
the browsers. Additionally, we used BrowserStack3 to test all releases from January
2021 to January 2023 of the three major browsers against our test suite and identify
any changes in the behavior over time. This phase was crucial to uncover little-known
discrepancies between the browsers. For instance, Safari sorts cookies by placing the
most recent one first, while Firefox and Chrome serialize cookies starting from the oldest
one, as mandated by the specification. We also verified that Safari does not prevent
cookie tossing of secure cookies from non-secure cookies, which is a violation of the
standard [CEWW22]. Additionally, we experimentally verified that Safari does not
enforce limits on the maximum number of cookies stored for a single site. Finally, the
test suite enabled the automatic discovery of the cookie jar desynchronization issue in
Firefox, which was previously unknown to the security community.

Reviewing the Cookie Standard. Whenever a discrepancy was found between the
browsers, we manually reviewed the cookie standard [CEWW22] to determine what was
the expected behavior. During this phase, we learned that the standard introduced
support to nameless cookies in 2020 and we discovered the serialization collision issues.
We engaged with the IETF HTTP Working Group and browser vendors to address the
problems as we found them.

Testing Server-Side Parsers. As a third stage of the analysis, we investigated the
presence of inconsistencies in the cookie parsers of the server-side languages and core
HTTP handling libraries used by the frameworks discussed in Section 5.6. For each
target considered in our analysis, we developed a small reflector program that parses the
Cookie header and returns pairs of cookie names and values. Then, we wrote a simple
fuzzer to generate variations of the Cookie request header and automatically assessed
how the header was parsed by our programs. We acknowledge that this approach does
not constitute a systematic evaluation of server-side parsing inconsistencies. However,
our initial analysis provided strong evidence of the pervasiveness of the issue. We leave
such comprehensive study as future work.

5.4.4 Measurement of Cookie Name Prefixes and Nameless Cookies
We present the results of our measurement of the prevalence of cookie name prefixes
and nameless cookies in the top 100K websites. We based our evaluation on the public
HTTP Archive dataset [Arc] and performed all queries against the database provided by
the Web Almanac initiative [bHA22]. We considered the website popularity rank in the
Chrome User Experience Report (CrUX) [Goo], which distinguishes the popularity of
origins by orders of magnitude (top 1K, 10K, 100K, etc.). CrUX introduced the rank
metric in February 2021 [HP21], thus we restricted the measurement to the last 2 years
to avoid any bias due to mixing different ranking metrics. We also excluded third-party

3https://www.browserstack.com/
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Rank Origins Secure __Host- __Secure- Nameless

1K 732 537 (73.4%) 6 (0.8%) 1 (0.1%) 1 (0.1%)
10K 5952 4005 (67.3%) 14 (0.2%) 19 (0.3%) 6 (0.1%)

100K 58068 35098 (60.4%) 113 (0.2%) 109 (0.2%) 86 (0.1%)

Table 5.3: Number of origins from the 2022-06-01 dataset setting cookies, and the percentage of
origins using the Secure attribute, cookie prefixes, and nameless cookies.

cookies from our analysis and focused instead on first-party cookies to avoid popular
CDNs and analytics services from affecting the results.

Table 5.3 reports the outcome of our measurement performed on the dataset from June
2022. The table shows the number of origins that use the Secure attribute, the __Host-
and __Secure- prefix, and nameless cookies. Figure 5.4 provides a direct comparison
between July 2021 and June 2022 of the adoption of cookies on the top 100K origins. As
expected, prominent websites are more inclined towards well-established security features
such as the Secure attribute. We found that more than 70% origins in the top 1K range
are using secure cookies, while the percentage decreases to 60% in the top 100K range.
Interestingly, while the adoption of secure cookies remained overall stable in the last 2
years for the top 1K websites, lower-ranked origins are increasingly adopting the Secure
attribute. This trend becomes even more evident by focusing on the adoption of the
__Host- prefix. Despite numbers being still low, the popularity of __Host- prefix is
growing rapidly in the top 10K and top 100K ranges. Overall, 77 origins used the __Host-
prefix in 2021, in contrast to the 133 origins that used it in 2022, which corresponds to
a 72% increase in one year. On the other hand, the distribution of nameless cookies is
more stable over time and does not show a clear correlation with the website rank.

Table 5.4 provides a characterization of __Host- and nameless cookies, showing the
most common names and values, respectively, across the top 100K origins. Intuitively,
the names adopted by __Host- cookies suggest that they are used to store sensitive
data such as session identifiers or CSRF tokens. Nameless cookies, instead, are likely
to be the result of misconfigurations on the server side, since the most common values
match cookie attribute identifiers. A manual analysis of the full collection of nameless
cookies did not reveal any clear intended usage. To the best of our knowledge, our
study is the first to measure the prevalence of nameless cookies in the wild. The results
suggest that nameless cookies are a byproduct of misconfigurations and are not actively
used by websites. For these reasons, we advocate for the removal of nameless cookies
from the cookie standard and browsers to eradicate this source of confusion and the
serialization collision vulnerabilities discussed in Section 5.4.2. Conversely, we believe
that the increasing adoption of __Host- cookies is a positive trend that should be further
promoted among Web developers and security practitioners.
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Figure 5.4: Deployment of cookies between 2021 and 2022.

__Host- cookie names # Nameless cookie values #

__Host-next-auth.csrf-token 26 HttpOnly 50
__Host-GAPS 23 <empty string> 16
__Host-csrf-token 13 Secure 6
__Host-PHPSESSID 10 = 5
__Host-SESSION_LEGACY 5 ACookieAvailableCrossSite 4
__Host-SESSION 5 =0 3
__Host-sess 4 secure 1
__Host-SWAFS 3 * 1
__Host-session 3 ˆ(.*)$ $1 1
__Host-js_csrf 3 =1 1

Table 5.4: Top-10 __Host- cookie names and nameless cookie values from 2022-06-01.

5.5 CORF Token Fixation

We present a class of attacks that we call CORF Token Fixation that undermine imple-
mentations of the synchronizer token pattern in the presence of network or same-site
attackers. The synchronizer token pattern is considered a robust CSRF protection against
the same-site threat model [OWAa] and is widely used in Web applications [LKP21].
However, as we show in Section 5.6, common implementations are vulnerable to CORF
attacks. The term CSRF Token Fixation has been used in the past to refer to a vulnera-
bility affecting the Devise authentication library [Val13]. Although this vulnerability is
an instance of our attack class, we provide for the first time a precise characterization
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Browser
Victim

Application
site.tld

Attacker
atk.site.tld

1 GET /login
Set-Cookie: sess[⊥, s]

form( t(s) )

GET /foo

2 Set-Cookie: sess[⊥, token] ; Domain=site.tld

GET /login
Cookie: sess[⊥, token]

form( t′(s) )
POST /login

Cookie: sess[⊥, s]
user, pwd, t′(s)

3 Set-Cookie: sess′[⊤, s]

4 POST /action
Cookie: sess′[⊤, s]

t(s)
!

pre-session
fixation

token
replayus

er
lo
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n

Figure 5.5: CORF token fixation attack (pre-login).

of the attack flow and discuss a more general instance of the problem. Moreover, by
factorizing the attacks into fixation and replay phases, we show how known bypasses to
the double submit pattern can be framed in this class.

5.5.1 Token Fixation Attacks

Figure 5.5 shows an instance of a token fixation attack (pre-login) that performs a state-
changing request to a token-protected endpoint (/action). User sessions are represented
as sess[loggedin-status, csrf-secret], where sess is the identifier for a session containing
the loggedin-status and the csrf-secret value. Sessions can be stored on the server or the
client side: in the first case, typically referred to as stateful, the cookie includes only the
session identifier; in the latter, known as stateless, the content of the session is used as
the cookie value, possibly after being encoded and signed. The attack flow is identical in
both scenarios.
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The attack has the following preconditions: (i) the target application uses the synchronizer
token pattern, storing the CSRF secret in the session; (ii) the application constructs a
pre-session for guest users (i.e., not logged-in) and has at least one CSRF token-protected
form visible to guests. Alternatively, the CSRF token can be derived from information
present in the pre-session. In the diagram, t(s) represents the token that is attached
to forms and derived (e.g., hashed or encoded) from the CSRF secret s; (iii) the CSRF
secret is shared unchanged between the pre-session and the session.

When these preconditions are satisfied, the attack is performed as follows: 1 the attacker
visits the target application and obtains the value of the pre-session cookie and the CSRF
token that is bound to that pre-session; 2 the attacker performs a pre-session fixation
attack [Kol02], setting the victim pre-session cookie to the value previously obtained by
the attacker; 3 by logging into the application, the user has an authenticated session sess′

which shares the CSRF secret s with the attacker-known pre-session sess; 4 the attacker
causes the victim’s browser to execute a crafted request towards the /action endpoint,
attaching the value of the token t(s) obtained in the first step. Given precondition (iii),
the secret was preserved during the login process, so a valid token for the pre-session
is accepted as a valid token for the authenticated session. This allows the attacker to
perform a CORF attack that bypasses the CSRF token protection.

Note that the encoding/serialization mechanism used to derive a token from the secret
s may generate different tokens (t(s) and t′(s) in the figure) for different requests, e.g.,
by including an expiration date. In such cases, a server could disallow expired tokens
or only accept the last token that was generated. Still, an attacker could bypass this
protection by executing again step 1 before constructing the request 4 to obtain a
valid token. Furthermore, the attack can be performed even if the victim has an already
established authenticated session with the website. Besides setting a more specific path
in the injected cookie, as described in Section 5.4.1, the attacker can forcibly logout
the victim from the website using a cookie eviction technique (see Section 5.4.1) before
fixating the pre-session cookie.

Post-Login Variant. The double submit pattern typically stores the CSRF secret in
a separate cookie from the session. Hence, overwriting/shadowing this cookie (fixation
phase) is sufficient to perform the attack, assuming that the attacker subsequently crafts
a request to the protected endpoint with a CSRF token that matches the value of the
overwritten cookie (replay phase). Notice that this attack variant does not require fixating
the pre-session, thus lowering the set of preconditions compared to the STP bypass.
Additionally, the post-login attack can be commonly performed without prior knowledge
of a valid CSRF token. Still, whenever the server performs additional validation checks,
an attacker can obtain a valid cookie for the application and its related CSRF token and
use them to carry out the attack.
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5.5.2 Mitigations
Token fixation attacks are enabled by cookie integrity violations from network and same-
site attackers. Hence, preventing cookie tossing from sibling domains, i.e., via the __Host-
cookie prefix, would trivially prevent the attacker from executing the fixation phase (step
2 ). However, __Host- cookies may introduce compatibility issues on applications that
use multiple origins. For instance, sharing the same session at accounts.example.com,
where users log in, with the rest of the application at example.com, requires setting
domain cookies.

Token Secret Refresh for STP. A robust mitigation for token fixation attacks for
websites that implement the synchronizer token pattern consists in refreshing the value
of the CSRF secret in the user session upon login. This update has the effect of using
different secrets in the pre-session and in the authenticated session, so that precondition
(iii) of the pre-login attack is no longer satisfied. This leads to the rejection of pre-session
tokens in authenticated sessions and prevents the attacker from executing step 4 of
Figure 5.5, since the token obtained at step 1 is not valid for the new user session.

Mitigating Attacks Against DSP. In 2012, Wilander [Wil12] proposed a variation of
the double submit pattern named triple submit cookies to address a specific version of
the attack. The mechanism employ random identifiers for both the name and value of
the cookie, attaching only the random value to forms, and leveraging HttpOnly cookies
to not disclose the random name with client-side scripts. The server-side validation of
the submitted token may require storing the random name in the user session (stateful
triple submit), or enforcing that the request contains only a single cookie with a random
name, discarding the request otherwise (stateless). The stateful variant is equivalent to a
synchronizer token pattern, where the random name acts as the CSRF secret and is stored
in the user session. The stateless variant relies on the assumption that cookies cannot
be erased since, otherwise, the attacker can forge a request with a single random-name
cookie [Lun13]. This assumption is only valid for Safari (see Section 5.4.1), thus the
stateless triple submit is not effective in the general case. Consequently, the post-login
attack can only be mitigated by (i) using __Host- prefix cookies, which are subject to
compatibility issues, or (ii) switching to the synchronizer token pattern and refreshing
the secret upon login.

