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Kurzfassung

Viele Unternehmen und Hersteller, insbesondere in der Automobilindustrie, streben
nach dem Ziel, Massenindividualisierung bei gleichzeitiger Beschleunigung der Pro-
duktiterationen zu ermöglichen. Zum Bewältigen dieser Herausforderungen haben sich
Produktplattformen und intelligente modulare Ansätze mit dem Ziel etabliert, dem
Kunden/der Kundin eine größere Auswahl zu bieten und gleichzeitig die Komplexität in
der gesamten Wertschöpfungskette minimal zu halten. Feature-basierte Dokumentation
(FBD) wurde als De-facto-Standard eingeführt, um eben diese Komplexität zu bewältigen.
FBD definiert Features (Merkmale), welche die Varianten eines Produkts beschreiben
und ermöglicht basierend auf diesen Merkmalen, eine dynamische Zusammenstellung
neuartiger Produktkonfiguration aus einer bestehenden Produktplattform (SuperBoM).

Diese Arbeit präsentiert ein neuartiges Framework, um die Anwendung von MaxSAT-
Solvern zur Optimierung hochgradig konfigurierbarer Produktplattformen zu ermöglichen.
Verschiedene, oft widersprüchliche Optimierungsziele existieren im gesamten Produkt-
lebenszyklus, die aufgrund der schieren Anzahl an möglichen Produktkonfigurationen
oft schwer zu quantifizieren sind. Ein Beispiel ist die geführte Konfiguration, die darauf
abzielt, den Kunden zu einem Produkt hinzuführen, welches schneller lieferbar sowie
günstiger zu produzieren ist oder einen reduzierten Verkaufspreis hat. Darüber hinaus gibt
es in der Planungsphase viel Optimierungspotenzial wie die Reduzierung der technischen
Lösungen bei der gleichzeitigen Erhöhung des Market-Fit, die Erstellung besserer und
abgesicherter Preismodelle, oder die Reduzierung des ökologischen Fußabdrucks bei der
gleichzeitigen Verbesserung des Deckungsbeitrags.

Um diese Auswertungen zu ermöglichen, wird nach einer allgemeinen Einführung von
FBD eine formale Definition gegeben, die gemeinsam mit einer ebenfalls vorgestellten und
evaluierten Transformationspipeline zur Reduktion von FBD-Instanzen auf das Erfüllbar-
keitsproblem fungiert. Im Kern der Arbeit werden verschiedene moderne MaxSAT-Solver
vorgestellt, für die eine Zusammenfassung sowie ein Vergleich der Lösungsansätze gege-
ben werden. Mit dem Ziel die praktische Effektivität von MaxSAT in diesem Bereich
zu evaluieren, dient die Produktplattform der Tamiya TT-RC-Car-Serie als Grundlage
für unterschiedliche Experimente. Es werden mögliche Zielkonflikte untersucht, um die
resultierenden Kompromisse anhand von Pareto-Fronten zu beschreiben und zu analysie-
ren. Die Experimente werden qualitativ bewertet und ihre mögliche Praktikabilität und
Auswirkungen für reale Anwendungsfälle werden diskutiert.
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Abstract

Companies strive to achieve mass customization while accelerating product iterations
in the modern manufacturing landscape, particularly in the automotive industry. They
utilize product platforms and intelligent modular design techniques to tackle this challenge
with the aim of delivering a broader range of choices to the customer while reducing the
complexities throughout the company – from engineering, logistics and manufacturing to
sales. Feature-based Documentation (FBD) has been introduced as a de-facto-standard
to deal with the complexity of having highly configurable products. FBD introduces
features that describe the variations of a product. Based on these features, conditions
allow for the dynamic composition of novel product configurations based on an existing
product platform (SuperBoM).

This thesis will present a novel framework for applying MaxSAT-Solvers to optimize
highly configurable product platforms. Many inherent and often conflicting objectives
exist throughout the product lifecycle that are hard to quantify due to the sheer volume
of possible configurations. An example is guided configuration, intending to direct the
customer to a product that is faster to deliver, cheaper to produce or has a reduced
sales price. Furthermore, in the planning phase, product optimizations include reducing
technical solutions while increasing market fit, creating better pricing models, or reducing
the environmental footprint while improving the contribution margin.

To facilitate the research, a general introduction to FBD and a formal definition that
serves as the foundation for the consequent steps are presented along a transformation
pipeline that reduces FBD-Instances to the satisfiability problem. To approach the core
of the thesis, several modern MaxSAT-Solvers will be presented, giving a summary and
comparing how the different solvers approach the problem. With the aim of evaluating
the effectiveness of MaxSAT in this domain, the product platform of the Tamiya TT RC-
Car-Series will serve as a baseline for various experiments. Several exemplary conflicting
objectives are explored and the resulting trade-offs are visualized using Parteo-Fronts. The
experiments will be evaluated qualitatively, and their possible impact and practicability
will be discussed.
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CHAPTER 1
Introduction

“By 2026, configuration life cycle management will transform 40% of manu-
facturers, reducing the amount of customer-specific engineering required to
deliver products.” - Gartner Report of Top Strategic Technology Trends in
Asset-Intensive Manufacturing for 2023 [MH23]

Configuration Lifecycle Management (CLM) is listed by Gartner’s report as one of the
top transforming trends for the manufacturing industry in 2023. CLM describes the
management of all the product configurations over the complete lifecycle from concept and
engineering till after-sales [MRH18]. This form of management is becoming more and more
necessary because the trend of mass customization and composability (modularization),
make it indispensable for manufacturers to have a proper management and documentation
system to keep track of their highly complex and configurable products [MH23]. The
goal is shifting from offering a limited set of predefined product configurations to being
able to serve customers –that want to buy a common category of a product– with specific
adaptions for their custom use-case without the need of time-consuming re-engineering.
To achieve this goal a well documented modular product platform is needed that provides
the needed agility to enable the necessary configurability of the product. Modular
product platforms are concepts that have been around for a long time in the world of
manufacturing [Mar, Muf99]. Along with the mass-producing capabilities given by the
Industrial Revolution, it became increasingly viable to produce sub-parts on a large scale
and to combine them into a divers product. With this approach, products can be created
that better fit the customer’s wishes and can be acquired for cheaper. For companies in
the automotive industry, the proper design of their respective platform has become a
competitive priority and is seen as a key enable for flexibility, cost reduction and to deal
with a global product rollout [Muf99].
One goal of modularity is to achieve the most possible product diversity while using
the smallest amount of parts. Figure 1.1 visualizes this goal by schematically showing
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1. Introduction

Figure 1.1: Schematic explanation of the goal of modularity and the different interests in
a company that are involved (freely adapted from [Man])

different types of truck vehicles. To realize this, we need thorough knowledge about the
interfaces of the parts and about their possible combinations as well as a good language
to describe the variation. One such language is Feature-based Documentation (FBD). It
is the central concept around which this thesis is built and will be thoroughly described
in Section 2.2.

FBD is built around logic expressions, which allow for dynamic composition of products
based on the customer choices. Due to these inherent logical conditions, satisfiabilty
solving is a key technique to apply in the domain offering a huge variety of possible
use-cases. Hence, thesis aims at studying the application of SAT-Solvers and MaxSAT-
Solvers and explore different promising applications to analyze, verify, and improve FBD
instances.

1.1 State-of-the-Art

Modularization is a widely used concept for creating diverse product platforms that
increase the market fit, especially in industrial applications where there is a need for
specialized solutions. Based on the experience of the author, currently, many companies
create their own, tailored documentation systems to handle the complexity of modular
product platforms. They are aided by consulting- and implementation companies which
offer solutions to tackle feature based on systems like SAP, Windchill, etc. This leads to
a high diversity in solutions, but still the base concept of using features to handle the
variations is very common. Many such systems are marketed under the term CPQ.

2



1.1. State-of-the-Art

1.1.1 CPQ-Systems

Configure Price Quote (CPQ) is a process that can be implemented by companies that
produce customized products. It is an umbrella-term that describes processes that aim at
improving the customer’s journey from configuration, pricing till the quotation [JAJK20].
Traditionally this process consists of many manual steps especially in companies that
work in the B2B market, where supplier agents work out deals with customers in response
to a tender. The configuration-process requires a lot of expert knowledge of the agent
about the product specifics and may lead to time-consuming clarification steps with the
engineering department about the product parts, material costs, etc. This is a bottleneck
for many companies because the customer wants good, authoritative answers in a timely
manner, otherwise they may choose a competitor company, which tailors to their needs
more efficiently.

As a consequence, software systems have come into existence that streamline the CPQ-
process by encoding the relevant product knowledge and enabling the sales person or
team to authoritatively answer questions about configurability, pricing and availability.
And doing that with the click of a button and without the need for extra clarification
loops with other subsidiaries of the company.

CPQ is the first step in the value chain, and it should be aligned with the production
line and the product itself to fully streamline the customer experience till the delivery
[MRH18]. We can address this with a proper modularization of the product [Jan10].
Modularization tries to divide the product into clearly concealed parts and defining
interfaces between the parts that aim at enabling the most possible reuse of parts and
highest amount of flexibility. This aligns with the paradigm of separation of concerns.

Modularization has profound influences about how products are designed and manufac-
tured and induces profound knowledge about all the aspects of the product and its whole
lifecycle. Modular function deployment is a tool developed to provide a systematic way
of approaching modularization and collecting the relevant product knowledge.

1.1.2 Controlling Design Variants

The concept of Modular Function Deployment (MFD) was developed by Anna Ericsson
and Gunnar Erixon from the University of Stockholm and Modular Management AB
[EE99]. They define a technique to manage, plan and document the modularity of
products. The goal is to apply the concept of modularity across the whole company, from
sales to through engineering to production to leverage the effects of a streamlined and
well-integrated company.

They documented their method in the book Controlling Design Variants which is
published by the Society of Manufacturing Engineers [EE99]. The following sections will
give a broad overview of the method described in the book.
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1. Introduction

Module Drivers™

To translate the positive effects of modularity into product design, companies have
to recognize the driving forces of modularity over the whole product lifecycle. These
driving forces have been studied and identified by the Swedish Institute of Production
Engineering Research and the Royal Institute of Technology, Stockholm, Sweden through
a great number of case studies. In the following, these twelve Module Drivers™ will be
described.

• Carryover
Some parts of a product do not need to be exposed to any design changes during
the whole product lifecycle. Therefore, we do not have to "reinvent the wheel" and
can carry that part over to the next generation.
An example is the window crank mechanism. For the customer it is not necessary
to know which specific mechanism is used. As long as it fulfills their requirements,
it can be carried over to the next product generation.

• Technology evolution
Shifts in technology can cause changes in parts that need a refitting to continue
to fulfill the customers changing demands. The technological evolution from
mechanical to mechatronic or novel materials force adaptions and are the driving
forces for such changes. An example is the CD-Player which was faded out by new
technologies like Bluetooth or CarPlay.

• Planned Product Changes
Parts are planned to be changed or added later in time. Companies may have
a plan laid out for the future development of the product. In it, transitions are
planned out that require product changes that need to be taken into account in
the current design of the product.

• Different Specification
Specifications for a product can vary for many reasons like different power outlets
for different countries or different regulations.

• Styling
Trends or fashion can also influence a product and lead to different designs. The
visible parts of the product relevant for styling can be separated into styling modules
to simplify refitting to new stylings.

• Common Unit
A common unit is a part that can be used for a large part -or ideally the complete
product assortment. Good candidates for such parts are ones whose functionality
is used by a wide range of customers.
Compared to Carry Over, these parts are not part of the product for a long time
and might only serve for one product generation. Carry Over parts however might
be used in only a few products, but for a very long time.

4



1.1. State-of-the-Art

• Process and/or Organization
To streamline the production process, parts that need similar processes and pro-
duction steps can be clustered. For example parts that need welding could be
combined into one single module.

• Separate Testing
Testing and verification to ensure that the product meets the requirements of
the specification and relevant laws is a crucial step. The ability to test parts
independently before they are used in the final product is very important and may
lead to quality improvements.

• Availability from Supplier
A very important consideration in the process of creating a product is how much
should be produced in-house and what makes sense to buy off the shelf from
suppliers. These decisions are very strategic and have to consider prices to buy as
well as the costs of failure of the supplier.

• Service and Maintenance
Painless service and maintenance is a very important aspect, especially in the field
of industrial applications. Parts, ideally those that may require service, are exposed
and easy to reach and also clustered by functionality, so that in the case of failure
a certain functional module can be swapped.

For example in the Swedish high-speed train X2000 electric wires and hydraulic
tubes are assembled in drawers that can easily be swapped and exchanged with
pre-assembled boxes.

• Upgrading
Building upgradable products can give customers the possibility to extend the
lifetime of the product and adapt it to their needs and anticipate technological
improvements. For example, many personal computers have the options to upgrade
RAM or hard disk space.

• Recycling
Environmental aspects are taken into account more and more when developing
new products and therefore not only the aspect of production has to be considered,
but also how a product can be disassembled and recycled. This can be achieved
by limiting the amount of different materials, or keeping fixations between parts
simple to disassemble.

These module drivers offer a fundamental tool to make sound and holistic decisions about
the modules that a product will have. To accompany these decisions, the MFD-Process
was developed as a process for continuous improvement of the modular structure.

5



1. Introduction

Figure 1.2: Apply Modular Function Deployment (MFD) to create product architectures
that meet customer needs, strategic targets and functional requirements. From https:
//www.modularmanagement.com/en/mfd accessed on 14.02.2024 15:07

Modular Function Deployment™

The MFD-Process consists of five major steps as illustrated in Figure 1.2. These steps
involve method of structured data collection methods (often matrices) that guide a
cross-functional team through the whole process step-by-step.

The first step focuses on deriving the product requirements of the customers demands.
The output is a weighted mapping of customer demands to product properties. It matches
the What with the How.

In the second step, different technical solutions are proposed and evaluated along several
criteria with the focus of finding the solutions, that fit best with the customer’s needs.

Within the third step, the core of the method, the technical solutions are analyzed
according to the module drivers and reasons for why certain solutions should be grouped
into modules and which should be split up.

In step number four, interfaces for the created modules are defined and analyzed. These
interfaces have influence on the composability of the product and on how the production
line can be set-up to produce the product. This also involves economical predictions
about the expected effects of modularization.

In the last step, a specification is created for each module containing relevant information
and from here the implementation of the defined module structure can be triggered. At
the same time, the process starts the loop again to further optimize the module structure
and stay up-to-date with the customer’s needs.

6
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1.2. Related Work

1.2 Related Work
This section will provide an overview of the relevant scientific work related to the topic of
this thesis. Plenty of scientific work has been done, out of which three will be highlighted
in the following sections.

1.2.1 BA-Thesis
The author has written a bachelor thesis about the Application of SAT-Solvers in Feature-
based Documentation Systems [Bru20]. In this thesis the author introduced definitions
and theorems to verify the correctness of FBD systems utilizing SAT-Solvers. It also
suggested that for some tasks in this context, MaxSAT-Solvers are promising tools, but
it did not further explore this proposal.

Chapter 3 will revisit this work and introduce new contributions and refinements which
were introduced since the bachelor thesis has been written.

1.2.2 Modularity
There are architectural concepts that facilitate modularity. One first proponent was the
Architect Albert Farwell Bemis who developed a concept for building houses based on a
modular concept [Rus12]. Bemis suggested cooperation with architects, manufacturers
and laborers to define common standards for the dimensions of building materials. His
"four-inch cubical module" was his approach to have a sound modular system with which
to build houses and tackle the issues that the housing industry of 1920 to 1930 was
having.

1.2.3 Software Configuration
The Linux operating system has undoubtedly become one of the cornerstones of modern
software development and counts as the largest open-source software development project
with more than 21 million lines of code, 4,000 developers and more than 440 different
companies that contributed [Bha16]. Linux also supports an impressive amount of close
to 20 different CPU-Architectures1.

To handle the diversity of use cases that the Linux kernel is operating in, the developers
have placed around 15.000 different feature flags in the code to configure the kernel to
the specific needs of a certain application [FBF+21]. These feature flags can be used to
selectively enable and disable certain functionalities of the codebase.

For large software product lines, like the Linux kernel, which offer an excessive degree
of variation, it is important to properly model the dependencies and compatibilities
[KKS+23]. One very prominent way for modelling is the feature diagram which arranges
the features in a hierarchical tree structure and defines the constraints between them

1List of supported CPU-Architectures is available at https://www.kernel.org/doc/html/v6
.3/arch.html accessed on 24.9.2024 15:49
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1. Introduction

GPL

Edges

Directed Undirected

Algorithms

Components Cycles

Mandatory
Or
Alternative

Components ∨ Cycles → Directed
Figure 1.3: Example feature diagram for a graph product-line. Taken from [KKS+23]

using annotations on the parent/child relations. In Figure 1.3 the feature diagram of
a graph product line is illustrated. The example defines seven different features that
describe the different types of Edges (directed, undirected) as well as the algorithms
needed to find components or cycles.

All these features have relations with each other. For example, the Edges as well as
the Algorithms are mandatory for the GPL feature, as indicated, using the mandatory
relation (Figure 1.3). Edges have two alternatives, either Directed or Undirected. For
the available algorithms, an inclusive-or is used, therefore the Features Components or
Cycles can be selected or also both. Furthermore, we can use a cross-tree constraint to
ensure that for the algorithms, directed edges are used.

SAT-Solvers play a crucial role in the analysis of software product lines [FBF+21]. They
are used for many highly relevant tasks [KKS+23]:

• Interactive Configuration Improving the feedback for the user during a configu-
ration process and taking transitive constraints into account [Jan08].

• Modularization Identifying feature model interfaces and the compositional analy-
sis of a model can be reduced to the statisfiability problem [SKT+16, KST+16].

• Explanation of Anomalies Anomalies like redundant constraints, false optional
features, dead features, etc. can be expressed formally and verified by the SAT-Solver
[FBGR13].

• Model Checking Feature interactions that lead to unintended –possibly critical–
behavior of a software can be automatically detected [ASW+11].

• Formal Verification Verifying every product individually in a large software
product line does not scale, but by using a meta-product that contains all the
features, a complete verification is feasible. [TSAH12].

Comparing FBD to Software Configuration and the feature diagrams, one essential differ-
ence is the hierarchial representation of the features. In Feature-based Documentation
features are part of groups that do not have inherent hierarchial relations. The relations
between the groups are defined using implications separately. The example of the GPL
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can be modelled with three feature groups, one for directed/undirected and one for each
of the algorithms, defining With and Without the algorithm. The parent structure of
Edges and Algorithms is not represented in FBD. Restrictions can be used to define the
relation Components ∧ Cycles → Directed.

1.3 Open Challenges
Satisfiability Solving and Automated Verification have been studied and proven valuable in
the context of software configuration (Section 1.2.3) and mechanical product configuration
[Bru20]. These static methods can verify the correctness and analyze huge FBD instances
with an innumerable amount of possible configurations.

However, there are new challenges emerging that are not addressable solely by the
SAT-Solver. Product creation involves numerous –often conflicting– objectives: we want
to reduce the price, increase profit, improve the market fit, reduce delivery times, and
many more. These challenges require MaxSAT-Solvers, since these soft objectives need
to be taken into account alongside the hard buildability-restrictions.

The challenge to optimize towards these objectives systematically is to define a proper
encoding and facilitate suitable solvers that can optimize towards the given objectives.
Because many of these objectives are contradictory in their nature (e.g. reduce the price
vs. increase profit) we need to argue about trade-offs and visualize Pareto Fronts to find
optimal solutions.

1.4 Main Contribution
In this thesis the author aims at addressing the open challenge of MaxSAT-Solvers in
FBD and along the way introduce contributions to the domain and the state-of-the-art
methods.

