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A B S T R A C T

It is well-known that parallel manipulators are prone to singularities. However, there is still a
lack of distance evaluation functions, referred to as metrics, for computing the distance between
two 3-RPR configurations. The proposed extrinsic metrics take the combinatorial structure of the
manipulator into account as well as different design options. Utilizing these extrinsic metrics,
we formulate constrained optimization problems. These problems are aimed at identifying
the closest singular configurations for a given non-singular configuration. The solution to
the associated system of polynomial equations relies on algorithms from numerical algebraic
geometry implemented in the software package Bertini. Furthermore, we have developed
a computational pipeline for determining the distance to singularity during a one-parametric
motion of the manipulator. To facilitate these computations for the user, an open-source
interface is developed between software packages Maple, Bertini, and Paramotopy. The
effectiveness of the presented approach is demonstrated based on numerical examples and
compared with existing indices evaluating the singularity closeness.

. Introduction

A 3-RPR manipulator (cf. Fig. 1) is a three Degree-of-Freedom (DoF) planar parallel manipulator with two translational DoFs
nd one rotational DoF. The base and platform are connected by three legs, where each leg consists of two passive revolute (R)
oints connected by an actuated prismatic (P) joint (cf. Fig. 1). Note that we will not consider any motion range limitations on the

and R joints.
Let 𝐤𝑖 denote the coordinate vectors of the base anchor points with respect to the fixed frame, having coordinates (𝑥𝑖, 𝑦𝑖)𝑇 for

= 1, 2, 3. The coordinate vectors of the platform anchor points with respect to the moving frame are 𝐩𝑗 , having coordinates (𝑥𝑗 , 𝑦𝑗 )𝑇
or 𝑗 = 4, 5, 6. Their coordinate vectors with respect to the fixed frame can be computed as follows:

𝐤𝑗 = 𝐑𝐩𝑗 + 𝐭, (1)

here 𝐑 is a 2 × 2 rotation matrix and 𝐭 is the translation vector.
Without loss of generality, we can assume that 𝐤1 is the origin of the fixed frame (⇒ 𝑥1 = 𝑦1 = 0), and 𝐤2 is located on the

-axis of the fixed frame (⇒ 𝑦2 = 0). The same assumptions can be made for the moving frame, which implies 𝑥4 = 𝑦4 = 𝑦5 = 0. The
emaining six coordinates 𝑥2, 𝑥3, 𝑦3, 𝑥5, 𝑥6, 𝑦6 can be seen as the design parameters of the base and platform, respectively.

In the remainder of the paper, we represent a 3-RPR configuration as 𝐊, where 𝐊 ∶= (𝐤1,… ,𝐤6). Hence, R12 denotes the
2-dimensional configuration space.
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Fig. 1. (left) 3-RPR planar parallel manipulator with base anchor points 𝐤1 ,𝐤2 ,𝐤3 and platform anchor points 𝐤4 ,𝐤5 ,𝐤6, where 𝐤𝑖 denotes the coordinate vector
of the 𝑖th attachment with respect to the fixed frame. (right) Singular configuration of a 3-RPR manipulator.

The 3-RPR manipulator is the best-studied planar parallel mechanism, and their singularities are well understood from various
points of view (e.g. [1]). It is well known that 3-RPR manipulators have at least one uncontrollable instantaneous DoF in singular
(also known as shaky or infinitesimal flexible) configurations. Moreover, in their neighborhood, minor geometry variations caused
by, e.g., backlash in the joints and uncertainties in the actuation of P-joints, respectively, can significantly affect the resulting
manipulator pose. Another phenomenon that appears close to singularities is that the actuator forces can become very large, which
may result in a breakdown of the manipulator [2]. Therefore, singularities and their vicinities should be avoided, which reasons
the interest of the kinematic/robotic community in evaluating the singularity closeness. Even though a lot of performance indices
are given in the literature, which can also be seen as closeness indices to singularities, there is still a lack of such distance metrics,
where one can distinguish the following two kinds:

1. Intrinsic metrics: The distance to the singularity is measured based on the inner metric of the manipulator, which is
determined by the distances 𝓁𝑖𝑗 between 𝐤𝑖 and 𝐤𝑗 with 𝑖 < 𝑗 and (𝑖, 𝑗) ∈ {(1, 2), (2, 3), (1, 3), (1, 4), (2, 5), (3, 6), (4, 5), (5, 6), (4, 6)}.
Singularity distance computations for 3-RPR manipulators using intrinsic metrics are presented by the authors in [3].

2. Extrinsic metrics: The distance to the singularity is measured based on the metric of the embedding space of the manipulator,
which, in our case, is the Euclidean plane. R2.

1.1. Review on singularity closeness indices

Since the early days of robotics, numerous kinematic performance indices1 (KPI) have been defined.
By denoting the part of the robotic system, for which manipulation of the mechanical device is built as the end-effector (EE),

one can distinguish the following two types of KPIs: If the index depends on the EE in some sense (e.g. relative position to the
mechanical device, shape, and size of the EE, . . . ) then the index is called an EE-dependent KPI ; otherwise it is an EE-independent
KPI.

As a 3-RPR robot cannot transmit the motion standstill of the P-joints to the moving platform within a singular configuration,
kinematic performance indices are also sometimes regarded as closeness indices to singularities. Some papers on parallel manipulators
pointing out this property explicitly; e.g. [5–17].

This interpretation only makes sense for EE-independent KPIs, as the singularity variety is solely determined by the geometry
of the 3-RPR robot. Therefore, the indices [5,6,8,10,15], which depend on the choice of a ‘‘point of interest ’’ and therefore on the
EE, are not appropriate to evaluate the closeness to singularities. For the same reason the most prominent class of KPIs, namely the
condition number indices (cf. [12]), are not suited to indicate the vicinity of singularities.

A further problem of many indices is that they cannot handle the dimensional inhomogeneity that arises for parallel manipulators
with rotational and translational DoF. These mixed dimensions cause troubles for the normalization of instantaneous screws which
is required for the approaches given in [7,9,14,18]

Remark 1. Hubert and Merlet [2] suggested using the maximal joint forces to indicate the closeness to a singularity without giving
an index.2 Such a closeness index was proposed in [9] but its computation involves the problematic normalization of the wrench.
⋄

The following EE-independent KPIs remain as candidates to indicate singularity closeness:

• Manipulability (M): This index was introduced by Yoshikawa [19] and used for a detailed study of 3-RPR manipulators
in [20]. For these planar robots it equals the absolute value of the determinant of the Jacobian matrix 𝐉; i.e. 𝑀(𝐊) = | det 𝐉|.

1 A kinematic performance index of a robotic mechanical system converts the capability of the system to transmit motions (at the level of velocities) into a
scalar (cf.[4, page 171])

2 In [2] only regions within the constant-orientation workspace were computed for which the joint forces are lower than a fixed threshold for a given wrench.
2
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• Incircle radius (IR): In [16] it is proposed to take the radius of the incircle of the triangle determined by the carrier lines of
the three legs to indicate the closeness to singularities.3

emark 2. The manipulability and the incircle radius are only based on the carrier lines of the legs, but ignore the location of the
nchor points on these lines. ⋄

• Transmission index (TI): In the first step, Takeda and Funabashi [21] determined the so-called pressure angles, which equal
the angle 𝛼𝑖 ∈ [0, 𝜋2 ] between the carrier line of the 𝑖th leg and the velocity vector of the corresponding platform anchor point
when the 𝑖th prismatic link is driven alone. Based on these pressure angles 𝛼𝑖 the transmission index is defined as

𝑚𝑖𝑛(cos 𝛼1,… , cos 𝛼3) ∈ [0; 1], (2)

for the case of 3-RPR manipulators.
• In [17] an index similar to the transmission index was introduced for 3-RPR robots, which claims to determine the distance

to singularity (DS) by

𝐷𝑆 ∶= 1 −
2𝑚𝑎𝑥(𝛼1,… , 𝛼3)

𝜋
∈ [0; 1], (3)

using the notation from Eq. (2).

Remark 3. The indices TI and DS do not only take the carrier lines of the legs into account but also the location of the platform
anchor points on these lines. ⋄

• Control number (CN): The minimum 𝜇− and maximum 𝜇+ of the sum of the squared angular velocities of the passive joints
are computed under the side condition, that the sum of the squared velocities of the prismatic joints equals 1. Then the
control number is given by

√

𝜇−∕𝜇+ ∈ [0, 1] according to [12].

Remark 4. In contrast to TI and DS (cf. Remark 3) the control number also takes the location of the base anchor points on the
carrier lines of the legs into account and therefore the complete geometry of the parallel manipulator. ⋄

Note that there are also other approaches [22,23] to evaluate the vicinity to singularities involving physical quantities (like
inetic energy, and stiffness), which are not within the scope of this review as we are only interested in singularity closeness from
pure kinematic/geometric point of view.

.2. Motivation and practical applications

All the approaches for evaluating the closeness to a singularity mentioned so far are referred to as indices as the resulting values
re not based on a distance function; i.e. a metric. Therefore, from these index values no conclusion can be drawn on the shape
nd size of a singularity-free region in the workspace around the given configuration. For the determination of this information, the
ollowing method is proposed in the literature:

1. Li et al. [24] determined the singularity-free zone around a non-singular configuration as follows: They parameterized the
3-dimensional configuration space by 𝑥, 𝑦, 𝜁 , where 𝑥, 𝑦 are the two position variables and 𝜁 the orientation angle. Then point
(𝑥, 𝑦, 𝜁 ) of the singularity variety which minimizes the function

𝑑 = (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2, (4)

where (𝑥0, 𝑦0)𝑇 corresponds to the position of the given non-singular configuration. Note that the orientation 𝜁0 of the given
configuration is not taken into account thus

√

𝑑 is the radius of the circular directrix centered in (𝑥0, 𝑦0)𝑇 of the ‘‘singularity-free
cylinder ’’. This concept was also used in [25].
Note that

√

𝑑 cannot give the distance to the singularity as for a given non-singular configuration also
√

𝑑 = 0 can hold. But
this method implies a kind of closest singular configuration, which can be seen as the contact point of the singularity-free
cylinder and the singularity variety.

By computing the singularity distance using an extrinsic metric one does not only get the distance to the singularity variety
(which can also be used as a KPI) but also the radius of a singularity-free sphere in the configuration space. In addition, we receive
the closest singular configuration, i.e. the contact point of the singularity-free sphere and the singularity variety.

Following the argumentation of Wolf and Shoham [14] the closest pencil of lines to the legs of the 3-RPR robot, which is
determined by the legs of the closest singular configuration, provides additional information and a better physical understanding of
the motion the manipulator tends to perform in a singular configuration or its neighborhood. Moreover, the singularity-free spheres
and the associated closest singular configurations can be used for path-planning [24,25] and path-optimization [26].

3 Poses with parallel lines have to be treated in a special way (for details see [16, Section 6.2]) which causes jump discontinuities.
3
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Note that the computation of the distance to the next singularity (or rather the radius of the largest singularity-free sphere) for a
ixed orientation or a fixed position, respectively, are further concepts known in kinematics [11,27–29]. But from these two pieces of
eparated information, no conclusion about the distance to the next singularity (i.e. the radius of the largest singularity-free sphere)
ithin the configuration space of robots with mixed DoFs can be drawn.

Instead of determining the configuration having the largest singularity-free sphere over all constant-orientation workspaces [30],
he proposed extrinsic metrics can also be used to find the configuration possessing the largest singularity-free sphere in the
anipulator’s total workspace. The center of this sphere can be regarded as the robot’s home configuration and the maximization

f its radius can be used as an objective for optimizing the design of the manipulator (cf. [31]).
The above mentioned practical applications (plus the one mentioned Remark 6 latter on) reinforce our motivation for the research

n singularity distances using extrinsic metrics, which are reviewed next.