5.6 Systematic Evaluation of Web Frameworks
We perform a study of Web development frameworks aimed at detecting session integrity
vulnerabilities that may derive from the composition of security libraries, focusing on
session management and CSRF protection components. In particular, we apply the threat
models defined in Section 5.3 and leverage the techniques described in Section 5.4 to
conduct the CORF token fixation attacks presented in Section 5.5. Albeit developers are
ultimately responsible for securing their Web applications, we believe security abstractions
should provide defaults that ensure safe composition. Hence we conducted the study on
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Framework Lang. Auth. Library CSRF Library CSRF Protection CORF Token Fixation Session
STP DSP Pre-L Post-L Fixation

Express (4.18.1) [expa] JS passport (0.5.3) [Han] csurf (1.11.0) [csu] � � � � ✓ � � � ✓
Koa (2.13.4) [koaa] JS koa-passport (4.1.3) [koac] csrf (3.0.8) [koab] � − � − ✓

Sails (1.5.3) [saib] JS in cookies as in docs csurf (1.10.0) [csu] � − � � � − � � �

Fastify (4.13.0) [fasa] JS fastify/passport (2.2.0) [fasc] csrf-protection (6.1.0) [fasb] � � � � ✓ � � ✓ � � ✓

Django (3.2.13) [dja] Python built-in built-in � � ✓ � ✓
Flask (2.1.2) [flaa] Python flask-login (0.6.1) [flab] flask-wtf (1.0.1) [flac] � − � − ✓

Tornado (6.2.0) [tor] Python in cookies as in docs built-in − � − � � � ✓

Laravel (9.1.5) [lar] PHP built-in built-in � − ✓ − ✓

Symfony (5.4.19) [syma] PHP built-in security-csrf (5.4.19) [symb] � − � � ✓ − ✓
CodeIgniter 4 (4.2.1) [ci4a] PHP shield (1.0.0-beta) [ci4b] built-in � � � � � − � � ✓ � � − ✓
Yii2 (2.0.45) [yii] PHP built-in built-in � � ✓ � ✓

ASP.NET Core (6.0.4) [dot] C# built-in built-in � − ✓ − ✓

Spring (5.3.19) [spra] Java Spring Security (5.6.3) [sprb] Spring Security (5.6.3) � − ✓ − ✓

Table 5.5: Analyzed Web frameworks, and their respective authentication and CSRF libraries. �

default, � available, ✓ unaffected, � vulnerable, − not implemented. ✓ safe (insecure options
available), � vulnerable (secure options available).

the default settings enabled by each framework. Moreover, we discuss relevant opt-in
options that are listed in the documentation and assess how they affect security. As part
of our work, we responsibly performed a coordinated disclosure of all the identified issues.

Selection Criteria. The selection criteria for the analyzed Web development frameworks
follow the approach adopted by Likaj et al. in their comprehensive study [LKP21]. First,
we considered the top 5 languages used for Web development in 2022 according to [Git22],
i.e., JS, Python, Java, C#, and PHP, and then selected the most used frameworks from
this pool. For this purpose, we used the GitHub metrics watch, fork, and stars, collected
on April 8, 2022. We then picked the top 10 of each category. This selection resulted in a
total of 13 frameworks. We refer the reader to Appendix C.1 for the complete framework
list and the associated GitHub metrics.

5.6.1 Frameworks Analysis Methodology
We conducted a manual security analysis to expose Web session integrity vulnerabilities
in the selected frameworks. For each framework, we followed the official documentation
to develop a toy application that includes a login form and a state-changing endpoint
protected by a token-based CSRF mechanism. The login and CSRF functionalities were
implemented using the official libraries provided by the framework. When official libraries
were not available, we used external libraries that are widely used by the community, thus
being considered the de facto standards. In two cases, we had to implement the session
management functionality at the application level following the instructions provided in
the documentation since no standard libraries were available. For each framework, we
also developed an automated routine to simulate the attacker’s website and to mechanize
the CORF token fixation attacks.

We performed a coordinated disclosure of the identified vulnerabilities, and assisted
framework developers to understand the threat model and to implement appropriate
solutions that would improve the baseline security of their frameworks. We focused
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our disclosure on unsafe defaults, avoiding reports that would have been perceived by
developers as potentially deceptive. For instance, we reported vulnerabilities on the
double submit pattern only when this CSRF protection mechanism was set as default or
it was the only one available. Double submit is indeed known to be vulnerable against
same-site attackers, although it provides some protection against standard Web attackers.

Table 5.5 summarizes the results of our analysis categorizing each framework by language
and including the selection of the libraries used to implement the login and CSRF
functionalities, as well as the adopted CSRF protection mechanisms and the tested
versions. The table also shows the outcome of our disclosure, denoted with an arrow
symbol. Out of the 13 analyzed frameworks, we identified 12 supporting the synchronizer
token pattern, among which 7 were found vulnerable to CORF token fixation attacks
(pre-login). Furthermore, 6 frameworks implemented the double submit pattern, resulting
vulnerable to the post-login attack variant. We also discovered 3 frameworks vulnerable
to session fixation attacks, thus allowing an attacker to fully compromise the victim’s
account.

5.6.2 Synchronizer Token Pattern Bypasses
In the following, we present the security analysis of vulnerable real-world implementations
of the synchronizer token pattern. All vulnerable frameworks, excluding CodeIgniter 4,
failed to refresh the CSRF secret after a successful login, thus allowing an attacker to
perform a CORF token fixation (pre-login) by reusing the CSRF token issued for the
attacker’s session following the steps described in Figure 5.5.

Passport-Based: Express, Koa, Fastify

Several frameworks based on Node.js integrate with the Passport authentication middle-
ware to support authenticated user sessions. Express natively integrates with Passport,
Koa requires an additional Passport middleware (koa-passport), and Fastify provides its
own port of Passport (fastify-passport). The CSRF protection is implemented by the
csurf CSRF token middleware in Express, while Koa uses a different middleware called
koa-csrf; Fastify, instead, provides CSRF protection via the csrf-protection plugin. All
implementations support the synchronizer token pattern with the CSRF secret being
stored in the session object. The login and user validation functions are performed by
the authenticate function of Passport (and fastify-passport). We discovered that this
function does not clear, nor reinitializes, the attributes in the session object other than
those specific to Passport, e.g., the passport attribute. Hence, the session attribute
csrfSecret (secret in Fastify) is not renewed upon successful authentication, satisfy-
ing the condition (iii) of our attack. Consequently, CSRF tokens issued to the attacker
during the pre-session fixation step can be used to forge CORF requests after the victim
authenticates on applications developed using these frameworks.

Disclosure. We reported this issue to the Passport developer, who promptly fixed it
in version 0.6.0 by clearing all attributes from the session object after login, effectively
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solving the vulnerability on Express. However, for backward compatibility, Passport
0.6.0 supports the keepSessionInfo option that enables Web developers to opt out
from the new safe behavior, and preserve the session attributes between pre-sessions
and authenticated sessions. This option is set to false by default. CVE-2022-25896
was issued for this vulnerability. Fastify developers promptly fixed the vulnerability in
version 2.3.0 by clearing all attributes from the session object after login and assigned
CVE-2023-29020 to this vulnerability. The release also introduced support to the
clearSessionIgnoreFields option that enables Web developers to define a set of
session attributes to be preserved between pre-sessions and authenticated sessions. On
the other hand, the new version of Koa middleware (6.0.0, published on February 2023)
does not benefit from the best practices implemented in Passport 0.6.0 and remains
vulnerable. We are currently in touch with the developers to identify an effective
mitigation.

Symfony

Symfony provides user management natively and relies on the official library security-csrf
for CSRF protection. Symfony supports three different ways to handle session identifiers
and session content while authenticating users, called strategies. The default strategy
(MIGRATE) regenerates the session identifier upon login, but preserves the remaining
session attributes. As the CSRF secret is not refreshed, the framework is vulnerable
to the pre-login CORF token fixation attack. One specificity of Symfony is that the
granularity of the CSRF mechanism can be configured to support distinct CSRF secrets
depending on the endpoint. In this case, the pre-login attack still succeeds against all
endpoints where it is possible to obtain a valid CSRF token under a pre-login session.
The attacker simply needs to execute step 1 towards all these endpoints to populate a
pre-session with the corresponding CSRF secrets before executing step 2 .

Disclosure. This vulnerability was reported to the Symfony developers who updated
the MIGRATE strategy to clear the CSRF storage in new versions of the library (v4.4.50,
v5.4.20, v6.0.20, v6.1.12, v6.2.6). We stress that the two other strategies are either
insecure or could introduce compatibility problems on websites based on Symfony:
NONE preserves the same session after authentication, leading to session-fixation attacks,
whereas INVALIDATE regenerates the session identifier and deletes all other attributes in
the session. CVE-2022-24895 was issued after our disclosure.

Sails

Sails does not implement a login handler function, however it ships with a generator [saia]
that bootstraps a template application providing a user-management service based on
express-session [expb]. Sails can be configured to enable CSRF protection out of the
box via the csurf library. Given that the user-management logic is hard-coded at the
application level and that the session object is not refreshed upon login, any token
generated before authentication is still valid after the user authenticates, thus satisfying
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the precondition (iii) of the attack. We expect Web developers to build their applications
starting from the generated template application. For this reason, we consider this unsafe
code pattern to be likely inherited by real-world websites.

Disclosure. The unsafe code pattern was reported to the Sails development team. As
a result, a new version of the generator was released (2.0.7) with support for __Host-
cookie prefixes in production mode (non-default). Using a __Host- cookie for the
session addresses the vulnerability, although Web developers must be aware of cookie
scope restrictions that may hamper the deployment of the protection, as discussed in
Section 5.5.2.

Flask

Flask-based applications supporting user authentication often rely on the Flask-Login
library for session management and Flask-WTF to provide CSRF protection using
WTForms [wtf]. Login and user validation are performed by the login_user function
that, similarly to Passport, does not clear nor reinitialize the attributes in the session
object other than those specific for Flask-Login, thus satisfying precondition (iii) of the
attack.

Disclosure. This vulnerability was disclosed to the developers of Flask and Flask-
login, proposing a fix that would allow developers to define a set of opt-in attributes to
be preserved upon login and to clear all others. Given that the two libraries operate
separately, developers proposed instead to clear all attributes from the session and let
application developers explicitly copy the attributes that should be preserved. A pull
request for this issue is still open.

CodeIgniter 4

CodeIgniter 4 provides user management via the (official) library Shield [ci4b], while
CSRF protection is included natively and can be easily enabled. CodeIgniter 4 offers
the synchronizer token pattern and double submit as CSRF protections, with the latter
being the default option. For both mechanisms, the framework supports the option to
regenerate the CSRF secret upon each CSRF-protected action (default), or to preserve the
secret per session, via the option security.regenerate = true and false respectively.
Similarly to the previous cases, CodeIgniter 4 is vulnerable to the CORF token fixation
(pre-login) attack when the CSRF secret is not refreshed at login. However, we discovered
that CodeIgniter 4 is also vulnerable when the CSRF secret is regenerated at login via
the security.regenerate = true setting.

CodeIgniter 4 sessions objects are stored on the server and contain CSRF secrets as
attributes called csrf_test_name. When a user accesses the application, a session object
sess is created with secret s, and upon login, a new session sess′ is created with secret s′.
However, while creating sess′, the attribute csrf_test_name of sess is also updated to
s′. Thus, the attack illustrated in Figure 5.5 is still possible as the attacker, knowing sess,
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can perform an additional request between steps 3 and 4 to, e.g., /login, and obtain a
fresh token t′(s′) that is valid for both the pre-session sess and the authenticated session
sess′.

Disclosure. This vulnerability was communicated to the developers of Shield, who
released a new fixed version of the library (1.0.0-beta.2) that (i) always refreshes the
CSRF secrets at login, (ii) deletes pre-sessions upon login, and (iii) discontinues the
double submit pattern in combination with Shield. CVE-2022-35943 was issued for this
vulnerability.

5.6.3 Double Submit Pattern Issues
All analyzed frameworks implementing the double submit pattern were vulnerable to
CORF token fixation attacks (post-login). Although this pattern is known to enable
same-site attackers to bypass CSRF protections, our study aimed at identifying if any
of the frameworks was applying mitigations such as the __Host- cookie prefix. We
concluded that none of the frameworks applied the above mitigation. Fastify tried to
mitigate this attack by including information related to the logged-in user in the CSRF
token in order to prevent cookie tossing. It turns out that the attack was still possible if
the userInfo associated with the target was predictable.

