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A B S T R A C T   

Since lateral tensile stresses trigger failure of vertically perforated clay block masonry under vertical loading, 
reinforcement of the bed joints introduces a new way to improve the vertical resistance of masonry. The aim of 
this work is to estimate the feasible increase of the vertical compressive strength by means of the eXtended Finite 
Element Method (XFEM). Using a unit cell approach and a stochastic strength distribution, the increase of the 
masonry strength’s 5%-quantile could be predicted with 33%. Hence, this work constitutes the vast potential of 
fibre reinforced bed joints in improving the vertical compressive strength of clay block masonry.   

1. Introduction 

Being one of the oldest building materials in human history, brick 
masonry has been used widely, especially in Central Europe. Despite its 
excellent properties (such as durability, sound protection, energy effi
ciency, superior indoor climate), masonry lost its dominating role in the 
building industry, due to the rise of steel and reinforced concrete in the 
second half of the twentieth century. While innovative research in 
concrete and steel constructions encouraged the wide usage of these 
materials, big innovations in optimising the load bearing capabilities of 
newly built block masonry have not been found. Developments as the 
use of polyurethane-based glue in the bed joints simplify the construc
tion process, however, the strength of masonry structures is not 
enhanced, if not even reduced. However, the activity in masonry 
research has increased again in this field of interest, especially because 
of the rapid development of computational mechanical methods (see e. 
g. [1,3,18,21,30,31,34,35,39,42,48]). 

Recently, Kiefer et al. [27] proposed a numerical simulation tool to 
derive the compressive strength of masonry made of vertically perfo
rated clay blocks, as they are widely used for residential low rise 
buildings in central Europe. The usage of such kind of blocks, laid in thin 
bed mortar without mortared head joints, results in numerous 

advantages, as for instance shorter building periods, higher accuracy of 
construction, and improved masonry properties regarding thermal 
insulation. However, using this construction technique does not allow 
for a continuous mortar layer between the blocks, resulting in vertically 
connected chambers. Especially with installations in the façade and 
subsequent occurring air circulation, this causes severe problems con
cerning the airtightness of the building shell. This airtightness is 
demanded by standards to prevent problems, such as arising mould (e.g. 
DIN 4108-1 [10]). To encounter this problem, bed joints are occasion
ally reinforced with fibres, leading to a continuous mortar layer. In the 
investigated block masonry, failure under vertical compressive loading 
is triggered by transverse tensile stresses and subsequent occurring 
cracks. Yet, the fibre reinforcement within the mortar layer increases its 
stiffness, thereby reducing the tensile stresses in the transverse webs of 
the block. Since the potential for optimization in changing the block 
geometry is rather exhausted (see e.g. [8,9,41,49]), reinforcement of the 
bed joints introduces a new way to improve not only the ductility and 
horizontal strength (as e.g. Sadek and Lissel [46] already showed), but 
also the vertical compressive strength of masonry (as e.g. Jasiński and 
Drobiec [26] suspected for solid autoclaved aerated concrete masonry). 

Thus, the main aim of this work is to assess the feasible compressive 
strength increase due to fibre reinforcement of the bed joints, by 
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extending the unit cell approach proposed by Kiefer et al. [27], which 
uses the eXtended Finite Element Method (XFEM) combined with the 
Virtual Crack Closure Technique (VCCT) to model the brittle fracture of 
brick. Another popular modelling approach are smeared damage models 
like regularized damage models or phase field models (see e.g. 
[12,32,37,43]). While the XFEM introduces discrete cracks in the finite 
element model, smeared damage approaches are able to model smeared 
fracture zones by including damage variables in the constitutive model. 
Especially when facing problems like hard-to-predict initial crack loca
tions, uniting cracks, or dynamic crack growth, classic XFEM poses hard- 
to-overcome problems. Although different approaches for improving the 
traditional XFEM tackle these shortcomings (see e.g. [11,52,53]), 
smeared damage models stay superior in the aforementioned cases. 
Since the location of cracks could be predicted easily and uniting cracks 
were not relevant for the problem, using a stable, reliably validated and 
already available numerical model seemed to be sufficient for reaching 
this goal. 

Building on this model, the outline of the paper can be summarized 
as follows: First of all, the reinforced mortar joints were introduced by 
homogenizing the overall stiffness based on a multi-scale material 
model. Secondly, this modelling strategy was validated by means of 
compression tests on solid brick pillars, conducted by Trinko et al. [50]. 
Considering these adaptations, a relation between the amount of rein
forcement and the overall strength increase could be developed. Addi
tionally, ten different models with stochastically allocated strength 
values were generated and numerically evaluated with and without 
reinforcement. In that way, the effect of strength fluctuations within the 
clay block could be investigated. These fluctuations are often caused by 
micro-cracks or material inhomogeneities, originating from the pro
duction process. 

Finally, a reasonable estimate for the vertical compressive strength 
increase of clay block masonry due to fibre reinforced bed joints should 
be provided. Section 2 contains an overview of the applied modelling 
strategies as well as the validation of these, while Section 3 provides a 
detailed description of the numerical model. Afterwards, the results are 
explained and discussed in Section 4, followed by final conclusions to 
the work in Section 5. 

2. Modelling strategies 

In the development of new block geometries, manufacturers conduct 
compressive tests on two different specimen types: single blocks and 
standardized wall specimens according to EN 1052-1:1998 [15]. The 
standardized wall specimen is two block lengths wide, five block heights 
high, and includes mortar joints, thereby reproducing the load transfer 
mechanisms inside a masonry wall. Due to the difference of these 
specimens, the obtained compressive strength is significantly smaller 
when testing a wall specimen than in the single block experiment. This 
difference originates in the distinct failure mechanisms of both tests. 

In the single block experiment the block’s top and bottom surface are 
fully in contact with the steel plates of the testing machine. Therefore, 
the applied vertical forces induce approximately constant vertical 
compressive stresses over the block’s cross section (see Fig. 1 (a)). 
Additionally, the friction between the machinery and the specimen 
disables the lateral deformation of the block’s top and bottom faces, 
leading to lateral compressive stresses close to the top and bottom faces. 
Conversely, in block masonry under axial compression, as it is repre
sented by the wall specimen, the vertical compressive stresses vary over 
the block’s cross section. While the vertical stresses are approximately 
constant at half height of each block, transverse webs not standing on 
top of each other cannot underlie vertical stresses on the top and bottom 
faces (see Fig. 1 (b). Hence, the forces have to be redistributed to the 
load transferring longitudinal webs, yielding tensile stresses on the 
surface, similar to a plate under vertical loading supported in both lower 
corners (see Fig. 1 (c)). 

There is no way to reliably predict the compressive strength of 

masonry solely on the single block strength; thus, it is important to 
consider both block and mortar in the numerical simulation tool. Since 
the numerical simulation of the whole standardized wall specimen is 
rather time consuming, Kiefer et al. [27] suggested the usage of a unit 
cell approach with periodic boundary conditions. This approach enables 
the simulation of an infinitely large masonry wall, represented through a 
sufficiently large, characteristic part of the wall. Hence, it was possible 
to simulate a uniaxial macroscopic stress state, as it can be expected in 
the middle of the wall specimen, with a model, which was 80% smaller 
than the real specimen. In combination with Hoffman’s orthotropic 
damage criterion [24] and discrete crack simulation by means of the 
eXtended Finite Element Method (XFEM), they were able to efficiently 
predict the vertical compressive strength different block geometries. 

