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A B S T R A C T   

In the dynamic analysis of simply supported railway bridges, the choice of vehicle models directly affects the 
quality of computed results. Simple moving load models usually overestimate the bridge response in comparison 
with models taking into account vehicle-bridge interaction effects. In order to compensate for this discrepancy, 
the Eurocode allows the increasing of structural damping for analyses performed with a moving load model. The 
specified additional damping is based on investigations carried out by the European Rail Research Institute in 
1999 and may yield non-conservative results. 

This paper describes an extensive parametric study inspired by the common Additional Damping Method, 
aiming to eliminate its identified shortcomings. The applied input parameters for the study are based on existing 
European simply supported bridge structures with a ballast layer. In order to match the vertical accelerations 
computed with the Detailed Interaction Model, the additional damping for the Moving Load Model is determined 
for four European high-speed trains. The results show that the additional damping as integrated in the Eurocode 
is non-conservative. A redesigned approach enables the definition of conservative additional damping functions 
depending on the natural bridge frequency, the bridge mass and the train type.   

1. Introduction 

The dynamic behaviour of railway bridges under high-speed traffic 
has been investigated intensively by scientists and engineers in the 
recent years. It is especially the choice of calculation models of both the 
bridge structure and the crossing vehicles that proved to be a crucial 
factor in obtaining sufficient results for the given assignment. 

Regarding the vehicle stage, the Moving Load Model (MLM) is used 
in numerous investigations of the dynamic behaviour of simply sup-
ported bridge structures [1–3] and it is established in the stand-
ardisation of dynamic analysis [4]. The MLM provides the highest 
degree of simplification by modelling the vehicles as a series of single 
loads Fi, which are moving over the bridge girder (Bernoulli-Euler beam 
with span L, bending stiffness EJ, mass per unit length μ, damping ζ) 
with constant velocity v (see Fig. 1). The coordinates xi describe the 
position of the loads Fi (i = 1,2,…,m) on the bridge. 

The accuracy of the dynamic analysis can be enhanced by taking into 
account vehicle-bridge-interaction (VBI) effects, which – compared to 
the MLM – tend to reduce the dynamic bridge response at resonance [4]. 
In the Detailed Interaction Model (DIM), the vehicles are modelled as 

multi-degree-of-freedom systems moving over the bridge (see Figs. 2 
and 3). The wheelsets (mass mW) are connected to the bogies (mass mb, 
moment of inertia Jb) through the primary suspension stage (stiffness kp, 
damping coefficient cp) and the bogies are connected to the car body 
(mass mc, moment of inertia Jc) through the secondary suspension stage 
(stiffness ks, damping coefficient cs). For trains with the conventional 
configuration of two bogies per car body, the DIM is depicted in Fig. 2. 
For this train type, the vertical coupling of adjacent cars is neglected in 
the analysis model. 

The DIM for trains with Jacobs bogies is shown in Fig. 3. In this train 
type, vertical displacements between adjacent cars are coupled. 

If the DIM is applied in dynamic analyses, it is reasonable to distin-
guish between the bridge subsystem and the multi-body vehicle sub-
system, which are coupled through time-dependent wheel-rail contact 
forces. It is assumed that the wheels stay in contact with the bridge at 
any time to disable a lift-off from the rails. 

Various studies showed that the maximum vertical vibration of 
bridges can be reduced considerably by taking into account the VBI 
[5–9]. The evaluation parameter for these studies is the vertical bridge 
deck acceleration, as it becomes controlling in many cases for the 
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verification of the serviceability limit states of simply supported bridges. 
Doménech et al. [6] identified the ratio between natural bridge and bogie 
frequencies, the ratio between bridge and bogie masses and the ratio 
between bridge and car length as the main parameters for the influence 
of the VBI. The bogie frequency np is defined in [6] as 

np =
1

2π

̅̅̅̅̅̅̅

2kp

mb

√

(1)  

wherein kp is the stiffness of the primary suspension stage and mb is the 
mass of the bogie. 

1.1. Additional damping method 

The Additional Damping Method (ADM) is specified in the Euro-
code [4] as an alternative to VBI analyses. Within the ADM, the posi-
tive VBI effects of reduced vertical vibration amplitudes are taken into 
account in MLM analyses by increasing the damping of the bridge 
structure. The extent of the additional damping Δζ is specified as a 
function of the span L (Fig. 4). 

The theoretical basis for the ADM was documented by the Euro-
pean Rail Research Institute (ERRI) in [10]. The additional damping 
was determined by increasing the bridge damping for MLM analyses 
until the vertical peak accelerations equalled the ones calculated with 
the Simplified Interaction Model (SIM, see Fig. 5). These comparisons 
between the MLM and the SIM were performed for a parametric field 
of simply supported bridges and the two train types ICE-2 and Euro-
star. For all calculated values Δζ, a rational function (depicted in 
Fig. 4) was defined as a lower limit. The following assumptions were 
made for the SIM in [10]:  

• The mass of the wheelsets and the oscillation of the car bodies masses 
are neglected.  

• The oscillating mass m is defined as the half of the bogie mass mb.  
• The primary suspension stage is represented by the stiffness k and the 

damping coefficient c. 

Fig. 1. Moving Load Model (MLM).  

Fig. 2. Detailed Interaction Model of a conventional coach.  

Fig. 3. Detailed Interaction Model of a coach with Jacobs bogies.  
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• The loads on the moving systems are assumed to be equal to the static 
axle loads. 