Disclosure. As discussed in Section 5.6.1, we did not contact developers of frameworks
that were already applying safe defaults (Express) or were already aware of the risks
associated with the double submit pattern (Django). The other vulnerabilities were
communicated to the developers of the 4 remaining frameworks. Fastify addressed the
vulnerability by performing an HMAC of the userInfo in order to prevent cookie tossing.
CVE-2023-27495 was issued for this vulnerability. The CodeIgniter 4 Shield library
disallowed the combination with the double submit pattern, relying now only on the
synchronizer token pattern as a more robust CSRF protection. Tornado added optional
support for the __Host- prefix to the CSRF cookie in version 6.3.0 4. Yii2 developers
initially replied to our disclosure but, to the best of our knowledge, did not follow up on
the issue.

5.6.4 Session Fixation Vulnerabilities
We also found 3 frameworks vulnerable to session fixation attacks. Session fixation
attacks happen when pre-session cookies are preserved after authentication, thus allowing
an attacker to hijack the session of an authenticated user violating its confidentiality
and integrity [Kol02]. The attack flow is the following: (i) the attacker obtains an
unauthenticated session cookie session_cookie=S by visiting https://example.com;
(ii) the victim is lured into visiting https://atk.example.com that sets a domain cookie for
https://example.com/ in the victim’s browser, such that session_cookie=S; (iii) the
victim authenticates on https://example.com/; (iv) the attacker uses the session cookie

4https://www.tornadoweb.org/en/stable/releases.html
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session_cookie=S to hijack the victim’s session at https://example.com/. Notice that
regenerating the session cookie prevents session fixation, but it is not enough to mitigate
CORF token fixation attacks if CSRF secret values still propagate unchanged to the
authenticated session.

Passport

We identified a session fixation vulnerability in Passport stemming from the fact that
the session attribute sessionId of the pre-session was not cleared nor reinitialized upon
login, but rather preserved after user authentication.

Disclosure. This vulnerability was disclosed to the developers of the Passport library
and was fixed in version 0.6.0 using the Session.regenerate method of the express-
session module to generate a new sessionId after a successful login. CVE-2022-25896
was issued for this vulnerability.

Fastify

A session fixation attack similar to the one in Passport was also identified in Fastify
when using the fastify/session plugin as the underlying session management mechanism
(stateful).

Disclosure. This vulnerability was disclosed to the developers of fastify-passport and
was fixed in version 2.3.0 using the session.regenerate method of fastify/session to
generate a new sessionId after a successful login. CVE-2022-29019 was issued for this
vulnerability.

Sails

A session fixation attack similar to the one in Passport was also identified in Sails. We
recall that, although Sails does not implement a native login interface, it provides an
application template that bootstraps a project. Consequently, unsafe code patterns
embedded in the application template could be inherited by real-world websites.

Disclosure. This unsafe code pattern was disclosed to the Sails team. No particular
action was taken to mitigate this unsafe pattern in the template application, although
the addition of the optional __Host-sails.sid in production mode described before
mitigates the impact of this attack.

5.7 Formal Verification of Web Frameworks
We complement the analysis of the top Web frameworks (Section 5.6) with the formal-
ization of their session management mechanism and CSRF protections. The goal of our
formalization is to verify the correctness of the mitigation to vulnerable synchronizer
token patterns, i.e., the CSRF secret refresh discussed in Section 5.5.2. To this end, we
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use the WebSpi [BBM12] library for the ProVerif [Bla01] protocol verifier, which enables
automated security proofs for Web applications.
Our formalization focuses on the 7 frameworks that are vulnerable to the pre-login token
fixation attack and resulted in 4 different framework models that differ depending on
whether the session is stored on the client or the server side, and on implementation
details of the synchronizer token pattern adopted by the framework. This is the case
since most JavaScript frameworks share the user management mechanism based on the
Passport library, and, for instance, Express and Sails implement CSRF protection with
the csurf library. The framework models implement a common API used by a generic
application model to implement login and protected form elements. The application
is run in parallel with a powerful same-site attacker that can overwrite any cookie on
its sibling domains, independently from path or flags/prefixes. This attacker model
over-approximates the threat models in Section 5.3, essentially considering cookies with
no integrity and resulting more powerful than SS-HOST-S. This over-approximation
ensures stronger security proofs, which are valid irrespectively of integrity assumptions
on cookies.
A CSRF attack results from an unauthorized authenticated request to a protected
endpoint performed by the attacker, thus we define our expected security property as
follows.

Invariant. Every action executed by a token-protected endpoint must be explicitly
initiated by an honest user by performing a request containing the token.

We encode the invariant as a correspondence assertion [WL93] between the two events
(i) app-action-successful, that happens when the server successfully validates the CSRF
token and performs the token-protected state-changing action, and (ii) app-action-begin,
that happens when the honest user submits the form that contains the CSRF token.

∀(c : Cookie)(b : Browser)(token : CSRF T oken).
event(app-action-successful(c, token)) ⇒ event(app-action-begin(b, token))

Intuitively, the correspondence requires that every instance of the app-action-successful
event must be preceded by the app-action-begin event. This property explicitly forbids
execution traces where the attacker successfully executes the protected action without
the honest user submitting the form.
ProVerif confirms that the property does not hold on any of the four models, producing
counterexamples that closely resemble the token fixation attack of Figure 5.5. We then
update the models to include the token refresh mitigation, i.e., generate a new CSRF
secret upon user login (Section 5.5.2). Additionally, we refresh the session identifier on
the model for Sails, Express, and Fastify (see session fixation attacks, Section 5.6.4).
With these modifications, we obtain four fixed models for which ProVerif proves that our
correspondence property is valid. Notice that in the presence of a session fixation attack,
refreshing the CSRF secret is not enough for the property to hold, as the attacker can
perform a full session hijacking attack and execute the token-protected action.
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P, Q := Processes
0 null process
P | Q parallel composition
!P replication
ν n.P name restriction
c(x).P message input from channel c
c⟨M⟩.P message output to channel c
if M then P else Q conditional (else is optional when Q is 0)
let x = M in P term evaluation, local variable definition
insert(d(M1, . . . , Mn)).P insert record into table d
get(d(M1, . . . , Mn)).P read record from table d
R(M1, . . . , M2) macro usage

Table 5.6: Syntax of processes.

This analysis shows that refreshing the CSRF secret upon login makes the synchronizer
token pattern a robust mitigation for CORF attacks, even in presence of same-site or
network attackers who can fully compromise cookie integrity.

5.7.1 Formal Model of Web Frameworks

In the following, we describe our modeling of Web framework using the applied pi calculus
[AF01], introducing only the parts of the formalism relevant for the understanding of the
model. In particular, Table 5.6 reports the syntax for processes, which, in addition to the
standard (simple) processes, includes tables (or databases) operations for storing (insert)
and retrieving (get) persistent data [BSCS]. Additionally, we use an extended term
language that supports functions and records, to ease the definition of the framework
API.

We define a framework as a set of functions and type definition for handling user
management and CSRF protection.

F ramework := { type Session
empty-session : unit → Session

valid-session : Session → bool

session-from-cookie : Cookie → Session

session-to-cookie : Session → Cookie

is-loggedin : Session → bool

login-user : (Session, User) → Session

logout-user : Session → Session

generate-token : Session → Session

serialize-token : Session → CSRF T oken

validate-token : (CSRF T oken, Session) → Bool }

In particular, each framework model provides definitions for:
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Session. The implementation for the Session abstract data type and the functions to
construct, validate and serialize such session to a cookie: empty-session, valid-session,
session-from-cookie, cookie-of-session. The session could be stored in the server or client
side: in the first case, session-from-cookie fetches from the server storage the session
corresponding to the session id in the cookie, in the second case, the function decodes
the cookie value into a session that can be later validated with valid-session. Similar
considerations apply for the inverse operation.
User management. The implementation of the user management functions such as
is-loggedin, login-user, logout-user. Such function modify the current session with the
status of the user if, e.g., the credentials are valid.
CSRF protection. The implementation of the generation and validation of CSRF
tokens: generate-token, serialize-token, validate-token. These function may rely on
implementation specific-types for the CSRF secret that can be stored in the session.
The generate-token function generates the CSRF secret, possibly updating the session;
similarly, the validation and serialization of the CSRF token may depend on the secret
stored in the session (see synchronizer pattern, Section 5.2.3)

The functions that are part of the Framework API are used in a generic model of a
Web application composed of 3 endpoints, /login, /logout, /action, supporting
multiple HTTP methods. The /login and /action endpoints return a CSRF token
protected form for GET requests, and execute the corresponding action, e.g., checking
user credentials after validating the token, for POST requests. The /logout endpoint
only supports POST requests. We model the application as an applied pi calculus process,
consisting of the parallel composition of 5 handler processes, one for each combination of
endpoint and HTTP method. We discuss in the following the definition of the application,
focusing on the process handling POST requests to the /action endpoint.

App(Host, {session-from-cookie, is-loggedin, validate-token, . . .}) := . . . |
!(httpServerRequest(((https://, Host,/action), headers, P OST (token), c)).

let s = session-from-cookie(cookie(headers)) in
if vaid-session(s) ∧ is-loggedin(s) ∧ validate-token(s, token) then
event(app-action-successful(cookie(headers), token)).
httpServerResponse⟨((https://, Host,/action), httpOk, c)⟩)

The App process takes as parameter the host in which the application is running and an
instance of a framework. The /action handler reads from the httpServerRequest channel,
provided by the WebSpi [BBM12] library, a POST requests to the URL composed of
the https scheme, the application host and the /action path. The obtained request
includes the HTTP headers and the submitted CSRF token. The handler then builds a
session from the received cookie header using the framework function session-from-cookie.
When the session is valid, and belongs to a logged-in user, the CSRF token is validated
with the validate-token function, executing the event app-action-successful upon successful
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validation. The process then returns to the client the httpOk response by writing it to
the httpServerResponse channel.

The generic application model App is run on the example.com host in parallel with a
same-site attacker Attacker, hosted on the sibling domain attacker.example.com.
Additionally, the application is visited by an unbounded number of distinct registered
users, modeled by the UA process. We use the Users table to store and validate registered
users for the App application.

Browser | HttpServer |
Attacker(attacker.example.com) |
App(example.com, F ramework) |
! (ν id).(ν pwd).insert(Users(id, pwd)).UA(id, pwd)

The Browser and HttpServer processes are part of the WebSpi library and provide
browser and server functionality, for example encrypting/encoding and decrypting/de-
coding requests from the network and sending them to the correct application on the
httpServerRequest and httpServerResponse, or attaching cookies to browser requests.

The process modeling users UA follows a similar structure to the App process, consisting
in the parallel composition of all possible user actions. We focus on the sub-process
modeling the submission of the token-protected form.

UA(id, pwd) := (νb : Browser).(. . . |
newPageb((p,example.com/action, form(token))).
event(app-action-begin(b, token)).
pageClickb⟨(p,example.com/action, P OST (token))⟩)

The process reads from the newPageb channel, which is defined in WebSpi and models
the loading of a page in the user (private) browser. The obtained page from exam-
ple.com/action includes a form containing a CSRF token. The process then executes
the event app-action-begin before submitting the form (pageClickb), performing a POST
request which includes the token. This event is only performed by the user modeled by
the UA process before the (explicit) form submission, so it will not be present in traces
in which the attacker performs a CSRF.

5.8 Related Work
Several studies have focused on cookie integrity issues, with a particular emphasis on ses-
sion integrity [BBC11, ZJL+15, NMY+11, BCFK15, CRB19, CFG+20]. In their seminal
work, Bortz et al.[BBC11] introduce the related-domain attacker model and propose a
mechanism, named origin cookies, to bind cookies to specific origins. The __Host- prefix
builds on this proposal and has been integrated into modern browsers [CEWW22]. Other
studies suggest browser extension, e.g., to transparently strip session (cookie) identifiers
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from network requests to avoid session hijacking [NMY+11, BCFK15]; Calzavara et
al. [CFG+20] focus on the server-side by proposing a type system for verifying session
integrity of PHP code against a variety of attackers, including network and related
domain attackers. These works, except for [ZJL+15], do not assess the implications of
the lack of cookie integrity for real world application. Zheng et al. [ZJL+15] present an
empirical assessment of cookie injection attacks on the Web, taking into account both
browser-side and server-side cookie handling inconsistencies, and discovering attacks on
popular Web sites (e.g., Google, Amazon). Similarly to our work, the authors discover
browser implementation differences in storage limits for cookies and cookie ordering
in requests, and inconsistencies in server-side languages such as the automatic percent
decoding of cookie names in PHP. Our findings uncover that, even after seven years,
these types of cross-browser/language inconsistencies are still relevant and also affect
newly introduced security mechanisms such as __Host- prefix cookies.

