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Abstract. The paper compares two optimal control methods — Rein-
forcement Learning and Model Predictive Control — for adaptive speed
control in the presence of road obstacles to enhance ride comfort. Both
methods use a model for training or prediction and a reward or cost func-
tion to achieve a desired control objective. Using the same quarter-car
model and objective function for both methods, differences in planned
speed profiles, optimality of the control objective, and differences in com-
putational time are analysed through simulations over a series of cosine-
shaped road bumps.
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1 Introduction

The automotive industry is moving towards fully self-driving vehicles by
automating both lateral and longitudinal driving tasks. To achieve this, vehicles
have to respond to road obstacles using preceding road information. Two key
methods for the control task are Reinforcement Learning (RL) and Model Pre-
dictive Control (MPC). RL has gained significant interest for its ability to learn
optimal policies directly from environmental interactions, enabling robust con-
trol of complex systems. Although training is computationally expensive, evalu-
ating the trained models is fast. MPC is an established optimal control method
that, like RL, uses model information to predict future system behaviour and
optimise actions over a defined horizon. While MPC is fast to deploy, its online
computational requirements increase significantly with system complexity [1].
This paper presents a comparative study of RL and MPC on a novel control
problem. It introduces a speed planner for the coupled problem of vertical and
longitudinal dynamics when traversing road obstacles to improve ride comfort,
specifically road bumps by controlling the vehicle’s longitudinal motion. Improv-
ing ride comfort through suspension control using classical control methods [2]
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and RL [3,4] has been extensively studied in the literature. However, optimising
ride comfort via speed planning is an emerging topic [5].

2 Problem Description and Methods

To maximise ride comfort over a given road segment within the preview distance
lprev, it is crucial to select the optimal vehicle speed v. This decision takes into
account the current vehicle state x, the speed limits v.x and lower vy, and
the acceleration limits amax and am;n. The control architecture is illustrated in
Fig. 1a, while the quarter-car model is shown in Fig. 1b.
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(a) Control architecture. (b) Quarter-car model [6].

Fig. 1. Optimal longitudinal motion control using either MPC or RL on the left. Both
methods are based on the quarter-car model shown on the right.

2.1 Vehicle Model

RL and MPC share similarities in their approach, utilising the same quarter-car
model in Fig. 1b for prediction or training. The governing equations of motion are
taken from [6]. The spring force F, ; is modelled by an air suspension model based
on [7]. The damper force Fy s is represented by piecewise linear damper charac-
teristics with distinct high and low-speed damping for compression and rebound.
Additional end-stops for rebound and compression are included. The tyre load is
modelled by a linear spring ¢; and damping coefficient k;. The quarter-car state
is x = [( — 2w, 2w, 2w — 2B, 2B, U}T with road elevation ¢, wheel travel zyy,
sprung-mass travel zg and vehicle speed v = $. The nonlinear continuous-time
equations are transformed into the space domain, similar to [6].

2.2 Model Predictive Control

The Optimal Control Problem (OCP) for the MPC is formulated as a nonlinear
static optimisation with CasADi! and solved with IPOPTZ2. The continuous-
space dynamics are discretised using an implicit Euler integration scheme. The

1 web.casadi.org.
2 github.com/coin-or /Ipopt.
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road is represented by the change in road elevation {/ = % at discrete points
along lprey = 40m with step size As = 5cm. The OCP is expressed as the
following multishooting problem:

N .. 2 . 2 2
. ZB.k ZW,k ak U — Uref
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Umin S Vi S Umax» Amin S ag S Amax; (10)

where k € {1,2,...,N} with N = l‘z:". Jheave,k compromises ride comfort

through Zp ) and dynamic wheel load through Zw ;. The sprung mass mpg
is 567 kg. The unsprung mass my, is 60kg. Longitudinal comfort and control
input ay, are considered via Jiong k- Reference speed vyer tracking is managed by
Jspeed, k- By suitably weighing these criteria through Q, =1, Q, =1, @z, = 50
and @z, = 0.5, the ride comfort is improved while maintaining swift passage of
the obstacle. g is the gravitational acceleration.

2.3 Reinforcement Learning

Assuming a Markov decision process (MDP) that, starting from an initial state
x, forms a trajectory 7 of states, actions and rewards. RL aims for the optimal
control policy 7*(alx) that solves the optimization problem

7" = argmax E [— ZOO ¥ Ry (o) (2)

T T k=0

with discount factor v € [0, 1), step reward Ry and observations oy.

Observation Space and Action Space. The list of observations visible to
the agent comprises the necessary information to learn an optimal policy and
pose a subset of the vehicle state and road. The observation space oy, is defined
by

e
While vy, ag describe the longitudinal motion of the vehicle, the vertical move-
ment is observed by Zp i, Zw and zw — zp . The agent sees the upcoming
road obstacle via the longitudinal distance between the current vehicle position
and the peak position of the obstacle dgp, 1, the obstacle’s maximum height hgp, £,
and the obstacle length g, . With vycf, the agent is aware of the current refer-
ence speed. The agent controls the longitudinal motion of the vehicle by setting
ay. The choice of the interval of possible acceleration values is motivated by the
system limitations of a real-world adaptive cruise control system.