Apart from the fact that, compared to the DIM, the SIM cannot cover 
all the interaction effects and therefore the calibration of Δζ according to 
the DIM should be preferred, further shortcomings of the ADM are 
identified in [7,11]. Furthermore, it is shown in [8,11] that the addi-
tional damping given in the Eurocode can yield non-conservative results 
in particular cases. 

1.2. Equivalent additional damping approach 

Yau et al. [12] present the Equivalent Additional Damping Approach 
(EADA) that delivers an analytical formula for the determination of the 
additional damping for short span bridges and provides the physical 
background for additional damping methods. The EADA considers only 
the first vibration mode of a simply supported beam, which is repre-
sented by the modal mass M1, the modal stiffness K1 and the modal 
damping C1 in a mathematical model (Fig. 6). For the vehicle modelling, 
it is assumed that two bogies of adjacent coaches are present on the 

bridge. The two tuning units in Fig. 6(a) represent the dynamic prop-
erties of a half coach, which are the modal mass m1, the modal stiffness 
k1 and the damping c1. The damping ratio of the equivalent suspension 
system is denoted as [12]: 

ζ1 =
c1

2m1ω1
; with ω1 =

̅̅̅̅̅̅
k1

m1

√

(2) 

The additional damping ca for an equivalent model shown in Fig. 6 
(b) is adjusted, so that the resonant amplitude of the main mass M1 is 
equal in both systems (Fig. 6(a) and 6(b)). 

As a result, the simplified formula for the additional damping ratio is 
given in [12] 

ΔζEADA ≈ μ1r1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
1 + (2ζ1)

2
√

(3)  

wherein μ1 = m1/M1 is the modal mass ratio, r1 = ω1/Ω1 is the fre-
quency ratio of the coach-bridge system and Ω1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K1/M1

√
. 

1.3. Aims of the study 

This study aims to adjust the input parameters for the ADM in order 
to eliminate many shortcomings of the current method. Therefore, 
extensive dynamic analyses for parameterised simply supported bridges 
with different masses and four train types are carried out. The additional 
damping Δζ to adjust the peak vertical acceleration calculated with the 
MLM to the corresponding value calculated with the DIM is determined 
for various bridge-train combinations. Displaying the resulting values of 
Δζ as a function of the fundamental bridge frequencies enables the 
definition of conservative lower bounds of Δζ for each train type. The 
presented method aims to yield more reliable additional damping values 
compared to the ADM without complicating the practical application. 

2. Mathematical models 

The equations of motion (EOM) for a train transit over a simply 
supported Bernoulli-Euler beam are widely described in literature. In 
order to formulate the given problem mathematically, this study uses a 
modal superposition approach for the bridge subsystem, which is 
documented in [5]. The EOM for the vehicles both of conventional trains 
and trains with Jacobs bogies are formulated by means of the principle 
of virtual displacements following the algorithm given in [13]. The 
following Sections 2.1 and 2.2 give a short overview of the applied 
mathematical models. The detailed derivations of the applied EOM are 
formulated in [14]. 

2.1. Bridge subsystem 

In order to describe the dynamic behaviour of the bridge structure 
mathematically, the Bernoulli-Euler beam in Figs. 1–3 must be dis-
cretized. Clough and Penzien [15] introduce the lumped-mass procedure, 
the formulation of generalized displacements and the finite element 
concept as possible discretization methods. For this study, the method of 
generalized displacements is used by expressing the deflection shape w 
(x,t) of the bridge as 

w(x, t) =
∑n

j=1
qj(t)ϕj(x) (4)  

wherein x is the bridge coordinate, starting from the left support, t is the 
time, qj are the generalized displacements, ϕj are the shape functions and 
n is the number of considered shape functions. By using the eigenfunc-
tions of the simply supported Bernoulli-Euler beam as shape functions in 
Eq. (4), the modal equation for the bridge subsystem can be expressed 
as: 

Mq̈ + Zq̇ + Kq = P (5) 

Fig. 4. Additional Damping Δζ (%).  

Fig. 5. Simplified Interaction Model [10]  

Fig. 6. Mathematical models for the coach-bridge coupling system; (a) 
simplified model with two tuning units; (b) equivalent model including addi-
tional damping ca [12] 
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The left side of Eq. (5) contains the modal mass, damping and stiff-
ness matrices M, Z and K and the vectors of generalized displacements, 
velocities and accelerations q, q̇ and q̈. The damping matrix Z is 
composed using Rayleigh damping. 

If the MLM is chosen as the vehicle model, the generalized load 
vector P in Eq. (5) can be written as 

P =
∑m

i=1
FiΓi(xi)ϕ(xi) (6)  

wherein Fi are the axle loads, m is the number of loads, xi is the position of 
the load Fi on the bridge and ϕ(xi) is the column vector of the mode shapes 
of the bridge. The rectangle function Γi(xi) returns 1 for the loads present 
on the bridge at the regarded time-step and 0 for the remaining loads. 