In a first step, in chapter Background & Preliminaries, the author contributes the
summarization and formal definition of FBD. This is an essential groundwork for the
following chapters.

By revisiting the bachelor thesis, in chapter State of the Art & Contribution to the
Domain the author introduces improvements in the analysis of exclusivity by taking the
complete instance –including the restrictions– into account, which makes the method
more powerful, since transitive relations of features will be considered. Furthermore, the
author has proposed the Module Interface Analysis method, which defines a process to
systematically identify and optimize modular products by studying their interfaces. The
output of the method is a FBD instance that contains the needed technical solutions to
cover the intended product variations.

Approaching the SAT-Solvers, in chapter Reducing to the Satisfiability Problem, the author
has studied the Pratt Parser and the Tseitin Transformation including improvements
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introduced by Plaisted and Greenbaum as well as subformulation tracking. Together,
these improvements yield a noticeable difference in the performance and parsing verbosity
compared to the bachelor thesis [Bru20] as evaluated in Performance Evaluation.

Lastly and mainly, the contribution lies in the aspect of MaxSAT-Solving for FBD in
Chapter Introducing MaxSAT-Solvers and Chapter Experiments and Evaluation. Three
things are mentionable contributions in this context:

Firstly, the author has surveyed and categorized state-of-the-art to MaxSAT-Solvers, and
summarized their algorithms. These include, exact solvers, approximation solvers and
multi-objective solvers.

Secondly, the author proposed objectives in FBD and provided their formal definitions.
Utilizing the reduction pipeline, these objectives can be added to the MaxSAT-Solver
instance as objectives.

Thirdly, experiments are conducted on the TT-Platform to qualitatively evaluate the
effectiveness of the solver to optimize toward a given objectives. Furthermore, the
trade-offs for the respective conflicting objectives are analyzed and explained.

1.5 Structure of the Thesis
This thesis is structured in five main parts after the introduction.

The chapter Background & Preliminaries will explain the background and relevant
knowledge that is needed to understand SAT-Solvers and the domain of FBD. To explain
FBD, an example product will be introduced that serves as the example in the whole
thesis.

Afterwards, State of the Art & Contribution to the Domain will take a look at several
contributions made to the domain by the author’s bachelor thesis and mention improve-
ments. Furthermore, the author will introduce a new process to create a FBD-Instance
and also introduce the EFS Modularity Suite, which has made a lot of the introduced
techniques accessible in a web-tool.

Reducing to the Satisfiability Problem describes how the domain of FBD can effectively
be reduced to the satisfiability problem. This chapter will guide through all the steps of
the transformation and explain alternatives in the approach at every step.

Chapter Introducing MaxSAT-Solvers will explain what MaxSAT-Solvers are and survey
several MaxSAT-Algorithms. It will also introduce the Pareto Front and multi-objective
optimization for dealing with conflicting optimization targets. Lastly, it will formally
define objectives that can be applied to solve various problems in the domain of FBD.

The presented optimization objectives and MaxSAT-Solvers will be put to the test
in the Chapter Experiments and Evaluation. Several experiments for multi-objective
optimization will be conducted on the example product, and the generalizability of the
experiments to a larger-scale product will be discussed.

10



1.5. Structure of the Thesis

Lastly, the chapter Summary & Outcome will summarize the results and contributions of
this thesis.
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CHAPTER 2
Background & Preliminaries

2.1 Approaching the SAT-Solver

Co
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P ≠ NP P = NP

NP-Hard
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P

NP

NP-Hard

P = NP
≃ NP-Complete

Figure 2.1: Euler diagram for P, NP, NP-complete, and NP-hard set of problems. From
https://en.wikipedia.org/wiki/P_versus_NP_problem accessed on 7.3.2024
16:06

In the realm of computational complexity, it is essential to classify algorithms on their
needed computational power. One very important differentiation is between P and N P
[For09]. It addresses the question, whether something that can be verified efficiently
(in polynomial time, thus called P) can also be solved efficiently (N P, standing for
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Non-deterministically Polynomial). So far, there has been no answer to this question,
and it stands as one of the big questions for modern-day computer science.
We differentiate two cases, either P = N P which would mean that, a problem that
can be verified efficiently can also be solved efficiently, or P ≠ N P which means there
are problems that are harder to solve than to verify. For now, we know of many such
problems that we can verify efficiently, but do not (yet) know an algorithm that can
efficiently solve them. Therefore, we have to submit to the assumption that P ̸= N P
and deal with the complexities that arise from it.
The challenge of computer science often lies on the boundary between P and N P.
Finding the best possible algorithm for a given problem can be really challenging and
hard, especially if the problem is N P. Fortunately there is a further class that we call
N P-complete. Every problem in N P can be effectively reduced (converted) to any
problem in the N P-complete class. In other words there is a polynomial time conversion,
which we can utilize to convert any N P problem into a N P-complete one. The Cook-
Levin theorem serves as proof for this fact and uses the problem of Satisfiability Solving
as a prime example of a N P-complete one.
Satisfiability Solving is therefore a cornerstone algorithm that enables the solving of
numerous problems. If we face a N P-Problem in any domain now, we know that there
must be a way to convert the problem to the satisfiability problem. This is a very
important approach, and we will make use of this fact in many of the following chapters.

2.1.1 Satisfiability Solving
Given a propositional formula φ, Satisfiability Solving can be defined as the finding of an
assignment A of each variable in φ to {0, 1} such that φ is true. If such an assignment
can be found we consider φ SAT else φ UNSAT [MSLM21].
SAT-Solvers require the formula φ to be in Conjunctive Normal Form (CNF). Any
arbitrary propositional formula can be converted to CNF. Chapter 4 will describe the
reduction steps needed for arbitrary propositional logic.

CNF

A CNF-formula is a conjunction of clauses ω over boolean Variables X = {x1, x2, . . . , xn}.
Each clause is a disjunction of literals, whereby a literal is a variable either in positive xi

or negative ¬xi form [MSLM21].
Example 1 A simple exemplary CNF formula

φ = (x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x3 ∨ x4) (2.1)

The CNF can also be represented as set of sets:

φ = {{x1, ¬x2}, {¬x2, x3}, {¬x1, ¬x3}, {¬x3, x4}} (2.2)
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2.1.2 From DPLL- to the CDCL-Algorithm
Recent years have shown a lot of progress in the domain of SAT-Solvers. [KIMS21] There
is a wide consensus about this fact, and it manifested in several SAT competitions year
by year, where improved versions of the previous year or even completely new solvers
have been released and are able to reach better and better performance scores1.

One of the first SAT-Algorithms was the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm [OC99], which is the core of many modern SAT-Solvers, though many opti-
mizations have been added over the years. The DPLL-Algorithm works by applying
unit-propagation until there is no more unit to propagate. Afterwards, it picks a literal
and assumes that to either be true or false and recursively calls DPLL for each case. If
both cases are UNSAT, then the result is UNSAT.

Algorithm 2.1: DPLL-Algorithm [OC99]
Data: φ in CNF Format
Result: SAT or UNSAT

1 while exists {u} in φ that has length of at most one do
2 φ ← φ|u
3 end
4 if φ is empty then
5 return SAT;
6 end
7 if φ includes an empty clause then
8 return UNSAT
9 end

10 u ← choose a literal in φ;
11 if DPLL(φ|u) is SAT then
12 return SAT;
13 end
14 if DPLL(φ|¬u) is SAT then
15 return SAT;
16 end
17 return UNSAT

Unit Propagation

Unit propagation is happening in lines 1-3 in Algorithm 2.1. A unit-clause is a clause
which has only one literal, and because the clause must have at least one literal satisfied,
we can assume the literal to be satisfied. As a consequence, we can assume this literal to
be true and consider all clauses in which the literal occurs as satisfied. In clauses where
the literal occurs in the negated form, we can remove the literal. This might lead to new

1http://www.satcompetition.org/ accessed on 15.10.2024 22:28
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unit clauses, and we can repeat this process till there is no unit clause left. Hence, it is
called unit propagation.

CDCL

Conflict-Driven Clause Learning (CDCL) Solvers are an improvement of the DPLL-
Solvers since they do not need to copy φ for each branch. A lot of research has been done
to improve CDCL and many key techniques have been added over the years [MSLM21]:

• Using backtrack search to learn new clauses [SS97].

• Exploring the structure of the implication sequence to find the assignments that
are directly responsible for the conflict [SS97].

• Utilizing lazy data structures for deleting clauses that were added during clause
learning [MMZ+01].

• Reducing the overhead on the decision strategy to make more efficient decisions.
[MMZ+01].

• Restarting the solver using randomization to mitigate the solver getting stuck in
long tails [GSK98].

2.1.3 Prominent Solver Backends
In the world of science as well as the industry, there has been a lot of interest in advancing
SAT-Solvers and making them more performant, reliable and simpler to use. This goal
has lead to The International SAT Competition2, an international competition that takes
place annually. Numerous SAT-Solver implementations compete against each other to
evaluate which one is the best on a wide variety of different problems.

Several prominent solver backends have been the result of this competition. Here is a
small overview over what the author has identified as prominent solvers:

• MiniSat is a solver developed to be minimalistic, open-source and highly efficient.
It performed really well in the 2005 competition and aims at being a good starting
point for researchers and developers to get started with SAT.
Website: http://minisat.se/ accessed on 15.10.2024 22:28

• Glucose has ranked top places in different categories over several years since its
introduction 2009. It is heavily based on MiniSat in its core but improves the solver
by focusing on removing "bad" learnt clauses and thereby enhancing performance.
Website: https://www.labri.fr/perso/lsimon/research/glucose/
accessed on 15.10.2024 22:28

2The International SAT Competition Web Page http://www.satcompetition.org/ accessed on
15.10.2024 22:28
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• CaDiCal is a solver introduced in 2019 and has won first place in the SAT track
in that year. CaDiCal is designed to be easy to understand and modify which has
made it very influential since many new solvers are based on its implementation,
and there is a distinct category of solvers based on CaDiCal in the recent SAT
competitions called the CaDiCaL 1.5.3 Hacks Track3.
Website: https://fmv.jku.at/cadical/ accessed on 15.10.2024 22:29

• Kissat is a reimplementation of CaDiCal in C that focuses on condensing and
improving performance. It has won the SAT-Track in 2020. One downside is that
it is not yet possible to use it incrementally.
Website: https://fmv.jku.at/kissat/ accessed on 15.10.2024 22:29

2.1.4 Incremental SAT-Solving
Many of the mentioned solvers support incremental solving, where clauses can be added
to the solver in phases [FBS19]. For each solve call in a given phase, all the clauses
added till this phase are considered. Furthermore, a set of assumption literals A can
be supplied, and all solutions τ will hold τ ⊂ A [NR12, JBNJ22]. This extendable
and assumption-based approach offers many possibilities for reusing SAT-Instances for
different solver calls in a given problem-space.

Furthermore, solvers can extract unsatisfiable cores, if the formula is unsatisfiable, given
the assumptions [JBNJ22]. An unsatisfiable core is a –mostly small but not necessarily
minimal– subset of the assumptions Acore ⊂ A, where the formula is also unsatisfiable,
given the assumptions Acore.

Practically, unsatisfiable cores offer comprehensible and traceable reasons for understand-
ing the unsatisfiability of a given problem. Therefore, they are useful for debugging as
well as analysis tasks.

2.2 Feature-based Documentation
FBD is a documentation system, designed towards modular product platforms. By
systematically describing all the product-variations of the platform in terms of features,
it facilitates dynamic composition of novel product configurations from predefined mod-
ular components. This empowers companies to offer the customer a high degree of
customization, while still keeping the documentation manageable.

The creation of a platform based on FBD follows several steps as outlined in Figure
2.2 [WB23]. The lifecycle starts with the platform definition phase where the market is
analyzed and segmented. The product positioning can consequently be done to target
segments of the market that promise a good market fit. Based on the market knowledge,
the base-type and the feature lists of the FBD system are created. This phase is finalized

3CaDiCaL 1.5.3 Hacks track https://satcompetition.github.io/2023/tracks.html
accessed on 15.10.2024 22:28
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Figure 2.2: Platform Management [WB23]

by planning for volumes and defining the pricing, since now have a concrete definition of
what we want to create.

The next step is platform creation where we will plan the whole product on the technical
side and define all the parts and processes that go into building it. This phase ends
with the Start Of Production (SOP) where the first product will be produced for the
customer.

After the start of the production, there is still demand for platform maintenance because
the cost needs to be controlled, regulations be considered, or a facelift is done to slightly
upgrade the product to make it more attractive for customers. At the end of this phase
is the End Of Production (EOP), where the production of the platform ends.

2.2.1 Defining the Goal
For an Original Equipment Manufacturer (OEM) it is important to be competitive and
strive for economic goals [WB23]. These goals may include:

• Serving new markets

• Complying with legislation for emissions, noise, safety and security

• To adapt to increasing customer demands

• To offer new functionality

These challenges force the OEM to constantly extend and adapt the product range to
stay ahead on the competition. FBD serves as an enabler for the product platform to
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constantly grow and to be extended on a granular level without re-engineering the whole
product.

In the product planning process, there are many departments as well as internal and
external players involved, each with different objectives of what they want to achieve.
These different objectives are the perfect feeding ground for organizational strain. Figure
1.1 illustrates one of those strains.

On the one side, there is the sales department which has the core objective of satisfying
the customer and offering the best possible product. Because the better the product fits
the customer’s needs, the likelier it is that the product is chosen.

On the other hand, there is the sales department. From its perspective the goal is to
have as few technical solutions as possible. Every technical solution (in other words part)
needs to be developed, tested, constructed and logistically planned, etc. and therefore
takes valuable resources that we ought to spend carefully.

The task of variant and complexity management is to deal with these different sides and
to weight the advantages and disadvantages of certain product decisions to find a balance
between both objectives.

2.2.2 Intro to the Example TT-Platform

Figure 2.3: Lineup of the Tamiya TT-Platform [WB24]

To demonstrate FBD and Modular Product Platforms, EFS Consulting has chosen an
example product that brakes down many of the aspects and challenges of large product
platforms to an understandable and compact version. This example product has been
used as the foundation for modularity workshops with different companies from around
the world. In the same way, it will also serve in this thesis for different explanations as
well as qualitative evaluation of the algorithms.

The chosen product platform is the Tamiya TT-Platform for model RC cars which
consists of a predecessor, a successor and a derivate of the successor as illustrated in
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Figure 2.3. This setup allows us to properly discuss common effects of generation change
(TT01 to TT02 ) as well as product derivates (TT02 to TT02B).

The ratio for choosing model RC cars is that they are functional and not "just toys".
They need to properly deal with the mechanical and electrical stresses of driving –often
in pretty rough conditions–. They are also extendable and customizable in terms of the
wheelbase, motor/ESC configuration, batteries, etc. Therefor, they occupy a middle
ground between completely pre-built, fixed product and the limitless configurability of a
Lego like system which would be impractical and not purposeful for demonstration in
this context.

As an add-on the author has developed an autonomous driving module that extends
the TT02 model. The concept was adapted from the F1Tenth Race cars and combined
with the NAV2 stack for autonomous driving. Together they provide the ROS2 nodes
needed for the hardware interaction as well as the algorithms and controllers to achieve
autonomous navigation based on LIDAR data. This also targets the complex world of
hardware and software integration.

2.2.3 Features

As the first step, it is important to have a common language to express the variations of
a product. This is done by utilizing the features and feature groups.

Each Feature group describes a dimension in which the product can vary. For our
TT-Platform such dimensions are the wheelbase, the motor power, clearance, spur width
or the Battery size (see Figure 2.4). A feature is a selected value in a feature group.
As example for the Feature Group wheelbase, a feature would be 257mm. To order a
product, a customer has to select the features that match the given desire/requirement.

Each Feature also has a code assigned to it that represents the variation of change as a
concrete value. These codes later serve as variables in the conditions that will be written.
In Table 2.1 the exemplary features from Figure 2.4 are assigned to codes. For example
the representation of the wheelbase of 257mm is WB_257

In Table 2.1 a list of all the features groups and their features are given. Altogether,
there are 16 groups with 39 codes.

Feature Combination Explosion

Given the Feature list in Table 2.1 we can compute the amount of combinations by
multiplying the amount of codes for all feature groups. In the case of this rather simple
product, the amount theoretically possible combinations already reaches around 125
thousand (see in Table 2.2). In large scale product platforms, the amount of combinations
is often way larger exceeding the 10100 possibilities.
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Figure 2.4: Exemplary description of a Feature as a dimension of variation [WB24]
(Illustrations taken from the TT-02 Chassis Manual [TAM13])

Configuration Space

BASE 10 105.09

Total 124 416

Table 2.2: Combination Space

Feature based documentation takes on the challenge of maintaining this huge amount
of combinations and enabling a way to build every possible combination, even though
the whole configuration space is not practically enumerable. To make this work, Section
2.2.7 will explore a way to dynamically allocate the needed parts and processes, but first,
let’s take a closer look at the features.

2.2.4 Configurations

A configuration is a selection of features by a customer. It can be represented as a list of
feature codes e.g. {WB_257, GC_STD, ..., SV_6V_8K}. This selection of codes is
called complete if it contains a code for every feature group. A complete configuration is
a perquisite for a buildable product. Buildable means that this product can actually be
created in a production process and delivered to the customer.

In reality, customers typically select only a subset of features that are important to
them and leave out the other ones. This necessitates the automatic completion of the
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TT-Platform Feature List
Feature Group Feature Codes Feature Description
Model Type TT_01 TT_01_Chassis
Model Type TT_02 TT_02_Chassis
Model Type TT_02B TT_02B_Chassis
Generation PF_G1 Generation 1
Generation PF_G2 Generation 2
Usage ON Onroad
Usage OFF Offroad
Wheelbase WB_257 Wheelbase 257mm
Wheelbase WB_251 Wheelbase 251mm
Wheelbase WB_266 Wheelbase 266mm
Ground Clearance GC_STD Ground Clearance std
Ground Clearance GC_HIGH Ground Clearance high
Chassis Width XW_STD Chassis Width std
Chassis Width XW_WIDE Chassis Width wide
Motor Type M_TYP_540 Motor Type 540
Motor Type M_TYP_380 Motor Type 380
Motor Type M_TYP_BRUSHLESS Brushless Motor
Motor Ratio RATIO_1961 Gear Ratio 19:61
Motor Ratio RATIO_2270 Gear Ratio 22:70
Motor Ratio RATIO_1770 Gear Ratio 17:70
Chassis Damping XD_AIR Chassis damping, air
Chassis Damping XD_OIL Chassis damping, oil
Suspension Stiffness XS_SOFT Suspension stiffness soft
Suspension Stiffness XS_STD Suspension stiffness med
Suspension Stiffness XS_HARD Suspension stiffness hard
Tire_Wheel TW_ON_SLICK Tires; onroad, slick
Tire_Wheel TW_ON_PROFILE Tires; onroad, profiled
Tire_Wheel TW_OFF_SPIKE Tires; offroad
Body Length BODY_STD Body length, std
Body Length BODY_LONG Body lenght, long
Batt Capacity AK_NIMH_3000 7.2V, 3000mAh (21Wh) - NIMH
Batt Capacity AK_LIPO_3300 11.1V, 3300mAh (36.63Wh) - LIPO
Servo SV_6V_8K Steering servo; 6V/8KG/0,15s
Servo SV_6V_20K Steering servo; 6V/25KG/0,14s
Autonomous Control AI_MANUAL Manual only control
Autonomous Control AI_BREAK_ASSIST Break assist
Autonomous Control AI_SELF_DRIVING Full self-driving
Voltage Monitor WO_VOLTAGE_MONITOR Without Voltage Monitor
Voltage Monitor W_VOLTAGE_MONITOR With Voltage Monitor

Table 2.1: Feature List Table

configuration to ensure that it is buildable. This completion process creates opportunities
for optimization, which we will leverage using MaxSAT-Solvers in the course of the thesis.

