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A B S T R A C T

The famous example of the double-Watt mechanism given by Connelly and Servatius raises
some problems concerning the classical definitions of higher-order flexibility and rigidity,
respectively, as they attest the cusp configuration of the mechanism a third-order rigidity, which
conflicts with its continuous flexion. Some attempts were done to resolve the dilemma but they
could not settle the problem. As cusp mechanisms demonstrate the basic shortcoming of any
local mobility analysis using higher-order constraints, we present a global approach inspired by
Sabitov’s finite algorithm for testing the bendability of a polyhedron, which allows us (a) to
compute iteratively configurations with a higher-order flexion and (b) to come up with a proper
redefinition of higher-order flexibility and rigidity. The presented approach is demonstrated
on several examples (double-Watt mechanisms and Tarnai’s Leonardo structure). Moreover, we
determine all configurations of a given 3-RPR manipulator with a third-order flexion and present
a corresponding joint-bar framework of flexion order 23.

. Introduction

In this paper we give a redefinition of higher-order flexibility and rigidity of bar-joint frameworks. Such a framework 𝐺(K )
onsists of a knot set

K =
{

𝑋1,… , 𝑋𝑤
}

(1)

nd a graph 𝐺 on K . A knot 𝑋𝑖 corresponds a rotational/spherical joint (without clearance) in the case of a planar/spatial
ramework. An edge connecting two knots corresponds to a bar. We denote the number of edges by 𝑒.

By defining the combinatorial structure of the framework as well as the lengths of the bars, which are assumed to be non-zero,
he intrinsic geometry of the framework is fixed. In general the assignment of the intrinsic metric does not uniquely determine the
mbedding of the framework into the Euclidean space R𝑑 , thus such a framework can have different incongruent realizations.

In Section 3 we propose redefinitions for the order of flexibility and rigidity based on the number of coinciding framework
ealizations, which resolve the dilemma of the classical definitions raised by the famous example of the double-Watt mechanism. A
etailed literature review on this topic is given in Section 2. We also present an algorithm for the computation of the proposed flexion
rder in Section 3.1. Finally, the given approach also allows to compute iteratively configurations with a higher-order flexion, which
s demonstrated exemplarily for planar 3-RPR manipulators in Section 4, where 3r d-order flexible configurations are determined.
oreover, a corresponding joint-bar framework of flexion order 23 is presented. In Section 5 we close the paper with the discussion

f some open problems and an outlook to future research. But before we can plunge into medias res, we have to recall some basics
oncerning the algebraic approach to rigidity theory, which is done in the next section.
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1.1. Algebraic approach to rigidity theory

The relation that two elements of the knot set are edge-connected can also be expressed algebraically. They are either quadratic
constraints resulting from a squared distance of vertices (implied by an edge) or linear condition, in the case that one of the pin-joints
gets an ideal-point. There are further linear conditions originating from the elimination of isometries.1 In total this results in a system
of 𝑙 algebraic equations 𝑐1 = 0,… , 𝑐𝑙 = 0 in 𝑚 unknowns 𝑧1,… , 𝑧𝑚, which constitute an algebraic variety 𝑉 (𝑐1,… , 𝑐𝑙). Note that 𝑙
equals 𝑒 + 6 in the spatial case and 𝑒 + 3 in the planar one. Moreover, 𝑚 equals for the planar case 2𝑤 and for the spatial one 3𝑤.

If 𝑉 (𝑐1,… , 𝑐𝑙) is positive-dimensional then the framework is flexible; otherwise rigid. The framework is called minimally rigid
(isostatic) if the removal of any algebraic constraint (resulting from an edge) will make the framework flexible. In this case 𝑚 = 𝑙
has to hold. Rigid frameworks, which are not isostatic, are called overbraced or overconstrained (𝑙 > 𝑚).

If 𝑉 (𝑐1,… , 𝑐𝑙) is zero-dimensional, then each real solution corresponds to a realization 𝐺(𝐗) of the framework for 𝐗 = (𝐱1,… , 𝐱𝑤).
f there is exactly one real solution, then the framework is called globally rigid.

We can compute in a realization the tangent-hyperplane to each of the hypersurfaces 𝑐𝑖 = 0 in R𝑚 for 𝑖 = 1,… , 𝑙. Note
that this is always possible as all hypersurfaces are either hyperplanes or regular hyperquadrics. The normal vectors of these
tangent-hyperplanes constitute the columns of a 𝑚 × 𝑙 matrix 𝐑𝐺(𝐗), which is also known as rigidity matrix of the realization 𝐺(𝐗);
i.e.

𝐑𝐺(𝐗) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕 𝑐1
𝜕 𝑧1

𝜕 𝑐2
𝜕 𝑧1 … 𝜕 𝑐𝑙

𝜕 𝑧1
𝜕 𝑐1
𝜕 𝑧2

𝜕 𝑐2
𝜕 𝑧2 … 𝜕 𝑐𝑙

𝜕 𝑧2
⋮ ⋮ ⋱ ⋮
𝜕 𝑐1
𝜕 𝑧𝑚

𝜕 𝑐2
𝜕 𝑧𝑚 … 𝜕 𝑐𝑙

𝜕 𝑧𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2)

If its rank is 𝑚 then the realization is infinitesimal rigid otherwise it is infinitesimal flexible; i.e. the hyperplanes have a positive-
dimensional affine subspace in common. Therefore the intersection multiplicity of the 𝑙 hypersurfaces is at least two in a shaky
realization. Therefore a shaky configuration can also be seen as the limiting case where at least two realizations of a framework
coincide [1,2].

Clearly, by using the rank condition 𝑟𝑘(𝐑𝐺(𝐗)) < 𝑚 one can also characterize all shaky realizations 𝐺(𝐗) algebraically by the affine
ariety 𝑉1. This so-called shakiness variety is the zero set of the ideal generated by the polynomials 𝑝1,… , 𝑝𝜇 which correspond to

all 𝜇 ∶=
( 𝑙
𝑙−𝑚

)

minors of 𝐑𝐺(𝐗) of order 𝑚×𝑚. Note that for minimally rigid framework 𝜇 = 1 holds, where the infinitesimal flexibility
is given by 𝑝1 ∶ det (𝐑𝐺(𝐗)) = 0.

2. Review on higher-order flexibility and rigidity

A first paper on the higher-order flexion of surfaces was written by Rembs [3]. In contrast first results on higher-order rigidity of
urfaces date back to Efimov [4]. An exhaustive treatment of higher-order flexion and rigidity of surfaces was done by Sabitov in [5],

in which also a section is devoted to discrete structures. Connelly gave a definition of 2nd-order flexibility and rigidity of frameworks
in [6]. Tarnai wrote a paper [7] on the definition of higher-order infinitesimal mechanisms, which seems to be more problematic
han that of a framework due to the existence of non-analytic kinematic pairs. According to Stachel [8] all these approaches to

higher-order flexible frameworks can be unified to the so-called classical definition, which reads as follows:

Definition 1. A framework has a 𝑛th-order flex if for each vertex 𝐱𝑖 (𝑖 = 1,… , 𝑤) there is a polynomial function

𝐱′𝑖 ∶= 𝐱𝑖 + 𝐱𝑖,1𝑡 +⋯ + 𝐱𝑖,𝑛𝑡𝑛 with 𝑛 > 0 (3)

such that

1. the replacement of 𝐱𝑖 by 𝐱′𝑖 in the equation of the edge lengths gives stationary values of multiplicity ≥ 𝑛 + 1 at 𝑡 = 0;
2. the velocity vectors 𝐱1,1,… , 𝐱𝑤,1 do not originate from a rigid body motion (incl. standstill) of the complete framework;

i.e. they are said to be non-trivial.

Remark 1. Tarnai’s definition relies on the power-series expansion of the elongation of the bar in terms of the displacement, but
is definition is equivalent to Definition 1 (cf. [7]). Following an idea of Koiter, one can replace the bar elongation by the strain
nergy of the bars, which also results in an equivalent definition (cf. [9]). Moreover, Kuznetsov [10] gave another definition of

higher-flexibility, which relies on the Taylor expansion of the constrained equations of the framework. Without noticing it, exactly
the same approach was used by Chen [11] to define the local mobility of a mechanism. It can be seen from [12], that the (identical)
efinitions of Kuznetsov and Chen are again equivalent with Definition 1. ⋄

Based on the notion of 𝑛th-order flex given in Definition 1 one can define 𝑛th-order rigidity as follows [6,13]:

1 This are 6 linear constraints for 𝑑 = 3 and 3 linear constraints for 𝑑 = 2.
2 
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Fig. 1. Double-Watt mechanism of Connelly and Servatius in its cusp configuration; i.e. the mechanism has an instantaneous standstill. The dimensions of each
Watt mechanism are as follows: the arms have length 1 and the coupler is of length

√

2. The midpoints 𝐱1 and 𝐱2 of both couplers are connected by a bar of
ength 3.

Fig. 2. Reduction of the double-Watt mechanism of Connelly and Servatius to a two-point guidance problem.

Definition 2. A framework is 𝑛th-order rigid if every 𝑛th-order flex has 𝐱1,1,… , 𝐱𝑤,1 trivial as a 1st-order flex.

