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Abstract
In this paper, we present OffiStretch, a camera-based system for optimal stretching guidance at home or in the workplace. It
consists of a vision-based method for real-time assessment of the user’s body pose to provide visual feedback as interactive
guidance during stretching exercises. Our method compares the users’ actual pose with a pre-trained target pose to assess the
quality of stretching for a number of different exercises.We utilize angular and spatial pose features to perform this comparison
for each individual exercise. The result of this pose assessment is presented to the user as real-time visual feedback on an
"augmented mirror" display. As our method relies simply on a single RGB camera, it can be easily utilized in everyday
training scenarios. We validate our method in a user study, comparing users’ performance and motivation in stretching when
receiving audio-visual guidance on a TV screen both with andwithout our live feedback.While participants performed equally
well in both conditions, feedback boosted their motivation to perform the exercises, highlighting its potential for increasing
users’ well-being. Moreover, our results suggest that participants preferred stretching exercises with our live feedback over
the condition without the feedback. Finally, an expert evaluation with professional physiotherapists reveals that further work
must target improvements of the feedback to ensure correct guidance during stretching.

Keywords Exergame · Serious game · Body tracking · Pose estimation · Preventive rehabilitation · Human-computer
interaction

1 Introduction

The tendency for home office work has strongly increased
due to the pandemic and will likely persist also in the future.
This trend impacts peoples’ level of physical activity, as
they lack movement related to their commute to work, in-
person meetings, and social activities with coworkers, but
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also by using office equipment and furniture that is not
ergonomically optimal [1]. It is commonly known that phys-
ical inactivity and a sedentary lifestyle can have negative
consequences for the general population [2–4]. As confirmed
byour survey results, people are aware of this negative impact
on their health, but they do not have enough immediate moti-
vation and personal discipline to exercise.

Motivation can be increased by integrating gamification
elements into physical exercise routines, as has been recently
studied in connection with video games [5] and exergames.
For example, Pacheco’s review [6] compares 12 user studies
with older participants, concluding that exergames can signif-
icantly improve motivation, balance, and mobility. Andrade
[7] reviewed studies related to children and adolescents with
obesity and reported improvements in self-esteem and self-
efficacy through the use of exergames compared to control
groups. Soares [8] explored the effect of exergames on the
cognitive abilities of older adults compared to conventional
exercise. While he found no effect on cognitive function, the
use of exergames seems to positively impactmotivation. This

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-024-03450-y&domain=pdf
http://orcid.org/0000-0003-4560-1726
http://orcid.org/0000-0001-7437-9955
http://orcid.org/0000-0002-9922-5538
http://orcid.org/0000-0001-8373-2589
http://orcid.org/0000-0003-2109-8118
http://orcid.org/0000-0003-0742-5645


J. Adolf et al.

Fig. 1 The OffiStretch system
provides guidance for stretching
exercises in form of multimodal
pre-recorded instructions and
real-time visual feedback on a
simulated virtual mirror. With
this research, we aim to enhance
users’ motivation to perform
physical exercises, help to
ensure correct posture for an
optimal outcome, and support
the automatic analysis of user
performance

is supported by Stadiano’s study [9] on the development of
motivation through exergames.

Fitness trackers represent a further important factor, as
they can help to improve motivation [10] by indicating
progress towards reaching one’s training targets based on
measured physical activity and tracked human movements
[11]. Fitness trackers usually use GPS, inertial, and physio-
logical sensors for tracking motion and exertion, to provide
users with an estimate of their total physical activity during
the day. Such systems can provide very good real-time or
aggregated values of various biometric properties, like heart
rate, step size, or running speed [12]. However, they cannot
evaluate whether the user’s run was biomechanically cor-
rect or not. The same problem appears in the case of other
exercises like workouts, where information from an inertial
sensor on the user’s wrist is not enough to analyze the cor-
rectness of themovement for the best outcome and to prevent
injury. So, while these devices are great to bolstermotivation,
they are limited with regard to accuracy for full-body move-
ment measurements.

To address this issue for stationary exercise forms, we
propose a vision-based approach using off-the-shelf compo-
nents for evaluating the correctness of the user’s pose based
on joint angles and distances between selected body parts.
Additionally, we introduce interactive visual feedback that
continuously indicates the correctness of the user’s pose in
a simulated “digital mirror”. The digital mirror metaphor is
realized using a regular screen that shows the mirrored live
capture from a camera. We apply this approach in the con-
text of stretching exercises, where we explore its potential
for coaching users to stretch correctly and increasing their
motivation for daily activity.

We hypothesize that such a digital assistant can integrate
well into people’s daily home office routines and motivate
stretching (H1, H2, see Sect. 4), and that our proposed feed-
back motivates and supports users to perform their stretches
correctly (H3-H6, see Sect. 5). To explore these hypothe-
ses, we first conducted an online survey to investigate users’

needs and preferences regarding digital coaching systems
for stretching. This was followed by an on-site user study,
in which we evaluated users’ performance and motivation
in performing stretching exercises with and without our
visual feedback. Finally, we validated our methods through
an expert evaluation with professional physiotherapists. Fig-
ure1 provides a visual representation of the presented system
in action.

The main contributions of this paper can be summarized
as follows:

• We present a vision-based pose analysis approach using
only a single RGB camera.

• We propose a visualization technique for live feedback
to indicate pose accuracy.

• We identify user needs and preferences for digital stretch-
ing coaches (online survey).

• We report findings on the impact of our feedback onmoti-
vation and stretching performance (user study).

• We validate our approach and highlight directions for
future work (expert evaluation).

2 Related work

Our work builds primarily on research and developments in
two major fields. Thus, we will first review body tracking
technologies (Sect. 2.1), and then we describe methods for
visual feedback in physical training (Sect. 2.2).

2.1 Body tracking

The basis of every interactive method for human motion
analysis is a motion capture system. We can divide these
systems into three basic categories: (1) user instrumentation
with active sensors, (2) marker-based tracking, and (3) mark-
erless camera tracking.
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Most active sensors (e.g., wearable or hand-held) are
based primarily on inertial sensors [13] that can detect
changes in the users’ motions. Such sensors, as may be inte-
grated into the smartphone or more recently a smartwatch,
have the benefit of being usable in mobile scenarios, without
requiring a fixed and calibrated lab installation. However,
they are not capable of delivering absolute positions and
therefore are subject to drift. Hybrid approaches exist, for
example, the hand-held Nintendo game controller known as
theWiimote, for which tracking accuracy could be improved
by complementing the inertial measurements with optical
tracking through the integrated infrared camera and an extra
infrared-emitting sensor bar.