2.2.5 Base-Type
Now that we know in what ways our product platform varies, we have to start defining
the actual products that we want to sell to the customer. For this step in product
planning, it is really important to properly understand what the product strategy and
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market segmentation is and how it affects the products we create.

For the example of the Tamiya RC car, there are several market segments we want to
serve. These segments include buggies, race-cars, entry-level cars, etc. Our goal as a
company is to serve all those diverse segments with very dissimilar requirements which
will lead us to engineer cars they may vary in core technical aspects. Consequently, it
makes sense to group them into different base-types and plan each of the base-types
separately.

In FBD, base-types share the same feature definitions. They define a subset of features
that are allowed for them. Furthermore, a standard value is selected per feature group to
deal with optional features. Figure 2.5 visualizes the definition for example base-types
by defining S (Standard) and O (Optional) feature selections for each base-type.

These core technical variations can be described by selecting a technical core of base-type
features. In the example in Figure 2.5 the technical core is defined as the wheelbase and
the motor type. These feature groups are very central to the product. For each feature
group in the core, there is a standard feature defined for each base-type and no optional
ones are allowed.

A company might have different objectives when creating base-types. Base-types can be
defined very broadly to allow many optional values. This would lead to a very diverse
product allowing a lot of customer choice. The other option is having a very strong
base-type definition which does not allow many options and therefore takes away a lot of
choice from the customer.

This decision boils down the product positioning of the company. On the one hand, if
the product positioning intends to serve a very specific market segment, it makes sense
for the company to have a strong base-type and focus on designing this base-type very
well. On the other hand, a company can choose the strategy to target a very broad
market spectrum and not specialize very much. In this case, a weak base-type makes
sense, leaving a lot of choice for the customer.

Defining the Technical Core

Base-types have a deep technical implication on the product’s documentation because
every base-type will be documented and planned independently. The goal of the base-type
is to separate different product variations, that exhibit significant technical distinctions,
so that they are better planned independently.

This can be illustrated by the extremes: If a company opts to take a lot of features into
the technical core of the base-type definition, the number of base-types would be very
high. Now every base-type has to be planned and maintained independently and therefore
the over-arching goal of sharing functionality between different product variances is not
fulfilled, and extra management effort is introduced.

The other extreme would be to only have one base-type. This reduces the management
effort in the first place, but now there are features that create a lot of technical complexity,
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Figure 2.5: Exemplary description of a base-type as the core technical variations. S
stands for standard and is the default selection while O are optional features that can be
selected by the customer

and hence the documentation for this single base-type becomes super complex. For a
truck, the wheelbase of the tires has many implications on the steering system, the
braking system, the power transmission, etc. Because of this, it makes sense to take these
feature groups into the base-type definition and plan the different variants independently.

To summarize, the goal should be that the technical core is as small as possible, but still
includes features that have a huge influence on many core parts of the product.

2.2.6 Bill of Material (BoM)
To manufacture a product, a list of subparts need to be assembled into the full product.
These subparts are documented in the so called BoM, which contains this list of parts.
On technical drawings the BoM is normally located on the right lower side of the sheet
and describes the parts and relevant information like the exact part number, mechanical
characteristics, CAD File references and a whole range of descriptors [Tea02].
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The BoM is a very central part of a product lifecycle through all stages of a product’s
existence. It connects and retrieves its data from several data sources across the company
like the Product Lifecaycle Management (PLM) system, Computer Aided Design (CAD)
resources or different Enterprise Resource Planning (ERP) tools.

2.2.7 Assignment

Figure 2.6: Exemplary description for the assignment of technical solutions on base-types

Now, we can take a look at what happens, when we extend the BoM with the concept of
product variation. This is done by creating a superset of all the parts that are needed
for the product. Hence this is called the SuperBoM (SuperBoM) or also 150%-BoM in
some contexts4. To filter out the parts of the SuperBoM, that are needed for a given
variant, a mask must be applied. This mask is just a matrix that assigns subparts to
products, which is illustrated in Figure 2.6.

This matrix based assignment can work pretty well for a small product platform, but
for bigger platforms, whose amount of variations is diverging, a better solution must
be found. This is where the usage condition comes into play. A usage condition is a
formula based on predicate logic that describes when a certain part will be assigned to a
configuration. The variables used are the features and the operators are And, Or and
Not.

4The 150%-BoM is in contrast to the 100%-BoM, where the 150%-BoM documents several variations
and the 100%-BoM only one
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Figure 2.7: Excerpt of the SuperBoM and assignment of technical solutions based on
usage conditions

Most commonly, + is used for And, / for Or and - for Not. Furthermore, parentheses
can be used can be used to group sub-statements together. As example take a look at the
following statement A+(B/C)+-D which represents A ∧ (B ∨ C) ∧ ¬D. Section 4.5 about
Pratt Parsing will give a more detailed look into the formulation of the usage conditions
and their grammatical structure.

Figure 2.7 extends Figure 2.6 by adding the usage conditions. In this case, the conditions
are rather simple. For example the part 104.02.02/01 (2.5” onroad profile wheel) has
the usage condition TW_ON_PROFILE, and therefore all configurations that include the
TW_ON_PROFILE feature, will allocate this part. For larger-scale documentation systems,
these condition become more complex and often include several parenthesis layers as well
as features from many different feature groups.

In Figure 2.8 the assignment process is illustrated on a higher level. For large product
platforms, a further distinction is made, as the Structural Element (SE) is introduced. A
SE is an element that serves as a container for subparts out of which it is assembled, and
it is itself structured as a BoM. The assignment using usage conditions is happening on
the level of the SE. As illustrated in Figure 2.8, each base-type gets SE assigned through
a usage condition and each SE has all needed parts assigned in a hierarchical structure.
For the rc-car, one such SE could be a LED lamp. The lamp is assigned to the base-type
with a usage condition and the parts are assigned through the SEs hierarchical structure.

Each SE is part of a Structural Family (SF), which is a group of different SEs that share
the same function but are technical variations. For example, the SF Lamp contains
different lamp types like the LED lamp, Halogen Lamp, or the Mini-LED-Lamp.
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Figure 2.8: Drawing of how the SuperBoM assigns technical solutions and parts in a
hierarchical order to possible configurations [WB23]

Making use of the usage conditions, we can now dynamically compute the BoM for
different configurations by evaluating the usage conditions of all parts against the chosen
codes in the configuration. We have achieved the goal of getting from a customer order
(configuration) directly to the products (BoM) and hence the deliverable product. The
challenge now is how to write a proper usage conditions. Some requirements that go into
this are listed in Section Distinctive, Complete and Consistent, and also a process will be
introduced in Section Module Interface Analysis that derives the feature groups, that
each module depends on. But first, we need to take a look at one more concept, which is
called restrictions.

2.2.8 Restrictions

Restrictions prohibit certain combinations of features. For example, an off-road wheel
can only be ordered in combination with the off-road suspension. Since the off-road
wheels are too big for the standard suspension, this restriction is caused by a geometrical
constraint. Restrictions are expressed as implications, so for example we can say that
TW_OFF_SPIKE implies OFF.

Restrictions can be introduced for several reasons:

• Technical In Feasibility
A certain combination is not technically possible because of some interfaces and/or
rules, regulations, or norms.

• Market Segmentation and Brand
If our brand aims to target a specific market, we want to eliminate other options
that do not fit the image of the brand.
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• Economical Viability
This combination would see only a small amount of customer interest and is therefore
not viable.

TT-Platform Restrictions
Premise Consequence
TT_01 PF_G1

TT_02/TT_02B PF_G2

TT_01 ON+GC_STD+-M_TYP_380

TT_02/TT_02B BODY_STD

TT_01 -AK_LIPO_3300

TT_01 RATIO_1961

TT_02 RATIO_2270

TT_02B RATIO_1770

WB_266 -XW_WIDE

ON TW_ON_PROFILE/TW_ON_SLICK

OFF TW_OFF_SPIKE

ON WB_257/WB_251

OFF WB_266

ON XD_AIR

OFF XD_OIL

ON XS_STD

TT_02 ON

TT_02B OFF+GC_STD

TT_01 AI_MANUAL

TT_02B AI_MANUAL/AI_BREAK_ASSIST

TT_01 -M_TYP_BRUSHLESS

AI_SELF_DRIVING M_TYP_BRUSHLESS

AI_SELF_DRIVING SV_6V_20K

AI_SELF_DRIVING AK_LIPO_3300

AI_SELF_DRIVING WB_251

W_VOLTAGE_MONITOR AK_LIPO_3300

Table 2.3: Example list of base-type to feature restrictions

Types of Restrictions

Restrictions can be separated into two groups [Bru20]:

• Feature to Feature
Feature to Feature restrictions are within a feature group and define which features
can be combined. For the context of this work we will consider this condition to
be an OneHot constraint such that each feature group can have only one feature
selected.
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• Base-Type to Feature
Each base-type can define restrictions. These are written as implications where
the premise is just one code and the consequence is an arbitrary code condition
as listed in Table 2.3. With this pattern, it is intuitive to understand restrictions
because they can be displayed as implication graphs and chains. Furthermore, for
writing a restriction, a feature can be assumed, and then it can be argued what
must be true for this feature to be buildable. For example, if we want to build a
rc-car with WB_266, XW_WIDE cannot be selected.

2.2.9 Formal Definition
To summarize this introduction to FBD this section defines a formalism for a D instance.
The sequence of definitions follows the storyline of the previous chapter.

A D instance is defined over a tuple of Features, Base-Types, Restrictions and Assign-
ments.

D = ⟨F, {B0, B1, . . . , Bn}, {R0, R1, . . . , Rn}, {A0, A1, . . . , An}⟩ (2.3)

Firstly we take a look at the first element of the tuple, the features F which are defined
over a set of feature groups G0, G1, . . . , Gn.

F = {G0, G1, . . . , Gn} (2.4)

Each feature group Gi represents a dimension of variation and encodes the possible values
in this dimension as the codes ci,0, ci,1, . . . , ci,n. Each of these codes is unique over the
whole instance and occurs in only one feature group.

Gi = {ci,0, ci,1, . . . , ci,n} (2.5)

The base-type B is defined over a identifier b and a subset of codes c of the Feature
definition. If c is Standard or Optional is for this consideration not relevant, the set
defines that these choice are possible.

B = {⟨b, c⟩ | c ⊂

i

Gi} (2.6)

Restrictions are defined per base-type and code. The base-type and the code can only be
configured, if the formula f is satisfied.
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R = ⟨b, c, f(c0, . . . cn)⟩ (2.7)

The given tuple can be interpreted by using the implication.

φ(R) = (c ∧ b) ⇒ f(c0, . . . cn) (2.8)

Each SE (part) defines a base-type b and a usage condition. If the base-type is selected
and the usage-condition is satisfied, then it is allocated, else it is not needed for this
configuration.

A = ⟨b, f(c0, . . . cn)⟩ (2.9)

The interpretation is that a part will be used, if the base-type b is selected and the
condition f is satisfied.

φ(A) = b ∧ f(c0, . . . cn) (2.10)

To encode the feature groups, we use the OneHot encoding, which is a combination of the
At-Most-One and the At-Least-One constraint. It defines that out of the Feature-group
Gi always exactly one element must be chosen. The following formulation is a naive
implementation. The At-Least-One constraint is trivially implemented using a Or-clause
and the At-Most-One is implemented using a pairwise encoding by iterating over all
possible combinations of cardinality 2 and defining that they cannot be true together.

Θ(G) =



ci∈G

ci ∧
�

ci∈G

�
ck∈G,k<i

¬(ci ∧ ck) (2.11)

This naive At-Most-One constraint method can be improved by using methods like the
Commander Encoding, the Product Encoding, etc. as outlined and compared in the paper
Empirical Study on SAT-Encodings of the At-Most-One Constraint [NNKB21].

The interpretation of this instance as a SAT-Problem is given by the following definition:
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φ(D) =
�

Gi∈F

Θ(Gi) ∧ (2.12)



b∈B

b ∧ (2.13)

�
Gi∈F

� �
c∈Gi

(c ⇒



⟨b,C⟩∈B | c∈C

b )
�

∧ (2.14)

�
R

φ(R) (2.15)

The first line of the formula combines the OneHot encoding of the all feature groups. The
second line is the selection of the base-type. The solver must select at least one base-type.
Thirdly, we have the base-type definition which defines that if a code is selected, it must
be part of the selected base-type. Therefore, the code implies that at least one base-type
must be selected, of which it is a part. Lastly, we have the Restrictions that are all added
to the formula given their interpretation (Definition 2.8).

Now the FBD-Instance is created. Depending on the use-case, we can also encode the
assignments A into the instance using the interpretation above.
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CHAPTER 3
State of the Art

& Contribution to the Domain

The author has written a bachelor thesis with the title Application of SAT-Solvers in
Feature-based Documentation Systems [Bru20] which explored how SAT-Solvers can be
used for formal verification and analysis tasks within FBD. It already hinted MaxSAT-
Solvers as having possible applications but did not yet elaborate these ideas.

The following section will give a short explanation about core concepts in the bachelor
thesis around the SAT-Solver. It will also point out several refinements that have been
added to the method in the context of this thesis and the application in practice.

The author’s bachelor thesis defined a way to do reductions from code conditions to the
satisfiability problem. This reduction will be extended by adding several fundamental
improvements that will be described in Chapter 4. These improvements considerably
boost the performance since the problem exposed to the SAT-Solvers is reduced in size.
Also, for the parsing, the author proposes a method, based on the Pratt Parsing technique,
that yields better performance, understandability and addresses imperfections with the
original top-down parser.

3.1 Distinctive, Complete and Consistent

The assignment of SEs must adhere to several requirements that make sure that the
product generated by the SuperBoM is always buildable and deliverable. All of this can
be verified using a SAT-Solver [Bru20]. In the bachelor thesis, the author declared the
following definitions, which have been updated to the new formalism.
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Consistent

Figure 3.1: Illustration of Consistency

The usage conditions of SEs must be consistent with the restrictions. For example a
certain part in the suspension has the condition WB_266+XW_WIDE. This condition can
never be true because WB_266 cannot be combined with XW_WIDE. Therefore, the part
will never be used and can consequently be eliminated from the product.

Definition 3.1.1. Given an assignment A, it is consistent if φ(D) ∧ φ(A) is satisfiable.

Nevertheless, it has to be considered that documentation systems are dynamic and subject
to change. It may be that a certain restriction is only true for a certain time, due to a
temporary regulation. Because of that, a computation of all inconsistent SEs might be
helpful, but one has to take several factors into account before removing a SE.

Complete

Figure 3.2: Illustration of Completeness

Every possible configuration needs to allocate all the SEs that are needed to build it and
may not miss any essential SE. For example, there should not be a configuration without
a motor for the rc-car, because the motor is an integral part for the rc-car to work. In
other words, the disjunct usage conditions of all SEs in the motor SF must cover all
possible configurations – or at least for all configurations where the module is necessary.
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Definition 3.1.2. The set of assignments {A0, A1, . . . , An} is complete, if φ(D) ∧ ¬(A1 ∨
A2 ∨ · · · ∨ An) is not satisfiable.

Distinctive

Figure 3.3: Illustration of Distinctiveness

The following definition defines that there is at least one element of each essential SE,
and there also must not be more than one. The rc-car only needs one motor to work and
not more than one.

Definition 3.1.3. The set of assignments {A0, A1, . . . , An} is distinct if 	
Gi∈F Θ(Gi) ∧

Ai ∧ Aj is not satisfiable for all pairwise combinations (Ai, Aj).

3.2 Exclusivity
One essential part of the bachelor thesis is the concept of exclusivity and satisfiability
of SEs. The bachelor thesis the author has defined how to compute the exclusivity of
a given condition against a premise and evaluated that using a SAT-Solver. Since the
bachelor thesis, the concept has been used in many scenarios and has been extended.

One shortcoming of the bachelor thesis was that exclusivity was only considered from a
given premise to a condition without taking into account the whole context of feature
groups, base-types and restrictions. In practice, it has been shown that computing
exclusivity by taking the whole D instance into account is way more effective and yields
up to 10 times the amount of exclusivities.

Given that we look at exclusivity now from more general perspective, the most intuitive
way to explain it, is by using set theory. In Figure 3.4 this concept is explained by
illustrating the set of all possible configurations.

First, let’s take a look at the set of all possible configurations (SE allocation). Each SE is
allocated by its usage condition and the base-type. In the set of all possible configurations,
these define a subset that is schematically drawn in Figure 3.4.
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Figure 3.4: Explanation of satisfiable and exclusive SEs based on set-theory

Now we can define a further subset P , which also represents usage condition defining a
base-type and code string. We use this as the premise for the following steps. Now, two
important questions can be asked given P .

Firstly, which SEs can be allocated to configurations that are also allocated in P?
Speaking in set theory: A ∩ P ̸= ∅. There are many real use cases where exactly this
question must be asked.

For example, a company decides to build a new plant that only produce rc-cars with
the NiMH battery, since handling of the alternative LIPO batteries has many complex
requirements for storage and handling. With this method, we can compute all the still
allocatable SEs and only do homologation and logistics in that plant for those SEs.

Secondly, which SEs are only (exclusively) allocated given P . In set notation that would
be A ⊂ P . This can be used to optimize product platforms by eliminating SEs. For
example, if a certain battery and motor combination is not sold very often, then we can
compute what SEs are only allocated to this combination, these SEs could consequently
be removed from the product portfolio, saving resources in construction, homologation
and logistics.

Describing these concepts with Set-theory makes it easier to understand and explain the
concept. But there is also a derived formulation in propositional logic.

Definition 3.2.1. We consider A satisfiable, if φ(D) ∧ φ(P ) ∧ φ(A) is satisfiable.

Definition 3.2.2. We consider A exclusive, if φ(D) ∧ φ(P ) ∧ ¬φ(A) is satisfiable.
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These theorems can be computed using a SAT-Solver by utilizing the formalism in Section
2.2.9 and applying the reduction pipeline in Chapter 4.

3.3 Module Interface Analysis
This part explains the Module Interface Analysis which is a process proposal by the
author. It aims at creating the allocations for parts in a FBD starting with the modules
and ending with a consistent, complete and distinctive FBD instance. The process follows
6 steps, including 1 optional. The whole process is drafted as a linear process, but in
practice, the intention is that there are several refinement steps in which certain findings
in a later stage trigger a rework in an earlier stage and trigger a redoing of the consequent
steps. The goal is to create a proper decomposition of the product, by utilizing interfaces,
such that each dimension variation (feature group) is contained in a minimal amount of
modules.

Figure 3.5: Illustration of the interfaces for the example Interface Graph

In Figure 3.5, a schematic view is given over the ESC, the motor, motor mounting and
the pinion gear, and the interfaces with which they are assembled. In this example, we
differentiate between 3 different interface types:

• Geometric interfaces, for parts that need to fit together geometrically.

• Electrical Power interfaces where electrical power is conducted.

• Mechanical Power interfaces for the transmission of mechanical power.
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Figure 3.6: Exemplary Module Interface Boundary Graph of Figure 3.5

In Figure 3.6 the schematic view in Figure 3.5 is represented as a Module Interface
Boundaries (MIB) graph. In this graph the modules are nodes and each interface is
represented as an edge between two nodes. Furthermore, there are annotations for the
feature groups that influence each module (M, GR) as well as the influence boundaries
(dark red lines), which will be explained in the outline of the process.

The aim of the process is to create a connection between the MFD method and FBD.
The starting point for this process is the Module Interface Graph which are an output
of the step number four in MFD (Chapter 1.1.2). For the complete car a full module
interface graph is given in the appendix in Figure A.1.