0 = Uk, Qky 2B ks ZWiks 2W,k — 2B,k dsbkes Pisb ks lsb ks Uret k

Reward Function. The reward function encourages or punishes an agent’s
behaviour by defining favourable environment states. To ensure comparability,
the step reward function Rsep is based on (1a):
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Rk = Jheave,k + Jlong,k + Jspeed,k + Jvmm,k + Jstep,k- (4)

To enforce the lower speed limit, an additional speed cost J,, . » is added when
the agent drops below vmyin. For numerical reasons, a step reward Jsepr =
—0.05 is added to encourage progress along the road. Additionally, to penalise
premature termination of an episode, such as when the vehicle speed drops below
1km/h, a large cost of Jiermination = 5000 is added.

Training and Network Architecture. The RL agent is trained using Stable
Baselines3’s implementation of the Proximal Policy Optimization (PPO) algo-
rithm3. It utilises a multilayer perceptron (MLP) with two hidden layers of 128
neurons each and is optimised with the Adam optimiser using a learning rate
of 3 x 107* and a discount factor of 0.999. Each training episode begins with
a randomly initialised road, with all training roads having a length of 100 m.
The obstacle’s dimensions and position vary for each road, with the obstacle
height hgp and length Iy, ranging between [0.03m, 0.08 m] and [0.65m, 2m],
respectively. The obstacle is positioned between [40m, 80m]. The vehicle’s ini-
tial vo and reference speeds vy.f are set between [10 km/h, 50 km/h] and [25 km /h,
50km/h], respectively. During training, all values are sampled from a uniform
distribution within specified bounds. To ensure robust training, there is a ten
percent chance that no obstacle will be present, which enforces the training of
reference speed tracking. Each training episode consists of 10,000 steps. The
policy is evaluated based on a predefined set of roads and velocities.

3 Comparison Between MPC and RL

Both approaches are compared by simulation when crossing over three consecutive
cosine-shaped bumps of varying heights and lengths. The first bump is at 50 m
with a length of 1 m and height of 5 cm, the second bump at 90 m with a length of
0.75m and height of 3.5 cm, and the third bump at 100 m with a length of 0.65m
and height of 7.5cm. The preview distance Iy for both methods is 40 m. The
admissible speed range is 5 to 50 km /h, with a reference speed of vef of 50 km /h.
The longitudinal acceleration limits are amayx = 2.5m/s? and i, = —3.7m/s2.
Note, that this scenario exceeds the training dataset of the RL agent.

Planned Speed and Acceleration Profile. Figure 2 illustrates the planned
speed and acceleration profiles for both MPC and RL. RL is represented in
red, while MPC in blue. For the first bump, the MPC reduces the speed to
approximately 20 km/h, whereas the RL slows down to about 6 km/h. As bump
heights increase and length decreases, the MPC approaches the lower speed limit
as well. Acceleration profiles show the MPC with a linear increase in braking
and acceleration, while the RL prefers constant braking and acceleration. The
MPC utilizes the entire available acceleration band, while the RL only uses the
maximum acceleration. Reference speed tracking is achieved at the start and
end for both methods.

3 stable-baselines3.readthedocs.io.
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Fig. 2. Speed profiles v for MPC and RL running over consecutive cosine-shaped bumps
with road elevation ¢ on the left. Longitudinal acceleration a on the right.

Optimality. Figure 3 provides a detailed breakdown of the planned speed pro-
files’ differences. The top row displays Jpeave for each bump, followed by the
speed cost Jspeed in the second row, and the longitudinal cost Jiong in the last
row. When observing Jpeave for the three bumps in the top row, it becomes
evident that the RL approach enhances the ride comfort criterion more notably
on the first and second bump due to its lower transition speed than the MPC.
This improvement comes with the drawback of ocurring larger costs in Jspeed-
Overall, the total cost is primarily influenced by Jspeed. While the RL approach
significantly outperforms the MPC w.r.t Jyeave, its cummulative cost or optimal-
ity w.r.t. the cost function is worse, with a score of 7045 for the RL approach
compared to 5762 for the MPC.
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Fig.3. Cost terms for the simulation running over three consecutive cosine-shape
bumps. Total accumulated cost: Jupc = 5762, Jrr = 7045.
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Computational Demand. The calculations were performed on consumer-
grade laptops, with several runs averaged. The average computation time for
the MPC was around 380 ms, with peaks of 1700 ms, compared to an average
time of 0.15 ms with peaks of less than 1ms for the RL approach.

4 Summary and Outlook

This study compared RL and MPC in speed control to improve ride comfort
when crossing road obstacles. Both methods utilised the same quarter-car model
and cost function for control decisions. While RL learnt optimal policies directly
from interactions, MPC used model-based predictions to optimise upcoming
behaviour. Through simulations of running over cosine-shape road bumps, the
study compared their performance in planned speed profiles, optimality, and
computational efficiency. Results showed that the RL outperformed the MPC
regarding improved ride comfort, albeit with increased speed costs, resulting in
a less optimal solution. The computational demands varied significantly, rais-
ing concerns about MPC’s suitability for vehicle application in this case. RL
demonstrated potential in chassis control application, particularly in planning
tasks, but further exploration is needed. Future research should focus on opti-
mising hyperparameters and exploring alternative learning algorithms. The road
embedding method used in this study should be extended to a more generic
approach. For MPC, computational efficiency can be enhanced by adopting a
different road embedding method and employing variable space discretisation to
reduce the number of free variables in the OCP.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.



