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ABSTRACT
The performance of multivariate calibration models ŷ = f(x) for the prediction of a numerical property y from a set of x-variables 
depends on the type of scaling of the x-variables. Common scaling methods are autoscaling (dividing the centered x by its stand-
ard deviation s) and Pareto scaling (dividing the centered x by sP with P = 0.5). The adjusted Pareto scaling presented here varies 
the exponent P between 0 (no scaling) and 1 (autoscaling) with the aim of obtaining an optimum prediction performance for 
ŷ. Related scaling methods based on the variable spread are range scaling and vast scaling; while level scaling is based on the 
location (central value) of the variable. These scaling methods and robust versions are compared for models created by partial 
least-squares (PLS) regression. The applied strategy repeated double cross validation (rdCV) evaluates the model performance 
for test set objects and considers its variability. Results with three data sets from chemistry show: (a) the efficacy of the different 
scaling methods depends on the data structure; (b) optimization of the Pareto exponent P is recommended; (c) range scaling or 
vast scaling may be better than adjusted Pareto scaling; (d) in general a heuristic search for the best scaling method is advisable. 
Overall, the consideration of different variants of scaling allow for a flexible adjustment of the variable contributions to the cali-
bration model.

1   |   Introduction

Empirical, multivariate models ŷ = f(x) for calibration or classi-
fication are well established in chemometrics and other areas of 
data science. The performance of such models for predicting a 
numerical property y from a set of x-variables may heavily de-
pend on the data pretreatment, particularly on the scaling of 
the x-variables. Widely used are scaling methods based on the 
spread of the x-variables, and usually the variables are processed 
separately but by the same method. Autoscaling uses the ratio of 
the centered x and the standard deviation s of x; thus, the scaled 
variables have equal spread (s = 1) and mathematically an equal 
influence on the model. Pareto scaling uses the ratio of the cen-
tered x and s0.5; thus, the strong influence of variables with a 
high variance is reduced but not eliminated. Here, we suggest a 
generalization of this type of scaling (calling it “adjusted Pareto 
scaling”) defined by using the ratio of the centered x and sP with 
the Pareto exponent P varied between 0 (no scaling) via 0.5 

(standard Pareto scaling) to 1 (autoscaling). An optimum value 
of P for best model performance can be found by evaluating 
models made from data scaled with P varying between 0 and 
1, for instance in steps of 0.1. Related scaling methods [1] based 
on the spread are range scaling (using the ratio of the centered 
variable and the range of the variable) and vast scaling (using 
the ratio of the centered variable and the relative standard devi-
ation). Furthermore, level scaling uses the ratio of the centered 
variable and the center of the variable (for instance the median), 
thus not considering the spread. Details of these scaling meth-
ods are discussed in Section 2.1, and applications in multivariate 
calibration in Section 3.

Linear calibration models for modeling a numerical property y 
by a set of x-variables are calculated here by partial least-squares 
(PLS) regression. The model performances are compared by 
using the criterion standard error of prediction (SEP), which is 
defined as the standard deviation of prediction errors of test set 
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objects. PLS is combined with the strategy repeated double cross 
validation (rdCV) [2, 3], which is distinguished by (a) separating 
the estimation of an optimum model complexity (number of PLS 
components) from the estimation of the prediction performance, 
and (b) estimating the variability of SEP for different random 
splits of the data into calibration sets and test sets. Details of 
the use of PLS and rdCV are given in Section 2.2; a summary of 
rdCV is in Appendix 2.

The above mentioned scaling methods are applied for mak-
ing calibration models from three data sets from chemistry 
(Section 2.3) with the results presented in Section 3. Aim of the 
study was demonstrating effects of adjusting Pareto scaling and 
comparing it with range scaling, vast scaling and level scaling, 
including robust method versions. Computations were per-
formed within the programming environment R [4], particularly 
using the packages pls [5, 6] and chemometrics [7, 8]. The used 
symbols and basic definitions are given in Appendix 1.

2   |   Methods and Data Sets

2.1   |   Centering and Scaling

The notation used and the method descriptions are mainly 
based on publications by van den Berg et al. [9] and by Walach 
et al. [1], dealing with multivariate classification in metabolom-
ics; this work, however, refers to calibration with examples from 
chemical technology, analytical chemistry and quantitative 
structure–property relationships.