3.3.1 Outline of the Process
In Figure 3.7 the 6 steps of the process are illustrated and are explained in the following
enumeration.

1. Identify Modules & Interfaces
In the first step, the module interface graph is created (or taken from the preceding
MFD) by defining all the modules of the product and creating all the interfaces
between them.
Depending on the maturity of the project, this graph can be drawn in an abstract
high-level manner and or also on a very granular level, if the product is mature
enough. Throughout the development process, this graph can be refined and
extended whenever needed.

2. Define Primary Drivers
In this step we need to define which module is dependent on which feature group.
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Figure 3.7: The 6 steps of the Module Interface Analysis

We can define primary drivers which represent a feature group that have a direct
influence on a module. For example, the motor type will be a primary driver for
the motor module and the gear ratio will be a primary driver for the pinion gear.
The primary drivers are annotated on the graph using the orange badge.

3. Derive Drivers & Define Boundaries
In the next step we will analyze how the primary drivers will affect the surrounding
modules. The core idea is that each driver will propagate along each interface,
except, if the interface serves as a boundary for that influence. The result of this
step is a MIB graph (Example 3.5).

For example, the motor module has a mechanical interface to the pinion gear and
a geometrical interface to the motor mounting. Because of that we need to analyze,
if the different motor variations will require different motor mountings and pinion
gears or if all motor types can be served with a single variant.

If the latter is the case, we have achieved to create an influence boundary, since
the motor type will no longer be a cause of variation for the motor holder. This
boundary will be annotated using the dark red lines on the interface edges.
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Otherwise, if we cannot create one single motor holder through a standardized
interface, we need to propagate the influence of the motor type to the motor holder
module by creating a derived driver (the gray badges). Now we have to repeat the
process and look at all the surrounding modules of the motor holder and discuss
the influence along all the interfaces.

4. Feature Driver Matrix
We can now leave the graph representation and compose the Feature Driver Matrix
(FDM) directly out of the annotated MIB graph from the step before. The FDM
contains all modules in the rows and all the feature groups in the columns. Whenever
a feature has a primary or a derived influence on a module, the corresponding cell
will contain a 1. The created matrix gives an overview over the influences and is
used to check if the created drives are sensible.

5. Identify Base-Types (optional)
As an optional step, the FDM view can be used to analyze the technical core of
the product by analyzing which feature group has the highest influence on the
product. Ordering the feature groups descending by the amount of modules that
they drive, the most complex feature groups can be identified. Out of experience,
there are mostly a few groups that are standing out compared to the rest. These
are candidates for being part of the base-type definition since they have a strong
technical influence on the product.

6. Allocate Technical Solutions
As a last step, we need to allocate the corresponding technical solutions to the
modules according to the module drivers given the combination of all the features
that have influence on the module. This is done by writing the usage conditions for
the parts and making sure that the distinctiveness (Definition 3.1.3), completeness
(Definition 3.1.2) and consistency (Definition 3.1.1) are taken into account. When
engineering new parts for the product, the feature drivers and boundaries need
to be taken into account such that the interfaces implement the defined influence
boundary. Inconsistencies or issues with implementing a boundary can trigger a
modification of the boundary and a refinement of the prior steps.

3.4 Involvement of the Author

For several years the author has worked in a company called EFS Consulting which
focuses on consulting companies in the automotive industry and has its roots in managing
modular platforms for large OEMs all over the world. Over the years, a lot of experience
has been gained in many aspects of this concept and the author has successfully introduced
several concepts around the SAT-Solver that help in the area of analytics and verification
as well as desktop tools that aim at improving visualization and analysis.
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3.5 EFS Modularity Suite
The EFS Modularity Suite, developed by the author together with a development team
at EFS Consulting, is a web-based multi-user tool, that is the perfect companion to plan
product variations and for creating a FBD instance. It includes automated verification
tests to guarantee the consistency, distinctiveness and uniqueness of the created usage
conditions and restrictions. Using SAT-Solvers, it can compute Variant Trees to visually
explore a certain configuration subspace and reason about the restrictions as well as
allocations.

The EFS Modularity Suite is fully cloud hosted and supports multi-user collaboration.
In Figure 3.8, an overview over the UI is given. In the main view, the Planner-view, we
can visualize variant trees for feature groups that can be selected in the panel on the
left side. On the right side, the module tree is shown with the module hierarchy and
the variants of each module. The activated variants (parts) are added as leaves to the
tree based on their usage-conditions. This view allows to simulate the allocation of parts
and verify the correctness. Furthermore, we can change the view to show only restricted
configurations, or configurations where no variants are allocated.

Besides the Planner-view there is also a Configurator-view with which a customer-facing
configurator can be simulated. Even productive customer facing configurators can be
created, which rely on the EFS Modularity Suite to resolve constraints and verify the
correctness of configurations.

Figure 3.8: Overview over the EFS Modularity Suite
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CHAPTER 4
Reducing to the Satisfiability

Problem

In Section 2.2, the concept of feature-based documentation and the crucial role that
usage conditions and restrictions play in it are explained. These conditions are written
in propositional logic with 6 different operators and possibly many layers of parenthesis.
To use these formulations in a SAT-Solver, we need a way to transform them into a set
of clauses (CNF), because this is the form that SAT-Solvers require.

There are several different methods to approach this and they mostly consist of three
main steps: Parsing, Transformation, Solving (see Figure 4.1). The following sections
will guide through all the steps and explain different options along the way.

Alongside this thesis, the author has implemented this pipeline in the Rust programming
language by creating a custom implementation for the Pratt-Parser and the Tseitin
Transformation. The SAT-Solver interface is created using the rustsat1 library. This
library provides interfaces to several different SAT-Solvers, including MiniSat, Glucose
and CaDiCaL. The subsequent algorithms rely heavily on this transformation pipeline.

A lot of programming languages offer parsing tools that can parse conditions based on
abstractly defined grammars. The author has analyzed several of these tools for use in
this context, but the effectiveness and simplicity of Pratt Parsers in combination with
the authors’ interest in how parsers work under-the-hood, has lead to the decision to
implement a custom parsing pipeline from the ground up and document the learnings in
this thesis. Furthermore, this approach offers performance benefits compared to larger
and more complex libraries that are not fine-tuned for the specific use-case.

1https://crates.io/crates/rustsat accessed on 15.10.2024 22:29
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Figure 4.1: Pipeline for reducing code conditions to the SAT-Solver

4.1 Step 1: Parsing Code Conditions
In the first step, the goal is to create a form of representation of the code condition that
can be used for further processing. A structure that does exactly that is the Abstract
Syntax Tree (AST). An AST is a tree representation where operators are tree nodes and
variables or constants are the leaf nodes. Each operator node has a number of children
on which its operator is applied on.

Figure 4.2: Illustrative example of an AST

This concept of ASTs is used widely in many areas of computer science. For example, for
creating compilers that parse code into an AST and that start the conversion to machine
code from there. The AST representation has the advantage that all the brackets and
operator hierarchies, and specialties of the syntax are taken into account and therefore
yield an unambiguous way of representing the underlying logic. And because of the
recursive nature of the tree structure, it is ideal to implement recursive algorithms that
traverse the tree and execute operations on each node. In future steps, we will take
advantage of precisely that.

The process of converting a code condition from a string into an AST is called parsing,
and there are several approaches to tackle this task.

One such technique is Pratt Parsing, developed in 1973 by Vaughan R. Pratt [Pra73].
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He described and argued the correctness of his approach in the paper. Several articles
have since tried to summarize and explain what Pratt’s original ideas were.

One such post is written by Bob Nystrom [Nys11], titled Pratt Parsers: Expression
Parsing Made Easy, which introduces the concept of the algorithms and compares it to
other parsing techniques. Furthermore, Martin Janiczek has written a blog post titled
Demystifying Pratt Parsers [Jan23] in which he tries to give a improved version of Bob
Nystrom’s article. He utilizes graphics and examples to aid better understanding of the
algorithm.

In the following, the author gives an overview of the Pratt Parser approach by starting
with the first step, which is called lexing.

4.1.1 Lexing

In the lexing step, the input string is converted into a stream of tokens. A token is
an atom (the smallest possible chunk) of the condition with a defined meaning [Nys11].
In Figure 4.3 this is illustrated. Lexing typically differentiates between several types
of tokens. For code conditions, the author has identified 3 main types of tokens: The
Variable Token, the Operator Token and the Bracket Token.

Figure 4.3: Lexing converts a given input string into its atoms

Firstly, the Operator Token differentiates between all possible operators. In code con-
ditions we have 6 different operators, as listed in Table 4.1. Operators are always one
character long, which makes the implementation of this lexer trivial because no lookahead
is needed.

The operators are differentiated between unary and binary. Unary operators bind only to
one side while binary operators bind to two sides. For example, in A+B: The + is binary,
because it binds the A on the left and the B on the right together. The negation in A+-B
on the other hand is unary because it binds to B, it expresses: "not B".

Secondly, a Bracket Token represents either an opening or a closing parenthesis. In
conditions, we only utilize parentheses, other types of brackets are ignored (square
brackets, curly brackets, etc.).
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Character Meaning Type Precedence
- Negation Unary 6
+ And Binary 5
^ XOr Binary 4
/ Or Binary 3
> Implies Binary 2
= Equals Binary 1

Table 4.1: Operator table

Lastly, everything that is not any of the above is considered a Variable Token. Variables
are strings that can take any length.

Separating the lexing step from the parsing step, allows the parser to focus on the structure
of the language, abstracting away the specific of the syntax. If another definition of
operators would be defined, where "And" is not represented by "+" but rather by "&", we
can still utilize the same parser and just need to swap the lexer.

4.1.2 Parsing using the Pratt Parser
After the step of lexing, we are ready to convert the stream of tokens into an AST. To
start this process, let’s take a look at one of the challenges of generating ASTs. Operators
have different precedence as listed in Table 4.1. The precedence defines which operator
is binding stronger, the higher the number the higher the "binding-force". [Jan23] For
example, let’s take a look at Figure 4.4. If we do not take precedence into account,
option 1 and option 2 would both be valid interpretations, even if they are not logically
equivalent.

As seen in the operator Table 4.1, the + (And) operator has a higher precedence number
and therefore it binds stronger than the the / (Or) operator. Hence, Option 2 is correct.

The Parser must be able to take the precedence table into account when parsing to
represent the right execution hierarchy in the ASTs.

The Pratt Parser approaches this the following way:
It defines a function pratt(limit,tokens) [Jan23] that takes the tokens as well as a
limit as input. It starts iterating the tokens given the precedence limit. When it reaches
an operator that exceeds the maximum precedence, it returns and will stop parsing.

The precedence of the top level parsing is the maximum (0). Because of this we can call
the parser routine with pratt(0,tokens) [Jan23].

In Figure 4.5 the internal program flow of the algorithm is illustrated. The parsing
function always starts with parsing the prefix/left sided operator, since the start will
always be a variable, either after a bracket or at the beginning of the input. This step is
Parse a prefix expr into left in Figure 4.5.
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Figure 4.4: The two possibilities of interpreting a condition are used to show why
precedence is needed

From there on we can iterate the stream token by token in a loop. The first thing that
happens in the loop is a check if the next token is an operator or any other symbol. If it is
not an operator, it will return the current left value. Else it reads out the precedence of the
operator and continues, if the precedence is higher than the limit, or exits returning the
current left value. If it continues, it parses the next operator by calling itself recursively
with the precedence of the current operator as limit. If it returns, it creates a new binary
operator with the current left and the result of the recursion as right. This is then the
new left, and the loop starts again.

After the top level function call returns, we need to check that there is nothing left
in the token stream. Otherwise, this would mean that there were too many closing
brackets. Conversely, if a subroutine reaches the end of tokens, there are too many
opening brackets.

4.1.3 Implementation by the Author
The author opted to implement the Pratt Parser in Rust based on the article by Alex
Kladov titled Simple but Powerful Pratt Parsing [Kla20]. Kladov describes a very effective
way to implement a Pratt Parser in Rust and utilize Rust’s powerful type system to keep
the code very clean, short and understandable.

The ratio for choosing Rust in the first place is the availability of open source multi-
objective MaxSAT-Solver as well as abstract bindings for SAT-Solvers. These well-
designed interfaces offer interoperability and are perfectly compatible with the created
parser.

The core function of the author’s implementation works with only 39 lines of code. Older
implementations by the author, which utilized top-down parsing approaches needed
several hundred lines of code. Therefore, the Pratt Parser is a huge simplification. It is
also able to generate helpful parsing error messages for different kinds of syntax errors.
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Figure 4.5: Pratt Parsing algorithm overview. From https://martin.janiczek.
cz/2023/07/03/demystifying-pratt-parsers.html accessed on 13.3.2024 at
16:49

4.2 Step 2: Transformation to CNF

There are several ways of converting arbitrary logic into conjunctive normal form that
have been developed and improved over the years. The following sections will explain
several of these methods.

4.2.1 Distributive Transformation

The Distributive Transformation applies the law of distributivity until the formula is
in the correct form [KKS+23]. This approach can trivially be proven correct, because
it only applies algebraic reformulations. However, it suffers one problem, which is the
exponential growth of formula size. There are several ways to deal with this, like the
idempotence, the absorption, or the Quine-McCluskey algorithm, but these approaches
are still limited and have exponential time complexity.
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4.2. Step 2: Transformation to CNF

4.2.2 Tseitin Transformation
Another approach is the Tseitin Transformation which was proposed by Tseitin in 1983
[Tse83] as a new approach for CNF conversion. It replaces each subformulation φ with a
boolean variable xφ, which can be used as a shortcut to refer to φ. The new variable xφ

is tied to the original subformulation using the equivalence operator xφ ≡ φ [KKS+23].
With this approach, we do not suffer the issue of an exponential explosion of formulas.

Figure 4.6: Tseitin concept explanation

In Figure 4.6 the concept is illustrated: In step one the variable xφ is introduced and
now replaces the A+B subtree of the top Or node since xφ is equal to A+B. In step two
we can utilize distributivity and lift the verb|+| operator. This leads to xφ being equal
to A and equal to B. In the last step we convert each of the equivalences into two clauses
which represent two implications: xφ implies A and A implies xφ. Using these steps, we
have now arrived at a CNF representation.

The Tseitin Transformation is not equivalent, but equi-satisfiable. Given φ, equi-satisfiable
defines that either φ and the transformed φ′ are satisfiable or none of them is [KKS+23].
The transformation is not strictly equivalent since it introduces new variables and therefore
deviates in terms of assignment.

4.2.3 Plaisted-Greenbaum Transformation
A few years later, Plaisted-Greenbaum [PG86] further improved the Tseitin Transfor-
mation and found out that a lot of clauses could be dropped by taking the polarity of
subformulations into account [KKS+23]. Because of that, we can encode the ties between
the xφ variables as implication xφ =⇒ φ and drop the equivalence xφ ≡ φ constraint.

49



4. Reducing to the Satisfiability Problem

The Formulation is first converted into Negative Normal Form (NNF). The NNF can
be reached by pushing all negations downwards to the variables by recursively applying
De Morgan’s Theorem. For example, ¬(A ∧ B) can be converted into the equivalent
formulation (¬A ∨ ¬B). Applying this reformulation on all negations recursively yields a
formulation, where negations are only applied on variables. Hence, the polarity of the
subformulations is always positive, and the implication (xφ =⇒ φ) is sufficient.

4.2.4 Subformulaion-tracking

One important aspect of the Tseitin Transformation is the ability to reuse subformulations.
If a subformulation occurs several times, we can reuse the xφ, which can reduce the
number of clauses in many applications drastically.

In Rust the Subformulation-Tracking is implemented by deriving the Hash trait on
the enum that represents a node in the AST. This enables us to keep track of nodes
using the HashMap provided by the standard library. Whenever the recursive Tseitin
implementation considers a new node, it will first query the HashMap. If successful, the
recursion is stopped and the found literal is returned, otherwise, the standard Tseitin
procedure is continued.

One limitation of this method is, that the ordering of the children in a binary operator
will influence the hash value of the node. Because of this two semantically equivalent
nodes will not be considered equal by the HashMap. This can be mitigated by sorting
the children of a given node.

4.3 Step 3: The SAT-Solver
The final step of the pipeline is to add the clauses created by the previous step to the
solver. Solvers have a function to add clauses to the instance. During the transformation
step, whenever the transformation yields a new clause, this function is utilized to add all
clauses to the instance.

After the instance is created, we can use the solve functionality of the solver to check
whether it is SAT or UNSAT. Furthermore we can take advantage of the incremental
solver interface of some solvers to apply assumptions and retrieving UNSAT-Cores as
explained in Section 2.1.4.

4.4 Performance Evaluation
Given the explained transformation methods, we will now compare their performance
to one another. First, as a baseline the classical Tseitin Transformation. Secondly,
Plaisted-Greenbaum’s improvements. And lastly adding the Subformulation-Tracking
capability to the classical Tseitin and the Plaisted-Greenbaum’s version.
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The dataset is a closed source and originates from the automotive industry. For this
dataset, a Distributive Transformation would be infeasible.

In Figure 4.7, the reduction of clauses and variables is listed given the different tech-
niques. Comparing the baseline approach (classical Tseitin) to Plaisted-Greenbaum, the
amount of variables is identical, but the amount of clauses is reduced to around 60%.
This is reasonable, since Plaisted-Greenbaum does use the same variables to reference
subformulations, but adds fewer clauses because it only adds one implication clause per
subformulation. The subformulation tracking further reduces the amount of clauses and
variables by another 50%.
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Figure 4.7: Comparing the effects of the transformation optimizations in terms of
Execution Duration. PG stands for Plaisted-Greenbaum optimization and ST stands for
Subformulation-Tracking

The reductions lead to reduced execution time of the SAT-Solver seen in Figure 4.8.
The Plaisted-Greenbaum optimization reduces the wall-clock time by around 30 seconds
(11%). Subformulation tracking reduces it by 122 seconds, which is 45% of the baseline
time. Therefore, subformulation tracking has a way bigger and very significant impact
on execution time. With both optimizations in place, the execution time compared to
the baseline is reduced to the half.
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and variable count. PG stands for Plaisted-Greenbaum optimization and ST stands for
Subformulation-Tracking
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CHAPTER 5
Introducing MaxSAT-Solvers

Maximum Satisfiability (MaxSAT) is a fundamental optimization problem that extends
the classical SAT-Problem. Compared to SAT, MaxSAT tries to find an assignment of
variables that satisfies the maximum number of clauses, even if satisfying all clauses is
impossible.

A lot of theoretical work has been put forward to analyze the complexity and approxability
of MaxSAT [IMMS19]. MaxSAT is known to be computationally expensive, with wall-time
durations that often exceed several hours. Therefore, many approximation algorithms
have been developed that compute solutions in reasonable time with bounds on the
quality of the solution. In terms of computational complexity MaxSAT is NP-hard, since
the SAT-Problem can be reduced to MaxSAT.

5.1 Problem Definition
Similar to the SAT-Problem, MaxSAT is defined over a set of clauses, that are a disjunction
of literals, but in contrast to the SAT-Problem, not all clauses have to be satisfied all the
time. The following section will explain the different categories and give examples for
each of them.

5.1.1 Weighted MaxSAT
The weighted MaxSAT-Problem adds a non-negative weight to each clause [Stü18]. The
goal is to maximize the sum of the weights of all the clauses that are satisfied by the
found assignment.