Recently, Squarcina et al. [STV+21] measured and quantified the threats posed by
same-site attackers to Web application security. In their study of cookies, they discovered
that the majority of the cookies on sites vulnerable to subdomain takeover has no integrity
against related domain attackers. The authors highlight that the __Host- prefix was
used only once in their dataset. Our measurement (Section 5.4.4) confirms the infrequent
usage of the prefix in the wild, but shows a promising positive trend on its adoption in
the last 2 years, especially on lower-ranked websites. Sanchez-Rola et al. [SRDB+21]
performed a large-scale measurement to characterize cookie-based Web tracking. The
study shows that third-party script inclusion enables cookie sharing in the context of
first-party cookies, thus enabling third parties to set cookies on behalf of the visited
website. Additionally, the authors report on instances of cookie collisions, where scripts
from different actors in the same website access cookies created with the same name
but different semantics. This setting matches our SS-XSS-S threat model (Section 5.3),
where different parties gain control of a domain on a page served via HTTPS. However,
unlike the study of Sanchez-Rola et al., which does not consider domain cookies, we focus
on cookie integrity violations from attacker-controlled subdomains.

Concerning the analysis of Web frameworks, Likaj et al. [LKP21] evaluated the mech-
anisms implemented by major Web frameworks, quantifying their exposure to CSRF
attacks as a result of implementation mistakes, cryptography-related flaws, cookie in-
tegrity violations, or leakage of CSRF tokens. The authors discover that 37 out of 44
frameworks are affected by such issues. Our analysis of Web frameworks (Section 5.6)
shows that further implementation issues in the synchronizer token pattern (deemed
secure in [LKP21]), originating from the composition of different libraries, lead to a
bypass of the protection in the presence of same-site attackers. For instance, the CORF
token fixation attack sidesteps the Flask framework protection, which was considered
secure in previous work.
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5.9 Conclusion
This study is a modern look at cookie integrity issues and their impact on Web appli-
cation security. Our research showed that integrity vulnerabilities are not limited to
implementation bugs, but are a pervasive threat across the Web due to compositionality
problems at multiple levels. We engaged with browser vendors, the IETF HTTP Working
Group, and Web framework developers to address the discovered issues, which resulted
in several high-impact updates, e.g., Chrome and Firefox, PHP (the server-side language
powering 78% of all websites), major authentication libraries such as Passport (2M weekly
downloads), and the cookie standard [CEWW22].
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CHAPTER 6
Conclusion and Directions for

Future Research

6.1 Conclusion
In this thesis, we have shown the importance of a rigorous and formal definition of
Web security in terms of invariants that are guaranteed to be valid across the Web
platform. We have proposed two methodologies for validating Web invariants on a model
of Web specifications and on browser implementations that allowed us to discover new
inconsistencies and propose sound mitigations. We studied the lesser known Web threat
model of the related domain attacker, studying its impact on application security and
focused on cookies, discovering new integrity violations.

More specifically, we presented WebSpec, the most comprehensive formal model of the
Web browser in terms of supported security mechanisms that allows for automated
bug-finding and machine-checked security proofs. The WebSpec verification pipeline
allowed us to discover a new attack on cookies, caused by the interaction with legacy
APIs and a new inconsistency in a planned modification to the HTML standard.

We then presented a lightweight methodology for automatically detecting security flaws
in browser implementations that leverages the WPT test suite to obtain execution traces
that are validated against Web invariants. Our verification methodology discovered 10
new attacks against Chromium, Firefox and Safari.

We presented the results of a large-scale measurement study on subdomain takeover
on the top 50K domains, discovering takeover vulnerabilities in 887 sites. We analyzed
the Web security implications of such vulnerabilities in terms of cookie integrity and
confidentiality, CSP and CORS deployment, showing that subdomain takeover offer an
additional advantage to the related-domain attacker compared to the traditional Web
attacker.
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We finally studied the issues that affect the integrity of cookies and presented new
attacks originating from undefined behavior in the specifications or implementation
flaws. We defined and presented the new class of CORF token fixaition attacks that
allows related-domain attackers to bypass token-based CSRF protections and proposed a
formally verified mitigation.

6.2 Directions for Future Work

WPT-based specification mining. The translation of browser execution traces to
SMT-LIB that we presented in Chapter 3 may be further generalized so that multiple
execution traces, as opposed to a single one, are extracted from a single execution of the
browser. This process would allow to abstract the specific details of single tests (e.g., the
specific constants/URLs used by the test suite) and obtain a logic formula representing
the property that the test aims to validate. Thus, the first research direction tackles the
problem of automatically extracting specifications from the WPT cross-browser testing
suite. This extraction methodology builds on the browser instrumentation infrastructure
we developed for trace verification and will be composed of multiple phases. Starting from
a browser execution trace of a WPT test, we aim to extract the property the test verifies.
We first start with naming, that is, abstracting the concrete values that the execution
trace is composed of (e.g., setting a cookie named secure_session to value 1) to
∀-quantified variables. This abstraction step allows us to convert a concrete test trace
to a family of traces that share the same structure but can use, e.g., any cookie name.
In the second phase, the abstracted trace, which is composed of sequentially-executed
events, is further abstracted so that strict-sequentiality (i.e., two events must follow
each other exactly) of events is relaxed, when possible, to allow additional arbitrary
events to happen between the ones composing the test trace. This step, which we call
sequentiality abstraction, will convert execution traces to logical formulas (e.g., using
LTL) describing the ordering requirements of events. Once we obtain an abstracted
formula, we can additionally abstract common testing patterns so that, e.g., matching
a specific regex is abstracted into checking if a string is a prefix of another. To retain
soundness, this process requires human intervention as the last phase, to approve or edit
the generated formula to match the meaning of the test. We are currently working on
sequentiality abstraction and have a prototype implementation of the naming phase that
can be applied to WPT tests on cookies.

Invariant-directed browser fuzzing. The verification of invariants on browser
execution traces presented in Chapter 3 has the potential for forming the basis of a
fuzzing schedule for browsers that guides test generation with the goal of violating an
invariant. Instead of relying on code coverage information, mutating test cases to improve
the coverage of exercised code, an invariant-aware fuzzer may decide to mutate a test case
so that more sub-propositions of a Web invariant are true. Web invariants are defined
in the form of implications (H1 ∧ ... ∧ Hn) ⇒ (C1 ∨ ... ∨ Cm). When the hypotheses
are not valid, the invariant is trivially true. Only when all hypothese are valid, the
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conclusion are checked against the browser execution trace. A fuzzer that maximizes the
amount of valid hypotheses for each of the considered invariants would discover violations
with higher-probability, as the tested traces are more likely not to be trivially true.
This fuzzing methodology can be complemented by the specification mining approach
described earlier. An abstracted version of a test case (i.e., a test specification), where
the concrete constant used during execution are replaced with ∀-quantified variables,
represents a template that, when used for test generation, guarantees that all derived
tests preserve the semantics of the original test.

Typing-Based verification of Web invariants. The Z3-based verification of Web
invariants presented in Chapter 2 does not currently allow for the separated verification
of modules, i.e., the entire model needs to be converted to a logical formula and verified
with Z3. For this reason, different verification strategies could complement the Z3-
based analysis and improve on the performance of Web invariant verification. One
such approach is based on typing and specifying every Web components as a separate
module. A type-based approach allows us to prove Web invariants at the module level
and check for composition issues only across module boundaries, resulting in a dramatic
performance improvement since each module needs to be verified in isolation only once.
We are currently exploring solutions based on Information Flow Control (IFC) type
systems, and in particular, we are working on embedding an IFC type system in the Coq
language using the RUSSELL [Soz07] refinement-typing extension. This work includes
a reimplementation of WebSpec with a focus on modularity and a clear separation of
type-level specification (used for verification) and run-time behavior (modeling browser
code). The resulting model will highlight the minimum set of run-time security checks
that are required for Web invariants to retain validity. Moreover, it may enable the use
of the rich type-level specifications for executable code (e.g., Rust) of real browsers (e.g.,
Servo).

Formal analysis of cross-context interactions. As an application platform, the Web
represents an abstraction of the underlying operating system where the Web browser is
executed. This abstraction, however, does not always prevent the hardware resources or
operating system constraints (i.e., the context where the browser is running) to affect
Web applications. For instance, the site isolation mechanism of Chrome and Firefox, that
isolates every site into a separate process, offers less security on mobile devices, where
hardware constraints force the browser to isolate only a portion of the sites, running all
other in the same process. Similarly, extensions of the Web platform allowing to bridge
native OS features to Web applications may violate Web security invariants as we have
shown in our recent IEEE S&P publication [BSVL24]. For this reason, we argue that
the composition of the Web platform an its context must undergo formal analysis to
the same extent of the individual Web platform components. This formalization would
clarify the security assumption that each Web mechanism and thus the platform as a
whole make in its interaction with the system it is embedded into.
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APPENDIX A
Appendix to Chapter 2

A.1 Web Invariants
A.1.1 Cookies
Integrity of __Host- Cookies

In the following we give the complete Coq definition of the invariant defined in Section 2.4.1.
We encode the invariant as:

1 Definition HostInvariant (gb: Global) (evs: list Event) (st: State) : Prop :=
2 ∀ rp corr pt sc ctx c_idx cookie _evs cname h,
3 Reachable gb evs st →
4 ((
5 evs = (EvResponse rp corr :: _evs) ∧
6 (rp_hd_set_cookie (rp_headers rp)) = Some cookie ∧
7 (sc_name cookie) = (Host cname) ∧
8 url_host (rp_url rp) = Some h
9 ) ∨ (

10 is_script_in_dom_path gb (st_window st) pt sc ctx ∧
11 evs = (EvScriptSetCookie pt (DOMPath [] DOMTopLevel) c_idx cookie :: _evs) ∧
12 (sc_name cookie) = (Host cname) ∧
13 url_host (wd_location ctx) = Some h
14 )) →
15 (sc_reg_domain cookie) = h.

A cookie can be set either via HTTP headers (lines 6-9) or via javascript (lines 12-15),
however, when the name of the cookie has the __Host- prefix (lines 8 and 14), then the
domain that registered the cookie must match (line 9) the URL of the response, or (line
15) the URL of the location of the window in which the script is running.

We can split the two cases in which the a cookie can be set and consider each case
separately. When the cookie is set via HTTP headers the encoded invariant is:

1 Definition HostInvariantRP (gb: Global) (evs: list Event) (st: State) : Prop :=
2 ∀ rp corr cookie _evs cname h,
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3 Reachable gb evs st →
4 (* A response is setting a cookie *)
5 evs = (EvResponse rp corr :: _evs) →
6 (rp_hd_set_cookie (rp_headers rp)) = Some cookie →
7 (* The cookie prefix is __Host *)
8 (sc_name cookie) = (Host cname) →
9 (* The cookie has been set by the domain of rp *)

10 url_host (rp_url rp) = Some h →
11 (sc_reg_domain cookie) = h.

A counterexample of one of the two invariants is also a counterexample of the complete
HostInvariant, since the complete invariant is equivalent to requiring both cases
(HostInvariantSC, HostInvariantRP) to hold:

1 ∀ gb evs st,
2 HostInvariant gb evs st ↔ (HostInvariantRP gb evs st ∧ HostInvariantSC gb evs st).

A proof of this equivalence is provided in [Webb].

Confidentiality of HttpOnly cookies

The HttpOnly attribute is designed to make cookies inaccessible to JavaScript both in
read and write mode. This corresponds to the following invariant.

Invariant I.2. Scripts can only access the cookies without the HttpOnly attribute.

We encode the invariant in our model as follows:
1 Definition HttpOnlyInvariant (gb: Global) (evs: list Event) (st: State) : Prop :=
2 ∀ sc cm c_idx cookie,
3 Reachable gb evs st →
4 (* A script has access to the cookie cm *)
5 Scriptstate gb st sc (SOCookie c_idx cm) →
6 (* The cookie is not httponly *)
7 st_cookiejar st.[c_idx] = Some cookie →
8 cj_http_only cookie = false.

Where line 5 specifies that a script sc in the page have access to the cookie cm that is
stored in the cookiejar at index c_idx; line 8 requires the cookie to have the HttpOnly
flag set to false.

Attack. JavaScript is allowed to perform HTTP requests using various APIs, e.g.,
XMLHttpRequest and fetch, and programmatically access the contents of the response.
In particular, the authors of [SMWL10b] noticed that scripts could read the contents of
the Set-Cookie header (through which cookies are set), thus violating the property
that should be enforced by the HttpOnly flag.