2.1. Unit cell with periodic boundary conditions 

A masonry wall is here considered as a two-dimensionally periodic 
structure; bricks (or blocks) and mortar form a constantly repeating 
pattern. To reduce the computational expense of the numerical simu
lation, it seems obvious to make use of this structural property. Doing so, 
it is sufficient to define the mechanical properties solely on a small part 
of the structure, the so-called repeating unit cell, with periodic boundary 
conditions. 

The periodicity of masonry with a lateral block offset of half the 
block length (see Fig. 2) can be defined by a basis of two linearly in
dependent vectors v1 and v2, with the following characteristics: Any 
point xb within the structure can be reached by translating a starting 
point xa along a vector m1⋅v1 + m2⋅v2 (m1, m2 ∈ Z). Points xa and xb, 
which are associated in that manner, have the same mechanical prop
erties. The smallest possible unit cell, without considering line or point 
symmetries, would be the parallelogram spanned by the two vectors v1 

Fig. 1. Differences in load transfer of (a) single block specimen and (b) wall 
specimen. The truss system in (c) visualizes the load transfer from transverse 
webs to longitudinal webs (green – compressive force, red – tensile force). The 
vector ey is normal to the wall surface. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 2. Two-dimensional periodicity of a common bonding pattern.  

R. Suda et al.                                                                                                                                                                                                                                    



Engineering Structures 239 (2021) 112277

3

and v2. However, for easily applying the periodic boundary conditions 
on the FE mesh, it is better to have a cuboid unit cell. Therefore, the 
extracted section in Fig. 3 was chosen as unit cell. The vectors cx and cz 
describe the unit cell periodicity in directions ex and ez, respectively. 

Hence, the masonry wall consists of a periodic concatenation of unit 
cells. Both in undeformed and deformed state, these unit cells have to 
form a geometrically compatible structure. To satisfy this condition, 
periodic boundary conditions were formed and applied to the unit cell. 
These special boundary conditions ensure that two neighbouring faces 
(thus, opposing faces of a unit cell) deform in the same manner: every 
point sk on the unit cell’s face has a corresponding point sk +ck on the 
opposing face. 

Michel et al. [36] split the strain field ε(x) in a constant part 〈ε〉 and a 
locally fluctuating part ε′

(x): 

ε(x) = 〈ε〉+ ε′

(x), (1)  

where x marks a point within the unit cell. The constant part of the strain 
field is defined as mean value over the volume V: 

〈ε〉 = 1
|V|

∫

V
ε(x)dx. (2)  

Following Eqs. (1) and (2), the local fluctuations have to vanish on 
average. Integrating Eq. (1) yields to the deformation field u(x): 

u(x) = 〈ε〉⋅x+u′

(x). (3)  

Each repetition of the unit cell contributes the same deformation Δu to 
the overall deformation. This deformation can be calculated for each 
pair of corresponding points, by means of Eq. (3): 

Δuk = u(sk + ck) − u(sk) = 〈ε〉⋅ck. (4)  

Since 〈ε〉 and ck are constant within the unit cell, the deformation dif
ference of two in direction k opposing faces, Δuk, has to be constant too. 
This property enables the definition of so-called master vertices; the 
deformation of those master vertices defines the deformation state on 
the boundary of the unit cell. 

Fig. 4 shows a reasonable name convention for cuboid unit cells, 
proposed by Böhm [5]. Hereby, faces are labelled N, S, E, W, T, and B 
(North, South, East, West, Top, and Bottom, respectively), while names of 
edges and vertices consist of the labels of the intersecting faces (eg. SE 
for a edge and SWB for a vertex). 

The chosen unit cell is periodic in x- and z-direction, the y-axis is 
rectangular to the wall surface. Therefore, the faces East and West are 
coupled, as well as Top and Bottom, while South and North may deform 
freely. Although this paper only considers strictly vertical loading, the 
following periodic boundary conditions include the implementation of 

more general deformation states. Considering the translation of the 
edges WB and WT, the displacements in x- and z-direction are the 
following on each point on face Bottom (see Fig. 5): 
(

uB
x (y)

uB
z (y)

)

=

(
uSWB

x

uSWB
z

)

+
y
ly

⋅

(
uNWB

x − uSWB
x

uNWB
z − uSWB

z

)

. (5)  

The same relation applies on face Top: 
(

uT
x (y)

uT
z (y)

)

=

(
uSWT

x

uSWT
z

)

+
y
ly

⋅

(
uNWT

x − uSWT
x

uNWT
z − uSWT

z

)

. (6)  

Since uSWB
x and uNWB

x are not necessarily equal, rotations may occur, 
which result in displacements along the y-axis, uy (see Fig. 5): 

Fig. 3. Chosen unit cell.  

Fig. 4. Name convention for the faces, edges and vertices of a three- 
dimensional cuboid unit cell. 

Fig. 5. Translation and rotation of face West due to displacements of mas
ter nodes. 
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uB
y (x) = uSWB

y −
x
ly

⋅
(
uNWB

x − uSWB
x

)
and (7)  

uT
y (x) = uSWT

y −
x
ly

⋅
(
uNWT

x − uSWT
x

)
. (8)  

Joining Eqs. (5)–(8) results in the coupling of the faces Top and Bottom: 

Δuz =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

uT
x (x, y) − uB

x (x, y)

uT
y (x, y) − uB

y (x, y)

uT
z (x, y) − uB

z (x, y)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

uSWT
x − uSWB

x

uSWT
y − uSWB

y

uSWT
z − uSWB

z

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y
ly

⋅
( (

uNWT
x − uSWT

x

)
−
(
uNWB

x − uSWB
x

) )

−
x
ly

⋅
( (

uNWT
x − uSWT

x

)
−
(
uNWB

x − uSWB
x

) )

y
ly

⋅
( (

uNWT
z − uSWT

z

)
−
(
uNWB

z − uSWB
z

) )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(9) 

Formulating the deformations for the edges WB and EB in an analo
gous manner results in the coupling of the faces East and West: 

Δux =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

uE
x (y, z) − uW

x (y, z)

uE
y (y, z) − uW

y (y, z)

uE
z (y, z) − uW

z (y, z)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

uSEB
x − uSWB

x

uSEB
y − uSWB

y

uSEB
z − uSWB

z

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y
ly

⋅
( (

uNEB
x − uSEB

x

)
−
(
uNWB

x − uSWB
x

) )

−
z
ly

⋅
( (

uNEB
z − uSEB

z

)
−
(
uNWB

z − uSWB
z

) )

y
ly

⋅
( (

uNEB
z − uSEB

z

)
−
(
uNWB

z − uSWB
z

) )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(10)  

The linear Eqs. (9) and (10) were applied to each pair of corresponding 
nodes to ensure the geometrical compatibility of the unit cell in any 
loading scenario. Both free surfaces Top and Bottom may deform freely; 
thus, the stresses on those surfaces have to equal zero. Hence, merely the 
deformations of six out of eight vertices are needed to fully define the 
boundary conditions. Therefore, these vertices, SWT, NWT, SWB, NWB, 
SEB, and NEB, are designated master nodes. To simulate a specific 
loading scenario, deformations were applied on the master nodes, 
following Eq. (4). A pure vertical loading is applied by specifying the 
constant strain in z-direction, 〈εzz〉, to nonzero, while setting each other 
constant strain component to zero: 

Δux = 〈ε〉⋅cx =

⎛

⎝
0
0
0

⎞

⎠, Δuz = 〈ε〉⋅cz =

⎛

⎝
0
0

〈εzz〉⋅lz

⎞

⎠. (11)  

Excluding rigid body translations and rotations, the periodic boundary 
conditions (Eqs. (9) and (10)) only fulfil these constraints by setting the 
vertical displacements of the vertices NWT and SWT to 〈εzz〉⋅lz and the 
remaining displacements to zero (see Fig. 6). 