Within the DIM, the vehicles are represented as rigid bodies con-
nected through linear spring and viscous damping elements. The spring 
and damping forces are defined positively for elongations in the sus-
pension systems. As the dynamic forces acting on the wheelsets in Fig. 7 
must always stay in balance with the static axle loads Fi, the dynamic 
equilibrium can be formulated as 

Fi = Fcon,i(t) + Fk1,i(t) + Fc1,i(t) + FIn,i(t) (7)  

wherein Fk1,i and Fc1,i are the primary spring and damper forces and Fcon, 

i are the contact forces between the bridge and the wheelsets. The 
assumption of steady contact between the bridge and the wheelsets al-
lows the inertial forces of the wheelsets Fin,i to be expressed as 

FIn,i(t) = mw,iẅ(xi, t) (8)  

wherein mw,i are the masses of the wheelsets and ẅ(xi,t) are the vertical 
bridge accelerations at positions xi. Considering that the axle positions xi 
are time-dependent, the vertical bridge accelerations at these positions can 
be written in generalized form as the second time derivatives of Eq. (4), as 
in [1,14]: 

ẅ(xi, t) =
∑n

j=1

[

q̈j(t)ϕj(xi) + 2vq̇j(t)ϕj,x(xi) + v2qj(t)ϕj,xx(xi)

]

(9) 

In Eq. (9), v is the vehicle speed, ϕj,x and ϕj,xx are the first and the 
second derivatives of the mode shapes with respect to x. 

The bridge load vector P is modified for the DIM by substituting the 
axle loads Fi in Eq. (6) with the contact forces Fcon,i. Considering this 
modification and Eqs. (5), (7), (8) and (9), the EOM of the bridge sub-
system for the DIM can be written as: 

Mq̈ + Zq̇ + Kq =
∑m

i=1

{
Fi − Fk1,i(t) − Fc1,i(t) − mw,i

[
ϕ(xi)q̈ + 2vϕ,x(xi)q̇ 

+v2ϕ,xx(x)q
] }

Γi(xi)ϕ(xi) (10)  

2.2. Vehicle subsystem 

Additionally to the EOM for the bridge subsystem in Eq. (10), a 
second equation describes the motion of the vehicle masses in the DIM: 

MVü + ZVu̇ + KVu = − Fw− Fẇ (11) 

In Eq. (11), MV, ZV and KV are the mass, damping and stiffness 
matrices of the vehicles. u, u̇ and ü are the displacements, velocities and 
accelerations of the vehicle masses. The load vectors Fw and Fẇ contain 
the primary spring and damping forces for the current motion state of 
the vehicle. As Eq. (11) is formulated around the static equilibrium, the 
spring forces Fk1 and Fk2 as well as the damping forces Fc1 and Fc2 in the 
vehicle’s suspension systems are only activated if the vehicle bodies are 
in vertical motion. The Eqs. (10) and (11) are coupled through the 
assumption of equal displacements of the bridge (at the current position 
of the axles) and the unsprung vehicle masses (wheelsets). 

2.3. Computation methods 

The computations for this study were carried out in MATLAB [16], 
using the ordinary differential equation (ODE) solver ode113 for nu-
merical integration. Shampine and Reichelt [17] give a detailed 
description of the solver that is based on the Adams-Bashforth-Moulton 
method. The following computations consider the first three mode 
shapes of the bridge. 

2.3.1. Solution for the MLM 
In order to solve the EOM for the MLM, Eq. (5) must be written in a 

form acceptable to the chosen solver. In a first step, multiplying Eq. (5) 
with the inverse mass matrix and consideration of Eq. (6) leads to the 
explicit form: 

q̈ = M− 1

[
∑m

i=1
FiΓi(xi)ϕ(xi) − Zq̇ − Kq

]

(12) 

In a second step, Eq. (12) is transformed into a first order ODE system 
by substituting q̇ and q with new variables. Shampine et al. describe this 
transformation in detail in [18]. Finally, the resulting first order ODE 
system is solved with ode113. 

2.3.2. Solution for the DIM 
The vehicle-bridge interaction effects lead to the EOM from Eq. (10) 

for the bridge subsystem. The generalized accelerations ̈q as variables to 
be determined in Eq. (10) are simultaneously part of the load terms on 
the right hand side of the equation. This algebraic loop is eliminated by 
excluding the terms multiplied with q̈ in Eq. (10) from the load vector 
and writing them as part of a modified mass matrix Mmod [14]: 

Mmod ≡ M +
∑m

i=1
mw,iΓ(xi)ϕ(xi)ϕT(xi) (13) 

The modified load vector Pmod follows as [14]: 

Pmod ≡
∑m

i=1

{
Fi − Fk1,i(t) − Fc1,i(t)

− mw,i
[
2vϕ,x(xi)q̇ + v2ϕ,xx(xi)q

] }
Γi(xi)ϕ(xi) (14) 

Making use of Eqs. (13) and (14), the EOM for the bridge subsystem 
can be written as: 

Mmod q̈ + Zq̇ + Kq = Pmod (15) 

In order to solve the EOM for the vehicle and the bridge subsystems 
simultaneously with ode113, Eqs. (11) and (15) are assembled in a 
global equation system of the form: 

Fig. 7. Forces acting on the bridge and the wheelsets (DIM).  
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[
Mmod ∅

∅ MV

][
q̈
ü

]

+

[
Z ∅
∅ ZV

][
q̇
u̇

]

+

[
K ∅
∅ KV

][
q
u

]

=

[
Pmod

− Fw− Fẇ

]

(16) 

The interaction between the bridge and the vehicle subsystems is 
embedded in Eq. (16) through the vector Pmod that is dependent on the 
primary spring and damper forces Fk1,i and Fc1,i and therefore on the 
vehicle’s displacements u and velocities u̇. Furthermore, the load terms 
of the vehicle Fw and Fẇ are dependent on the motion of the wheelsets, 
which is expressed by the generalized displacements q and velocities q̇ of 
the bridge. Multiplication with the inverse global mass matrix of Eq. 
(16) leads to the explicit form 
[

q̈
ü

]

=

[
Mmod ∅

∅ MV

]− 1([ Pmod
− Fw− Fẇ

]

−

[
Z ∅
∅ ZV

][
q̇
u̇

]

−

[
K ∅
∅ KV

][
q
u

])

(17) 

that is subsequently transformed into a first order equation system as 
described in the previous Section 2.3.1 and finally solved by using 
ode113. The time dependent parts of Eq. (17) – Mmod, Pmod, Fw and Fẇ – 
are formulated as functions of time in the software, so that they are 
automatically recalculated for every time step of the solver. 