When we configure our model to allow scripts to access the content of the Set-Cookie
header, our toolchain produces a trace (shown in Figure A.1) which shows that a script
is able to access a HttpOnly cookie by reading the response headers of a response that
contains a Set-Cookie. Modern browsers have fixed the issue by preventing JS access
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Browser

Browser

JavaScript

JavaScript

ServiceWorker

ServiceWorker

origin_2

origin_2

...

GET origin_2/1296
Origin: origin_16. EvRequest (EmitterScript (DOMPath [] (DOMIndex 0)))

200 ResponseOk
Set-Cookie: c_11=1232; Domain=domain_1; Path=/5; HttpOnly; SameSite=Strict7. EvResponse (ResponseOk)

origin_1 := (0 4377 0)
origin_2 := (ProtocolHTTPS (SomeDomain (subdomain 6 7)) (SomeInt 1291))
domain_1 := (subdomain 6 7)

Figure A.1: HttpOnly Inconsistency

to the Set-Cookie header contained in responses. We can configure our model so
that Set-Cookie is a forbidden header [WHAa] with c_forbidden_headers (config
gb)= true and verify (up to a finite size) that the invariant holds.

A.1.2 Origin Header
The Origin header was proposed in [BJM08a] as a mechanism that websites can use to
protect themselves against CSRF attacks. In particular, browsers populate this HTTP
header with the origin that triggered the request being performed and Web servers should
validate the header value to block undesired cross-origin requests.

Authenticity of request initiator

According to the proposal for the origin header [BJM08a], the header identifies the origin
that initiated the request. If the browser is not able to determine the origin the header
value should be null. So, when the Origin header value is different from null, no
origin different from what is specified as the header value should be able to generate the
request. This corresponds to the following Web invariant.

Invariant I.8. If a request r includes the header Origin: o (with o ≠ null), then r
was generated by origin o.

We encode the invariant in our model as follow:
1 Definition OriginInvariant (gb: Global) (evs: list Event) (st: State) : Prop :=
2 ∀ em rq corr _evs orghd orgsrc,
3 Reachable gb evs st →
4 (* Request with origin header orgd *)
5 evs = (EvRequest em rq corr :: _evs) →
6 rq_hd_origin (rq_headers rq) = Some orghd →
7 (* The source origin is equal to orghd *)
8 is_request_source gb st rq (Some orgsrc) →
9 orgsrc = orghd.

where the is_request_source predicate holds when Some orgsrc is the origin that
generated the request rq. Note that the predicate needs to take into account redirections:
the source of a redirected request is the origin of the server which performed the redirection.
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Attack. In [ABL+10] the authors reported a vulnerability in the proposed CSRF
protection caused by the fact that the header is preserved across cross-origin redirects.
This way a POST request to the attacker can be redirected back to the honest server,
that accepts it since the Origin header contains the expected value. When we configure
our model to reflect the past state of the Web platform that was current at the time of
[ABL+10] publication, we can rediscover an attack that breaks the invariant on the origin
header. In particular, our toolchain produces the following counterexample: (i) The
user visits a website hosted on origin_1 and submits a form towards origin_2;
(ii) The server on origin_2 redirects the request back to origin_1 using HTTP
status code 307 to preserve HTTP method and request body; (iii) the browser follows
the redirect and produces a new request towards origin_1; the request contains the
header Origin: origin_1, since it preserved upon redirect. As a result, origin_1
will accept the incoming request since the Origin header contains the expected value,
thus voiding the CSRF protection. The output trace is shown in Figure A.2.

Browser

Browser

JavaScript

JavaScript

ServiceWorker

ServiceWorker

origin_1

origin_1

origin_2

origin_2

GET origin_1/0. EvInit

200 ResponseOk
Content-Type: ContentTypeHTML1. EvResponse (ResponseOk)

2. EvDOMUpdate (DOMPath [] DOMTopLevel)

POST origin_2/1370
Origin: origin_13. EvRequest (EmitterForm)

307 ResponseTemporaryRedirect
Location: origin_1/27504. EvResponse (ResponseTemporaryRedirect)

POST origin_1/2750
Origin: origin_15. EvRequest (EmitterForm)

origin_1 := (ProtocolHTTP (SomeDomain (domain 0)) (SomeInt 0))
origin_2 := (ProtocolHTTP (SomeDomain (domain 0)) (SomeInt 4123))

Figure A.2: Origin Header Inconsistency

Modern browsers tackle the issue by setting the header value to null in case of a cross-
origin redirect, as dictated by the Fetch standard [WHAa, §4.4]. We verify the security
of the solution (up to a finite size) by disabling the origin header in cross origin redi-
rects with the c_origin_header_on_cross_origin_redirect (config gb)= false

configuration option.

A.1.3 Same Origin Policy and CORS
The Same-Origin Policy (SOP) is a security mechanism that restricts the interactions
between documents loaded from different origins. The SOP can be relaxed for trusted
websites using Cross-Origin Resource Sharing (CORS) [WHAa, §3.2], a protocol that
allows responses to specify the origins that are allowed to access their contents.
The CORS protocol distinguishes between simple and non-simple (or preflighted) requests
depending on the request method, headers and contents [Mozb]. In particular, simple
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requests use only the GET, HEAD, POST methods and are allowed to specify a limited sets
of headers apart from the ones that are atomatically added by the browser; preflighted
requests are the requests that do not meet those conditions. Differently from simple
requests which are safe to send cross-origin, preflighted requests require the browser to
first issue a pre-flight request with the OPTIONS method to obtain the authorization to
perform the actual request.

Authorization of non-simple request (i)

Following the specification for non-simple requests, we can define the relation between
pre-flight and non-simple cross-origin requests as an invariant for the Same Origin Policy.

Invariant I.9. A non-simple cross-origin request must be preceded by a pre-flight request.

We encode the invariant in our model as follows:
1 Definition SOPInvariant (gb: Global) (evs: list Event) (st: State) : Prop :=
2 ∀ rq corr em rest,
3 Reachable gb evs st →
4 evs = (EvRequest em rq corr :: rest) →
5 (* The request is a non-simple request *)
6 not (is_cors_simple_request rq) →
7 (* The request is cross origin *)
8 is_cross_origin_request (st_window st) rq →
9 (* There needs to be a preflight request *)

10 Exists (IsEvRequestCORSPreflight rq) rest.

where the IsEvRequestCORSPreflight holds when an event in the list is a pre-flight
request.

Attack. Early drafts of the HTML5 standard added the possibility to use the HTTP
methods PUT and DELETE in HTML forms. However, to avoid introducing vulnerabili-
ties in existing websites, the specification requires to use this methods only on same-origin
requests. The authors of [ABL+10] found that browsers were transparently following
cross-origin redirects when using PUT and DELETE. When we configure our model to
reflect the past state of the Web platform in which HTML forms are allowed to use those
methods, our toolchain is able to find a counterexample to the invariant (see Figure A.3).
In particular, when a same-origin PUT (step 3) is redirected to a different origin, the
resulting request (step 5) is non-simple and cross-origin. Since requests generated by
forms do not trigger a pre-flight, this request breaks the invariant on the Same origin
Policy.

The HTTP specification has been modified again to allow only HTTP methods GET and
POST in form submissions [WHAb, §4.10.18.6], so this problem does not affect modern
browsers. We can disable early HTML5 form methods with c_earlyhtml5_form_methods

(config gb)= false and verify (up to a finite size) that the invariant holds.
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Browser

Browser

JavaScript

JavaScript

ServiceWorker

ServiceWorker

origin_2

origin_2

origin_3

origin_3

GET origin_2/0. EvInit

200 ResponseOk
Content-Type: ContentTypeHTML1. EvResponse (ResponseOk)

2. EvDOMUpdate (DOMPath [] DOMTopLevel)

PUT origin_2/2314
Origin: origin_23. EvRequest (EmitterForm)

307 ResponseTemporaryRedirect
Location: origin_3/14094. EvResponse (ResponseTemporaryRedirect)

PUT origin_3/1409
Origin: origin_25. EvRequest (EmitterForm)

origin_2 := (ProtocolHTTP (SomeDomain (domain 0)) (SomeInt 0))
origin_3 := (ProtocolHTTP (SomeDomain (subdomain 2464 2465)) (SomeInt 2094))

Figure A.3: Authorization of non-simple requests (i): cross-origin redirection of form-generated
PUT request

Authorization of non-simple request (ii)

The response to a pre-flight request declares, through the Access-Control-Allow-
Origin header, which origins are allowed to perform the cross-origin request. Given that
the pre-flight response authorizes an origin to perform potentially harmful cross-origin
requests, we should enforce the following invariant.

Invariant I.10. The authorization to perform a non-simple request towards a certain
origin o should come from o itself.

That we encode in our model as follows:
1 Definition CORSInvariant (gb: Global) (evs: list Event) (st: State) : Prop :=
2 ∀ em rq corr scr_idx scr_pt rp rp_corr em_idx _evs,
3 Reachable gb evs st →
4 (* Non-simple request made by a script *)
5 evs = (EvRequest em rq corr :: _evs) →
6 em = EmitterScript scr_idx scr_pt ∧ (emitters gb).[em_idx] = em →
7 is_cross_origin_request (st_window st) rq →
8 not (is_cors_simple_request rq) →
9 (* Get CORS preflight response *)

10 is_cors_authorization_response gb st em_idx rq corr rp rp_corr →
11 (* The auth. comes from rq_url *)
12 origin_of_url (rq_url rq) = origin_of_url (rp_url rp).

Where is_cors_authorization_response (line 10) specifies that rp is the response
to the CORS pre-flight request that is generated by the request rq; and line 12 requires
that the origin the request rq is directed to must be the same one that generates the
authorization response rp.

Attack. The original CORS draft allowed browsers to follow cross-origin redirects
in responses to pre-flight requests [W3C09]. When we configure our model to follow
redirects for pre-flight response, our toolchain produces a counterexample, shown in
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Figure A.4, in which after a redirection origin_3 responds with Access-Control-
Allow-Origin: origin_1 to a request made by origin_1 towards origin_2.
Thus, a website running on origin_2 containing open redirectors might redirect the
pre-flight request to a server under the attacker’s control, that by returning a CORS
header allows the attacker to relax the Same Origin Policy for origin_2.

Browser

Browser

JavaScript

JavaScript

ServiceWorker

ServiceWorker

origin_2

origin_2

origin_3

origin_3

...

OPTIONS origin_2/43
Origin: origin_16. EvRequest (EmitterCORSPreflight)

302 ResponseFound
Location: origin_3/25817. EvResponse (ResponseFound)

GET origin_3/2581
Origin: origin_18. EvRequest (EmitterCORSPreflight)

200 ResponseOk
Access-Control-Allow-Origin: origin_19. EvResponse (ResponseOk)

PUT origin_2/43
Origin: origin_110. EvRequest (EmitterScript (DOMPath [] (DOMIndex 0)))

origin_1 := (ProtocolHTTP (SomeDomain (domain 0)) (SomeInt 0))
origin_2 := (ProtocolHTTP (SomeDomain (subdomain 436 437)) (SomeInt 2274))
origin_3 := (ProtocolHTTP (SomeDomain (subdomain 1139 1140)) (SomeInt 2325))

Figure A.4: Authorization of non-simple requests (ii): cross-origin redirection of pre-flight request

The most recent CORS specification (part of the Fetch Standard [WHAa]) specifies that
browser should ignore redirects in pre-flight responses. We can verify (up to a finite
size) that the invariant holds by configuring our model to ignore pre-flight redirects with
c_redirect_preflight_requests (config gb)= false.

A.1.4 Content Security Policy
The Content Security Policy (CSP) allows Web developers to tighten the security of
Web applications by controlling which resources can be loaded and executed by the
browser. Originally, the CSP was designed to mitigate content injection vulnerabilities.
Subsequently, it was extended to restrict browser navigation (e.g., form action, frame-
ancestors) and protect DOM XSS sinks (via trusted types). A CSP policy consists
of a set of directives and source expressions specifying an allow-list of actions the page is
allowed to perform.

Interactions with the SOP

With the script-src CSP directive, developers can specify which scripts can be
included in a page and thus access the DOM. This corresponds to the following property.

Invariant I.4. The DOM of a page protected by CSP can be read/modified only by the
scripts allowed by the policy.

