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Abstract. A Kleene lattice is a distributive lattice equipped with an antitone involu-

tion and satisfying the so-called normality condition. These lattices were introduced by

J. A. Kalman. We extended this concept also for posets with an antitone involution. In our

recent paper (Chajda, Länger and Paseka, in: Proceeding of 2022 IEEE 52th International

Symposium on Multiple-Valued Logic, Springer, 2022), we showed how to construct such

Kleene lattices or Kleene posets from a given distributive lattice or poset and a fixed ele-

ment of this lattice or poset by using the so-called twist product construction, respectively.

We extend this construction of Kleene lattices and Kleene posets by considering a fixed

subset instead of a fixed element. Moreover, we show that in some cases, this generating

poset can be embedded into the resulting Kleene poset. We investigate the question when

a Kleene poset can be represented by a Kleene poset obtained by the mentioned construc-

tion. We show that a direct product of representable Kleene posets is again representable

and hence a direct product of finite chains is representable. This does not hold in general

for subdirect products, but we show some examples where it holds. We present large classes

of representable and non-representable Kleene posets. Finally, we investigate two kinds of

extensions of a distributive poset A, namely its Dedekind-MacNeille completion DM(A)

and a completion G(A) which coincides with DM(A) provided A is finite. In particular

we prove that if A is a Kleene poset then its extension G(A) is also a Kleene lattice. If

the subset X of principal order ideals of A is involution-closed and doubly dense in G(A)

then it generates G(A) and it is isomorphic to A itself.
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resentable Kleene lattice, Embedding, Twist-product, Dedekind-MacNeille completion.
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1. Introduction

Kleene lattices are De Morgan algebras of a specific sort. These are dis-
tributive lattices equipped with a negation ′ satisfying the double negation
law x′′ = x. In our case the unary operation ′ is assumed to be antitone
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with respect to the induced order, but it need not be a complementation.
In order to enrich the properties of such an operation, it is natural to add
the so-called normality condition, i.e., the inequality

x ∧ x′ ≤ y ∨ y′.

Of course, if ′ is a complementation, then this inequality is satisfied automat-
ically. But often, the negation in a De Morgan algebra has this property, and
hence such a negation turns out to be close to complementation. Distributive
lattices with an antitone involution satisfying the normality condition are
called Kleene lattices and were introduced by Kalman [7] (under a different
name). To emphasize the importance of this concept, let us note that ev-
ery MV-algebra, i.e., the algebraic semantics of �Lukasiewicz’s many-valued
logic, is a Kleene lattice. Moreover, MV-algebras are also crucial in the logic
of quantum events because every lattice effect algebra is composed of blocks,
which are MV-algebras. Due to this, the question how to construct Kleene
lattices is of some interest and importance.

If instead of lattices, only posets are considered, one obtains Kleene
posets. If we also forget distributivity, we get pseudo-Kleene posets. We will
introduce both notions later.

Our previous paper [5] showed how to construct a Kleene lattice K from a
given distributive lattice L = (L,∨,∧) employing the so-called twist product
and its reduction using a non-empty subset S of L. In such a case, we say
that K is representable. However, a lot of problems mentioned in [5] remain
open. Among them, we would like to try to solve the following ones:

• Determine classes of representable Kleene lattices as well as classes of
not representable Kleene lattices.

• Can these constructions be extended to Kleene posets?

• Can every poset be embedded into a Kleene poset obtained by such a
construction?

• Is the Dedekind-MacNeille completion of a representable poset a repre-
sentable Kleene lattice?

The present paper aims to get at least partial answers to the mentioned
questions. We show that direct products of chains can be considered as
representable Kleene lattices and study certain ordinal sums of distributive
lattices. We prove that if a pseudo-Kleene poset K of odd cardinality can
be represented by a distributive poset A and a non-empty subset S of A,
then S must be a singleton, i.e., S = {a}, and A can be embedded into K
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in such a way that a is mapped onto the unique fixed point of ′. We prove
further results on representable Kleene posets and Kleene lattices.

First, we recall or introduce several concepts on ordered sets (posets).

Let (A,≤) be a poset, b, c ∈ A and B,C ⊆ A. We say

B ≤ C if x ≤ y for all x ∈ B and y ∈ C.

Instead of B ≤ {c} and {b} ≤ C we simply write B ≤ c and b ≤ C,
respectively. Further, we define

L(B) := {x ∈ A | x ≤ B},
U(B) := {x ∈ A | B ≤ x}.

Instead of L(B∪C), L(B∪{c}), L({b}∪C), L({b, c}) and L
(
U(B)

)
we simply

write L(B,C), L(B, c), L(b, C), L(b, c) and LU(B), respectively. Similarly
for finitely many subsets and/or elements of A. Moreover, for all X,Y ⊆ A
we have:

Y ⊆ L(X) if and only if X ⊆ U(Y )

LUL(X) = L(X) and ULU(X) = U(X).

Also, L(A) = {0} if A has a smallest element 0 and L(A) = ∅ otherwise.
Similarly, U(A) = {1} if A has a greatest element 1 and U(A) = ∅ otherwise.

A subset I of A is said to be a Frink ideal if LU(M) ⊆ I for each finite
subset M ⊆ I. Similarly, a subset F of A is said to be a Frink filter if
UL(N) ⊆ F for each finite subset N ⊆ F .

An order-preserving map f between posets A and B is said to be an
LU -morphism if

L
(
f(X)

)
= L

(
f(UL(X)

)
and U

(
f(X)

)
= U

(
f(LU(X)

)
(1)

for all non-empty finite subsets X ⊆ A.

We say that an LU -morphism f is an LU -embedding, respectively an
LU -isomorphism if f is order reflecting (thus f(x) ≤ f(y) implies x ≤ y
for any x, y ∈ A), respectively f is bijective and the inverse map to f is an
LU -morphism.

An antitone involution on A is a unary operation ′ on A, satisfying for
any x, y ∈ A

x ≤ y implies y′ ≤ x′,

x′′ = x.
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For any X ⊆ A we put X ′ = {x′ | x ∈ X}. Hence, for any X,Y ⊆ A we
have the so-called De Morgan laws:

L(X,Y )′ = U(X ′, Y ′) and U(X,Y )′ = L(X ′, Y ′).

The poset A is called distributive if one of the following equivalent LU-
identities is satisfied:

L
(
U(x, y), z

) ≈ LU
(
L(x, z), L(y, z)

)
,

U
(
L(x, z), L(y, z)

) ≈ UL
(
U(x, y), z

)
,

U
(
L(x, y), z

) ≈ UL
(
U(x, z), U(y, z)

)
,

L
(
U(x, z), U(y, z)

) ≈ LU
(
L(x, y), z

)
,

L
(
U(x1, x2, . . . , xn), z

) ≈ LU
(
L(x1, z), L(x2, z), . . . , L(xn, z)

)
,

U
(
L(x1, x2, . . . , xn), z

) ≈ UL
(
U(x1, z), U(x2, z), . . . , U(xn, z)

)
.

An element y ∈ A is said to be a complement of x ∈ A if L(x, y) = L(A)
and U(x, y) = U(A). A is said to be complemented if each element of A
has a complement in A. A is said to be Boolean if it is distributive and
complemented.

If A has a greatest element 1 and a smallest element 0, then an antitone
involution ′ on A is called an orthocomplementation if L(x, x′) = {0} and
U(x, x′) = {1}.

2. Constructions of Kleene Posets

Let A = (A,≤) be a poset. We define the twist product of A as (A2,
) =
(A,≤) × (A,≥) (the direct product of A with its dual), so that

(x, y) 
 (z, u) if and only if x ≤ z and u ≤ y

for all (x, y), (z, u) ∈ A2. So the twist product of A is a poset again. This
construction was successfully applied in the study of the so-called Nelson-
type algebras [2].

Note the following evident but useful fact. Let x, y, z, u, v ∈ A. If y covers
x in A then (y, z) covers (x, z) in (A2,
). This follows from the observation
that “(x, z) � (u, v)′′ and “u < y′′ � (y, z) implies z = v. Hence x < u ≤ y
which is not possible.