3. Parametric analysis 

3.1. Bridge parameters 

The parametric analysis performed for this paper aims to represent 
realistic bridge structures. As the dynamic behaviour of existing structures 
differs due to the wide range of bridge types, the analysis is restricted to 
simply supported single-track bridges with a ballast layer and a span not 
exceeding 40 m. The authors collected the characteristics of 210 existing 
bridges complying with these requirements into a database. As the authors 
are not aware of any pre-stressed concrete bridges at high-speed railway 
tracks, in this paper the expression “concrete bridges” refers to reinforced 
concrete bridges. The following sources were used:  

• Austrian Federal Railways (OEBB): 56 concrete bridges, 10 filler beam 
bridges, 15 steel bridges and three composite bridges located in Austria.  

• Frýba [1]: 19 concrete bridges and 17 steel bridges.  
• ERRI D214/RP 3 [19]: five concrete bridges, 19 filler beam bridges, 

20 steel bridges and three composite bridges located in France, 
Germany and Spain.  

• ERRI D214/RP 8 [20]: 14 filler beam bridges and four steel bridges 
located in France and Spain.  

• Rauert et al. [21]: 25 filler beam bridges located in Germany. 

This database is used for calibrating the input parameters for the 
parametric analysis performed for this paper. In the following sections, 
the parameters applied for developing the ADM in [10] are discussed 
and compared to the chosen input parameters of this study. 

3.1.1. Parametric field of spans and natural frequencies 
The spans L in (m) and the first natural frequencies n0 in (Hz) of the 

210 existing bridges from the database are illustrated in Fig. 8. Ac-
cording to [1], the power regression function in the format n0 = aLb 

proves best for describing the correlation between spans and first natural 
frequencies of railway bridges. The dashed grey line in Fig. 8 shows the 
proper function 

n0,fit = 97.76L− 0.9124 for the 210 considered bridges. The functions 
for the upper bound (UB) 

n0,UB = 113.1L− 0.8312 and the lower bound (LB) n0,LB = 82.43L− 0.9937 

for the parametric field are specified as 95% confidence intervals 
(continuous grey lines in Fig. 8) of the function n0,fit. 

The combinations of the parameters span and first natural frequency 
that were chosen for the analysis are depicted as grey points in Fig. 8. At 
each integer value of the span between four and 40 m, the values of n0,fit, 
n0,UB, n0,LB and two equidistant values between n0,fit and n0,UB respec-
tively n0,fit and n0,LB are specified. In comparison to the 185 L-n0-com-
binations in the present study, only 18 combinations were used in the 
development of the ADM in [10]. These 18 combinations (black points 
in Fig. 8) do not represent the existing bridges sufficiently and are split 
into only six span lengths of 5, 10, 15, 20, 25 and 30 m. A previous 
parametric study carried out by the authors [9] with a finer grid of one 
metre span intervals yielded VBI effects that could not have been 
captured within the five metre intervals defined in [10]. 

Preliminary investigations have shown that a categorisation into 
concrete and filler beam (CFB) bridges on the one hand and steel and 
composite (SC) bridges on the other hand leads to almost congruent 
parametric fields in the n0-L-diagram. Therefore, the parametric field in 
Fig. 8 is specified for all considered bridge structures. 

3.1.2. Bridge masses and bending stiffness 
For the parametric analysis, the spans L and the first natural fre-

quencies n0 of the bridge structures are defined as described in the 
previous section. Regarding Eq. (18), which describes the first natural 
frequency of a simply supported Bernoulli-Euler beam [1], the mass per 
unit length μ or the bending stiffness EJ has to be known in order to 

Fig. 8. Parametric field of spans L (m) and first natural frequencies n0 (Hz).  

Fig. 9. Bridge masses μ in (t/m).  
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allow the determination of the other missing parameter. 

n0 =
π

2L2

̅̅̅̅̅̅
EJ
μ

√

(18) 

Especially for concrete structures, the bending stiffness of existing 
bridges is difficult to assess due to the time-dependent development of 
the Young’s modulus E, the influence of cracking and a lack of measured 
data. Conversely, the bridge masses can usually be estimated with 
acceptable accuracy by analysing the cross section of the bridge. For 152 
bridges of the database, the mass per unit length μ is known and depicted 
as a function of the span in Fig. 9. 