Most marker-based systems usually involve optical track-
ing with specialized cameras, where the markers may either
be passive (i.e., reflecting light) or active (i.e., emitting
light). The most accurate marker systems are those used
in laboratory conditions such as OptiTrack,1 Vicon2 and
Qualisys3. These systems can achieve 6DOF tracking with
sub-millimeter accuracy.

The most common sensors in the markerless category are
depth sensors such as the Microsoft Kinect4. These devices
are generally more affordable and simple in their use than
marker-based systems, while not requiring any instrumenta-
tion of the user.

A functional feedback exercise system using Kinect is
the YouMove app created by Anderson and colleagues [14].
The users see themselves in a simulated mirror and they are
guided by visual indicators in the image of where to move
which limb. If a user reaches the target pose with sufficient
accuracy, they are prompted by the system to stay in the
position. These systems have the common disadvantage of
requiring special hardware. In contrast to that, our approach
requires only a standardRGBcamera (e.g., webcamor smart-
phone camera). Surprisingly, even though exergames have
been researched extensively, very few RGB camera-based
systems can be found in the literature. Losilla and Rosique
[15], Kanase et. al. [16] or Hesham et al. [17] follow a sim-
ilar approach, however, do not contain visual feedback and
analysis of the current user pose.

Coyler et al. review the evolution of camera-based motion
analysis until 2018 [18]. Since then, body pose detection
methods based on deep neural networks have been predom-
inantly used with common examples being OpenPose[19],
Alphapose [20] and Media-pipe [21]. Badiola-Bengoa and
Mendez-Zorrilla discuss the use of such approaches for sports
and physical exercise [22].

1 OptiTrack: https://www.optitrack.com/.
2 Vicon Nexus: https://www.vicon.com/software/nexus/.
3 Qualysis: https://www.qualisys.com/.
4 Kinect: https://developer.microsoft.com/kinect/.

2.2 Visual feedback for physical training

Beyond gaming, domains such as fitness, health, and well-
being have actively adopted new technologies, for example
for tracking physical exercise and displaying the user’s real-
time exertion and daily activity on a smartphone or watch.
The availability of compact and portable displays has led to
a wide variety of visualizations for training progress, from
displaying step counters or traveled routes on amap, to ECG-
like heart rate visualizations (e.g., on the Fitbit5), or “rings”
on the Apple Watch6. Such visualizations address peoples’
craving for a sense of progress and achievement, as well as
monitoring their own health and performance. While these
visualizations can reflect a user’s progress toward their set
training goal, they usually provide only aggregated data and
do not analyze the poses of individual body parts during the
motion to assess their correctness. Failure to do so may lead
to less effective workouts and can even risk adverse effects
such as physical injury. This aspect may be addressed by live
visual feedback of the user’s posture and motion, which has
been found to positively impactmood [23] and physical well-
being [24], and can guide the user to perform movements
correctly as is critical for a range of sports like dancing [25,
26], TaiChi [27, 28], or Tennis [29]. Arguably, an increased
number of tracking points and accuracy of pose reconstruc-
tion can support this better (e.g., approximation ofmotions in
Ring Fit Adventure7 vs. accurate full body tracking [28–30]).
Related research has explored a variety of different feedback
visualizations, with most common designs involving a kind
of mirror image [23, 24, 31, 32] a third person perspective
of oneself [25–27], or superimposed feedback on the body
seen from first person perspective [27, 30].

Similar research to ours is the work of Elsayed et al. [17],
who describe the current trends in motion capture systems
and their use for home exercise. They compare three dif-
ferent forms of feedback for matching the user’s pose with
a static posture: a silhouette, a skeleton, and a predefined
avatar. An evaluation of this system revealed poor visibility
of participants’ own bodies through the displayed skeleton,
a lack of feedback about which body part was not oriented
or positioned correctly, and a lack of audio feedback. Second
work named Pose Tutor by Dittakavi et al. [33] can detect
and compare trainee position with predefined position based
on the k-nearest neighbors algorithm. This system is a posi-
tion comparator rather than a complex exercising application.
Another similar approach is 3D camera-based system called
AIFit, presented by Fieraru et al. [34]. However, this system
uses multiple cameras and the feedback cannot be overlaid
directly onto the image.

5 Fitbit ECG: https://www.fitbit.com/en-ca/technology/ecg.
6 AppleWatch rings: https://www.apple.com/watch/close-your-rings/.
7 Ring Fit Adventure: https://ringfitadventure.nintendo.com/.
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Fig. 2 The schematic diagram
of the OffiStretch system
illustrates the user input via
camera, information processing,
and output displayed on the
screen in the form of an
augmented mirror
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Fig. 3 Screenshot of OffiStretch
application with real-time
dynamic feedback drawn onto
trainee’s own body. The arrows
encourage the trainee to extend
the stance and the green circle
encourages greater flexion at the
knee joint. The closer the
practitioner is to the desired
position, the smaller the circle
or thinner the line is

The main difference of our presented method to state of
the art is precise camera-based assessment of a body pose in
real time during exercise and its presentation via live feed-
back mechanism to enhance stretching exercises at home or
in the workplace. Unlike conventional fitness trackers and
exergames that focus on general activity tracking or gamifi-
cationwithout precise feedback on exercise form,OffiStretch
employs a vision-based method to assess and correct the
user’s body pose against a pre-trained target. Moreover, Off-
iStretch utilizes only a standard RGB camera as its motion
capture system, ensuring accessibility and ease of use.

3 The OffiStretch system

In this section, we describe our methods for pose analy-
sis and visualization. Additionally, we provide details about
the design and development of our application. The name
OffiStretch hereby reflects our motivation to encourage and
provide interactive guidance during stretching in the (home)
office. By comparing the captured stretching pose (from the
video stream) to the pre-defined target pose (static position),
we assess the correctness of the user’s stretching perfor-
mance. The result is visualized to the user as a live video
stream with visual feedback on an augmented digital mirror.
The schematic diagram of the proposed system can be seen
in Fig. 2, and the user interface can be seen in Fig. 3.