Representability of Kleene Posets and Kleene Lattices 1285

Now we define the central concept of our paper, which is used to represent
Kleene lattices and Kleene posets within twist products. Let S be a non-
empty subset of A. Define

PS(A) := {(x, y) ∈ A2 | L(x, y) ≤ S ≤ U(x, y)}.
Instead of P{a}(A), we simply write Pa(A).

A poset with antitone involution (A,≤, ′) is called a pseudo-Kleene poset
if the normality condition

L(x, x′) ≤ U(y, y′) for all x, y ∈ A (2)

holds. A Kleene poset is a distributive pseudo-Kleene poset.
Recall that Zhu in [9] introduced the notion of a Kleene poset as an

ordered triple (A,≤, ′) such that ′ is an antitone involution on A and the
Zhu condition

x ≤ x′ and y′ ≤ y implies x ≤ y for all x, y ∈ A (3)

holds. In fact, his concept is precisely the pseudo-Kleene poset in our sense
because he does not assume distributivity of (A,≤). Indeed, we have the
following.

Lemma 2.1. Let A = (A,≤, ′) be a poset with an antitone involution ′. Then
the normality condition (2) is equivalent to the Zhu condition (3).

Proof. Assume first that the normality condition holds. Let x, y ∈ A such
that x ≤ x′, and y′ ≤ y. Then L(x) = L(x, x′) ≤ U(y, y′) = U(y). Hence
x ≤ y.

Now assume that the Zhu condition holds. Let x, y ∈ A, u ∈ L(x, x′),
and v ∈ U(y, y′). Since u ≤ x we obtain that x′ ≤ u′. It follows that
u ≤ u′. Similarly, v′ ≤ v. From the Zhu condition we conclude u ≤ v, i.e.,
L(x, x′) ≤ U(y, y′).

Since Kleene algebras are distributive lattices and Zhu does not assume
any distributivity condition in his definition, we will use the notion of a
Kleene poset in our sense.

For any poset A = (A,≤) and any non-empty subset S of A we define
(x, y)′ := (y, x) for all (x, y) ∈ A2 and PS(A) :=

(
PS(A),
, ′). Instead of

P{a}(A) we simply write Pa(A).
Let p1 and p2 denote the first and second projection from PS(A) to A,

respectively.
The following lemma shows how to produce pseudo-Kleene posets from

an arbitrarily given poset.
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Lemma 2.2. Let A = (A,≤) be a poset. Then, in the twist product of A:

L(X) = L(p1(X)) × U(p2(X)),

U(X) = U(p1(X)) × L(p2(X))

for all X ⊆ A2.

Proof. Let X ⊆ A2. Then the following are equivalent for all (a, b) ∈ A2:

(a, b) 
 X,

a ≤ p1(X), b ≥ p2(X),

a ∈ L(p1(X)), b ∈ U(p2(X)),

(a, b) ∈ L(p1(X)) × U(p2(X)).

Hence L(X) = L(p1(X)) × U(p2(X)). Similarly, we obtain that U(X) =
U(p1(X)) × L(p2(X)).

Lemma 2.3. Let A = (A,≤) be a poset and S a non-empty subset of A.
Then PS(A) is a pseudo-Kleene poset in which

L(X) =
(
L(p1(X)) × U(p2(X))

) ∩ PS(A),

U(X) =
(
U(p1(X)) × L(p2(X))

) ∩ PS(A)

for all X ⊆ PS(A).

Proof. Clearly, PS(A) is a poset with an antitone involution. Let (a, b),
(c, d) ∈ PS(A), (e, f) ∈ L

(
(a, b), (b, a)

)
and (g, h) ∈ U

(
(c, d), (d, c)

)
. Then

e ∈ L(a, b), f ∈ U(a, b), g ∈ U(c, d), h ∈ L(c, d), L(a, b) ≤ S ≤ U(a, b) and
L(c, d) ≤ S ≤ U(c, d) and hence e ≤ S ≤ f and h ≤ S ≤ g which implies
e ≤ S ≤ g and h ≤ S ≤ f , i.e. (e, f) 
 (g, h) showing L

(
(a, b), (b, a)

) ≤
U

(
(c, d), (d, c)

)
.

By Lemma 2.2, for any X ⊆ PS(A), we have:

L(X) =
(
L(p1(X)) × U(p2(X))

) ∩ PS(A) and

U(X) =
(
U(p1(X)) × L(p2(X))

) ∩ PS(A).

Let A = (A,≤) be a poset. Recall that A is said to satisfy the Ascending
Chain Condition (ACC) or the Descending Chain Condition (DCC) if in
A, every strictly ascending chain or every strictly descending chain, respec-
tively, is finite. Hence if A = (A,≤) satisfies the ACC or the DCC then
every ∅ = B ⊆ A contains maximal or minimal elements, respectively.

Let B ⊆ A. We denote by MaxB and MinB the set of all maximal and
minimal elements of B, respectively.
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Lemma 2.4. Let A = (A,≤) be a poset and S a non-empty subset of A.

(i) If (S,≤) satisfies the ACC and the DCC, then PS(A) =
P(MaxS)∪(MinS)(A),

(ii) If
∧
S and

∨
S exist, then PS(A) = P{∧

S,
∨

S}(A).

Proof.

(i) If (S,≤) satisfies the ACC, then every element of S lies under some
maximal element of S, and if (S,≤) meets the DCC, then every element
of S lies over some minimal element of S.

(ii) If
∧
S and

∨
S exist then we have

PS(A) = {(x, y) ∈ A2 | L(x, y) ≤ S ≤ U(x, y)} =

= {(x, y) ∈ A2 | L(x, y) ≤
∧

S ≤
∨

S ≤ U(x, y)} = P{∧
S,

∨
S}(A).

A subset B of a poset (A,≤) is called convex if

x, z ∈ B, y ∈ A and x ≤ y ≤ z imply y ∈ B.

Let S ⊆ A. We put co(S) := LU(S) ∩ UL(S).

Lemma 2.5. Let A = (A,≤) be a poset and S ⊆ A. Then co(S) is a con-
vex set including S, L(S) = L(co(S)), U(S) = U(co(S)), and PS(A) =
Pco(S)(A).

Proof. Let x, z ∈ co(S), y ∈ A and x ≤ y ≤ z. Then {x, z} ≤ U(S). Since
y ≤ z, we obtain that y ≤ U(S), i.e., y ∈ LU(S). Similarly, y ∈ UL(S), hence
y ∈ co(S). Clearly, S ⊆ LU(S) ∩ UL(S) = co(S), thus L(co(S)) ⊆ L(S)
and U(co(S)) ⊆ U(S). We have co(S) ⊆ UL(S) and co(S) ⊆ LU(S). We
conclude L(S) = LUL(S) ⊆ L(co(S)) and U(S) = ULU(S) ⊆ U(co(S)),
hence L(S) = L(co(S)) and U(S) = U(co(S)).

Finally, since S ⊆ co(S) we obtain Pco(S)(A) ⊆ PS(A). Assume now
that (x, y) ∈ PS(A). Then L(x, y) ≤ S ≤ U(x, y). Hence L(x, y) ⊆ L(S) =
L(co(S)) and U(x, y) ⊆ U(S) = U(co(S)). We conclude L(x, y) ≤ co(S) ≤
U(x, y), i.e., (x, y) ∈ Pco(S)(A).

We are going to show that for a given poset A = (A,≤) and an element
a of A, the constructed pseudo-Kleene poset Pa(A) includes A as a convex
subset.

Lemma 2.6. Let A = (A,≤) be a poset, a ∈ A and let f denote the mapping
from A to Pa(A) defined by

f(x) := (x, a) for all x ∈ A.
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Then f(A) is a convex subset of
(
Pa(A),
 )

, A can be LU -embedded into(
Pa(A),
 )

, and f is an order isomorphism from (A,≤) to
(
f(A),
 )

.