Centering of the x-variables is required for the scaling methods 
applied here. The centered value of an x-variable is xC = x − c with 
the central value c of the variable given by the classical arithme-
tic mean, cMEAN, or by the robust estimation median, cMED. Note 
that the central value may be misleading for asymmetrically dis-
tributed variables; for instance a variable with more than 50% 
zeros gives a median of zero, as for instance is the case for 44 
molecular descriptors in the used data set PAC-RI (Section 2.3).

Autoscaling is widely applied in chemometrics with the scaled 
variable given by xAUTOSCALED = xC/s. The spread (dispersion) 
measure s is typically the classical empirical standard devia-
tion, sSD, of variable x. Alternatively, a robust measure can be 
used, for instance derived from the interquartile distance, IQR 
as sIQR = 0.7413 IQR (see Appendix  1). Autoscaling eliminates 
the influence of different units of the variables; autoscaled vari-
ables have all unit variance (unit variance scaling) and are in 
this sense equal important for model building. A disadvantage 
of autoscaling is a blow-up of variables with small values possi-
bly originating from noise.

Pareto scaling is similar to autoscaling, however, uses the 
square root of the spread measure as scaling parameter with the 
scaled variable defined as xPARETO = xC/sP, with P = 0.5. Thus, the 
scaling effect is weaker than with autoscaling, noise is less am-
plified, and variables with a high original variance retain part 
of their higher importance for the model. For a robust Pareto 
scaling xC may be calculated as xMED instead of xMEAN, and s 
may be sIQR instead of sSD. Pareto scaling is widely used in bio-
marker identification [1, 10, 11], multivariate classification of 

metabolomics data [12], and has been proposed for exploratory 
data analysis [13, 14]. Pareto scaling was established 1993 by 
Svante Wold et al. [15] and named in honor of the scientist and 
economist Vilfredo Pareto (1848–1923), as reported elsewhere 
[16–18].

Adjusted Pareto scaling is proposed here as a generalization of 
the standard Pareto scaling by systematically varying the Pareto 
exponent P between 0 and 1 as discussed by I. Noda [18]. P = 0 
means no scaling, P = 0.5 is standard Pareto scaling, and P = 1 is 
autoscaling. Here, we vary P between 0 and 1 in steps of 0.1 for 
finding an optimum value for P.

Range scaling relates the centered value xC to the range d of the 
variable as xRANGE = xC/d; with the range defined as the differ-
ence between appropriate high and low values of the x-variable 
(xHIGH, xLOW) [19]. Using the minimum and maximum of x for 
the range borders is sensitive to outliers. Here, a specific low 
quantile qMIN of the x-variable is used for xLOW and 1 − qMIN for 
xHIGH. An optimum range can be found by varying qMIN between 
for instance 0 and 0.1 in steps of 0.01; a robust version of range 
scaling uses the median for xC. A disadvantage of range scaling 
is a blow-up of variables with small values possibly originating 
from noise.

Vast scaling [20] (variable stability scaling) is an extension of 
autoscaling by using the relative standard deviation (coefficient 
of variation, ratio of spread measure and central value) of the 
variable, defined as cV = s/c. The scaled variable is xVAST = xC/ 
(s. cV); again the robust estimations cMED and sIQR can be used 
for central value and spread, respectively. Variables with a low 
cV are considered more “stable” and obtain an increased impor-
tance by vast scaling.

Level scaling relates the centered value xC to the central value c 
of the variable as xLEVEL = xC/c; and thus, xLEVEL is, in contrary to 
the other scaling methods used here, not based on a spread mea-
sure but on a location (size) measure [9]. Because the method 
is sensitive to outliers, the median is preferably used as central 
value; however, a very asymmetric distribution of the data may 
cause a zero median making this approach not applicable. Level 
scaling is recommended for searching variables possessing a 
high importance for the model, for instance biomarkers [1].

2.2   |   Model Creation and Evaluation

Multiple linear calibration models for the prediction of a depen-
dent variable y from a set of m independent variables x1 to xm 
are created here by partial least-squares (PLS) regression [8] as 
implemented in the R software package pls, using the function 
plsr [5, 6]. The applied strategy repeated double cross validation 
[2] (rdCV) separates the estimation of the optimum model com-
plexity (optimum number of PLS components, AOPT), from the 
estimation of the prediction performance for new cases.