3.1 Body tracking and pose assessment features

Our application uses the OpenPose [19] system to detect
the human skeleton. This approach utilizes image recogni-
tion using a deep neural network. To reconstruct the user’s
pose, the system attempts to match patterns for 25 individual
human body parts (keypoints) in the input image. For each
of these keypoints, shown in Fig. 4, the system builds prob-
abilistic heatmaps based on the typical human motion range
and then reconstructs the entire human skeleton from these
relative keypoint positions. The OpenPose system thereby
achieves very high estimation accuracy, with errors in mea-
sured angles reported between 0.19◦ (pelvis joint) and 3.17◦
(right shoulder) [35].

The advantage of the system is its resistance to light con-
ditions or video quality and requires onlyminimal setup [19].
The system can be used almost anywhere with any camera.
The single condition for successful pose detection is that no
other person or image of a person (photograph, poster, draw-
ing) is simultaneously in view.

Due to the use of a single static camera, the user’s body
pose is captured in 2D space. Thus, the trainee must perform
the exercises allowing the image sensor a clear (frontal or
profile) perspective of the body. We achieve the correct ori-
entation of the trainee to the camera by showing the trainer’s
video as a guide. The video of the trainer is presented next to
the simulated mirror where users can see themselves. Hence,
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Fig. 4 A model showing 17 key
points that we use to calculate
features characterizing human
posture. We use the same
keypoint indexing as the original
25-keypoint OpenPose model
[19] from which our model is
derived

trying to mimic the trainer’s posture in the mirror leads users
to orient themselves correctly. This method of pose matching
is already well-known from previous work [25–27, 30].

Finally, pose matching is performed as a real-time com-
parison of the defined target pose pre-recorded by the trainer
(reference pose) with the tracked pose of the trainee. The
static target pose is described by a number of parameters
consisting of the following three measurements: the angle
between three keypoints (joint angles), the screen-space ori-
entation of the vector between two keypoints (keypoint-pair
orientation), and the relative distances between keypoint-
pairs. Details on their computation are provided below and
the visual description of these three types of features can be
seen in Fig. 5.

3.1.1 Joint angles

The angle between two vectors, constructed by connecting
three keypoints A, B, and C, serves as a basic parameter to
describe theirmutual constellation. This can be used to reflect
tracked joint angles, as seen from the camera perspective. For
example, the degree of flexion of the elbow ismeasured as the
angle between the upper arm and forearm, which is described
by the keypoints shoulder (A), elbow (B), and wrist (C). This
angle is computed in the 2D Cartesian coordinate system by
using the dot product as follows.

�ABC = arccos
−→
BA · −→

BC

|BA||BC | (1)

Our system focuses on the absolute difference from the cor-
rect angle, utilizing the arccos function’s 0◦ to 180◦ range,
to ensure feedback relevance in a 2D plane. As the arccos
function is insufficient to distinguish between clockwise and
counterclockwise rotations, additional pose features are used
in each exercise to ensure the correctness of the body pose.

3.1.2 Keypoint-pair orientation

In everyday life, we commonly refer to the horizontal or ver-
tical axis to describe the correct orientation of a body part,
which we can formalize based on the relative orientation of
keypoint-pairs. For example, the T-pose is commonly under-
stood as a vertical alignment of the spine (e.g., the vector from
neck to pelvis: keypoints 1 and 8 in Fig4), straight vertically
aligned legs (i.e., vectors between hips and feet: v(9, 11),
v(12, 14)), as well as horizontal alignment of both arms (i.e.,
shoulder to wrist: v(2, 4), v(5, 7)). Assuming perfect hori-
zontal alignment of the camera, the Equation 2 defines the 2D
direction of the vector for the keypoint-pair (A, B) in relation
to the horizontal (x) axis.

�−→
AB = arctan

−→
ABy−→
ABx

(2)

3.1.3 Relative distances

Apart from angles and orientations, distances also play an
important role in describing body poses, e.g., placing one’s
feet hip distance apart. To normalize measured distances
between keypoints by a user-specific proportion, we calcu-
late relative distances with respect to the user’s spine length:
The following formula describes the distance between two
keypoints A andB divided by the distance between keypoints
K1 and K8 (i.e., the keypoints 1 and 8 in Fig. 4), measured in
pixels. Due to this normalization, we do not need to consider
the user’s height or distance from the camera when calculat-
ing similarity to the reference pose.

|AB|r = |AB|
|K1K8| (3)

3.1.4 Static pose description features

We can describe each human pose by calculating a num-
ber of parameters from the 17 keypoints, based on the
measurements described above. Through various keypoint
combinations, based on experts’ discussion, we defined 109
pose features to represent any body pose: 60 relative dis-
tances betweenkeypoint-pairs, 25 joint angles (between three
keypoints), and 24 keypoint-pair alignments. The list of all
defined features is available in the supplementary material.
Each pose for a given exercise can be stored as a feature
vector F:

F = (a1, ..., aM , b1, ..., bN , l1, ..., lK ) ∈ R
M+N+K (4)

where:

• M : is the number of joint angles (25)
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Fig. 5 Three types of features
used in our pose assessment

• N : is the number of keypoint-pair orientations (24)
• K : is the number of relative distances (60)

However, only a subset of these features is used to asses
body pose correctness for each exercise. Table 3 defines indi-
vidual selections of features for exercises used in our study.
For example for exerciseArmPrayer Stretch (APS)M = 2, N
= 1, K = 1. These subsets were defined in consultation with
physiotherapists, based on the most relevant and prominent
body part configurations required for each exercise.

