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A B S T R A C T   

Energy management is a critical issue for the advancement of fuel cell vehicles because it significantly influences 
their hydrogen economy and lifetime. This paper offers a comprehensive investigation of the energy management 
of heavy-duty fuel cell vehicles for road freight transportation. An important and unique contribution of this 
study is the development of an extensive and realistic representation of the vehicle operation, which includes 
1750 hours of real-world driving data and variable truck loading conditions. This framework is used to analyze 
the potential benefits and drawbacks of heuristic, optimal, and predictive energy management strategies to 
maximize the hydrogen economy and system lifetime of fuel cell vehicles for road freight transportation. In 
particular, the statistical evaluation of the effectiveness and robustness of the simulation results proves that it is 
necessary to consider numerous and realistic driving scenarios to validate energy management strategies and 
obtain a robust design. This paper shows that the hydrogen economy can be maximized as an individual target 
using the available driving information, achieving a negligible deviation from the theoretical limit. Furthermore, 
this study establishes that heuristic and optimal strategies can significantly reduce fuel cell transients to improve 
the system lifetime while retaining high hydrogen economies. Finally, this investigation reveals the potential 
benefits of predictive energy management strategies for the multi-objective optimization of the hydrogen 
economy and system lifetime.   

1. Introduction 

Road freight transportation is a challenging task for the decarbon-
ization of the transport sector. Heavy-duty vehicles represent a small 
share of the total vehicle population (for example, less than 5% in the U. 
S. [1]). However, due to the heavy loads, road freight transportation 
accounts for one-third of global energy demand and greenhouse gas 
emissions in the transport sector. This already high burden can worsen 
in the near future because the freight activity is expected to be more than 
double by 2050 due to the ever-growing energy demand and the 
development of emerging countries [2]. 

Battery electric vehicles and fuel cell electric vehicles can signifi-
cantly contribute to the global mitigation of greenhouse gases and 
pollutant emissions. Many commercial models are already available on 
the market of passenger cars for both categories, showing promising 
results in terms of range, performance, and driving comfort. However, 

thanks to higher energy density and fast refueling, fuel cell systems seem 
more appealing than batteries for heavy-duty vehicles (HDVs), which 
have higher power and range requirements [1,3,4] than passenger cars. 
The life-cycle analysis in [1] shows that fuel cell HDVs retain well-to- 
wheel improvements in energy use and emissions compared to con-
ventional vehicles. Kast et al. [5] segment the HDVs market by weight 
class and vocation to identify the best-suited applications for fuel cell 
technology. The analysis suggests that most vehicles have sufficient 
space for hydrogen storage tanks under the side rails, behind the cab, 
and under the chassis, to cover their daily operation range. In the largest 
segment, i.e. class 8 tractor-trailers, 50% of the units have a range lower 
than 200 km and 90% lower than 880 km. 

Three main barriers prevent the commercialization of heavy-duty 
fuel cell vehicles: high costs, low lifetime, and missing hydrogen refu-
eling infrastructure. Hopefully, technological progress and economies of 
scale will reduce manufacturing and hydrogen production costs and 
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build up the refueling infrastructure. Additionally, the development of 
suitable control strategies for vehicle operation is essential to increase 
the hydrogen economy and system lifetime. 

Fuel cell electric vehicles (FCEVs) include battery systems to cope 
with the fast and frequent load changes typical of vehicle applications. 
However, the inclusion of ultracapacitor systems is also under investi-
gation to improve performance, efficiency, and lifetime. In general, 
vehicles with multiple power sources are referred to as hybrid and their 
control is hierarchically divided into levels. First, a supervisory 
controller performs the load distribution to the multiple power sources. 
Then, low-level controllers act on the different power sources to follow 
the set-points imposed by the higher level. For example, a fuel cell 
controller regulates reactant flows, humidification, and cooling, to 
supply the power required for the vehicle’s propulsion. 

The power-split task is usually referred to as energy management, and 
it represents a challenging aspect of the control of hybrid vehicles 
because it usually has multiple and contrasting objectives. In fuel cell 
electric vehicles, energy management strategies must be designed to 
maximize the hydrogen economy, the system lifetime, and sustain the 
battery charge. In particular, the limited lifetime of fuel cell systems 
represents the main restriction for the durability of fuel cell vehicles. 
Here, the degradation is accelerated by frequent start-up/shut-down 
cycles, dynamic loads, low and high power operation [6–9]. 
Appendix A provides further details on fuel cell degradation 
phenomena. 

The goal of energy management strategies is to limit the occurrence 
of detrimental conditions to increase system lifetime without hindering 
the hydrogen economy. In this work, three key targets are identified to 
mitigate fuel cell degradation: avoiding shut-down during a single 
driving cycle, avoiding low-power operation, and reducing transients. 
The first two targets can be achieved through the idle operation of the 
fuel cell system. In other words, the fuel cell power can be constrained to 
a minimum value to avoid shut-downs and low-power operations. 
Therefore, reducing fuel cell transients remains the only active target to 
mitigate degradation. Here, avoiding high-power operation is not 
considered a mitigation target because energy management strategies 
inherently avoid high power operation due to the lower system effi-
ciency. Moreover, the resulting degradation can be avoided through a 
proper design of fuel cell controllers. 

Energy management strategies (EMSs) are typically classified in 
heuristic or optimal. Heuristic strategies are designed using engineering 
intuition and experience to execute the power split following maps or 
sets of rules. Optimal strategies involve the minimization of a certain 
cost function. These strategies derive from optimal control theory and 
use mathematical optimization methods like dynamic programming, 
Pontryagin’s minimum principle, and nonlinear programming [10]. 
Energy management strategies can also be classified as online or offline, 
depending on whether or not they can be practically implemented in 
real vehicles. In particular, offline strategies can find the optimal solu-
tion to the energy management problem using the complete knowledge 
of driving cycles. This assumption is not suitable for real vehicles, where 
only current or past driving information is available. Nevertheless, off-
line strategies are often adopted to provide useful benchmarks for the 
design of online ones. 

In the last years, academic and industry researchers increasingly 
focused on energy management because of its importance for advancing 
and commercializing FCEVs. In preparation for the present work, the 
available literature has been thoroughly analyzed to identify topics that 
are yet unexplored or poorly addressed. In particular, the three 
following issues converge to define the scope of the present work. 

• There is a lack of investigations related to heavy-duty fuel cell ve-
hicles for road freight transportation, although this segment has the 
potential to represent the best sector for the commercialization of 
FCEVs. Our previous work [11] represents the only related study in 
the literature, to the authors’ knowledge. However, that work mainly 

focuses on proposing an advanced predictive energy management 
concept without comparing it to other methods. Therefore, it is not 
yet clear what kind of strategies are best suited for road freight 
applications.  

• The energy management strategies are usually designed considering 
a small number of driving cycles. Therefore, there is no guarantee 
that the strategies are robust and retain their effectiveness when used 
in unknown driving conditions. The work detailed in [12] is the only 
one that considers a large number of cycles and offers a statistical 
evaluation of the results.  

• Most works consider standard driving cycles used in the past to assess 
the emission levels of conventional vehicles. However, these cycles 
are outdated and usually portray an unrealistic vehicle operation (e. 
g., NEDC). On the contrary, the design of EMSs should consider real- 
world driving cycles that are coherent with the class of the vehicle 
under investigation. Moreover, it should also be mentioned that the 
elevation of the road is usually neglected, but that this assumption is 
not reasonable for heavy-duty vehicles due to their significant mass. 