2.2. Brittle failure of fired clay 

Extruded bricks show a distinct orthotropic material behaviour, 
caused by the production process. When the raw mixture is being 
extruded, the flat clay minerals align parallel to the extrusion direction, 
as Bourret et al. [7] showed. The highest stiffness and strength values are 
oriented in extrusion direction, while the values in perpendicular 

direction may be significantly smaller. This orthotropy especially occurs 
in vertically perforated clay blocks with thin webs. Fig. 7 shows the 
varying local coordinate systems over the block’s cross section. While 
the local Z-axis is always parallel to the global z-axis (the extrusion di
rection), the orientation of the L- and T-axis depends on the location 
within the block geometry. The L-axis (longitudinal) is parallel to the 
longer side of each part; the T-axis (transversal) is rectangular to the L- 
axis. Capital letters are used for the local coordinates (L,T,Z), whereas 
lower case letters indicate global coordinates (x,y,z). Two different types 
of webs may be distinguished due to the geometry of the vertical per
forations: longitudinal webs are aligned lengthwise with the wall, trans
verse webs are oriented rectangular to the wall surface. 

Cracking processes are a central matter in the failure of brittle ma
terials like fired clay. Those cracks are always attended with high gra
dients in the stress field near the crack tip. Thus, the mesh would have to 
be refined around the crack tip. Consequently, the mesh has to be 
continually updated when simulating propagating cracks. The eXtended 
Finite Element Method (XFEM), introduced by Belytschko and Black [2], 
allows the modelling of discrete propagating cracks without remeshing. 
Based on the partition of unity finite element method of Melenk and 
Babuška [33], the elements are being subdivided into parts, on which 
different shape functions are applied. This partition enables the local 
enrichment of the nodal degrees of freedom with special displacement 
functions: 

u
(
x
)
≈
∑NN

i
Ni
(
x
)
⋅

[

ui + Hi
(
x
)
⋅ai +

∑

j
Gj
(
x
)
⋅bij

]

, (12) 

Fig. 6. Applied deformations on the unit cell.  

Fig. 7. Parts of a vertically perforated clay block and local coordinates for 
describing the material properties. 
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where Ni are the used nodal shape functions, ui the nodal displacements, 
Hi the nodal enrichment functions,Gj the crack tip functions, and ai as 
well as bij the additional degrees of freedom for totally and partly 
cracked elements. While the first term in square brackets of Eq. (12) 
describes the approximation of the displacement field for the uncracked 
regions, the second and third part apply for fully and partly cracked 
elements, respectively. The numerical simulation tool was modelled in 
the commercial FE software Abaqus, in which the crack tip functions are 
not considered. Since these functions depict the high stress gradients 
near the crack tip, the used approach is more sensitive to the chosen 
mesh. Being fully aware of this fact, the chosen meshes were sufficiently 
refined where needed. 

For describing the location and geometry of cracks, the so-called 
level-set method is applied [19,38]. The two level-set functions ϕ(x)
and ψ(x) are able to describe the location of a crack, relative to a given 
position x. The function ϕ(x) specifies the orthogonal distance of the 
point x to the crack surface, while ψ(x) denotes the distance to the crack 
tip. With these two functions, the crack geometry may be described, 
whereas 

ϕ(x) = 0,ψ(x) < 0 defines the crack surface, (13)  

ϕ(x) = 0,ψ(x) = 0 defines the crack tip, and (14)  

ψ(x) > 0 is not located on the crack at all. (15)  

Abaqus uses the modified Heaviside function H(x) [38] as the nodal 
enrichment function: 

Hi
(
x
)
= H

(
ϕ
(
x
))

=

{
− 1 for ϕ(x) < 0
+1 for ϕ(x)⩾0 . (16)  

The level-set for the crack surface, ϕ(x), is directly used as the argument 
for the enrichment function. 

Two different components are necessary for the modelling of prop
agating cracks with the FEM:  

1. a damage initiation criterion f(σ) to indicate failure within an 
element, and  

2. a damage evolution criterion to define the ductility and therefore 
the propagation rate of the crack. 

When the damage initiation criterion indicates failure, the affected 
element is being partitioned along a plane surface, given by the 
maximum plain stress, but not yet split. Those partitions stay bonded 
until the damage evolution criterion is fulfilled. Within the present 
work, a combination of Hoffman’s orthotropic failure criterion [24] 
with the Virtual Crack Closure Technique (VCCT) was used. 

2.2.1. Crack initiation with the orthotropic Hoffman criterion 
Graubner and Richter [18] studied different failure criteria for the 

numerical simulation of brick and found the Hoffman criterion [24] to 
be suitable for modelling brick failure. The criterion uses each compo
nent of the stress tensor σ and is capable of indicating failure under 
tensile as well as combined stress states. Triaxial compression failure 
cannot be depicted with the Hoffman criterion. Since the main reason of 
failure are tensile stresses in the transverse webs, this lack of coverage is 
acceptable for the present work. Anyhow, Kiefer et al. [27] have shown 
that even a simple principal stress criterion yields reasonable results, 
which confirms the assumption of lateral tensile stresses governing the 
failure mechanism. 

Mathematically, Hoffman’s failure criterion reads as follows: 

f (σ) = C1⋅(σTT − σZZ)
2
+ C2⋅(σZZ − σLL)

2

+C3⋅(σLL − σTT )
2

+C4⋅σLL + C5⋅σTT + C6⋅σZZ
+C7⋅(σLT)

2
+ C8⋅(σTZ)

2
+ C9⋅(σLZ)

2
,

(17)  

with the components of the stress tensor, σij, and the constant parame
ters C1 to C9 depending on the materials tensile, compressive, and shear 
strengths, σt,i, σc,i, and σs,ij, respectively: 

C1 =
1
2

[(
σt,T ⋅σc,T

)− 1
+
(
σt,Z ⋅σc,Z

)− 1
−
(
σt,L⋅σc,L

)− 1
]
,

C2 and C3 by permutation of indices L, T,Z,
(18)  

C4 =
(
σt,L
)− 1

−
(
σc,L
)− 1

,

C5 and C6 by permutation of indices L, T,Z,
(19)  

C7 =
(
σs,TZ

)− 2
,

C8 and C9 by permutation of indices L, T,Z.
(20) 

While tensile and compressive strengths are available from experi
ments (see Section 3.2), the shear strengths could only be estimated. 
Graubner and Richter [18] obtained reasonable results by assuming the 
shear strengths between the mean value of the corresponding tensile 
strengths and half of the mean value of the corresponding compressive 
strengths: 

τij,min =
σt,i + σt,j

2
, τij,max =

σc,i + σc,j

4
. (21)  

In the present work, the shear strengths were specified as mean value of 
those boundaries. 