The performance criterion used is the standard deviation of pre-
diction errors for test set objects, usually called standard error of 
prediction (SEP). Because the prediction errors are often approx-
imately normal distributed, the range ± 2 SEP estimates a 95% 
confidence interval for predicted values of y.
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The parameters of the rdCV used are as follows: The number of 
segments for the outer CV loop (split into calibration sets and 
test sets) is zTEST = 3, of the inner CV loop (estimation of AOPT 
for a training set) is zCALIB = 7. For PLS we use the maximum 
number of components min(15, m). The number of repetitions is 
nREP = 50. We obtain nREP × zTEST = 150 estimations of the opti-
mum number of PLS components; the most frequent value, AOPT, 
is used for calculating a SEP value for each repetition (each from 
n prediction errors obtained from objects in test set). Boxplots of 
the obtained 50 SEP values allow a comparison and evaluation 
of the applied variable scalings.

2.3   |   Data

Three data sets have been used for comparing the scaling 
methods.

Data set HEAT with X(122 × 13) is from biomass technology. 
A set of n = 122 biomass samples with different origin (e.g., 
wood, grass, rye) is characterized by the contents of the ele-
ments C, H, and N (mass %), giving three basic x-variables. 
Further x-variables are mathematically derived as squared 
terms, cross terms, and logarithms, resulting in a total of 
m = 13 x-variables [8, 21]. The property y to be modeled is the 
heating value of the biomass samples (HHV, higher heating 
value, enthalpy of complete combustion; determined by bomb 
calorimetry, range 15,719–25,948 kJ/kg, standard deviation 
1415 kJ/kg).

Data set GLU-NIR with X(166 × 221) is from analytical chemis-
try for bioethanol fermentation experiments [22]. A set of n = 166 
cereal samples (wheat, rye, corn, barley, and triticale flours) 
were fermented and NIR absorbance spectra were measured on 
centrifuged, clear mash samples. The first derivative of the spec-
tral data is used (1100–2300 nm, 5 nm intervals, Savitzky–Golay 
smoothing and differentiation with a second order polynomial 
and a window of seven data points); giving 235 x-variables; 
m = 221 remain after cleaning as described below. The property 
y to be modeled is the concentration of glucose in the mash sam-
ples, determined by the reference method HPLC (range 0.32–
54.4 g/L, standard deviation 14.2 g/L).

Data set PAC-RI with X(209 × 2290) is from modeling the rela-
tionship between chemical structure data and a physical prop-
erty (QSPR, quantitative structure–property relationship [23]) 
as used before [24]. For a set of n = 209 polycyclic aromatic 
compounds (PAC, molecular formulae range C8–24 H6–24 N0–2 
O0–2 S0–2) a set of 2661 molecular descriptors is calculated by 
the software Dragon [25, 26] using approximated 3D-structures 
with explicit H-atoms; m = 2290 variables remain after cleaning 
as described below. The property y to be modeled is a gas chro-
matographic retention index, experimentally determined by 
Lee et al. [27] (range 197.0–503.9, standard deviation 80.8). This 
index is based on the reference values 200, 300, 400, and 500 
for the compounds naphthalene, phenanthrene, chrysene, and 
picene containing 2, 3, 4, and 5 condensed rings in the chemical 
structure, respectively.

A cleaning procedure with variable eliminations is performed 
for the data sets GLU-NIR and PAC-RI with the aim to avoid 

arithmetic errors in some scaling methods: (1) Elimination 
of variables with spread measure sIQR < sLOW. The cutoff sLOW 
is obtained from preliminary tests using a value close to the 
0.05 quantile of the sIQR values of the variables; in particular 
sLOW = 0.0003 for the GLU-NIR data, and 0.02 for the PAC-RI 
data. (2) Elimination of variables with less than 10 different val-
ues. (3) Elimination of almost constant variables - that are vari-
ables being constant except of a maximum of 10 values.

3   |   Results

The influence of variable scaling on the performance of multi-
variate calibration models is compared for 40 scaling methods 
(see Section 2.1) applied to three data sets (see Section 2.3) with 
the scaling parameters and results summarized in Table 1. The 
scaling methods are from six groups. Group P consists of 11 ver-
sions of adjusted Pareto scaling with the Pareto exponents P = 0, 
0.1, 0.2, …, 1, and central value and spread given by the clas-
sical estimations cMEAN and sSD. Group Q is as group P, using 
the robust estimations cMED and sIQR. Group R consists of seven 
versions of range scaling with the central value cMEAN and ap-
plying the low range border xLOW as the quantiles 0, 0.01, 0.02, 
0.03, 0.05, 0.07 and 0.1. Group S is as group R using the robust 
estimations cMED for the central value. Group V contains a classi-
cal version of vast scaling, based on cMEAN and sSD, and a robust 
version based on cMED and sIQR. Group L contains a classical ver-
sion of level scaling, based on cMEAN, and a robust version based 
on cMED.