Table 1 categorizes some relevant works available in the literature of 
EMSs for fuel cell/battery vehicles. The categories are vehicle class, the 
number of strategies investigated, consideration of system lifetime as a 
target, and the number of driving cycles analyzed. The main features of 
each work listed in the table are summarized as follows. In particular, 
Ravey et al. [13] propose an energy management strategy based on 
fuzzy logic and use a genetic algorithm for its optimal tuning. This 
approach highlights the potential of optimized rule-based strategies. 
Ettihir et al. [14] propose an online strategy based on Pontryagin’s 
minimum principle, using a PI controller to regulate the co-state value 
and keep the battery state of charge in a feasible region. The strategy is 
adaptive to degradation, thanks to the online estimation of fuel cell 
characteristics. Fletcher et al. [15] use stochastic dynamic programming 
to create a multi-dimensional lookup table that can be used for the on-
board applications. Targets to limit fuel cell degradation are identified, 
and lifetime improvements and expectations are analyzed quantita-
tively. Kemper et al. [12] compare three well-known strategies in terms 
of hydrogen consumption. The evaluation is meaningful because it 
considers 60 real-world driving cycles. The correlation between 
hydrogen consumption and driving characteristics is analyzed by 
grouping the cycles into 6 clusters. Zhou et al. [16] compare different 
extremum seeking methods schemes. These strategies are online adap-
tive optimization algorithms capable of maintaining fuel cell operation 
in high-efficiency regions. Song et al. [17] evaluate the impact of two 
simple strategies on the durability of fuel cell key components, applying 
the heuristic degradation model proposed in [9]. Li et al. [18] propose a 
model predictive control strategy based on Pontryagin’s minimum 

Table 1 
Summary of the relevant literature on fuel cell/battery vehicles.  

Ref. Vehicle class/weight No. of EMS Lifetime No. of driving cycles 

[13] LD 2 No 1 
[14] LD 1 Yes 1 
[15] LD 2 Yes & No *10 
[12] LD 3 No *60 
[16] LD 4 Yes & No 2 
[17] LD 2 Yes & No 3 
[18] LD 3 Yes 7 
[11] HD/ 40t 2 Yes & No *1 
[19] HD/ 16t 2 Yes & No 4 
[20] HD/ 8t 2 Yes 1 
[21] HD/ 20t 1 Yes 1 
[22] HD/ 13t 1 Yes 3 
[23] HD/ 18t 4 Yes 4 

This work HD/ 14-40t 6 Yes & No *544 

LD: light-duty. HD: heavy-duty. *Real-world driving cycles. 
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principle. The co-state is selected considering speed predictions to keep 
the battery state of charge close to a reference value. The speed pre-
diction system is based on an improved Markov chain. Ferrara et al. [11] 
propose a model predictive control concept for the energy management 
of a 40-tonnes fuel cell truck. The trade-off between hydrogen con-
sumption and system lifetime is investigated using Pontryagin’s mini-
mum principle as a benchmark strategy. Simmons et al. [19] define a 
strategy based on an auto-regressive moving average model. The strat-
egy is tuned using as a benchmark the results deriving from Pontryagin’s 
minimum principle. Geng et al. [20] propose a strategy based on fuzzy 
logic for a heavy-duty vehicle. Guo et al. [21] develop a model predic-
tive control framework for integrating speed planning (i.e., eco-driving) 
in the energy management problem. The work focus on micro trip sce-
narios, such as signalized intersections. Hu et al. [22] propose a model 
predictive control concept to extend the lifetime of a fuel cell electric 
bus. The degradation of both fuel cell and battery systems is considered 
quantitatively. Wu et al. [23] show that when strategies are optimized 
for a given driving cycle, they have similar performances. However, for 
unknown cycles, the results differ in a significant way. Hu et al. [24] 
investigate the multi-objective optimization of the hydrogen economy 
and system lifetime by simultaneously optimizing the powertrain design 
and energy management. The durability of the fuel cell system is eval-
uated using the heuristic degradation model proposed in [9]. Similarly, 
Liu et al. [25] optimize the powertrain size using Pontryagin’s minimum 
principle to minimize the hydrogen consumption. However, in this case, 
the fuel cell lifetime is neglected, and the multi-objective target focuses 
on the extension of the battery life. 

The present work investigates the energy management of heavy-duty 
fuel cell vehicles for road freight transportation in real-world driving 
scenarios, filling the literature gaps mentioned earlier. Here, the vehicle 
operation is represented realistically through a total of 1750 h of real- 
world driving data, including speed and elevation. Moreover, the 
vehicle mass is variable between 14 and 40 tonnes depending on the 
cycles, which is typical of road freight transportation due to variable 
loading conditions. The vehicle performances are evaluated in terms of 
the hydrogen economy and system lifetime adopting six EMSs with 
different goals and motivations. Firstly, Pontryagin’s minimum princi-
ple is used to find the hydrogen economy’s theoretical limit, considering 
the complete knowledge of the driving cycles. However, this work’s 
ultimate purpose is to investigate strategies that can be practically 
implemented in a real vehicle. Thus, an equivalent consumption mini-
mization strategy is designed to evaluate the feasibility of the hydrogen 
economy optimization using only past driving information. The study 
then focuses on the investigation of the potential benefits and drawbacks 
of heuristic, optimal, and predictive energy management methods for 
the multi-objective optimization of the hydrogen economy and system 
lifetime. To this end, rule-based, nonlinear programming, and model 
predictive control strategies are designed. The first two are optimally 
tuned using an evolutionary algorithm to express their maximum po-
tential. For the same reason, the predictive strategy uses exact knowl-
edge of the future driving conditions rather than considering a system to 
predict them. Finally, Pontryagin’s minimum principle is applied to 
investigate its use as a benchmark for the multi-objective optimization of 
the hydrogen economy and system lifetime, which was never studied 
before. 

Eventually, the extensive and realistic representation of the vehicle 
operation determines a robust design of energy management strategies. 
The effectiveness and robustness of the results are evaluated globally to 
ensure a fair comparison of the strategies and statistically to highlight 
the importance of considering a large number of driving cycles. The 
comparison between the six strategies provides a good understanding of 
the potential benefits and drawbacks of the different energy manage-
ment methods and targets. 

The remainder of the paper is structured as follows. Section 2 out-
lines the vehicle model, which is essential for the formulation of the 
energy management problem. Section 3 provides information about the 

real-world driving cycles that determine the realistic representation of 
the vehicle operation. Section 4 defines a framework for the statistical 
evaluation of the results. Section 5 describes the six energy management 
strategies under investigation. Section 6 compares and analyzes the 
simulation results. Finally, Section 7 concludes this work. 

2. Vehicle modeling 

The vehicle modeling approach can be either forward or backward 
facing [26]. The latter assumes that the vehicle always meets its target 
performance to follow the speed profile strictly. Speed, acceleration, and 
road slope are used to calculate the power required to drive the vehicle 
without checking against the actual powertrain capabilities. On the 
other hand, the forward approach includes a driver model, which gen-
erates a power request by comparing actual and target speed. In this 
case, if the powertrain cannot provide the requested power, the vehicle 
slows down, deviating from the target speed. 

This work considers the backward approach to ensure a fair com-
parison between the energy management strategies. Indeed, the forward 
approach determines different load profiles for the same cycle depend-
ing on the energy management, and, thus, it introduces a bias on the 
hydrogen consumption. For example, the consumption would be lower 
by avoiding power peaks, but the driving cycle longer (i.e., slower 
truck). In general, fuel cell and battery systems have complex dynamics 
and require detailed modeling. However, this work considers simplified 
models that neglect dynamic behaviors within the systems. This choice 
is in accord with using the backward modeling approach and provides 
adequate accuracy for a system-level analysis. 

The heavy-duty vehicle considered in this work includes a fuel cell 
system with a nominal power of 300 kW and a battery system with an 
energy capacity of 76 kWh. Fig. 1 depicts the architecture of the electric 
powertrain under investigation. The electric motor and the fuel cell 
system are connected to a DC bus through power converters, whereas 
the battery system is directly linked to it. The parameters of the 
following vehicle model correspond to those adopted in [11], and they 
are all listed in Table 2. 