In order to obtain realistic bridge masses for the parametric analysis, 
it is advisable to categorise the bridges into CFB structures on the one 
hand (purple markers in Fig. 9) and SC structures on the other hand 
(orange markers in Fig. 9). The continuous lines in Fig. 9 are the linear 
regression functions μ2 for CFB and μ5 for SC bridges. For the CFB bridges, 
the 95% confidence intervals of the linear regression function are addi-
tionally taken into account in the analysis as upper bound (UB) function 
μ1 and lower bound (LB) function μ3 (dashed purple lines in Fig. 9). Due 
to the rather small number of SC bridges, the 95% confidence interval 
would lead to a LB function with a negative gradient, which is not me-
chanically reasonable. Therefore, the UB μ4 and LB μ6 for SC bridges are 
set as linear functions (dashed purple lines in Fig. 9) with the same 
gradient as the regression function, but shifted so that only two mass 
values of the existing SC bridges exceed the chosen boundaries in each 
direction. The obtained mass functions μ1 up to μ6 are numbered from 
high to low masses and defined by Eq. (19) and the parameters in Table 1. 

μ(L) = kL + d; μ in (t/m) and L in (m) (19) 

The bridge masses used in [10] to derive the ADM are depicted in 
Fig. 9 as black points. A fixed mass value was allocated for each 
considered span. Although these mass values are close to the LB function 
μ3 for CFB bridges, they are not representing existing SC bridges at all. 
Furthermore, VBI effects are decreasing at higher bridge masses for a 
fixed frequency ratio between the bridge and the vehicle [5–7], which is 
why UB values for the bridge masses should be chosen in order to obtain 
conservative results of additional damping values. 

3.1.3. Damping 
Unless the real structural damping of a bridge is determined experi-

mentally, the damping for dynamic analyses is prescribed in the Euro-
code [4] depending on the bridge type and the span as shown in Table 2. 

Inter alia, VBI effects depend on the structural damping [5,6]. This 
means that if it is attempted to take into account VBI effects by 
considering additional damping in MLM analyses, the proper value of 
the additional damping can be affected by the base value of structural 
damping. In [10], the fixed values of 0.5, 1.0 and 2.0% were used as 
structural damping for all considered spans (see black points in 
Fig. 10) to calibrate the ADM. This choice yields several situations that 

are not matching the base values given in Eurocode [4] as the damping 
is too low for short span bridges and too high especially for longer span 
SC bridges. 

For this study, the base values given in the Eurocode (see Table 2 and 
Fig. 10) are used as structural damping both for MLM and DIM analyses. As 
a further consequence, the additional damping describing the differences 
between these two models is in line with the commonly used base values. 

3.1.4. Concluding remarks for the chosen bridge parameters 
The parametric field of spans and natural frequencies is representing 

existing simply supported, single-track bridges with ballast layer and 
spans between four and 40 m (see Fig. 8). Concrete and filler beam 
bridges are represented in the parametric analysis by the mass functions 
μ1 to μ3, steel and composite bridges by the mass functions μ4 to μ6 
(Fig. 9). The damping is set depending on the bridge type and the span 
according to the Eurocode (Fig. 10). 

3.2. Vehicle parameters 

In [10], the ADM was calibrated for the train transit of the ICE-2 and 
an Eurostar configuration over the parameterised bridges. Additionally 
to these two trains, the German ICE-4 and the Austrian Railjet were 
investigated for this study. The detailed train parameters of all examined 
trains are specified in detail in Table A1. 

A major concern in the evaluation of additional damping is the 
conformity of static loads for the MLM and the DIM. Concerning the 
DIM, the bridge loads result from the real vehicle masses (consisting of 
dead weight and live loads) and the motion during a train transit. 
Conversely, the single vertical loads for the MLM defined in standards 
and regulations can contain additional safety factors that are often not 
commonly comprehensible. In the latter case, a comparison with an 
interaction model with real vehicle masses would lead to additional 
damping values that are not only restricted to the mechanical VBI effect, 
but contain a certain amount of artificial amplification. For all analyses 
carried out in this study, several single loads for the MLM are based on 
the real vehicle masses, so that only the sole VBI effect is considered in 
the evaluation of the additional damping. 

3.2.1. ICE-2 
The ICE-2 is a conventional train with two bogies per car body. It 

consists of 12 passenger cars (PC) and one locomotive (Loc) at both ends 
of the train (see Fig. 11). The train parameters and the axle loads are 
documented in [10]. 

3.2.2. Eurostar 
The Eurostar is a train with Jacobs bogies. The investigated config-

uration consists of two flipped sets of nine PCs each, which are operated 
by a total of two locomotives, one at each end of the train (see Fig. 12). 

Table 1 
Parameters for the linear regression functions μ1 to μ6 corresponding to Eq. (19).   

μ1 μ2 μ3 μ4 μ5 μ6 

k  0.843  0.7002  0.5584  0.1214  0.1214  0.1214 
d  10.45  8.539  6.627  9.5174  5.918  2.1691  

Table 2 
Values of damping to be assumed for design purposes [4].  

Bridge type ζ Lower limit of percentage of critical 
damping (%) 

Span L < 20 m Span L ≥ 20 m 

Steel and composite ζ = 0.5+ 0.125(20 − L) ζ = 0.5  
Filler beam and reinforced concrete ζ = 1.5+ 0.07(20 − L) ζ = 1.5   

Fig. 10. Structural damping ζ (%).  
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The train parameters are documented in [10] and additional geomet-
rical information is taken from [22] to set up the train model in detail. 
The locomotives are assumed to have no vertical connection to the 
passenger cars in the train model. The PCs numbers 1 and 9 have one 
conventional bogie on one side and share a Jacobs bogie with the 
adjacent cars on the other side. 