3.2 Exercise instruction authoring

The authoring of instructions for a new exercise is achieved
simply by including a new video recording of a trainer per-
forming the exercise. Importantly, when recording, attention
must be paid to the correct orientation of the trainer in relation
to the camera position to ensure good visibility of relevant
keypoints for accurate body tracking. The target pose fea-
tures for the given exercise are then computed from a single
manually selected frame in the video, where the trainer is
in the static target pose, performing the full stretch. In the
system, each exercise is then stored as a video and configu-
ration file. The latter contains details such as the video name,
frame, and all 109 descriptive parameters for the target pose.
As mentioned before, only a few of these features describe
the exercise, while others may not be accurately detectable
due to the user’s orientation, or can be considered irrelevant
for the particular exercise (e.g., elbow angles may be irrele-
vant for the calf stretch, but critical for the lower arm stretch).
This set of most relevant features is manually selected (ide-
ally by professional physiotherapists) and recorded in the
configuration file. Pose features vary across exercises, but
typically each exercise is described by three to five pose fea-
tures. These selected parameters are then used to evaluate the
error between the trainee’s pose and the target pose, which

results in the real-time pose assessment that can be visualized
using visual feedback explained below.

3.3 OffiStretch visual feedback

The visual user interface is intended for presentation on a PC
monitor or TV screen. The GUI of our application contains
twomain windows (Fig. 3): The left window shows the video
clip of the trainer with a superimposed countdown and other
information about the exercise. On the right side, the users
can see themselves in a webcam-simulated digital mirror. To
ensure a correct perspective, the camera must be mounted on
the respective display.

Each exercise begins with a brief prerecorded verbal
explanation of the exercise and a loop of the instruction video
showing the trainer performing the stretch. Then, the user is
informed that it is their turn to start the exercise (through
voice recording and text as shown in Fig. 3). In this phase,
the left window shows a still frame of the trainer in the tar-
get pose and a countdown indicating the duration for which
the stretching pose should be maintained. Meanwhile, the
webcam-simulated digital mirror is augmented with feed-
back elements, to guide the user to improve her/his pose in
real time. Further, every 5 s the user receives audio feedback
in the form of a voice recording commenting on whether the
body pose is correct (within the defined tolerance levels),
or needs further adjustment. After the timer has run out, the
system starts a new exercise.

The presented elements of visual feedback depend on the
chosen set of pose features for which errors are computed
in each exercise. We use the following two types of visual
feedback to display these errors, as illustrated in Fig. 3:

Circles. Any errors in angle (i.e., joint angles and
keypoint-pair alignment) are indicated by a circle that is cen-
tered on the second keypoint. The size of this circle reflects
the magnitude of the difference between the trainee’s pose
and the target’s pose. As the trainee adjusts their pose, the
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circle gets smaller or larger, conveying whether or not the
actual pose is getting closer to the intended pose. The circle
disappears when the joint angle or keypoint-pair alignment
is correct (within the defined tolerance threshold which was
experimentally set to 3 degrees).

Lines with arrows. Error in the relative distance between
two keypoints is visualized by a line drawn between them.
The magnitude of the error is reflected by line thickness: a
thicker line indicates a greater mismatch. Arrow tips at the
end of the line indicate in which direction the key points
should move to correct the pose. Further, if the distance is
smaller than desired, the line is colored green, and red if it is
too big. As the trainee adjusts the pose, the lines are updated
in real-time, reflecting the progress toward correct stretch
execution. As with the circles described above, the lines also
vanish once the correct target distance (within the defined
tolerance threshold, which was experimentally set to 0.2) is
achieved.

3.4 Hardware and software requirements

The core component of our system is OpenPose [19], with
which real-time processing is possible, albeit computation-
ally demanding. Using a laptop with Nvidia GTX 1070
GPU we achieved 16 fps. Application of our approach for
a more dynamic exercise or running the system on a low-
performance device can reasonably be assumed possible, but
it would require optimization of thewaywe compute the key-
points. Possible options include cloud processing of data or
using one of the frameworks designed for lower-performance
devices such as Google Tensorflow Lite8.

4 Online survey: stretching in the (home)
office

During the design and development of our system, we con-
ducted an online pre-study to investigate the stretching habits
of people and their willingness to use an interactive system
for stretching guidance. We asked participants to consider
two particular conditions: working (1) in their home office
and (2) at their dedicated workplace. The study was designed
as an online survey with quantitative and qualitative items.
We aimed to study the following two hypotheses:

H 1 People domore stretching exercises during the daywhen
working in the homeoffice compared to their dedicatedwork-
place.

H 2 People would prefer to try using interactive stretching
guidance in their home office compared to their dedicated

8 Tensorflow lite: https://www.tensorflow.org/lite/examples/
pose_estimation/overview.

workplace, and could also imagine doing so more frequently
at home.

The questionnaire was answered twice by all participants
(within-groups design), with fixed order of scenarios: First,
the questions were asked about the home office and then
about the dedicated workplace. Our H1 was addressed by
question Q1, while Q2 and Q3 allowed us to explore H2 (see
Table 1). Further, demographic information was collected
and open questions were asked to investigate exercising
habits and awareness of the negative effects of a sedentary
lifestyle on participants’ health and well-being. It should be
noted that survey participantswere asked to imagine a system
that interactively provides stretching guidance on a display,
butwe did not specify exactly how this system shouldwork or
what it would look like. Hence, the details about the systems
they envisioned may differ, e.g., based on their prior experi-
ences with smart mirrors or body tracking games. However,
as we merely aimed to assess participants’ general willing-
ness to use a guidance system based on display technology,
we deem these potential differences irrelevant.

4.1 Online survey participants

We collected 90 survey responses from 55 men and 35
women. The age distribution of participants in predefined
age groups was the following: 9 people in the group between
18–25 years, 28 people in groups 26–33, 20 in 34–41, 13 in
42–49, 7 in 50–57, 9 in 58–65, and 4 participants in a group
over 65 years.

More than 90% of the participants indicated a job in
academia with low physical demand and many sitting hours.
With regards to nationality, 39 participants came from
Czechia, 14 from Slovakia, 12 from Austria, 6 from Den-
mark, and 22 from other countries. Participants who could
not respond to questions in both conditions (16/90), because
they had no experience of working both in home office and
their dedicated workplace, were excluded from the following
quantitative analysis.