.3. Review on singularity distance computation using an extrinsic metric

The second author presented in [32, Eq. (3)] the following extrinsic metric to compute the distance between two configurations
and 𝐊′:

𝐷∙
∙(𝐊,𝐊

′)2 = 1
6

6
∑

𝑖=1
‖𝐤′𝑖 − 𝐤𝑖‖2. (5)

The upper and lower bullets in Eq. (5) indicate that the distance is measured between the corresponding platform and base anchor
points of the two configurations. This preliminary extrinsic metric was already used for determining the singularity distance, which
has the following physical interpretation according to [32, Theorem 1]: If the radial clearance of the six passive R-joints is smaller than
𝐷∙

∙ then the parallel manipulator is guaranteed to be not in a singular configuration. In the following, we give details on the computation
of this singularity distance.

From the line-geometric point of view a 3-RPR configuration 𝐊′ is singular if and only if the carrier lines of the three legs
intersect in a common point (cf. Fig. 1) or are parallel. This is equivalent to the fact that the Plücker coordinates of these lines are
linearly dependent, resulting in the algebraic characterization in the form of so-called singularity variety 𝑉 = 0 with

V = det 𝐕(𝐊′), 𝐕(𝐊′) ∶=
(

𝐤′4 − 𝐤′1 𝐤′5 − 𝐤′2 𝐤′6 − 𝐤′3
det

(

𝐤′1,𝐤
′
4 − 𝐤′1

)

det
(

𝐤′2,𝐤
′
4 − 𝐤′2

)

det
(

𝐤′3,𝐤
′
4 − 𝐤′3

)

)

. (6)

The singularity polynomial 𝑉 is of degree 4 in the coordinates (𝑐𝑖, 𝑑𝑖)𝑇 of the points 𝐤′𝑖 with respect to the fixed frame (for
𝑖 = 1,… , 6). Therefore, it can be seen as a quartic hypersurface in the configuration space R12.

The minimization of 𝐷∙
∙(𝐊,𝐊

′) given in Eq. (5) under the side condition 𝑉 = 0 of Eq. (6) is a constrained optimization problem,
which can be formulated as the Lagrange function 𝐿 with

𝐿 = 𝐷∙
∙(𝐊,𝐊

′)2 + 𝜆𝑉 , (7)

where 𝜆 is the Lagrange multiplier.
To find the closest singular configuration, one needs to compute the critical points of 𝐿 as the zero sets of the partial derivatives

of 𝐿 with respect to the 13 involved unknowns: 𝑐1,… , 𝑐6, 𝑑1,… , 𝑑6 and 𝜆. In [32], the resulting systems of square polynomial
equations were solved using symbolic computations (Gröbner basis methods) implemented in a computer algebra system (software
Maple). Subsequently, the configuration corresponding to the critical point that yields the smallest value for 𝐷∙

∙(𝐊,𝐊
′) has been

designated as the closest singular configuration (cf. Fig. 2).

Remark 5. In [33] it is pointed out that a Riemannian distance between the manipulability ellipsoids of two configurations can be
well-defined; apart from its dependence on the operation point and the dimensional inhomogeneity in the case of mixed dof robots.
Nevertheless, this metric cannot be used to compute a singularity distance as it is only defined for non-singular configurations (see
also [34]). ⋄

1.4. Contribution and outline

A limitation of the approach presented in [32] concerns the computational efficiency, caused by Gröbner basis calculations. As
we aim to compute the singularity distance, (incl. the closest singularity), along a one-parametric motion of the manipulator, we
use the numerical algebraic geometry tool of homotopy continuation, which is implemented in the freeware Bertini [35]. To
simplify these computations for users, we have developed an open-source interface that connects the software packages Maple,
Bertini [36], and Paramotopy [37].

Moreover, the paper at hand also fills the gap that singular points of the singular variety 𝑉 = 0 are excluded from the Lagrangian
approach given in Eq. (7) as pointed out in [26, section 3.2.2]. We identify these points, which are considered separately within
the presented computational pipeline.

A further limitation of the distance metric 𝐷∙
∙ given in Eq. (5) is that it does not take into account how the six anchor points

are connected combinatorially. Especially for the three platform/base anchor points one can distinguish two basic design options;
namely if they are considered as the vertices of a triangular plate (▴) or as the pin-joints of a triangular bar structure (▵). Note that
4

in the latter case, additional shaky configurations arise because of the collinearity of the three base/platform points.
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Fig. 2. Closest singular configuration 𝐊′ (red) for a given non-singular 3-RPR manipulator pose 𝐊 (green) with 𝐷∙
∙(𝐊,𝐊

′) = 0.7541454 units. 𝐊 corresponds to
the configuration given in [32, Section 3] for 𝜙 = 0.8471710528 radians. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

In the general case, the structural components (bars and plates) are assumed to be made of deformable material allowing not
only a variation of the leg lengths4 but also a change of the platform/base geometry by an affine transformation. We also take the
option into account that the platform/base is made of a non-deformable material, which is indicated by the symbol ▬, restricting
affine transformations to Euclidean motions. Thus we end up with three possibilities (▴,▵,▬) for the platform/base, which results
in a total of nine interpretations illustrated in Fig. 3.

Remark 6. Note that we have distinguished the same nine interpretations in the already mentioned study [3] using intrinsic
metrics. In the paper at hand, we present the corresponding extrinsic metrics. These paired intrinsic and extrinsic metrics can be
used for quantifying the change in the shape of the manipulator implied by variations of the inner geometry, which contributes to
the topic of sensitivity analysis (e.g. [38,39]). ⋄

The combinatorial structure of the nine interpretations of Fig. 3 is taken into account by constructing extrinsic metrics, which rely
on the distance computation between corresponding structural components (bars or plates) outlined in Section 2. The constrained
optimization problems related to these extrinsic metrics are set up in Section 3. A geometric characterization of the singular points
of the constrained varieties is obtained in Section 4. The developed computational pipeline for computing the singularity distance
along a one-parametric motion of the manipulator is given in Section 5. In Section 6 we present a numerical example, and compare
the obtained singularity distances with existing approaches already pointed out in Sections 1.1 and 1.2 and discuss the results. We
conclude the paper in Section 7.

2. Extrinsic metric formulation

We begin by setting up the distance function between the geometric elements (line segments and triangles) which can be
associated with the structural components (bars and plates) of the manipulator.

According to [40], the squared distance between two oriented line-segments |𝑖𝑗 = (𝐤𝑖,𝐤𝑗 ) and |

′
𝑖𝑗 = (𝐤′𝑖 ,𝐤

′
𝑗 ) can be defined as

shown in (cf. Fig. 4 left):

𝑑
(

|𝑖𝑗 , |
′
𝑖𝑗

)2
= 1

3

[

‖𝐤𝑖 − 𝐤′𝑖‖
2 + ‖𝐤𝑗 − 𝐤′𝑗‖

2 + (𝐤𝑖 − 𝐤′𝑖)
𝑇 (𝐤𝑗 − 𝐤′𝑗 )

]

. (8)

4 Note that the legs are also considered as bars.
5
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Fig. 3. An illustration of the nine considered interpretations of 3-RPR manipulators arranged in a 3 × 3 matrix.

Fig. 4. (left) Similarity mapping between line-segments. (right) Affine mapping between triangles.

This distance metric equals the square root of the mean of squared distances of corresponding5 points over the entire line segment
(see also [41, Section 4.1]). One can extend this idea to compute the squared distance between two triangles ▴𝑖𝑗𝑘 = (𝐤𝑖,𝐤𝑗 ,𝐤𝑘) and
▴′
𝑖𝑗𝑘 = (𝐤′𝑖 ,𝐤

′
𝑗 ,𝐤

′
𝑘) with 𝑖 < 𝑗 < 𝑘 (cf. Fig. 4 right) which yields (see Appendix A for the derivation)

𝑑(▴𝑖𝑗𝑘,▴′
𝑖𝑗𝑘)

2 = 1
6

[

∑

𝑥=𝑖,𝑗,𝑘
‖𝐤𝑥 − 𝐤′𝑥‖

2 + (𝐤𝑖 − 𝐤′𝑖)
𝑇 (𝐤𝑘 − 𝐤′𝑘) + (𝐤𝑖 − 𝐤′𝑖)

𝑇 (𝐤𝑗 − 𝐤′𝑗 ) + (𝐤𝑘 − 𝐤′𝑘)
𝑇 (𝐤𝑗 − 𝐤′𝑗 )

]

, (9)

where the index set {𝑖, 𝑗, 𝑘} equals either {1, 2, 3} or {4, 5, 6}. Therefore Eq. (9) equals the integral of the squared distance of
corresponding6 points over the triangle, divided by its area.

By using Eqs. (8) and (9) the squared extrinsic distance functions 𝐷◦
⋆(𝐊,𝐊

′)2 with ◦, ⋆ ∈ {▴,▵,▬} can be defined as the sum of
the squared distances between corresponding deformable structural elements7 divided by the number of summands, which yields
the following expressions:

𝐷▬

▬
(𝐊,𝐊′)2 = 1

3
∑

(𝑖,𝑗)∈𝐼1

𝑑
(

|𝑖𝑗 , |
′
𝑖𝑗

)2
, (10)

5 The correspondence is given by the associated similarity transformation between |𝑖𝑗 and |

′
𝑖𝑗 .

6 The correspondence is given by the associated affine transformation between ▴𝑖𝑗𝑘 and ▴′
𝑖𝑗𝑘.

7

6

We restrict to deformable structural components to keep the analogy to the corresponding intrinsic metrics mentioned in Remark 6.
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T

R
e
c
r
t

3

3

r

𝐷▴
▬
(𝐊,𝐊′)2 = 1

4

[

∑

(𝑖,𝑗)∈𝐼1

𝑑
(

|𝑖𝑗 , |
′
𝑖𝑗

)2
+ 𝑑(▴456,▴

′
456)

2

]

, (11)

𝐷▵
▬
(𝐊,𝐊′)2 = 1

6
∑

(𝑖,𝑗)∈𝐼2

𝑑
(

|𝑖𝑗 , |
′
𝑖𝑗

)2
, (12)

𝐷▬

▴(𝐊,𝐊
′)2 = 1

4

[

∑

(𝑖,𝑗)∈𝐼1

𝑑
(

|𝑖𝑗 , |
′
𝑖𝑗

)2
+ 𝑑(▴123,▴

′
123)

2

]

, (13)

𝐷▬

▵(𝐊,𝐊
′)2 = 1

6
∑

(𝑖,𝑗)∈𝐼3

𝑑
(

|𝑖𝑗 , |
′
𝑖𝑗

)2
, (14)

𝐷▴
▴(𝐊,𝐊

′)2 = 1
5

[

∑

(𝑖,𝑗)∈𝐼1

𝑑
(

|𝑖𝑗 , |
′
𝑖𝑗

)2
+ 𝑑(▴123,▴

′
123)

2 + 𝑑(▴456,▴
′
456)

2

]

, (15)

𝐷▵
▴(𝐊,𝐊

′)2 = 1
7

[

∑

(𝑖,𝑗)∈𝐼2

𝑑
(

|𝑖𝑗 , |
′
𝑖𝑗

)2
+ 𝑑(▴123,▴

′
123)

2

]

, (16)

𝐷▴
▵(𝐊,𝐊

′)2 = 1
7

[

∑

(𝑖,𝑗)∈𝐼3

𝑑
(

|𝑖𝑗 , |
′
𝑖𝑗

)2
+ 𝑑(▴456,▴

′
456)

2

]

, (17)

𝐷▵
▵(𝐊,𝐊

′)2 = 1
9

∑

(𝑖,𝑗)∈𝐼4

𝑑
(

|𝑖𝑗 , |
′
𝑖𝑗

)2
, (18)

with

𝐼1 = {(1, 4), (2, 5), (3, 6)}, (19)

𝐼2 = {(1, 4), (2, 5), (3, 6), (4, 5), (4, 6), (5, 6)}, (20)

𝐼3 = {(1, 4), (2, 5), (3, 6), (1, 2), (2, 3), (1, 3)}, (21)

𝐼4 = {(1, 2), (2, 3), (1, 3), (1, 4), (2, 5), (3, 6), (4, 5), (5, 6), (4, 6)}. (22)

herefore, the extrinsic singularity distance has the same unit as used for the coordinates of the 3-RPR configuration 𝐊.

emark 7. According to [42] a possible physical interpretation of the presented distance measures can be given in terms of
quivalent strain energy stored in zero-length springs. Following this idea, one can think of a zero-length spring attached to a
orresponding point pair of each undeformed and deformed bar/plate those squared distance equals 𝑑

(

|𝑖𝑗 , |′𝑖𝑗
)2

and 𝑑(▴𝑖𝑗𝑘,▴′
𝑖𝑗𝑘)

2,
espectively. Then the squared distance functions 𝐷◦

⋆(𝐊,𝐊
′)2 with ◦, ⋆ ∈ {▴,▵,▬} are proportional to the strain energy stored in

he involved springs. ⋄

. The constrained optimization problem for computing the singularity distance

.1. Closest configuration on the singularity variety

In the following, we set up the optimization problems for computing the closest singularity on the singularity variety 𝑉 = 0 with
espect to the nine extrinsic metrics presented in Section 2.