Table 1 contains for each scaling method the applied parame-
ters and the results from rdCV, namely SEP (median of 50 rep-
etitions, in units of y), and AOPT, the estimated final optimum 
number of PLS components. Note that the robust version of level 
scaling was not applicable to data set PAC-RI, because the me-
dian of several variables (given by molecular descriptors) is zero 
and level scaling requires division by the central value.

Figure 1 presents the obtained SEP values in boxplots, each for 
one scaling and originating from nREP = 50 repetitions of rdCV; 
the sequence of the 40 boxplots from left to right corresponds 
to the rows in Table  1. A visual interpretation is summarized 
as follows: (1) The method of scaling and the applied parameter 
influence the prediction performance (SEP); however, typically 
only moderately. (2) The variation of SEP caused by random 
splits of the objects in cross validation is often in the same range 
as for varying the scaling method or parameter. (3) The influ-
ence of scaling method and parameter depends on the data set; 
however, no obvious relation between data structure and rec-
ommended scaling appears for the three data sets. (4) For these 
data sets, robust methods achieved similar results as the corre-
sponding classical approaches; probably, the used data sets do 
not contain many, severe outliers. (5) For obtaining a calibration 
model with high prediction performance, an exhaustive search 
is recommended by applying several scaling methods with vary-
ing parameters, and selecting the scaling method giving low SEP 
values preferably with a low variation.

More specific, adjusted Pareto scaling is clearly best for data 
set HEAT with P = 0.9 to 1 (autoscaling), is best for data set 
NIR-GLU with P = 0.4 to 0.6 (only a minor effect compared to 
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TABLE 1    |    Scaling methods applied and results for data sets HEAT, GLU-NIR, and PAC-RI.