Example 2 A simple exemplary weighted MaxSAT-Problem

φ = {(¬x1 ∨ ¬x2, w1), (¬x2 ∨ ¬x3, w2), (¬x1 ∨ ¬x3, w3), (x1 ∨ x2 ∨ x3, w4)}
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5. Introducing MaxSAT-Solvers

Definition 5.1.1. The objective is to maximize over the assignment x

maximizex

�
C

�
wi C is satisfied by x
0 else

5.1.2 Partial MaxSAT

A partial MaxSAT-Problem differentiates between two sets of clauses [Stü18]. One set is
called hard clauses φHARD, these clauses have to be satisfied, and the other is called soft
clauses φSOF T . As many as possible of the latter should be satisfied.

Example 3 A simple exemplary partial MaxSAT-Problem

φHARD = {(x1 ∨ x2 ∨ x3)}
φSOF T = {(¬x1 ∨ ¬x2), (¬x2 ∨ ¬x3), (¬x1 ∨ ¬x3)}

Definition 5.1.2. The objective is to maximize over the assignment x

maximizex

�
C∈φSOF T

�
1 C is satisfied by x
0 else

subject to x satisfies φHARD

5.1.3 Weighted Partial MaxSAT

Weighted Partial MaxSAT is the combination of the ones before. It defines hard clauses
and soft weighted clauses. The goal is to maximize the sum of the satisfied soft clauses
while satisfying all hard clauses. Typically, when speaking about MaxSAT, this type of
Problem is considered [IMMS19].

Example 4 A simple exemplary weighted partial MaxSAT-Problem

φHARD = {(x1 ∨ x2 ∨ x3)}
φSOF T = {(¬x1 ∨ ¬x2, w1), (¬x2 ∨ ¬x3, w2), (¬x1 ∨ ¬x3, w3)}

Definition 5.1.3. The objective is to maximize over the assignment x

maximizex

�
C∈φSOF T

�
wi C is satisfied by x
0 else

subject to x satisfies φHARD
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5.1.4 Minimum and Maximum Dualism
In order to maximize the amount of satisfied clauses, many solvers aim to minimize the
number of unsatisfied clauses, as these objectives are functionally equivalent.

We can practically use this dualism to utilize a maximizing solver to solve a minimizing
problem. Any instance can be reformulated by inverting the polarity of the soft clauses.
This effectively converts our goal of minimizing the amount of satisfied soft clauses to
maximizing their violation.

To invert the polarity of a soft clause, we can do the following:

• Unit clause: Negate the literal

• Non-unit clause: Introduce a new auxiliary variable that is equivalent to the
original clause within the hard clauses, and flip this literal.

In the following Example 5, the maximization objective of Example 4 has been converted
to a minimization objective:

Example 5 The minimization problem from Example 4 expressed as maximization
problem.

φHARD = {(x1 ∨ x2 ∨ x3), (xa ≡ ¬x1 ∨ ¬x2), (xb ≡ ¬x2 ∨ ¬x3), (xc ≡ ¬x1 ∨ ¬x3)}
φSOF T = {(¬xa, w1), (¬xb, w2), (¬xc, w3)}

5.2 State-of-the-art MaxSAT-Solvers
For several years, an international MaxSAT evaluation has been taking place with the
aim of comparing the latest improvements in MaxSAT-Solvers against each other1. There
are two categories of solvers [MBJN23]: Exact Solvers, which ensure to deliver a global
optimum, and Anytime Solvers, which aim at delivering an as good as possible solution.
The score of the latter is based on the quality measured by the distance of their best
found solution, to the currently known maximum. Each of the categories is further split
into a weighted and an unweighted track. The results for the 2023 weighted exact track
are shown in Figure 5.1.

VBS stands for virtual best solution, and it is determined by taking the best-performing
solution for each individual benchmark and combining them into an aggregate score.
Figure 5.1 shows, that the distance between the best solvers and the VBS is small. This
indicates that the competing solvers are able to perform well across various instances and
are not specialized to one instance type. One very promising solver is called WMaxCDCL-
S6-HS12, which will be examined in further detail in the following chapter.

1https://maxsat-evaluations.github.io/ accessed on 14.6.2024 at 14:27
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Figure 5.1: Detailed Results on the weighted exact track of the 2023 MaxSAT competition
[MBJN23]

5.2.1 WMaxCDCL

One of the best performing solvers in 2023 was the WMaxCDCL-S6-HS12 solver (see
in Figure 5.1). It is a variant of the WMaxCDCL-Solver which already participated in
2022 [CLL+22]. This new variant starts by executing the SCIP-Solver for 10 minutes If
unsuccessful, the MaxHS algorithm is executed for 20 more minutes before it starts the
main WMaxCDCL routine with the input of an initial Upper Bound from the MaxHS
execution.

The core algorithm is MaxCDCL which has two variants, the standard MaxCDCL
and WMaxCDCL which extends the standard algorithm to handle weighted instances
[CLL+23]. MaxCDCL is based on the CDCL algorithm used in SAT-Solvers. It alternates
between decisions and executes unit propagation as well as clause learning. At some
points in the execution, it will calculate a lower bound (LB) for the number of soft
clauses that will be falsified by the current assignment, given the hard clauses. When this
new lower bound cannot be improved (LB ≥ UB), a soft conflict is detected and conflict
analysis is executed which triggers clause learning. Furthermore, if no soft conflict is
detected, but LB = UB − 1, all non-falsified soft clauses can be considered as hard
clauses and consequently unit propagation is executed. The lower bound computation is
based on UNSAT-Cores over the soft clauses. For every detected local core, the lower
bound can be increased by one.
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The extension to weighted solvers lead the developers to rewrite a lot of the code, because
the weighted variant utilizes a lot more data structures. The contribution to the lower
bound is different depending on the minimum weight among the clauses of the core. To
solve this, the solver will make virtual copies of the soft clause so that their weights can
be split on several local cores. Furthermore, the step of hardening had to be changed,
since the hardening of a soft clause can lead to falsify new soft clauses which in turn
changes the bound – which leads to more hardening. To solve this, WMaxCDCL utilizes
a fix point propagation loop which alternates between unit propagation and hardening.

A detailed explanation of the algorithm can be found in the descriptions of the authors
[LXC+21a, LXC+21b]. An implementation is available at the MaxSAT Evaluation 2023
Website.

5.2.2 Relationship with ILP
MaxSAT is closely related to the Integer Linear Programming (ILP) problem which is in
fact an alternative formulation of the MaxSAT-Problem. A weighted partial MaxSAT-
Problem can be expressed as ILP in the following manner [AG13].

Given a weighted partial MaxSAT-Problem as a set of clauses where clauses, 1 to m
are weighted and the clauses m + 1 till m + m′ are hard (having weight ∞). Formally,
{(C1, w1), ..., (Cm, wm), (Cm+1, ∞), ..., (Cm+m′ , ∞)}.

Now we can separate the soft and hard clauses into two sets: h = (�n
i=m+1 Ci) for the

hard clauses and s = (�m
i=1 CNF(bi → Ci)) for soft clauses. bi is used as an auxiliary

variable that implies the clause. An implication is sufficient instead of a full equivalence,
since in the case that the clause is satisfied, the solver will set bi to 0 to optimize towards
the minima. With the CNF(φ) we can convert bi → Ci into the CNF.

Given this definition, the ILP-Problem can be stated in the following manner:

minimize
m�

i=1
wi · bi

subject to
�

li∈Cj

�
x(li) li
−x(li) li

>
�

li∈Cj

�
0 li
−1 li

, ∀Cj ∈ (s ∪ h)

0 ≤ xi ≤ 1, xi ∈ var(s ∪ h)

The problem starts by defining the optimization goal which is to minimize the weight
of all soft clauses multiplied by the auxiliary variable for the clause bi. If bi is 1, it
represents the clause Ci to be unsatisfied. By minimizing the sum of unsatisfied clauses,
we maximize the sum of satisfied ones.

The optimization goal is subject to an inequality that is created for each clause in s
and h. x(li) stands for the ILP variable that represents the literal li. The inequality is
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created by taking the sum of x(li) for positive literals and (1 − x(li)) for negative literals.
Reformulating this inequality to have only variables on the left, we end up with the
negated count of negative literals on the right side of the inequality.

Lastly, the bounds are defined such that all the variables are boolean, either 0 or 1.

Example 6 Given the weighted partial MaxSAT-Problem: {(x1∨x2, 2), (x1∨x2, 3), (x1∨
x2, ∞), (x1 ∨ x2, ∞)} the ILP problem would look like this:

minimize 2b1 + 3b2

subject to x1 + x2 + b1 > 0; \ b1 → (x1 ∨ x2)
x1 − x2 + b2 > −1; \ b2 → (x1 ∨ x2)
− x1 + x2 > −1; \ x1 ∨ x2

− x1 − x2 > −2; \ x1 ∨ x2

0 ≤ x1 ≤ 1;
0 ≤ x2 ≤ 1;
0 ≤ b1 ≤ 1;
0 ≤ b2 ≤ 1;

Comparing IPL-Solvers to MaxSAT-Solvers, they yielded inferior results in the 2023
MaxSAT competition (Figure 5.2). The ILP based CPLEX -Solver was able to solve close
to 300 problems in time, whereas the best MaxSAT-Solvers reached close to 450 solved
problems.

5.3 Approximation Techniques for MaxSAT
Since the complex nature of MaxSAT and the intractability of finding the global optimum
for many use-cases, there are several approximating techniques that calculate a locally
optimal solution on a best-effort basis with a certain guarantee of distance to the global
optimum [Stü18]. This distance is defined by the approximation ratio v(x, s), which is
defined in the following manner:

Definition 5.3.1. An approximation ratio of a solution s ∈ S(x) takes the ratio of the
value of solution v(x, s) to the globally optimal solution vbest(x)

r(x, s) = v(x, s)
vbest(x) (5.1)

For calculating the approximation ratio of an algorithm instead of only one solution, we
have to consider the worst case ratio over all instances x.
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Figure 5.2: Detailed results on the weighted track of the 2023 MaxSAT competition with
ILP-Solvers [MBJN23]

Definition 5.3.2. An approximation ratio of an algorithm is defined over the worst-case
ratio of all instances x

rA = sup{r ≤ 1 : r(x, sA(x)) ≥ r for all instances x} (5.2)

Known Algorithms and their Approximation Bounds

One of the first approximation algorithms is by Johnson [Joh74], who found a 1
2 -

approximation algorithm (outlined in Section 5.3.1). Jianer and Friesen further improved
the bound of this algorithm to 2

3 and proved that this bound is tight [CFZ97].

There are also some 3
4 -algorithms. For example, Yannakins found an algorithm which

preprocesses the MaxSAT-Instance and converts it into a network flow problem which can
be solved by non-trivial network flow algorithms [Yan94]. Furthermore, Gormans and
Williamson found a 3

4 -algorithm that combines the Johnson algorithm with a randomized
rounding approach that is applied on a linear programming represention of the instance
[GW94].

In consequent years, these bounds were further improved up to 0.7968, introducing hybrid
algorithms and Semidefinite Programming Techniques [Stü18]. Currently, the algorithm
with the highest bound is by Avidor, Berovitch and Zwick, which is an in several steps
improved version of Gormans and Williamson [ABZ06].
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5.3.1 Johnson’s Greedy algorithm
Greedy algorithms are baseline approximation algorithm for many optimization problems.
They are called greedy because they iteratively make decisions based on a currently local
heuristic and never roll back any decision after it is made. Due to their incremental
approach they –in most cases– have a polynomial runtime.

Johnson has created an algorithm that approaches the MaxSAT topic in this greedy
manner [Joh74]. The Algorithm 5.1 (originally called B2 ) iterates all literals in the CNF
and decides an assignment based on a local heuristic.

As the first step of the algorithm, all clauses are assigned to some virtual weight based
on the amount of literals they contain and their original weight wc2−|c|. The virtual
weight of a clause is inversely proportional to its number of literals, as more literals offer
more potential ways to satisfy the clause. Later we will make use of the power of 2
formulations because we can multiply the current weight by 2, when we remove a literal
from the clause to update the clauses virtual weight.

Next, we initialize 4 sets. The sets SSAT and LSAT are initialized to empty. These sets
will later contain the found literal assignments LSAT and the satisfied clauses SSAT .
SLEF T and LLEF T on the other hand contain the clauses that still need to be considered.

At this point, we can start with the main loop (Line 5-25 in Algorithm 5.1). The iteration
executes the following steps, as long as there are literals in LLEF T to consider. At each
iteration we first pick a random literal y from the leftover literals and create two sets of
clauses Sy and Sy that represent all clauses with y and y respectively. Now we sum the
virtual weights of both these set of clauses and decide y to the assignment that yields
a better result. The consequences of this assignment are now executed, and the sets
are adapted to represent this decision. All clauses which contain the opposite of the
assignment, will be multiplied by 2 to incorporate the removal of one option to satisfy
the clause.

Theorem 1. [Stü18] For MaxSAT-Instances with k ≥ 1 literals per clause, Algorithm

5.1 has an approximation ratio of r(n) ≥ 2k − 1
2k

The approximation ratio for this algorithm is strongly dependent on the number of literals
per clause. The more literals in the smallest clause, the higher the approximation bound.
For a MAX-3-SAT-Problem, the approximation would be 7

8 . A detail proof of this bound
can be found at [Stü18].

5.3.2 Simulated Annealing
Simulated Annealing is an optimization algorithm based on local search that is able to
escape local optima [NJ10]. Its conceptual origin stems from thermodynamics, where
a crystalline structure is heated up and then slowly cooled, until a regular crystalline
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Algorithm 5.1: Johnson’s Greedy Algorithm [Stü18]
Input : Set of clauses S
Output : Set of literals LSAT and set of satisfied clauses SSAT

1 for all c ∈ S do
2 w(c) ← wc2−|c|

3 end
4 SSAT ← ∅, LSAT ← ∅, SLEF T ← S, LLEF T ← literals in S;
5 while LLEF T ∩ SLEF T ̸= ∅ do
6 Let y ∈ LLEF T such that y occurs in SLEF T ;
7 Sy ← clauses in SLEF T containing y;
8 Sy ← clauses in SLEF T containing y;
9 if �

c∈Sy
w(c) ≥ �

c∈Sy
w(c) then

10 LSAT ← LSAT ∪ {y};
11 SSAT ← SSAT ∪ Sy;
12 SLEF T ← SLEF T \ Sy;
13 for all c ∈ Sy do
14 w(c) ← 2w(c);
15 end
16 else
17 LSAT ← LSAT ∪ {y};
18 SSAT ← SSAT ∪ Sy;
19 SLEF T ← SLEF T \ Sy;
20 for all c ∈ Sy do
21 w(c) ← 2w(c);
22 end
23 end
24 LLEF T ← LLEF T \ {y, y};
25 end
26 return LSAT , SSAT ;

lattice structure, free of imperfections, is formed. For this to occur, the cooling must be
sufficiently slow to allow the forming of a perfect structural layout.

Comparably, the simulated annealing algorithm defines a cooldown schedule tk, a function
that approaches 0. At the beginning of the execution of the algorithm, tk is big, such that
the algorithm is encouraged to explore the possible solution space. As the cooldown is
progressing, the algorithm gradually shifts its emphasis from exploration to exploitation.
This allows it to focus on refining and optimizing a promising local solution.

In Algorithm 5.2 the overall concept is outlined. The goal of the algorithm is to find the
global optimum ω∗ such that f(ω∗) < f(ω) for all ω ∈ Ω. It runs in two nested loops.
The outer loop is the cooldown loop, which progresses the cooldown function, and it
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is terminated, if a certain termination condition is met (e.g. temperature sufficiently
low, good enough solution reached, . . . ). Inside this loop there is another loop that is
executed Mk times. This loop samples a neighbor solution ω′ to the current solution ω.
The delta in terms of cost Δω,ω′ is calculated. If the delta is negative, meaning that ω′ is
better in terms of cost than ω it is directly selected as the new ω, else ω′ is selected as
the new ω, based on a probability that is influenced by the current temperature tk.

The temperature is reduced in discrete steps tk while also the repetition schedule Mk

is reduced. The repetition schedule defines how many samplings occur in each given
cooldown step k.

Algorithm 5.2: Simulated Annealing Algorithm [NJ10]
1 ω ∈ Ω ; // sample random solution ω
2 k ← 0;
3 tk ← temperature cooling schedule;
4 Mk ← repetition schedule;
5 repeat
6 m ← 0;
7 repeat
8 ω′ ∈ N(ω) ; // sample neighbor solution
9 Δω,ω′ = f(ω′) − f(ω);

10 if Δω,ω′ ≤ 0 then
11 ω ← ω′ ; // select better solution
12 else
13 ω ← ω′ with probability eΔω,ω′ /tk ;
14 end
15 m ← m + 1;
16 until m = Mk;
17 k ← k + 1
18 until stopping criteria is met;
19 return ω;

Simulated Annealing in MaxSAT

One of the first applications simulated annealing on the MaxSAT- and the SAT-Problem
was proposed by Spears [Spe93] in 1998 to tackle large SAT-Problems that were not
feasible to be solved with traditional solvers. For each temperature step, the algorithm
iterates all variables and flips them individually. For each flip, the delta (Δ) of satisfied
clauses is calculated. This delta together with the temperature is supplied to a logistic
probability function to accept or reject the flip.
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5.4 Multi-Objective MaxSAT-Solvers
Over the lifecycle of the product we frequently encounter the challenge of balancing
several competing objectives. For example, we want to build the cheapest, but also the
highest quality product, or we want to buy a cheap electric car with the best possible
range.

Formally, we can express a multi-objective optimization instance over the functions
o1, o2 . . . on [BF17].

Definition 5.4.1. A multi-objective optimization problem is defined over several (con-
flicting) objectives.

min
x

[ o1(x), o2(x), . . . , on(x) ] (5.3)

In terms, of MaxSAT we express each objective on(x) as a separate set of soft clauses.

Pareto Front

Figure 5.3: Illustration of the Pareto Front with the contradictory optimization objectives
o1 and o2 (Graphic adapted from [BF17])

When optimization problems involve conflicting objectives, there is not a single best
solution [BF17]. Instead, there is a set of equally good solutions, each with different
trade-offs between the objectives. These equally good solutions are called non-dominated
solutions, since there is no other solution, that improves one objective without sacrificing
another. Together they form what is known as a Pareto Front (Figure 5.3).

A Pareto Front contains at least one ideal solution, which is the solution with the minimal
distance to the ideal point. The ideal point is defined by the individual maximum for
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each objective. The ideal solution is the best solution, when the trade-offs are considered
equally. With different weightings on each objective, the ideal-solution can change.

Example 7 In Figure 5.4 an exemplary Pareto Front of the Battery Electric Vehicle
(BEV) passenger car market as of December 2020 is given. The chart shows two objectives
that a customer usually will have, when choosing a new vehicle. On the one hand, the
price should be minimal (y-axis). While, on the other hand, the maximum driving range
should be as high as possible (x-axis). The axes are oriented, such that the ideal point is
in the origin of the axes (on the left lower in the chart).

Figure 5.4: An exemplary Pareto Front of the electric passenger car market until the 2nd
December 2020 (Dataset [HK21])

BEV-Models that are non-dominated are shown in green. For example, the Tesla Model
3 Long Range is non-dominated, since a cheaper alternative like the Volkswagen ID.3
Pro S will sacrifice a few km of range and an alternative with more range, like the Tesla
Model S Long Range Plus, will sacrifice on price. A dominated solution on the other
hand, like the Tesla Model 3 Performance is dominated by the Tesla Model 3 Long Range,
since the latter is cheaper and has a longer range.