• 𝐷▬
▬
(𝐊,𝐊′): In this case, the transformations of the platform and the base are both restricted to the Euclidean motion group

SE(2). As the so-called point-based representation of SE(2) has the best computational performance according to [43], we use
it for our calculations. The coordinates of 𝐤′𝑖 can be given in dependence of 𝐤′𝑖−1 and 𝐤′𝑖−2 for 𝑖 = 3, 6 by

(

𝑐3
𝑑3

)

=
⎛

⎜

⎜

⎝

(𝑐2−𝑐1)𝑥3+(𝑑1−𝑑2)𝑦3+𝑐1𝑥2
𝑥2

(𝑑2−𝑑1)𝑥3+(𝑐2−𝑐1)𝑦3+𝑑1𝑥2
𝑥2

⎞

⎟

⎟

⎠

, (23)

(

𝑐6
𝑑6

)

=
⎛

⎜

⎜

⎝

(𝑐5−𝑐4)𝑥6+(𝑑4−𝑑5)𝑦6+𝑐4𝑥5
𝑥5

(𝑑5−𝑑4)𝑥6+(𝑐5−𝑐4)𝑦6+𝑑4𝑥5
𝑥5

⎞

⎟

⎟

⎠

(24)

under the side condition that the distance between 𝐤′𝑖−1 and 𝐤′𝑖−2 does not change, which is expressed by the conditions 𝐸𝐵 = 0
and 𝐸𝑃 = 0 with

𝐸𝐵 = ‖𝐤′2 − 𝐤′1‖
2 − ‖𝐤2 − 𝐤1‖2, (25)

′ ′ 2 2
7

𝐸𝑃 = ‖𝐤5 − 𝐤4‖ − ‖𝐩5 − 𝐩4‖ . (26)
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v

Table 1
Summary of the Lagrange formulations of the constrained optimization problems of Sections 3.1 and 3.2.
Extrinsic metric Unknowns in the Lagrangian # Unknowns

𝐷▬
▬
(𝐊,𝐊′) 𝑐1 , 𝑑1 , 𝑐2 , 𝑑2 , 𝑐4 , 𝑑4 , 𝑐5 , 𝑑5 , 𝜆, 𝜅, 𝜇 11

𝐷◦
▬
(𝐊,𝐊′) with ◦ ∈ {▴,▵} 𝑐1 , 𝑑1 , 𝑐2 , 𝑑2 , 𝑐4 , 𝑑4 , 𝑐5 , 𝑑5 , 𝑐6 , 𝑑6 , 𝜆, 𝜇 12

𝐷▬
⋆ (𝐊,𝐊

′) with ⋆ ∈ {▴,▵} 𝑐1 , 𝑑1 , 𝑐2 , 𝑑2 , 𝑐3 , 𝑑3 , 𝑐4 , 𝑑4 , 𝑐5 , 𝑑5 , 𝜆, 𝜅 12
𝐷◦
⋆(𝐊,𝐊

′) with ◦, ⋆ ∈ {▴,▵} 𝑐1 , 𝑑1 , 𝑐2 , 𝑑2 , 𝑐3 , 𝑑3 , 𝑐4 , 𝑑4 , 𝑐5 , 𝑑5 , 𝑐6 , 𝑑6 , 𝜆 13

Note that due to Lemma 2 given in Appendix B we can always assume without loss of generality that there exists labeling of
our 3-RPR manipulator such that 𝑥2 ≠ 0 and 𝑥5 ≠ 0 hold, which is needed for the properness of Eqs. (23) and (24).
As a consequence, the Lagrange function 𝐿 reads as

𝐿 = 𝐷▬

▬
(𝐊,𝐊′)2 + 𝜆𝑉 + 𝜇𝐸𝐵 + 𝜅𝐸𝑃 , (27)

where 𝜆, 𝜇 and 𝜅 are the Lagrange multipliers.
• 𝐷◦

▬
(𝐊,𝐊′) with ◦ ∈ {▴,▵}: In these two cases only the base is transformed by a Euclidean displacement, thus the Lagrange

function reads as:

𝐿 = 𝐷◦
▬
(𝐊,𝐊′)2 + 𝜆𝑉 + 𝜇𝐸𝐵 . (28)

• 𝐷▬
⋆(𝐊,𝐊

′) with ⋆ ∈ {▴,▵}: In these two cases, only the platform is transformed by a Euclidean displacement, thus the Lagrange
function reads as:

𝐿 = 𝐷▬

⋆(𝐊,𝐊
′)2 + 𝜆𝑉 + 𝜅𝐸𝑃 . (29)

• 𝐷◦
⋆(𝐊,𝐊

′) with ◦, ⋆ ∈ {▴,▵}: In these four cases the platform, as well as the base, are transformed affinely thus the Lagrangian
reads as:

𝐿 = 𝐷◦
⋆(𝐊,𝐊

′)2 + 𝜆𝑉 . (30)

The unknowns appearing in the given Lagrange functions 𝐿 are summarized in Table 1.
As already mentioned in Section 1.4, we get additional singular configurations if the platform/base is interpreted as a triangular

bar structure. The optimization problem for computing the closest configurations with collinear platform/base anchor points is
discussed in the next subsection.

3.2. Closest configuration on the collinearity variety

If the base or platform is interpreted as a triangular bar-structure (▵) the additional singularities can be characterized algebraically
by the condition 𝐶𝐵 = 0 and 𝐶𝑃 = 0, respectively, with

C𝐵 = det
⎛

⎜

⎜

⎝

1 1 1
𝑐1 𝑐2 𝑐3
𝑑1 𝑑2 𝑑3

⎞

⎟

⎟

⎠

, C𝑃 = det
⎛

⎜

⎜

⎝

1 1 1
𝑐4 𝑐5 𝑐6
𝑑4 𝑑5 𝑑6

⎞

⎟

⎟

⎠

. (31)

Note that the so-called collinearity varieties 𝐶𝐵 = 0 and 𝐶𝑃 = 0 are quadratic in 𝑐1,… , 𝑐6, 𝑑1,… , 𝑑6.
In the following, we set up the optimization problems for computing the closest singularity on the collinearity variety 𝐶𝐵 = 0

and 𝐶𝑃 = 0, respectively.

• 𝐷▵
▬
(𝐊,𝐊′): In this case, only the platform can deform, thus the Lagrange function with collinearity condition 𝐶𝑃 = 0 reads as:

𝐿 = 𝐷▵
▬
(𝐊,𝐊′)2 + 𝜆𝐶𝑃 + 𝜇𝐸𝐵 . (32)

• 𝐷▬
▵(𝐊,𝐊

′): In this case, only the base can deform, thus the Lagrange function with collinearity condition 𝐶𝐵 = 0 reads as:

𝐿 = 𝐷▬

▵(𝐊,𝐊
′)2 + 𝜆𝐶𝐵 + 𝜅𝐸𝑃 . (33)

• 𝐷▵
⋆(𝐊,𝐊

′) with ⋆ ∈ {▴,▵}: In these two cases the platform, as well as the base, are transformed affinely thus the Lagrangian
reads as:

𝐿 = 𝐷▵
⋆(𝐊,𝐊

′)2 + 𝜆𝐶𝑃 . (34)

• 𝐷◦
▵(𝐊,𝐊

′) with ◦ ∈ {▴,▵}: In these two cases the platform, as well as the base, are transformed affinely thus the Lagrangian
reads as:

𝐿 = 𝐷◦
▵(𝐊,𝐊

′)2 + 𝜆𝐶𝐵 . (35)

The number of unknowns for the Lagrange optimization problems for the mentioned above four cases either with collinearity
8

ariety 𝐶𝐵 = 0 and 𝐶𝑃 = 0 is the same as summarized in Table 1.
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Table 2
Coordinates of the closest singular configuration for counter-example 1.
𝐊′ 𝐷▵

▬
(𝐊,𝐊′) = 0.5735791 𝐷▵

▴(𝐊,𝐊
′) = 0.5195729 𝐷▵

▵(𝐊,𝐊
′) = 0.46807561

𝐤′1 (0.1302373,−0.2775441) (0.3921934,−0.1187466) (0.1960967,−0.0593733)
𝐤′2 (11.114982, 0.3015644) (11.059373,−0.0179767) (11.029686,−0.0089883)
𝐤′3 (4.7547798, 6.9759796) (4.5484332, 7.1367234) (4.7742166, 7.0683617)
𝐤′4 (1.5271323, 1.8504855) (1.5195164, 1.7968665) (1.5195164, 1.7968665)
𝐤′5 (2.3464552, 4.4803586) (2.3515667, 4.5449419) (2.3515667, 4.5449419)
𝐤′6 (1.6264123, 2.1691557) (1.6289168, 2.1581914) (1.6289168, 2.1581914)

Theorem 1. The platform anchor points of the closest configuration 𝐊′ on the collinearity variety 𝐶𝑃 = 0 with respect to the extrinsic
etric 𝐷▵

⋆(𝐊,𝐊
′) with ⋆ ∈ {▴,▵} are the pedal points of 𝐤4,𝐤5,𝐤6 on their line of regression (cf. Fig. 5(b) and 5(c)). Moreover, the distance

▵
⋆(𝐊,𝐊

′) only depends on the geometry of the manipulator; i.e. it is pose independent.

roof. The partial derivatives of Eq. (34) with respect to the twelve coordinates 𝑐𝑖, 𝑑𝑖 (𝑖 = 1,…6) and the Lagrange multiplier 𝜆
results in the following ideal of thirteen equations:

1 ∶= ⟨𝑔1,… , 𝑔13⟩ ⊆ K[𝑐𝑖, 𝑑𝑖, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝜆] for 𝑖 = 1,… , 6. (36)

n the other hand, the pedal points of 𝐤4,𝐤5,𝐤6 on the line of regression can be obtained as a solution of the following optimization
roblem:

𝐿 = 1
3

3
∑

𝑖=1
‖𝐤′𝑖 − 𝐤𝑖‖2 + 𝜆1𝐶𝑃 for 𝑖 = 4, 5, 6. (37)

The partial derivatives of Eq. (37) with respect to the six unknowns 𝑐𝑖, 𝑑𝑖 (𝑖 = 4, 5, 6) including the multiplier 𝜆1 results in the
following ideal:

2 ∶= ⟨𝑓1,… , 𝑓7⟩ ⊆ K[𝑐𝑖, 𝑑𝑖, 𝑥4, 𝑥5, 𝑥6, 𝑦4, 𝑦5, 𝑦6, 𝜆1] for 𝑖 = 4, 5, 6. (38)

n order to show that the critical points of both Lagrange formulations are identical, one can eliminate 𝑐𝑖, 𝑑𝑖, 𝜆 for 𝑖 = 1, 2, 3 from
the ideal 1 and 𝜆1 from 2 i.e.