Remark 2. Clearly, in the context of Definition 1 one is only interested in the flex with maximal 𝑛; i.e. the framework has to be
rigid of order (𝑛 + 1) according to Definition 2. ⋄

But the famous example of the double-Watt mechanism (cf. Fig. 1) given by Connelly and Servatius [13] raises some problems
concerning these Definitions 1 and 2, as they attest this mechanism a 3r d-order rigidity in a certain configuration, which conflicts2

with its continuous flexibility. This configuration corresponds to a cusp in the configuration space [13], which was also pointed out
by Müller’s study [14] of the mechanism from the perspective of kinematic singularities. Based on the latter work further examples
of cusp mechanisms (even spatial ones) were given in [15].

Example 1. In the following we present the analysis of the double-Watt mechanism according to the method presented by Stachel
n [16]. With respect to the coordinate system displayed in Fig. 2 the coupler-curve of the point 𝐱1 is given by the algebraic equation

𝑥6 + 3𝑥4𝑦2 + 3𝑥2𝑦4 + 𝑦6 + 3𝑥4 + 6𝑥3𝑦 − 2𝑥2𝑦2 + 6𝑥𝑦3 − 5𝑦4 − 6𝑥𝑦 + 8𝑦2 = 0. (4)

We are interested in the branch where the 𝑥-axis is the tangent to the inflection point. It can be parametrized locally by means of
Puiseux series as:

𝐱1 =
(

𝜏1
1
2 𝜏

3
1 + 𝜏51 + 9

4 𝜏
7
1 + 13

2 𝜏
9
1 +⋯

)

. (5)

Clearly, the path of 𝐱2 is obtained by reflection on the 𝑥-axis and by translation along the vector (0, 3)𝑇 yielding:

𝐱2 =
(

𝜏2
3 − 1

2 𝜏
3
2 − 𝜏52 − 9

4 𝜏
7
2 − 13

2 𝜏
9
2 −⋯

)

. (6)

Thus we end up with a two-point guidance problem, where the time dependence of 𝜏𝑖 is set up by

𝜏𝑖 = 𝑣𝑖,1𝑡 + 𝑣𝑖,2𝑡
2 + 𝑣𝑖,3𝑡

3 +⋯ . (7)

Now the 𝑣𝑖,𝑗 have to be adjusted in order to fulfill

𝐹 ∶= ‖𝐱2(𝜏2) − 𝐱1(𝜏1)‖2 − 32 = 𝑜(𝑡𝑛) (8)

for a 𝑛th-order flexibility at 𝑡 = 0. We substitute Eq. (7) into Eq. (8) and consider the coefficients 𝑓𝑖 of 𝑡𝑖 in the resulting expression.
e get 𝑓1 = 0 and 𝑓2 = (𝑣1,1 − 𝑣2,1)2. Setting 𝑣2,1 = 𝑣1,1 we get 𝑓3 = −6𝑣31,1. This means with 𝑣1,1 ≠ 0 it is only flexible of 2nd-order

mplying 3r d-order rigidity. ⋄

Two attempts are known to the author to resolve the dilemma (cf. Footnote 2): Gaspar and Tarnai [17] suggested to use fractional
exponents which corresponds to the replacement of Eq. (3) by

𝐱′𝑖 ∶= 𝐱𝑖 + 𝐱𝑖,1𝑡 + 𝐱
𝑖, 32

𝑡
3
2 + 𝐱𝑖,2𝑡2 + 𝐱

𝑖, 52
𝑡
5
2 … + 𝐱𝑖,𝑛𝑡𝑛, (9)

2 One expects from a proper definition that an 𝑛th-order rigidity implies rigidity (cf. [13]).
3 
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Fig. 3. Double-Watt mechanism of Stachel in a branching configuration; i.e. it corresponds to a double point in the configuration space.

where 𝐱1,1,… , 𝐱𝑤,1 is non-trivial. This solved the particular problem for the cusp configuration of the double-Watt mechanism but
ot the parametrization problem according to [18], where it is also written that ‘‘a very promising approach was presented recently
by [8]’’.

This approach of Stachel follows the more general notation of (𝑘, 𝑛)-flexibility suggested by Sabitov [5] which replaces Eq. (3)
by

𝐱′𝑖 ∶= 𝐱𝑖 + 𝐱𝑖,𝑘𝑡𝑘 +⋯ + 𝐱𝑖,𝑛𝑡𝑛 with 𝑛 ≥ 𝑘 > 0 (10)

where 𝐱1,𝑘,… , 𝐱𝑤,𝑘 is non-trivial. In addition Eq. (10) has to represent an irreducible flex; this means that Eq. (10) does not result
from a polynomial parameter substitution of a lower-order flex.

Example 2 (Continuation of the Double-Watt Mechanism). According to the notation of Eq. (10) the double-Watt mechanism in the
usp configuration is (1, 2)-flexible but not (1, 3)-flexible (cf. Example 1). Therefore we set 𝑣1,1 and continue Example 1 by considering
4 = (𝑣1,2 − 𝑣2,2)2. We set 𝑣2,2 = 𝑣1,2 and get 𝑓5 = 0. Moreover, for 𝑓6 we obtain the expression −6𝑣31,2 + 𝑣21,3 − 2𝑣1,3𝑣2,3 + 𝑣22,3, which

an be solved for3 𝑣2,3 = 𝑣1,3 ±
√

6𝑣31,2 showing (2, 6)-flexibility. Moreover, we can proceed in this way (i.e. solving 𝑓𝑖 = 0 for 𝑣2,𝑖−3

for 𝑖 > 6) implying (2,∞)-flexibility.
We only have to check that the (2,∞)-flexibility was not obtained by the (1, 2)-flexibility by a polynomial parameter substitution

of the form

𝑡 = 𝑡𝑝(𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 +⋯) (11)

with 𝑎0 ≠ 0 and 𝑝 > 1. For 𝑝 = 2 we get 𝑓 1 = 𝑓 2 = 𝑓 3 = 0. 𝑓 4 = 𝑎20(𝑣1,1 − 𝑣2,1)2 implies 𝑣2,1 = 𝑣1,1. Then 𝑓 5 = 0 and 𝑓 6 = −6𝑎30𝑣31,1.
Therefore the substitution turns the (1, 2)-flexibility into a reducible (2, 5)-flexibility. As a consequence the (2,∞)-flexibility has to
be an irreducible flex. ⋄

Remark 3. Note that the substitution of Eq. (11) into Eq. (9) for 𝑝 = 2 yields the (2,∞)-flexibility of Stachel discussed in the last
example. Therefore, Stachel’s approach also includes the one of Gaspar and Tarnai [17]. ⋄

Stachel’s proposal was only presented within the Tensegrity Workshop in 2007 [8], but remained unpublished so far. According
o Stachel [19], the reason for this is the example of another double-Watt mechanism, which is extended by a Kempe-mechanism

(cf. Fig. 5), presented in [16], as no unique flexion order can be identified with his proposed definition. Therefore the problem is
ot yet settled.

Example 3. Stachel’s double-Watt framework: In the following we also give this example of Stachel where the second Watt-
mechanism is just a translation of the first one (see Fig. 3) by the vector (0, 3)𝑇 . Thus we get for the path of 𝐱2 the following
parametrization

𝐱2 =
(

𝜏2
3 + 1

2 𝜏
3
2 + 𝜏52 + 9

4 𝜏
7
2 + 13

2 𝜏
9
2 +⋯

)

(12)

for the interpretation as a two-point guidance problem, which is illustrated in Fig. 4. In this case the two-point guidance is in a
ranching configuration; i.e. it corresponds to a double point in the configuration space.

Then Stachel extended his double-Watt linkage by a Kempe-mechanism for the generation of the straight line motion of the
idpoint 𝐱3 of 𝐱1 and 𝐱2 (see Fig. 5). In contrast, we only use a point guidance4 to restrict the location of 𝐱3 on the line 𝑦 = 3

2 (cf.
Fig. 6); i.e.

𝐱3 =
(

𝜏3
3
2

)

. (13)

3 Note that the ± sign corresponds to the two ways out of the cusp configurations.
4 This can also be interpreted in the terms of bar-joint framework, where the corresponding pin-joint is the ideal point of the 𝑦-axis.
4 
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Fig. 4. Reduction of Stachel’s double-Watt mechanism to a two-point guidance problem.

Fig. 5. Stachel’s double-Watt mechanism extended by a Kempe-mechanism.
Source: Figure by courtesy of Hellmuth Stachel [16].

Fig. 6. Stachel’s double-Watt mechanism extended by the guidance of the midpoint 𝐱3 of 𝐱1 and 𝐱2 along a straight line.

For a 𝑛th-order flexibility at 𝑡 = 0 still Eq. (8) has to hold as well as the affine combination
(

𝐺
𝐻

)

∶= 𝐱1(𝜏1) + 𝐱2(𝜏2) − 2𝐱3(𝜏3) = 𝐨(𝑡𝑛). (14)

We substitute Eq. (7) into Eqs. (8) and (14) and consider the coefficients 𝑓𝑖, 𝑔𝑖 and ℎ𝑖 of 𝑡𝑖 in the resulting expressions. It can easily
e seen that 𝑔𝑖 = 𝑣1,𝑖 + 𝑣2,𝑖 − 2𝑣3,𝑖 holds for all 𝑖 = 1, 2,…, thus we set

𝑣3,𝑖 =
𝑣1,𝑖+𝑣2,𝑖

2 . (15)

Moreover we get 𝑓1 = ℎ1 = ℎ2 = 0 and 𝑓2 = (𝑣1,1 − 𝑣2,1)2. We set 𝑣2,1 = 𝑣1,1 and obtain 𝑓3 = 0 and ℎ3 = 𝑣31,1. Therefore this results in
(1, 2)-flexibility.