We encode the invariant in our model as follows:
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1 Definition CSPInvariant (gb: Global) (evs: list Event) (st: State) : Prop :=
2 ∀ pt sc ctx pt_u src origin tctx tt _evs,
3 Reachable gb evs st →
4 (* A script sc is present in the page *)
5 is_script_in_dom_path gb (st_window st) pt sc ctx →
6 (* The DOM of the toplevel window has been modified by sc *)
7 evs = (EvScriptUpdateHTML pt (DOMPath [] pt_u) tctx :: _evs ) →
8 (* The toplevel window is protected by CSP *)
9 rp_hd_csp (dc_headers (wd_document (st_window st))) = Some

10 {| csp_script_src := Some src; csp_trusted_types := tt |} →
11 (* The script sc is allowed by the CSP *)
12 origin_of_url (wd_location (st_window st)) = Some origin →
13 csp_src_match src origin (script_src sc).

Where the csp_src_match predicate holds when the src source expression matches the
URL script_src sc in a page loaded from origin origin.

Attack. By running the query, our toolchain produces a counterexample that corresponds
to the CSP violation discovered by the authors of [SBR17]. The complete trace is shown
in Figure A.5: (steps 0-2) a page with Content-Security-Policy: script-src
’none’ is loaded. The none value specifies that no script is allowed to be included in
this page; (3-5) the page contains a same-origin (origin_2) iframe with script-src
origin_3 as CSP, allowing the page loaded in the iframe to (6-8) include scripts from
origin_3; (9) the script running in the iframe (that was loaded from origin_3) can
access the DOM of the parent page and modify it, which is allowed by SOP since the two
pages come from the same origin. This is particularly dangerous in case the framed page
is either compromised or malicious since any attacker-provided script could access the
content of the parent page. Similar issues can arise when the framed page is protected
by CSP while the parent is not or when the two pages have different origins (but the
same site) and domain relaxation is performed [SBR17].
Preventing similar CSP violations could be achieved by having the same CSP policy
enforced on all same-origin pages in a site and by disabling domain relaxation (e.g., by
removing support for the document.domain setter). Using an origin-wide CSP policy
can be done manually or via the upcoming Origin Policy [DW] mechanism when it
will be supported by major browsers. We can configure our model to apply the same
CSP policy to all same-origin pages with the c_origin_wide_csp (config gb)= true

configuration option and verify that the invariant holds. The Coq proof of the correctness
of this solution is available at [Webb].

Integrity of server-provided policies

A service worker [W3C19] is an event-driven worker that acts as a client-side proxy
between Web applications and the network. Service workers are intended to enable Web
applications to be used even without a network connection. They can intercept and
modify network requests towards the origin against which they are registered and all
requests triggered by the pages hosted on that origin. Using the Cache API, service
workers can be used to store HTTP responses and then serve them even when the network
is unreachable.
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Browser

Browser

JavaScript

JavaScript

origin_2

origin_2

origin_3

origin_3

GET origin_2/0. EvInit

200 ResponseOk
Content-Type: ContentTypeHTML
CSP: script-src 'none'

1. EvResponse (ResponseOk)

2. EvDOMUpdate (DOMPath [] DOMTopLevel)

GET origin_2/9893. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeHTML
CSP: script-src origin_3

4. EvResponse (ResponseOk)

5. EvDOMUpdate (DOMPath [] (DOMIndex 0))

GET origin_3/23136. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeScript7. EvResponse (ResponseOk)

8. EvDOMUpdate (DOMPath [ 0 ] (DOMIndex 1))

9. EvScriptUpdateHTML (DOMPath [ 0 ] (DOMIndex 1)) (DOMPath [] (DOMIndex 4))

origin_2 := (ProtocolHTTP (domain 0) 0)
origin_3 := (ProtocolHTTPS (subdomain 3324 2312) 3684)

Figure A.5: CSP Inconsistency

Given the position of service workers in the processing of requests and responses, we
must ensure that if a response obtained from the network contains a security policy, then
such policy cannot be tampered with by the network stack and is correctly enforced by
the browser. This corresponds to the following Web invariant.

Invariant I.5. If a response from the server contains a security policy, then the browser
enforces that specific policy.

We encode the invariant in our model as follows:
1 Definition SWInvariant (gb: Global) (evs: list Event) (st: State) : Prop :=
2 ∀ corr rq_idx rp_idx rp em,
3 Reachable gb evs st →
4 (* Get the server response *)
5 is_server_response gb rq_idx rp →
6 (* Get the response that was rendered *)
7 in_history (st_fetch_engine st) corr (em,rq_idx,rp_idx) →
8 (* The CSP of the rendered response is equal to the server one *)
9 rp_hd_csp (rp_headers rp) =

10 rp_hd_csp (rp_headers ((responses gb).[rp_idx])).

169



A. Appendix to Chapter 2

For every response rp that would be generated by the server for a specific request index
rq_idx, the response that has been rendered by the browser is present in the ft_history
field of the FetchEngine. In particular, the history stores the mapping between requests
and responses (rq_idx, rp_idx at line 7) for every response that is rendered by the
browser. The invariant requires that the CSP of the response that is present in the
history must be the same as the one that is generated by the server.

Attack. Running the query on WebSpec reveals that it is indeed possible for a service
worker to break the invariant by responding to a request with a synthetic response
(i.e., created with the Response constructor). In particular, when the server-generated
response contains a security policy, a service worker could discard the network response
and respond to the request with a new possibly unrelated response. This corresponds
to an inattentive service worker which, due to a programming error, might remove or
relax the security policies that are part of the responses the service worker is handling.
We can specify that service workers are not allowed to generate synthetic responses
using the c_worker_allow_synthetic_responses (config gb)= false configuration
option. This configuration allow us to model the cache-first or offline-first pattern, the
most popular1 programming pattern that is used to serve content using service workers.
An offline-first service worker intercepts all network requests: if a resource is found in
the cache, then it is returned to the user before trying to download it; otherwise, if a
resource is not found in the cache, the resource is fetched from the network and added to
the cache.

When we run the query again in this configuration, WebSpec produces a counterexample
(shown in Figure A.6): the invariant is broken once again when a service worker returns
a synthetic response that has been added to the cache. Here, however, the synthetic
response has been added to the cache by a script running on a page that is same-origin
with the service worker. In particular, at step 6, a script running on origin_2 creates
a new response object that does not contain any security header and adds it to the cache.
When the browser fetches origin_2/, the service worker matches the response that
was previously cached by the script and returns it instead of downloading it. So the
response rendered by the browser has a different CSP than the original response returned
by the server, breaking the invariant. This is a special case of the attack described by
Squarcina et al. [SCM21], where an attacker tampers with cached responses to strip
or weaken the CSP served to the user. As the authors pointed out, this issue can be
prevented by making the Cache API inaccessible to scripts running in the page context.
We can verify that the invariant holds by restricting the Cache API to workers only, using
the c_script_update_cache (config gb)= false configuration option. The security
proof of this fix is available online [Webb].

1https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/
Offline_Service_workers
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A.2. Verification of Security Properties: Preventing Cache API Access From Other Browsing
Contexts

Browser

Browser

JavaScript

JavaScript

ServiceWorker

ServiceWorker

origin_2

origin_2

origin_3

origin_3

0. EvInit

GET origin_2/381. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeHTML2. EvResponse (ResponseOk)

3. EvDOMUpdate (DOMPath [] DOMTopLevel)

GET origin_3/34. EvRequest (EmitterClient)

200 ResponseOk
Content-Type: ContentTypeScript5. EvResponse (ResponseOk)

6. EvDOMUpdate (DOMPath [] (DOMIndex 3))

7. EvScriptUpdateCache (DOMPath [] (DOMIndex 3)) 0 (SomeInt 4)

GET origin_2/8. EvRequest (EmitterClient)

9. EvWorkerCacheMatch (4)

200 ResponseOk
Content-Type: ContentTypeHTML

origin_2 := (ProtocolHTTPS (SomeDomain (domain 0)) (SomeInt 0))
origin_3 := (ProtocolHTTPS (SomeDomain (domain 3481)) (SomeInt 3580))

Figure A.6: Service Workers Cache Inconsistency

A.2 Verification of Security Properties: Preventing Cache
API Access From Other Browsing Contexts

Any script running on a page that is same origin with a service worker is free to use the
Cache API to manipulate the cached entries that the service worker could later serve to
the user. The authors of [SCM21] propose disabling the Cache API from other browsing
contexts as a solution to address the attacks they discovered. We will use our model
to show that the invariant we define in Appendix A.1.4 holds if we allow only service
workers to access the cache.

Assuming that service workers do not create synthetic responses, we can prove the
stronger property that every response that is rendered by the browser had been generated
by the server. That is, there is no possibility for the network stack of the browser to
tamper with the response before rendering it, so the rendered responses are either received
from the network or are clones of the responses that have been previously received by
the browser. We encode the property as the following theorem:

1 Theorem
2 script_update_cache_disabled_implies_no_tampering:
3 ∀ gb,
4 c_worker_allow_synthetic_responses (config gb) = false →
5 c_script_update_cache (config gb) = false →
6 ∀ evs st corr rq_idx rp_idx rp em,
7 Reachable gb evs st →
8 is_server_response gb rq_idx rp →
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9 (ft_history (st_fetch_engine st)).[corr] = Some (em, rq_idx, rp_idx) →
10 ((responses gb).[rp_idx]) = rp.

For each browser in which service workers cannot create synthetic responses and only
service workers can access the cache (lines 4-5), for every reachable state, the responses
in the history are always received from the server (line 10). The history field of the
FetchEngine stores the mapping between request and response (indexes) for the
responses that have been rendered by the browser. The assertion at line 10 implies
that the mapping between requests and responses defined by the server (modeled as the
is_server_response predicate) is the same as the one that is used by the browser: we
cannot have, for a specific request index rq_idx, a mismatch between the server-defined
response and the rendered response. This property could easily be violated if we allow
workers to generate synthetic responses: when receiving a request identified by rq_idx,
the service worker is free to choose a response which does not match the one returned by
the is_server_response predicate.

Proving the theorem requires an additional helper lemma, which specifies that when
our assumptions apply, for every reachable state that is processing the response to a
remote request, i.e., the request and response URLs are not local scheme URLs, we
can only have two possible configurations: (i) if there is a cached response rp that
matches the current request, then rp is a response previously received from the network;
(ii) alternatively, when no cached responses match the current request, the response
comes from the network. We encode the lemma as follows:

1 Lemma
2 cache_or_ft_response_implies_server_response:
3 ∀ gb,
4 c_worker_allow_synthetic_responses (config gb) = false →
5 c_script_update_cache (config gb) = false →
6 ∀ evs st rq rq_idx rp rp_idx,
7 Reachable gb evs st →
8 rq = (requests gb.[rq_idx]) →
9 rp = (responses gb.[rp_idx]) →

10 not (is_local_scheme (rq_url rq)) →
11 not (is_local_scheme (rp_url rp)) →
12 (
13 ((wk_cache (st_service_worker st)).[rq_idx]) = Some rp_idx →
14 server_responses gb.[rq_idx] = rp_idx
15 ) ∧ (
16 ft_request (st_fetch_engine st) = rq →
17 ft_response (st_fetch_engine st) = Some rp →
18 server_responses gb.[rq_idx] = rp_idx
19 ).

Where the server_responses array in Global models the mapping between requests
and responses sent by the server. In particular, the is_server_response predicate
we use in our main theorem is defined in terms of the server_responses array.

To prove (ii) we just show that a state in which ft_response is not null is a state
which just received a response from the server. To prove (i) we have to show that the
only way to add a response to the cache is to first receive it from the server. This is
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the case because of the two assumptions we made: the service worker cannot create or
tamper with the network responses since is not allowed to create synthetic responses, so
the only responses that it can add to the cache are the ones received from the server;
scripts running on browsing contexts other than workers cannot modify the cache as our
configuration option only allows service workers to access the Cache API. The proof of
our main theorem follows from the application of the helper lemma.

Our main theorem implies that the invariant of Appendix A.1.4 holds when service
workers do not tamper with the responses before caching and only workers are allowed
to access the cache, thus proving the correctness of the solution proposed in [SCM21].

A.3 Compiler
WebSpec includes a compiler that aims to find inhabitants of inductive types, a problem
which is known to be undecidable for CIC, the logic of Coq [DR18]. To this end, the
compiler translates terms in a fragment of CIC into CHC logic, i.e., first-order logic
with fixed-points expressed in terms of Constrained Horn Clauses, hence discharging the
undecidability of the problem to CHC solvers [HBdM11, HB12]. In the following, we
give an overview of how our compiler performs this translation.

A.3.1 Considered CIC Fragment
Contrary to related work [CK18, Cza20], our compiler does not perform a shallow em-
bedding into untyped first-order logic, but instead performs a type-preserving translation
into CHC logic, i.e., typed first-order logic with fixed-point. If, on the one hand, this
allows us to leverage all the power of CHC solvers, this comes, on the other hand, at the
price of restrictions on the fragment of the logic of Coq we consider.