2.2.2. Crack propagation with the Virtual Crack Closure Technique 
The brittle material behaviour of fired clay can be described accu

rately by means of linear elastic fracture mechanics, which forms the 
basis for the application of the Virtual Crack Closure Technique. The 
main assumption of this technique is the following: The released strain 
energy due to opening of a crack is equal to the energy, required for 
closing the same crack. Based on this assumption, the energy release rate 
G is calculated and compared with the critical energy release rate Gc, 
which is a material property. As soon as the energy release rate exceeds 
the critical value, the crack extends. In the present work, the crack 
propagation criterion was defined to consider all three failure modes by 
means of a power law (as it is implemented in Abaqus): 

f =
G
Gc

=

(
GI

GI,c

)a

+

(
GII

GII,c

)b

+

(
GIII

GIII,c

)c

= 1. (22)  

Hereby, the energy release rate is calculated and compared to the critical 
energy release rate for each failure mode separately. Additionally, the 
superscripts a, b and c affect the interaction between the failure modes. 

Kiefer et al. [27] assigned 0.025 J/mm2 to the critical energy release 
rate for mode-I failure, GI,c. These values where chosen after Eis and 
Vassilev [14], who did three-point bending tests on different brick 
specimen and back-calculated the fracture energy via a genetic algo
rithm proposed by Hannawald [22]. Bocca et al. [6] determined similar 
fracture energy values from three-point bending tests and achieved good 
results recalculating the experiments with a cohesive crack model 
considering linear elastic fracture mechanics. While critical energy 
release rates for mode-I failure are already scarce in literature, data for 
mode II and mode III are even harder to find. However, since [27] 
showed that the tensile stresses govern failure of vertically perforated 
clay block masonry, mode I is the decisive failure mode. Therefore, the 
values GII,c and GIII,c have to be distinctly higher, for example GII,c/GI,c =

GIII,c/GI,c = 10, as proposed by [27] Considering this ratio, GII,c and GIII,c 

were set to 0.25 J/mm2, assuming linear interaction the coefficients a, b 
and c were all set to 1. 

2.3. Mortar bed joint 

The considered vertically perforated clay blocks are usually used 
with thin bed mortar as bed joint. In general those mortars consist of 
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cement, chalk, and sand or quartz sand powder. Thin bed mortar be
haves similarly to concrete without reinforcement: strengths and 
Young’s modulus are isotropic, the mortar basically deforms linear 
elastic and fails brittle under tensile stresses without distinct plastic 
behaviour. While the compressive strength of different thin bed mortars 
are fairly high, the tensile stresses stay rather low in comparison. 

Due to the hydraulic solidification of cement mortar, the material 
properties strongly depend on the amount of available water. For a 
complete hydratation of the mortar, a water-cement ratio around 0.4 is 
ideal – the weight of available water should be 0.4 times the cement’s 
weight. Since fired clay tends to absorb significant amounts of the water 
bound to the mortar, manufacturers adjust their mortars to their range of 
products; in the mixing instruction a water amount is specified, which 
takes the absorption behaviour of the fired clay into account. The 
compressive strength obtained from experiments on mortar specimens is 
therefore smaller than the compressive strength of the same mortar as 
part of the masonry. 

Within this work, the mortars material behaviour was considered 
linear elastic and isotropic. Mortar failure was assumed to be insignifi
cant for the vertical compressive strength of the numerical model. This 
assumption is based on the following reasons:  

• The (already high) compressive strength obtained from tests on 
mortar cubes increases further in the masonry due to the absorption 
behaviour of the fired clay.  

• In those regions of the reinforced mortar joint, which are not located 
on top of a web, tensile stresses occur. Additionally, shrinkage yields 
small cracks. Those regions are therefore considered as cracked 
within the model; accordingly, solely the stiffness of the glass fibre 
mesh is considered there (see Section 3.3). 

2.3.1. Reinforced mortar with homogenized stiffness 
To encounter the aforementioned problems regarding airtightness 

using vertically perforated clay block masonry, a glass fibre mesh is 
occasionally embedded in the mortar bed joints. Failure of the masonry 
is induced by lateral tensile stresses in the webs due to transverse webs 
being not on top of each other. The fibre mesh within the mortar joint 
increases its overall stiffness, thereby reducing the tensile stresses in the 
transverse webs of the block. Glass fibres have a rather high Young’s 
modulus and tensile strength, compared to common mortars (see 
Table 1). 

The mesh was assumed to be fully embedded in mortar, lying 
midmost in the bed joint (see Fig. 8). Discretely modelling each glass 
fibre would be inefficient; not only the modelling of each single fibre 
would have been time consuming (especially when modelling different 
ratios of reinforcement!), also the computational expense would in
crease heavily. Instead, the reinforced Mortar joint was considered as a 
homogenized layer within the model; the homogenized material pa
rameters were obtained from a multiscale model. Therefore, only the 
materials’ stiffness tensors Ci, the volume fractions of the components 
on the entire layer, fi, and information about the fibre’s orientation were 
needed. 

The homogenization was conducted on a representative part of the 
layer, the so-called representative volume element (RVE, see Fig. 8). For 
reasonably defining an RVE, the separation of scales must be fulfilled: 

d ≪
∼1.5− 3

l ≪
∼5− 10

L , (23)  

meaning that the characteristic length of the RVE, l, has to be at least one 
and a half to three times bigger than the characteristic size of the in
homogeneities, d, [13,44] and at least five to ten times smaller than the 
characteristic length scale of the loading, L [28]. With this requirement 
fulfilled, the strains and stresses on the macroscopic scale (on the edges 
of the RVE), εM and σM, respectively, may be calculated from the 
microscopic stresses and strains, εμ and σμ, in the following way: 

εM = 〈εμ( xμ)〉, σM = 〈σμ( xμ)〉, (24)  

where 〈.〉 is defined as the average over the RVE’s volume, similar to the 
definition in Eq. (2). 

The microstructure consists of different regions with quasi- 
homogeneous properties – the so-called material phases. In this case, 
the material phases are mortar and glass fibres. Each of those phases r 
occupies a volume Vμ

r , and therefore has a volume fraction fμ
r on the 

entire volume VRVE: 

f μ
r =

Vμ
r

VRVE
,

∑Nr

r=1
f μ

r = 1, (25)  

where Nr is the total number of material phases. With these volume 
fractions defined, the homogenization scheme in Eq. (24) simplifies to 
the following discrete scheme: 

εM =
∑Nr

r=1
f μ
r ⋅εμ

r

(
xμ), σM =

∑Nr

r=1
f μ
r ⋅σμ

r

(
xμ) (26)  

The homogenized stiffness tensor CM is then calculated as follows: 

CM =
∑Nr

r=1
f μ

r ⋅Cμ
r : Aμ

r , (27)  

with each phase’s stiffness tensor Cμ
r and concentration tensor Aμ

r . 
Eshelby [16] and Laws [29] provided an approach to calculate these 

concentration tensors, which only requires the knowledge of the in
clusions’ shape additionally to the phases’ stiffness tensors. The glass 
fibres were considered as cylindrical inclusions in two orthogonal di
rections (see Fig. 8); the Mori-Tanaka-scheme [40] was used for solving 
the homogenization problem. 