Proof. It is clear that f is a mapping from A to Pa(A). If b, c ∈ A, (d, e) ∈
Pa(A) and (b, a) 
 (d, e) 
 (c, a), then a ≤ e ≤ a and hence e = a,
which implies (d, e) ∈ f(A). This shows that f(A) is a convex subset of(
Pa(A),
 )

.
Assume now that X ⊆ A is finite and non-empty. We compute:

U(f(X)) =
(
U(X) × L(a)

) ∩ Pa(A)

=
(
ULU(X) × L(a)

) ∩ Pa(A) = U(f(LU(X))),

L(f(X)) =
(
L(X) × U(a)

) ∩ Pa(A)

=
(
LUL(X) × U(a)

) ∩ Pa(A) = L(f(UL(X))).

Finally, for any x, y ∈ A, x ≤ y and (x, a) 
 (y, a) are equivalent. We
conclude that f is an order isomorphism from (A,≤) to

(
f(A),
 )

and an
LU -embedding from A into the poset

(
Pa(A),
 )

.

Corollary 2.7. Let A = (A,≤) be a poset, a ∈ A and let f denote the
mapping from A to Pa(A) defined by

f(x) := (x, a) for all x ∈ A.

If
(
Pa(A),
 )

is a lattice then A is a lattice.

3. Embeddings

In Lemma 2.6, we showed that for a poset A = (A,≤) and an element a of
A, there is an embedding of A into

(
Pa(A),
 )

. A similar result holds for
a lattice L = (L,∨,∧) and an element a of L. However, if the non-empty
subset S of A is not a singleton, it is not so easy to find an embedding of L
into the lattice

(
PS(L),�,�)

where

(a, b) � (c, d) = (a ∨ c, b ∧ d) and (a, b) � (c, d) = (a ∧ c, b ∨ d)

for all (a, b), (c, d) ∈ PS(L). The following theorem provides a solution to
this problem in a particular case.

Theorem 3.1. Let A = (A,≤) be a distributive poset and a, b ∈ A with a ≤
b and assume that there exists an orthocomplementation ′ on ([a, b],≤). Fur-
ther, assume that for every x ∈ A satisfying L(a) ⊆ L(U(x, a), b) ⊆ L(b) we
have L(U(x, a), b) = L(x). Then A can be LU -embedded into

(
P{a,b}(A),
 )

and the poset ([a, b],≤, ′) is Boolean.
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Proof. Put

I := {x ∈ A | L(x, b) ≤ a},
F := {x ∈ A | b ≤ U(x, a)}.

It is easy to see that a ∈ I and b ∈ F . Let us show that I is a Frink ideal and
F is a Frink filter. Assume that X ⊆ I, X finite. Let X = ∅. Then either
LU(X) = ∅ or LU(X) = {0} where 0 is the smallest element of A. In both
cases, LU(X) ⊆ I. Suppose now that X = ∅, X = {x1, . . . , xn} and x ∈
LU(X). Then L(x, b) ⊆ L(U(X), b) = LU

(
L(x1, b), L(x2, b), . . . , L(xn, b)

) ⊆
LU

(
L(a)

)
= L(a). Hence L(x, b) ≤ a. Similarly, F is a Frink filter.

Let ′ be an orthocomplementation on ([a, b],≤) and define f : A → P{a,b}
(A) as follows:

f(x) :=

⎧
⎨

⎩

(x, b) if x ∈ I,
(x, a) if x ∈ F,
(x, x′) otherwise

(x ∈ A). Of course, a′ = b and b′ = a.
If x ∈ I, then L(x, b) ≤ a ≤ b ≤ U(x, b) and (x, b) ∈ P{a,b}(A). If x ∈ F ,

then L(x, a) ≤ a ≤ b ≤ U(x, a) and (x, a) ∈ P{a,b}(A).
Assume first that I ∩ F = ∅. Let z ∈ I ∩ F . Then L(z, b) ≤ a and

b ≤ U(z, a). We conclude

b ∈ LU(z, a) ∩ L(b) = LU
(
L(z, b), L(a, b)

) ⊆ LU(L(a)) = L(a).

Hence a = b and I = F = A. Evidently, f is an LU -embedding by Lemma 2.6.
From now on, we will assume that I ∩ F = ∅. We have that a < b.
Let c ∈ A. If c /∈ I ∪ F then L(c, b) ⊆ L(a) and U(c, a) ⊆ U(b), i.e.,

L(b) = LU(b) ⊆ LU(c, a). From distributivity we compute:

L(a) ⊆ LU
(
L(c, b), a

)
= LU

(
L(c, b), L(a, b)

)
= L

(
U(c, a), b

) ⊆ L(b).

Hence L(U(c, a), b) = L(c) = LU
(
L(c, b), a

)
. This shows a ≤ c ≤ b. Since

a ∈ I and b ∈ F we obtain

A \ (I ∪ F ) ⊆ [a, b] \ {a, b}.
If c ∈ I ∩ [a, b], then a ≤ c ∈ L(c, b) ≤ a, which implies c = a. This

implies

I ∩ [a, b] = {a}.
Dually, we obtain

F ∩ [a, b] = {b}.
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Therefore, we have a partition

A = I ∪· F ∪· ([a, b] \ {a, b}).

We conclude

f(x) = (x, x′) for all x ∈ [a, b].

Since ′ is an orthocomplementation on ([a, b],≤) we obtain that L(x, x′) =
L(a) ⊂ L(b) = LU(x, x′), i.e., (x, x′) ∈ P{a,b}(A).

We have proved that f is well-defined.
Let us verify that f is an LU -embedding. We first show that f is an

LU -morphism. Clearly, f is order preserving.
Let us put ZI = Z ∩ I, Z(a,b) = Z ∩ ([a, b]\{a, b}), and ZF = Z ∩ F for

any subset Z ⊆ A.
Assume now that X ⊆ A is finite and non-empty. Suppose first that

XF = ∅. Then LU(X) ∩ F = ∅ and U(X) ⊆ F .
We compute:

U(f(X)) =
(
U(X) × L(a)

) ∩ P{a,b}(A)

=
(
ULU(X) × L(a)

) ∩ P{a,b}(A) = U(f(LU(X))).

From now on, we will assume that XF = ∅.
Case 1 Let X(a,b) = ∅. Then XI = X and X ⊆ LU(X) ⊆ I. We compute:

U
(
f(X)

)
= U(X × {b}) = (

U(X) × L(b)
) ∩ P{a,b}(A) and U

(
f(LU(X))

)
=

U
(
LU(X) × {b})

=
(
ULU(X) × L(b)

) ∩ P{a,b}(A) =
(
U(X) × L(b)

) ∩ P{a,b}(A).

Case 2 Let X(a,b) = ∅. Then f(X) = XI × {b} ∪ {(x, x′) | x ∈ X(a,b)},
X ′

(a,b) ⊆ [a, b] \ {a, b} and L(a) ⊆ L(X ′
(a,b)) ⊆ L(b). We compute: that

U
(
f(X)

)
=

(
U(X) × L(X ′

(a,b))
) ∩ P{a,b}(A) ⊇ U(f(LU(X))),

U
(
f(LU(X))

)
=

{(
ULU(X) × L(a)

) ∩ P{a,b}(A), if LU(X) ∩ F �= ∅,
(
ULU(X) × L((LU(X)(a,b))

′)
) ∩ P{a,b}(A), otherwise.

=

{(
U(X) × L(a)

) ∩ P{a,b}(A), if LU(X) ∩ F �= ∅,
(
U(X) × L((LU(X)(a,b))

′)
) ∩ P{a,b}(A), otherwise.