Each optimum for a single objective, is always a boundary for the Pareto Front. For
example the Skoda Citigo-e iV is absolutely the cheapest vehicle and any other solution
will sacrifice on the price, hence, this is a non-dominated solution. For the Tesla Model S
Long Range Plus the same argument can be made for the range. Therefore each Pareto
Front will always include one solution, which maximizes each single objective.
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Even though each non-dominated solution is an equally valid solution, some are less
prominent than others. For example, the Nissan Leaf has only a little more range than the
Skoda Citigo-e iV, but is several thousand euros more expensive, also the Peugeot e-208
is only a bit more expensive, while offering around 40 km more range. In this situation,
the Pareto Front is showing a concave curve. On the other hand the Volkswagen ID.3
Pro S is an very outstanding solution, which results in a lot of trade-offs in the direction
of both objectives. In this case, the Pareto Front shows a convex curve. Comparatively,
around the Citroën ë-C4 and Peugeot e-208 the curve shows a slight convex behavior.
This is why, when making a choice, solutions in convex parts of the curve are of particular
interest.

The ideal solution for this case would be the Volkswagen ID.3 Pro S, since it has the
lowest distance to the ideal-point. The ideal point is located at 652km and 26.256€.

5.4.1 Preliminaries
There are several algorithms that are able to solve multi-objective MaxSAT-Problems.
This thesis will explore P -Minimal and BiOptSat. But before we can start introducing
these algorithms, we first need to introduce the concept of Totalizers.

Totalizers

To encode bounds into the SAT-Instance, we can utilize the totalizer formulation [JBNJ22].
Given a bound in a range of k = 1, ..., n and a set of n literals L, TOT(L, k) defines
a set {⟨L < 1⟩, . . . , ⟨L < k⟩} of literals so that each literal lk limits the amount of
satisfied literals in L. Given the assignment τ satisfies TOT(L, k), then τ(⟨L < b⟩) = 1 if�

l∈L τ(l) < b.

Incremental totalizers allow for the increasing of the bound k, without the need to
rebuild the existing totalizer. This can be achieved by defining the formalism such that
TOT(L, k) ⊂ TOT(L, k′) and TOT(L, k) ⊂ TOT(L ∪ L′, k) hold for any set L′ and k′ > k.

5.4.2 P -Minimal Algorithm
The P -Minimal solver was developed to solve the Multi-Objective Discrete Optimization
Problem (MODOP) over a Constraint Satisfaction Problem (CSP), which is corresponding
to a multi-objective MaxSAT-Problem [SBTLB17, JBNJ22]. The algorithm enumerates
all P -Minimal models and efficiently blocks away already dominated solutions by using
only one clause per previously found model.

The P -Minimal algorithm introduces a totalizer for every objective function ox ∼
TOTx ∼ TOT(Lx, kx). The range of this totalizer is defined from the lower to the upper
bound of the optimization function by setting kx = lb(ox), . . . , ub(ox), where lb(ox) and
ub(ox) represent the lower and the upper bound of ox respectively. With the aid of
the totalizers, each boundary b for an objective function has a corresponding literal
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lx,b = ⟨Lx < b⟩, which represents that the value for the objective function ox must be
smaller than b.

Figure 5.5: Regions pruned by blocking clauses (adapted from [SBTLB17])

Algorithm 5.3: P -Minimal Algorithm (adapted from [SBTLB17]2 )
Input: A Multi-objective MaxSAT-Instance Ω = ⟨(o1, . . . , om), φHARD⟩
Output: The Pareto Front of Ω

1 P ← TOT(o1) ∧ · · · ∧ TOT(om);
2 YN ← ∅;
3 while MP = findP-MinimalModel(φHARD, P ) do
4 YN ← YN ∪ {MP } ;
5 φHARD ← φHARD ∧ block(MP ) ;
6 end
7 return decode(YN );

The main routine of the P -Minimal Algorithm 5.3 uses the totalizers to iteratively
execute the procedure to find a new solution and then to block all the solutions that are
dominated by the found solution. In Figure 5.5 the blocked region is visualized for the

2Changed formalism to fit this paper and the MaxSAT-Problem
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solution A as the gray region. Similarly, B and C define a region of dominance, that
renders all solutions in this region as dominated.

For example, given the solver found a solution τ which achieves o1(τ) = 4 and o2(τ) = 2
(Point A in Figure 5.5), every solution with o1(τ ′) ≥ 4 ∧ o2(τ ′) ≥ 2 is dominated by τ
and therefore not part of the Pareto Front. To encode the constraint that blocks the
dominated region, we can add a condition that states that ¬(o1(τ ′) ≥ 4 ∧ o2(τ ′) ≥ 2).
By utilizing the totalizers in combination with DeMorgan’s law we can add the clause
⟨L1 < 4⟩ ∨ ⟨L2 < 2⟩ as constraint to the hard clauses (Algorithm 5.3 line 5). Generally,
Definition 5.4.2 defines the clause that is needed to block the dominated region as the
function block(τ).

Definition 5.4.2. block(τ) defines a constraint that blocks all solutions that are
dominated by τ

block(τ) =



1...m

⟨Lm < om(τ)⟩ (5.4)

Algorithm 5.4: findP-MinimalModel
Input: φHARD, P
Output: A non-dominated solution MP

1 τ ← getSolution(φHARD ∧ P , ∅) ;
2 MP ← ∅ ;
3 while τ ̸= ∅ do
4 MP ← τ ;
5 τ ← getSolution(φHARD ∧ P , {⟨Lm < om(τ)⟩ | 1, . . . , m});
6 end
7 return MP ;

The function findP-MinimalModel(φHARD, P ) yields a new non-dominated solution.
It starts by getting a random solution τ and then sets the assumptions to {⟨Lm <
om(τ)⟩ | 1, . . . , m}, which restricts the temporary search-space to be a solution that is
dominating τ . If such a solution is found, it is considered the new τ and the process
is repeated, else the solution is non-dominated and τ yielded as new non-dominated
solution.

The main loop of the P -Minimal algorithm utilizes findP-MinimalModel(φHARD, P )
to find a new non-dominated solution MP . The found solution is added to the set of
non-dominated solution YN and a corresponding blocking clause is added. This loop
is executed until no further non-dominated solution can be found. This leads to the
termination of the algorithm and a final decoding of the list of all found solutions YN .
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5.4.3 BiOptSat Algorithm
BiOptSat is an optimization algorithm specialized on the bi-objective (2-dimensional)
case. Functionally it is related to P -Minimal and also utilizes totalizers in combination
with assumptions to iteratively enumerate all pareto-optimal solutions [JBNJ22, JBNJ24].
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Figure 5.6: Search Trace of BiOptSat [JBNJ24]

The algorithm, as outlined in Algorithm 5.5, starts by sampling a solution τ from the
hard clauses φHARD and then continues by optimizing each objective function in separate
steps. As boundaries, bD is initialized as ∞ and bI as 0.

In Figure 5.6, the search trace of BiOptSat for an example problem is illustrated. The
first solution τ c

1 is improved in the direction of OI , using the Minimize-Inc function
with the bound of bD. In the first execution, the bound is ∞ and therefore the global
optimum for OI will be reached. In the example, this yields τ c

3 .

The next step, Solution-Improving-Search, is employed to optimize the direction of
OD, such that objective OI cannot get worse than the found bound bI . The resulting
solution (τ o

1 ) must be non-dominated and consequently is yielded as solution. To escape
the local minima of (τ o

1 ), the Sat-Solver is invoked with the assumption that it must find
a solution that improves in the direction of OD since every new non-dominated solution
must satisfy ⟨OD < bD⟩. This process is repeated, till the optimum for OD is reached.

The subroutine Minimize-Inc is executing a single objective MaxSAT routine that can
deal with assumptions. In the paper [JBNJ22] 5 different classical MaxSAT algorithms
are proposed and analyzed to utilize in this task.

The second subroutine, Solution-Improving-Search, employs the SAT-Solver in
combination with the totalizers to improve the existing solution towards a non-dominated,
pareto-optimal solution. This is done by iteratively decreasing a bound k starting from
k = OD(τ) while invoking the SAT-Solver with the assumption {{⟨OD < k⟩}{⟨OI ≤ bI⟩}}.
The smallest possible k, which is still SAT, is yielded as the found non-dominated optima.

68



5.4. Multi-Objective MaxSAT-Solvers

Algorithm 5.5: BiOptSat: MaxSAT-based bi-objective optimization [JBNJ22]

Input: CNF formula φHARD, objectives OI and OD

Output: Either one or all Pareto-optimal solutions corresponding to each Pareto
point of φHARD

1 τ ← getSolution(φHARD, ∅) ;
2 if τ = ∅ then
3 return no solutions
4 end
5 bD ← ∞, bI ← 0 ;
6 while τ ̸= ∅ do
7 (bI , τ) ← Minimize-Inc(bD, OI(τ)) ;
8 (bD, τ) ← Solution-Improving-Search(bI , OD(τ)) ;
9 yield τ ;

10 τ ← getSolution(φHARD, {⟨OD < bD⟩})
11 end

5.4.4 Comparison

In Figure 5.7 from [JBJ24], a comparison of the search traces for P -Minimal, BiOptSat
and LowerBound is given. LowerBound is an extension to P -Minimal that starts
setting an upper bound on each objective and executes P-Minimal inside this bound.
During the execution, the bound is iteratively expanded, so that the algorithm covers
the whole Pareto Front.

Figure 5.7: Comparison of search traces for P-Minimal, BiOptSat and LowerBound,
[JBJ24]
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5.5 Optimization Objectives in FBD
FBD offers several possible ways for applying MaxSAT-Solvers as well as multi-objective
MaxSAT-Solvers. With the reduction pipeline of Chapter 4 and the formalism of
Section 2.2.9, we can transform the restrictions and features into hard clauses. Adding
onto that, the soft clauses can represent different (conflicting) optimization objectives.
The following subsections will define several optimization objectives and describe them
formally, afterwards these objectives will be put into action in different experiments in
the next section.

In a practical example, these objectives could be used as part of a configuration process
for the customer. In highly complex products with several hundred feature groups to
select, the customer typically only selects a few of the features. The optimization towards
various optimization objectives can afterwards be done on the basis of Pareto Fronts
analysis. Furthermore, during the configuration steps, each next choice can be evaluated
in terms of the optimizations objectives, to steer the customer towards given optima.

In addition to the configuration process, these objectives provide a method for product
analysis, for example the configuration with the worst profit margin can be found by
comparing the objective to minimize sales price to the objective of maximing the material
cost.

5.5.1 Best Customer Fit
Customers can use features to tailor the product to their specific needs. Each customer’s
choice is represented by a configuration, which may be complete or partial, if they have
no preference for a particular feature group. While optimality (price, delivery time, etc.)
and feasibility (restrictions) may vary across configurations, our primary objective is to
fulfill the customer’s wishes as closely as possible.

Given a customer configuration, either partial or complete, denoted by C = {c1, . . . , cn},
we can express the objective of achieving the best customer fit by the minimization of
the deviation from C.

Definition 5.5.1.

φbest fit = {(¬c, 1) | c ∈ C}

The optimization function utilizes a penalty-based approach, to punish the solver for
every feature that it deviates from the customers’ selection, thus it will force the optimizer
to fit the product to the customers wishes as closely as possible. Potential trade-offs with
respect to other optimization criteria, can later be argued in the Pareto Front.

One of the challenges with features is how to encode the relevance of different feature
groups. Not every feature group is equally relevant. For example, the motor type is,
generally speaking, a selection, that is highly important to the customer. Compared to
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that, the customer typically does not hold strong opinions about the type of side mirror.
But this relevance is hard to measure objectively since it differs for every use-case and
customer. For the sake of this thesis we will consider each feature group equally relevant.

5.5.2 Material Cost
To compute the material cost for a given configuration, we need to sum the material cost
of each allocated part A in the FBD instance D.

We define the price of a given part A as $(A) ∈ R+. Since MaxSAT-Solvers are defined
over discrete integer values, we need to define a bucketing function σ(x) : R+ → N that
returns integers and with which we find the integer cost of each given part. The aim of the
bucketing function is to roughly maintain the additive property: σ(x) + σ(y) ≈ σ(x + y).

A possible bucketing function is given here. This function depends on the maximum
price and creates k equally sized buckets using rounding.

σf
S(x) =

 f(x) · k

max
v∈S

f(v)


Definition 5.5.2. The optimization objective for the material cost is defined as:

φmaterial cost = {( φ(A), σ$
A∈D(A) ) | A ∈ D}

This concept can be extended beyond material cost by integration production process
data from the manufacturing BoM (for example the required processes, consumables,
etc). With the adding of this data we could achieve a more comprehensive optimization
model.

5.5.3 Sales Price
The sales price of configurations commonly is defined by prices assigned to specific feature
choices. For example, the selection of the large motor or the premium convenience
package have a higher price point assigned to them.

More broadly, the price is defined by a set of conditions that add a certain price point, if
a condition is satisfied. The cumulative sum of all of these price points is the sales price.

Definition 5.5.3. Each price point is defined as a tuple in the set of all price points K.

K = {⟨f(c0, . . . cn), p⟩ , . . . }
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Similar as in the objective before we need a bucketing function σK(x) to discretize the
values with respect to the maxima for the set K.

Definition 5.5.4. The sales price optimization objective can be defined as:

φsales price = {(f, σK(p)) | ⟨f, p⟩ ∈ K}

5.5.4 Delivery Time
The time from order to fulfillment should be as short as possible. Practically, there are
many reasons for delivery time and large Machine Execution System (MES) systems
are used, to optimize the overall ability of a company to produce products fast and
efficiently. However, the most central part of the delivery time is the availability of
needed subcomponents. To encode this availability as an optimization objective, we need
to know the availability for every part A in the FBD instance D. We can express the
availability in several categories and assign a cost to them as seen in Table 5.1. These
are exemplary categories, for other scenarios the categories may differ.

Availability Category cost α(A)
In Stock 0 a0
Backorder ≥ 1 day 1 a1
Backorder ≥ 3 days 3 a3
Backorder ≥ 10 days 10 a10
Backorder ≥ 30 days 30 a30

Table 5.1: Example Categories for the part availability

For every part we know the current availability α(A) expressed in the literals a0 to a30.
It is significant to consider that the delivery time of any given configuration is defined by
the worst case availability of any part needed to build the configuration, since the parts
must be available for assembly. Therefore the following encoding is proposed:

Definition 5.5.5. The optimization objective for the delivery time is defined as:

φhard = [ ∀A∈D φ(A) ⇒ α(A) ] ∧
(d0 ⇒ ¬a1 ∧ ¬a3 ∧ ¬a10 ∧ ¬a30) ∧
(d1 ⇒ ¬a3 ∧ ¬a10 ∧ ¬a30) ∧
(d3 ⇒ ¬a10 ∧ ¬a30) ∧
(d10 ⇒ ¬a30) ∧
(d30 ⇒ ⊤)

φdelivery = {(d0, 0), (d1, 1), (d3, 3), (d10, 10), (d30, 30)}
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The literals d0 to d30 stand for the requested worst case delivery time. For any d to be
satisfied, the part delivery times (a0 to a30) cannot be worse. This condition is expressed
through hard clauses in φhard. Every delivery objective d is assigned to the corresponding
cost in the soft clauses of the optimization objective φdelivery.

5.5.5 Standardization
Product line diversity and complexity, which is often growing exponentially, can signifi-
cantly strain a business’s resources and operational efficiency. This diversity is driven
by both, deliberate choices and lack of guidance towards standards. Therefore, many
companies strive to reduce the complexity and unnecessary diversity of their product
offering by incentivizing customers towards more standard configurations. Especially
mitigating the creation of unintentionally novel configurations that could have been
served with already existing configurations.

If a customer still wants to deviate from a given standard, companies tend to allow that
for an extra cost, if the added technical complexity is acceptable. Consequently, the
definition of the standardization is very similar to the sales price, but still considered as
a separate aspect of optimization, since these aspects can be in conflict.

Definition 5.5.6. Each standard is defined as a tuple in the set of standards S. A
standard tuple consists of a condition and a weight to represent the importance of the
standard.

S = {⟨f(c0, . . . cn), w⟩ , . . . }

Definition 5.5.7. The standardization optimization objective can be defined as:

φstandardize = {(f, w) | ⟨f, w⟩ ∈ K}

5.5.6 Environmental Sustainability
A commitment to environmental responsibility throughout the whole product lifecycle,
from sourcing materials to sustainable production and energy efficient products, is an
important aspect for businesses. This ambition is driven by customer demand, regulatory
compliance and brand reputation. The pressure to reduce the carbon footprint and to
minimize the environmental impact is ever-increasing. Particularly in the EU, where
stringent regulations to promote sustainability and to combat climate change have been
implemented, but also in the rest of the world, companies are trying to optimize their
products to operate more environmentally friendly.

To evaluate the environmental aspects of production and source materials, we want to
analyze how negative the influence of a particular material used in a product is on the
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environment. A measure called CO2 − eq (CO2-equivalence, also known as CO2e), has
been created, that, based on scientific evaluations, serves as a lookup table for the carbon
footprint of different source materials measured relative to the effects of CO2 [ACF+15].
One such data source is the GaBi database3, which is one of the leading databases for
Life Cycle Assessment (LCA) worldwide. We can make use of this database and encode
the CO2 − eq data into the MaxSAT-Solver instance to optimize the product towards an
environmentally friendly product choice.

Definition 5.5.8. The optimization objective for CO2 − eq reduction is defined as:

φCO2 = {( φ(A), σCO2−eq
A∈D (A) ) | A ∈ D}

Beyond CO2 − eq, there are other measurements that can be considered, like the energy
consumption for production steps, the waste generation of certain parts (battery) and
the reusability of components, etc.

5.5.7 Product Weight
Another optimization objective is the total weight of the final product. Depending on
the use-case of the product, it might be a technical requirement to keep the product as
light as possible, e.g. for the airplane industry or highly performant race cars. Given
that we have weight information about the weight of each part A given as g(A), we can
encode this optimization objective analog to the material cost.

Definition 5.5.9. The optimization objective for the product weight is defined as:

φweight = {( φ(A), σg
A∈D(A) ) | A ∈ D}

3https://ghgprotocol.org/gabi-databases accessed on 15.10.2024 22:29, accessed on
2.7.2024, 8:30
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CHAPTER 6
Experiments and Evaluation

To qualitatively analyze the concept and evaluate the performance, the author has
conducted several experiments on the dataset of the TT-Platform. The following sections
will present the resulting Pareto Fronts and discuss the results.

The used algorithm for most experiments is the P -Minimal-Algorithm. For later
experiments that are more complex and the computation time exceeded 1 second, the
performances of P -Minimal and BiOptSat are compared.

6.1 Implementation Details

In the course of this thesis, the author has implemented a versatile transformation pipeline
for FBD instances as mentioned in Section 4.1.3. The combination of this pipeline and
a Rust implementation of several multi-objective MaxSAT-Solvers by Christoph Jabs
(called scuttle1) has formed a capable analysis and optimization toolkit for FBD. The
scuttle repository includes implementations for P -Minimal and BiOptSat as well as
data structures that are needed to deal with MaxSAT-Instances.

The authors’ implementation includes an instance loading mechanism that can build
SAT- and MaxSAT-Instances directly from product documentation databases including
the EFS Modularity Suite toolkit. This implementation will be used for the following
evaluation. It provides several methods to load the instances and convert the relevant
metadata into objectives for the solver, based on the transformation pipeline explained
in Chapter Reducing to the Satisfiability Problem.