2.4. Surface interaction between brick and mortar 

The contact properties between brick and mortar play a major role in 
the interaction of both materials. Hereby, the shear strength τu depends 
on the present axial (compressive) stress in the joint. Van der Pluijm 
[45] proposes a relation, based on Coulomb’s friction law: 

τu = c0 − tan(φ)⋅σn, (28)  

with the shear bond strength c0, the angle of internal friction φ, and the 
axial compressive strength σn. As long as the shear stresses on the 
interface remain sufficiently small, the bonding of brick and mortar 
stays intact. Hence, the interface is modelled as being tied. To check out 
the validity of this clearly strong simplification, the shear stresses on the 
interface were monitored throughout the simulations. 

Table 1 
Glass fibre properties compared to thin bed mortar [17,25].   

glass fibre mortar 

Young’s modulus E 80000 MPa 5000 MPa 
Tensile strength σt  2000 MPa 7.7 MPa  

Fig. 8. Representative volume element (RVE).  
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2.5. Stochastic allocation of material strengths to the webs 

Calculations with homogeneous material properties showed that 
without reinforcement the first crack was critical for the failure. When 
exceeding a certain amount of reinforcement, additional cracks may be 
formed before reaching the peak stress (see Section 4.1). Considering 
that fired clay is a rather inhomogeneous material – the production 
process causes microcracks to occur –, the weakest web of the block 
should be the one triggering failure. Let’s assume, this weakest web has a 
significantly smaller strength than each other web. Now, if failure of the 
reinforced masonry requires formation of a second crack, the strength 
increase due to the stiffer bed joint should be even higher than in the 
first case. Therefore, a stochastic approach was chosen to capture these 
effects within the model. 

Inhomogeneities in the single block are common, affecting the ma
terial’s strength. On the one hand, the used clay is a natural resource; 
thus, inclusions may occur in the mixture. On the other hand, the me
chanical impact on the blocks during the production process as well as 
the firing process accompanied by material shrinkage induce 
microcracks. 

Structural inhomogeneities, like microcracks, are the main reason for 
the fluctuation of the obtained strengths. Each block in the numerical 
model was subdivided in longitudinal webs and transverse webs. Since 
cracks inducing failure only occur in the transverse webs, solely the 
differences between these webs were considered. Thereby, a random 
strength was allocated to each transverse web, while assuming that each 
web separately has a homogeneous strength. 

Kiefer et al. [27] obtained tensile and compressive strengths from 
experiments in longitudinal, transversal, and extrusion direction. 
Therefore, mean values μ and standard deviations s are available, 
assuming that the strength values are distributed normally. For each 
transverse web, a value x was randomly generated from a standard 
normal distribution (see Fig. 9a) with the function randn() in the 
programming language Julia [4]. The probability density function of the 
standard normal distribution ensures the random values to be around 
the mean value 0. Consider x as kind of a strength modification 
parameter: if x is lower than 0, the strength is less than the mean value; if 
x is greater than 0, conversely. This parameter was then used to calculate 
the tensile and compressive stresses for each direction L, Tand Z: 

σi = μσi
− x⋅sσi , (29)  

with the mean value μσi 
and standard deviation sσi of the treated strength 

σi (see Fig. 9b). The obtained values were further used to calculate the 
shear strengths according to Eq. (21). 

During cracking processes in a system, energy is released. Since the 
damage evolution depends on the critical energy release rate, the 
strength fluctuation due to existing microcracks has to be considered 
there. The entirely undamaged material with a failure stress σf,max has a 

critical energy release rate Gc,max. At the mean failure stress μσf
, the 

critical energy release rate results in μGc
, which is defined by the values 

Gc,I to Gc,III for each failure mode in Section 2.2.2. Since the production- 
related damage and, therefore, the failure stress σf varies with each 
transverse web, the related critical energy release rate G*

c has to deviate 
from the mean value by ΔG: 

G*
c = μGc

− ΔG. (30)  

Note, that the difference ΔG may be negative in case of a web, being 
stronger than the average. Griffith [20] proposed a way to calculate the 
critical stress as follows: 

σf =

̅̅̅̅̅̅̅̅̅̅
Gc⋅E
π⋅a

√

, (31)  

with the material’s Young’s modulus E and the crack length a. 
Comparing the deviating failure stress σ*

f to the mean failure stress μσf 
in 

terms of Griffith’s formulation yields to an equation for the adapted 
critical energy release rate G*

c (see Fig. 10): 

μσf

σ*
f
=

̅̅̅̅̅̅̅
μGc

G*
c

√

→ G*
c = μGc

⋅
σ*

f
2

μ2
σf

. (32)  

2.6. Validating the strategies 

Trinko et al. [50] investigated the effect of fibre reinforced bed joints 
on the vertical compressive strength of brick masonry in experiments on 
solid brick pillars (see Fig. 11). Therefore, he tested three pillars without 
reinforcement and another three pillars, reinforced with a glass fibre 

Fig. 9. Standard normal distribution (a) and normal distribution of material strength σi (b).  

Fig. 10. The critical energy release rate is reduced due to production- 
related damage. 
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mesh, as it is typically used for plastering facades. He considered pillars 
with a square cross section and eight layers, consisting of Austrian 
standard sized bricks reduced to 40% of their original size. Hence, the 
pillars were 10 cm wide and 22.2 cm high, with a 2 mm mortar joint 
between each layer of bricks. Those masonry specimens were modelled 
with the previously described simulation strategies (Sections 2.1,2.5) in 
order to verify the proposed numerical model, which was then used to 
estimate the effect of a reinforced mortar bed joint on the compressive 
strength of vertically perforated clay blocks. Kiefer et al. [27] already 
validated the model for the compressive strength of unreinforced clay 
block masonry by an extensive set of experiments. Therefore, the focus 
lies in the validation of the modelling strategies cosidering the bed joint 
reinforcement. 

2.6.1. Material parameters 
Trinko et al. [50] experimentally obtained most of the material pa

rameters in Tables 2–4 for the used brick and mortar, missing values 
were predicted by applying ratios between values obtained in literature. 

2.6.1.1. Brick. Nine independent parameters, eg. three Young’s moduli 
Ei, three Poisson’s ratios νij, and three shear moduli Gij, are necessary to 
fully describe the stiffness tensor of an orthotropic material. Measuring 
the travel time of ultrasonic longitudinal and transverse waves through a 
solid specimen for each direction T, Tand Z yields six independent 
components of the stiffness tensor. With the Poisson’s ratios of the brick 
approximated with 0.1 according to the data provided by Hannawald 
and Brameshuber [23], the Young’s moduli and shear moduli could be 
calculated (see Table 2). 