Now we consider the case 𝑣1,1 = 0: Then we get 𝑓4 = (𝑣1,2 − 𝑣2,2)2. Thus we set 𝑣2,2 = 𝑣1,2 and get ℎ4 = 𝑓5 = ℎ5 = 0. Moreover we
obtain 𝑓6 = (𝑣1,3 − 𝑣2,3)2, implying 𝑣2,3 = 𝑣1,3 and ℎ6 = 𝑣31,2. The latter shows a (2, 5)-flexibility.

Now we can set 𝑣1,2 = 0 and proceed this procedure yielding the following sequence of flexion orders (𝑘, 3𝑘 − 1) for 𝑘 = 1, 2,….
According to Stachel the question remained open which is the correct order, as all the obtained ones are irreducible. This can be
seen as follows:

The conditions for a (1, 2)-flex which are

𝑣3,1 =
𝑣1,1+𝑣2,1

2 , 𝑣3,2 =
𝑣1,2+𝑣2,2

2 , 𝑣2,1 = 𝑣1,1 (16)

imply under the polynomial parameter substitution of Eq. (11) a reducible (𝑝, 3𝑝 − 1)-flexibility. Let us do this explicitly for 𝑝 = 2.
Then we get:
𝑣𝑖,2 = 𝑎0𝑣𝑖,1, 𝑣𝑖,3 = 𝑎1𝑣𝑖,1, 𝑣𝑖,4 = 𝑎20𝑣𝑖,2 + 𝑎2𝑣𝑖,1, 𝑣𝑖,5 = 2𝑎0𝑎1𝑣𝑖,2 + 𝑎3𝑣𝑖,1. (17)

5 
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Fig. 7. Leonardo structure for 𝜆 = 1 (left), 𝜆 = 2 (center) and 𝜆 = 3 (right).

Therefore the conditions for the (2, 5)-flexibility, which are

𝑣1,2 − 𝑣2,2 = 0, 𝑣1,3 − 𝑣2,3 = 0, 𝑣1,𝑗 + 𝑣2,𝑗 − 2𝑣3,𝑗 = 0 (18)

for 𝑗 = 2, 3, 4, 5 are fulfilled identically under Eq. (16). But 𝑣1,4 and 𝑣2,4 are in a certain relation as only 𝑎2 can act as a free parameter,
which in general has not to be the case. This shows the irreducibly of Stachel’s (2, 5)-flexibility. The same argument can be done
also for the higher flexion orders in Stachel’s sequence (𝑘, 3𝑘 − 1). ⋄

Remark 4. Note that flexibility of 1st-order is invariant under projectivities [20,21] but this does not hold for higher-orders (even
not for affine transformations). ⋄

Remark 5. Note that it is well known (cf. [5, page 232] and [22]) that there exists for each geometric structure an upper bound
𝑛∗ such that the 𝑛∗-order flexibility results in a continuous flexion. ⋄

2.1. Structures studied with respect to higher-order flexibility

Wohlhart [23] followed Kuznetsov’s approach (using a kinematic interpretation of the power-expansion in terms of velocity,
cceleration, jerk, and so forth) for the study of higher-order flexible planar and spatial parallel manipulators of Stewart–Gough
ype. A deeper geometric study of these planar mechanisms was done by Stachel in [24], who also studied higher-order flexibility

of bipartite planar frameworks [25] as well as octahedra [26]. Open and closed spatial serial chains where studied in [11,14,27].
Kuznetsov [10] and Tarnai [7] demonstrate their theoretical considerations only on basis of some simple planar linkages, where
he so-called Leonardo structure [18] has to be pointed out as in this way frameworks with a (2𝜆 − 1)-order flex (according to

Definition 1) for arbitrary 𝜆 ∈ N can be constructed (cf. Fig. 7). Local rigidity analysis of origami structures up to the 2nd-order
were done by He and Guest [28]. A characterization for 2nd-order flexibility of quad-surfaces with planar faces was given by Schief
et al. [29]. Finally, Tachi [30] capped rigid-foldable tubes with 2nd-order flexible structures.

Remark 6. One should not forget about the work of Walter Wunderlich, who studied the geometry of several shaky structures and
sometimes pointed out special ones with a higher-order flexibility (see overview article [1]). ⋄

Due to Remark 5 the idea of higher-order flexibility can also be used to compute over-constrained mechanisms. Based on
he approach of Kuznetsov this method was stressed by Wohlhart [31] to determine a special class of Stewart–Gough platforms
ith self-motions and by Bartkowiak and Woernle [32,33] as well as Milenkovic [34] for the design of overconstrained single-

loop mechanisms. In contrast, Rameau and Serre [12] focused on different computational methods of this problem. From the
computation point of view also the work [35] should be mentioned, where numeric algebraic geometry is used to test locally a
o-called high-multiplicity infinitesimal degree of freedom by means of Macaulay matrices.

3. Redefinition of a higher-order flexibility and rigidity

According to Müller [14] the above mentioned examples with cusps in the configuration space (cusp mechanisms) demonstrate
the basic shortcoming of any local mobility analysis using higher-order constraints. Therefore we present a global approach, which
is also inspired by an idea of Sabitov like Stachel’s approach; namely by his finite algorithm for testing the bendability of a
polyhedron [5, page 231]. This can be formulated as follows:

Let us consider the configuration-set S of all frameworks having the same combinatorial structure but only differ in their intrinsic
etric. Note that S is only a subset of R𝑚 (due to the fact that edges are not allowed to have zero length). In the case of 1st-

rder flexibility each vertex 𝐱𝑖 (𝑖 = 1,… , 𝑤) can be associated with a velocity vector 𝐱𝑖,1 such that the edge lengths do not change
instantaneously, where the set of velocity vectors is not allowed to originate from a rigid body motion (incl. standstill); i.e. no trivial
1st-order flex. The subset S1 ⊂ S of 1st-order flexible configurations corresponds to the already mentioned shakiness variety 𝑉1
in R𝑚. The sets S with 𝑗 > 1 are defined recursively as follows: If in a point of S a non-trivial 1st-order flex exists, which is
𝑗 𝑗−1

6 
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Fig. 8. Illustration of the surface S1 (gray), the curve S2 (black) and the discrete set S3 of points (red) for the configurations of the 3-RPR manipulator
discussed in Example 8. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

tangential to 𝑉𝑗−1 then this point belongs to the set S𝑗 thus we get a hierarchical structure of flexibility of higher-order (illustrated
in Fig. 8). A configuration is called 𝑛th-order flexible if it belongs to S𝑛 but not to S𝑛+1.

We proceed with a discussion of this approach:

∙ This approach goes along with a recent result of Alexandrov [36] for smooth surfaces, who was able to show that a 1st-order
flex tangential to 𝑉1 can be extended to a 2nd-order flex.

∙ Sabitov assumed that all the appearing sets S ,S1,S2,… are manifolds and submanifolds, respectively. In general the varieties
𝑉1, 𝑉2,… contain singular points, which correspond mostly to the interesting configurations in the study of higher-order
flexibility.

∙ An analogous assumption has to be done by Alexandrov [36] in the smooth setting mentioned above, namely the restriction
to regular points of 𝑉1.

This means that this approach gives a proper definition of 𝑛th-order flexibility for configurations that correspond to points of
R𝑚 which are regular with respect to each of the varieties 𝑉1, 𝑉2,… , 𝑉𝑛.

Lemma 1. Every regular point of 𝑉1 has to have a single non-trivial instantaneous flexion.

Proof. Let recall that 𝑉1 is the zero set of the ideal generated by all minors 𝑝1,… , 𝑝𝜇 of 𝐑𝐺(𝐗) of order 𝑚 × 𝑚.
Let 𝑝𝑗 equals the det (𝐫1, 𝐫2,… , 𝐫𝑚) where the 𝐫𝑖’s denote pairwise distinct columns of the rigidity matrix 𝐑𝐺(𝐗) given in Eq. (2).
Now the entries of the gradient of 𝑝𝑗 , which is given by

∇𝑝𝑗 =
( 𝜕 𝑝𝑗
𝜕 𝑧1 ,

𝜕 𝑝𝑗
𝜕 𝑧2 ,… ,

𝜕 𝑝𝑗
𝜕 𝑧𝑚

)

, (19)

can be computed due to the following differentiation rule for determinants [37, page 626]:
𝜕 𝑝𝑗
𝜕 𝑧𝑖 = det ( 𝜕𝐫1𝜕 𝑧𝑖 , 𝐫2,… , 𝐫𝑚) + det (𝐫1, 𝜕𝐫2𝜕 𝑧𝑖 ,… , 𝐫𝑚) +⋯ + det (𝐫1, 𝐫2,… , 𝜕𝐫𝑚𝜕 𝑧𝑖 ). (20)

This already shows that for points of 𝑉1 with 𝑟𝑘(𝐑𝐺(𝐗)) < 𝑚− 1 all these gradients ∇𝑝1,𝑗 are zero vectors, as all summands of Eq. (20)
are zero. As a consequence, these points have to be singular ones of 𝑉1. □

Remark 7. Lemma 1 explains Husty’s observation for 3-RPR mechanisms given in [38]; namely ‘‘the surprising property that it
(singularity surface) has a singularity itself at the point which corresponds to the pose with two dof local mobility ’’.