The considered fragment of the logic of Coq we consider is CIC without dependent types
(1), and where inductive type annotations and constructor arguments are restricted to
ground variables (2). We also require inductive type parameters to be instantiated when
the compiler is called. Before discussing these limitations, note that the resulting logic is
still extremely expressive as it contains System Fω, the higher-order polymorphic lambda
calculus. This also means that the inhabitation problem is still undecidable on this
fragment [DR18].

The reason for the restriction on inductive type annotations and constructor arguments
(2) is twofold. The first reason is that CHC solvers do not performs type equation
resolution, and therefore introducing symbolic type variables is forbidden. It is possible
to circumvent this issue by performing a shallow embedding of types, however this would
likely come at a significant cost in resolution time. The second reason is similar to the
first, but for functions. However in this case, we expect this restriction to be relaxed in
the future thanks to recent progress in function synthesis [BRLT19, RBN+19].

The restriction on dependent types (1) could also be circumvented by shallow embedding,
but again at a high cost in resolution time. Instead, upcoming development of WebSpec
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aims to relax this restriction so that dependent types are allowed in inductive types. This
relaxation will cover a significant number of practical cases, like the famous example
where the type of an array includes a program expression giving the size of that array.

A.3.2 Compilation Pipeline
In order to translate the support fragment of CIC to CHC logic, our compiler performs
the following steps:

Term-Type-Kind Hierarchy From a syntactic point of view, types cannot be dis-
tinguished from terms in CIC. Because CHC does not permit such intricacy, we have
to built a strict term-type-kind stratified hierarchy [Bar92], where kinds are defined as
k := Prop | Set | k → k. This stratification is done by recursive exploration, starting
from the inductive type on which the compiler is called, and following CIC typing rules2

to deduce to which stratum each syntactic term belongs. We rely on Coq type-checking
to ensure that connections between terms, types and kinds are sound. As a side effect,
this stratification makes a clear distinction between types and proposition or between
terms and proofs, which will ease subsequent steps.

Partial Application In CIC, any term can be partially applied. This includes functions
of course, but also inductive types, constructors, or type definitions. Such flexibility is
not allowed in CHC, and therefore all partial applications have to be removed. This is
done by systematically performing η-expansion [DMP96] on every term that could be
applied.

Lambda Abstraction We also have to removed lambda abstractions, both those which
are present in the original CIC terms and those which were introduced by η-expansion.
To this end, we perform β-reduction wherever possible and remove remaining lambda-
abstractions by lambda-lifting [Joh85, MS07].

Polymorphism and Higher-Order Thanks to the previous steps, all functions are
now defined at top-level and totally applied. Therefore we can now remove the use
of polymorphism and higher-order simply by specialization: For every application of
a function (resp. an inductive type) to a type or a function argument, we generate a
specialized version of the function (resp. the inductive type) where the type or function
parameter is replaced by the argument.

Constructor Constraints Constructors of inductive types in CIC can contain terms
with arbitrary constraints, while CHC only supports simple algebraic datatypes. There-
fore, we split every non-simple inductive type into a simple inductive type of kind Set
and an inductive type of kind Prop which encapsulates these constraints.

Once these steps are done, the rest of the compilation is straightforward. Simple inductive
types of kind Set are mapped to CHC algebraic datatypes, inductive types of kind Prop

2https://coq.inria.fr/refman/language/cic.html
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Table A.1: Solving time of inv. I.5 for progressively more complex models.

# Features Solving Time
base cookieredir cors lsc ref pmsg lst Baseline w/ Lemma

1 71m 13s
2 3h 34m 58s
3 3h 25m 1m 7s
4 2h 14m 48s
5 6h 54m 2m 11s
6 9h 32m 1m 52s
7 13h 20m 2m 7s
8 15h 46m 3m

base: Core Browser Functionality, CSP and Service Workers; cookie: Cookies;
redir: HTTP Redirections; cors: CORS Protocol and Headers; lsc: Local Schemes;

ref: Referer and Referrer Policy; pmsg: Post Message; lst: Local Storage

are mapped to relations, while CIC terms, types and proposition are mapped to CHC
terms, sorts, and formulas.

A.4 Scalability
In this section, we report on the result of the experimental evaluation of the scalability
of our browser model. In particular, we measure how the addition of individual Web
components affects the performance of WebSpec counterexample finding pipeline, and
show how lemmas (Section 2.6.1) are the most effective tool for improving the solving
time. We focus, as our main case study, on the Integrity of server-provided policies Web
invariant (Appendix A.1.4), since the counterexample found by WebSpec requires the
browser model to only support service workers, the cache API, and the CSP header,
outside of the core browser features (e.g., requests, responses, DOM, etc).

Starting from the features listed in Table A.2, we identify 10 modules, each representing
a Web platform feature and refactor our model to be configurable w.r.t. the included
components. With this modification our model is composed of a (core) core set of browser
functionality on top of which we are able to automatically include or exclude (cookies) the
Cookie and Set-Cookie headers, the cookie jar, and the document.cookie JavaScript
API; (redir) HTTP redirections and response codes; (cors) the CORS protocol and its
request and response headers; (csp) the Content-Security-Policy headers and rules,
including the script-src and trusted-types directives; (sw) service Workers and the
JavaScript Cache API; (lsc) support for local scheme URLs, the URL.createObjectURL

API, and the inheritance rules for CSP; (ref) the Referer request header and the referrer
policy mechanism; (pmsg) the Web messaging API (window.postMessage); (lst) the
local storage API (window.localStorage).

Table A.1 reports the time required by WebSpec to find the counterexample for our case
study on 8 incrementally more complex versions of the browser model. For each version,
we include one additional features and run the query twice, measuring the running time
with or without the inclusion of lemmas. The table clearly confirm the intuition that the
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Figure A.7: WPT test corresponding to the Trusted Types attack trace (Figure 2.5)

solving time increases with the addition of new features, as the base model requires less
than one hour, compared to the 16 hours of the complete model. This increase however
is not predictable, as the addition of a feature may benefit the solver by introducing
constraints which limit the search space, as for example in line #4, where the addition of
CORS improves the solving time by one third. In all versions of the model, lemmas offer
a substantial improvement of the counterexample finding pipeline, never exceeding the 3
minutes of solving time. In our case study, the lemma which is first applied by the solver
is script_state (Section 2.6.1), which comprises the first 5 events of the 9 present in
the complete trace. This shows that limiting the number of steps the solver needs to
consider brings a more noticeable improvement than the simplification obtained by the
removal of Web components.

A.5 Verifier Example
In Figure A.7, we provide an overview of how the attack trace shown in Figure 2.5 is
translated into a WPT test, executable on real browsers. Each event (on the left) is
assigned a SAV tuple. Notice that we omit the Setup element of the tuples since none of
the events in the trace requires it.

Each WPT test generated by the verifier has at least two components: the test launcher
and the server. The test launcher is the main WPT test file and consists of an HTML
page containing a script that starts the actual test. The server component of a test is a
Python script that handles requests (for all origins) and their corresponding responses.
For simplicity, we omit the test launcher from the DOM column of Figure A.7.

The first event in the trace is an EvRequest to the URL O1/A, which is assigned an
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explicit action 1 and an explicit verification 2 . These are translated, respectively, to
a window.open call, performed by the test launcher, and a server-side assertion to
ensure that the request was performed. The window.open call creates a new browser
window, represented in our example by the first element in the DOM column. The
second event (EvResponse) is mapped to the explicit action 3 of responding to the
request, and an implicit verification. The verification of this action is implicit, since the
response is known before runtime and generated by the test server. The third event in the
trace (EvDOMUpdate) is mapped to an implicit action and an implicit verification, since
updating the DOM after an HTTP response is internal browser behavior that cannot
be explicitly tested. An incorrect DOM update, however, would cause all subsequent
assertions to fail. Since the HTTP response from action 3 returns an HTML page
containing an iframe (iframe1) with source O1/B, the browser is expected to load the
subresource from this URL via a GET request. This request corresponds to event 4
(EvRequest) whose action is thus implicit. However, the verification of this action is
necessary and explicitly done through an assertion at the server-side. The next two
events (5 EvResponse and 6 EvDOMUpdate) are similar to events 2 and 3, differing only
in the content of the HTTP response, this time containing an HTML page that includes
a script with source O2/C. The browser is then expected to fetch the script from O2/C

(events 7, 8, and 9). At this stage, the script is loaded in iframe1 and ready to execute.
Script events are always mapped to explicit actions and explicit verifications. In this
example, event 10 (EvScriptUpdateHTML) is translated to JavaScript code that tries to
modify (via innerHTML) a target element in the parent page 8 , and performs a WPT
assertion on the content of the target element 9 . Since the innerHTML sink in the
parent page requires a valid Trusted Type, the script first creates a loose policy and then
updates the target element with a TrustedHTML created with such policy. Note that the
JavaScript code that is executed for event 10 is received as the response body of event 8.
Since WebSpec does not model JavaScript code but only the API calls that scripts can
perform (Section 2.2.5), the verifier generates the response body (i.e., the code) for each
script depending on the actions and verifications that the script needs to perform in the
subsequent events.

If the test is successful, i.e., all assertions pass, the script in iframe1 is able to modify
an element in the parent page that is protected by Trusted Types, thus confirming the
presence of the attack on real browsers.

A.6 Completeness
Table A.2 provides an overview of the features supported by the models discussed in Sec-
tion 2.7. In particular, here we focus exclusively on Web components implemented in Web
browsers, since this is ultimately the goal of our work, but models like WIM [DHK+22],
WebSpi [BBDM14] and Alloy [ABL+10] additionally implement a variety of other features
that are needed to model other parts of the Web ecosystem.

One of the main differences among the different proposals lies in the way JavaScript is
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modeled. WIM and Featherweight Firefox model the small-step semantics of (a subset
of) JavaScript: this is of fundamental importance, e.g., in WIM, since the model has
been used to verify the security of Web protocols and it is necessary to define the precise
semantics of scripts used by the parties involved in the protocol run. In WebSpec,
similarly to the Alloy model of Akhawe et al. [ABL+10], we are only interested to the
API calls that a script can perform. For this reason, we do not specify the exact behavior
of a script, rather we assume that a script can call the supported APIs in any arbitrary
way, using any data in its knowledge as parameters to these calls.

From the perspective of features support, WebSpec and WIM are the two most complete
models available so far. As mentioned in Section 2.7, WebSpec does not support HSTS,
HTTP basic authentication and the Web Payment API, since we abstract away from
the network and from the specific implementation of Web servers. On the other hand,
we support a variety of features that are missing in WIM browsers, such as CORS,
cookie attributes like Domain, Path and SameSite, the __Host- prefix, CSP, the Cache
API, interception of request of service workers, the document.cookie API, which play
a prominent role for many of the attacks reported in this chapter. As shown in the
table, there are also some minor differences concerning modeled URL components, type
of supported HTTP redirects, status codes and headers, and functionality of service
workers.

Concerning the other models, WebSpec essentially supports all the features implemented
by them. Currently we only support the Origin and Access-Control-Allow-Origin

HTTP headers for CORS, while the Alloy model supports all of them3: although the
headers supported in WebSpec are sufficient to implement the fundamental CORS
functionalities, the remaining ones allow a more careful treatment of CORS and we plan
to implement them as future work.