4.2 Online survey results

4.2.1 Stretching activity and coaching preferences

Statistical analysis by Wilcoxon signed-rank test was per-
formed on the quantitative responses to Q1, Q2, and Q3
(see Table 1) to explore our hypotheses (H1, H2). For all
three questions participants’ responses, visualized in Fig. 6,
differed significantly between conditions: participants indi-
cated that they performed stretching exercises significantly
more often in the home office (median = 5: “multiple times
per week”), compared to their dedicated workplace (median
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Table 1 Questions of our online survey, used to evaluate our two
hypotheses. Each question was answered twice (once for home office
condition and once for dedicated workplace condition). Answers were

listed in the opposite order in the questionnaire and we inverted them
for consistency of visualization within the publication

Selected survey questions
1 2 3 4 5 6 7

Q1: How often do you do stretching exercises? (This may be as part of a longer workout, or alone.)

O O O O O O O

never less than once a
month

at least once a
month

at least onceweekly multiple times per
week

once per day multiple times per
day

Q2: Imagine a display that gives you real-time visual feedback about the quality of your stretching. How
often can you imagine dedicating a few minutes to stretching exercises with such a coaching system
during working hours (e.g. in a break)? You may assume this is approved/encouraged by management.

O O O O O O O

never less than once a
month

at least once a
month

at least onceweekly multiple times per
week

once per day multiple times per
day

Q3: I would be willing to try a system that reminds me to stretch and instructs me on particular exercises
for relieving body strain from a prolonged working pose (e.g., seated at desk, standing at workbench for
many hours).

O O O O O O O

strongly disagree undecided strongly agree

Fig. 6 Responses to Q1 reflect
how often participants perform
stretching exercises, Q2
indicates the preferred
frequency of stretching with an
imaginary coaching system and
Q3 reveals participants’
willingness to use a coaching
system that reminds and
instructs them to do stretching.
The home-office scenario is
presented in blue (left side) and
dedicated workplace in red
(right side). For more details see
Table 1

= 4: “at least once weekly”) (H1). Further, they could also
imagine using a digital coaching system more frequently at
home (median = 6: “once per day”) compared to the work-
place (median = 5: “multiple times per week”), and they
responded with higher willingness to try such a system that
reminds and instructs them to stretch in the home-office sce-
nario (median = 6) compared to the dedicated workplace
(median = 5) (H2). While this supports both our hypotheses,
it should be noted that responses were very positive for both
scenarios, generally indicating healthy stretching habits and
high acceptance of using a digital coach. Detailed results are
provided in Table 2.

4.2.2 Reported health issues, risks awareness and
exercising habits

In response to open questions, participants reported about
existing health issues, their knowledge of the potential effects
of a sedentary lifestyle, and provided details on their exercis-
ing habits while at the workplace or home office. We coded
and analyzed this data inMaxQDA software. The codes were
grouped into 3–7 themes per question [36].

Of the total 90 participants, 19 reported preexisting diag-
nosed health conditions. The most common were pain or
mobility issues in the back (9), shoulders (4), and knees (3).
When asked whether they were aware of any possible phys-
iological problems caused by a sedentary lifestyle, 61/90
participants gave a positive answer. As examples they listed
back pain (24), neck pain (11), wrist issues (11), pain in other
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Table 2 The results of
significance assessment by
Wilcoxon signed-rank test. The
significance of differences
between home office and
dedicated workplace conditions
was assessed for each question
from Table 1

Online question Z p

Q1 - frequency of user’s stretching exercise −4.02 <0.001

Q2 - preferred frequency of stretching with a coaching system −3.83 <0.001

Q3 - willingness of trying a coaching system for stretching −4.60 <0.001

Values in bold (p < 0.001) indicate statistically significant differences, emphasizing their importance in the
analysis

joints (6), headache (5), and in lower numbers also heart and
blood circulation problems, mental health issues, etc.

In the questions asking about the participants’ exercising
habits, sources of exercising tips, and obstacles preventing
them from exercising, the answers varied depending on the
scenario (home office, dedicated workplace). The findings
from coding the open questions explain the results from
Q1-Q3: People prefer to exercise outside of a dedicatedwork-
place because they do not feel comfortable exercising in
front of their coworkers, as one of the participants stated:
"I would feel weird doing stretching in the office with my
colleagues present." This reason for not exercising at their
dedicated workplace was listed by 25/90 people - (22.5%).
Other obstacles listed for both home office and workplace
were related to personal discipline (laziness, lack of moti-
vation, non-existing routine, and forgetting to stretch) with
39.6% of received answers for home office and 22.5% for
the dedicated workplace. Workload or tight schedules were
also mentioned for both scenarios (25.2% at home, 29.7%
at work). Unsuitable space was predictably more often men-
tioned for the dedicated workplace (14.4%) than at home
(3.6%).

From these answers, we conclude a high willingness for
stretching with a digital coach. We expect that OffiStretch
could help people to exercise especially in their home office
setting, where several limitations (coworkers, space) are
absent and the coaching system could help with motivational
aspects (personal discipline).

5 User study

Upon completion of our OffiStretch prototype, we performed
a lab study to evaluate the overall functionality, motivation
impact, and potential of our proposed digital coach. In par-
ticular, we aimed at exploring the effect of our live visual
feedback on users’ motivation and performance in stretch-
ing.

5.1 Study design

To evaluate our methods for motion assessment and visual
feedback we compared two conditions in within-group
design (counterbalanced order):

• NonVF - video guidance and webcam-simulated mirror
without augmentation,

• VF - video guidance and webcam-simulated mirror
augmented by real-time visual feedback about pose cor-
rectness.

Both conditions involved the same video recordings show-
ing a trainer performing each stretching exercise, as well
as a verbal description (audio recording) of the stretch at
the beginning of each. In VF users additionally received
real-time audiovisual feedback about the correctness of their
actual pose.

We investigated the following hypotheses in the study:

H 3 Stretching is performedmore correctlywith visual feed-
back (VF) than with videos only (NonVF).

H 4 Live visual feedback about stretching performance
induces greater motivation to stretch (and perform stretches
regularly) (VF) compared to NonVF.

H 5 Users prefer stretching with our proposed visual feed-
back (VF) more than with video guidance only (NonVF).

H 6 Our proposed visual feedback for stretching is perceived
as effective in terms of (a) understanding/clarity, (b) helpful-
ness of guidance, and (c) subjective performance.

Data for assessment of performance (i.e., correct stretch-
ing, H3) was acquired by direct error measurement in
comparison to the reference pose and enriched by qualita-
tive analysis by physiotherapists. The other hypotheses were
explored through questionnaires.