3 ∶= 1 ∩K[𝑐𝑖, 𝑑𝑖, 𝑥𝑖, 𝑦𝑖, 𝑥2, 𝑥3, 𝑦3], 4 ∶= 2 ∩K[𝑐𝑖, 𝑑𝑖, 𝑥𝑖, 𝑦𝑖] for 𝑖 = 4, 5, 6. (39)

y the usage of the software Maple, it can be verified that 3 is contained in 4 and vice versa.
To prove that the distance 𝐷▵

⋆(𝐊,𝐊
′) is pose independent, we parameterize the pose determined by 𝐑 and 𝐭 in Eq. (1) by

𝐑 ∶= 1
𝑒20 + 𝑒

2
1

(

𝑒20 − 𝑒
2
1 −2𝑒0𝑒1

2𝑒0𝑒1 𝑒20 − 𝑒
2
1

)

, 𝐭 ∶=
(

𝛼
𝛽

)

. (40)

Using this parametrization we take again the partial derivatives of Eq. (34) with respect to the twelve coordinates 𝑐𝑖, 𝑑𝑖 (𝑖 = 1,…6)
and the Lagrange multiplier 𝜆. We solve the resulting system of 13 equations for 𝜆, 𝑐𝑖, 𝑑𝑖 (𝑖 = 1,…6) by using Gröbner basis package
mplemented in Maple and obtain two solution sets. Substituting each of the two obtained solutions for 𝑐𝑖, 𝑑𝑖 (𝑖 = 1,… , 6) back into
he extrinsic distance functions given by Eqs. (16) and (18), respectively, shows that the resulting expression only depends on the
eometry parameters 𝑥5, 𝑥6, 𝑦6. For the explicit expressions of 𝐷◦

▵(𝐊,𝐊
′) with ◦ ∈ {▴,▵} we refer to Appendix C.

The Maple files used for proving Theorem 1 can be downloaded from [44]. □

Clearly, this theorem also holds by exchanging the platform and the base which yields:

heorem 2. The base anchor points of the closest configuration 𝐊′ on the collinearity variety 𝐶𝐵 = 0 with respect to the extrinsic metric
◦
▵(𝐊,𝐊

′) with ◦ ∈ {▴,▵} are the pedal points of 𝐤1,𝐤2,𝐤3 on their line of regression. Moreover, the distance 𝐷◦
▵(𝐊,𝐊

′) only depends on
he geometry of the manipulator; i.e. it is pose independent.

Note that the first sentence of Theorem 1 (resp. Theorem 2) does not hold for the metric 𝐷▵
▬
(𝐊,𝐊′) (resp. 𝐷▬

▵(𝐊,𝐊
′)), which is

demonstrated by the following counter-example.

Counter example 1. We use as input for our numerical example the one discussed in [32, Section 3] for 𝜙 = 𝜋
2 . For this configuration,

e solved the optimization problems stated in Eqs. (32) and (34). The configurations that correspond to the global minima are displayed in
ig. 5 and their coordinates are given in Table 2.

Also, the second sentence of Theorem 1 (resp. Theorem 2) does not hold for 𝐷▵
▬
(𝐊,𝐊′) (resp. 𝐷▬

▵(𝐊,𝐊
′)), which can be seen from

the example (cf. Fig. 11(a,d)) discussed in Section 6.
9
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Fig. 5. The line of regression is indicated by a dashed line and its equation is given by 0.9570920262𝑥−0.2897841482𝑦−0.9336136247 = 0. From the visual point
of view the platform anchor points in (a) are very similar to the ones of (b) and (c), which are identical due to Theorem 1. From Table 2 it can be seen that
the coordinates of 𝐤′4 ,𝐤

′
5 ,𝐤

′
6 of (a) differ from those of (b) and (c) and that they are not fulfilling the equation of the line of regression.

Fig. 6. Schematic sketch of the geometric characterization of singular points of the singularity variety 𝑉 = 0. Base and platform anchor points are indicated in
orange and red, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4. Singular points of the constraint varieties

As already mentioned the Lagrangian formulations given in Eqs. (27)–(30) and Eqs. (32)–(35) do not take the singular points
of the constraint varieties into account. Therefore we have to take care of them separately, which is done in the following two
subsections:

4.1. Singular points of the singularity variety

We are interested in giving a geometric characterization of the singular points of the singularity variety 𝑉 = 0. As a preparatory
work towards this goal, we prove the following lemma:

Lemma 1. The set of singular points of the singularity variety 𝑉 = 0 remains invariant under affine motions.

Proof. We apply a regular affine transformation to the configuration space R12 by

𝐤′𝑖 ↦ 𝐀𝐤′𝑖 + 𝐚 for 𝑖 = 1,… , 6 (41)

where 𝐀 is a regular 2 × 2 matrix and 𝐚 ∈ R2. This transformation induces a linear automorphism of the singularity variety 𝑉 = 0,
as det 𝐕 is mapped to (det 𝐀)2 det 𝐕. As det 𝐀 ≠ 0 holds, this already shows the linear automorphism, which maps regular points to
regular ones and singular ones to singular ones. □

By using Lemma 1we can prove the following theorem:

Theorem 3. Singular points of the singularity variety 𝑉 = 0 correspond to one of the following configurations:

1. Three legs of the manipulator are collinear (see Fig. 6(a)).
2. Two legs are collinear and one leg degenerates to a point (see Fig. 6(b)).
3. Two legs degenerate to points (see Fig. 6(c)).
4. One leg degenerates to a point and the carrier lines of the remaining two legs pass through that point (see Fig. 6(d)).
10
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Proof. From Eq. (6) it can be seen that 𝑉 only depends on the free coordinates 𝑐𝑖, 𝑑𝑖 (𝑖 = 1,… , 6). Partial derivatives of Eq. (6)
with respect to these twelve unknowns plus the singularity polynomial 𝑉 results in an overdetermined system of thirteen equations
spanning the following ideal:

 ∶= ⟨𝑔1,… , 𝑔13⟩ ⊆ K[𝑐𝑖, 𝑑𝑖] 𝑖 = 1,… , 6. (42)

Due to Lemma 1 we can set 𝑐1 = 𝑑1 = 𝑑2 = 0 in 𝑔𝑖 of Eq. (42) for 𝑖 = 1,… , 13. This simplification allows us to solve the resulting
overdetermined system in nine unknowns by using the Gröbner basis method implemented in Maple. It can easily be checked that
each of the obtained 30 solution sets falls into one of the given four geometric characterizations, which shows their necessity. The
Maple file for the computation of these 30 solution sets can be downloaded from [44].

The proof of sufficiency is straightforward by checking that the 13 equations of Eq. (42) are fulfilled under consideration of the
listed four geometric conditions. □

Remark 8. Note that case 4 of Theorem 3 also shows that singular points of the singularity variety are not characterized by rk(𝐕)=1
with 𝐕 of Eq. (6). Therefore this also falsifies the conjecture of [45, End of Sec. IV] that singularities of the singularity variety yield
higher-order singularities. ⋄

If we restrict the base (resp. platform) to be transformed by Euclidean motions, then our set of singular configurations is only a
subset 𝑉𝐵 = 0 (resp. 𝑉𝑃 = 0) of 𝑉 = 0.

Let us first assume that the base is transformed by Euclidean motions. Then the variety 𝑉𝐵 = 0 can be obtained as the intersection
of the four hypersurfaces 𝑉 = 0, 𝐸𝐵 = 0, 𝐹1 = 0, 𝐹2 = 0 with

𝐹1 = (𝑐2 − 𝑐1)𝑥3 + (𝑑1 − 𝑑2)𝑦3 + (𝑐1 − 𝑐3)𝑥2, 𝐹2 = (𝑑2 − 𝑑1)𝑥3 + (𝑐2 − 𝑐1)𝑦3 + (𝑑1 − 𝑑3)𝑥2, (43)

where the latter two conditions are implied by Eq. (23).

Theorem 4. The set of singular points of the singularity variety 𝑉𝐵 = 0 remains invariant under Euclidean motions. Moreover, these points
are also characterized by the four cases given in Theorem 3.

Proof. The proof of the first part of the theorem can be done similarly to Lemma 1, but by restricting to Euclidean motions; i.e.

𝐤′𝑖 ↦ 𝐑𝐤′𝑖 + 𝐭 with 𝐑 ∶=
(

cos𝜙 − sin𝜙
sin𝜙 cos𝜙

)

. (44)

We know already from Lemma 1 that det 𝐕 = 0 remains invariant under this action. It can easily be seen that the same holds true
for 𝐸𝐵 = 0. The remaining two hypersurfaces are transformed as follows:

𝐹1 ↦ cos𝜙𝐹1 − sin𝜙𝐹2, 𝐹2 ↦ sin𝜙𝐹1 + cos𝜙𝐹2. (45)

This already shows that Euclidean motions imply a linear automorphism of 𝑉𝐵 = 0.
We proceed with the proof of the second part of the theorem. A singular point of 𝑉𝐵 = 0 is either a singular point of one of the

four hypersurfaces 𝑉 = 0, 𝐸𝐵 = 0, 𝐹1 = 0, 𝐹2 = 0 or it is a point, where the four tangent hyperplanes to these four hypersurfaces
are linearly dependent. Algebraically this can be expressed by the set of equations resulting from the partial differentiation of

𝜆0𝑉 + 𝜆1𝐸𝐵 + 𝜆2𝐹1 + 𝜆3𝐹2 (46)

with respect to the 19 unknowns

𝑐1,… , 𝑐6, 𝑑1,… , 𝑑6, 𝑥2, 𝑥3, 𝑦3, 𝜆0,… , 𝜆3. (47)

Due to the first part of the proof we can set 𝑐1 = 𝑑1 = 𝑑2 = 0 in order to simplify the set of 19 equations, which allows us to solve
them again by using Gröbner basis method implemented in Maple. The corresponding Maple file, which results in 48 solution sets,
can be downloaded from [44].

Out of the obtained 48 solution sets, there are 24 sets with 𝑥2 = 0 contradicting our assumption 𝑥2 ≠ 0 implied by Lemma 2.
There are 10 sets of trivial solutions as 𝜆0 = 𝜆1 = 𝜆2 = 𝜆3 = 0 holds. For the remaining 14 solution sets 𝑥2 ≠ 0 holds true and
𝜆1 = 𝜆2 = 𝜆3 = 0. The latter already shows that these 14 solution sets correspond to singular points of 𝑉 = 0. Note that the solution
sets which correspond to case 1 of Theorem 3 also include a condition on the design parameters (𝑥2, 𝑥3, 𝑦3); namely 𝑦3 = 0 rendering
the base collinear. □

Clearly, this theorem also holds by exchanging the platform and the base which yields:

Theorem 5. The set of singular points of the singularity variety 𝑉𝑃 = 0 remains invariant under Euclidean motions. Moreover, these points
are also characterized by the four cases given in Theorem 3.

If we restrict both base and platform to be transformed by Euclidean motions, then our set 𝑉𝐵𝑃 = 0 of singular configurations
are obtained by intersecting the varieties 𝑉𝐵 = 0 and 𝑉𝑃 = 0. Note that the variety 𝑉𝑃 = 0 is also obtained as the intersection of the
four hypersurfaces 𝑉 = 0, 𝐸𝑃 = 0, 𝐹3 = 0, 𝐹4 = 0 with

𝐹3 = (𝑐5 − 𝑐4)𝑥6 + (𝑑4 − 𝑑5)𝑦6 + (𝑐4 − 𝑐6)𝑥5, 𝐹4 = (𝑑5 − 𝑑4)𝑥6 + (𝑐5 − 𝑐4)𝑦6 + (𝑑4 − 𝑑6)𝑥5 (48)

where the latter two conditions are implied by Eq. (24).
11
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Theorem 6. The set of singular points of the singularity variety 𝑉𝐵𝑃 = 0 remains invariant under Euclidean motions. Moreover, these
oints are also characterized by the four cases given in Theorem 3.

roof. The first statement follows directly from the fact that Euclidean motions imply a linear automorphism of 𝑉𝐵𝑃 = 0, which
esults from the proofs of Theorems 4 and 5.