The axle loads for the Eurostar are uniformly assumed to 170 kN in 
[10]. In contrast, the multiplication of the real vehicle masses (dead 
weight and live loads) with the gravitational acceleration of 9.81 m/s2 

leads to axle loads of 153.8 kN (≈10% less) for the locomotive and 
143.3 kN (≈16% less) for the PCs. Therefore, the determined additional 
damping for the Eurostar in [10] not only represents the VBI effects, but 
also includes an imbalance of the static axle loads. 

3.2.3. Railjet 
The Railjet is a high-speed train operating in Austria and in some 

neighbouring countries. The considered configuration consists of two sets 
of seven PCs each, which are driven by two locomotives, one at each end 
of the train (see Fig. 13). The train parameters are documented in [8]. 

3.2.4. ICE-4 
The considered configuration of the German high-speed train ICE-4 

consists of six powered and six unpowered PCs. The powered cars are 
marked through filled black wheelsets in Fig. 14. The bogies for powered 
and unpowered cars differ in their masses, suspension parameters and 
wheelset distances. The detailed train parameters are documented in [23]. 

3.3. Scope of the parametric analysis 

In total, the specified L-n0 parametric field and the six mass functions 
lead to 1110 parameterised bridges, which are analysed for the four 
train types and both vehicle models, the MLM and the DIM. In 

accordance with [10], we defined a speed range from 160 to 350 km/h 
for the computations. In order to capture all possible maximum re-
sponses of the bridge accurately, we performed the MLM analyses using 
1 km/h steps throughout the defined speed range. In order to limit the 
computational expenses of the DIM analyses, we chose a step size of 5 
km/h and refined the computation in the area of the maximum response 
speed vmax for the MLM. Therefore, we additionally used 1 km/h steps in 
the interval vmax-20 km/h to vmax + 5 km/h. Finally, we controlled 
visually, if the peak response for the DIM was captured within the 1 km/ 
h interval accurately and added minor refinements of the DIM speed 
steps where necessary. 

4. Evaluation and results 

In the following evaluations, we investigate the maximum vertical 
bridge deck acceleration at midspan. The limitation of this value is 
essential to avoid ballast destabilisation, risk of derailment, deteriora-
tion of passenger comfort and a raise in maintenance costs [6]. There-
fore, the maximum vertical accelerations within a certain speed range 
are of great interest for design and verification purposes. 

The determination of the additional damping within this study fol-
lows three steps. It is shown for a selected bridge in Fig. 15. 

Fig. 11. ICE-2 configuration and axle distances in (m).  

Fig. 12. Eurostar configuration and axle distances in (m).  

Fig. 13. Railjet configuration and axle distances in (m).  

Fig. 14. ICE-4 configuration and axle distances in (m).  

Fig. 15. Maximum vertical accelerations of two selected bridges and varying 
vehicle models of the ICE-2. 
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- Step 1: The maximum vertical accelerations for the MLM and the 
DIM are plotted as a function of the train speeds.  

- Step 2: The maximum peak value of the MLM and the associated peak 
value of the DIM are identified (see marks for bridge 1 in Fig. 15). We 
considered only peaks that are also local maxima. This means that 
maximum accelerations at 350 km/h (see bridge 2 in Fig. 15) were 
excluded from the further investigations, as the additional damping 
can be reasonably evaluated only by comparing real peak values for 
the MLM and the DIM. In some situations, no reasonable peak values 
could be found (see bridge 2 in Fig. 15).  

- Step 3: The structural damping of the MLM is modified iteratively in 
steps of 0.01%, until the peak value of this adapted model equals the 
peak value of the DIM with an accuracy of 0.1%. The required 
additional damping (denoted as Δζ) is the subject for further 
evaluations. 

4.1. Additional damping: Computed results vs. Eurocode 

In Fig. 16, the computed values of Δζ are depicted for the four 
considered train types with respect to the span L. The results illustrate 
that the additional damping as defined in the Eurocode (grey line in 
Fig. 16) yields non-conservative values for a large number of bridges and 
each of the regarded train types. Moreover, a negative additional 
damping would be necessary for some short span bridges (approx. L <
10 m) in order to equal the MLM results to those of the DIM. The rather 
volatile values of the additional damping for short and medium span 
bridges (L < 20 m) make a definition of a useful and conservative cor-
relation between Δζ and L impossible for these bridges. On the other 
hand, the additional damping for bridges with larger spans (approx. L >
25 m) takes on rather stable values beyond zero. For these bridges, the 

ADM is unnecessarily conservative. Therefore, the limitation of the ADM 
to bridges with L < 30 m in the Eurocode is not reasonable. 

Additionally, the results in Fig. 16 verify the tendency of increasing 
additional damping values for lower bridge masses (at a fixed frequency 
ratio between the bridge and the vehicle). However, this statement 
cannot be generalized as even the lightest mass function µ6 yields 
negative additional damping values for single bridges (see ICE-4, 
Eurostar and Railjet for spans L ≈ 10 m in Fig. 16). 

4.2. Additional damping as a function of bridge frequencies 

Arvidsson et al. [11] recommend to consider the additional damping 
as a function of bridge frequencies, as the ratio between bridge and 
vehicle frequencies is identified as a major factor in the VBI [6,11]. This 
approach allows the definition of lower bound functions for the addi-
tional damping, for each train separately and for the considered mass 
functions of the bridge. 