5.2 Study procedure

All participants completed a set of six exercises twice, once
in the VF condition and once in the NonVF condition. To
avoid the effects of order, conditions were counterbalanced
resulting in two groups of participants. Upon arrival, all
participants were informed about the procedure and data
collection, signed their informed consent, and completed an
initial questionnaire with personal background information.
The first group started with the VF condition and the second
with NonVF. After performing a set of 6 exercises with a
given condition, they completed a questionnaire reflecting on
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Fig. 7 Reference position for comparison with the trainee. A set of six
exercises (performed by each participant twice; once with feedback and
once without feedback)

the activity just performed. The first group continuedwith the
NonVF condition and the second group with VF condition.
Afterward, the participants again completed a questionnaire
reflecting on the exercise set they had just completed. At the
end of the experiment, they completed a questionnaire ask-
ing about differences between the exercise sets with different
conditions.

5.3 Selected exercises

The six exercises were selected to cover full-body stretching.
During the selection of exercises, we also paid an attention
to easy detectability with our single-camera body tracking
approach. The following exercises were selected for our user
study (Fig. 7):

(1) (APS) Arm Prayer Stretch
(2) (BER) Bent Elbow Right Side
(3) (CSR) Calf Stretch Right
(4) (LDM) Latissimus Dorsi Muscle Stretch
(5) (SHA) Standing Hamstring
(6) (SHS) Standing Hamstring Stretch Right

Based on pilot testing, we empirically selected a small
number of suitable keypoints as features for each exercise.
These are listed in Table 3.

5.4 Participants

The user study was conducted with 14 participants (9 women
and 5 men). The distribution in predefined age brackets was
as follows: 5 people were between 18–25 years of age, 5
people were 26–33, 2 responded with 34–41, and 2 with 42–
49. More than 90% of the study participants were from an
academic environment, where physically demanding work
is not prevalent. All participants agreed to be video-recorded
for signal processing. The questionnaire responses were pro-
vided anonymously.

5.5 Signal processing

From the video recordings of users’ exercises, we exported
the time series of all feedback element values for both exe-
cutions (VF and NonVF). These feedback element values
corresponded to the differences of each pose to the reference
pose for a given exercise. In the next step, we calculated the
mean values of these differences across the evaluated time
interval. The mean differences were then aggregated across
the pose features using weighted average to obtain the final
pose correctness metric for each exercise. In a post-hoc step
during data analysis, theweights for each individual feedback
element were defined by three professional physiotherapists.
In summary, the following steps were taken to quantify the
correctness of the motion performance with respect to the
reference poses:

(1) The same time interval was used for all participants and
all exercises, which was set by the countdown timer in
the application. The participants practiced each exercise
for exactly 30s. The 15s time interval between 0:10 to
0:25 was used for the matrics calculations to compare
each exercise. The start was at 0:10 because we already
assumed the desired position was reached. The end of the
interval was at 0:25 to not consider the movements at the
end of the exercise.

(2) An average value was determined from each time series,
at a selected 15s interval for each pose feature. Thus,
if the exercise was defined by 4 features, we obtained 4
average values for the exercise.

(3) Physiotherapists determined the importance of each fea-
ture for correct use and thus determined the weight of
the feature. For example, keeping the spine perpendicu-
lar to the ground was more important than keeping the
feet together.

(4) The exercise performance was determined as a weighted
average of all feature distances. The performance metric
was compared between two conditions for each exercise
(Fig. 8).
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Table 3 For each exercise, a
unique combination of features
and feedback elements was
experimentally selected. The
numerical values correspond to
the keypoints in Fig. 4

Exercise Joint angles KP pair orientation Relative distances

APS (2,3,4),(5,6,7) (1,8) (4,7)

BER (2,3,4),(9,10,11),(12,13,14)

CSR (9,10,11) (1,8) (11,14)

SHA (12,13,14),(5,6,7) (4,23)

SHS (2,3,4),(5,6,7) (1,8) (11,14)

LDM (0,1,5),(8,12,13),(8,9,10)

5.5.1 Pose assessment by experts

After the study, all videos were presented to professional
physiotherapists. The physiotherapists performed two tasks:

a) Determine the weight of each feedback element (pose
feature) for each exercise in terms of the correctness of the
exercise execution. The individual weights can be seen in
Table 5.

b) Make an overall assessment of whether participants
performed the exercise better with or without feedback.

5.6 Results

In this section, we first describe the results of pose match-
ing between the reference motion and the trainee’s motion
during the exercise using measured data from our sys-
tem (Sect. 5.6.1). Second, we present our findings from the
qualitative evaluation by physiotherapists (Sect. 5.6.2). This
evaluation was done through a manual visual analysis of
all recorded videos. Finally, we provide the results from
our questionnaire, which investigated participants’ opinions
regarding motivation, feedback clarity, correction ability,
helpfulness of the coaching system, and user preference
(Sect. 5.6.3).

5.6.1 Pose matching performance metrics

In order to evaluate howwell the exercise was performed, we
recorded all the movements during the exercise. For compar-
ison, we used the stretching performance metric described
in Sect. 5.5 using the selected set of pose features for each
exercise.

The statistical results of differences between reference
pose and trainees’ poses can be seen in Fig. 8. This fig-
ure compares errors of poses between conditions with and
without visual feedback. The overall impression of the per-
formance of all 14 participants in the study was aggregated
for each exercise.Despite the fact thatwe can see trends in the
boxplots where the execution with feedback seems to show
less error, we did not find a statistically significant difference
in the execution of the exercises without feedback and with
feedback (Table 4).