Moreover, this lemma also gives another reasoning for the note in [39] that the transverse rigidity test always fails if more than
one non-trivial infinitesimal flex exist, as in this case the corresponding point on 𝑉1 has to be a singular one. ⋄

Example 4. Let us consider Stachel’s extended double-Watt framework introduced in Example 3. For setting up the algebraic
equations we use the following coordinatization according to Fig. 9:
𝐹0 = (0, 0)𝑇 , 𝐹1 = (−3,−1)𝑇 , 𝐹2 = (3, 0)𝑇 , 𝐹3 = (0,−1)𝑇 , (21)

7 



G. Nawratil

f

a

b

t

Mechanism and Machine Theory 205 (2025) 105853 
Fig. 9. Stachel’s double-Watt mechanism extended by the guidance of the midpoint 𝐱3 of 𝐱1 and 𝐱2 along a straight line.

for the points pinned to the base and

𝑀0 = (𝑎0, 𝑏0)𝑇 , 𝑀1 = (𝑎1, 𝑏1)𝑇 , 𝑀2 = (𝑎2, 𝑏2)𝑇 , 𝑀3 = (𝑎3, 𝑏3)𝑇 , (22)

for the moving points. Then the mechanism is determined by the following set of eight equations:

‖𝐹𝑖 −𝑀𝑖‖
2 = 1 for 𝑖 = 0,… , 3 (23)

‖𝑀𝑗 −𝑀𝑗+1‖
2 = 2 for 𝑗 = 0, 2 (24)

‖𝑁0,1 −𝑁2,3‖
2 = 9 (25)

𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 = 0 (26)

with 𝑁0,1 = 𝑀0+𝑀1
2 and 𝑁2,3 = 𝑀2+𝑀3

2 . Note that Eq. (26) corresponds with the straight line motion of the midpoint of 𝑁0,1 and
𝑁2,3. Direct computations show that the rank of the (8 × 8)-rigidity matrix 𝐑𝐺(𝐗) in the configuration 𝐗 given by

(𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑎3, 𝑏3) = (−1, 0,−2,−1, 2, 0, 1,−1) (27)

equals 6. This confirms that 𝐗 is a singular point of the variety 𝑉1. ⋄

Beside Lemma 1 we also have to keep in mind that according to Remark 5 a certain flexibility order 𝑛∗ exists which implies
lexibility of order ∞. With this ingredients we can prove the following alternative characterization:

Theorem 1. The 𝑛th-order flexibility with 𝑛 < 𝑛∗ of a configuration which corresponds to a regular point of each variety 𝑉1, 𝑉2,… , 𝑉𝑛 is
equivalent with the fact that the configuration is a framework realization of multiplicity 𝑛 + 1.

Proof. 𝑉1 is the set of points determined by the constraint equations 𝑐1,… , 𝑐𝑙 with multiplicity of at least two. In a general point
𝐗 of 𝑉1 the intersection multiplicity with respect to 𝑉1 ∩ 𝑐1 ∩ … ∩ 𝑐𝑙 is 1. For increasing it a necessary and sufficient condition is
that the tangent spaces have a positive-dimensional subspace in common. This is exactly the condition that in 𝐗 an instantaneous
flexion exists, which is tangential to 𝑉1. Due to Lemma 1 the common subspace has to be 1-dimensional. Therefore by construction
 generic element of the variety 𝑉2 has to have multiplicity 3 with respect to 𝑉 (𝑐1,… , 𝑐𝑙).

This line of argumentation can be iterated until we reach the set 𝑉𝑛∗ , which consists of points having multiplicity ∞. Thus points
of 𝑉𝑛 ⧵ 𝑉𝑛+1 with 𝑛 < 𝑛∗ have to correspond with framework realizations of multiplicity 𝑛 + 1. □

A redefinition can be based on this property as it can also be extended to singular points of the varieties 𝑉1, 𝑉2,… which are not
covered by Sabitov’s algorithm.

Definition 3. If a configuration does not belong to a continuous flexion of the framework then we define its order of flexibility
y the number of coinciding framework realizations minus 1.

Remark 8. This definition follows the way Wunderlich (cf. Remark 6) studied infinitesimal flexibility; namely as the limiting case
where two realizations of a framework coincide (cf. [2]). Moreover, from this definition it is clear that an upper bound for 𝑛∗ equals
he number of solutions of the zero-dimensional variety 𝑉 (𝑐1,… , 𝑐𝑙) (cf. Section 1.1) counted with multiplicity. ⋄

Based on Definition 3 we can also give a redefinition of higher-order rigidity as follows:

Definition 4. Is a configuration 𝑛th-order flexible according to Definition 3 then it is (𝑛 + 1)-rigid.
8 
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3.1. Computational aspects

As we now have obtained proper redefinitions of higher-order flexibility and rigidity, we remain with the problem of how to
compute the number of coinciding realizations. For that we have to calculate the intersection multiplicity of the hypersurfaces
1,… , 𝑐𝑙 in the considered configuration 𝐗. For the determination of the flexion order we suggest the following 3-step algorithm:

1. According to the Lasker-Noether theorem every algebraic set is the union of a finite number of uniquely defined algebraic
sets known as irreducible components. They can be computed with an irredundant primary decomposition5 algorithm (see
e.g. [40]).

2. Then one has to test if the given realization is contained in an irreducible component of dimension 1 or higher. If this is the
case the configuration 𝐗 is assigned with the flexion order ∞ (in accordance with Fulton’s properties [41] of an intersection
number). If this is not the case then we identify all zero-dimensional primary ideals 𝐼1,… , 𝐼𝑠 containing 𝐗.

3. We compute the intersection multiplicity 𝑞𝑖 of 𝐗 with respect to each primary ideal 𝐼𝑖 for 𝑖 = 1,… , 𝑠. Then the intersection
multiplicity of 𝐗 with respect to the hypersurfaces 𝑐1,… , 𝑐𝑙 equals the sum 𝑞1 +⋯ + 𝑞𝑠.

Remark 9. According to Definition 3 the flexion order equals 𝑞1+⋯+𝑞𝑠− 1, but if one is interested in a more detailed analysis of the
configuration and its flexion order, then one should have a look at the sequence (𝑞1,… , 𝑞𝑠). It is well known that the irredundant
rimary decomposition has not to be unique; but in our case we are save as we assumed that all primary ideals containing 𝐗
re zero-dimensional. Therefore they have to correspond to minimal prime ideals and not to embedded ones, which are causing
on-uniqueness (cf. [40]). ⋄

In the following we sketch a possibility for the computation of 𝑞𝑖. Let us assume that the zero-dimensional primary ideal 𝐼𝑖 is
enerated by polynomials 𝑔1,… , 𝑔𝛾 . We distinguish the following two cases:

(a) If 𝛾 = 𝑚; i.e. 𝐼𝑖 is a complete intersection, then we can use theoretically the U-resultant method (see [42, §18], [43, §83]
or [44]), which works as follows: One adds the so-called U-polynomial

𝑔0 = 𝑢0 + 𝑢1𝑧1 +⋯ + 𝑢𝑚𝑧𝑚 (28)

to the set 𝑔1,… , 𝑔𝑚 and eliminates 𝑧1,… , 𝑧𝑚 by means of Macaulay resultant [45]. This results in a homogeneous polynomial
𝑅(𝑔0,… , 𝑔𝑚) where the degree equals the product of the degrees of 𝑔1,… , 𝑔𝑚. Moreover, 𝑅(𝑔0,… , 𝑔𝑚) factorizes into powers
of 𝑓 linear factors

𝑓
∏

𝑗=1

(

𝜁𝑗 ,0𝑢0 + 𝜁𝑗 ,1𝑢1 +⋯ + 𝜁𝑗 ,𝑚𝑢𝑚
)𝑞𝑗 . (29)

Then the 𝑗th common point of 𝑔1,… , 𝑔𝑚 has multiplicity 𝑞𝑗 and its coordinates are given by 𝑧𝑖 = 𝜁𝑗 ,𝑖∕𝜁𝑗 ,0 for 𝑖 = 1,… , 𝑚.
(b) If 𝛾 > 𝑚 one can use a generalization of the U-resultant method given by Lazard [46] to end up with an expression of the

form given in Eq. (29).

Let us demonstrate the above algorithm for the already mentioned Leonardo structure [18].

Example 5. According to Tarnai [7] these frameworks with a (2𝜆 − 1)-order flex can be generated by an iterative procedure. In
the following we demonstrate this for 𝜆 = 1, 𝜆 = 2 and 𝜆 = 3 (cf. Fig. 7), using the following coordinatization:

𝐹1 = (−1, 0)𝑇 , 𝐹2 = (1, 0)𝑇 , 𝐹3 = (0,−2)𝑇 , 𝐹4 = (2,−1)𝑇 , (30)

for the points pinned to the base and

𝑀1 = (𝑎, 𝑏)𝑇 , 𝑀2 = (𝑐 , 𝑑)𝑇 , 𝑀3 = (𝑒, 𝑓 )𝑇 , (31)

for the moving points.