Suppose first that LU(X)∩F = ∅. Assume that y ∈ L(X ′
(a,b))\L(a). We

have

L(a) ⊂ L(U(y, a), b) = L(U(y, a)) ⊆ L(x′) ⊂ L(b)

for every x ∈ X(a,b). Since X(a,b) is non-empty, we therefore obtain

L(a) ⊂ L(U(y, a), b) = L(y) ⊂ L(b),
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i.e., a < y < b and a < y′ < b. Moreover, y ∈ L(X ′
(a,b)) yields y′ ∈ U(X(a,b)),

i.e., ∅ = LU(X) ∩ F ⊆ LU(XI , y
′) ∩ F . Hence there is an element z ∈ F

such that z ∈ LU(XI , y
′) and b ≤ U(z, a). Let XI = {xi1 , . . . , xik} and

X(a,b) = {xj1 , . . . , xjl}. We compute:

b ∈ LU(z, a) ∩ L(b) ⊆ LU
(
LU(XI , y

′), a
) ∩ L(b) = LU(XI , y

′) ∩ L(b)

= L
(
U(xi1 , . . . , xik , y

′), b
)
= LU

(
L(xi1 , b), . . . , L(xik , b), L(y

′, b)
)

⊆ LU
(
L(a), . . . , L(a), L(y′)

)
= L(y′),

i.e., b ≤ y′ < b, a contradiction. Hence L(a) = L(X ′
(a,b)) and U

(
f(LU(X))

)
=

U
(
f(X)

)
.

Suppose now that LU(X) ∩ F = ∅.
Let us check that L(X ′

(a,b)) = L
({u′ | u ∈ LU(X) ∩ ([a, b] \ {a, b})})

.
Clearly, L(a) ⊆ L

({u′ | u ∈ LU(X)∩([a, b]\{a, b})}) ⊆ L(X ′
(a,b)) ⊆ L(b).

The first inclusion holds since a < u < b and a < u′ < b. The second one
follows from the fact that X(a,b) ⊆ LU(X) and X(a,b) ⊆ ([a, b] \ {a, b}).
Hence also X(a,b) ⊆ LU(X)∩ ([a, b] \ {a, b}) ⊆ [a, b], i.e., X ′

(a,b) ⊆ (
LU(X)∩

([a, b] \ {a, b})
)′.

Assume that y ∈ L(X ′
(a,b)) \ L(a). We have

L(a) ⊂ L
(
U(y, a), b

)
= L

(
U(y, a)

) ⊆ L(x′) ⊂ L(b)

for every x ∈ X(a,b). Since X(a,b) is non-empty (i.e., at least one x ∈ X(a,b)

exists) we obtain

L(a) ⊂ L
(
U(y, a), b

)
= L(y) ⊂ L(b),

i.e., a < y < b and a < y′ < b. Moreover, y ∈ L
(
X ′

(a,b)

)
yields y′ ∈ U

(
X(a,b)

)
,

i.e., LU
(
X(a,b)

) ≤ y′.
Let u ∈ LU(X) ∩ ([a, b] \ {a, b}). We compute:

u ∈ LU(X) ∩ L(b) = LU
(
L(xi1 , b), . . . , L(xik , b), L(xj1 , b), . . . , L(xjl , b)

)

⊆ LU
(
L(a), . . . , L(a), L(xj1), . . . , L(xjl)

)
= LU

(
X(a,b)

) ≤ y′.

This implies u ≤ y′, i.e., y ≤ u′ and LU(X) ∩L(b) = LU
(
X(a,b)

)
. There-

fore, y ∈ L
({u′ | u ∈ LU(X) ∩ ([a, b] \ {a, b})})

.
We compute:

U
(
f(LU(X))

)
= U

((
LU(X) ∩ I

) × {b} ∪ {(u, u′) | u ∈ LU(X) ∩ ([a, b] \ {a, b})})

=
(
ULU(X) × L

({u′ | u ∈ LU(X) ∩ ([a, b] \ {a, b})})) ∩ P{a,b}(A)

=
(
ULU(X) × L(X′

(a,b))
) ∩ P{a,b}(A)

)
=

(
U(X) × L(X′

(a,b))
) ∩ P{a,b}(A))

= U
(
f(X)

)
.
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Similarly, we obtain that L
(
f(UL(X))

)
= L

(
f(X)

)
for every finite and

non-empty X ⊆ A.
Assume now that c, d ∈ A, f(c) = (c, u) 
 (d, v) = f(d). Then c ≤ d and

f is order-reflecting.
It remains to check that ([a, b],≤, ′) is a Boolean poset. Clearly, it is

complemented. We have to verify that it is distributive.
Assume that x, y, z ∈ [a, b]. If {x, y, z} ∩ {a, b} = ∅ then evidently L[a,b](

U[a,b](x, y), z
)

= L[a,b]U[a,b]

(
L[a,b](x, z), L[a,b](y, z)

)
. Hence we may assume

that a < x, y, z < b.
Let d ∈ U[a,b]

(
L[a,b](x, z), L[a,b](y, z)

)
and e ∈ L[a,b]

(
U[a,b](x, y), z

)
. We

will show that d ∈ U
(
L(x, z), L(y, z)

)
and e ∈ L

(
U(x, y), z

)
.

Then d ≥ L(x, z). Namely, if d ≥ L(x, z) then there is h ∈ A \ [a, b] such
that h ≤ d, h < x and h < z. Hence also h < b and h ≤ a.

Clearly, L(a) ⊆ L
(
U(h, a), b

)
= LU(h, a) ⊆ L(b). Assume first L(a) =

LU(h, a). Then h ∈ LU(h, a) = L(a), a contradiction. We have LU(h, a) ⊆
L(x) ⊂ L(b). Hence L(a) ⊂ L

(
U(h, a), b

)
= L

(
U(h, a)

) ⊂ L(b), i.e., a <
h < b, a contradiction again. Therefore really d ≥ L(x, z) and similarly
d ≥ L(y, z). Hence d ∈ U

(
L(x, z), L(y, z)

)
.

Further, e ∈ L(z) since e ∈ L[a,b](z). Let us check that e ∈ LU(x, y).
Assume that e ∈ LU(x, y). Since e ∈ L[a,b]

(
U[a,b](x, y), z

)
there exists g ∈

U(x, y) \ U[a,b](x, y) such that e ≤ g. We have a < x ≤ g = b. Hence
L(a) ⊆ L

(
U(g, a), b

)
= L(g, b) ⊆ L(b). Suppose first that L(g, b) = L(b).

Then e ≤ b < g, a contradiction with e ≤ g. Also, L(a) ⊂ L(x) ⊆ L(g, b) =
L

(
U(g, a), b

) ⊂ L(b). We conclude a < g < b, which is impossible since
g /∈ [a, b]. Therefore e ∈ LU(x, y) and we obtain e ∈ LU(x, y) ∩ L(z) =
L

(
U(x, y), z

)
. Since A is distributive we see that e ≤ d. Consequently

U[a,b]L[a,b]

(
U[a,b](x, y), z

) ⊇ U[a,b]

(
L[a,b](x, z), L[a,b](y, z)

)
which yields that

([a, b],≤) is distributive.

Remark 3.2. First, note that Theorem 3.1 generalizes [5, Lemma 6] formu-
lated for distributive lattices. We also prefer to use orthocomplementation
instead of antitone complementation as in [5, Lemma 6].

Second, the conditions of Theorem 3.1 are equivalent with the require-
ment that A is a distributive poset such that A \ (I ∪F ) = [a, b] \ {a, b} and
[a, b] is a Boolean poset.

Example 3.3. Let A be the distributive poset (in fact a lattice) shown
in Figure 1. Clearly, conditions of Theorem 3.1 for the choice of a and b
are trivially satisfied. Then

(
P{a,b}(A),
 )

is visualized in Figure 2. The
non-filled circles indicate the embedding of A into

(
P{a,b}(A),
 )

.
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Figure 1. Distributive poset A that is LU-embeddable into a Kleene

poset
(
P{a,b}(A),	 )

Figure 2. Distributive poset A that is LU-embeddable into a Kleene

poset
(
P{a,b}(A),	 )
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Figure 3. Distributive poset A that is not LU-embeddable into a Kleene

poset
(
P{a,b}(A),	 )

Example 3.4. Let A be the distributive poset (in fact a lattice) shown in
Figure 3. Since [a, b] is a poset with every antitone involution on it being non-
Boolean, conditions of Theorem 3.1 for the choice of a and b are not satisfied.
The poset

(
P{a,b}(A),
 )

is visualized in Figure 4. One immediately sees
that there is no LU -embedding of A into

(
P{a,b}(A),
 )

.