2.1. Vehicle dynamics 

Fig. 2 depicts the longitudinal dynamics of the vehicle. The resistant 
forces acting on the vehicle are associated with rolling friction (1a), road 
slope (1b), and aerodynamic drag (1c). Thus, the total resistant force 
(1d) changes during the driving cycle depending on speed v and road 
slope α. Because of the large mass mv of road freight vehicles, the force 
Fslope significantly affects the load. Therefore, the road slope cannot be 
neglected as usually assumed for light-duty vehicles. 

Froll = mv g cr cosα (1a)  

Fslope = mv g sinα (1b)  

Fdrag = 1
/

2 Av cx ρair v 2 (1c) 

Fig. 1. Architecture of the electric powertrain of the vehicle. Legend: electric 
motor (EM), auxiliary systems (AUX), and fuel cell system (FCS). 
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Fres = Froll +Fslope +Fdrag (1d) 

The backward approach allows to calculate the power at wheels Pw 

that determines the acceleration v̇ as follows. 

Pw = (mv v̇+Fres) v (2) 

The exact modeling of the power losses related to the electric motor, 
power converters, and drivetrain components is not relevant to this 
work’s purposes. Here, an average total efficiency ηT is used to calculate 
the electric motor power Pm. 

Pm = Pw η− sgn (Pw)
T (3) 

Finally, the total electric load Pel is calculated in (4) also considering 
the auxiliary loads Paux (e.g., cooling trucks, air conditioning). For 
simplicity, these loads are assumed constant. 

Pel = Paux +Pm (4)  

2.2. Fuel cell system 

A fuel cell system includes one or multiple stacks and auxiliary 
components, e.g., air compressor, humidifiers, recirculation, and cool-
ing pumps [27]. Stacks are connections of individual fuel cells in series 
to achieve higher voltage and power. 

The operation of a fuel cell depends on many variables. The most 
significant are current, temperature, relative humidity, and partial 
pressure of reactants. Detailed modeling of stacks and auxiliary com-
ponents is required to capture the complex dynamics of fuel cell systems. 
Additionally, the operation highly depends on the low-level control 
logic, which is not considered in this work. References to dynamic 
models with different detail levels can be found in [27–31]. 

This work considers a simplified quasi-static model. Here, the fuel 
cell system power Pfcs is intended as the difference between stack power 
and auxiliaries losses. 

Pfcs = Pfcs, stack − Pfcs, aux (5) 

The power converter linking the fuel cell system to the DC bus is 
assumed to be ideal and, thus, the corresponding losses are neglected. The 
specific hydrogen consumption, μH2

, is defined in (6) and the absolute one, 
ṁH2 , in (7). The hydrogen lower heating value is denoted with LHVH2 and 
the system efficiency with ηfcs. Because of the simplified modeling 
approach considered in this work, the hydrogen consumption depends 
only on the power, as shown in Fig. 3. Further details about the efficiency 
characteristic cannot be provided because of a confidentiality agreement. 
However, the values shown in Fig. 3 are similar to the ones shown in [32], 
confirming that it is an authentic representation of a real fuel cell system. 

μH2
=

(
ηfcs LHVH2

)− 1 (6)  

ṁH2 = μH2
Pfcs (7)  

2.3. Battery system 

Fig. 4 depicts the equivalent circuit considered to model the battery 
system. The open-circuit voltage source Voc is connected in series with 
the internal resistance Rint. The battery power Pb is expressed as in (8), 
where the terminal voltage Vb is calculated by applying Kirchhoff’s law. 
In this work, the battery current Ib is assumed positive during discharge. 

Pb = Vb Ib = (Voc − Rint Ib) Ib (8) 

Inverting the formula above, the battery current can be expressed as 
a function of the power, as follows. 

Ib =
Voc −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V 2
oc − 4 Pb Rint

√

2 Rint
(9) 

For simplicity, the open-circuit voltage and internal resistance of the 
battery are assumed constant. The ohmic losses PΩ are calculated 
depending on the current. 

PΩ = Rint I 2
b (10) 

The battery state of charge SoC is defined as the ratio between actual 
and nominal charge, Q and Qnom. 

SoC =
Q

Qnom
(11) 

The SoC rate of change is calculated as in (12), assuming the nominal 
charge constant, for simplicity. The charge derivative corresponds by 
definition to the electric current. Using (9), the state of charge dynamics 
can be expressed as a function of battery power. 

˙SoC =
Q̇

Qnom
=

− Ib
Qnom

= −
Voc −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V 2
oc − 4 Pb Rint

√

2 Rint Qnom
(12)  

2.4. Constraints 

In this work, the fuel cell power has a lower bound, Pfcs, idle, to force 
idle operation. Thanks to this constraint, fuel cell shutdowns and low- 
power operations are prevented, limiting the degradation. The upper 
bound is the nominal power Pfcs, nom. 

Pfcs, idle⩽Pfcs⩽Pfcs, nom (13) 

The battery power is constrained to the maximum charge and 
discharge values, Pb, ch and Pb, dis. Note that because of the assumption on 
the battery current sign, the power is negative during charge. 

Pb, ch⩽Pb⩽Pb, dis (14) 

The electric load is provided together by the fuel cell and battery 
systems, and it is calculated as follows. 

Pel = Pfcs +Pb (15) 

Using (15), it is possible to modify the fuel cell power constraint as in 
(16) so that the battery constraints are automatically satisfied. In this 
case, the fuel cell minimum and maximum power, Pfcs,minand Pfcs,max, 
depend on the electric load. The function bound saturates the second 
argument between the first (lower bound) and the third (upper bound). 

Pfcs,min = bound
[
Pfcs, idle,

(
Pel − Pb, dis

)
, Pfcs, nom

]
(16a)  

Pfcs,max = bound
[
Pfcs, idle,

(
Pel − Pb, ch

)
, Pfcs, nom

]
(16b)  

Pfcs,min⩽Pfcs⩽Pfcs,max (16c) 

Table 2 
Parameters of vehicle model.  

Parameter Symbol Value 

Gravitational acceleration g 9.81 m/s2 

Rolling friction coefficient cr  0.01 
Vehicle frontal area Av  8 m2 

Drag coefficient cx  0.35 
Air density ρair  1.2 kg/m3 

Auxiliary loads Paux  10 kW 
Total efficiency ηT  0.80 
Hydrogen lower heating value LHVH2  120 MJ/kg 
Open-circuit voltage Voc  380 V 
Internal resistance Rint  0.05 Ω  
Nominal charge Qnom  200 Ah 
Idle power Pfcs, idle  30 kW 
Nominal power Pfcs, nom  300 kW 
Max charging power Pb, ch  − 150 kW 
Max discharging power Pb, dis  300 kW  
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The electric load is saturated between the powertrain capabilities 
through (17) to neglect the mechanical braking power and eventual load 
spikes deriving from real-world driving cycles. 

Pel = bound
[(

Pfcs, idle + Pb, ch
)
, Pel,

(
Pfcs, nom + Pb, dis

)]
(17)  

3. Real-world driving cycles 

This work considers real-world driving data of heavy-duty vehicles 
for road freight transportation, recorded for two months in a fleet of 
fifteen conventional trucks operating in Central Europe. The data in-
cludes latitude, longitude, and elevation of the vehicle, with a sampling 
time of 1 s. Central Europe is particularly challenging for road freight 
vehicles because of many hills and mountains. Fig. 5 shows the 
geographic distribution of the recorded data on the region’s elevation 
map. 