Therefore, we can focus on proving the second part of the theorem. A singular point of the singularity variety 𝑉𝐵𝑃 = 0 is either
I) a singular point of 𝑉𝐵 = 0 or 𝑉𝑃 = 0 or (II) it is a point, where the seven tangent hyperplanes to the seven hypersurfaces

𝑉 = 0, 𝐸𝐵 = 0, 𝐸𝑃 = 0, 𝐹1 = 0, 𝐹2 = 0, 𝐹3 = 0, 𝐹4 = 0, (49)

re linearly dependent. Algebraically this can be expressed by the set of equations resulting from the partial differentiation of

𝜆0𝑉 + 𝜆1𝐸𝐵 + 𝜆2𝐹1 + 𝜆3𝐹2 + 𝜆4𝐸𝑃 + 𝜆5𝐹3 + 𝜆6𝐹4 (50)

ith respect to the 25 unknowns

𝑐1,… , 𝑐6, 𝑑1,… , 𝑑6, 𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑦3, 𝑦6, 𝜆0,… , 𝜆6. (51)

hey form the following ideal:

⟨𝑔1,… , 𝑔25⟩ ⊆ K[𝑐𝑖, 𝑑𝑖, 𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑦3, 𝑦6, 𝜆0,… , 𝜆6] 𝑖 = 1,… , 6. (52)

ue to the first sentence of the theorem, we can set 𝑐1 = 𝑑1 = 𝑑2 = 0. Moreover, due to Lemma 2 given in Appendix B we can
ssume without loss of generality that 𝑥2𝑥5 ≠ 0 holds. Thus by assuming a suitable scale unit we can set 𝑥2𝑥5 = 1. By adding this
quation to the ideal of Eq. (52), we end up with:

 ∶= ⟨𝑔1,… , 𝑔26⟩ ⊆ K[𝑐2,… , 𝑐6, 𝑑3,… , 𝑑6, 𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑦3, 𝑦6, 𝜆0,… , 𝜆6] (53)

n the following, we prove that no singular points of type (II) exist. By setting 𝜆𝑗 = 1 for 𝑗 ∈ {1,… , 6} we obtain the ideal

𝑗 ∶= ⟨𝑔1,… , 𝑔26⟩ ⊆ K[𝑐2,… , 𝑐6, 𝑑3,… , 𝑑6, 𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑦3, 𝑦6, 𝜆0,… 𝜆𝑗−1, 𝜆𝑗+1,… , 𝜆6] (54)

he corresponding basis with respect to graded reverse lexicographic order is denoted by 𝑗 . According to [46], Hilbert’s
ullstellensatz implies that the variety of 𝑗 is empty if and only if 𝑗 = {1}.

It can be verified by using Maple that 𝑗 = {1} holds true. The used Maple file can be downloaded from [44].
Therefore, the 25 equations 𝑔𝑖 of Eq. (52), which are homogeneous with respect to 𝜆0,… , 𝜆6, can only have a solution for

𝜆0 ∶ 𝜆1 ∶ … ∶ 𝜆6) = (1 ∶ 0 ∶ … ∶ 0). Furthermore, they belong to type (I).
Clearly, the design parameters 𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑦3, 𝑦6 have to fulfill certain conditions such that the four cases given in Theorem 3

re feasible. Case 1 can only occur when the base and platform are both linear; case 2 when the base triangle and platform triangle
ave an equal corresponding height; case 3 when they have an equal corresponding side and case 4 when they have an equal
orresponding angle. □

.1.1. Parametrizing the set of singular points of the singularity variety
To include the set of singular points from the singularity variety in our computation of the singularity distance, we parameterize

t. We restrict ourselves to the singular points corresponding to case 1 of Theorem 3. In practice, no leg can have zero length;
hus, cases 2–4 are not of interest. As case 1 of Theorem 3 imposes more restrictive conditions than the collinearity conditions in
ection 4.2, the following relations must hold:

𝐷▵
⋆(𝐊,𝐊

′) ≤ 𝐷▵
⋆(𝐊,𝐊

′′), 𝐷◦
▵(𝐊,𝐊

′) ≤ 𝐷◦
▵(𝐊,𝐊

′′) with ⋆, ◦ ∈ {▴,▵,▬} (55)

here 𝐊′ is the global minimizer of Theorems 1 and 2, respectively, and 𝐊′′ denotes the closest singular point belonging to case 1
f Theorem 3.

Therefore one only has to compute 𝐊′′ for the metrics 𝐷◦
⋆(𝐊,𝐊

′′) with ◦, ⋆ ∈ {▴,▬}, which is done next:

• 𝐷▴
▴(𝐊,𝐊

′′): The point 𝐤′′1 is parameterized by its coordinates (𝑎, 𝑏)𝑇 and the remaining points by:

𝐤′′𝑖+1 = 𝐤′′1 + 𝛿𝑖

(

𝑒20 − 𝑒
2
1

2𝑒0𝑒1

)

for 𝑖 = 1,… , 5. (56)

Now we minimize 𝐷▴
▴(𝐊,𝐊

′′) under the normalization condition 𝑁 = 0 with 𝑁 ∶= 𝑒20 + 𝑒
2
1 − 1, which results in the following

Lagrangian formulation:

𝐿 = 𝐷▴
▴(𝐊,𝐊

′′)2 + 𝜆𝑁. (57)

• 𝐷▴
▬(𝐊,𝐊′′): Clearly, 𝐊′′ can only exist if the base points of the given manipulator are collinear. If this is the case the

parametrization can be done analogously to Eq. (56) with the sole difference that 𝛿1 and 𝛿2 are already known as they have
to equal 𝑥2 and 𝑥3, respectively.

▬ ′′
12

• 𝐷▴ (𝐊,𝐊 ): The same procedure can be applied as in the last case, just by swapping the roles of the platform and the base.
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Table 3
Summary of the Lagrange formulations of the optimization problems of Section 4.1.1.
Extrinsic metric Unknowns in the Lagrangian # Unknowns

𝐷▴
▴(𝐊,𝐊

′) 𝑎, 𝑏, 𝛿1 , 𝛿2 , 𝛿3 , 𝛿4 , 𝛿5 , 𝑒0 , 𝑒1 , 𝜆 10
𝐷▴

▬(𝐊,𝐊′), 𝐷▬
▴ (𝐊,𝐊′) 𝑎, 𝑏, 𝛿3 , 𝛿4 , 𝛿5 , 𝑒0 , 𝑒1 , 𝜆 8

𝐷▬
▬(𝐊,𝐊′) 𝑎, 𝑏, 𝛿3 , 𝑒0 , 𝑒1 , 𝜆 6

Fig. 7. Schematic sketch of the geometric characterization of singular points of the collinearity variety (a) 𝐶𝑃 = 0 (b) 𝐶𝐵 = 0. Base and platform anchor points
are indicated in orange and red, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

• 𝐷▬
▬(𝐊,𝐊′′): Now 𝐊′′ can only exist if the given base points are collinear as well as the platform points. If this is the case the

parametrization can be done as in Eq. (56) under consideration of 𝛿1 = 𝑥2, 𝛿2 = 𝑥3 with 𝛿4 = 𝛿3 ± 𝑥5 and 𝛿5 = 𝛿3 ± 𝑥6. Due to
± one has to run two optimization problems with six unknowns 𝑎, 𝑏, 𝛿3, 𝑒0, 𝑒1, 𝜆 and take the minimum over both.

4.2. Singular points of the collinearity variety

It can easily be verified by the reader that the following theorem, which is illustrated in Fig. 7, holds true:

Theorem 7. The set of singular points of the collinearity variety 𝐶𝐵 = 0 (resp. 𝐶𝑃 = 0) of the base (resp. platform) remains invariant
under affine motions. Moreover, these points are characterized by 𝐤′1 = 𝐤′2 = 𝐤′3 (resp. 𝐤′4 = 𝐤′5 = 𝐤′6).

As the condition that three points collapse to a single point is more restrictive than the condition that these three points are
collinear the following relation has to hold:

𝐷▵
⋆(𝐊,𝐊

′) ≤ 𝐷▵
⋆(𝐊,𝐊

′′) for ⋆ ∈ {▴,▵} (58)

where 𝐊′ is the global minimizer of Theorem 1 and 𝐊′′ denotes the closest singular point of the collinearity variety 𝐶𝑃 = 0. We
only have to take a closer look at the case of equality in Eq. (58). According to the geometric interpretation given in Theorem 1
the three points 𝐤′4,𝐤

′
5,𝐤

′
6 can only collapse into one point if they are already collinear which contradicts our assumption that the

given configuration is not singular. Therefore Eq. (58) can be sharpened as follows:

𝐷▵
⋆(𝐊,𝐊

′) < 𝐷▵
⋆(𝐊,𝐊

′′) for ⋆ ∈ {▴,▵} . (59)

Analogous considerations to the above case yield inequality

𝐷◦
▵(𝐊,𝐊

′) < 𝐷◦
▵(𝐊,𝐊

′′) for ◦ ∈ {▴,▵} , (60)

where 𝐊′ is the global minimizer of Theorem 2 and 𝐊′′ denotes the closest singular point of the collinearity variety 𝐶𝐵 = 0.
Due to the validity of the Eqs. (59) and (60), we can abstain from computing the configurations 𝐊′′ for the respective metrics.
If we restrict the base (resp. platform) to be transformed by Euclidean motions, then our set of collinear configurations is only

a subset �̃�𝑃 (resp. �̃�𝐵) of 𝐶𝑃 (resp. 𝐶𝐵). The singular points of these subsets have the same geometric characterization as given in
Theorem 7, which is proven next:

Theorem 8. The set of singular points of the collinearity variety �̃�𝑃 = 0 remains invariant under Euclidean motions. Moreover, these
points are characterized by 𝐤′4 = 𝐤′5 = 𝐤′6.

Proof. The first sentence of the theorem can be done similarly to the proof of Theorem 4.
Therefore, we can proceed with the second part.
A singular point of �̃�𝑃 = 0 is either a singular point of one of the four hypersurfaces 𝐶𝑃 = 0, 𝐸𝐵 = 0, 𝐹1 = 0, 𝐹2 = 0 or it is a

point, where the four tangent hyperplanes to these four hypersurfaces are linearly dependent. Algebraically this can be expressed
by the set of equations resulting from the partial differentiation of
13

𝜆0𝐶𝑃 + 𝜆1𝐸𝐵 + 𝜆2𝐹1 + 𝜆3𝐹2 (61)
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Table 4
Summary of the Lagrange formulations of the constrained optimization problems of Section 4.2.
Extrinsic metric Unknowns in the Lagrangian # Unknowns

𝐷▵
▬
(𝐊,𝐊′) 𝑐1 , 𝑑1 , 𝑐2 , 𝑑2 , 𝑐, 𝑑, 𝜇 7

𝐷▬
▵ (𝐊,𝐊

′) 𝑐, 𝑑, 𝑐4 , 𝑑4 , 𝑐5 , 𝑑5 , 𝜅 7

Fig. 8. Operational flowchart illustrating the computational pipeline.

with respect to the 19 unknowns listed in Eq. (47). Due to the first part of the proof we can set 𝑐1 = 𝑑1 = 𝑑2 = 0 in order to simplify
the set of 19 equations, which is solved by using Gröbner basis method implemented in Maple.