Fig. 8 Values of metrics determining error of trainees’ poses with
respect to reference poses. Metrics were weighted based on qualita-
tive assessment of professional physiotherapists. Condition with visual
feedback is displayed in blue and condition without feedback is shown
in red

Table 4 Statistical significance of differences between conditions with
and without visual feedback for each exercise. The results were calcu-
lated using Wilcoxon signed rank test

Exercise APS BER CSR LDM SHA SHS

p-value 0.766 0.644 0.088 0.286 0.460 0.682

z-score −0.31 0.46 1.71 1.07 0.74 −0.41

5.6.2 Qualitative comparison by professionals

A qualitative assessment was carried out using visual anal-
ysis. Three professional physiotherapists watched all videos
taken during the study. They evaluated each exercise sep-
arately. They watched all videos where subjects performed
the exercise with feedback, then watched the videos without
feedback. Then, the professionals summarised the com-
mon features they found in the exercises with and without
feedback. For each exercise, they described how feedback
influenced the differences in performance. Based on the
observations, the physiotherapists also commented on the
appropriateness of the chosen feedback elements. The sum-
mary of this assessment is provided as follows:

• (APS) Arm Prayer Stretch
There are no significant differences seen in the user per-
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formance between VF and NonVF. In both cases, the
participants performed the exercises equally well.

• (BER) Bent Elbow Right Side
It is evident that in this exercise people perform the exer-
cise better with feedback than when just watching the
video. However, despite the fact that they perform it bet-
ter, in some cases, they do not perform it quite as well as
the trainer.

• (CSR) Calf Stretch Right
For this exercise, the physiotherapists saw slightly bet-
ter execution with feedback, but observation shows that
the correctness of execution varies based on the physical
proportions of each subject.

• (LDM) Latissimus Dorsi Muscle Stretch
For this exercise, the physiotherapists did not see any
noticeable differences between the performances. they
attributed this mainly to poorly chosen feedback ele-
ments.

• (SHA) Standing Hamstring
For this exercise, the professionals did not see any major
differences in the performance of VF and NonVF. In the
case of VF, some users are guided to keep both legs in a
vertical position, which is desirable for exercise. Without
feedback, these legs are not in a vertical position due to
the lack of VF, and buttock displacement occurs.

• (SHS) Standing Hamstring Stretch Right
In this exercise, the professionals observed worse perfor-
mance in the VF variant. The feedback in this case forces
people to get into positions they cannot hold. Here the
choice of feedback elements was wrong. In this case, the
elements should be chosen in a way that the front leg is
extended at the knee. In the VF setting, the leg was bent
and therefore the muscles that should be stretched by this
exercise were not stretched.

5.6.3 Questionnaire analysis

The main goal of the questionnaires in our study was to
investigate differences between conditions with and without
visual feedback. We were interested to study the subjective
responses of participants on the understanding of instruc-
tions, helpfulness of guidance, subjective performance,moti-
vation, and their preference between two conditions.

The results of the questionnaire analysis can be seen in
Fig. 9 and in Table 6. For the majority of measured factors,
our visual feedback achieved better subjective ratings than
the condition without visual feedback. This was not the case
for the subjective performance where the condition without
feedback was rated better. As we can see in Table 6, we
did not find a statistically significant difference between the
conditions for any of the measured factors.

Finally, the preference between stretching with and
without visual feedback was measured by a subjective,

Fig. 9 Data collected from on-site questionnaire. The condition with
our visual feedback is indicated in blue and the condition with-
out feedback is indicated in red. Higher value on y axis means
more positive response for a given factor. A Understanding of the
instructions/visualization.BHelpfulness of guidance.C Subjective per-
formance. D Motivation. E Preference

two-alternative, forced-choice preference approach. Each
participant had to select a preferred condition from two expe-
rienced conditions,VF andNonVF.Out of 14 participants, 11
stated they preferred our visual feedback A Chi-square non-
parametric test suggests a significant preference for visual
feedback (χ2 = 4.571,p= 0.033).

The primary reason participants preferredOffiStretch over
mere video guidance was its ability to provide immediate
feedback for pose correction. As noted by one of the partic-
ipants: "It helped me to put myself in the correct pose and
to correct my posture. I find it very helpful since finding the
right angle and posture is key for every stretching exercise
to bring the desired benefits." The users also offered some
ideas for improving the application such as addingmore gam-
ifying elements. One of the participants suggested reducing
the correction requirements for triggering audio feedback:
"It was stressful because many times the voice said to adjust
my position. Maybe you could rethink the tolerance of the
angles and decrease the number of times it corrects you."

6 Discussion

In our experiment, we used six exercises that cover stretch-
ing of different body parts. Based on visual analysis, the
importance of visual feedback is not high for simpler exer-
cises (APS). Some exercises take longer to understand (BER,
SHA), some are challenging to perform and not all people
can do them (SHS), so the feedback that informs trainees that
they are not performing the exercise well can be frustrating.
Some exercises can be performed worse with feedback than
without feedback (SHS).

Our results indicate that feedback is in high demand by
people and for some exercises we are able to design feed-
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Table 5 Based on the ex-postmonitoring of the recordingswith the sub-
jects, professionals in the field of physiotherapy determined a weight
for each feedback element. Thus, the table always displays the name of

the exercise on a row and a list of feedback elements and their respective
weights in a second column

Exercise Feedback elements and weights

APS �(2, 3, 4) W:1.00; �(5, 6, 7) W:1,00; �(1, 8) W:0.80; RD(4,7) W1.00; RD(11,14) W:0.20

BER �(2, 3, 4) W1.00; �(9, 10, 11) W:0.40; �(12, 13, 14) W:0.40; �(1, 8) W:0.80; RD(4,7) W:0.20

CSR �(12, 13, 14) W:1.00; �(1, 8) W:1.00; RD(11,14) W:1.00; RD(4,9) W:0.20

LDM �(0, 1, 5) W:0.80; �(8, 12, 13) W:0.80; �(8, 9, 10) W:0.80; RD(11,14) W:0.60; RD(7,12) W:0.60

SHA �(12, 13, 14) W:1.00; �(5, 6, 7) W:0.60; RD(4,23) W:0.60; RD(7,20) W:0.60

SHS �(5, 6, 7) W:0.60; �(2, 3, 4) W:0.60; �(1, 8) W:0.80 RD(11,14) W:0.60; (4,20) W:0.80

Table 6 Results of on-site study questionnaire—a statistical signifi-
cance of differences in responses after the exercises with and without
feedback. Statistical significance was assessed using Wilcoxon signed-
rank test

Onsite question Z-score p-value

Understanding of the inst./vis −0.50 0.61

Helpfulness of guidance −0.43 0.67

Subjective performance −0.15 0.88

Motivation −1.05 0.29

Preference −1.23 0.22

back that is useful according to the trainees. On the other
hand, we cannot use all body pose features to simply com-
pare each pose to its reference counterpart. Feedback needs
to be looked at in a more complex fashion and each exercise
needs to be considered individually (ideally with the advice
of physiotherapists). Feedback must only be a supplement.
The trainee needs to know that they are being monitored and
that their efforts are being recorded andmeasured. For exam-
ple, if we detect that a person has stopped exercising at all,
we can give them feedback to try to continue.