A criterion was defined for the systematic identification of driving 
cycles: a cycle ends when the vehicle stops for more than 5 min. This 
procedure resulted in a set of cycles that was still too large to be 
considered entirely. Therefore, a subset was selected considering only 

the cycles at least two hours-long and with limited stopping time. 
In the end, this work considers 544 cycles for the energy manage-

ment investigation, amounting to a total of 1750 driving hours and 
141,000 km. The top six tiles of Fig. 6 are boxplots of interesting driving 
features of these cycles. Duration, average speed, and traveled distance 
are straightforward. The relative positive acceleration (RPA), calculated 
as in (18), is a dynamic driving metric typically used to analyze real 

Fig. 4. Equivalent circuit of the battery system.  

Fig. 5. Geographic distribution of recorded driving data.  

Fig. 6. Statistical representation of interesting driving features.  

Fig. 3. Fuel cell system efficiency and hydrogen consumption.  

Fig. 2. Scheme of vehicle longitudinal dynamics.  
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driving emissions cycles. Moreover, Braun et al. [33] find a high cor-
relation between RPA and battery electric vehicles’ energy 
consumption. 

RPA =

∫
v ⋅a+dt
∫

v dt
(18) 

In Fig. 5, delta elevation refers to the difference between ending and 
starting values, whereas the total climb is calculated summing only 
positive elevation increments. 

A key parameter in the vehicle dynamics is the vehicle’s mass, mv, 
which changes according to the truck loading conditions. In this work, it 
is known that all trucks in the fleet have a maximum weight capacity of 
40 tonnes, but no information about the actual loading was recorded. A 
method is adopted to estimate the vehicle’s mass to overcome this 
limitation, assuming that the vehicle is accelerated using the maximum 
power for a specific time in each cycle. In particular, the mass is esti-
mated such that Pw exceeds 400 kW for 0.5% of the cycle’s duration, 
rounding to the closest tonne. The bottom tiles of Fig. 6 show the esti-
mated vehicle mass and its impact on the average electric load. Overall, 
the massive amount of driving cycles and the variable loading create a 
realistic representation of road freight vehicles’ annual operation, 
enabling the robust design of EMSs and a statistical evaluation of the 
results. 

Fig. 7 shows the speed and elevation profiles of some representative 
driving cycles. The first one has the minimum RPA among all cycles and 
represents an extended and stable cruising at 90 km/h. On the contrary, 
the second cycle has the maximum RPA, and it represents a sub-urban 
driving with heavy traffic and frequent turns. The other cycles have 
the minimum and maximum climb and the minimum and maximum 
vehicle mass. 

4. Performance indexes 

In fuel cell electric vehicles, energy management strategies have 
multiple goals: maximize the hydrogen economy and fuel cell lifetime, 
and sustain the battery charge. In this section, several indexes are 
defined to evaluate the effectiveness of EMS. The calculation of the total 
hydrogen consumption mH2 is straightforward. 

mH2 =

∫

ṁH2 dt (19) 

As detailed in Section 1, reducing fuel cell transients is the main 
target to extend lifetime: rapid fuel cell power changes result in high 
lifetime consumption. Therefore, a first degradation meaningful index is 
the standard deviation of the fuel cell power rate of change σ(Ṗfcs). A 
second index is defined in this work as an equivalent lifetime con-
sumption, mL, as follows. 

mL =

∫

wL Ṗ 2
fcs dt (20) 

The conversion factor wL is the weight of system lifetime relative to 
the hydrogen economy. The larger this factor is, the more dominant the 
lifetime target becomes. In this work, a good trade-off between the goals 
is found choosing the conversion factor as: wL = 5.56× 10− 12 kg⋅s⋅W− 2. 
Section 6 shows that this value is sufficiently high to determine a sig-
nificant change in fuel cell transients without affecting the hydrogen 
economy. It must be noted that mL is proportional to the square of σ(Ṗfcs)

because the average of Ṗfcs is zero. However, introducing mL allows 
defining a multi-objective total cost Jin (21), as the sum of hydrogen and 
lifetime consumptions. This index can be conveniently used as the target 
of the optimal strategies. 

J = mH2 +mL (21) 

The voltage loss due to potential cycling defined in [9] is used in the 
present work as an additional degradation index. The voltage loss, 

denoted with ΔVfcs, is proportional to the number of equivalent load 
cycles, and it is calculated as follows. 

ΔVfcs = 1.72⋅0.0000593%⋅

∫
⃒
⃒
⃒
⃒Ṗfcs

⃒
⃒
⃒
⃒ dt

Pfcs, nom
(22) 

The battery operation is analyzed through the average state of 
charge, SoC, and its standard deviation σ(SoC). The equivalent number 
of charge–discharge cycles, Nb, holds important information related to 
battery aging [22]. This value is calculated considering the total charge 
variation as follows. 

Nb =

∫ ⃒⃒
⃒Q̇

⃒
⃒
⃒ dt

2 Qnom
(23) 

The indexes defined in this section are used to analyze the effec-
tiveness of the energy management strategies under investigation. The 
results are evaluated considering the driving cycles in two ways: as a 
sequence and individually. The first approach yields a global evaluation, 
whereas the second a statistical one. 

4.1. Analysis on sequence of cycles 

All driving cycles are considered in a random but fixed sequence. At 
the end of a cycle, the battery state of charge is the initial one for the next 
cycle. The fuel cell system is shut down at the end of each cycle to 
simulate a real-world scenario where the vehicle is stopped for a 
considerable time. Depending on the random sequence, the vehicle mass 
can either change or stay constant between cycles. In the first case, the 
stop corresponds to loading/unloading operations. Otherwise, the stop 
is for refueling or mandatory resting for the driver. This representation 
of the truck operation yields a realistic global evaluation of the results. 

4.2. Analysis on individual cycles 

The EMS performance is also analyzed considering each cycle indi-
vidually. In this case, the variation between the initial state of charge, 
SoCI, and the final one, SoCF, affects the hydrogen consumption. For 
example, if the battery is charged during the cycle, higher consumption 
is expected. Thus, to compare the results of different energy manage-
ment strategies fairly, the hydrogen consumption must be corrected 
depending on the battery charge change. 

The underlying idea behind the correction terms defined in this work 
is that the fuel cell roughly has to cover for the average electric load and 
ohmic losses to sustain the battery’s charge. First, the energy associated 
to the SoCvariation is converted in equivalent hydrogen mass, mH2 , b, as 
in (24). Here, the sum of the average load Pel and ohmic losses PΩ is used 
to calculate the specific consumption μH2 

for the conversion. 

μH2
= μH2

(
Pel + PΩ

)
(24a)  

mH2 , b = μH2

(
SoCI − SoCF

)
Voc Qnom (24b) 

A second correction term, m*
H2

, is calculated as in (25). This term 
considers that the fuel cell operation changes depending on the 
SoCvariation. For example, to charge the battery the fuel cell operates at 
higher average power Pfcs and specific consumption μ̃H2

. 

μ̃H2
= μH2

(
Pfcs

)
(25a)  

m*
H2

=

(

μH2
− μ̃H2

)∫

Pfcs dt (25b) 

Using the correction terms mH2 , b and m*
H2

, the hydrogen consumption 
becomes almost independent from the SoC change during the cycle. Note 
that when SoCF = SoCI, the first correction term is zero by definition, 
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whereas the second is negligible because μH2 
becomes approximately 

equal to ̃μH2
. Finally, the corrected hydrogen cost is denoted with JH and 

calculated as follows. 

JH = mH2 +mH2 , b +m*
H2

(26) 

The total multi-objective cost for individual cycles is denoted with 
JH&L and defined as follows, similarly to (21). 

JH&L = JH +mL (27) 

Here, the subscript H&L denotes the multi-objective target of 
hydrogen economy and system lifetime, whereas H the hydrogen 
economy as an individual target. 