The corresponding Maple file, which results in 24 solution sets, can be downloaded from [44]. Out of the obtained 24 solution
sets, there are 16 solutions sets with 𝑥2 = 0, which contradicts Lemma 2. Moreover there are six trivial solution sets with
𝜆0 = 𝜆1 = 𝜆2 = 𝜆3 = 0 (and 𝑥2 ≠ 0). The remaining two solution sets correspond to singular points of 𝐶𝑃 = 0. □

Clearly, this theorem also holds by exchanging the platform and the base which yields:

Theorem 9. The set of singular points of the collinearity variety �̃�𝐵 = 0 remains invariant under Euclidean motions. Moreover, these
points are characterized by 𝐤′1 = 𝐤′2 = 𝐤′3.

If the base or platform is made of undeformable material we have to compute the closest singular points 𝐊′′, on the collinearity
varieties �̃�𝑃 = 0 and �̃�𝐵 = 0 of Theorems 8 and 9, which can be done by solving the optimization problems formulated in the
following two equations:

𝐿 = 𝐷▵
▬
(𝐊,𝐊′′)2 + 𝜇𝐸𝐵 , (62)

where the three platform anchor points of 𝐊′′ degenerate to a point 𝐤′′ ∶= (𝑐, 𝑑)𝑇 and with 𝐤′′3 according to Eq. (23);

𝐿 = 𝐷▬

▵(𝐊,𝐊
′′)2 + 𝜅𝐸𝑝, (63)

where the three base anchor points of 𝐊′′ degenerate to a point 𝐤′′ ∶= (𝑐, 𝑑)𝑇 and with 𝐤′′6 according to Eq. (24). The number of
unknowns for these two optimization problems is summarized in Table 4.

5. Computational procedure

In this section, we introduce a pipeline for computing the closest singular configuration along a one-parametric motion, which is
discretized into 𝑛 poses, as illustrated in Fig. 3. We employ a numerical algebraic geometry algorithm implemented in the freeware
Bertini to calculate generic finite solutions and enable user-defined homotopy. For each of the 𝑛 poses along the one-parametric
motion, we compute critical points using Paramotopy [37]. The practical reasons for utilizing the software Bertini are discussed
in [43, Section 1]. A detailed discussion of homotopy continuation algorithms and the functionality of the software is beyond the
scope of this paper; for that, we refer readers to [35,47].

The computations were performed in parallel using a total of 64 threads using AMD Ryzen 7 2700X, 3.7 GHz processor. The
computational procedure can be divided into four steps, which are discussed within the following subsections and are illustrated in
Fig. 8 of the operational flowchart.
14
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Table 5
Configuration settings used for the regeneration algorithm in the ab initio phase.
Configuration settings Value Configuration settings Value

TRACKTolBEFOREEG 1e−8 TRACKTolDURINGEG 1e−8
SliceTolBeforeEG 1e−8 SliceTolDuringEG 1e−8
SECURITYLEVEL 1 UseRegeneration 1

Table 6
Summary of generic finite solutions from the ab-initio phase for the Lagrangians formulated in Section 3.1.
Extrinsic metric # Finite solutions

over C (Bertini)
Degree of univariate
polynomial (Maple)

𝐷▬
▬
(𝐊,𝐊′) 88 88

𝐷◦
▬
(𝐊,𝐊′) with ◦ ∈ {▴,▵} 80 80

𝐷▬
⋆ (𝐊,𝐊

′) with ⋆ ∈ {▴,▵} 80 80
𝐷◦
⋆(𝐊,𝐊

′) with ◦, ⋆ ∈ {▴,▵} 50 50

5.1. Step 1: Ab-initio phase

We start with a generic framework by picking randomly all nine remaining coordinates (besides 𝑥1 = 𝑦1 = 𝑦2 = 0) with respect
to the fixed frame from the set of complex numbers C. Therefore, we denote the resulting vectors of the anchor points with respect
to the fixed frame by 𝐤C𝑖 for 𝑖 = 1,… , 6 and consequently the complex configuration by 𝐊C, which is called source configuration. For
his input, we want to find the critical points over C, for each of the Lagrange optimization problems formulated in Section 3.1,
ection 3.2, and Section 4.1.1 and Section 4.2. The corresponding unknowns in 𝐿 for the optimization problems are summarized in
able 1, Table 3, and Table 4, respectively. As already mentioned the number of unknowns for the optimization problems presented

n Section 3.2 is the same as summarized in Table 1.
Note that the partial derivatives of 𝐿 with the listed unknowns always result in the square system of non-homogeneous

olynomial equations. The critical points obtained from the ab-initio phase are referred to as solutions to the source configuration.
As Bertini computes solutions to the system of polynomial equations with numerical approximations up to 16 digits (default), it

s not possible to determine the exact root count beforehand without tracking all the paths. For the optimization problems presented
n Sections Section 3.1, 3.2, 4.1.1, and 4.2, we must identify the global minimizers since they correspond to the closest singular
onfiguration. Therefore, it is necessary to track all the finite solutions over C without encountering any numerical errors (such as
ath failures) in the ab-initio phase.

The input file needed for Bertini to compute the solutions of the source configuration is pre-processed in Maple. It should
e noted that the Bertini package offers various configuration settings in the input file to enable solution tracking without
ncountering path failures. Currently, there is no artificial intelligence module implemented in Bertini1.6v to suggest the

necessary configuration settings for a user-provided input file to ensure solution tracking without numerical errors. Therefore, these
settings must be manually fine-tuned to suit the specific problem. For a detailed understanding of configuration settings, please refer
to [36, p. 301–321].

Firstly, we need to check whether the solution sets of the presented optimization problems contain any higher-dimensional
components. This can be accomplished in Bertini by setting Tracktype:1 in the configuration settings of the input files
while keeping the remaining settings as default. This analysis reveals that no higher-dimensional components exist for the source
configuration.

As a result, we can proceed with the computation of the isolated solutions using the regeneration algorithm [48], which is
implemented in Bertini1.6v. It is worth noting that the regeneration algorithm is not implemented in HC.jl. This algorithm
finds solutions to the systems by sequentially solving equation-by-equation but has the following limitation.

Limitation 1. According to [36, p. 93] using the regeneration algorithm, it is not guaranteed to obtain all the solutions as it discards
singular solutions during the computation.

As mentioned earlier, our goal is to obtain all generic finite solutions, including singular solutions. By employing symbolic
methods, such as the Gröbner basis method within Maple, we can reduce each optimization problem to solving a univariate
olynomial. The degree of this polynomial corresponds to the root count, which enables us to verify whether all solutions were
uccessfully tracked by the regeneration algorithm, performed with the configuration settings outlined in Table 5. The verification
f this tracking is confirmed by the results presented in Tables 6 to 9. Note that these generic solutions only have to be computed
nce for each of the different optimization problems.

.2. Step 2: User-defined homotopy phase

The input for this step is the geometry of the manipulator given by the real values 𝑥2, 𝑥3, 𝑦3, 𝑥5, 𝑥6, 𝑦6 and a 1-parametric motion
ith parameter 𝜙 ∈ [𝑣;𝑤]; i.e.
15

𝐤𝑗 (𝜙) = 𝐑(𝜙)𝐩𝑗 + 𝐭(𝜙) for 𝑗 = 4, 5, 6 (64)
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Table 7
Summary of generic finite solutions from the ab-initio phase for the Lagrangians formulated in Section 3.2.
Extrinsic metric # Finite solutions

over C(Bertini)
Degree of univariate
polynomial (Maple)

𝐷▵
▬
(𝐊,𝐊′), 𝐷▬

▵ (𝐊,𝐊
′) 8 8

𝐷▵
⋆(𝐊,𝐊

′), 𝐷◦
▵(𝐊,𝐊

′) with ⋆, ◦ ∈ {▴,▵} 2 2

Table 8
Summary of generic finite solutions from the ab-initio phase for the Lagrangians formulated in Section 4.1.1.
Extrinsic metric # Finite solutions

over C (Bertini)
Degree of univariate
polynomial (Maple)

𝐷▬
▬(𝐊,𝐊′) 8 8

𝐷▴
▬
(𝐊,𝐊′), 𝐷▬

▴ (𝐊,𝐊
′) 8 8

𝐷▴
▴(𝐊,𝐊

′) 8 8

Table 9
Summary of generic finite solutions from the ab-initio phase for the Lagrangians formulated in Section 4.2.
Extrinsic metric # Finite solutions

over C(Bertini)
Degree of univariate
polynomial (Maple)

𝐷▵
▬
(𝐊,𝐊′), 𝐷▬

▵ (𝐊,𝐊
′) 2 2

according to Eq. (1). We consider one generic random complex pose of this motion, referred to as seed configuration, by setting

𝜙C = 𝑣 − (𝑣 −𝑤)(1 − 𝛼C) (65)

where 𝛼C is a randomly chosen complex number. Now we define a linear homotopy between the vector coordinates of the ab-initio
configuration 𝐤C𝑖 and the seed configuration by

𝐤C𝑖 ↦ 𝐤𝑖 + 𝑚
(

𝐤C𝑖 − 𝐤𝑖
)

for 𝑖 = 1, 2, 3

𝐤C𝑖 ↦ 𝐤𝑖(𝜙C) + 𝑚
(

𝐤C𝑖 − 𝐤𝑖(𝜙C)
)

for 𝑖 = 4, 5, 6
(66)

where 𝑚 is the homotopy parameter. By applying this mapping to the polynomial systems of the ab-initio phase, we can track the
finite solutions of the source configuration to the finite solutions of the seed configuration while 𝑚 is running from 1 to 0.

5.3. Step 3: Paramotopy phase

The utilization of the Paramotopy software, as described in [37], involves two steps. In the first step, Paramotopy calls
Bertini to solve the system of polynomial equations at a generic parameter point. Subsequently, in the second step, Paramotopy
tracks these solutions to all desired parameter values by again calling Bertini.

With our seed configuration and its solutions computed in Section 5.2, we can proceed to the second step of Paramotopy. This
step requires the additional parameters 𝛼C and the number 𝑛 of poses (which can be defined by the user) in which the one-parametric
motion described by Eq. (64) should be discretized. Specifically, the interval 𝛼 ∈ [0; 1] is evenly subdivided into 𝑛 values. While 𝛼
traverses this interval, Paramotopy tracks the corresponding solutions for the 𝑛 poses. In the current implementation the obtained
values are then interpolated linearly between consecutive poses.

Remark 9. Note that the choice for the number 𝑛 of poses is a trade-off between accuracy and computation time (the average of
the computation time for a single point is given in Table 10). One can also start with a low number 𝑛 and do a local refinement
by inserting an intermediate pose if e.g. the distance between two consecutive poses is larger than the maximum of the singularity
distances in these two poses.

Moreover, one can also think of using more sophisticated schemes for the interpolation (e.g. polynomial or spline [49]) of the
data between the 𝑛 poses, but this is beyond the scope of the paper. ⋄

During the execution of Step 2 of Paramotopy, there may still be path failures for each discretized pose. To address these
failures, it is necessary to re-run the failed paths by adjusting the configuration settings.

5.4. Step 4: Post-processing

In this phase, the obtained real solutions for 𝑛 discretized poses are given as input to Maple. For the corresponding configuration,
16

the distance function is evaluated in order to filter out the global minimizer.
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Table 10
A comparison of average run time (in seconds) for Step 2 and Step 3 and both steps of Paramotopy and and also for single
point.
Extrinsic metric (A) Step 2 (B) Step 3 (C) Both steps of

Paramotopy
Ratio C/(A+B) Single point

B/90

𝐷▬
▬
(𝐊,𝐊′) ≈2.160 ≈236.861 ≈651.200 ≈2.152 ≈2.631

𝐷▴
▬
(𝐊,𝐊′) ≈4.074 ≈263.130 ≈5 100.240 ≈19.087 ≈2.923

𝐷▵
▬
(𝐊,𝐊′) ≈2.860 ≈292.250 ≈5 563.370 ≈18.851 ≈3.247

𝐷▬
▴ (𝐊,𝐊

′) ≈4.258 ≈315.413 ≈5 152.523 ≈17.244 ≈3.504
𝐷▴

▴(𝐊,𝐊
′) ≈1.640 ≈104.636 ≈6 595.126 ≈62.056 ≈1.162

𝐷▵
▴(𝐊,𝐊

′) ≈1.056 ≈160.260 ≈5 915.350 ≈36.669 ≈1.780
𝐷▬

▵ (𝐊,𝐊
′) ≈3.686 ≈ 276.653 ≈5 548.023 ≈19.790 ≈3.073

𝐷▴
▵(𝐊,𝐊

′) ≈1.280 ≈147.720 ≈6 063.070 ≈40.691 ≈1.641
𝐷▵

▵(𝐊,𝐊
′) ≈1.778 ≈113.292 ≈6 731.132 ≈58.495 ≈1.258

5.5. Interface

To operate this pipeline, we developed an open-source software interface between Maple and Bertini as well as Paramo-
topy, thus that all calls can be made within Maple rather than by switching between the systems. Note that the user needs to run
only steps 2–4.