In the sequel, we use the following notation: If A1 and A2 are posets
with top and bottom elements, respectively, then by A1 +a A2 we denote
the ordinal sum of A1 and A2 where the top element a of A1 is identified
with the bottom element of A2. If A1, A2, and A3 are posets with top
element, bottom and top element, and bottom element, respectively, then
by A1 +a A2 +b A3 we denote the ordinal sum of A1, A2, and A3 where
the top element a of A1 is identified with the bottom element of A2 and the
top element b of A2 is identified with the bottom element of A3. For every
poset A, let Ad denote its dual.

Lemma 3.5. Let A1 = (A1,≤) and A2 = (A2,≤) be distributive posets
with top element a and bottom element a, respectively. Then A1 +a A2 is a
distributive poset.
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Figure 4. Distributive poset A that is not LU-embeddable into a Kleene

poset
(
P{a,b}(A),	 )

Proof. Let x ∈ A1 and y ∈ A2. Then LA1+aA2(x) = LA1(x), LA1+aA2(y) =
LA2(y) ∪ A1, UA1+aA2(y) = UA2(y), UA1+aA2(x) = UA1(x) ∪ A2.

Assume that x, y, z ∈ A1 +a A2. If some pair of elements x, y, z is com-
parable, then evidently

LA1+aA2

(
UA1+aA2(x, y), z

)

= LA1+aA2UA1+aA2

(
LA1+aA2(x, z), LA1+aA2(y, z)

)
.

Suppose now that there is no pair of comparable elements from {x, y, z}.
Then either {x, y, z} ⊆ A1 or {x, y, z} ⊆ A2. Assume first that {x, y, z} ⊆
A1. We compute:

LA1+aA2

(
UA1+aA2(x, y), z

)

= LA1+aA2

(
UA1(x, y) ∪ A2, z

)

= LA1

(
UA1(x, y), z

)
= LA1UA1

(
LA1(x, z), LA1(y, z)

)

= LA1UA1

(
LA1+aA2(x, z), LA1+aA2(y, z)

)
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= LA1+aA2UA1+aA2

(
LA1+aA2(x, z), LA1+aA2(y, z)

)
.

The case {x, y, z} ⊆ A2 can be verified by the same procedure.

The following proposition enables us to determine a broad class of repre-
sentable Kleene posets by using ordinal sums of distributive posets.

Proposition 3.6. Let A1 = (A1,≤) and A2 = (A2,≤) be distributive
posets with top element a and bottom element b, respectively, and B = (B,≤
, ′) a Boolean poset with bottom element a and top element b. If a = b or a
is join-irreducible in A1 and meet-irreducible in A2 then

(
Pab(A1 +a B +b

A2),
, ′) is a Kleene poset and
(
Pab(A1 +a B +b A2),


) ∼= (A1 × Ad
2) +(a,b) B +(b,a) (A2 × Ad

1).

Proof. We have

Pab(A1 +a B +b A2) = (A1 × A2) ∪ {(x, x′) | x ∈ B} ∪ (A2 × A1)

and the order relations on both sides coincide. The equality follows from the
following facts:

1. if x ∈ B \ {a, b} then the only element y ∈ A1 ∪ B ∪ A2 satisfying
LA1+aB+bA2(x, y) ≤ a and UA1+aB+bA2(x, y) ≥ b is the element x′ ∈ B,

2. if x ∈ A1 and (x, y) ∈ Pab(A1 +a B +b A2) then y ∈ A2,

3. if x ∈ A2 and (x, y) ∈ Pab(A1 +a B +b A2) then y ∈ A1,

4. (A1 × A2) ∪ {(x, x′) | x ∈ B} ∪ (A2 × A1) ⊆ Pab(A1 +a B +b A2).

Since the dual of a distributive poset is again distributive and the carte-
sian product of distributive posets is distributive, we obtain by Lemma 3.5
that the ordinal sum (A1 ×Ad

2)+(a,b)B+(b,a) (A2×Ad
1) is also distributive.

Hence
(
Pab(A1 +a B +b A2),
, ′) is a Kleene poset.

Corollary 3.7. Let A1 = (A1,≤) and A2 = (A2,≤) be distributive posets
with top element a and bottom element b, respectively, and B = (B,≤, ′) a
Boolean poset with bottom element a and top element b. If a = b or a is
join-irreducible in A1 and meet-irreducible in A2 then

(
Pab(A1 +a B),
, ′)

and
(
Pab(B +b A2),
, ′) are Kleene posets and

(
Pab(A1 +a B),
 ) ∼= A1 +(a,b) B +(b,a) Ad

1,
(
Pab(B +b A2),


) ∼= Ad
2 +(a,b) B +(b,a) A2.

Proof. It is enough to put A2 := 1 or A1 := 1 and use Proposition 3.6.
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Corollary 3.8. Let A1 = (A1,≤) and A2 = (A2,≤) be distributive posets
with top and bottom element a, respectively. If a is join-irreducible in A1

and meet-irreducible in A2 then
(
Pa(A1 +a A2),


) ∼= (A1 × Ad
2) +(a,a) (A2 × Ad

1),
(
Pa(A1),


) ∼= A1 +(a,a) Ad
1,

(
Pa(A2),


) ∼= Ad
2 +(a,a) A2.

Proof. It is enough to put B := 1 and use Proposition 3.6 and Corol-
lary 3.7.

For some of the Kleene posets described in Proposition 3.6, we can con-
struct the embeddings as follows:

Corollary 3.9. Let A1 = (A1,≤) and A2 = (A2,≤) be distributive posets
with top element a and bottom element b, respectively, and B = (B,≤, ′, a, b)
a non-trivial bounded Boolean poset, put A := A1 +a B +b A2 and define
f : A → Pab(L) as follows:

f(x) :=

⎧
⎨

⎩

(x, b) if x ≤ a,
(x, x′) if a ≤ x ≤ b,
(x, a) if b ≤ x

(x, y ∈ A). Then f is an embedding from A into
(
Pab(A),
 )

, and f(A) is
a convex subset of

(
Pab(L),
 )

.

Proof. The first assertion is a special case of Theorem 3.1. We have

A = A1 +a A +2 A2,

Pab(A) = (A1 × A2) ∪ {(x, x′) | x ∈ B} ∪ (A2 × A1),

f(A) = (A1 × {b}) ∪ {(x, x′) | x ∈ B} ∪ (A2 × {a}).

Now assume (c, d), (h, i) ∈ f(A), (e, g) ∈ Pab(A) and (c, d) 
 (e, g) 
 (h, i).
Then c ≤ e ≤ h and a ≤ i ≤ g ≤ d ≤ b, and hence a ≤ g ≤ b. If e ∈ B
then f(e) = (e, e′) = (e, g). Assume now that e < a. Then g ≥ b, i.e., g = b.
We conclude that f(e) = (e, b) = (e, g). Finally, suppose that b < e. Hence
g ≤ a, i.e., g = a and f(e) = (e, a) = (e, g).

Summing up, f(A) is a convex subset of
(
Pab(A),
 )

.

4. Representable Kleene Posets

The following result shows how to construct representable Kleene posets
using the direct product of known representable Kleene posets.
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Theorem 4.1. Let Ai = (Ai,≤) be a poset and Si a non-empty subset of
Ai for every i ∈ I. Put

A :=
∏

i∈I

Ai and S :=
∏

i∈I

Si.

Then

PS(A) ∼=
∏

i∈I

PSi
(Ai).

Moreover, if Ai is a distributive poset for every i ∈ I then A is a distributive
poset.