Fig. 7. Speed and elevation profiles of five driving cycles. * indicates the minimum value and ** the maximum.  
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5. Energy management strategies 

This work aims to design strategies that can be practically imple-
mented in a real vehicle, evaluating the results in terms of the hydrogen 
economy and system lifetime. In total, six energy management strategies 
are investigated with different goals and motivations. Pontryagin’s 
minimum principle finds the hydrogen economy’s theoretical limit, 
considering the complete knowledge of the driving cycles. However, an 
equivalent consumption minimization strategy is designed to evaluate 
hydrogen economy optimization’s feasibility using only past driving 
information. The remaining strategies investigate the potential benefits 
and drawbacks of heuristic, optimal, and predictive energy management 
methods for the multi-objective optimization of the hydrogen economy 
and system lifetime. Finally, Pontryagin’s minimum principle is applied 
to study its use as a benchmark for the multi-objective optimization 
problem. 

In the vehicle under investigation, the fuel cell and battery systems 
provide the electric load together as expressed by (15). Therefore, 
choosing the fuel cell power as the control variable, the battery power is 
determined depending on the electric load as in (28). For all the stra-
tegies, to ensure that the constraints are met accordingly to (16), the fuel 
cell power is always bounded using (29) in the final step of the energy 
management strategies. 

Pb = Pel − Pfcs (28)  

Pfcs = bound
[
Pfcs,min, Pfcs, Pfcs,max

]
(29) 

The following of this section details the formulation of the six energy 
management strategies. 

5.1. Pontryagin’s minimum principle 

The optimal control theory aims to minimize a performance index 
defined as in (30). The instantaneous cost function L generally depends 
on system states x and controls u. 

C =

∫

L
(

x, u, t
)

dt (30) 

Pontryagin’s minimum principle (PMP) is defined as a set of neces-
sary but not sufficient conditions for optimality [34]. The principle is 
based on the ancillary function H, known as Hamiltonian, defined as 
follows. 

H(x, u, t, λ) = L(x, u, t) + λ⋅ẋ(x, u) (31) 

This function combines state dynamics and cost function through the 
co-state λ. From a physical standpoint, the Hamiltonian can be inter-
preted as an augmented cost that considers positive or negative state 
changes. According to Pontryagin’s minimum principle, optimal con-
trols always minimize the Hamiltonian. Generally, the principle is not 
sufficient for optimality, and it cannot be used directly to find optimal 
control laws. However, in some problems, the principle can be sufficient 
for optimality. The controls u* that minimize the Hamiltonian are called 
extremal. Using the PMP formulation defined in (32) in each time 
instant, the extremal control law can be found. 

u* = argmin
u

H
(

x, u, t, λ
)

(32a)  

ẋ =
∂H
∂λ

⃒
⃒
⃒
⃒

u*
(32b)  

λ̇ = −
∂H
∂x

⃒
⃒
⃒
⃒

u*
(32c) 

Serrao et al. [35] compare PMP and dynamic programming to 
minimize the fuel consumption of hybrid electric vehicles, proving that 

PMP is sufficient for the global optimality of the solution. On the other 
hand, the computational complexity of dynamic programming is 
significantly higher compared to PMP. For this reason, Pontryagin’s 
minimum principle is usually preferred in comparison to dynamic pro-
gramming as a benchmark strategy for energy management problems. 

In the present work, PMP considers two different formulations of the 
cost function. Firstly, to minimize the hydrogen consumption (19). And 
secondly, for the minimization of the hydrogen and lifetime consump-
tions (21). While the first formulation was already investigated in the 
literature, the second one is studied for the first time. 

5.1.1. PMP for hydrogen economy 
This energy management strategy uses Pontryagin’s minimum 

principle to calculate the minimum hydrogen consumption of the 
vehicle (19). The strategy is referred to as PMPH in the remainder of the 
paper. In this formulation of the principle, the control variable is Pfcs, the 
state is SoC, and the cost function is the hydrogen consumption. 
Therefore, the Hamiltonian is defined as follows. 

H = ṁH2

(
Pfcs

)
+ λ0 ˙SoC

(
Pel,Pfcs

)
(32d) 

The optimal fuel cell power P *
fcs is found among the set U of controls 

that meet the constraints (16), by applying PMP as formulated in (34). 
Considering that the Hamiltonian defined in (32d) does not depend on 
the SoC, it follows from (32c) that the co-state is constant. As such, it is 
denoted with λ0 in (34c). 

P *
fcs(Pel, λ0) = argmin

Pfcs∈U
H
(
Pel,Pfcs, λ0

)
(34a)  

˙SoC = −

Voc −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
oc − 4

(
Pel − P *

fcs

)
Rint

√

2 Rint Qnom
(34b)  

λ̇ = 0⟶λ = λ0 (34c) 

In this work, the Hamiltonian is minimized numerically by dis-
cretizing the control set U, using 200 W as grid-spacing. The minimum of 
the Hamiltonian is always unique and, thus, the optimal control value 
P *

fcs only depends on the electric load and the co-state, as shown in Fig. 8. 
Here, two extreme cases can be noted: the orange line corresponding to 
λ0 = − 8 and the blue line to λ0 = − 2. In the first case, the fuel cell al-
ways operates at the maximum power allowed (not to cause violation of 
the battery constraints). In the second, always at the minimum. Fig. 8 
helps to understand how the co-state value affects the fuel cell operation 
and, therefore, the battery charge at the end of the driving cycle: the 
lower λ0, the higher charge. PMP is an offline strategy because the co- 
state value must be found iteratively until the final battery charge rea-
ches its assigned target within a certain tolerance. In this work, the final 
target is always fixed as SoCF = 0.50 and the tolerance to 0.005. It must 
be noted that to avoid complete charge or discharge of the battery, it is 

Fig. 8. Optimal fuel cell power dependency on electric load and co-state ac-
cording to (34a). The orange line corresponding to λ0 = − 8 and the blue line to 
λ0 = − 2. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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possible to add penalty functions in the formulation of the Hamiltonian 
(e.g., as in [14]). However, penalty functions might affect the optimality 
of the solution. In the present work, no additional term was considered 
in the formulation of the Hamiltonian because in no case the battery was 
ever fully charged or discharged during the simulations. 

5.1.2. PMP for hydrogen economy and system lifetime 
This energy management strategy uses Pontryagin’s minimum 

principle to minimize the multi-objective performance index (21). The 
strategy is referred to as PMPH&L in the remainder of the paper. The 
optimal fuel cell power is still calculated using in (34), but considering 
the Hamiltonian defined in (35). Here, the first two terms on the right- 
hand side correspond to the instantaneous cost of (21). 

H = ṁH2 +wL Ṗ 2
fcs + λ0 ˙SoC (35) 

This work wants to prove that the application of Pontryagin’s min-
imum principle is not sufficient for the multi-objective optimization of 
hydrogen and lifetime consumption. If the comparison with other stra-
tegies shows that better results can be achieved, it will be evident that 
the principle is not sufficient for global optimality. 

5.2. Model predictive control 

Model predictive control (MPC) refers to a broad framework of 
control strategies that use a system model to predict its future outputs 
and find optimal controls. Ferrara et al. propose a predictive energy 
management concept in [11], using instantaneous and successive line-
arizations of the vehicle model to formulate an optimization problem 
that can be solved with quadratic programming. The optimal controls 
are found to minimize a quadratic cost function over a finite time ho-
rizon, which includes terms related to future inputs and outputs. 

This work considers and adapts the strategy proposed in [11] by 
using a new formulation of the cost function and changing the system’s 
outputs accordingly. The reader is addressed to the reference for further 
details on the predictive management concept. The new cost function, 
JMPC, is defined in (36) considering a predictive time horizon of 10 s and 
a sample time of 1 s. It is important to note that the cost function defined 
in (36) differs from the one in (21), but the underlying goals are the 
same. In particular, the first term on the right-hand side aims to maxi-
mize the hydrogen economy operating the fuel cell system at its 
maximum efficiency (i.e., ηfcs = 0.61), the second to reduce fuel cell 
transients, and the third to guarantee the battery charge sustaining. The 
MPC considers a regression model of the efficiency shown in Fig. 3 as the 
ratio of a sixth-order polynomial and a first-order one. The parameters of 
the cost function are heuristically tuned as: m1 = 2× 10− 11, m2 = 12, 
and m3 = 0.65. The predictive horizon and the tuning were fixed once a 
satisfying trade-off between accuracy and simulation time was reached. 