HEAT NIR-GLU PAC-RI

Id Group Code Robust P q_MIN SEP Aopt SEP Aopt SEP Aopt

1 P P0.0 N 0.0 NA 417.95 1 7.16 9 9.27 11

2 P P0.1 N 0.1 NA 416.55 1 7.04 9 8.81 12

3 P P0.2 N 0.2 NA 414.65 1 7.02 9 8.68 12

4 P P0.3 N 0.3 NA 411.50 1 6.97 9 8.43 12

5 P P0.4 N 0.4 NA 408.27 1 6.93 9 8.31 12

6 P P0.5 N 0.5 NA 406.28 1 6.91 9 9.07 8

7 P P0.6 N 0.6 NA 410.21 1 6.89 9 8.88 8

8 P P0.7 N 0.7 NA 407.37 2 6.88 9 9.14 7

9 P P0.8 N 0.8 NA 421.71 2 7.16 8 9.14 6

10 P P0.9 N 0.9 NA 385.54 5 7.06 8 9.03 6

11 P P1.0 N 1.0 NA 387.28 5 7.07 8 9.07 6

12 Q Q0.0 Y 0.0 NA 417.95 1 7.16 9 9.27 11

13 Q Q0.1 Y 0.1 NA 416.82 1 7.08 9 9.90 9

14 Q Q0.2 Y 0.2 NA 415.34 1 7.06 9 8.82 12

15 Q Q0.3 Y 0.3 NA 413.40 1 7.02 9 8.55 12

16 Q Q0.4 Y 0.4 NA 410.49 1 7.03 9 8.79 11

17 Q Q0.5 Y 0.5 NA 408.63 1 7.03 9 8.80 11

18 Q Q0.6 Y 0.6 NA 408.95 1 7.04 9 9.21 9

19 Q Q0.7 Y 0.7 NA 419.19 1 7.02 9 9.04 9

20 Q Q0.8 Y 0.8 NA 408.29 2 7.26 8 8.61 9

21 Q Q0.9 Y 0.9 NA 388.87 5 7.25 8 8.35 9

22 Q Q1.0 Y 1.0 NA 390.26 5 7.28 8 8.36 9

23 R R 0 N NA 0.00 382.54 6 6.23 11 8.59 7

24 R R 1 N NA 0.01 387.86 5 6.34 11 9.14 6

25 R R 2 N NA 0.02 387.73 5 6.37 11 9.77 5

26 R R 3 N NA 0.03 387.02 5 6.43 11 9.40 6

27 R R 5 N NA 0.05 384.40 5 6.35 12 9.48 6

28 R R 7 N NA 0.07 382.74 5 6.42 12 8.87 6

29 R R10 N NA 0.10 385.17 5 6.49 12 8.40 6

30 S S 0 Y NA 0.00 382.54 6 6.23 11 8.59 7

31 S S 1 Y NA 0.01 387.86 5 6.34 11 9.14 6

32 S S 2 Y NA 0.02 387.73 5 6.37 11 9.77 5

33 S S 3 Y NA 0.03 387.02 5 6.43 11 9.40 6

34 S S 5 Y NA 0.05 384.40 5 6.35 12 9.48 6

35 S S 7 Y NA 0.07 382.74 5 6.42 12 8.87 6

36 S S10 Y NA 0.10 385.17 5 6.49 12 8.40 6

37 V Vc N NA NA 379.89 3 8.20 5 8.29 14

(Continues)

 1099128x, 2024, 11, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.3588 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [02/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5 of 10

no scaling or autoscaling), and for data set PAC-RI is clearly 
best with P = 0.3 to 0.4. The often a priori claimed high per-
formance of the standard Pareto scaling with P = 0.5 has to be 
questioned.

With range scaling the low border was varied between quantile 
0 and 0.1 with no remarkable influence on the SEP values for 
data sets HEAT and NIR-GLU. However, for the HEAT data set, 
range scaling is slightly better than adjusted Pareto scaling. For 
data set NIR-GLU, range scaling is clearly better than Pareto 
scaling. For data set PAC-RI, a low border at quantile 0 or 0.1 is 
better than at 0.02 to 0.05; however, the performance is similar 
as with Pareto scaling.

Vast scaling (robust version) is the best approach for data set 
HEAT, however, is the worst choice for data set NIR-GLU. For 
data set PAC-RI, vast scaling performs similar as adjusted Pareto 
scaling or range scaling.

Level scaling is clearly worst for data set PAC-RI (the robust ver-
sion is not applicable as discussed above), and has no advantage 
for data sets HEAT or NIR-GLU.

4   |   Discussion

The results presented in the previous section revealed clear dif-
ferences in prediction performance, depending on the scaling 
method used. However, there is no clear winner for all data sets, 
and it might depend on the characteristics of a data set which 
method leads to better or worse results. It can be assumed that 
the number of variables plays a certain role, in particular the 
number of noise variables being not relevant for the prediction 
model. Also, outliers in single variables might be important for 
performance differences. In the following, we want to investi-
gate in more detail the role of the scaling methods within PLS 
regression.

It is well known that the goal of PLS regression is to construct 
latent variables, and the corresponding scores are replacing 
the matrix of explanatory variables in the regression model. 
Consider a response y and explanatory variables x1, …, xm which 
are supposed to be mean centered. For constructing the first 
latent variable, the goal is to find a normed vector of weights 
(loadings) w = (w1, …, wm), ‖w‖ = 1, which maximizes the cova-
riance cov(y, x1w1 + … + xmwm). The resulting linear combina-
tion of weights with the explanatory variables are the scores, 

and subsequent latent variables are found in the same way, but 
with an additional constraint, e.g., uncorrelatedness of the new 
scores to all previous ones. We have the identity xiwi = (xi/si) 
siwi, for i = 1, …, m, for any non-zero values si. Suppose that si 
represents any of the proposed forms of scaling for the ith vari-
able. For example, it could be the standard deviation for the ith 
variable, or the standard deviation with a power according to 
the adjusted Pareto transformation, or the (robust) range of the 
ith variable. Denote v = (vi, …, vm) = (s1w1, …, smwm). If w is the 
solution of the maximization problem for the original (mean 
centered) variables, v/‖v‖ is the solution maximizing the cova-
riance of y with the transformed variables xi/ si, thus with the 
scores (x1/s1) v1/‖v‖ + … + (xm/sm) vm/‖v‖. It is crucial to see the 
role of ||v||, which adjusts the entries of the score vector by a 
quantity which originates from the transformations applied to 
all variables, since ‖v‖2 = (s1w1)

2 + … + (smwm)2. This can also be 
seen as a kind of shrinkage term, similar to shrinkage estima-
tors such as Ridge regression [28], where the squared Euclidean 
norm of the regression coefficients is constrained. However, the 
way how shrinkage is performed here depends not only on the 
“optimized” weights w, but on individual adjustments of the 
components of w, which are depending on the type of scaling 
used. Thus, scaling the individual variables is more flexible and 
adjustable to differences in variance/range/level of the single 
variables. However, there is no guarantee that this higher flexi-
bility leads to better prediction models.