Proof. Let us denote, for every j ∈ I, by pj :
∏

i∈I Ai → Aj the j-th
projection defined by pj((xi)i∈I) = xj for every (xi)i∈I ∈ ∏

i∈I Ai.
Recall that, for a non-empty subset X ⊆ ∏

i∈I Ai, LA(X) =
∏

i∈I LAi(
pi(X)

)
and UA(X) =

∏
i∈I UAi

(
pi(X)

)
.

Let us define a mapping f from the poset (A2,
) = (
∏

i∈I

Ai,
∏

i∈I

≤i) ×
(
∏

i∈I

Ai,
∏

i∈I

≥i) to the poset
∏

i∈I

(A2
i ,
i) =

∏

i∈I

(
(Ai,≤i) × (Ai,≥i)

)
by

f
(
(xi)i∈I , (yi)i∈I

)
:= (xi, yi)i∈I

for all (xi, yi)i∈I ∈ (
∏

i∈I

Ai,
∏

i∈I

≤i) × (
∏

i∈I

Ai,
∏

i∈I

≥i).

The mapping f is clearly an order isomorphism preserving ′ since the
order and involution on

∏

i∈I

(A2
i ,
i) are defined componentwise. Moreover,

f(PS(A)) =
∏

i∈I

PSi
(Ai) since, for any x = (xi)i∈I , y = (yi)i∈I ∈ A, we have:

(x, y) ∈ PS(A) if and only if
∏

i∈I

LAi
((xi, yi)i∈I) = LA(x, y) ≤ S ≤ UA(x, y)

=
∏

i∈I

UAi
((xi, yi)i∈I) if and only if

(xi, yi) ∈ PSi
(Ai) for each i ∈ I if and only if

f(x, y) ∈
∏

i∈I

PSi
(Ai).

Suppose now that Ai is a distributive poset for every i ∈ I. Since the
distributive law for A can be checked componentwise, A is a distributive
poset.
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Lemma 4.2. Let C be a bounded chain with involution and a ∈ C such that
a ≤ a′ and x ∈ [a, a′] implies x ∈ {a, a′}. Then C is a representable Kleene
poset and C ∼= P[a,a′]([a, 1]).

Proof. Assume first that a = a′. From [5, Lemma 18] we know that
Pa([a, 1])
=

({a}× [a, 1]
)∪(

[a, 1]×{a}) ∼= C. The isomorphism f from C to Pa([a, 1])
is given by

f(x) =

{
(a, x′) if x ≤ a,

(x, a) if a < x.

Moreover f(a) = (a, a).
Suppose now that a < a′. Let us show that C ∼= P{a,a′}([a, 1]). We define

an isomorphism g from C to P{a,a′}([a, 1]) as follows:

g(x) =

{
(a, x′) if x ≤ a,

(x, a) if a < x.

Moreover g(a) = (a, a′) and g(a′) = (a′, a).

Remark 4.3. Let us denote by RC the class of bounded chains with involu-
tion having elements a as in Lemma 4.2. Clearly, all finite chains are in RC,
which was proved already in [5, Corollary 21]. Hence due to Theorem 4.1 and
Lemma 4.2 direct products of chains from RC form a class of representable
Kleene lattices.

By Theorem 4.1, a direct product of representable Kleene posets Ki is
again representable, and the set S for this product is just the direct product
of the sets Si for Ki. The natural question arises if a similar result also
holds for a subdirect product of representable Kleene lattices. We can show
that, in particular cases, this is true. Let us consider the following example.

Example 4.4. Let K1 be the Kleene lattice depicted in Figure 5 and K2

the two-element chain considered as a Kleene lattice:
Then K1 is representable by means of L1 and S1 and, similarly, K2 is

representable by means of L2 and S2 as shown in Figure 6.
Hence K1

∼= PS1(L1) and K2
∼= PS2(L2).

Consider now the Kleene lattice K = K1 × K2. By Theorem 4.1 it is
representable by means of L = L1 × L2 and S = S1 × S2, see Figure 7.

Consider now two subdirect products of K which are Kleene lattices.
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Figure 5. Representable Kleene lattices K1 and K2

Figure 6. Representations of Kleene lattices K1 and K2

(1) We start with Ks, see Figure 8.
Take Ls := (L1 × L2) ∩ Ks and S′ := S ∩ Ls, see Figure 9. Then
Ls = (L1 × L2) \ {(1L1 , 0L2)} and S′ = S.
It is elementary to show that Ks ∼= PS′(Ls). Thus it is representable.

(2) Now, let us consider the subdirect product K0 and put L0 := (L1 ×
L2) ∩ K0 and S0 := S ∩ L0 as depicted in Figure 10.
Then K0 ∼= PS0(L0), and K0 is representable.

Note that not every subdirect product of two representable Kleene posets
need be representable. On the one hand, if K = (K,≤, ′) is a Kleene poset
that is isomorphic to some PS(A), then A may not be embeddable into
K (see Example 3.4) and thus S may not be considered as a subset of K.
On the other hand, every finite distributive lattice is a subdirect product of
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Figure 7. Representation of a direct product of Kleene lattices K1 and K2

finite chains and every finite chain is representable, but non-representable
Kleene lattices exist (see Theorem 4.10).

Lemma 4.5. Let A = (A,≤) be a finite poset and S a non-empty subset of
A. Then |PS(A)| is odd if and only if |S| = 1.

Proof. Let a, b, c ∈ A. Then (b, c) ∈ PS(A) if and only if (c, b) ∈ PS(A).
Hence the number of elements (b, c) ∈ PS(A) such that b = c is even.
Assume that (b, b) ∈ PS(A). Then, for every s ∈ S, b ≤ s ≤ b. Hence
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Figure 8. Subdirect product Ks of Kleene lattices K1 and K2

S = {b} independently of b, i.e., |S| = 1 and (b, b) is unique. Conversely, if
|S| = 1, say S = {a}, then (b, b) ∈ PS(A) if and only if b = a.

Lemma 4.6. Let A = (A,≤) be a poset and a ∈ A and assume
(
Pa(A),
)

to have no three-element antichain. Then a is comparable with every element
of A and join- and meet-irreducible.

Proof. If there would exist some element b of A with b ‖ a then {(a, a), (a, b),
(b, a)} would be a three-element antichain of

(
Pa(A),
). If a would not be

join-irreducible then there would exist c, d ∈ A \ {a} with c ∨ d = a and
{(a, a), (c, d), (d, c)} would be a three-element antichain of

(
Pa(A),
). If,

finally, a would not be meet-irreducible then there would exist e, f ∈ A\{a}
with e ∧ f = a and {(a, a), (e, f), (f, e)} would be a three-element antichain
of

(
Pa(A),
).

The following two lemmas will be helpful to determine a large class of
representable, respectively non-representable, Kleene posets.

Lemma 4.7. Let K = (K,≤, ′) be a pseudo-Kleene poset, A = (A,≤) a
poset and S a non-empty subset of A. Then
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Figure 9. Representation of the subdirect product Ks of Kleene lattices

K1 and K2

Figure 10. Representation of a subdirect product K0 of Kleene lattices
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(i) The antitone involution ′ on K has at most one fixed point,

(ii) If K is finite then the antitone involution ′ on K has a fixed point if
and only if |K| is odd,

(iii) The antitone involution ′ on PS(A) has a fixed point if and only if
|S| = 1.

Proof. Let a, b ∈ K and c, d, e ∈ A.

(i) If a′ = a and b′ = b then L(a) = L(a, a′) ≤ U(b, b′) = U(b) and
L(b) = L(b, b′) ≤ U(a, a′) = U(a) and hence a = b.

(ii) The set
⋃

x∈K

{x, x′}2

is an equivalence relation on K having only two-element classes if ′ on K
has no fixed point and having precisely one one-element class otherwise.

(iii) We have (c, c) ∈ Pc(A) and (c, c)′ = (c, c) in Pc(A). Now assume |S| >
1. If (d, e) would be a fixed point of ′ in PS(A) then d = e and we would
have L(d) = L(d, d) ≤ S ≤ U(d, d) = U(d) and hence d ≤ s ≤ d, i.e.,
d = s for all s ∈ S contradicting |S| > 1. Hence ′ has no fixed point in
PS(A).