JMPC =
∑10

k=1

(
ηfcs, k − 0.61

)2
+m1⋅Ṗ 2

fcs, k +m2⋅(m3 − SoC k)
2 (36) 

This strategy requires predictive driving information to calculate the 
electric load in the next 10 s. However, this work assumes that the load is 
precisely known over the predictive horizon to investigate MPC’s 
maximum potential for the multi-objective optimization of the hydrogen 
and lifetime consumption. Nevertheless, after establishing the potential 
benefits, further investigations will be required to confirm the strategy’s 
effectiveness when considering uncertain driving information to predict 
the future load. For example, a speed forecasting method based on 
Markov chain could be used as in [36]. 

5.3. Equivalent consumption minimization strategy 

An equivalent consumption minimization strategy (ECMS) is 
designed as an online implementation of PMPH. Indeed, in (32d), the 
Hamiltonian can be interpreted as the sum of two fuel consumptions. 

From this perspective, the co-state acts as an equivalence factor, λECMS, 
transforming the battery current in equivalent hydrogen consumption. 

H = ṁH2 + λECMS ˙SoC (37) 

The strategy differs from PMPH only because of the equivalence 
factor. Whereas, the optimal fuel cell power is calculated minimizing the 
Hamiltonian in the same way as in (34). 

The equivalence factor must be calculated online using the available 
information. In this work, a simple but effective method for the calcu-
lation of λECMS is proposed to achieve high hydrogen economy. In PMPH, 
the co-state value depends mostly on the average electric load and SoC 
target as it can be seen from Fig. 9, which shows the co-states λ*

0 such 
that: SoCF = SoCI = 0.50. A simple linear regression can model the 
relation between λ*

0 and the average load Pel with high accuracy. 

λ*
0

(
Pel

)
= − 2.93 − 1.49 × 10− 5 Pel (38) 

Ideally, knowing the average electric load of the driving cycle be-
forehand, the equivalence factor could be calculated using (38). The SoC 
deviation from the initial value would be negligible, and the hydrogen 
economy would be maximum. However, this is not possible in reality 
because online EMSs cannot know the average load beforehand. In 
alternative, the initial equivalence factor is set to default as: λECMS = − 5. 
This value is reasonably chosen by analyzing the results reported in 
Fig. 9. Then, the equivalence factor is updated evaery e1seconds using 
(38), (39), and (40). In particular, the first term on the right-hand side of 
(40) is the average electric load. Whereas, the second one adds or sub-
tracts power to recharge or discharge the battery, using e2 as a weighting 
term and e3 as a SoC reference. The values of the parameters ei are listed 
in Table 3. 

λECMS = λ*
0

(
PECMS

)
(39)  

PECMS =
1
t

∫ t

0
Pel dt+ e2

(

e3 − SoC
)

Voc Qnom (40)  

5.4. Nonlinear programming 

This strategy is designed as a simplified implementation of MPC. In 
this case, an optimization problem is formulated based on the instan-
taneous minimization of the nonlinear cost function defined in (41). The 
formulation of the cost derives from the one proposed for MPC in Section 
5.2, with the same goals of the hydrogen economy, system lifetime, and 
battery charge sustaining. Here, the fuel cell power is calculated by 
minimizing the cost function JNLP as in (42), using nonlinear program-
ming. Thus, the strategy is referred to as NLP in this work. The values of 
the parameters ni are listed in Table 3. 

JNLP =
(
ηfcs − 0.61

)2
+ n1 Ṗ 2

fcs + n2 (n3 − SoC)2 (41)  

Fig. 9. Co-state values depending on the average electric load of driving cycles. 
The results refer to PMPH, considering SoCF = SoCI = 0.50. The goodness of 
the fit is proved by the high coefficient of determination: R2 = 0.99. 
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Pfcs = argmin
Pfcs∈U

JNLP
(
Pel,Pfcs, SoC

)
(42) 

Contrary to MPC, this strategy does not require predictive driving 
information because the cost function is minimized instantaneously 
rather than over a future time horizon. Therefore, the comparison be-
tween MPC and NLP offers a direct evaluation of the benefits (i.e., 
effectiveness) and drawbacks (i.e., computational complexity) of pre-
dictive energy management. Nevertheless, in general, NLP is a 
compelling concept for energy management because it is also highly 
flexible, and it can be adapted to take into account additional objectives 
by suitably defining the cost function in (41). 

5.5. Rule-based 

This heuristic strategy is designed to have the lowest possible 
complexity. The rules defined in (43) calculate the fuel cell power. Thus, 
the strategy is referred to in this work as RB. The underlying idea is to 
operate the fuel cell system close to the maximum efficiency power: 
Pfcs, ηmax

= 60 kW. 

Pfcs = Pfcs, ηmax + r1
(
Pel − Pfcs, ηmax

)
+ r2

(
r3 − SoC

)
Voc Qnom (43a)  

subject to : |Ṗfcs|⩽r4 (43b) 

The second term on the right hand side of (43a) considers the load 
deviation from Pfcs, ηmax . The third term considers the SoCdeviation from 
the reference r3. The rate of change of the fuel cell power is limited to r4 

in (43b), to mitigate degradation phenomena. The values of the pa-
rameters ri are listed in Table 3. 

5.6. Optimization of EMS parameters 

The EMS parameters of the online strategies are optimized using the 
particle swarm optimization (PSO) algorithm available in MATLAB’s 
Optimization Toolbox [37]. This method ensures a fair comparison of 
the strategies eliminating any bias due to heuristic tunings. In particular, 
PSO is an evolutionary algorithm capable of finding optimal parameters 
by minimizing a suitably defined fitness function through a stochastic 
search [38]. 

In this work, the PSO’s settings are left to the default values as in 
[37], but the swarm size is set to 25 elements. The strategies are tuned 
using the following procedure: first, two optimizations consider a 
random initialization of the swarm, then a third optimization includes 
the two sets of optimal parameters found previously. 

All the optimizations consider a subset of 50 driving cycles out of the 
total 544 to analyze the strategies’ effectiveness and robustness in un-
known driving conditions. A penalty cost p is defined in (44) to ensure 
the battery’s charge sustaining, using the average state of charge and its 
standard deviation. The coefficients are arbitrarily chosen, and the 
average SoC reference is set to 0.50. Moreover, if the battery is ever fully 
discharged, the penalty cost is set to infinite. 

p = 100⋅
⃒
⃒
⃒SoC − 0.50

⃒
⃒
⃒+ 400⋅σ

(
SoC

)
(44) 

The fitness function to be minimized, denoted with JPSO, is defined 
below depending on the different objectives of the strategies. The per-
formance indexes in (45) and (46) are calculated considering the 50 
selected cycles in sequence. The results of the optimization are collected 

in Table 3. 

RB,NLP : JPSO = p+ J (45)  

ECMS : JPSO = p⋅0.50+mH2 (46)  

6. Simulation results 

This section compares the energy management strategies under 
investigation considering the performance indexes defined in Section 4 
for the analysis of the results. All the simulations are performed using 
MATLAB R2020a. 

Using (29) in the final step of all strategies, the fuel cell power is such 
to always meet the battery power constraints and provide/regenerate 
the electric load entirely. Therefore, no further details about the 
compliance with the constraints are provided. 