1https://github.com/chrjabs/scuttle accessed on 15.10.2024 22:29
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6.2 Best Fit vs. Sales Price
This experiment evaluates how a customer can be guided towards a cheaper variant of the
product by changing least possible desired configuration choices. The context for such
an optimization strategy can be a guided configuration process, where the customer can
define their desired features and a schooled sales representative can lead a negotiation on
what features are essential and which can be dropped to achieve given price targets.
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Figure 6.1: Pareto Front of best fit vs. sales price in the TT-Platform

In Figure 6.1 the customer’s choices (Table 6.1) are evaluated against the sales prices for
each feature (as listed in Table 6.2). The goal is to minimize the price while maximizing
the customer fit. The optimal configuration in terms of the customers fit, is including
all desired features. It costs 1.560€, since the hardware needed for full self-driving is
relatively expensive. The cheapest option on the other hand is taking the old model
(TT_01) without any add-on features (like autonomous driving, brushless motor, etc.).
The Pareto Front shows the trade-off from the best fit to the cheapest option in 5 steps
along a convex curve.

The first choice that is dropped for the customer is the self-driving feature, since it
is by far the most expensive feature. The next trade-off is choosing a brushed motor
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Selected Features
TT_02
M_TYP_BRUSHLESS
XW_WIDE
AI_SELF_DRIVING
W_VOLTAGE_MONITOR

Table 6.1: Selected features by the customer

Feature / Condition Price
PF_G1 230€
PF_G2 300€
OFF 80€
WB_257 10€
GC_HIGH 20€
XW_WIDE 30€
M_TYP_380 50€
M_TYP_540 70€
M_TYP_BRUSHLESS 130€
XD_OIL 50€
-XS_STD 70€
TW_ON_PROFILE 20€
BODY_LONG 20€
AK_NIMH_3000 20€
AK_LIPO_3300 50€
SV_6V_20K 50€
AI_SELF_DRIVING 1000€
AI_BREAK_ASSIST 80€
W_VOLTAGE_MONITOR 10€

Table 6.2: Sales price of features

(M_TYPE_380) over the more expensive brushless variant –which also requires a more
expensive motor controller. Continuing these trade-offs, we arrive at the absolute cheapest
option which is the TT_01 model with the standard 540 motor and XW_STD.

Out of the perspective of a customer, the ideal point would be to choose the brushless
motor with the manual driving, an NIMH 3000mAh battery and the 8kg Servo at a price
point of 520€. This choice is considering most customers choices, but at a reasonable
price point.

A sales representative based on this Pareto Front can lead a negotiation with the customer
by comparing the ideal configuration to the cheaper alternatives and discussing the trade-
offs in the given application. Since AI_SELF_DRIVING is one of the configurations with
a lot of prestige for the company and also a high profit margin, the goal of the sales
representative would be to highlight the advantages of self-driving. But if the customer
is not willing to pay the extra price, the suggested alternative would be the presented
optional solution.

6.3 Best Fit vs. Delivery Time
The next experiment will be best fit vs. delivery time. Our goal is to offer the customer
a deliverable product, that can be shipped in a timely manner. The delivery time is a
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central aspect of the sales department and reducing it is a highly important objective for
a company [SFH+18]. This can be done by streamlining the production and improving
the logistics –and also by leading the customer towards a configuration, that can be
shipped faster, because all the parts are already available in stock.
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Figure 6.2: Pareto Front of best fit vs. delivery time in the TT-Platform

The customer choices in this experiment are the same as for the previous example (Table
6.1). In Figure 6.2, the trade-offs for the choices are displayed against an exemplary
per-part delivery time. Currently, the parts needed for the voltage monitor are not
in stock and have a back-order time of at least 30 days. Therefor, delivering the
choice of W_VOLTAGE_MONITOR leads to 30 days in delivery. But, when trading off
the voltage monitor, there is an option for a 10-day delivery with a brushless motor
and manual driving. Trading off other choices, we arrive at a delivery time of 0 days
–everything in stock–, but without considering any choices of the customer. The optimal
configuration (optimal point) would be to drop the W_VOLTAGE_MONITOR and keeping
the AI_SELF_DRIVING with the M_TYP_BRUSHLESS.

For the company to reach the given target of improved delivery time, this Pareto front
makes the trade-offs visible. Based on it, a sales representative can lead the negotiation
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with the customer to see how the change of the given configuration can lead to a better
delivery time.

For highly configurable products with the amount of features exceeding hundreds of
features, finding the best way to slightly change the choice, while improving the delivery
time. Achieving this is close to impossible without intelligent tools, that have access to
the documentation system and the current stock data.

6.4 Sales Price vs. Material Cost

0 € 200 € 400 € 600 € 800 € 1000 € 1200 € 1400 € 1600 €
0 €

200 €

400 €

600 €

800 €

1000 €

1200 €

1400 €

1600 €

Pareto Front
Sales Price vs. Material Cost (duration 294 ms)

Sales Price

M
at
er
ia
lC

os
t

TT_02B PF_G2 OFF
WB_266 GC_STD XW_STD
M_TYP_BRUSHLESS RATIO_1770 XD_OIL
XS_STD TW_OFF_SPIKE BODY_STD
AK_NIMH_3000 SV_6V_8K FQ_24G
AI_BREAK_ASSISTWO_VOLTAGE_MONITOR

Negative Profit

Positive Profit30%
PPPrrroooffff

iiit M
argi

n

666000%
Profffiii

t Mar
gin
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When preparing the pricing for a product, a challenging task is deciding how certain
features should be priced. Generally speaking, the price should cover all the costs for
material and process plus a profit margin. Furthermore, customers are generally more
willing to pay for extra add-on features, therefore we want to have increased profit for
non-standard configurations. Designing a proper pricing model on a highly configurable
product creates additional challenges, because we need to make sure it is profitable on
all possible configurations.
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In Figure 6.3 a Pareto Front is given with the objective to minimize the sales price and
maximize the material cost. In other words, the solver aims to find the worst case product
in terms of profit margin from the perspective of the company. The dotted gray line
separates the negative profit area from the positive profit. Given the pricing in Table 6.2,
the profit is positive for every configuration. Starting with the cheapest configurations,
we see a profit margin of around 15%. The more special features are selected, the higher
the profit margin will be, with around 45% margin for the full self-driving configurations.

The Pareto Front shows a convex behavior, which represents the fact that we incur extra
profit for add-on features, and the customers’ willingness to pay extra for add-on features
is taken into account.

In a practical case of this experiment, this evaluation would happen during or towards
the end of the technical development phase, where we have a good knowledge of the costs
of each part. Given these material costs, the prices for the features can iteratively be
adjusted to align the Pareto Front towards the desired profit margins and curvature.

6.5 Market Reach vs. Technical Solutions
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Figure 6.4: Pareto Front of market reach vs. technical solutions in the TT-Platform
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In Figure 1.1 one of the goals of modularity is explained as the aim to offer the highest
possible product variance while reducing the parts necessary to deliver the products to a
minimum. These objectives can be encoded by MaxSAT-Solvers utilizing two conflicting
objectives.

The first objective is the market reach objective which values each feature that is selectable
with the weight of 1.

Definition 6.5.1. The optimization objective for market reach is defined as:

φmarket reach = {( φ(ci), 1) | ci ∈ D}

We want to allow the solver to select several features at the same time to be true, such
that the solver creates a mask of the features. For this we have to change the definition of
our instance D and replace the OneHot constraint with an at-least-one constraint. Now
the solver can select several features of out a feature group. The base-type features in this
case is not part of the optimization, since they each exhibit a huge amount of technical
solutions that would overshadow the discussion about the complexity of features.

The second objective is the amount of technical solutions, that is needed. Because several
features can be selected by the solver, we slightly have to change the usage conditions,
since we do not want to have negations in the condition. To remove the negations, we
can replace every negated code by the disjunction of the other codes in the given feature
group. For example, if a condition φ contains -M_TYP_540 we can replace convert it
to φ′ by replacing -M_TYP_540 with (M_TYP_380/M_TYP_BRUSHLESS). If the solver
decides to allow all motors, φ′ will still be true. The correctness of this substitution can
be argued by the OneHot constraint.

Definition 6.5.2. The optimization objective for the reduction of technical solutions is
defined as:

φtechnical solutions = {( φ′(A), 1 ) | A ∈ D}

The curve is slightly convex, which signifies, that there are complex features that yield a
higher amount of technical solutions to be implemented. The minimal amount of market
reach is at 24 features and 83% of the technical solutions. This is the minimum, dropping
any technical solution would result in not buildable configurations.

On the high side of the market reach, we can see the AI_SELF_DRIVING feature which
requires the highest amount of technical solutions. Identifying the amount of technical
solutions for a given feature can be done using the exclusivity analysis as given in Section
3.2. Given the company wants to reduce the complexity of the product, the discussion
traverses the curve starting at the most complex features on the right side, till a balance
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is reached somewhere on the Pareto front. This balance incorporates the trade-offs the
company is willing to take.

But for objectively deciding the trade-offs, a central question is, how big the market is
behind a given feature. There might be features that are technically complex, but are
ordered very often, and therefore would be economically viable. The next experiment
will address the shortcomings of this experiment by encoding the customer interest and
also the effective complexity by weighting the parts based on their technical complexity.

6.6 Market Fit vs. Weighted Technical Solutions
In Figure 6.5 the customer interest vs. technical complexity goal for a company is
illustrated in a matrix with the dimensions of technical complexity, given in the amount
of exclusive parts, and customer interest as the sales volume. Trivially, the obvious target
would be to only sell products with low technical complexity and high customer interest,
while not selling technically complex products with low customer interest.

Figure 6.5: Identifying the target for a company’s complexity vs. customer interest

The case of high customer interest and high technical complexity is more delicate. For
this case, we need to make sure that we price the features such that we incur an adequate
extra price for the complexity that covers the cost added by engineering, testing, logistics,
management, etc. for these complex parts. This can be done by using the objectives from
the previous experiment to create an adequate pricing model.

The other case of low complexity and low customer interest can be considered fine,
because all necessary parts exist, we only need to compose them in a specific manner
for a few customers. Given that we have properly documented the product in a FBD
instance, creating this special variant poses no challenge. The only consideration is if it is
possible to increase the price for these variants, because there might be less competition
for these market segments.
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6.6. Market Fit vs. Weighted Technical Solutions

Figure 6.6: Pareto Front of market fit vs. accumulated technical complexity in the
TT-Platform

For this experiment, instead of targeting special features, we encode complete customer
configurations weighted by the sales volume. The technical solutions on the other hand
will be weighted by the effort needed in the engineering and production phase. The
author has created an index that considers the engineering and production effort for each
part (e.g. a screw that can be bought off-shelf compared to a specially formed plastic
part needs custom engineering and custom in-house processes).

The result of the evaluation is, that there is a very clear optima, at 80% market fit and
only 40% accumulated technical complexity of the technical solutions. This optimum
drops the following features of the portfolio:

This would only keep the TT_02 base-type and drop the TT_01 and TT_02B. In our
fictional order history, the amount of people ordering not the standard base-type TT_02
is very low. Therefore, the optimizer takes the chance to drop the old base-type and the
buggy variant. Such kind of distributions are very common in the industry.

For a company, phasing out the old TT_01 model for sure would be a good decision. The
buggy variant (TT_02B) as well as the autonomous driving feature (AI_SELF_DRIVING)
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6. Experiments and Evaluation

Dropped Features
TT_02B
TT_01
OFF
RATIO_1770
WB_266
AI_SELF_DRIVING

Table 6.3: Features dropped for optimal point (80% market fit and 40% accumulated
technical complexity)

are features that require a lot of technical complexity and are bought less often, because
of the smaller market and the higher price point. A company in this case has to consider
the business case for both of these variants and also, if the generated prestige is worth
the technical complexity.

For each step along the Pareto Front from the optimal point toward 100% market fit, the
consideration for the dropped features can be repeated, yet the penalty on the market
side for removing the features is decreasing. A company can decide to target any option
along this way considering its market side product strategy. By reducing the technical
complexity, the price of the product can be lowered, and the more competitive pricing
can, in-return, increase the market share and profit –making up for the lost customers in
the first place–. This discussion sheds light onto one essential challenge of a modular
product platform, which is their tendency to become more complex over time while not
necessarily increasing the market fit.

Performance Evaluation
In terms of performance, this experiment requires a lot more computation time compared
to the previous one. The computation time is around 77 seconds for P-Minimal and 107
for the BiOptSat algorithm (see Table 6.4).

P-Minimal 47.542 seconds
BiOptSat 101.410 seconds

Table 6.4: Comparing the performance of different multi-objective solvers

P-Minimal outperforms BiOptSat by taking less than half the wall-clock computation
time. The most probable explanation in this case is that the many very close non-
dominated solutions along the Pareto Front lead the BiOptSat to take more time in
switching between the different one-directional optimization mode compared to the more
direct approach of P-Minimal.

For both algorithms, the solver first executed the core boosting routine [JBJ24] to
preprocess and reformulate the instance.
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6.7 Generalizability of the Experiments
The TT-Platform has 39 features and around 170 parts. In the industry, many products
are equivalently complex, but there are also a lot that exhibit a way higher configurability.
Based on the author’s experience, many highly configurable product lines exist, with
over a thousand features and several hundred thousand parts. The truck industry, for
example, is particularly known for its complexity due to many applications with specific
requirements –from long-haul tractors to construction site concrete mixers–.

Scaling the experiments to products of high complexity will pose a challenge. Still,
experiments Best Fit vs. Sales Price and Best Fit vs. Delivery Time ran in a few
milliseconds in the TT-Platform example and therefore should be feasible to execute in
reasonable time in a larger-scale scenario. Also, adequate levels of abstraction (dropping
parts that are irrelevant, focusing on only a certain module, concentrating parts, . . . )
may reduce the complexity and increase the speed. The author has conducted validation
tests in a highly complex product that confirm the feasibility.

The experiment of Sales Price vs. Material Cost is a bit more compute-intensive than the
previous one, but still it executed in around 300 milliseconds. Scaling this experiment to
more complex products is expected to be feasible as well.

In the experiments for optimizing the product offering, the computation time of the first
(Market Reach vs. Technical Solutions) is sufficiently low (12 milliseconds) such that the
execution in a highly complex product is feasible. On the contrary, the second experiment
(Market Fit vs. Weighted Technical Solutions) is infeasible in a more complex product due
to the already high computation time (47 seconds) in the TT-Platform. To reduce the
computation time, the weighting of the customer interest can also be achieved differently.
Similar to the fist example, the individual features can be optimized, while the sales
volumes of each individual feature is defined as the weight. This simplification should
yield an acceptable loss of accuracy while drastically reducing the necessary computation
time.

Furthermore, approximation techniques, like simulated annealing or greedy algorithms,
may yield good enough results while keeping the computation times reasonable.
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CHAPTER 7
Summary & Outcome

The goal of this thesis was to investigate the domain of FBD and to explore the application
of the MaxSAT-Solver in the domain. This application has been evaluated in several
experiments that yield insights into an example product platform and its configurability.

7.1 Conclusio
The conclusion is that there are several use-cases in which MaxSAT-Solvers are an effective
tool to optimize product platforms and individual products towards given objectives. The
resulting Pareto Fronts offer valuable insights into the trade-offs between the different
objectives. The application is manifold from product configurators that suggest trade-offs
to the customer, for choosing a cheaper or faster deliverable product, to the analysis tasks
of discussing the pricing of the product and also of analyzing the product’s complexity.

Furthermore, the suggested framework is highly adaptable, since new objectives can be
defined and processed using the reduction pipeline. Combined with the EFS Modular-
ity Suite, the objectives can be loaded directly form the information in the products’
documentation system.

As an extension of the conclusions about applying multi-objective MaxSAT, the proposed
methods in Section Exclusivity and Module Interface Analysis offer viable capabilities.
These can profoundly enhance the way FBD-Systems are analyzed and how the discussion
about the module interfaces can systematically improve the way that we think about
modularity and the composability of highly configurable products.

7.2 Outlook & Open Questions
While this thesis explored several possible applications, there are many more waiting
in the world of product manufacturing. MaxSAT-Solvers have the potential to address
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a wide range of objectives in this context. The open question is how effective the
existing solvers are and how the algorithms scale to large scale platforms with extremely
high configurability. Furthermore, a central question is how practically the discussion
of the resulting trade-offs can be integrated into organizational processes and different
subsidiaries of a manufacturing company. The existing tool-set around the EFS Modularity
Suite poses a capable platform to deliver these evaluations and allow discussions to take
place in a company around a shared documentation system.
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APPENDIX A
Module Interface Graph

In Figure A.1 an interface graph over the complete rc-car is given with the following
Interfaces (refined version of [WB24]):

G Geometrical interface

F Functional Interfaces

D Data Interfaces

P Power Interfaces

M Mechanical Interfaces

E Environmental Interfaces
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A. Module Interface Graph

D
IF
FE

R
E
N
TI
AL

_G
E
AR

_B
E
AR

IN
G

M
O
TO

R
_C
O
VE

R

D
IF
FE

R
E
N
TI
AL

_G
E
AR

PR
O
PE

LL
E
R
_S
H
AF

T

G
D
IF
FE

R
E
N
TI
AL

_G
E
AR

_C
O
VE

R

F

SU
SP

E
N
SI
O
N
_B
R
ID
G
E
_U

PP
E
R
_O
U
TE

R
PR

O
PE

LL
E
R
_S
H
AF

T_
M
O
U
N
TI
N
G

G

AX
LE

G
G

M

FR
O
N
T_
LO

W
E
R
_A
R
M
S

G

W
H
E
E
L_
M
O
U
N
TI
N
G

M
G

FR
O
N
T_
U
PP

E
R
_A
R
M
S

G

C
H
AS

SI
S_
U
N
D
E
R
B
O
D
Y

G

R
E
C
E
IV
E
R
_C
O
VE

R
B
O
D
Y_
B
R
AC

K
E
T

G

B
AT

TE
RY

E
LE

C
TR

O
N
IC
_S
PE

E
D
_C
O
N
TR

O
LL
E
RP

B
AT

TE
RY

_M
O
U
N
TI
N
G

G

B
E
C

P

G

ST
E
E
R
IN
G
_S
E
RV

O
_L
IN
KA

G
E

ST
E
E
R
IN
G
_S
E
RV

O
_M

O
U
N
TI
N
G

G

SH
O
C
K
_A
B
SO

R
B
E
R

G

SU
SP

E
N
SI
O
N
_B
R
ID
G
E
_L
O
W
E
R
_O
U
TE

R

G
M

G

SU
SP

E
N
SI
O
N
_B
R
ID
G
E
_U

PP
E
R
_I
N
N
E
R

G

G

M
O
TO

R

F

M
O
TO

R
_M

O
U
N
TI
N
G

G

M
O
TO

R
_T
R
AN

SM
IS
SI
O
NG

M

VO
LT
AG

E
_M

O
N
IT
O
R

ST
E
E
R
IN
G
_A
R
M
S G

M

TI
R
E

W
H
E
E
L

M
G

TR
AN

SM
IS
SI
O
N
_C
O
VE

R

B
O
D
Y

G

P

R
E
C
E
IV
E
RP

D

PO
W
E
R
_D
IS
TR

IB
U
TI
O
N

P

G

G

C
O
M
PU

TE

D

C
O
M
PU

TE
_L
AY

E
R

G

SE
N
SO

R
S

P

G

G

G
G

G

P

P

G

FR
O
N
T_
B
U
M
PE

R

G

G

ST
E
E
R
IN
G
_S
E
RV

O

G
M

G

G
P

D

TR
AN

SM
IT
TE

R

D

G
M

G

G

G

G
G

G
G

G

G

G
G

G

G
G

G

G

G

AN
TE

N
N
A_
B
R
AC

K
E
T

D
M

G

Figure A.1: Exemplary Module Interface Graph for the complete rc-car (refined version
of [WB24])
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Glossary

Battery Electric Vehicle (BEV) An electric vehicle that utilizes a Battery as the
primary power source. 64

Bill of Material (BoM) A list of all the parts that are in a product given in a hierar-
chical order [Tea02]. 24, 25, 27