To obtain the compressive strengths, Trinko et al. [50] conducted 
compression tests in each principal material direction. While the tensile 
strengths where scaled to the compressive strengths with the ratio given 
by Kiefer et al. [27], the shear strengths were estimated as mean value of 
Eq. (21). Table 3 contains all the strength values used for the model. 

2.6.1.2. Mortar. Measuring the travel time of ultrasonic transverse and 
longitudinal waves led Trinko et al. [50] to the stiffness properties of 
mortar. Since the mortar is supposed to be isotropic, the two 

independent measured values suffice to fully describe the stiffness tensor 
of the mortar. 

2.6.1.3. Glass fibre mesh and reinforced mortar. Synthetically coated 
glass fibres form the orthogonally organized mesh, with a mesh width of 
4 mm, which was embedded in the bed joint of the pillars. Since the fibre 
strands consist of numerous fine glass fibres, the cross section of the 
strands may vary over the mesh. Therefore, a reliable way to estimate 
the volume fraction of the glass fibres is found over the areal weight of 
the mesh. Hence, dividing the areal weight m by the mass density ρf 
times the bed joint thickness dm times two (for considering only fibres 
oriented in the same direction), results in the volume fractions in di
rections x and y,ff,x and ff,y, respectively: 

ff,x = ff,y =
m

2⋅ρf ⋅dm
=

0, 0145 g/cm2

2⋅2.5g/cm3⋅0.2 cm
= 1, 45%. (33)  

Applying the homogenization scheme presented in Section 2.3.1 on the 
mortar properties in Table 4, the glass fibre properties in Table 1 and the 
volume fractions in Eq. (33) yields the homogenized stiffness of the 
reinforced mortar. Thereby, the components Cxxxx and Cyyyy of the 
stiffness tensor, which have a strong influence on the lateral stresses 
triggering failure, increase around 13%. 

2.6.2. Experimental results 
Trinko et al. [50] obtained failure loads for each specimen and 

divided them by their cross section to receive the vertical compressive 
masonry strengths in Table 5. While the mean value of the masonry 
strength increased by 15.38% when reinforcing the mortar bed joint, the 
standard deviation of the results decreased significantly. Additionally, 
[50] observed a main difference in the failure mechanism: While the 
specimens without reinforcement failed brittle, immediately after the first 
crack occurred, the reinforced specimens allowed the loading to be 
increased further, even after the first crack. Hence, the reinforced mortar 
joints caused a more ductile damage evolution behaviour. 

Fig. 11. Solid brick pillar without reinforcement, before and after the experiment [50].  

Table 2 
Orthotropic elastic properties for solid bricks [50].  

Young’s modulus (MPa) Poisson’s ratio Shear modulus (MPa) 

ELL  ETT  EZZ  νTZ  νZL  νLT  GTZ  GZL  GLT  

9951 
(±898.6) 

8670 
(±471.7) 

13 500 0.1 0.1 0.1 3774 
(±261.2) 

3725  
(±232.3) 

2700 

Values in parenthesis represent standard deviations. 
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2.6.3. Numerical results 
Both the unreinforced and reinforced specimen were simulated with 

the modelling strategies above (except the stochastic allocation of 
strengths), considering the material parameters in Tables 2–4. The 
representative unit cell consists of two bricks and two bed joints in 
height (see Fig. 12). As the solid brick pillars are more than two times 
higher than wide, a uniaxial stress state can be expected in the middle of 
the specimen. Hence, the unit cell approach with periodic boundary 
conditions, which represents an infinitely large pillar in a uniaxial stress 
state, is suitable for efficiently modelling the considered problem. 

When comparing the obtained masonry strengths to each other, the 
numerical results fit rather accurately to the experimentally found 
values (see Fig. 13). While the boxes represent the experiments, the 
crosses mark the numerically obtained strengths. Both models led to 
results just above the mean value of the experiments, and predicted a 
strength increase of 13.64% (compared to 15.38% in the experiments). 
Since tensile failure of the mortar head joints was neglected, an over
estimation of the peak stress seems reasonable. Modelling the pillars 
without a mortared head joint at all would lead to a lower bound of the 
peak stress, as comparative calculations showed. 

Additionally, the same mechanism as [50] observed, occurred: While 
the unreinforced pillar failed immediately after formation of the first 
crack, the reinforced pillar could bear a load increase, even after the first 
crack occurred (see Fig. 14). The experiments showed a distinct 
nonlinear behaviour, due to micro cracks in both brick and mortar as 
well as the rupture of the head joints. Since solely macro cracks in the 
brick units were introduced in the model, which are crucial for the 
magnitude of the peak stress, the numerical simulations followed a 
linear path until peak stress. 

Considering the good agreement of the peak stress values between 
the simulations and the experiments, the proposed modelling strategies 
seem to be suitable for application on the block masonry model. 

Table 3 
Orthotropic material strengths for solid bricks [50].  

Compressive strength (MPa) Tensile strength (MPa) Shear strength (MPa) 

σc,L  σc,T  σc,Z  σt,L  σt,T  σt,Z  σs,TZ  σs,ZL  σs,LT  

16.42 
(±1.62) 

13.69 
(±2.56) 

21.38 
(±2.79) 

8.04a 6.87a 9.12a 8.38b 9.02b 7.49b 

Values in parenthesis represent standard deviations. 
a Scaled based on experiments conducted by Kiefer et al. [27]. 
b Mean value of results obtained with Eq. (21). 

Table 4 
Isotropic elastic properties of the used mortar.  

Young’s modulus E 8378 MPa (±264.93) 
Poisson’s ratio ν  0.223 (±0.00474) 

Values in parenthesis represent standard deviations. 

Table 5 
Vertical compressive strength of the specimen (MPa) [50].    

Series   

w/o reinforcement with reinforcement 

Test I 15.08 15.91 
II 11.96 16.39 
III 14.82 16.00  

Mean value 13.95 (±1.73) 16.10 (±0.26) 
Increase – 15,38% 

Values in parenthesis represent standard deviations. 

Fig. 12. FE mesh of the solid brick model.  

Fig. 13. Numerical results compared to the experimental results.  

Fig. 14. Load-displacement diagram for simulations and experiments (with and 
without reinforcement). 
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3. Compressive strength increase of vertically perforated clay 
block masonry 

In the next step, the validated numerical simulation tool was used to 
estimate the increase of the vertical compressive strength of vertically 
perforated clay block masonry due to the use of reinforced bed joints. 

3.1. Unit cell 

The examined block has a height of 249 mm and a length of 248 mm. 
Choosing the unit cell one block long and two blocks high and consid
ering a 1 mm thick bed joint, as well as a 1 mm wide horizontal gap 
between the blocks, the total dimensions of the cell add up to 249 mm 
length and 500 mm height. Hence, the periodicity vectors cx and cz are: 

cx =

⎛

⎝
249
0
0

⎞

⎠mm and cz =

⎛

⎝
0
0

500

⎞

⎠ mm. (34) 

As perfect offset of half a blocks width is not to be expected on a 
construction site, the offset was modelled slightly higher, thereby 
minimizing the contact area. Hence, compressive stresses are directly 
transferred between the longitudinal webs, but not between the trans
versal webs. Since the mortar layer over the vertical shafts and trans
versal webs was supposed to be damaged due to shrinkage induced 
cracks, the bed joint was partitioned in two sections (see Fig. 15):  

• the uncracked mortar layer above the longitudinal webs of the blocks 
and  

• the cracked mortar layer above the vertical shafts and transversal 
webs of the blocks. 