∙ 𝜆 = 1: In this case one has to solve the two equations ‖𝑀1 − 𝐹𝑖‖
2 = 1 for 𝑖 = 1, 2, which read after homogenizing with ℎ as:

𝑎2 + 2𝑎ℎ + 𝑏2 = 0, 𝑎2 − 2𝑎ℎ + 𝑏2 = 0. (32)

The primary decomposition of the ideal spanned by these two equations yields the two primary ideals 𝐼11 = ⟨𝑎, 𝑏2⟩ and
𝐼12 = ⟨ℎ, 𝑎2+𝑏2⟩. Only 𝐼11 , which is zero-dimensional, contains the considered configuration 𝐗 having homogeneous coordinates
(ℎ ∶ 𝑎 ∶ 𝑏) = (1 ∶ 0 ∶ 0). Computation of the U-resultant (with Macaulay2) yields 𝑢20, which shows that the configuration has
multiplicity 2 and therefore a 1st-order flexion.

5 The prime decomposition is not valid as it does not preserve the intersection multiplicity.
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∙ 𝜆 = 2: In addition to Eq. (32) one has to consider the two conditions ‖𝑀2 −𝑀1‖
2 = 1 and ‖𝑀2 − 𝐹3‖

2 = 1, which read after
homogenizing with ℎ as:

𝑎2 − 2𝑎𝑐 + 𝑏2 − 2𝑏𝑑 + 𝑐2 + 𝑑2 − ℎ2 = 0, 𝑐2 + 𝑑2 + 4𝑑 ℎ + 3ℎ2 = 0. (33)

The primary decomposition (operated by Maple 2022) of the ideal spanned by Eqs. (32)–(33) yields the following primary
ideals

𝐼21 = ⟨𝑎, 𝑏2, 𝑏 − 2𝑑 − 2ℎ, 𝑏ℎ + 𝑐2⟩,

𝐼22 = ⟨ℎ, 𝑏2 + 𝑎2, 𝑑2 + 𝑐2, 𝑏𝑐 − 𝑎𝑑 , 𝑏𝑑 + 𝑐 𝑎⟩,
𝐼23 = ⟨𝑎3, ℎ2, 𝑎ℎ, 𝑎2𝑏, ℎ𝑏, 𝑏2 + 𝑎2, 𝑎𝑑 − 𝑏𝑐 − 2𝑐 ℎ, 𝑎𝑐 + 𝑏𝑑 + 2𝑑 ℎ, 𝑐2 + 𝑑2 − 2𝑎𝑐 − 2𝑏𝑑⟩,
𝐼24 = ⟨𝑎4, 𝑐5, ℎ6, 𝑎ℎ, 𝑎3𝑐4, 𝑎3𝑏𝑐 , ℎ𝑏𝑐2, 𝑏2 + 𝑎2, 𝑏ℎ3 + 𝑐2ℎ2, 2𝑐 𝑑 ℎ2 − 𝑏𝑐 ℎ2 + 2𝑐 ℎ3,

2𝑑 ℎ3 − 𝑏ℎ3 + 2ℎ4, 𝑐2 + 𝑑2 + 4𝑑 ℎ + 3ℎ2, 𝑎2𝑑 − 𝑎𝑏𝑐 − 2𝑏ℎ2 + 4𝑑 ℎ2 + 4ℎ3,
𝑎𝑐 + 𝑏𝑑 + 2𝑑 ℎ + 2ℎ2, 𝑎𝑐 𝑑 − 𝑏𝑐2 − 3𝑏ℎ2 − 2𝑐2ℎ + 2𝑑 ℎ2 + 2ℎ3⟩.

(34)

Again only 𝐼21 , which is zero-dimensional, contains the considered configuration 𝐗 having homogeneous coordinates (ℎ ∶ 𝑎 ∶
𝑏 ∶ 𝑐 ∶ 𝑑) = (1 ∶ 0 ∶ 0 ∶ 0 ∶ −1). Computation of the U-resultant (with Macaulay2) yields 24(𝑢0 − 𝑢4)4. This validates the
3r d-order flexion.

∙ 𝜆 = 3: In addition to Eqs. (32) and (33) one has to consider the two conditions ‖𝑀3 −𝑀2‖
2 = 1 and ‖𝑀3 − 𝐹4‖

2 = 1, which
read after homogenizing with ℎ as:

𝑐2 − 2𝑐 𝑒 + 𝑑2 − 2𝑑 𝑓 + 𝑒2 + 𝑓 2 − ℎ2, 𝑒2 − 4𝑒ℎ + 𝑓 2 + 2𝑓 ℎ + 4ℎ2. (35)

The primary decomposition (operated by Maple 2022) of the ideal spanned by Eqs. ((32),(33),(35)) contains only6 one primary
ideal with ℎ ≠ 0, which reads as:

𝐼31 = ⟨𝑎, 𝑏, 𝑐2, 𝑐 − 2𝑒 + 2ℎ, 2𝑒 − 𝑐 + 2𝑑 , 𝑒2 + 2𝑒𝑓 + 𝑓 2 − 2𝑐 𝑒 − 𝑐 𝑓 ⟩. (36)

But this cannot be correct as the U-resultant (with Macaulay2) yields 28(𝑢0−𝑢4+𝑢5−𝑢6)4, which shows only a 4-fold realization
at the considered configuration 𝐗 having homogeneous coordinates (ℎ ∶ 𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑 ∶ 𝑒 ∶ 𝑓 ) = (1 ∶ 0 ∶ 0 ∶ 0 ∶ −1 ∶ 1 ∶ −1).
We did a recheck following the idea of [47] by slightly perturbating the system of equations. Then it can easily be seen that
there are 8 solutions7 in the neighborhood of 𝐗.
This shows up a problem of the PrimaryDecomposition command in Maple 2022. In order to correct 𝐼31 of Eq. (36) one
has to replace 𝑏 by 𝑏2 (as this is the case in 𝐼11 and 𝐼21 ). Then the U-resultant (operated with Macaulay2) yields the expected
expression 216(𝑢0 − 𝑢4 + 𝑢5 − 𝑢6)8. ⋄

Example 6. Continuation of Example 4: The primary decomposition (operated by Maple 2022) of the ideal spanned by
qs. (23)–(26) yields only one zero-dimensional primary ideal 𝐼 containing the configuration 𝐗 of Eq. (27); namely

𝐼 = ⟨(1 + 𝑎0)2, (𝑎2 − 2)2, (3 − 𝑎2)2 + 𝑏22 − 1, (𝑎0 + 3)𝑎1 + 5 + (𝑏0 + 1)𝑏1,
(𝑎3 − 3)𝑎2 + 5 + (𝑏2 + 1)𝑏3, 𝑎1 + 𝑎0 + 𝑎3 + 𝑎2, 𝑎20 + 𝑏20 − 1,
(6 − 2𝑎3)𝑎2 + 𝑎23 − 2𝑏2𝑏3 + 𝑏23 − 10, 𝑎21 − 2𝑎0𝑎1 − 2𝑏0𝑏1 + 𝑏21 − 1,
(𝑎0 − 𝑎2 − 𝑎3 − 3)𝑎1 + (3 − 𝑎0 + 𝑎3)𝑎2 + (𝑏0 − 𝑏2 − 𝑏3 − 1)𝑏1+
(𝑏2 − 𝑏0 − 1)𝑏3 − 𝑎0𝑎3 − 𝑏0𝑏2 − 26⟩.

(37)

As this ideal has more than eight generators, we cannot apply the U-resultant method as done in Example 5. As we are not aware of
any implementation of the generalized U-resultant method of Lazard [46], we proceeded as follows: The ideal 𝐼 of Eq. (37) only has
the solution 𝐗 and we determined its multiplicity by the Maple command NumberOfSolutions8 of the PolynomialIdeals
package, which yields 6.

As one cannot trust for sure the PrimaryDecomposition command in Maple 2022 as demonstrated in Example 5, we did
again a recheck by the pertubation approach of [47], which confirms multiplicity 6. According to Definition 3 this implies a flexion
of order 5. ⋄

Example 7. We can also force the midpoint 𝐱3 of 𝐱1 and 𝐱2 of the original double-Watt mechanism of Connelly and Servatius
(cf. Example 1) to run on a vertical line (see Fig. 10). In analogy to Example 3 one can use Stachel’s approach, which yields the
sequence of flexion orders (𝑘, 3𝑘 − 1) for odd 𝑘 and (𝑘, 3𝑘 + 𝑘

2 − 1) for even 𝑘.
Similar considerations as in Example 6 show, that in this case seven solutions9 coincide, yielding flexion order 6. ⋄

6 The other primary ideals with ℎ = 0 are not given due to their length.
7 This number can additionally be verified by the IntersectionMultiplicity command implemented in Maple 2022.
8 In Maple 2022 there is no documentation on how the command NumberOfSolutions works.
9 A slight perturbation of the system of equations shows that seven solutions converge against the given configuration. Note that in this case the
rimaryDecomposition command in Maple 2022 does not work as the resulting solution is only sixfold and also the IntersectionMultiplicity
ommand fails for all possible 8! = 40320 permutations.
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Fig. 10. Double-Watt mechanism of Connelly and Servatius extended by the guidance of the midpoint 𝐱3 of 𝐱1 and 𝐱2 along a straight line.