Configuration Lifecycle Management (CLM) Configuration Lifecycle Management
describes the management of the all the product configurations over the complete
lifecycle from idea, engineering till after-sales [MRH18]. 1

Configure Price Quote (CPQ) CPQ stands for Configure Price Quote and is um-
brella term that describes processes that aim at improving the customer’s journey
from Configuration, Pricing till the Quotation [JAJK20]. 3

End Of Production (EOP) EOP is the planned end of the production. 18

Modular Function Deployment (MFD) Modular Function Deployment (MFD) is
a recognized method for conceptualizing modular products by taking a holistic view
of which functions modules need to implement and what requirements (functional
and non-functional) they need to satisfy. The aim of the method is to produce a
well-designed modular product that improves the handling in the whole lifecycle
from production till after sales. [EE99]. 3, 6, 38

Negative Normal Form (NNF) In the NNF, only And and Or are operators. Nega-
tions are only applied on variables and not on operators. 50

Original Equipment Manufacturer (OEM) a company that makes parts and prod-
ucts for other companies which sell them under their own name or use them in
their own products [WC11]. 18, 40

Structural Element (SE) A Structural Element is a functional part that is used to
build a product. It can either be a single part or a subassembly. 26, 30, 33–36, 91

Structural Family (SF) A Structural Family defines a group of Structural Elements.
This grouping is done on a functional level, such that all elements serve a similar
function. 26, 34
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Start Of Production (SOP) The SOP marks the beginning of the mass production
of the product. 18

SuperBoM (SuperBoM) A superset of all the BoMs of all possible product variations
[WB24]. 25, 33

98



Acronyms

AST Abstract Syntax Tree. 44, 46, 50, 92

CAD Computer Aided Design. 25

CDCL Conflict-Driven Clause Learning. 16

CNF Conjunctive Normal Form. 14, 43, 49, 57

CSP Constraint Satisfaction Problem. 65

DPLL Davis-Putnam-Logemann-Loveland. 15, 16

ERP Enterprise Resource Planning. 25

FBD Feature-based Documentation. 2, 7–10, 17–19, 23, 29, 31, 33, 37, 38, 41, 70–72,
75, 82, 87

FDM Feature Driver Matrix. 40

ILP Integer Linear Programming. 57–59, 92

LCA Life Cycle Assessment. 74

MES Machine Execution System. 72

MIB Module Interface Boundaries. 38–40

MODOP Multi-Objective Discrete Optimization Problem. 65

PLM Product Lifecaycle Management. 25

99





Bibliography

[ABZ06] Adi Avidor, Ido Berkovitch, and Uri Zwick. Improved approximation al-
gorithms for MAX NAE-SAT and MAX SAT. In Thomas Erlebach and
Giuseppe Persinao, editors, Approximation and Online Algorithms, pages
27–40, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[ACF+15] Laura Ausberg, Andreas Ciroth, Silke Feifel, Juliane Franze, Kaltschmitt
Martin, Inga Klemmayer, Kirsten Meyer, Peter Saling, Liselotte Schebek,
Jana Weinberg, and Christina Wulf. Umweltbewertung für Ingenieure: Meth-
oden und Verfahren, chapter Lebenszyklusanalysen, pages 203–314. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2015.

[AG13] Carlos Ansótegui and Joel Gabàs. Solving (Weighted) Partial MaxSAT with
ILP. In Integration of AI and OR Techniques in Constraint Programming,
2013.

[ASW+11] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk
Beyer. Detection of feature interactions using feature-aware verification. In
Proceedings of the 26th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’11, page 372–375, USA, 2011. IEEE Computer
Society.

[BF17] Facundo Bre and Víctor Fachinotti. A computational multi-objective op-
timization method to improve energy efficiency and thermal comfort in
dwellings. Energy and Buildings, 154, 08 2017.

[Bha16] Swapnil Bhartiya. Linux is the largest software development project on the
planet: Greg Kroah-Hartman, 2016. https://www.cio.com/articl
e/241071/linux-is-the-largest-software-development-p
roject-on-the-planet-greg-kroah-hartman.html accessed on
21.10.2024 at 10:00.

[Bru20] Noah Bruns. Application of SAT-Solvers in Feature-based Documentation
Systems. Bachelor’s thesis, Technical University Vienna, 2020.

101

https://www.cio.com/article/241071/linux-is-the-largest-software-development-project-on-the-planet-greg-kroah-hartman.html
https://www.cio.com/article/241071/linux-is-the-largest-software-development-project-on-the-planet-greg-kroah-hartman.html
https://www.cio.com/article/241071/linux-is-the-largest-software-development-project-on-the-planet-greg-kroah-hartman.html


[CFZ97] Jianer Chen, D.K. Friesen, and Hao Zheng. Tight bound on johnson’s
algorithm for max-sat. In Proceedings of Computational Complexity. Twelfth
Annual IEEE Conference, pages 274–281, 1997.

[CLL+22] Jordi Coll, Shuolin Li, Chu-Min Li, Felip Manyà, Djamal Habet, and Kun
He. MaxCDCL and WMaxCDCL in MaxSAT Evaluation 2022. In MaxSAT
Evaluation 2022: Solver and Benchmark Descriptions, Department of Com-
puter Science Series of Publications B. Department of Computer Science,
University of Helsinki, 2022.

[CLL+23] Jordi Coll, Shuolin Li, Chu-Min Li, Felip Manyà, Djamal Habet, Mo-
hamed Sami Cherif, and Kun He. WMaxCDCL in MaxSAT Evaluation
2023. In MaxSAT Evaluation 2023: Solver and Benchmark Descriptions,
Department of Computer Science Series of Publications B. Department of
Computer Science, University of Helsinki, 2023.

[EE99] Anna Ericson and Gunnar Erixon. Controlling Design Variants: Modular
Product Platforms. Society of Manufacturing Engineers, 1999.

[FBF+21] Patrick Franz, Thorsten Berger, Ibrahim Fayaz, Sarah Nadi, and Evgeny
Groshev. Configfix: Interactive configuration conflict resolution for the linux
kernel. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), pages 91–100,
2021.

[FBGR13] Alexander Felfernig, David Benavides, José Galindo, and Florian Reinfrank.
Towards anomaly explanation in feature models. In CEUR Workshop Pro-
ceedings, volume 1128, pages 117–124, 08 2013.

[FBS19] Katalin Fazekas, Armin Biere, and Christoph Scholl. Incremental inprocessing
in sat solving. In International Conference on Theory and Applications of
Satisfiability Testing, 2019.

[For09] Lance Fortnow. The status of the P versus NP problem. Communications
of the ACM, 52(9):78–86, September 2009.

[GSK98] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial
search through randomization. In Proceedings of the Fifteenth National/Tenth
Conference on Artificial Intelligence/Innovative Applications of Artificial
Intelligence, AAAI ’98/IAAI ’98, page 431–437, USA, 1998. American Asso-
ciation for Artificial Intelligence.

[GW94] Michel X. Goemans and David P. Williamson. New 3/4-approximation
algorithms for the maximum satisfiability problem. SIAM Journal on Discrete
Mathematics, 7(4):656–666, 1994.

102



[HK21] Bartłomiej Hadasik and Jakub Kubiczek. Dataset of electric passenger cars
with their specifications. Mendeley Data, 2021. https://data.mendele
y.com/datasets/tb9yrptydn/2 accessed on 19.10.2024 at 11:03.

[IMMS19] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. Rc2: an efficient
maxsat solver. Journal on Satisfiability, Boolean Modeling and Computation,
11:53–64, 09 2019.

[JAJK20] Michelle Jordan, Gunnar Auth, Oliver Jokisch, and Jens-Uwe Kühl.
Knowledge-based systems for the Configure Price Quote (CPQ) process
- a case study in the IT solution business. Online Journal of Applied Knowl-
edge Management, 8:17–30, 09 2020.

[Jan08] Mikoláš Janota. Do SAT solvers make good configurators? In Software
Product Lines Conference, pages 191–195, 01 2008.

[Jan10] Mikoláš Janota. SAT Solving in Interactive Configuration. PhD thesis,
University College Dublin, 2010.

[Jan23] Martin Janiczek. Demystifying pratt parsers. Blog Post, https://mart
in.janiczek.cz/2023/07/03/demystifying-pratt-parsers.h
tml accessed on 19.3.2024 at 14:15, 2023.

[JBJ24] Christoph Jabs, Jeremias Berg, and Matti Järvisalo. Core Boosting in SAT-
Based Multi-objective Optimization. In Bistra Dilkina, editor, Integration of
Constraint Programming, Artificial Intelligence, and Operations Research—
21st International Conference, CPAIOR 2024, Uppsala, Sweden, May 28–31,
2024, Proceedings, Part II, volume 14743 of Lecture Notes in Computer
Science, pages 1–19. Springer, 2024.

[JBNJ22] Christoph Jabs, Jeremias Berg, Andreas Niskanen, and Matti Järvisalo.
MaxSAT-Based Bi-Objective Boolean Optimization. In Kuldeep S. Meel
and Ofer Strichman, editors, 25th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2022), volume 236 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 12:1–12:23, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[JBNJ24] Christoph Jabs, Jeremias Berg, Andreas Niskanen, and Matti Järvisalo. From
Single-Objective to Bi-Objective Maximum Satisfiability Solving. Journal of
Artificial Intelligence Research, 80, August 2024.

[Joh74] David S. Johnson. Approximation algorithms for combinatorial problems. J.
Comput. Syst. Sci., 9(3):256–278, dec 1974.

[KIMS21] Stepan Kochemazov, Alexey Ignatiev, and Joao Marques-Silva. Assessing
Progress in SAT Solvers Through the Lens of Incremental SAT. In Chu-Min
Li and Felip Manyà, editors, Theory and Applications of Satisfiability Testing
– SAT 2021, pages 280–298, Cham, 2021. Springer International Publishing.

103

https://data.mendeley.com/datasets/tb9yrptydn/2
https://data.mendeley.com/datasets/tb9yrptydn/2
https://martin.janiczek.cz/2023/07/03/demystifying-pratt-parsers.html
https://martin.janiczek.cz/2023/07/03/demystifying-pratt-parsers.html
https://martin.janiczek.cz/2023/07/03/demystifying-pratt-parsers.html


[KKS+23] Elias Kuiter, Sebastian Krieter, Chico Sundermann, Thomas Thüm, and
Gunter Saake. Tseitin or not Tseitin? The Impact of CNF Transformations on
Feature-Model Analyses. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’22, New York, NY,
USA, 2023. Association for Computing Machinery.

[Kla20] Alex Kladov. Simple but Powerful Pratt Parsing. Blog Post, https:
//matklad.github.io/2020/04/13/simple-but-powerful-pra
tt-parsing.html accessed on 19.3.2024 at 17:46, 2020.

[KST+16] Sebastian Krieter, Reimar Schröter, Thomas Thüm, Wolfram Fenske, and
Gunter Saake. Comparing algorithms for efficient feature-model slicing. In
the 20th International Systems and Software Product Line Conference, pages
60–64, 09 2016.

[LXC+21a] Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, and
Kun He. Combining Clause Learning and Branch and Bound for MaxSAT.
In 27th International Conference on Principles and Practice of Constraint
Programming (CP 2021), Montpellier (Online), Best Paper Award, France,
2021.

[LXC+21b] Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, and Kun
He. Boosting branch-and-bound MaxSAT solvers with clause learning. AI
Communications, 35:1–21, 12 2021.

[Man] Modular Management. What is palma? Youtube https://www.youtub
e.com/watch?v=A_7O3LNIzpM accessed on 18.9.2023, 12:50.

[Mar] Tobias Martin. All You Need to Know About Modularization. webpage.
https://www.modularmanagement.com/blog/all-you-need-t
o-know-about-modularization accessed on 18.9.2023, 12:00.

[MBJN23] Ruben Martins, Jeremias Berg, Matti Järvisalo, and Andreas Niskanen.
Maxsat evaluation 2023, 2023. https://maxsat-evaluations.githu
b.io/ accessed on 12.6.2024, 16:30.

[MH23] Alexander Hoeppe Marc Halpern, Sudip Pattanayak. Configuration life
cycle management. Gartner Report Top Strategic Technology Trends in
Asset-Intensive Manufacturing for 2023, 2023.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: engineering an efficient SAT solver. In Proceedings
of the 38th Annual Design Automation Conference, DAC ’01, page 530–535,
New York, NY, USA, 2001. Association for Computing Machinery.

104

https://matklad.github.io/2020/04/13/simple-but-powerful-pratt-parsing.html
https://matklad.github.io/2020/04/13/simple-but-powerful-pratt-parsing.html
https://matklad.github.io/2020/04/13/simple-but-powerful-pratt-parsing.html
https://www.youtube.com/watch?v=A_7O3LNIzpM
https://www.youtube.com/watch?v=A_7O3LNIzpM
https://www.modularmanagement.com/blog/all-you-need-to-know-about-modularization
https://www.modularmanagement.com/blog/all-you-need-to-know-about-modularization
https://maxsat-evaluations.github.io/
https://maxsat-evaluations.github.io/


[MRH18] Anna Myrodia, Thomas Randrup, and Lars Hvam. Configuration lifecycle
management – an assessment of the benefits based on maturity. In Proceed-
ings of the 20th International Configuration Workshop, CEUR Workshop
Proceedings, pages 119–124. University of Hamburg, 2018.

[MSLM21] Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause
learning sat solvers. In Handbook of Satisfiability, 2021.

[Muf99] Moreno Muffatto. Introducing a platform strategy in product development.
International Journal of Production Economics, 60-61:145–153, 1999.

[NJ10] Alexander G. Nikolaev and Sheldon H. Jacobson. Handbook of Metaheuristics,
chapter Simulated Annealing, pages 1–39. Springer, 2010.

[NNKB21] Van-Hau Nguyen, Van-Quyet Nguyen, Kyungbaek Kim, and Pedro Barahona.
Empirical Study on SAT-Encodings of the At-Most-One Constraint. In
The 9th International Conference on Smart Media and Applications, SMA
2020, page 470–475, New York, NY, USA, 2021. Association for Computing
Machinery.

[NR12] Alexander Nadel and Vadim Ryvchin. Efficient sat solving under assumptions.
In International Conference on Theory and Applications of Satisfiability
Testing, 2012.

[Nys11] Bob Nystrom. Pratt parsers: Expression parsing made easy. Blog Post,
https://journal.stuffwithstuff.com/2011/03/19/pratt-p
arsers-expression-parsing-made-easy/ accessed on 19.3.2024 at
14:20, 2011.

[OC99] Ming Ouyang and Vasek Chvatal. Implementations of the DPLL algorithm.
PhD thesis, Rutgers University, USA, 1999.

[PG86] David A. Plaisted and Steven Greenbaum. A structure-preserving clause
form translation. Journal of Symbolic Computation, 2(3):293–304, 1986.

[Pra73] Vaughan R. Pratt. Top down operator precedence. In Proceedings of the 1st
Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’73, pages 41–51, New York, NY, USA, 1973. Association
for Computing Machinery.

[Rus12] Andrew L. Russell. Modularity: An interdisciplinary history of an ordering
concept. Information & Culture: A Journal of History, 47:257 – 287, 2012.

[SBTLB17] Takehide Soh, Mutsunori Banbara, Naoyuki Tamura, and Daniel Le Berre.
Solving multiobjective discrete optimization problems with propositional
minimal model generation. In J. Christopher Beck, editor, Principles and
Practice of Constraint Programming, pages 596–614, Cham, 2017. Springer
International Publishing.

105

https://journal.stuffwithstuff.com/2011/03/19/pratt-parsers-expression-parsing-made-easy/
https://journal.stuffwithstuff.com/2011/03/19/pratt-parsers-expression-parsing-made-easy/


[SFH+18] Sara Shafiee, Alexander Felfernig, Lars Hvam, Poorang Piroozfar, and Cipri-
ano Forza. Cost benefit analysis in product configuration systems. In
Alexander Felfernig, Juha Tiihonen, Lothar Hotz, and Martin Stettinger,
editors, 20th International Workshop on Configuration 2018 (ConfWS’18),
volume 2220 of CEUR Workshop Proceedings, pages 37–40. CEUR-WS,
09 2018. Configuration Workshop 2018, ConfWS 2018 ; Conference date:
27-09-2018 Through 27-09-2018.

[SKT+16] Reimar Schröter, Sebastian Krieter, Thomas Thüm, Fabian Benduhn, and
Gunter Saake. Feature-model interfaces: the highway to compositional anal-
yses of highly-configurable systems. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, page 667–678, New York,
NY, USA, 2016. Association for Computing Machinery.

[Spe93] William M. Spears. Simulated Annealing for Hard Satisfiability Problems.
Cliques, Coloring, and Satisfiability, 26:533–558, 10 1993.

[SS97] João P. Marques Silva and Karem A. Sakallah. GRASP — a new search
algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM Inter-
national Conference on Computer-Aided Design, ICCAD ’96, page 220–227,
USA, 1997. IEEE Computer Society.

[Stü18] Herwig Stütz. Algorithms for MAX-SAT. Master’s thesis, Graz University
of Technology, 2018.

[TAM13] TAMIYA INC., 3-7 Ondawara, Suruga-Ku, Shizuoka 422-8610 Japan. TT-02
Chassis, 11053610 edition, 2013. Available at https://www.tamiya.com
/cms/english/rc/rcmanual/tt02.pdf accessed on 19.10.2024, 11:30.

[Tea02] The NEMI Perfect BoM Team. In search of the perfect bill of materials
(bom). Technical report, National Electronics Manufacturing Initiative, Inc.,
2002.

[TSAH12] Thomas Thüm, Ina Schaefer, Sven Apel, and Martin Hentschel. Family-based
deductive verification of software product lines. SIGPLAN Not., 48(3):11–20,
sep 2012.

[Tse83] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus,
pages 466–483. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[WB23] Stefan Willminger and Noah Bruns. Feature Based Documentation Intro.
PowerPoint slides, 2023.

[WB24] Stefan Willminger and Noah Bruns. EFS Business Consultancy Modularity
Experience WS. PowerPoint slides, 2024.

[WC11] H. Waterhouse and R. Combley. Cambridge Business English Dictionary.
Cambridge University Press, 2011.

106

https://www.tamiya.com/cms/english/rc/rcmanual/tt02.pdf
https://www.tamiya.com/cms/english/rc/rcmanual/tt02.pdf


[Yan94] M. Yannakakis. On the approximation of maximum satisfiability. Journal of
Algorithms, 17(3):475–502, 1994.

107


	Kurzfassung
	Abstract
	Contents
	Introduction
	State-of-the-Art
	Related Work
	Open Challenges
	Main Contribution
	Structure of the Thesis

	Background & Preliminaries
	Approaching the SAT-Solver
	Feature-based Documentation

	State of the Art & Contribution to the Domain
	Distinctive, Complete and Consistent
	Exclusivity
	Module Interface Analysis
	Involvement of the Author
	EFS Modularity Suite

	Reducing to the Satisfiability Problem
	Step 1: Parsing Code Conditions
	Step 2: Transformation to CNF
	Step 3: The SAT-Solver
	Performance Evaluation

	Introducing MaxSAT-Solvers
	Problem Definition
	State-of-the-art MaxSAT-Solvers
	Approximation Techniques for MaxSAT
	Multi-Objective MaxSAT-Solvers
	Optimization Objectives in FBD

	Experiments and Evaluation
	Implementation Details
	Best Fit vs. Sales Price
	Best Fit vs. Delivery Time
	Sales Price vs. Material Cost
	Market Reach vs. Technical Solutions
	Market Fit vs. Weighted Technical Solutions
	Generalizability of the Experiments

	Summary & Outcome
	Conclusio
	Outlook & Open Questions

	Module Interface Graph
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Acronyms
	Bibliography