4.2.1. Definition of a lower bound function 
The computed additional damping for the ICE-2 and the mass μ3 is 

depicted in Fig. 17 as a function of the natural bridge frequency. In 
order to define a lower bound (LB) function, the whole range of 
possible bridge frequencies is divided into intervals, which are con-
taining approximately 10 computed values of Δζ each. Therefore, the 
interval width of 0.5 Hz is set between 2 and 8 Hz, the further 
boundaries are set at 9, 10, 11, 13, 16 and 21 Hz. The minimum values 
of Δζ in each interval (yellow points in Fig. 17) serve as data points to 
fit a LB function using the linear least squares method. In order to 
represent these data points appropriately without overfitting, a cubic 
polynomial in the format 

Fig. 16. Comparison between computed results and the ADM for each train.  
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Δζ(n0) = an3
0 + bn2

0 + cn0 + d (20) 

is chosen as fit function. As negative values of Δζ occur for each 
considered train, the lower bound of Δζ is set to zero from the first 
intersection of the fitted polynomial with the abscissa. Although the 
additional damping for bridges with high natural frequencies of 21 Hz 
and more seems to increase, this effect is not taken into account due to 
the small number of results for such bridges. 

For the fitted LB function in Fig. 17, the coefficient of determination 
R2 with respect to the yellow data points is 0.931. The minimum residual 
of − 0.098% occurs for the data point at 7.24 Hz, which means that the 
difference of additional damping between this data point and the LB 
function is − 0.098%. The maximum residual of 0.086% occurs for the 
data point at 6.89 Hz. 

4.2.2. Lower bounds of additional damping 
The method described in the previous section is used for deriving LB 

functions for all regarded trains and mass functions (see Fig. 18). These 
LB functions are applicable between 2.1 Hz and their first intersection 
with the abscissa. The numerical values for the derived LB functions, 
their coefficients of determination R2 and their minimum and maximum 
residuals are given in Appendix B, Tables B1-B4. 

As shown in Fig. 18, Δζ takes the highest values for the ICE-2 in the 
area of equal bridge and bogie frequencies (np = 5.84 Hz, see Eq. (1)). 
Thus, the ratio between bridge and bogie frequency seems to be the 
governing parameter in the VBI for this train. The similar effect can be 
observed for the Eurostar (np = 3.18 Hz) at a lower extent. For the ICE-4, 
the bogie frequencies for powered/unpowered cars (np = 4.78 Hz|16.52 
Hz) are not consistent over the train length. For this reason, their in-
fluence on the VBI does not appear in Fig. 18. For the Railjet (np = 5.53 
Hz), the additional damping stays rather constant in a broad range of 
bridge frequencies. The ratio between bridge and bogie frequencies does 
not seem to be the governing parameter for VBI effects of this train. 

The orange lines representing SC bridges and the purple lines rep-
resenting CFB bridges in Fig. 18 show that the VBI is generally higher for 
lower bridge masses. The higher additional damping for SC bridges is 
additionally influenced by lower structural damping values compared to 
CFB bridges. 

Generally, the VBI effects and thus the proper additional damping 
values are different for each of the considered train types, the bridge 
types and the bridge masses. Furthermore, every attempt to describe 
these effects with one simplified definition for the additional damping 
that is universally valid for all train and bridge types either leads to 
conservative Δζ-values close to zero or to significantly non-conservative 
values for some train-bridge combinations. In the first case, the ADM is 
hardly beneficial and in the latter case, the ADM does not meet the re-
quirements for standardisation or directives regarding the dynamic 
analysis of train transits. Therefore, further simplifications in terms of 
one resulting Δζ-function for certain train or bridge types or the appli-
cation of the computed results for other than the investigated train types 

Fig. 17. Lower bound of additional damping Δζ; ICE-2 and μ3.  

Fig. 18. Lower bounds of additional damping for each train.  
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are not recommended. 

4.3. Application of the results 

In the dynamic analysis of a simply supported railway bridge, the 
span L, the mass per unit length μ, the bending stiffness EJ and the first 
natural frequency n0 of the bridge are usually known from construction 
plans or from experiments. In the few cases where μ of the regarded 
bridge is outside the UB and LB functions (μ1 and μ3 for CFB bridges; μ4 
and μ6 for SC bridges), Δζ can be taken directly from Fig. 18 for the 
nearest related UB or LB function depending on the span length and the 
regarded train. For values of μ inside the UB and LB functions, Δζ can be 
taken on the safe side for the next highest mass function μ1 or μ2 for CFB 
bridges, respectively, μ4 or μ5 for SC bridges from Fig. 18. Alternatively, 
Δζ can be determined more accurately by linear interpolation between 
the values for the adjacent mass functions. 

As stated in the previous section, this method should only be applied 
for the investigated train types. 

4.4. Comparison of different additional damping approaches for four 
selected bridges 

In this section, the computed results and the lower bound functions 
of this study are compared with the ADM and the EADA for four 
selected bridges with two different spans. For the selected shorter span 
of L = 15 m, the ADM yields almost its maximum additional damping 
values. The chosen longer span of L = 30 m enables investigations at 
the application boundary of the ADM. The bridges B1 and B2 represent 
CFB bridges in line with the mass function μ2 (see Section 3.1.2). The 
bridges B3 and B4 represent SC bridges in line with the mass function 
μ5. The detailed parameters of the selected bridges are collected in 
Table 3. 