As an illustration, Figure  2 compares for the PAC-RI data set 
the regression coefficients from the PLS models based on dif-
ferent adjusted Pareto transformations (left) with those from 
Ridge regression by varying the Ridge parameter, leading to dif-
ferent values of the norm of the Ridge coefficients (right). The 
optimized solution is indicated by the vertical dashed line. For 
Ridge regression, a generalized cross-validation procedure was 
used for a grid of 100 values of the tuning parameter.

Although the procedures work differently, it is worthwhile to 
compare the regression coefficients. This is done in Figure 3, by 
computing the correlations between all regression coefficients 
from PLS and Ridge regression. The rows of this matrix corre-
spond to the powers of the adjusted Pareto transformation (from 
0 at top to 1 at the bottom), and the columns to the 100 values of 
the tuning parameter. We can see that the correlation gets very 
high for higher powers and less shrinkage in Ridge regression. 
In spite of this similarity of the coefficients, the final models still 
differ. Here, the optimized Ridge model leads to a SEP value 
of 7.61.

HEAT NIR-GLU PAC-RI

Id Group Code Robust P q_MIN SEP Aopt SEP Aopt SEP Aopt

38 V Vr Y NA NA 371.84 3 8.20 6 10.43 9

39 L Lc N NA NA 411.02 4 6.80 14 15.58 7

40 L Lr Y NA NA 404.87 5 6.88 14 NA NA

Note: Column group: P, adjusted Pareto scaling; Q, robust adjusted Pareto scaling; R, range scaling; S, robust range scaling; V, vast scaling; L, level scaling. Column 
code: Names for boxplots in Figure 1A–C. Column robust: N, classical (arithmetic mean and standard deviation); Y, robust (median and spread measure based on 
interquartile range). Column P: Pareto exponent. Column q_MIN: quantile for low border in range scaling. Column SEP: median of the obtained SEP values for 50 
repetitions. Column Aopt: optimum number of PLS components.
Abbreviation: NA, not applicable/available.

TABLE 1    |    (Continued)
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FIGURE 1    |    Boxplots for 50 SEP values from the repetitions in rdCV for 40 scaling methods (see Section 2.1). Notations and numerical results are 
given in Table 1; data sets are described in Section 2.3.
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5   |   Conclusions

Experiments based on three data sets with very different 
characteristics revealed surprisingly big differences in per-
formance. Even more, there is no clear winner of a scaling 
method, and performance differences will not only be based on 
the dimensions of the data sets, but also on more specific char-
acteristics such as the distributions of the variables, their asso-
ciations, and their relationships to the response. As outlined in 
the previous section, scaling methods such as adjusted Pareto 
scaling follow the principle of a shrinkage method (specifically 
in the context of PLS regression), and provide higher flexibility 
with adjusting the specific variables within a prediction model.

More specific, it is recommended to optimize the Pareto expo-
nent P by applying values from 0 (no scaling), via 0.5 (classical 
Pareto scaling) to 1 (autoscaling), preferably in steps of. 0.1. 
Depending on the data set, other scaling methods, based on the 
variable spread, like range scaling or vast scaling, or level scal-
ing, may outperform optimized Pareto scaling.

A final recommendation is probably not to always use all possible 
scaling methods in a model evaluation, as this might be too time-
consuming or even impractical. However, it can still be advisable 
to optimize a parameter, such as the power for adjusted Pareto 

scaling. If such an evaluation is carried out, we do not recommend 
to identify the best performing scaling method across different 
data sets [29] but only for one specific data set. Consideration of 
different variants of scaling allow for an empirical adjustment of 
the variable contributions to the calibration model.