In the following lemma, we derive an upper bound for |A| provided Pa(A)
is finite. This result will be used in the following theorem describing repre-
sentable Kleene posets of odd cardinality.

Lemma 4.8. Let A = (A,≤) be a poset and a ∈ A and assume Pa(A) to be
finite. Then A is finite and |A| < |Pa(A)|/2 + 1.

Proof. Since Pa(A) ⊇ ({a} × A) ∪ (A × {a}) we have that A is finite and
|Pa(A)| ≥ 2|A| − 1 whence |A| ≤ (|Pa(A)| + 1)/2 < |Pa(A)|/2 + 1.

Theorem 4.9. Let K = (K,≤, ′) be a finite representable Kleene poset with
an odd number of elements. Then ′ has exactly one fixed point a, and there
exists some subposet A of (K,≤) of cardinality less than |K|/2+1 containing
a such that Pa(A) ∼= K.

Proof. Since K is representable, there exists some poset A∗ = (A∗,≤)
and some non-empty subset S of A∗ such that PS(A∗) ∼= K. According to
Lemma 4.7, ′ has a fixed point in K and hence |S| = 1, say S = {b}, again
because of Lemma 4.7. According to Lemma 4.8, A∗ is finite, and |A∗| <



Representability of Kleene Posets and Kleene Lattices 1305

|K|/2+1. Let f denote an isomorphism from Pb(A∗) to K. Obviously, (b, b) is
the unique fixed point of ′ in Pb(A∗), and hence f(b, b) = a. Let g denote the
embedding x �→ (x, b) of A∗ into (Pb(A∗),
). Then f ◦g is an embedding of
A∗ into (K,≤) mapping b onto a. Hence, if A := f

(
g(A∗)

)
then A := (A,≤)

is a subposet of (K,≤) isomorphic to A∗ and Pa(A) ∼= Pb(A∗) ∼= K.

The following theorem shows a class of non-representable Kleene lattices.

Theorem 4.10. Let C be a finite chain containing more than one element,
X a set such that |X| ≥ 2, and B = P(X) the powerset Boolean algebra.
Let K = (K,∨,∧, ′) denote the Kleene lattice C +b B +c B +d C. Then K
is not representable.

Proof. Using the method of indirect proof, let us suppose K to be repre-
sentable. By Lemma 4.7 there exists some poset A = (A,≤) containing the
element e ∈ A such that Pe(A) ∼= K and (e, e) �→ c.

Assume first that e = 1A. Then A ∼= ↓c = C +b B since every second
coordinate of ↓(1A, 1A) is 1A. Similarly, Ad ∼= ↑c = B +d C. Therefore
Pe(A) = (A×{1A})∪({1A}×A). Clearly, there are elements u, v ∈ A\{1A}
such that u∨ v = 1A and u∧ v ≤ 1A (e.g. the coatoms of A). Hence (u, v) ∈
Pe(A), a contradiction. We conclude that e = 1A. By a dual argument we
obtain that e = 0A.

Hence there are elements x, y ∈ A such that e > x and y > e. This
yields (e, e) � (x, e) and (e, e) � (e, y). We conclude (since ↓(e, e) is dually
atomic) that there are maximal elements (u, p) and (q, v) of ↓(e, e) such that
(e, e) � (u, p) � (x, e) and (e, e) � (q, v) � (e, y). We obtain p = e and
q = e. Therefore (e, e) covers (u, e) and (e, v) in Pe(A), and e covers u and
v covers e in A.

Suppose that there are p, q ∈ A such that p ∧ q ≤ e ≤ p ∨ q, (e, e) covers
(p, q) and (p, q) = (u, e), (p, q) = (e, v). We conclude that p ≤ e ≤ q. Assume
first that p < e < q. Then (p, q) � (p, e) � (e, e), a contradiction. Therefore
either p = e or q = e.

So the set M of maximal elements of the principal ideal ↓(e, e) is of the
form M =

(
U × {e}) ∪· ({e} × V

)
, u ∈ U and v ∈ V .

Since U corresponds to a subset U × {e} of a complete lattice Pe(A) its
meet in A exists (in fact ⊔

(
U×{e})

= (u, e) for some u ∈ A). Similarly, the
join of V in A exists since V corresponds to a subset {e}×V ( ⊔

({e}×V
)

=
(e, v) for some v ∈ A).

Hence u =
∧

U and v =
∨

V . Evidently, b = (u, e) � (e, v) = (u, v) ∈
Pe(A) and d = (v, u).

Since A×{e} ⊆ Pe(A) we conclude that either u = 0A or there is w ∈ A
such that (u, e) covers (w, e) ∈ Pe(A).
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Figure 11. Ordinal sum of chains and Boolean algebras

Case u = 0A: We have that b = (0A, v) (see Figure 11 for illustration if
|X| = 3) and d = (v, 0A). Moreover, the element (1A, e) � (u, e) is contained
in the interval [c, d] since all elements above d are of the form (z, 0A), z ≥ e.
We conclude that 1A ≤ v ≤ 1A. But (0A, v) = (0A, 1A) because C is a finite
chain containing more than one element, a contradiction.
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Figure 12. Ordinal sum of chains and Boolean algebras

Case u = 0A: Then there is an element w ∈ A such that u covers w.
Hence also (u, e) covers (w, e). Since (u, e) > b = (u, v) we have (w, e) ≥ b.
Therefore w = u, a contradiction again (see Figure 12 for illustration if
|X| = 3).



1308 I. Chajda et al.

5. Dedekind-MacNeille Completion of Kleene Posets

Recall that the Dedekind-MacNeille completion DM(A) of a poset A =
(A,≤) is the complete lattice

(
DM(A),⊆ )

where

DM(A) := {L(B) | B ⊆ A} = {C ⊆ A | LU(C) = C}.
For Kleene posets, we can show the following:

Example 5.1. Consider the Kleene poset A depicted in Figure 13 such that
a′ = d and b′ = c:

Put S := {a, b}. Then the poset
(
PS(A),
 )

is visualized in Figure 14.
The Dedekind-MacNeille completion DM

(
PS(A),
 )

of this poset is
depicted in Figure 15, where

L
(
(0, 1)

)
= {(0, 1)},

L
(
(0, c)

)
= {(0, 1), (0, c)},

L
(
(0, d)

)
= {(0, 1), (0, d)},

L
(
(a, b), (b, a)

)
= {(0, 1), (0, c), (0, d)},

L
(
(a, b)

)
= {(0, 1), (0, c), (0, d), (a, b)},

L
(
(b, a)

)
= {(0, 1), (0, c), (0, d), (b, a)},

L
(
(d, 0), (c, 0)

)
= {(0, 1), (0, c), (0, d), (a, b), (b, a)},

L
(
(d, 0)

)
= {(0, 1), (0, c), (0, d), (a, b), (b, a), (d, 0)},

Figure 13. Kleene poset A
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Figure 14. Kleene poset induced by A

L
(
(c, 0)

)
= {(0, 1), (0, c), (0, d), (a, b), (b, a), (c, 0)},

L
(
(1, 0)

)
= {(0, 1), (0, c), (0, d), (a, b), (b, a), (d, 0), (c, 0), (1, 0)}.

The Dedekind-MacNeille completion DM(A) of the given poset A is visual-
ized in Figure 16; here the involution is given by L(a)′ = L(d), L(b)′ = L(c):

Finally, the lattice
(
P{L(s)|s∈S}

(
DM(A)

)
,�,�

)
is depicted in Figure 17,

where
(
L(0), L(1)

)
= ({0}, {0, a, b, c, d, 1}),

(
L(0), L(c)

)
= ({0}, {0, a, b, c}),

(
L(0), L(d)

)
= ({0}, {0, a, b, d}),

(
L(0), L(c, d)

)
= ({0}, {0, a, b}),

(
L(a), L(b)

)
= ({0, a}, {0, b}),

(
L(b), L(a)

)
= ({0, b}, {0, a}),

(
L(c, d), L(0)

)
= ({0, a, b}, {0}),

(
L(d), L(0)

)
= ({0, a, b, d}, {0}),
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Figure 15. Dedekind-MacNeille completion of the Kleene poset induced

by A

Figure 16. Dedekind-MacNeille completion of the Kleene poset A
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Figure 17. Kleene poset induced by the Dedekind-Mac Neille completion

of A

(
L(c), L(0)

)
= ({0, a, b, c}, {0}),

(
L(1), L(0)

)
= ({0, a, b, c, d, 1}, {0}).