3For space reasons, in Table A.2 we let ACA stand for Access-Control-Allow, AC for Access-
Control and ACR for Access-Control-Request.
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Table A.2: Comparison of supported Web components in existing models.
Web Components WebSpec WIM [DHK+22] WebSpi [BBDM14] Alloy [ABL+10] FF [Boh12]

URLs

Scheme
HTTP(S)
Pseudo-protocols data:, blob: - - - about:

Host
Port
Path
Parameters
Fragment
JS API URL.createObjectURL

HTTP

Request methods
GET

POST

Others PUT, DELETE, OPTIONS
PUT, DELETE,

OPTIONS, TRACE,
CONNECT

- PUT, DELETE, OPTIONS -

Response codes
Redirection 302, 307 303, 307 302 302, 303, 307 -
Others 200, 204 101, 200 200 200, 401 200

Headers (not fitting the cate-
gories below)
Referer

ReferrerPolicy

Directive origin

Directive no-referrer

Directive unsafe-url

Authorization

Content-Type

Location

Strict-Transport-Security

WWW-Authenticate

Cookies

HTTP headers
Cookie
Set-Cookie

Attributes
Domain

Path

Secure

HttpOnly

SameSite

__Secure- Prefix
__Host- Prefix
JS API document.cookie
SOP for cookies

Windows

Multiple tabs
Framing support
Cross-window communication
(postMessage API)

JS API window.location
JS API window.history
JS API window.close

DOM
Supported elements

<script>,
<iframe>,

<form>, <img>

<script>,
<iframe>,
<form>

- <form> <script>, <div>

JS API for DOM manipulation
JS API document.domain
SOP for DOM access

XHR /
Fetch API

SOP for XHR / fetch requests
Sending requests via JavaScript
Reading responses via JavaScript

Forbidden response headers
(Set-Cookie)

CORS

Request types
Simple requests
Non-simple requests (preflight)

HTTP headers
Origin

AC-Allow-Origin

Others - - -

ACA-Method,
ACA-Headers,

ACA-Credentials,
AC-Max-Age,
ACR-Method,
ACR-Headers

-

CSP /
Trusted
Types

CSP directives
script-src

trusted-types

require-trusted-types-for

CSP Inheritance
Trusted types

Create trusted types
(policy.createHTML)

Secure context restriction

Service
Workers

Interception of requests
(evt.respondWith)
Access to the cache API
Messaging with other windows
Opening new windows
(Clients.windowOpen)

Storage
APIs

Cache API
Caches.put

Caches.match

Secure context restriction
Local storage
localStorage.getItem

localStorage.setItem

Web Pay-
ment APIs
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Appendix to Chapter 3

B.1 Encoding Known Web Invariants
We report in the following our encoding in first-order logic of the 3 invariants which were
previously defined in the literature. For each invariant, we provide the natural language
version of the property and its encoding in our model.

B.1.1 Integrity of Secure Cookies

The RFC dictates that it should not be possible to set cookies with the Secure attribute
from insecure channels [CEWW22, §5.5]. This invariant has been previously formalized
as part of the WebSpec framework [VFB+23] as follows.

Invariant (I.1). Cookies with the Secure attribute can only be set over secure channels.

The invariant is encoded in our model as follows:
secure-cookies-invariant(tr) :=

t2 > t1 ∧
net-response(_, url, {set-cookie-headers}, _)@trt1 ∧
set-cookie ∈ set-cookie-headers ∧
name ++ "=" ++ value ∈ split-cookie(set-cookie) ∧
"Secure" ∈ split-cookie(set-cookie) ∧
cookie-jar-set(name, value, {Secure=true}), false)@trt2) ⇒

(url-proto(url, "wss") ∨ url-proto(url, "https"))

For every network response at time t1 that leads to a cookie being set in the cookie jar
(at time t2) that has the Secure attribute set to true, then the protocol of the response
url is either https or wss (i.e., it is a secure channel).

181



B. Appendix to Chapter 3

B.1.2 Confidentiality of HttpOnly cookies
The HttpOnly cookie attribute informs browsers that accesses to cookies with this
attribute set to true by non-HTTP APIs, i.e., document.cookie, should not be
allowed. This property was formalized in the literature [VFB+23] as:

Invariant (I.2). Scripts can only access cookies without the HttpOnly attribute.

We encode the invariant as:
http-only-invariant(tr) :=

t2 > t1 ∧
cookie-jar-set(name, value, {http-only, secure, domain, path})@trt1 ∧
js-get-cookie(ctx, cookies)@trt2 ∧
name ++ "=" ++ value ∈ split-cookie(cookies) ∧
cookie-match(path, domain, secure, ctx-location(ctx)) ⇒

http-only = false

For every access to document.cookie in the domain domain at time t2 that successfully
returns a cookie previously stored in the cookie jar for the same domain (at time t1) then
the cookie’s HttpOnly attribute has the value false.

B.1.3 Integrity of __Host- cookies
Browsers should enforce that cookies with a name prefix of __Host- are set with an
empty domain attribute, making these cookies host-only. Effectively, these cookies can
only be set by responses to the domain that created them or by scripts running in that
domain. Veronese et al. [VFB+23] discuss this property of the __Host- prefix and
propose the following natural language formalization:

Invariant (I.3). A __Host- cookie set for domain d can only be set by d or by scripts
included in pages on d.

We encode the invariant in our model as:
host-invariant(tr) :=
t2 > t1 ∧
( net-response(_, url, {set-cookie-headers}, _)@trt1 ∧

set-cookie ∈ set-cookie-headers ∧
"__Host-" ++ cname ++ "=" ++ cvalue ∈ split-cookie(set-cookie) ∧
url-domain(url, host) ) ∨

( js-set-cookie(ctx, set-cookie, _)@trt1 ∧
"__Host-" ++ cname ++ "=" ++ cvalue ∈ split-cookie(set-cookie) ∧
url-domain(ctx-location(ctx), host) )

cookie-jar-set("__Host-" ++ cname, cvalue, {domain}, false)@trt2 ⇒
domain = host

For every network response or access to Document.cookie property at t1 that causes
a cookie-jar-set event at t2 which sets a __Host--prefixed cookie, the effective
domain of the cookie must be equal to the domain of the url of the network response or
to the browsing context where the access to Document.cookie was performed.
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B.2 Test Selection
Table B.1 reports the considered tests for our evaluation. In particular, we execute all
testharness.js tests from the d888ebb version of WPT (Apr 2023).
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html 6404
referrer-policy 1301
content-security-policy 821
fetch 754
dom 473
IndexedDB 454
svg 448
xhr 391
navigation-api 375
workers 321
service-workers 296
websockets 276
streams 251
webaudio 247
wasm 246
bluetooth 230
encoding 215
upgrade-insecure-requests 197
shadow-dom 169
webrtc 168
mixed-content 163
webmessaging 154
mathml 140
webxr 137
custom-elements 132
pointerevents 124
speculation-rules 123
resource-timing 122
WebCryptoAPI 119
web-animations 119
scheduler 108
encrypted-media 106
client-hints 104
scroll-animations 102
eventsource 100
editing 98
infrastructure 91
trusted-types 88
FileAPI 87
layout-instability 81
media-source 78
permissions-policy 76
performance-timeline 76
encoding-detection 75
web-locks 73
webcodecs 73
webvtt 71
fullscreen 70
intersection-observer 69
cookies 69
selection 63
user-timing 62
largest-contentful-paint 61
signed-exchange 60
cookie-store 60
compression 59
serial 58
webidl 55
url 54
event-timing 54
paint-timing 53
navigation-timing 53
mediacapture-streams 51
webnn 50
preload 50
webusb 49
webstorage 49
feature-policy 49
fs 48
loading 47
clipboard-apis 47
element-timing 46
uievents 43
portals 42
webtransport 37
webauthn 36
js 35
document-policy 33
storage 32

compute-pressure 30
web-bundle 29
focus 29
domparsing 29
soft-navigation-heuristics 28
cors 27
payment-request 26
shape-detection 25
webrtc-encoded-transform 24
credential-management 24
animation-worklet 24
reporting 23
mediacapture-image 23
import-maps 23
domxpath 23
worklets 22
orientation-event 21
inert 20
requestidlecallback 19
longtask-timing 19
visual-viewport 18
storage-access-api 18
long-animation-frame 18
hr-time 18
screen-wake-lock 17
quirks 17
notifications 17
mediacapture-record 17
js-self-profiling 17
battery-status 17
urlpattern 16
orientation-sensor 16
measure-memory 16
geolocation-API 16
screen-orientation 15
old-tests 15
browsing-topics 15
beacon 15
web-share 14
resize-observer 14
input-events 14
imagebitmap-renderingcontext 14
background-fetch 14
secure-payment-confirmation 13
presentation-api 13
picture-in-picture 13
payment-handler 13
console 13
scroll-to-text-fragment 12
is-input-pending 12
font-access 12
accelerometer 12
web-nfc 11
speech-api 11
page-visibility 11
network-error-logging 11
idle-detection 11
geolocation-sensor 11
forced-colors-mode 11
server-timing 10
screen-capture 10
sanitizer-api 10
pending-beacon 10
mediacapture-insertable-streams 10
media-capabilities 10
magnetometer 10
gyroscope 10
compat 10
audio-output 10
ambient-light 10
webrtc-extensions 9
touch-events 9
permissions 9
webgl 8
video-rvfc 8
subapps 8
secure-contexts 8
keyboard-map 8
document-picture-in-picture 8

webvr 7
remote-playback 7
pointerlock 7
mediasession 7
mediacapture-fromelement 7
keyboard-lock 7
fledge 7
x-frame-options 6
webrtc-stats 6
shared-storage 6
gamepad 6
file-system-access 6
close-watcher 6
badging 6
webrtc-svc 5
wai-aria 5
push-api 5
delegated-ink 5
content-index 5
clear-site-data 5
webrtc-identity 4
vibration 4
ua-client-hints 4
proximity 4
payment-method-basic-card 4
mimesniff 4
merchant-validation 4
lifecycle 4
device-memory 4
virtual-keyboard 3
trust-tokens 3
top-level-storage-access-api 3
timing-entrytypes-registry 3
screen-details 3
periodic-background-sync 3
parakeet 3
netinfo 3
mst-content-hint 3
generic-sensor 3
autoplay-policy-detection 3
webrtc-priority 2
webhid 2
savedata 2
png 2
permissions-revoke 2
permissions-request 2
managed 2
intervention-reporting 2
installedapp 2
html-media-capture 2
direct-sockets 2
deprecation-reporting 2
density-size-correction 2
background-sync 2
window-placement 1
webrtc-ice 1
web-otp 1
webmidi 1
webdriver 1
subresource-integrity 1
private-click-measurement 1
payment-method-id 1
page-lifecycle 1
media-playback-quality 1
mediacapture-region 1
mediacapture-handle 1
mediacapture-extensions 1
input-device-capabilities 1
eyedropper 1
entries-api 1
ecmascript 1
custom-state-pseudo-class 1
contenteditable 1
content-dpr 1
contacts 1
apng 1
acid 1
accname 1

Table B.1: Considered WPT tests.
Total: 24896, WPT Version: d888ebb
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APPENDIX C
Appendix to Chapter 5

C.1 Web Framework Analysis
Table C.1 lists the entire pool of Web frameworks considered for this study. We restricted
the analysis to the top 10 frameworks according to the GitHub metrics watch, fork, and
stars, obtaining the final set of 13 frameworks.
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C. Appendix to Chapter 5

Framework Language GH Watch GH Fork GH Star

ASP.NET MVC C# 75 329 739
ASP.NET Core C# 1.4k 7.7k 27.8k
Service Stack C# 515 1.6k 5k
Nancy C# 438 1.5k 7.2k

Spring Java 3.4k 33.3k 47.1k
Play Java 683 4k 12.1k
Spark Java 413 1.6k 9.3k
Vert.x-web Java 79 470 955
Vaadin Java 53 59 361
Dropwizard Java 398 3.4k 8.2k
Blade Java 302 1.1k 5.6k
ZK Java 46 169 350
Apache Struts Java 124 737 1.1k
Apache Wicket Java 61 354 616

Express JS 1.8k 9.6k 56.6k
Meteor JS 1.6k 5.2k 42.9k
Koa JS 847 3.2k 32.5k
Hapi JS 422 1.4k 13.8k
Sails JS 667 2k 22.2k
Fastify JS 281 1.7k 22.7k
ThinkJS JS 268 643 5.3k
Total.js JS 218 459 4.1k
AdonisJS JS 229 579 12.3k

Laravel PHP 4.6k 22.4k 69.3k
Symfony PHP 1.2k 8.6k 26.7k
Slim PHP 525 1.9k 11.3k
CakePHP PHP 573 3.5k 8.5k
Zend/Laminas PHP 18 56 1.4k
CodeIgniter PHP 1.6k 7.8k 18.2k
FuelPHP PHP 107 287 1.4k
Yii2 PHP 1.1k 7k 13.9k
Phalcon PHP 658 1.9k 10.6k
Li3 PHP 91 247 1.2k
CodeIgniter4 PHP 278 1.6k 4.2k

Flask Python 2.2k 15k 58.5k
Django Python 2.3k 26.9k 63.3k
Tornado Python 1k 5.4k 20.5k
Bottle Python 320 1.4k 7.6k
Pyramid Python 160 878 3.7k
Falcon Python 273 872 8.7k
Zope Python 91 99 288
Masonite Python 57 104 1.7k
TurboGears2 Python 32 76 777
Web2py Python 220 866 2k

Table C.1: Web development frameworks from [LKP21] ranked according to GitHub metrics as
of April 8, 2022.
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