The goal of this contribution is also to make aware that the 
performance of PLS models can heavily depend on the type of 
preprocessing, which here is done by the same procedure col-
lectively to all variables, and not adjusted to individual vari-
ables. Besides the different types of scaling methods, there was 
also a distinction between those that employ robust estimators 
and those that work with classical counterparts. As robust esti-
mation is done for the individual variables, this allows to adjust 
variable contributions according to their noise levels. For ex-
ample, outliers in single variables can inflate the classical scale 
estimation, and the effect to variable scaling will differ from a 
robust scale estimator; however, the consequence of the perfor-
mance difference to the PLS model is not clear in advance.

Data Availability Statement

The data that support the findings of this study are available from the 
corresponding author upon reasonable request.

FIGURE 2    |    Comparison of the regression coefficients for the PAC-RI data set, resulting from the optimized PLS models for the adjusted Pareto 
transformation (left) and from Ridge regression with varying tuning parameter (right). The best models are indicated by the vertical dashed line.

FIGURE 3    |    Correlations between the regression coefficients of the PLS models from the adjusted Pareto transformed data and those from Ridge 
regression with varying tuning parameter. The rows are for the 11 values used for the Pareto exponent, P, from 0 on top to 1 at the bottom; the 
columns are for a gradually decreasing tuning parameter.
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Appendix 1:  Symbols and glossary

rdCV Repeated double cross validation.

X(n × m) Multivariate data (n objects, m variables).

y Property to be modeled y1 … yn. ŷ is a 
predicted value.

c Central value for a x-variable; cMEAN, 
arithmetic mean; cMED, median; xC = x − c 
is a centered variable.

s Spread measure for a x-variable; sSD, 
classical empirical standard deviation; 
sIQR = 0.7413 IQR (IQR, interquartile range).

cV Relative standard deviation (coefficient 
of variation) for a x-variable used in vast 
scaling with cV = s/c.

P Pareto exponent in interval [0, 1] for 
adjusted Pareto scaling xC/sP; P = 0  for 
no scaling; P = 0.5 for standard Pareto 
scaling; P = 1 for autoscaling.

xLOW, xHIGH Low and high border defining the range 
of variable x for range scaling; either the 
minimum, xMIN, and the maximum, xMAX, 
are used or the quantiles qMIN (e.g., 0.05) 
and qMAX = 1 − qMIN.

A Number of PLS components; AMAX, 
maximum number used in PLS; AOPT, 
optimum number resulting from rdCV.

z Number of segments in rdCV; zTEST, in 
outer CV (split into calibration and test 
set); zCALIB, in inner CV (estimation of 
optimum number of PLS components in 
calibration set).

nREP Number of repetitions in rdCV.

MSE Mean squared error, used in the 
estimation of AOPT for a calibration set. 
MSE = (1/nMSE) Σ (yi − ŷi)

2, i = 1, …, nMSE; 
nMSE is the number of objects in the 
calibration set.

SEP Standard error of prediction (standard 
deviation of prediction errors for test 
set objects). The final SEP for a data set 
(scaling) is the median of nREP SEP values 
obtained in rdCV. A 95% confidence 
interval for predicted values of y is 
estimated by the range ± 2 SEP.

Appendix 2:  Summary of rdCV (Repeated Double Cross 
Validation)
The strategy rdCV is summarized as used here together with PLS regres-
sion for creating models for the prediction of a numerical property y from 
a set of m x-variables; data for n objects are X(n × m) and y(n × 1). The per-
formance of a model is characterized by the standard error of prediction, 
SEP, equivalent to the standard deviation of prediction errors of test set 
objects. The repetitions applied in rdCV allow an estimation of the vari-
ability of SEP and of the optimum number of PLS components, AOPT, as 
caused by random splits of the objects into calibration and test sets. Thus, 
a realistic comparison of the prediction performances is possible for mod-
els made from differently scaled variable sets. Definitions of symbols are 
in Appendix 1; basics of cross validation (CV) and partial least-squares 
regression (PLS) are described elsewhere [5, 6, 8, 30–33]. Development 
and evaluation of PLS models with rdCV was introduced by Filzmoser 
et al. [7]; details and applications are described elsewhere [3, 8, 24, 34–36]. 
Similar strategies have been proposed for instance for binary classifica-
tion in proteomics [37, 38], for the discrimination of human sweat sam-
ples [39] as well as for principal component analysis [40].