Hence, in this case, the lattices
(
P{L(s)|s∈S}

(
DM(A)

)
,�,�

)
and DM

(
PS(A),
 )

are isomorphic.

The lattices mentioned above need not be isomorphic for distributive
posets A, which are not Kleene posets.

Example 5.2. Consider the distributive poset A which is not a Kleene
poset depicted in Figure 18:

Put S := {c, d}. Then the poset
(
PS(A),
 )

is visualized in Figure 19.
The Dedekind-MacNeille completion DM

(
PS(A),
 )

of this poset is
depicted in Figure 20 and the Dedekind-MacNeille completion DM(A) of
the given poset A is visualized in Figure 21:

Finally, the lattice
(
P{L(s)|s∈S}

(
DM(A)

)
,�,�

)
is depicted in Figure 22.
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Figure 18. Distributive poset A

Figure 19. Kleene poset induced by the distributive poset A

Figure 20. Dedekind-MacNeille completion of the Kleene poset induced

by the distributive poset A

Figure 21. Dedekind-MacNeille completion of the distributive poset A

Hence, in this case, the lattices
(
P{L(s)|s∈S}

(
DM(A)

)
,�,�

)
and DM

(
PS(A),
 )

are not isomorphic.

Let A = (A,≤) be a distributive poset and let Fin(A) denote the set of
all finite subsets of A. We put (see [8])

G(A) := {L(
U(A1), . . . , U(An)

) | n ∈ N+&∀i, 1 ≤ i ≤ n, ∅ = Ai ∈ Fin(A)}.
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Figure 22. Kleene poset induced by the Dedekind-Mac Neille completion

of the distributive poset A

Note that G(A) is a subset of DM(A), containing all principal ideals.
It is worth noticing that G(A) = DM(A) provided A is finite. Moreover,
from ( [8, Proposition 31]) we immediately obtain that any element of G(A)
is also of the form LU

(
L(B1), . . . , L(Bn)

)
where Bi are finite non-empty

subsets of A.
The following definition and theorem are motivated by a similar result of

Niederle for Boolean posets ([8, Theorem 17]).

Definition 5.3.

(1) Let A = (A,≤) be a poset. A subset X of A is called doubly dense in A
if a =

∨
A

(
L(a) ∩ X

)
=

∧
A

(
U(a) ∩ X

)
for all a ∈ A.

(2) Let A = (A,≤, ′) be a poset with an antitone involution ′. A subset X
of A is called involution-closed and doubly dense in A if X ′ ⊆ X and X
is doubly dense in A.

We will need the following

Proposition 5.4. ([8], Proposition 33) Let A = (A,≤) be a distributive
poset. Then

(
G(A),⊆ )

is a distributive lattice and X = {L(a) | a ∈ A} is
doubly dense in G(A), generates G(A) and (X,⊆) is isomorphic to A.

In what follows, if A = (A,≤, ′) is a poset with an antitone involution ′

and X ⊆ A, we define:

• X ′ := {x′ ∈ A | x ∈ X},

• X⊥ := {a ∈ A | a ≤ x′ for all x ∈ X} = L(X ′).

Remark 5.5. Recall that any involution-closed and doubly dense subset X
in A is a poset with induced order and involution. Moreover, if A = (A,≤, ′)
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is a poset with an antitone involution ′ then A is an involution-closed and
doubly dense subset in its Dedekind-MacNeille completion DM(A) with
involution ⊥. This can be shown by the same arguments as in ( [8, Theorem
16]), so we omit it.

By the preceding remark, Proposition 5.4 and [8, Theorem 34] we have
the following

Corollary 5.6. Let A = (A,≤, ′) be a distributive poset with an antitone
involution ′. Then

(
G(A),⊆,⊥)

is a distributive lattice with an antitone
involution ⊥ and X = {L(a) | a ∈ A} is involution-closed and doubly dense
in G(A), generates G(A) and (X,⊆,⊥) is isomorphic to A.

Corollary 5.7. Embedding theorem for distributive posets with an anti-
tone involution. The following conditions are equivalent for a poset A:

(i) A is a distributive poset with an antitone involution;

(ii) A is an involution-closed and doubly dense subset of a distributive lattice
with an antitone involution.

But we can prove more.

Proposition 5.8. Let A = (A,≤, ′) be a Kleene poset. Then (G
(
A),⊆,⊥)

is a Kleene lattice and X = {L(a) | a ∈ A} is involution-closed and doubly
dense in G(A), generates G(A) and (X,⊆,⊥) is isomorphic to A.

Proof. It is enough to check that for all C,D ∈ G(A), we have

C ∩ C⊥ ⊆ L
(
U(D ∪ D⊥)

)
.

Assume first that C = LU(E) and D = LU(F ) where E,F are non-empty
finite subsets of A. Then C =

∨{L(e) | e ∈ E} and D =
∨{L(f) | f ∈ F}.

We compute:
( ∨

{L(e) | e ∈ E}) ∧ ( ∧
{L(g)⊥ | g ∈ E})

=
∨

e∈E

(
L(e) ∧ ( ∧

{L(g)⊥ | g ∈ E}))

≤
∨

e∈E

(
L(e) ∧ L(e)⊥

)
=

∨

e∈E

(
L(e) ∧ L(e′)

)
=

∨

e∈E

L(e, e′) ≤
∧

h∈F

LU(h, h′)

=
∧

h∈F

(
L(h) ∨ L(h′)

) ≤
∧

h∈F

(( ∨
{L(f) | f ∈ F}) ∨ L(h′)

)

=
( ∨

{L(f) | f ∈ F}) ∧ ( ∧
{L(h)⊥ | h ∈ F})

.
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Now, assume that C =
∧n

i=1Ci, D =
∧m

j=1Di where Ci = LU(Ei),
Dj = LU(Fj), Ei and Fj are non-empty finite subsets of A, 1 ≤ i ≤ n and
1 ≤ j ≤ m. We compute:

(
∧n

i=1 Ci) ∧ (
∨n

k=1 C
⊥
k ) =

∨n
k=1

(
C⊥

k ∧ (
∧n

i=1 Ci)
) ≤ ∨n

k=1(C
⊥
k ∧ Ck)

≤ ∧m
l=1(D

⊥
l ∨ Dl)

≤ ∧m
l=1

(
(
∨m

j=1 D
⊥
j ) ∨ Dl

)
= (

∨m
j=1 D

⊥
j ) ∨ (

∧m
l=1 Dl).

Theorem 5.9. Embedding theorem for Kleene posets. The following con-
ditions are equivalent for a poset A:

(i) A is a Kleene poset;

(ii) A is an involution-closed and doubly dense subset of a Kleene lattice.

Proof. (i) ⇒ (ii) has been proved in Proposition 5.8.
(ii) ⇒ (i): From Corollary 5.7, we know that A is a distributive poset with

an antitone involution ′. But the involution reflects the Kleene condition.
Namely, let x, y ∈ A. Assume that a ∈ L(x, x′) and b ∈ U(y, y′). Then
a ≤ x ∧ x′ ≤ y ∨ y′ ≤ b in the Kleene lattice. Hence a ≤ b in A, i.e., A is a
Kleene poset.

Acknowledgements. The authors would like to express their gratitude to the
anonymous reviewers for the careful check and valuable comments. Support
of the research of all authors by the Austrian Science Fund (FWF), project
I 4579-N, and the Czech Science Foundation (GAČR), project 20-09869L,
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