6.1. Analysis on the sequence of cycles 

The global evaluation considers all driving cycles in sequence, as 
described in Section 4.1. In total, the truck drives 141,000 km in 1750 h, 
with variable loading conditions. The top half of Table 4 shows the 
overall results of the energy management strategies in absolute values. 
Whereas in the bottom half, each index is divided by its minimum value. 

The strategies are sorted in ascending order considering the multi- 
objective cost J. MPC yields the best result and, in comparison, the 
value obtained with PMPH&L is 17% higher. The application of Pon-
tryagin’s minimum principle is not sufficient to find global optimality 
for the multi-objective problem because there are strategies that yield 
better results. This outcome is motivated by the fact that the instanta-
neous minimization of the Hamiltonian cannot anticipate sharp load 
changes in any way, thus determining rapid fuel cell transients to deliver 
the electric load and meet the prescribed constraints. On the contrary, 
MPC involves the minimization of a cost function over a predictive ho-
rizon, which allows to consider and anticipate the load changes effec-
tively, achieving a steadier operation of the fuel cell system. In 
particular, MPC yields a significantly lower lifetime consumption 
compared to the other strategies. Indeed, the multi-objective cost is 13% 
higher for RB and 14% for NLP, highlighting the potential of predictive 
energy management. 

As expected, PMPH yields the best result in terms of the hydrogen 
economy, confirming that this strategy can be effectively used to mini-
mize fuel consumption. Notably, ECMS is exceptionally effective in 
minimizing the consumption using only past driving information and 
achieving a lower σ(SoC). Indeed, the difference compared to PMPH is 
smaller than the rounding error. RB and NLP use 2% more hydrogen 
than the theoretical minimum but have a significantly lower lifetime 

Table 3 
Parameters of energy management strategies tuned using PSO.   

i = 1 i = 2 i = 3 i = 4 

ei  60 6.63× 10− 4  0.502  

ni  1.14× 10− 11  72.8 0.670  

ri  0.380 1.06× 10− 3  0.685 3540  

Table 4 
Global evaluation of energy management strategies. Top table: absolute values. 
Bottom table: each index is divided by its minimum value.   

J (t) mH2 

(t)  
mL 

(t)  
σ(Ṗfcs) (kW/ 

s)  
ΔVfcs 

(%)  
σ(SoC) Nb  

MPC 13.3 12.1 1.2 5.8 7.2 0.06 920 
RB 15.0 12.2 2.8 8.9 9.1 0.06 930 
NLP 15.2 12.2 3.0 9.3 5.9 0.06 1040 
PMPH&L 15.6 12.5 3.1 9.4 5.2 0.12 1040 
PMPH 18.7 12.0 6.7 13.9 19.1 0.10 970 
ECMS 19.3 12.0 7.3 14.4 19.5 0.07 980  

J mH2  mL  σ(Ṗfcs) ΔVfcs  σ(SoC) Nb  

MPC 1 1.01 1 1 1.38 1 1 
RB 1.13 1.02 2.33 1.53 1.75 1 1.01 
NLP 1.14 1.02 2.50 1.60 1.13 1 1.13 
PMPH&L 1.17 1.04 2.58 1.62 1 2.00 1.13 
PMPH 1.41 1 5.58 2.40 3.67 1.67 1.05 
ECMS 1.45 1 6.08 2.48 3.75 1.17 1.07  
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consumption. MPC is also effective in terms of the hydrogen economy, 
with only a 1% deviation from the global optimum found by PMPH. 

Surprisingly, the fuel cell degradation indexes defined in this work 
are contrasting with each other: MPC has the minimum mL and σ(Ṗfcs), 
but not minimum ΔVfcs. In general, RB and NLP show similar results 
between each other: the former has a slightly lower J, but the fuel cell 
degradation indexes are more balanced for the latter. 

The comparison is fair due to the evaluation framework created in 
the previous sections. All the strategies determine an average battery 
state of charge equal to 50%. The standard deviation σ(SoC) is similar for 
the optimally tuned strategies, thanks to the penalty term in the fitness 
function (44). Overall, the optimization of the EMS parameters using 
PSO is effective and a compelling feature to consider for future works on 
fuel cell vehicles’ energy management. Remarkably, an optimally tuned 
heuristic strategy achieves better results than those of an optimal one. 

In Section 1, the fuel cell operation in high-power conditions was not 
considered an active mitigation target because energy management 
strategies inherently avoid it to increase the system efficiency. For the 
sake of completeness, the simulation results show that the fuel cell 
operates above 90% of the nominal power for 0.2% of the total time 
using ECMS and PMPH, 0.6% using MPC, 0.8% using NLP, 1.2% using 
RB, and 2.4% using PMPH&L. 

6.2. Analysis on individual cycles 

The evaluation of the results on individual cycles considers the 
performance indexes defined in Section 4.2. Additionally, the results of 
PMPH and MPC are used to define two relative performance indexes, PI H 

and PI H&L. 

PI H = JH, PMPH

/
JH (47)  

PI H&L = JH&L,MPC
/

JH&L (48) 

Fig. 10 shows boxplots of the results for all cycles, providing valuable 
information about their variation range. Since PMPH yields the theo-
retical minimum consumption, PI H can be considered as an index of 
optimality in terms of the hydrogen economy. Similarly, PI H&L cab be 
considered an index of effectiveness in terms of hydrogen economy and 
lifetime, even though MPC does not yield the theoretical minimum cost. 
The figure shows that the indexes vary largely depending on the cycles 
and, thus, it highlights the importance of considering the robust design 
framework presented in this work. Assuming for example that, rather 
than 544 driving cycles, it is only considered the one corresponding to 
the minimum PI H&L of RB, that is 73%. This case would lead to a sig-
nificant misjudgment of the strategy’s effectiveness, as the median value 
is 88%. Fig. 10 also shows the contrasting behavior of the degradation 
indexes, ΔVfcs and σ(Ṗfcs). 

To complete the analysis of individual cycles, Fig. 11 shows an 
example of the power-split obtained using NLP and the resulting 
SoCvariation. It can be noted that the fuel cell transients are limited, 
except during particular events. For example, at minute 6, the fuel cell 
power decreases rapidly to avoid violating the maximum battery 
charging power. Similarly, at minute 12.5, there is a rapid increase in 
the fuel cell power to meet the battery discharging constraint. It can also 
be noted that, around minute 9, a one-minute long uphill section de-
termines a 5% discharge in the battery. This finding highlights how 
important and critical it is to consider the road elevation in heavy-duty 
vehicles. Indeed, long uphill sections can cause the battery’s complete 
discharge and eventually force the vehicle to stop if the energy man-
agement strategy is not properly designed. 

6.3. Analysis of minimum hydrogen consumption 

In this section, the minimum hydrogen consumption is analyzed to 
provide interesting information on its dependency on the driving cycles’ 

main features. The minimum consumption is found using PMPH for each 
cycle ensuring that the battery charge is unchanged at the end (SoCF =

SoCI). Fig. 12 shows the correlation between minimum consumption 
and the driving features described in Section 3. This analysis can be 
useful for future works on life cycle assessments of fuel cell trucks. As 
expected, the hydrogen consumption is highly correlated to the vehicle 
mass. However, the results are biased depending on whether the truck 
gains or loses elevation during the driving cycle. To eliminate this bias, 
the consumption is corrected in (49) considering the potential energy 
variation going from the elevation zIto zF. The equivalent consumption 
m̃H2 shows an even higher correlation with the vehicle mass. 

m̃H2 = mH2 − μH2
(zF − zI) g mv (49) 

The hydrogen consumption also depends on other driving features 
(e.g., road elevation, traffic, and driver). The bottom tiles show the 
consumption correlation with total climb and RPA. The consumption is 
expressed in tonne-kilometer (tkm), a standard measure of freight ac-
tivity [2]. The results are natural: higher climb or traffic intensity (i.e., 

Fig. 10. Statistical evaluation and comparison of energy management strate-
gies on individual cycles. The reference strategy for the relative performance 
index in the first tile is PMPH, whereas in the second is MPC. 
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RPA) determine higher hydrogen consumption. 