Remark 10. The flexion order of the frameworks discussed in Examples 6 and 7 can be raised from 5 and 6 to 9 and 14, respectively,
y modifying the dimension of the used Watt-linkage in a way that the coupler is vertical (i.e. the coupler is tangential to the
onsidered branch) but the arms remain horizontal in the considered configuration. ⋄

Clearly as the algorithm given in Section 3.1 is based on symbolic methods from computer algebra, we are faced with
computational limits. But beside this problem the flexion order of a given configuration can be computed with the presented tools in
all cases from the pure theoretical point of view. Another problem is the computation of configurations with a higher-order flexion,
which is discussed in the next section.

4. Computing 3-RPR configurations with a higher-order flexion

In this section we demonstrate, how the idea of Sabitov’s finite algorithm for testing the bendability of a polyhedron [5, page
31] can be used to compute iteratively configurations with a higher-order flexion. We do this exemplarily for a planar 3-RPR
anipulator consisting of a moving triangle which is connected by three legs to the fixed base. The legs are jointed to the platform

nd the base by rotational (R) joints and the corresponding anchor points are denoted by 𝑚𝑖 and 𝑀𝑖, respectively, for 𝑖 = 1, 2, 3. The
ength 𝑟𝑖 of the legs can actively be controlled by prismatic (P) joints.

Our choice of the example was motivated by the following statement of Husty [48] that 3r d-order flexibility ‘‘can be reached by
ny design because the three necessary conditions could be imposed on the input parameters only. Unfortunately neither the conditions nor
he number of corresponding poses are known’’. We will clarify this in Section 4.1.

Note that we can interpret the triangular base and platform either as (a) triangular plates or (b) triangular bar structures. In case
(a) the 3-RPR manipulator can be seen as a pin-jointed bar-plate framework and in case (b) as a classical bar-joint framework. In
the following Sections 4.1 and 4.2 we distinguish these two interpretations as they will effect the discussion of configurations with
 higher-order flexion. But let us start with some review on this topic.

As already mentioned in Section 2.1 Wohlhart [23] followed a kinematic version of Kuznetsov’s approach for the study of
higher-order flexible 3-RPRs (interpreted as bar-plate frameworks). Stachel studied the geometry of higher-order flexible 3-RPRs
(interpreted as bar-joint frameworks) in [24], where he has shown the following result for a configuration of flexion order (1, 𝑛):

If one disconnects the leg 𝑀𝑖𝑚𝑖 from the platform, then the trajectory of the point 𝑚𝑖 under the resulting four bar motion has 𝑛th-order
contact with the circle centered in 𝑀𝑖 having radius 𝑟𝑖.10

Moreover, this result implies that in this configuration (𝑛 + 1) realizations coincide, which also goes along with our redefinition
given in Definition 3. Based on this characterization Husty [48] has given an approach for the computation of 3-RPR configurations
interpreted as bar-plate frameworks) with flexion order 5, which has to be done carefully as it can also yield pseudo-solutions.11

4.1. Bar-plate framework

Let us start with the computation of 𝑉1 for these mechanisms, which can be done in several ways. For the problem at hand we
tress an approach of Husty and Gosselin [50], which is recapped next:

The coordinates (𝑎𝑖, 𝑏𝑖)𝑇 of a point 𝑚𝑖 of the moving platform with respect to the moving frame can be transformed into
oordinates of the fixed frame using the so-called Blaschke-Grünwald parameters (𝑞0 ∶ 𝑞1 ∶ 𝑞2 ∶ 𝑞3). They can be seen as homogeneous
oordinates of points of a projective 3-dimensional space 𝑃 3. It is well known, that there is a bijection between points of this
pace sliced along the line 𝑞0 = 𝑞1 = 0 and the planar motion group SE(2). The slicing has to be done to ensure that the 4-tuple
𝑞0 ∶ 𝑞1 ∶ 𝑞2 ∶ 𝑞3) can be normalized by 𝑐4 = 0 with

𝑐4 ∶= 𝑞20 + 𝑞21 − 1. (38)

10 According to [24, Lem. 1] a corresponding result also holds for Stewart–Gough platforms, which goes along with the definition of an ‘‘order of a configuration’’
iven by Sarkissyan and Parikyan [49] in 1990 (see also Wohlhart [23, page 1116]).
11 Note that the example illustrated in Fig. 8 of [48] does not show a 5th-order flexion, as it is not a sixfold solution of the direct kinematics problem. The

direct kinematic splits up into a fourfold solution and a twofold one. Therefore the two corresponding configurations are flexible of order 3 and 1, respectively.
11 
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If this normalization condition holds the above mentioned transformation reads as follows:
(

𝑎
𝑏

)

↦

(

𝑞20 − 𝑞21 −2𝑞0𝑞1
2𝑞0𝑞1 𝑞20 − 𝑞21

)

(

𝑎
𝑏

)

+
(

2𝑞1𝑞2 + 2𝑞0𝑞3
2𝑞1𝑞3 − 2𝑞0𝑞3

)

. (39)

Using these Blaschke-Grünwald parameters the condition that a point 𝑚𝑖 is located on a circle with radius 𝑟𝑖 around the fixed point
𝑀𝑖 with coordinates (𝐴𝑖, 𝐵𝑖)𝑇 with respect to the fixed frame, can be written as 𝑐𝑖 = 0 with:

𝑐𝑖 ∶=2𝐴𝑖𝑎𝑖𝑞
2
1 − 2𝐴𝑖𝑎𝑖𝑞

2
0 + 4𝐴𝑖𝑏𝑖𝑞0𝑞1 − 4𝐵𝑖𝑎𝑖𝑞0𝑞1 − 2𝐵𝑖𝑏𝑖𝑞

2
0 + 2𝐵𝑖𝑏𝑖𝑞

2
1+

𝑎2𝑖 𝑞
2
0 + 𝑎2𝑖 𝑞

2
1 + 𝑏2𝑖 𝑞

2
0 + 𝑏2𝑖 𝑞

2
1 − 4𝐴𝑖𝑞0𝑞3 − 4𝐴𝑖𝑞1𝑞2 + 4𝐵𝑖𝑞0𝑞2 − 4𝐵𝑖𝑞1𝑞3+

4𝑎𝑖𝑞0𝑞3 − 4𝑎𝑖𝑞1𝑞2 − 4𝑏𝑖𝑞0𝑞2 − 4𝑏𝑖𝑞1𝑞3 + 𝐴2
𝑖 + 𝐵2

𝑖 + 4𝑞22 + 4𝑞23 − 𝑟2𝑖

(40)

The information of the leg lengths 𝑟𝑖 complete the intrinsic metric of the framework. Then its realizations12 𝐺(𝐗) are obtained as
he solutions of the four algebraic equations 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 0. It is well-known that there can only exist six solutions thus a
th-order flex (according to Definition 3) implies a continuous flexion; i.e. 𝑛∗ = 6.

Now we are looking for poses of the platform yielding an infinitesimal flexibility of the framework. As described in Section 1.1,
these configurations are characterized by the fact that the determinant of the rigidity matrix 𝐑𝐺(𝐗) vanishes, which is given by

𝐑𝐺(𝐗) = (∇𝑐1,∇𝑐2,∇𝑐3,∇𝑐4) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕 𝑐1
𝜕 𝑞0

𝜕 𝑐2
𝜕 𝑞0

𝜕 𝑐3
𝜕 𝑞0

𝜕 𝑐4
𝜕 𝑞0

𝜕 𝑐1
𝜕 𝑞1

𝜕 𝑐2
𝜕 𝑞1

𝜕 𝑐3
𝜕 𝑞1

𝜕 𝑐4
𝜕 𝑞1

𝜕 𝑐1
𝜕 𝑞2

𝜕 𝑐2
𝜕 𝑞2

𝜕 𝑐3
𝜕 𝑞2

𝜕 𝑐4
𝜕 𝑞2

𝜕 𝑐1
𝜕 𝑞3

𝜕 𝑐2
𝜕 𝑞3

𝜕 𝑐3
𝜕 𝑞3

𝜕 𝑐4
𝜕 𝑞3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(41)

according to Eq. (2). Then the shakiness variety 𝑉1 equals the zero set of 𝑠 ∶= det (𝐑𝐺(𝐗)
)

. According to [51] this variety has only
singularities for some special designs beside the singularities resulting from the parametrization, which equal the line 𝑞0 = 𝑞1 = 0.
Therefore in the generic case each point of 𝑉1 sliced along the line 𝑞0 = 𝑞1 = 0 is a regular one. Thus according to Lemma 1 the
tangent planes to 𝑐1,… , 𝑐4 have a line in common. The orthogonality of this line to ∇𝑠 is equivalent to the condition

𝑟𝑘(∇𝑐1,∇𝑐2,∇𝑐3,∇𝑐4,∇𝑠) = 3 (42)

which implies the four conditions 𝑠1 = 𝑠2 = 𝑠3 = 𝑠4 = 0 with:

𝑠1 ∶= det (∇𝑐2,∇𝑐3,∇𝑐4,∇𝑠), 𝑠2 ∶= det (∇𝑐1,∇𝑐3,∇𝑐4,∇𝑠), (43)

𝑠3 ∶= det (∇𝑐1,∇𝑐2,∇𝑐4,∇𝑠), 𝑠4 ∶= det (∇𝑐1,∇𝑐2,∇𝑐3,∇𝑠). (44)

Then 𝑉2 is the zero set of the ideal

𝐼2 = ⟨𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4⟩. (45)

Iteration of the above procedure yields the conditions 𝑠1,𝑖 = 𝑠2,𝑖 = 𝑠3,𝑖 = 𝑠4,𝑖 = 0 with:

𝑠1,𝑖 ∶= det (∇𝑐2,∇𝑐3,∇𝑐4,∇𝑠𝑖), 𝑠2,𝑖 ∶= det (∇𝑐1,∇𝑐3,∇𝑐4,∇𝑠𝑖), (46)

𝑠3,𝑖 ∶= det (∇𝑐1,∇𝑐2,∇𝑐4,∇𝑠𝑖), 𝑠4,𝑖 ∶= det (∇𝑐1,∇𝑐2,∇𝑐3,∇𝑠𝑖), (47)

for 𝑖 = 1,… , 4. Then 𝑉3 is the zero set of the ideal

𝐼3 = ⟨𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠1,1,… , 𝑠4,1, 𝑠1,2,… , 𝑠4,2, 𝑠1,3,… , 𝑠4,3, 𝑠1,4,… , 𝑠4,4⟩. (48)

In addition the singular points of 𝑉2 have to be considered separately. As 𝑉2 is a curve in 𝑃 3 a singularity corresponds to the case

𝑟𝑘(∇𝑠,∇𝑠1,∇𝑠2,∇𝑠3,∇𝑠4) = 1. (49)

In the following we apply this procedure to a concrete example.

Example 8. The geometry of the platform and base is given by:
𝐴1 = 0, 𝐵1 = 0, 𝐴2 = 3, 𝐵2 = 0, 𝐴3 = 1, 𝐵3 = 3,
𝑎1 = 0, 𝑏1 = 0, 𝑎2 = 1, 𝑏2 = 0, 𝑎3 = 2, 𝑏3 = 1. (50)

For this values we obtain

𝑠 = 5𝑞30𝑞2 − 13𝑞20𝑞1𝑞2 − 4𝑞20𝑞1𝑞3 + 5𝑞20𝑞22 + 7𝑞0𝑞21𝑞2 + 11𝑞0𝑞21𝑞3 − 6𝑞0𝑞1𝑞22 − 6𝑞0𝑞1𝑞23 + 10𝑞31𝑞3 − 5𝑞21𝑞23 . (51)

In the next step we consider the ideal 𝐼2 given in Eq. (45). By means of Hilbert dimension it can be verified that 𝑉2 is a curve in 𝑃 3.
oreover, the degree of 𝑉2 is 18. But 𝑉2 splits up into a curve 𝑔 of degree 14 and the line 𝑞0 = 𝑞1 = 0 of multiplicity 4, which can be

een as follows: We add the expression (𝑞20 + 𝑞21 )𝑢− 1 to the ideal 𝐼2 and eliminate the unknown 𝑢 (also known as the Rabinowitsch

12 In this context the realizations are also known as solutions of the direct kinematics problem.
12 
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Table 1
All real RPR-configurations with a 3r d-order flex for the geometry given in Eq. (50), which are illustrated in Fig. 11.
# 𝑞0 𝑞1 𝑞2 𝑞3 Fig. 11

1 0.612011087187 0.790849182309 −1.605503824990 0.608460800603 (a)
2 −0.335887854729 0.941901984839 −0.360610831902 2.136077449950 (b)
3 0.933493296982 0.358594847269 −0.518343596625 0.387989956333 (c)
4 −0.351833124675 0.936062739553 1.595410958064 1.897762719666 (d)
5 0.926572314644 0.376116665058 0.064697675622 −0.063224689351 (e)
6 −0.985793710397 0.167960592226 0.665253728293 2.206010002417 (f)
7 −0.388425191626 0.921480260510 0.083061189759 0.100978528116 (g)
8 −0.430899664574 0.902399844342 1.635384670001 −0.158191823892 (h)
9 0.700957636960 0.713202910248 1.476082504043 0.619974829761 (i)
10 −0.981604898439 0.190923606082 0.557314730844 −1.086046127580 (j)

Fig. 11. Visualization of the 10 configuration with a third-order flex given in Table 1.

trick). The variety of the resulting elimination ideal is only of degree 14. Moreover, it can be checked that only (𝑞0 ∶ 𝑞1) = (0 ∶ 0)
fulfill the equations 𝑠 = 𝑠1 = 𝑠2 = 𝑠3 = 𝑠4 = 0 but not (𝑞0 ∶ 𝑞1) = (1 ∶ ±𝐼). Due to the slicing of 𝑃 3 along 𝑞0 = 𝑞1 = 0 we can restrict to
he curve 𝑔 of degree 14. It can easily be checked that 𝑔 does not contain any singular points by applying the criterion of Eq. (49).

In the last step we consider the ideal 𝐼3 given in Eq. (48). 𝑉3 again contains the line 𝑞0 = 𝑞1 = 0 with multiplicity 3. We can
get rid of this line in the same way as done in the case of 𝑉2 (Rabinowitsch trick). The elimination ideal then yields 32 solutions.
We can even eliminate 𝑞0 and 𝑞3 from the set of equations generating 𝐼3 to end up with the polynomial of degree 32, which is
given in Appendix. By setting 𝑞1 = 1 we can easily check that it has 10 real solutions, which are given in Table 1. Moreover, the
corresponding configurations are illustrated in Fig. 11. In addition, the shakiness variety 𝑉1, the curve 𝑔 and the 10 configurations
are illustrated in Fig. 8 for 𝑞0 = 1.

Finally it should be noted, that it remains unclear if examples with 32 real solutions exist. ⋄

4.2. Bar-joint framework

For the interpretation of the 3-RPR mechanism as bar-joint framework there exists 24 realizations, as the platform triangle as
ell as the base triangle can flip. But this does not imply that 𝑛∗ = 24 holds true for all cases, as the following study will show.

As we assumed in Section 1 that bar lengths are always non-zero we can assume a rescaling of the framework such that the bar
between 𝑀1 and 𝑀2 has length one. Then the pin-joints can be coordinatized as follows with respect to the fixed frame:

𝑀1 = (0, 0)𝑇 , 𝑀2 = (1, 0)𝑇 , 𝑀3 = (𝐴3, 𝐵3)𝑇 , 𝑚𝑗 = (𝑎𝑗 , 𝑏𝑗 )𝑇 , (52)

for 𝑗 = 1, 2, 3. If the remaining 8 bar lengths are known they imply 8 distance equations 𝑐1,… , 𝑐8. The solutions of this set of
equations correspond to realizations of this isostatic bar-joint framework. Then we can compute the (8 × 8) rigidity matrix according
13 
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to Eq. (2). Again the shakiness variety 𝑉1 is given as the zero set of det
(

𝐑𝐺(𝐗)
)

which splits up into the following three factors 𝑠1𝑠2𝑠3
with:

𝑠1 =𝐵3,

𝑠2 =𝑎1𝑏2 − 𝑎1𝑏3 − 𝑎2𝑏1 + 𝑎2𝑏3 + 𝑎3𝑏1 − 𝑎3𝑏2,

𝑠3 =𝐴3𝑎1𝑏2𝑏3 − 𝐴3𝑎2𝑏1𝑏3 − 𝐵3𝑎1𝑎3𝑏2 + 𝐵3𝑎2𝑎3𝑏1−

𝐴3𝑏1𝑏2 + 𝐴3𝑏1𝑏3 + 𝐵3𝑎1𝑏2 − 𝐵3𝑎3𝑏1 − 𝑎1𝑏2𝑏3 + 𝑎3𝑏1𝑏2

(53)

Their geometric interpretation is that for 𝑠1 = 0 (resp. 𝑠2 = 0) the base (resp. platform) degenerates into a line.13 For 𝑠3 = 0 the
three legs belong to a pencil of lines. Let us denote the varieties 𝑠𝑖 = 0 by 𝑆𝑖 for 𝑖 = 1, 2, 3. Now we can easily identify the following
regions of 𝑉1 where different values for 𝑛∗ hold true:

𝑆1 ⧵ (𝑆2 ∪ 𝑆3) 𝑛∗ = 2 (54)

𝑆2 ⧵ (𝑆1 ∪ 𝑆3) 𝑛∗ = 2 (55)

𝑆3 ⧵ (𝑆1 ∪ 𝑆2) 𝑛∗ = 6 (56)

(𝑆1 ∩ 𝑆2) ⧵ 𝑆3 𝑛∗ = 4 (57)

(𝑆1 ∩ 𝑆3) ⧵ 𝑆2 𝑛∗ = 12 (58)

(𝑆2 ∩ 𝑆3) ⧵ 𝑆1 𝑛∗ = 12 (59)

𝑆1 ∩ 𝑆2 ∩ 𝑆3 𝑛∗ = 24 (60)

Remark 11. We are aware of the fact that no point on 𝑆1 ⧵ (𝑆2 ∪𝑆3) or 𝑆2 ⧵ (𝑆1 ∪𝑆3) can reach a higher flexion order than 1, as a
riangle does not allow an isometric deformation according to the side-side-side theorem. Therefore 𝑛∗ = 2 of Eqs. (54) and (55) as

well as 𝑛∗ = 4 of Eq. (57) can never be reached and are only of theoretical nature. ⋄

In the following we give the construction of configurations with the highest possible flexion order. Let us assume that the platform
and the base triangles degenerate into lines 𝑙 and 𝐿, respectively. A necessary condition for a configuration of flexion order 23, is
that 𝑙 and 𝐿 coincide. If this would not be the case one can reflect the configuration on one of these lines to get another realization,
which contradicts the assumption that all 24 realization coincide.