Remark 10. Steps 2 and 3 of the above given computational pipeline can also be replaced by using both steps of Paramotopy [37].
The drawback is that one always needs to run the first step of Paramotopy which is substantially longer, as it can be seen from
Table 10, which lists the computation times for the numerical example discussed in the next section. ⋄

Remark 11. If one is interested in computing the closest singular configuration for a 3-RPR manipulator, then the generic finite
solutions together with the complex coordinates chosen in Section 5.1 are provided as supplementary material [44]. In this case, it
is sufficient to run only Sections 5.2–5.4 of the computation. ⋄

6. Results and discussion

The presented computational procedure for determining singularity distances is illustrated by the following numerical example,
which was also used for the singularity distance computations with respect to intrinsic metrics [3]. The base and platform anchor
points and the one parametric motion are given by:

𝐤1 = 𝐩1 = (0, 0), 𝐤2 = (11, 0), 𝐩2 = (3, 0), 𝐤3 = (5, 7), 𝐩3 = (1, 2) (67)

and

𝐤𝑖+3 =
(

cos𝜙 − sin𝜙
sin𝜙 cos𝜙

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐑

𝐩𝑖 +
1
2

(

11 − 6 sin𝜙
3 − 3 cos𝜙

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐭

for 𝑖 = 1, 2, 3. (68)

Note that the one-parametric motion of the manipulator exhibits two singular configurations at 𝜙 = 0 and 𝜙 ≈ 3.0356972 radians.
The interval for the motion parameter 𝜙 is chosen between [0; 2𝜋]; i.e. 𝑣 = 0 and 𝑤 = 2𝜋. Following Eq. (65), we generate a
random complex number 𝛼C using floating-point arithmetic and express the pose of the platform with respect to the base frame
using Eq. (68). By defining user-defined homotopies given by Eq. (66), we obtain the system of polynomial equations depending
on the homotopy parameter 𝑚. We invoke User homotopy:2 in the input files, to avoid tracking infinitely long paths (for details
see [36, Sec. 7.5.2]). We use generic finite solutions of the source configuration as start solutions and track them to the seed
configuration without any path failures. Note that the number of paths to be tracked equals the generic finite root count given in
Tables 6–9. For the Paramotopy phase we set 𝑛 = 90; i.e. we discretized the 1-parametric motion into 90 poses. The resulting
solution set for each pose is post-processed according to Step 4. A comparison of the average CPU run time.8 (over 5 runs) between
both steps of Paramotopy and Step 2 and Step 3 of the proposed algorithm is given in Table 10.

In Fig. 9 we compare the distances to the singularity variety 𝑉 = 0 with respect to the different extrinsic metrics 𝐷◦
⋆(𝐊,𝐊

′)
with ◦, ⋆ ∈ {▴,▵,▬} to the preliminary one 𝐷∙

∙(𝐊,𝐊
′) of Eq. (5). Note that due to the discretization of the motion into 90 poses

y Paramotopy, the linearly interpolated value at the singularity 𝜙 ≈ 3.0356972 radians is not exactly zero. In Fig. 10 the closest
ingular configurations on 𝑉 = 0 are illustrated for the pose 𝜙 = 0.8471710528 radians, which is indicated by the black dashed line
n Fig. 9. For the metric 𝐷∙

∙(𝐊,𝐊
′) we refer to Fig. 2.

For the interpretations possessing a pin-jointed triangular bar structure in the platform or base, the distances to the singularity
ariety and collinearity variety are compared in Fig. 11. In Fig. 12 the corresponding closest configurations on the collinearity
arieties are again illustrated for the pose 𝜙 = 0.8471710528 radians .

8

17

In this context we are referring to response time.
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Fig. 9. Distances to the singularity variety 𝑉 = 0 with respect to the different extrinsic metrics.

Fig. 10. Closest singular configurations on 𝑉 = 0 for 𝜙 = 0.8471710528 radians.

In Fig. 13 (a,b,c), we present the comparison of the distances to the closest regular and singular points of the constraint variety. It
can be observed that the latter is always larger. The configuration, which corresponds to the closest singular point on the constraint
variety, is illustrated in Fig. 13 (d,e,f) for the pose 𝜙 = 0.8471710528.

For the singularity distance, we have to take the minimum of the graphs given in Figs. 9, 11 and 13, which yields the graphs
given in Fig. 14. Finally, we want to point out that the cusps in the graphs of Figs. 9 and 14 belong to the cut loci of the extrinsic
18
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Fig. 11. Comparison of distances to the singularity variety 𝑉 = 0 and the collinearity variety 𝐶𝑃 = 0 (top) and 𝐶𝐵 = 0 (bottom), respectively.

Fig. 12. Closest singular configurations on the collinearity variety 𝐶𝑃 = 0 (top) and 𝐶𝐵 = 0 (bottom), respectively, for 𝜙 = 0.8471710528 radians.

distance functions; i.e. in the corresponding configurations, the closest singular configuration is not determined uniquely (there exist
at least two closest singular configurations).

Note that the graphs of all nine presented extrinsic metrics have a similar course (cf. Fig. 9 and Fig. 14, respectively), which
will be compared in the following with the singularity-closeness indices reviewed in Section 1.1.
19
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Fig. 13. Comparison of the distances to the closest regular and singular points of the constraint variety, (a) 𝑉 = 0, (b) 𝐶𝑃 = 0, and (c) 𝐶𝐵 = 0, respectively. The
configuration, which corresponds to the closest singular point on the constraint variety (a,b,c), is illustrated in (d,e,f) for 𝜙 = 0.8471710528 radians.

Fig. 14. Singularity distances with respect to the presented extrinsic metrics.

6.1. Comparison with EE-independent KPIs

As a consequence of Remark 3, both the TI and DS indices encounter the following issue: If we alter the viewpoint and exchange
the roles of the platform and the base, we obtain different pressure angles 𝛽 , resulting in different index values for the same
20
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Fig. 15. Comparison with EE-independent KPIs.

configuration. Therefore, we introduce the modified transmission index (MTI):

𝑚𝑖𝑛(cos 𝛼1+𝛽12 ,… , cos 𝛼3+𝛽32 ) ∈ [0; 1],

and modified distance to singularity (MDS):

1 −
2𝑚𝑎𝑥( 𝛼1+𝛽12 ,… , 𝛼3+𝛽32 )

𝜋
∈ [0; 1]. (69)

In addition to the control number, we also provide a modified version (MCN) obtained by taking the square root of 1∕𝜇+, as our goal
s not to achieve an index that remains invariant under similarities (which was the rationale behind defining the original control
umber as a fraction).

Besides the manipulability (M), we also plot the function det 𝐕(𝐊) as it has the advantage of taking into account the lengths of
he legs compared to M (cf. Remark 2). In Fig. 15 the graphs of the EE-independent KPIs are displayed, where M and 𝐕(𝐊) are scaled
etween 0 and 1, while CN is scaled by a factor of 5 for better visualization. Note that the IR graph exhibits a jump discontinuity at
he pose 𝜙 = 4.385748 radians where the first and second leg are parallel (cf. Footnote 3). The animation showing the incircle can
e downloaded from [44].

.2. Comparison with approach of singularity-free cylinders

In [24,25], the orientation range of the platform is assumed to be bounded by some interval, i.e., 𝜁 ∈
[

𝜁min; 𝜁max
]

. However,
ince we are not considering any motion limits, we have 𝜁max = −𝜁min = 𝜋. Consequently, in every pose for 𝑑 of Eq. (4), the value

is zero, indicating that the singularity-free cylinder degenerates to a line. In other words, for the given position, there always exists
an orientation causing a singularity. Following the idea presented in [11], in this case, we measure the distance as |𝜁0 − 𝜁 | to the
nearest singularity in the orientation workspace (as shown in Fig. 16(a)).

To complete the picture, we also computed the distance to the closest singularity in the position workspace (e.g., [29]), as
illustrated in Fig. 16(a). The closest singularity for a fixed position and orientation at 𝜙 = 0.8471710528 is shown in Fig. 16(b).
For corresponding animations, please refer to the supplementary material [44]. As previously mentioned in Section 1.2, it is worth
noting that we cannot conclude the distance to the next singularity within the configuration space of the 3-RPR robot from the two
separate pieces of information regarding orientation and position singularity distances.

Remark 12. Due to the discretization of motion into 90 poses, the singularity occurring at 𝜙 ≈ 3.0356972 radians is not precisely
reached, in contrast to the singularity at 𝜙 = 0. This discrepancy is the reason why the graphs in Figs. 14 and 15 and 16(a) do
not reach zero at this specific point. This deviation is particularly noticeable in the plot showing translational singularity distance,
depicted in Fig. 16(a). To address this issue,9 one can employ a signed distance function. We will illustrate the utilization of such
a function in the forthcoming example discussed in the next section. ⋄

9 Assumed that the path of the 1-dimensional motion crosses the singularity variety and does not only touch it.
21
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Fig. 16. Distance to the closest singularity in the orientation/position workspace. (b) The closest singularity for a fixed position and orientation at the configuration
𝜙 = 0.8471710528 radians.

6.3. Applying method to 3-RRR mechanisms

The method for computing the extrinsic distance to the closest singularity can be adopted straight forward to any type of robot
(also redundant ones), which can be abstracted into a jointed composition of bars, triangular plates and tetrahedral bodies. For the
latter, a comparable formula to Eq. (9) can be derived by drawing parallels to the explanation provided in Appendix A.

In the following, we want to demonstrate the feasibility of our approach to more complicated mechanisms, like the 3-RRR robot.
We consider the design parameters and the circular translation of the platform, as outlined in [50, Section 5], as our input. The
motion along the circle is discretized into 90 equally spaced poses.

Distance to parallel singularities: It is well known [17, Section 2] that the parallel singularities of this mechanism can be
determined similarly to those of 3-RPR robots. For computing the distance to these singularities we choose the interpretation that
the platform and base are triangular plates (▴), which are made of deformable material like the six bars needed for assembling the
three legs.

By labeling the given nine points by 𝐤1,… ,𝐤9 and the corresponding ones of the closest singularity by 𝐤′1,… ,𝐤′9 according to
Fig. 17(b), we can make use of the singularity polynomial 𝑉 of Eq. (6). By employing Eqs. (8) and (9) the distance between two
3-RRR configurations can be written as follows:

𝐷▴
▴(𝐊,𝐊

′)2 = 1
8

[

∑

(𝑖,𝑗)∈𝐼5

𝑑
(

|𝑖𝑗 , |
′
𝑖𝑗

)2
+ 𝑑(▴789,▴

′
789)

2 + 𝑑(▴456,▴
′
456)

2

]

(70)

with 𝐼5 = {(1, 4), (1, 7), (2, 5), (2, 8), (3, 6), (3, 9)}. According to Remark 12 we want to use a signed distance function for this example.
The sign of 𝐷▴

▴(𝐊,𝐊
′) is obtained by the signum function of 𝑉 (𝐊).