The method description starts with double cross validation (dCV) 
and we separate it into two parts: In part A an optimum number of 
PLS components, AOPT, is estimated; in part B the prediction perfor-
mance for test set objects, SEP, is estimated for PLS models with AOPT 
components. From dCV a single value for SEP results; however, with 
the typical rather small data sets in chemistry a single estimation of 
SEP may be misleading because of an unbalanced random split of the 
objects in CV. In repeated double cross validation (rdCV) the dCV 
strategy is repeated nREP times giving nREP estimations of SEP that 
can be represented by a box plot, well suited here for comparisons of 
variable scaling.

Part A of dCV estimates an optimum number of PLS-components 
and consists of two nested loops. Results about prediction errors ob-
tained in Part A are not considered in the final evaluation of the model 
performance.

The outer CV loop of part A splits the n objects into zTEST segments 
(here, 3); thus, the loop has zTEST laps, each using a test set built by one 
segment, and a calibration set built by the others.

The inner CV loop of part A is applied to each calibration set, which 
is split into zCALIB segments (here, 7); a validation set consists of one 
of these segments, and a training set contains the others. In each lap 
of the inner CV the objects of the current training set are used for mak-
ing separate PLS models with 1 to AMAX (here, 15) components. These 
models are separately applied to the corresponding validation set giv-
ing a mean squared error, MSE (see Appendix 1). After completing the 
inner CV loop we have a matrix MSE (zCALIB × AMAX) with zCALIB = 7 
values of MSE for each for each number of PLS-components 1 … AMAX. 
Next we calculate the column means of MSE giving MSEMEAN for 1 to 
AMAX PLS components. Usually MSEMEAN decreases with increasing 
A, and after a more or less distinct minimum increases because of 
overfitting. The global minimum MINMSEMEAN of MSEMEAN at AMIN 
PLS components, is a first indicator for the optimum number of PLS 
components; however, may be too high because of overfitting. The 
statistically based method one standard error rule [31] is preferred 
for finding an optimum number of PLS components, ACALIB, for the 
calibration set. The strategy starts with AMIN and considers that the 
corresponding MSEMEAN has a variation that can be characterized by 
the standard deviation of the corresponding MSE values (standard de-
viation of means), defined as sMEAN = sMSE/zCALIB

0.5, with sMSE for the 
standard deviation of the zCALIB values for MSE at AMIN. Thus, for a 
conservative model avoiding overfitting, we allow an MSE up to the 
limit MINMSEMEAN + sMEAN. In the described procedure ACALIB is the 
smallest A fulfilling this condition.

From dCV we obtain nTEST estimations ACALIB for the optimum 
number of PLS components; a single value AOPT for the data set is 
selected here by choosing the most frequent value of ACALIB. Another 
approach, using Monte Carlo techniques, has been suggested by 
Kvalheim et al. [41]

 1099128x, 2024, 11, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.3588 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [02/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 10 Journal of Chemometrics, 2024

Part B of dCV estimates the prediction performance for PLS models 
with the fixed number AOPT of PLS components. Here, the same CV loop 
with nTEST segments for all n objects is used as in part A (another split-
ting into segments is optional). One segment forms a test set, the others 
a calibration set. From each calibration set a PLS model with AOPT com-
ponents is made and applied to the corresponding test set. After com-
pletion of this CV we have one test set-predicted value for each object. 
The resulting performance criterion SEP is the standard deviation of n 
test set prediction errors. The strategy dCV separates the estimation of 
the model complexity (here, the number of PLS components) from the 
estimation of the prediction performance. Only a single number for the 
performance is obtained, not allowing a reasonable comparison with 
other methods or data because of potentially highly unbalanced random 
splits in CV. Consequently, an extension to repeated double cross valida-
tion (rdCV) is recommended as follows.

Repeated double cross validation (rdCV) repeats dCV with nREP 
(here, 50) different random splits of the objects into segments. Following 
the procedure of dCV we obtain from each repetition zTEST estimations 
for ACALIB, in total nREP × zTEST (here 150) and the most frequent value 
of them is used here as a single value for AOPT, thus completing Part A 
for rdCV.

Part B of rdCV uses the fixed AOPT for estimating a SEP in each rep-
etition, and the median is used as a single, final value for the predic-
tion performance. An alternative would be the standard deviation of all 
n × nREP prediction errors for test set objects, all from PLS models with 
AOPT components. A boxplot of the nREP SEP-values characterizes their 
distribution and is used here for comparisons of the various scalings of 
X. Note that in general the scalings give different values for AOPT. The 
interquartile distance of the nREP SEP-values may be used as a measure 
of the performance variation due to random splits of the objects into 
segments.
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