Our online survey investigated the frequency of users’
stretching exercises (H1), preferred frequency of stretching
with a coaching system (H2), and willingness of trying a
coaching application for stretching (H2) in two conditions:
(1) home office and (2) at the dedicated workplace. Our
results suggest that the home office scenario is rated signifi-
cantly higher than a dedicated workplace for all three factors.
Therefore, both hypothesesH1 andH2were supported by the
study results.

The online survey explored the overall consciousness of
participants about problems with a sedentary lifestyle, will-
ingness to use coaching technology, as well as where and
how often such technology could be used. The outcome of
the survey indicates the need and user preferences towards
research and development of interactive coaching applica-
tions for stretching exercises. Complementary to the online
survey, our on-site study explored how our proposed system

performs in comparison to a video indicating the effective-
ness of our methods.

Hypothesis H3 in our on-site study, that people would per-
form the exercises better with feedback than without it, was
not supported by the results of our quantitative error mea-
surements. We observed that for four exercises (BER, CRS,
LDM, and SHA) the error with feedback was lower than
without feedback, while for two exercises the participants
performed better without visual feedback (APS, SHS). These
results are displayed in Fig. 8. None of these differences are
significant. Moreover, the performance comparison of VF
and NonVF conditions was augmented by the comments of
professional physiotherapists. These professional comments
reveal additional facts about the body pose assessment, for
example, dependency of correctness on physical body pro-
portions (CSR), improper selection of feedback elements
(LDM and SHS), and forcing users into improper positions
(SHS). These additional comments highlight the importance
of the correct selection of feedback elements, individually
for each exercise. The comments of professionals on each
exercise are detailed in Sect. 5.6.2.

Hypothesis H4, that our system induces higher motivation
to perform stretching at the moment (and also regularly) than
videos was only partially supported by our results. The sub-
jectively reported motivation was higher for the condition
with visual feedback than for the condition without visual
feedback. However, the difference was not statistically sig-
nificant.

Hypothesis H5, that our visual feedback for stretching
is more preferred by the users than video guidance, was
supported according to the results of our analysis of the
forced-choice preference question.

Finally, hypothesis H6 focused on the differences in sub-
jectively reported understanding of instructions, helpfulness
of guidance, and performance (Fig. 9). This hypothesis was
not supported by our results because while the understand-
ing of instructions and helpfulness of guidance were rated
higher for the VF condition, the self-reported performance
was higher for NonVF condition. Interestingly, this result is
in contradiction with the measured quantitative pose errors
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for some exercises. None of the differences between condi-
tions (in the evaluation of H6) was significant.

6.1 Limitations and future work

The main limitation of the presented methods is that a single
camera and digital mirror limit the possible orientations and
postures inwhich theusers canbe tracked and see themselves,
therefore it can only be used for exercises that permit frontal
poses [37] or side-view poses, while for others feedback in
a flexible third person perspective may be of advantage [25,
28, 30].

Another limitation is the need for a really thorough selec-
tion of features for pose analysis and feedback elements. The
results of our user study suggest that some of the elements
that were selected and tested before the study were poorly
chosen. This was only discovered after visual inspection by
physiotherapy professionals. Thus, we emphasize that auto-
mated stretching coaching is an interdisciplinary problem
and a mere technical solution is just a tool, but the design
of similar systems cannot be done without user studies and
proper insights from domain experts. In our future work, we
want to design a system that facilitates mainly the involve-
ment and evaluation of exercise selection by professionals
and to conduct a larger study on more exercises and more
subjects.

Our systemonlyworkswith stretching exerciseswhere the
person remains in a static position. The feedback is dynamic
and works with video, but the comparison is only with the
static position. For the design of dynamic exercises, the
system would need to be significantly modified. For some
exercises, it would be enough to add more static positions
(squat, push up, pull up, and similar) while for others the
system would need to be completely redesigned (running,
dancing, martial arts).

Another factor with a critical impact on the success of
an interactive training application is the intelligibility of the
visual feedback. While our indication of joint angles and
distances through circles and lines was understood by all
study participants, they required prior instructions. This may
be improved in the future, for example by presenting the
correct pose as an overlay [25, 30] on the user’smirror image.

Based on the feedback from the questionnaires, we will
also work on adding more elements of gamification and
competition that were suggested by the study participants.
Further, the application should include possibilities to adapt
exercises for users’ individual motion range (e.g., to accom-
modate physical disabilities), as well as user customization
of difficulty level and training goals [23].

7 Conclusion

This paper proposes novel methods for pose analysis and
visual feedback for personal stretching guidance. Our meth-
ods use a single RGB camera and interactive pose estimation
to detect and match the body pose of a trainee to a reference
pose for stretching exercises. Finally, the detected errors are
visualized for the user as an interactive overlay on awebcam-
simulated mirror. This allows the user to correct their body
pose and thus improve their stretching performance. We
present evidence from an online survey suggesting that peo-
ple prefer to perform stretching exercises more in a home
office scenario than at their dedicated workplace and that
there is a high willingness to use a system for interactive
stretching guidance. Further, we conducted an evaluation of
ourOffiStretch system in a lab, investigating users’ stretching
performance when using our system compared to traditional
video guidance. For this, we designed six stretching exer-
cises in collaborationwith professional physiotherapists. Our
study reveals the importance of tailoring feedback elements
to each exercise and highlights the relevance of domain
knowledge when designing a system for stretching guidance.
The hypotheses, testing the effectiveness of visual feedback
for stretching exercises, yielded mixed results: while users
prefer live visual feedback over plain video guidance, it
does not universally enhance performance. Future work will
focus on refining feedback mechanisms through extensive
collaboration with physiotherapy professionals, expanding
the system’s capability to support a wider range of exercises
and enhancing user engagement through gamification ele-
ments.
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