6.4. Analysis of robustness 

The robustness of the proposed online energy management strategies 
is proved thoroughly in this work. Firstly, the robustness to unknown 
driving cycles is guaranteed by tuning the EMS parameters on a subset of 
cycles. Secondly, examining all the cycles in sequence, the strategies’ 
effectiveness is retained, and the battery is never entirely charged nor 
discharged. However, to test the battery charge’s robustness furtherly, 
each cycle is run starting with a highly depleted (10%) or charged (90%) 
battery. This analysis confirms that all strategies can re-establish regular 
operation without violating the battery’s physical constraints (complete 
discharge and overcharge). Fig. 13 shows an example of the test for a 
single driving cycle using NLP. 

6.5. Analysis of computational complexity 

The strategies under investigation have different computational 
complexities. Table 5 compares the time required to simulate 1750 
driving hours, considering all the cycles in sequence. In general, the 
simulation time is significantly lower than the driving time for all stra-
tegies. However, RB, NLP, and ECMS show a particularly low compu-
tational complexity. In this case, it is almost irrelevant that RB is about 
20 times faster than NLP and ECMS. On the contrary, PMP requires more 
simulation time because of the iterations to converge to the state of 
charge target at the end of the cycle. MPC requires even higher simu-
lation time because it involves receding horizon optimizations. The 
values reported in Table 5 refer to simulations performed using MATLAB 
R2020a on a computer with 1.80 GHz of base CPU speed and 16 Gb of 
RAM. 

7. Conclusions 

This paper investigates the design of energy management strategies 
for heavy-duty fuel cell vehicles considering an extensive and realistic 

representation of road freight transportations. The simulation results’ 
analysis proves that energy management investigations should always 
examine numerous driving cycles to statistically validate control stra-
tegies and avoid significant misjudgments of the performance indexes. 

Fig. 11. Example of power-split using NLP for a fragment of driving cycle.  

Fig. 12. Correlation between minimum hydrogen consumption and driving 
features (i.e. vehicle mass, total climb and RPA). 

Fig. 13. Example of test to verify the robustness of strategies in terms of charge 
sustaining. The strategy under analysis is NLP. 

Table 5 
Computational time required to simulate 1750 driving hours.  

Strategy RB NLP ECMS PMP MPC 

Comp. time (s) 4.7 99.5 111.0 1319.2 10961.3  
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This investigation also establishes that it is critical to consider real-world 
speed, elevation, and truck loading conditions because they determine 
high vehicle performance variations. In particular, a robust design of 
energy management strategies for heavy-duty vehicles cannot neglect 
road slope and truck loading conditions because they heavily affect the 
electric loads. 

The strategies investigated in this work provide a broad and 
comprehensive understanding of the energy management of heavy-duty 
fuel cell vehicles. In particular, Pontryagin’s minimum principle defines 
the benchmark for the hydrogen economy, finding its theoretical limits. 
However, ECMS can achieve the same results using only the available 
driving information. On the contrary, for the multi-objective optimiza-
tion of the hydrogen economy and system lifetime, Pontryagin’s mini-
mum principle cannot be used as a benchmark because it is not sufficient 
for the global optimality. On the other hand, MPC determines a sub-
stantial reduction of the fuel cell transients while retaining a high 
hydrogen economy, highlighting the potential benefits of predictive 
energy management strategies. The results of RB and NLP are also sig-
nificant in comparison to PMPH. In these cases, the optimal tuning using 
evolutionary algorithms is excellent for the strategies’ robustness and 
effectiveness, leading to the conclusion that even a simple heuristic 
strategy can achieve good results if properly tuned. 

The limitations of this work indicate potential research directions for 
the advancement of energy management strategies for heavy-duty fuel 
cell vehicles. The study of predictive strategies requires further in-
vestigations to evaluate the drawbacks related to uncertain load pre-
dictions. Moreover, the strategies can develop to actively include the 

battery lifetime and the restraint of fuel cell high-power operation as 
additional targets. Eventually, as the optimization problem’s complexity 
increases, dynamic programming could find the performance indexes’ 
theoretical limits and define the benchmarks for online energy man-
agement strategies. 
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Appendix A. Fuel cell degradation 

In vehicle applications, fuel cell degradation is accelerated by frequent start-up/shut-down cycles, transient loads, low and high power operation. 
Therefore, lifetime expectations are typically shorter than stationary applications (e.g., 5000 h vs. 40000 h [6]). In particular, in a review of 
experimental techniques to measure degradation, Zhao and Li [7] identify average voltage degradation rates of 1 μV/h in stationary operation and 
100 μV/h in transient operation. 

Table A.6 summarizes fuel cell degradation phenomena from a review of the relevant literature [6–9]. Transient loads induce temperature/hu-
midity changes, potential cycling, and reactant starvation. Temperature/humidity changes cause mechanical degradation of the membrane electrode 
assembly (MEA): shrinking-swelling cycles determine cracks, delamination, ionomer redistribution, and pinholes in the membrane. Potential cycling 
accelerates platinum particles’ degradation on carbon supports due to Pt dissolution, migration, agglomeration, and Ostwald ripening. A basic 
explanation of these phenomena is offered in [39]. Reactant starvation can occur locally or on a larger scale. Local hydrogen starvation causes critical 
potentials in the cathode and consequent corrosion of the carbon support. Global hydrogen starvation causes abnormal reactions in the anode to 
provide protons and maintain the load current, determining carbon support corrosion. Air starvation determines a decrease in the cathode potential 
and formation of hydrogen due to abnormal reactions. Thus, hot spots generate from the direct reaction of hydrogen and oxygen, which is highly 
exothermic. Carbon corrosion and catalyst degradation determine permanent loss of electrochemically active area, higher charge, and mass transfer 
resistances. 

During start-up, fuel cells experience the inevitable transition between air-filled and hydrogen-filled anodes. The opposite transition occurs during 
shut-down. Therefore, moving air/hydrogen boundaries are established during start-up/shut-down cycles. The anode potential decreases in the air- 
filled region, causing a higher difference with the cathode. Abnormal reactions corrode the cathode’s carbon support and produce protons, which then 
move to the anode, generating the so-called reverse current. Additionally, cold starts and shut-downs cause severe structural damage within the MEA 

Table A.6 
Summary of the main fuel cell degradation phenomena: dynamic loads (DL); start/shutdown (SS); low power 
(LP); high power (HP).  

Cause  Effect 

Temperature/humidity change →DL  Mechanical degradation 

Reactant starvation →DL  Carbon corrosion 

Potential cycling →DL  Catalyst degradation  

Air/hydrogen boundary →SS  Carbon corrosion 

Sub-zero temperatures →SS  Mechanical degradation  

Reactant crossover →LP  Chemical degradation 

High temperatures →HP  Membrane degradation  
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due to frost-heave and water volume expansion during freezing. 
Low-power operations determine chemical degradation of the membrane due to intensified reactant crossover and high potentials. Indeed, direct 

reactions cause hotspots in the cathode and generate free radicals in the anode, which chemically attacks the membrane. Higher partial pressures due 
to limited reactions promote gas crossover. Low water generation leads to membrane dehydration, opening pores for gas permeation. Moreover, 
oxygen crossover is promoted by a lack of intense proton and water fluxes to the cathode. Details about water transport phenomena and membrane 
nanostructure can be found in [40]. 

High-power operations cause flooding in the cathode due to excessive water generation. However, on the anode side, the membrane is dehydrated 
due to high proton currents, which hinder water’s back-flow. Therefore, without proper water and thermal management, the high-power operation 
can cause mechanical and chemical degradation of the membrane due to dehydration and high temperatures. 
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