While the uncracked section was modelled with the properties of the 
pure mortar or the homogenized properties of the reinforced mortar, the 
cracked part wasn’t modelled at all in the unreinforced model. However, 
the properties of the glass fibre mesh were considered there in the model 
with reinforcement. Fig. 16 shows the FE mesh of the modelled unit cell. 
The transversal webs were defined as enriched regions, thus regions 
where nodal degrees of freedom are enriched. The simulations were run 
on a high performance computing cluster, using eight CPU cores in 
parallel per model. Therefore, the calculations took approximately 4 
hours on average. 

3.2. Brick 

Nine independent parameters, more precisely the Young’s moduli 
ELL, ​ ETT , ​ EZZ, the Poisson’s ratios νLT, ​ νTZ, ​ νZL, and the shear moduli 
GLT, ​ GTZ, ​ GZL, were used to define the stiffness properties of the used 
clay (see Table 6). Kiefer et al. [27] obtained values for EZZ in experi
ments on comparable blocks and took them as a basis for calculating the 

remaining Young’s moduli and shear moduli, with the ratios from 
Bourret et al. [7] as well as Hannawald and Brameshuber [23]. As 
before, the Poisson’s ratios were estimated with the experimentally 
obtained data from [23]. 

For the strength properties Kiefer et al. [27] referred to an extensive 
series of compressive and bending tensile tests of a comparable block 
(see Table 7). The shear strengths were estimated as the mean values of 
the results, obtained in Eq. (21). 

3.3. Mortar 

Compressive failure of the mortar bed joint is not considered as 
relevant for the given loading scenario. In the absence of experimental 
data, Kiefer et al. [27] estimated the elastic properties considering the 
findings of Vekey [51] as well as Sarhosis and Sheng [47] (see Table 8). 

While the elastic properties of the uncracked reinforced mortar were 
homogenized by means of the homogenization scheme presented in 
Section 2.3.1, solely the properties of the fibre mesh were considered in 
the cracked regions (see Table 9). To avoid numerical problems due to 
changing thickness of the mortar layer, the fibre stiffness was converted 
to an effective stiffness over the thickness of the mortar layer. Therefore, 
the lateral Young’s moduli were obtained by multiplying the fibre’s 
Young’s modulus Ef with the volume fraction in the particular direction, 
ff,i. Since the shear stiffness of the mesh is rather small, compared to the 
Young’s modulus, the shear moduli and Poisson’s ratio were set to 
nearly zero. 

3.4. Numerical approaches 

3.4.1. Fixed strength values 
For developing a relationship between the volume fraction of the 

reinforcing mesh and the compressive masonry strength, at first 25 
models with different volume fractions were simulated. Hereby, the 
volume fraction of the glass fibres was increased in steps of 0.25%, 
starting at 0% until reaching 6%. The allocated strengths for these 
models were fixed to the mean values, given in Table 7. 

3.4.2. Stochastic allocated strength values 
For the stochastic approach, ten models with different strength al

locations were randomly generated. Thereby, random strength proper
ties were assigned to each transversal web according to Section 2.5. Each 
model was simulated in three different states: without reinforcement, 
reinforced with ff,y = 3%, and reinforced with ff,y = 6%. Therefore, 30 
models were simulated in total, the results were statistically evaluated 
afterwards. 

4. Results and discussion 

4.1. Fixed strength simulation 

Fig. 17 shows the developed relationship between the volume frac
tion of the glass fibres and the compressive masonry strength. While the 
blue curve denotes the calculated compressive masonry strength, the red 
dashed curve defines the average compressive stress when the first crack 
occurred in the model. Thus, the average compressive stress when the 
first crack occurs increases linearly, which confirms the assumption of 
decreasing lateral stresses with increasing mortar stiffness. After the first 
crack occurrence, the models behave differently with varying volume 
fraction. Until a volume fraction of ff,y = 1.75%, the numerical models 
failed immediately after the first crack occurred. With higher amounts of 
reinforcement, the applied load could be increased beyond the first 
crack loading. Detailed examination of the resulting crack patterns 
revealed that, with the volume fraction exceeding 2%, the first crack was 
being held together by the stiffer bed joint. Additionally, the load could 
be increased, until a second transverse web failed (see Fig. 18). There
fore, the reinforced bed joint caused the lateral tensile stresses to 

Fig. 15. Partitioning of the bed joint in two sections: uncracked (green) and 
cracked (red). The black lines represent the outline of the blocks directly below 
and above the bed joint. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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distribute more evenly over the block profile. 
Comparing the failure mechanisms observed, this is in accordance to 

Kiefer et al. [27], who showed that the used approach not only serves an 
accurate prediction of the compressive masonry strength, but also allows 
to identify the failure mechanism of vertically perforated block masonry: 
a spalling of the outer longitudinal webs, due to tensile failure of the 
transverse webs behind. 

When a crack forms in the model without reinforcement, the released 
tensile stresses redistribute mainly to the crack tip, which is why the 
crack propagates fast. In the reinforced models, the glass fibre mesh 
takes most of the released stresses; crack propagation is therefore sus
pended. Nevertheless, the failure mechanism stayed the same. 

At the highest modelled volume fraction, the reinforced bed joint 
enabled a total masonry strength increase of 19.5%. 

4.2. Random strength simulation 

The location of the first crack could be predicted in the first 
approach: due to the homogeneous strengths, the web being subject to 

Fig. 16. FE mesh of the unreinforced model and part of the reinforced model.  

Table 6 
Applied transversally isotropic, elastic properties of the vertically perforated 
clay blocks [27].  

Young’s modulus (MPa) Poisson’s ratio Shear modulus (MPa) 

ELL  ETT  EZZ  νTZ  νZL  νLT  GTZ  GZL  GLT  

8738 8738 11 970 
(±465) 

0.1 0.1 0.1 5509 5509 3972 

Values in parenthesis represent the standard deviation. 

Table 7 
Applied orthotropic strength properties of the vertically perforated clay blocks 
[27].  

Compressive strength (MPa) Tensile strength (MPa) Shear strength (MPa) 

σc,L  σc,T  σc,Z  σt,L  σt,T  σt,Z  σs,TZ  σs,ZL  σs,LT  

20.8a 15.0a 21.8 
(±1.15) 

8.2a 7.0a 9.3a 8.675b 9.7b 8.275b 

Values in parenthesis represent the standard deviation. 
a Scaled with ratios, obtained in other experiments (see [27]). 
b Mean value of results obtained with Eq. (21). 

Table 8 
Applied isotropic, elastic properties of the thin bed mortar [27].  