By using Eq. (70) the Lagrangian function for finding the closest singular configuration reads as:

𝐿 = 𝐷▴
▴(𝐊,𝐊

′)2 + 𝜆𝑉 . (71)

This is a non-homogeneous polynomial equation involving the unknowns 𝑐1,… , 𝑐9, 𝑑1,… , 𝑑9 and 𝜆. The partial derivatives of
𝐿 with respect to the mentioned unknowns result in 19 equations. This square system is solved for the source configuration 𝐊C

(cf. Section 5.1) using the regeneration algorithm implemented in Bertini. We obtain 50 generic finite solutions over C (computed
without any path failures), which are used to run the remaining computational pipeline described in Section 5. The obtained results
are illustrated in Fig. 17. For comparison, we plot the determinant of the Jacobian (used in [50]) in Fig. 17(a) scaled by the factor
0.04 (without taking the absolute value as done in Fig. 7).

Distance to leg singularities: Our method can also be used to compute the distance to leg singularities. We just have to replace
the side-condition 𝑉 = 0 in the Lagrange function of Eq. (71) by the collinearity condition 𝐶𝑖 = 0 of the three points of the 𝑖th leg
(𝑖 = 1, 2, 3). Moreover, the sign of the distance is obtained by the signum function of 𝐶𝑖(𝐊). In this way, we get the three additional
graphs plotted in Fig. 17(a)(see Fig. 18).

Remark 13. The animations of the manipulator’s one-parametric motion given in Eq. (68) together with the closest singular
configurations implying the graphs of Figs. 9, 11, 13 16 and 17 can be downloaded from [44]. ⋄
22
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Fig. 17. (a) Signed singularity distances with respect to the presented distance metric, and the distance to the closest singularity of the 1st/2nd/3rd leg. (b)
The closest parallel singularity (red) to the given configuration is indicated by the cyan dashed line in (a). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 18. The closest singularity for the 1st/2nd/3rd leg (a/b/c) to the configuration indicated by the cyan dashed line in Fig. 17(a)

The singularity distance along the 1-parametric motion is then obtained by the distance from the nearest point on the four
graphs10 to the axis of the motion parameter. This shows up a further advantage of using a well-defined metric for measuring
singularity distances as it allows to treat leg and parallel singularities in a uniform way.

Remark 14. The application of our method to spatial mechanisms like the Stewart Gough platform needs some additional studies
– dedicated to future research – concerning the various motion representations, which heavily affect the efficiency of the homotopy
continuation-based singularity distance computation (cf. [43]). ⋄

7. Conclusion and future work

We presented extrinsic metrics for the computation of the closest singular configuration of a 3-RPR parallel manipulator, which
takes the combinatorial structure of the mechanism into account as well as different design options. For each of the resulting nine
interpretations (Section 1.4), the corresponding extrinsic metric relies on the distance computation between structural components
(Section 2).

The constrained optimization problem of computing the closest singular configuration with respect to these nine metrics was
formulated using the Lagrangian approach (Section 3). As the singular points of the constraint varieties are missed by this method,
we determined them algebraically. Based on their obtained geometric characterization, we parameterized them for a separate
optimization (Section 4).

10 It can easily be checked that the closest singular points on the constrained varieties of the parallel singularity and leg singularity, respectively, always result
in distances larger than those implied by the closest regular points.
23
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m

Moreover, we presented an efficient computational algorithm for the singularity distance computation along a 1-parametric

otion of the manipulator using the computer algebra system Maple as well as the numerical algebraic geometry software Bertini
and Paramotopy (Section 5). We coded an open-source software interface allowing us to make all calls from Maple rather than
by switching between the systems. Finally, we validated our approach on hand of a numerical example (Section 6).

The discussion of this concrete example showed that the graphs of all nine presented extrinsic metrics have a similar course (cf.
Fig. 9 and Fig. 14, respectively), which was compared with existing indices that claim to evaluate the closeness to singularities (cf.
Figs. 15 and 16(a)). Note that all nine indices have the potential (cf. Table 10) to be calculated in real-time as the suggested method
of homotopy continuation allows the parallelization of computations.

In [3], we conducted a study on the computation of singularity distances for the same nine interpretations of 3-RPR configurations
using intrinsic metrics, and we compared them to the corresponding extrinsic metrics presented in this paper. The observed
relationship between the extrinsic distances (cf. Remark 7) and intrinsic distances, which are based on elastic strain energy densities,
is not yet fully understood.

Moreover, the sensitivity analysis based on the paired intrinsic and extrinsic metrics (cf. Remark 6) is dedicated to future research
as well as the optimization of the manipulator design mentioned at the end of Section 1.2. For the latter task, it is preferable to
render the extrinsic distance dimensionless; as otherwise the scaling of the manipulator with a certain factor also implies a scaling
of the singularity distance by the same factor. There are different strategies for doing so; e.g. 𝐷▵

▵(𝐊,𝐊
′) divided by the sum over

all bar lengths or a method recently proposed by the authors in [51]; namely to consider the ratio of the extrinsic distance to the
so-called architecture singularity distance, which can be written down in closed form for 3-RPR robots.

As in real-world applications every anchor point can be associated with a space of uncertainties, which results from e.g. pose
measurement errors, tolerances in the R-joints, and deviations of the platform and the base from the geometric model as well as their
deformations under operation, one should take some safety distance to the singularity variety into account. For its determination,
we suggest to compute 𝐷◦

⋆(𝐊,𝐊
′′′) where 𝐊′′′ has maximal distance from 𝐊 under the side-conditions ‖𝐤𝑖 − 𝐤′′′𝑖 ‖ ≤ 𝑟𝑖, which is the

radius of the smallest circle centered in the anchor point 𝐤𝑖 of the geometric model containing the associated space of uncertainties
(for 𝑖 = 1,… , 6). The maximum of 𝐷◦

⋆(𝐊,𝐊
′′′) over the robots workspace would give the looked for safety distance. Clearly, this

threshold (or an upper bound for it) has to be verified by experimental data, which would be a further interesting branch of applied
research.

Finally, it should be noted that the presented method can also be applied to more complicated mechanisms, which can be
abstracted into a jointed composition of bars, triangular plates and tetrahedral bodies. In Section 6.3 we demonstrated this for
3-RRR mechanisms. In addition this example showed up a further advantage of using the proposed metrics, namely that leg and
parallel singularities can be treated in a uniform way.
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Appendix A. Derivation of the distance between triangular plates

The triangular plate ▴𝑖𝑗𝑘 in R2 can be captured by the affine combinations of its vertices 𝐤𝑖,𝐤𝑗 ,𝐤𝑘; i.e.

▴𝑖𝑗𝑘 ∶ 𝑢 𝐤𝑖 + 𝑣 𝐤𝑗 + (1 − 𝑢 − 𝑣) 𝐤𝑘 with u ∈ [0, 1], v ∈ [0, 1 − 𝑢]. (A.1)

In order to define a distance function between two triangles ▴𝑖𝑗𝑘 = (𝐤𝑖,𝐤𝑗 ,𝐤𝑘) and ▴′
𝑖𝑗𝑘 = (𝐤′𝑖 ,𝐤

′
𝑗 ,𝐤

′

𝑘) illustrated in Fig. 4 we use
the parametrization of Eq. (A.1) to view both triangles as images of the unit triangle 𝑇0 under the following two affine mappings:

𝜓▴ ∶
(

𝑢
)

↦ 𝑢𝐤𝑖 + 𝑣𝐤𝑗 + (1 − 𝑢 − 𝑣)𝐤𝑘 with 𝑢 ∈ [0, 1], 𝑣 ∈ [0, 1 − 𝑢], (A.2)
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𝜓▴′
𝑖𝑗𝑘

∶
(

𝑢
𝑣

)

↦ 𝑢𝐤′𝑖 + 𝑣𝐤
′
𝑗 + (1 − 𝑢 − 𝑣)𝐤′𝑘 with 𝑢 ∈ [0, 1], 𝑣 ∈ [0, 1 − 𝑢]. (A.3)

Now we define the distance as the integral over the pointwise distances of corresponding triangle points by:

1
|𝑇0| ∫𝑇0

(

𝜓▴𝑖𝑗𝑘
− 𝜓▴′

𝑖𝑗𝑘

)2
𝑑𝐴 =

2∫

1

0 ∫

1−𝑢

0

[

𝑢 (𝐤𝑖 − 𝐤′𝑖) + 𝑣 (𝐤𝑗 − 𝐤′𝑗 ) + (1 − 𝑢 − 𝑣)(𝐤𝑘 − 𝐤′𝑘)
]2
𝑑𝑢 𝑑𝑣

(A.4)

where 𝐴 denotes the area. By solving Eq. (A.4) we obtain the squared distance between two triangles ▴𝑖𝑗𝑘 and ▴′
𝑖𝑗𝑘 given in Eq. (9).

Appendix B. Lemma

Lemma 2. For a 3-RPR manipulator, which is not architecturally singular, there always exists pairwise distinct indices 𝑖, 𝑗 ∈ {1, 2, 3} such
that 𝐤𝑖 ≠ 𝐤𝑗 and 𝐤𝑖+3 ≠ 𝐤𝑗+3 hold true.

roof. From the geometric point of view, a 3-RPR manipulator is only architecturally singular if and only if either the base or
latform collapses to a point.

Suppose that 𝐤1,𝐤2,𝐤3 are pairwise distinct. As the manipulator is not architectural singular, there has to exist a pair of indices
, 𝑗 ∈ {1, 2, 3} such that 𝐤𝑖+1 ≠ 𝐤𝑗+1 holds, and we are done.

Suppose now that a pair of points among 𝐤1,𝐤2,𝐤3 coincide; without loss of generality we can assume 𝐤1 = 𝐤2. As the manipulator
is not architecturally singular, 𝐤3 is distinct from 𝐤1 = 𝐤2. Now either 𝐤4 ≠ 𝐤6 has to hold or 𝐤5 ≠ 𝐤6, as otherwise this would imply
the architecture singularity 𝐤4 = 𝐤5 = 𝐤6. □

Appendix C. Explicit expressions for the distances of Theorem 1

The explicit expressions for the distances 𝐷▵
⋆(𝐊,𝐊

′) with ⋆ ∈ {▴,▵} read as follows:

𝐷▵
▴(𝐊,𝐊

′) = 𝑚𝑖𝑛
[ 23
630

(𝑥25 − 𝑥5𝑥6 + 𝑥
2
6 + 𝑦

2
6) ±

23
630

(

sign(𝛾)
√

𝜂
)

]

(C.1)

𝐷▵
▵(𝐊,𝐊

′) = 𝑚𝑖𝑛
[ 4
15

(𝑥25 − 𝑥5𝑥6 + 𝑥
2
6 + 𝑦

2
6) ±

4
15

(

sign(𝛾)
√

𝜂
)

]

(C.2)

ith

𝜂 ∶= 𝑥45 − 2𝑥35𝑥6 + 3𝑥25𝑥
2
6 − 𝑥

2
5𝑦

2
6 − 2𝑥5𝑥36 − 2𝑥5𝑥6𝑦26 + 𝑥

4
6 + 2𝑥26𝑦

2
6 + 𝑦

4
6, (C.3)

𝛾 ∶= 𝑒20𝑥
2
5𝑦6 + 2𝑒20𝑥5𝑥6𝑦6 − 2𝑒20𝑥6𝑦6 − 2𝑒20𝑦

3
6 + 2𝑒0𝑒1𝑥35 − 6𝑒0𝑒1𝑥25𝑥6 + 6𝑒0𝑒1𝑥5𝑥26+ (C.4)

2𝑒0𝑒1𝑥5𝑦26 − 4𝑒0𝑒1𝑥36 − 4𝑒0𝑒1𝑥6𝑦26 − 𝑒
2
1𝑥

2
5𝑦6 − 2𝑒21𝑥5𝑥6𝑦6 + 2𝑒21𝑥

2
6𝑦6 + 2𝑒21𝑦

3
6. (C.5)

his shows that the obtained values only depend on the geometry of the manipulator.
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