Remark 12. Interestingly such a configuration is not only a singular point of 𝑉1, as it is located in the intersection of 𝑆1, 𝑆2 and
3 but already a singular point of 𝑆3 according to [51]. ⋄

Therefore a 23r d-order flexible bar-joint framework follows from a 5th-order flexible plate-bar framework, where all six anchor
oints are located on a line. This problem can be solved following the already mentioned approach of Husty [48]. In this way the

following example was computed.

Example 9. The geometry of the base is given by

𝑀1 = (0, 0)𝑇 , 𝑀2 = (1, 0)𝑇 , 𝑀3 = (5, 0)𝑇 (61)

with respect to the fixed system and the geometry of the platform is given by

𝑚1 = (0, 0)𝑇 , 𝑚2 = ( 12 + 2
√

10
5 −

√

120
√

10−255
10 , 0)𝑇 , 𝑚3 = (3, 0)𝑇 (62)

with respect to the moving frame. The information on the intrinsic metric of the framework is completed by the following lengths
of the three legs:

𝑟1 =
3
2 + 2

√

10
5 −

√

120
√

10−255
10 , 𝑟2 = 2, 𝑟3 =

7
2 + 2

√

10
5 −

√

10
√

48
√

10−102
20 . (63)

This configuration is illustrated in Fig. 12 where also pictures of a model can be seen, which was produced for validation of the
higher-order flexion. ⋄

Remark 13. It should be possible to determine the set of these frameworks with flexion order 23 in full generality (as only 4
nknowns are involved), which is dedicated to future research. ⋄

Note that the physical model of Example 9 allows a large flexion as illustrated in Fig. 12 due to non-destructive elastic
deformations of material or backlash/clearance in hinges. Therefore it can be seen as a quasi-mechanisms (also known as model-
lexors), which can be characterized by the fact that minor changes in the intrinsic metric of the geometric structure have significant

effects on its spatial shape [52]. Especially, polyhedral model flexors are of great interest for real world applications in the context

13 A triangle and its mirrored version can only coincide if it degenerates into a line.
14 
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Fig. 12. (left) Visualization of the bar-joint framework with a flexion of order 23. The green curve shows the coupler curve of the point 𝑚1, which results by
giving away the first leg. The red curve is a circle with radius 𝑟1 and midpoint 𝑀1. The circle intersects the green coupler curve in 𝑚1 with multiplicity 6. (right)
Model of the bar-joint framework with flexion order 23, which is constructed using multiple layers (bottom). The model allows a large flexion as illustrated in
the top. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of inflatable structures [53], as they do not possess the property of constant volume during the flexion in contrast to continuous
flexible polyhedra for which the Bellows conjecture holds true. Therefore, quasi-mechanisms are an important practical application
of higher-order flexibility beside the construction of overconstrained mechanisms mentioned in Section 2.1.

5. Final remarks, open problems and future work

In the paper we presented a global approach for a proper redefinition of higher-order flexibility and rigidity. We only discussed
planar frameworks, but the proposed algebraic method works for frameworks of any dimension. Especially, it is planned to apply
the iterative procedure of Section 4 also to the spatial version of 3-RPR manipulators, which are Stewart–Gough platforms. Any such
manipulator (interpreted as bar-body framework) has to have configurations with a 6th-order flexion, whose detailed investigation is
dedicated to future research. Furthermore we are interested in the highest possible flexion order14 of Stewart–Gough configurations
and their computation.

Let us close the paper with the following list of final remarks and open problems:

1. Note that the presented approach does not only work for bar-joint frameworks but it can be applied to any framework with
algebraic joints; i.e. the relative position of two jointed rigid bodies can be described algebraically. But it remains open to
extend it to frameworks with non-algebraic joints (cf. [7]).

2. With our approach we were able to give a proper redefinition of higher-order flexibility and rigidity, but the computation of
the associated (𝑘, 𝑛)-flex(es) in dependence of the time parameter 𝑡 remains open and is dedicated to future research. We plan
to solve this problem by means of tropical geometry and Puiseux series as this promising approach was already successfully
used in [54] for analyzing the configuration space of mechanisms.
Moreover, for this task we also want to generate further examples (e.g. higher-order cusp mechansims) by following an idea
of Stachel [19] using the two-point guidance method, where the points 𝐱1(𝑡) and 𝐱2(𝑡) are in (higher-order) singularities of
their paths at 𝑡 = 0.

3. Our approach operates over C and does not take reality issues into account so far (for a local attempt see [35]). For example, a
planar 4-bar mechanism where the bar lengths 𝑎, 𝑏, 𝑐 , 𝑑 fulfill the equation 𝑎+𝑏+𝑐 = 𝑑 has a 1-dimensional set of configurations
which are all complex with exception of one single configuration 𝐗. Our algorithm would assign to 𝐗 the flexion order ∞
but it is only shaky over R. We suggest the following procedure for resolving this minor problem.15 Namely, instead of just
assigning the value ∞ as flexion order, we propose to consider the corresponding (𝑘, 𝑛)-flex(es) mentioned in item 2 above.
More precisely we are only interested in the degree of the highest possible real flexion. This number can then be used to
assign a real flexion order to the configuration.
Note that the analysis of a framework configuration 𝐗, which corresponds to an isolated real solution within a higher-
dimensional complex configuration set, has to be handled with special care, as in this case 𝐗 can also arise as an embedded
component in the complex solution set (cf. [40]). Then the irredundant primary decomposition proposed in the algorithm
of Section 3.1 is not unique anymore (cf. Remark 9). The study of further examples in this context is dedicated to future
research.

14 According to Definition 3 its upper bound is 39 but a configuration only depends on 30 unknowns (up to Euclidean motions), which can be adjusted. From
that one might expect a maximal flexion order of 30.

15 Note that this special case is circumvented by the formulation of Definition 3, as we assumed that the considered configuration does not belong to a
continuous flexion of the framework (over C).
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4. The algorithm presented in Section 3.1 for determining the intersection multiplicity requires global constructions (like primary
decomposition and U-resultant method), but the multiplicity is a local property according to [44]. Therefore again one can
think about using local methods (e.g. Serre’s Tor formula) to determine this number. It remains open if these local methods
can also detect a continuous flexion and if they work in all cases (like the presented global approach).
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Appendix. Polynomial of degree 32
516969488961264858296977044𝑞321 − 9280309213987777419484380570𝑞311 𝑞2+

43526270232117271834556502073𝑞301 𝑞22 − 45280692730479399589412412168𝑞291 𝑞32−

71413409266992435779029661320𝑞281 𝑞42 + 733787582609859082926495640512𝑞271 𝑞52−

1216057499416546331816336021712𝑞261 𝑞62 + 1178525008268380508404672967040𝑞251 𝑞72+

304983853881480483586054315776𝑞241 𝑞82 + 373067534199906557276943674880𝑞231 𝑞92−

3506865857305108140637354422016𝑞221 𝑞102 + 1515457906293380496214847031296𝑞211 𝑞112 +

2762451499211791028130610419712𝑞201 𝑞122 − 1507176820840441939654068420608𝑞191 𝑞132 −

1140312255149192283851181674496𝑞181 𝑞142 + 370917717379345332121827704832𝑞171 𝑞152 +

540356234313346392866675687424𝑞161 𝑞162 + 218622983025805473045891121152𝑞151 𝑞172 −

513129700297250458379419975680𝑞141 𝑞182 − 146998314630604587702018375680𝑞131 𝑞192 +

453229949991189146809689178112𝑞121 𝑞202 − 132638145759863692629486075904𝑞111 𝑞212 −

148240985447636170928282402816𝑞101 𝑞222 + 124425897331594410107904983040𝑞91𝑞232 −

12386269734048188883819036672𝑞81𝑞
24
2 − 27049821097913736077418430464𝑞71𝑞252 +

14831418158089604670896996352𝑞61𝑞
26
2 − 1721669183596659665641930752𝑞51𝑞272 −

1309349875968694100160413696𝑞41𝑞
28
2 + 691975482131520534161129472𝑞31𝑞292 −

156210223994716269983039488𝑞21𝑞
30
2 + 18063680521134606070579200𝑞1𝑞312 −

874805860916262711853056𝑞322 = 0

Data availability

Data will be made available on request.
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