Young’s modulus E 5000 MPa 
Poisson’s ratio ν  0.2  

Table 9 
Applied elastic properties of the reinforced mortar joint between the longitu
dinal webs  

Young’s modulus (MPa) Poisson’s ratio Shear modulus (MPa) 

Exx  Eyy  Ezz  νyz  νzx  νxy  Gyz  Gzx  Gxy  

Ef ⋅ff,x  Ef ⋅ff,y  5000 0.001 0.001 0.001 10 10 10  

Fig. 17. Effect of the glass fibre reinforcement on the vertical compressive 
masonry strength. 
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the greatest tensile stresses is expected to tear apart first. Taking a closer 
look at the distribution of longitudinal stresses σL, the outer webs turn 
out to be the ones with the highest stresses. Considering the randomly 
allocated web strengths, such a prediction cannot be made anymore. The 
results showed that if there was an extremely weak web in the middle of 
the block, the first crack occurred there (see Fig. 19). Interestingly, in 
cases where the firstly torn web was not one of the outer webs, the 
loading could be increased after the first crack, even without rein
forcement. In each of the ten models, the compressive masonry strength 
was not reached until at least one of the outer webs contained a crack. 
Hence, the failure mechanism of the models amounted to the familiar 
mechanism of vertically perforated block masonry: a spalling of the 
outer shell. 

The randomly generated models consisted of webs with lower 
strengths than the mean values as well as webs with higher strengths. 
Therefore, on average the mean clay strength over a individual model 

amounted to approximately the mean strengths in Table 7. However, 
each of the randomly generated models led to a lower compressive 
masonry strength than with the homogeneously allocated strengths. 
This illustrates that the webs with strengths below average have a 
greater effect on the compressive strength than the stronger ones, even 
though the weakest web alone is not decisive for structural failure. 

Fig. 20 shows the increase of the compressive masonry strength with 
the volume fraction. Since the strength increase of each individual 
model more or less doubled when changing the volume fraction from 3% 
to 6%, the standard deviation changed in the same manner. The mean 
value of the strength increase at the highest modelled volume fraction 
amounted to 28.87%. 

Even though the obtained masonry strengths were consistently lower 
in the randomly generated models, the mean strength increase exceeded 
the aforementioned by 9%. 

Fig. 21 shows the obtained results with the stochastic simulation 
approach without reinforcement (right box) in comparison to 
compressive tests on RILEM samples, using the examined block geom
etry (left box). While Kiefer et al. [27] accomplished to estimate the 
compressive strength within the fluctuation of the test results (red 
cross), the stochastic approach reproduces even these fluctuations pretty 
accurately. The simulated mean value is nearly the same as the mean 
value obtained in experiments. 

4.3. Feasible volume fraction 

Regarding the maximum feasible volume fraction of reinforcement 
within the bed joint, one can consider the aforementioned separation of 

Fig. 18. Comparison of the crack pattern at peak stress with different volume fractions ff,y. The asymmetric crack pattern originates in asymmetries of the mesh.  

Fig. 19. Comparison of the crack pattern at peak stress with different strength 
allocations on unreinforced models. Fig. 20. Statistical evaluation of the strength increase.  

R. Suda et al.                                                                                                                                                                                                                                    



Engineering Structures 239 (2021) 112277

13

scales (see Eq. (23)). Assuming perfectly round fibre strands with a 
diameter of 1/α times the joint thickness, in a orthogonally arranged 
mesh with a constant mesh width of β times the strand diameter, the 
volume fraction can be calculated as follows: 

ff,y =
Afibre

Ajoint
=

d2π
4 ⋅ l

a

l⋅h
=

h2π
α2⋅4⋅

l
β⋅h

l⋅h
=

π
4⋅α2⋅β

. (35)  

Considering the generally acknowledged values for the separation of 
scales, α should be at least 1.5 to 3 [13,44]. Additionally, the mesh width 
should be great enough, not to separate the mortar joint into two layers. 
Hence, a mesh width three times greater than the fibre strand diameter, 
seems to be reasonable. Using 2 for α and 3 for β in Eq. (35), the 
maximum volume fraction results in 6.54%. 

Concludingly, the simulated volume fraction of 6% seems to be 
reasonably attainable with an embedded glass fibre mesh. Therefore, the 
5%-quantile of the compressive masonry strength could reach an in
crease of over 33% (see Table 10). 

5. Conclusion 

Within the present work, a numerical approach for estimating the 
effect of glass fibre reinforced bed joints on the vertical compressive 
strength of vertically perforated clay block masonry was developed. 
Based on the presented research, the following conclusions could be 
drawn:  

• Glass fibre reinforced bed joints enable a significant increase of the 
vertical compressive strength of perforated clay block masonry. The 
compressive masonry strength increase can be split up into two 
mechanisms: 

the first crack occuring at a higher load, due to the decrease of 
lateral tensile stresses, and 
the onset of cracking arising at a higher load, as the fibre mesh 
bridges the open crack.  

• The reinforcement within the mortar layer prevents the outer shell 
from spalling, after the first cracks occur, thereby yielding a more 
ductile damage behaviour.  

• Weaker webs within the block affect the vertical compressive 
strength, which is why the approach from Kiefer et al. [27] tended to 
overestimate the test results. Nevertheless, considering the fluctua
tion of test results and the high effort for stochastic calculations, their 
approach seems to be sufficient to reasonably estimate masonry 
strengths. 

Besides numerous advantages of glass fibre reinforced bed joints 
(such as the increase of ductility, weather protection during construc
tion, or a continuous mortar layer), the conducted simulations reveal the 
potential of bed joint reinforcement in raising the compressive masonry 
strength. While the potential for optimization is exhausted in modifying 
the block geometry, bed joint reinforcement could be a possible 
approach for increasing the masonry strength further. Even for already 
existing block geometries, the approach could enable a significantly 
higher vertical compressive strength with relatively low effort. Thereby, 
it is necessary to emphasize that the presented compressive strength 
increase of vertical perforated clay blocks originates in numerical sim
ulations with complex modelling strategies, which were solely validated 
by experiments on solid brick masonry pillars. Hence, for checking the 
significance of this results, a series of experiments on vertically perfo
rated clay block masonry is necessary. 

By use of the presented unit cell approach, arbitrary loading states on 
masonry walls can be investigated apart from uniaxial compression. 
Therefore, the effect of a reinforced bed joint on the load carrying ca
pacity in shear or bending scenarios could be estimated. For these rea
sons, the presented approach constitutes a significant contribution to the 
potential assessment of fibre reinforced bed joints. 
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[5] Böhm HJ. A short introduction to basic aspects of continuum micromechanics. 
ILSB-Arbeitsbericht 2016; 2016. https://www.ilsb.tuwien.ac.at/links/downl 
oads/ilsbrep206.pdf. 

[6] Bocca P, Carpinteri A, Valente S. Fracture mechanics of brick masonry: size effects 
and snap-back analysis. Mater Struct 1989;22:364–73. https://doi.org/10.1007/ 
bf02472507. 

[7] Bourret J, Tessier-Doyen N, Guinebretiere R, Joussein E, Smith DS. Anisotropy of 
thermal conductivity and elastic properties of extruded clay-based materials: 
Evolution with thermal treatment. Appl Clay Sci 2015;116–117:150–7. https://doi. 
org/10.1016/j.clay.2015.08.006. 

[8] Bruggi M, Taliercio A. Design of masonry blocks with enhanced thermomechanical 
performances by topology optimization. Constr Build Mater 2013;48:424–33. 
https://doi.org/10.1016/j.conbuildmat.2013.07.023. 
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