In Fig. 19, the total damping ζtot = ζ + Δζ is depicted as sum of the 
structural damping ζ due to Table 2 (grey bars) and the additional 
damping Δζ for different approaches. Herein, ΔζVBI (blue bars) is the 
computed amount of additional damping to equal the maximum accel-
erations of the MLM to those of the DIM, ΔζLB (orange bars) results from 
applying the lower bound functions from Section 4.2.2 of this study, 
ΔζADM (yellow bars) represents the ADM due to the Eurocode and ΔζEADA 
(purple bars) shows the EADA results due to Eq. (3). The numerical 
values for the different additional damping approaches are collected in 
Table 4. As the vehicle model of the Eurostar is not consistent with the 
initial assumptions of the EADA, ΔζEADA is not determined for this train. 
The evaluation of ΔζEADA for the ICE-4 is performed for the vehicle pa-
rameters of the unpowered PCs. 

Regarding the results for the shorter span CFB bridge B1 from 
Fig. 19, the ADM is non-conservative for each train type. For the 
shorter span SC bridge B3, the ADM yields useful conservative results 

Table 3 
Parameters of the selected bridges.  

Bridge L (m) n0 (Hz) μ (t/m) EJ (Nm2) ζ (%) 

B1 15  8.26  19.042 2.667e10  1.85 
B2 30  3.60  29.545 1.256e11  1.50 
B3 15  8.26  7.739 1.084e10  1.13 
B4 30  3.60  9.560 4.064e10  0.50  

Fig. 19. Total damping for different approaches and four selected bridges.  
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for the ICE-2 and the Railjet, slightly non-conservative values for the 
Eurostar and clearly non-conservative values for the ICE-4. For the 
longer span bridges B2 and B4 the ADM does not provide any addi-
tional damping, which is unnecessarily conservative especially for the 
SC bridge B4. 

Due to Fig. 19, the lower bound functions presented in this study 
prove to be a useful approximation of the additional damping. Only for 
the ICE-2 at B2 and the ICE-4 at B3, the method slightly over-estimates 
the additional damping. The fundamental frequency of the bridge B1 is 
outside the application boundaries for the Eurostar, so that ΔζLB = 0 in 
this situation. 

For the ICE-4, the EADA estimates the additional damping almost 
perfectly for the bridges B1, B2 and B4. However, it slightly over- 
estimates the additional damping for B3 for this train. For the ICE-2 
and the Railjet, the EADA consistently yields conservative additional 
damping values. 

5. Conclusions 

Proper additional damping has been determined for a parametric 
field of 185 simply supported single-track bridges with a ballast layer, 
six different masses for each bridge and the four high-speed trains ICE-2, 
Eurostar, Railjet and ICE-4. An iterative process was used until the peak 
vertical accelerations at midspan calculated with the MLM (Moving 
Load Model) were adjusted to the corresponding values calculated with 
the DIM (Detailed Interaction Model). The importance of VBI (vehicle- 
bridge interaction) corresponds directly to the amount of necessary 
additional damping. The following conclusions can be drawn from this 
study:  

1. Additional damping has a significantly clearer correlation to the 
natural bridge frequency than to the span length. Therefore, lower 
bounds for the additional damping are defined as functions of the 
natural bridge frequencies, but also depending on the bridge mass 
and the train type.  

2. The influence of the ratio between the bridge and vehicle mass on 
the VBI is clearly visible in the six selected mass functions. The 
additional damping increases with lower bridge masses. 

Therefore, it is useful to distinguish heavier CFB (concrete and 
filler beam) bridges from lighter SC (steel and composite) bridges. 
This also allows for the consideration of the commonly used 
values of structural damping according to the Eurocode in the 
parametric study.  

3. Additional damping differs significantly depending on the train 
type. Therefore, the results should only be used for the analysed 
train types.  

4. For bridges with high natural frequencies (mostly short span 
bridges), additional damping is set to zero due to the wide-ranging 
results and due to the relatively low number of investigated struc-
tures. Additional damping is rather high for some of these bridges 
and negative for others. Further investigations are necessary in order 
to determine if it is useful to describe the VBI effects solely through 
additional damping for these structures as well.  

5. The additional damping method (ADM) as integrated in the 
Eurocode is non-conservative for any of the regarded train types. 
Moreover, the limitation of the ADM for bridges with L < 30 m is 
not reasonable, as the computed results of the additional damping 
yield rather stable values beyond zero for larger span bridges (30 
m ≤ L ≤ 40 m). 
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Appendix A. . Train parameters 

The detailed train parameters are described in Section 1 and depicted 
in Fig. 1, Fig. 2 and Fig. 3. The numerical values for the train types ICE-2, 
Eurostar, Railjet and ICE-4 are collected in Table A1. 

Table 4 
Additional damping Δζ (%) for different approaches.   

ICE-2 Eurostar Railjet ICE-4 

B1 B2 B3 B4 B1 B2 B3 B4 B1 B2 B3 B4 B1 B2 B3 B4 

ΔζVBI  0.53 0.27  1.20 0.85 0.18 0.23  0.55 0.46  0.47 0.35  1.02 1.16  0.22 0.36  0.24 1.06 
ΔζLB  0.32 0.28  0.85 0.65 0 0.12  0.01 0.41  0.33 0.33  0.90 0.77  0.10 0.33  0.33 0.73 
ΔζADM  0.65 0  0.65 0 0.65 0  0.65 0  0.65 0  0.65 0  0.65 0  0.65 0 
ΔζEADA  0.10 0.13  0.25 0.41 – –  – –  0.18 0.17  0.44 0.51  0.22 0.32  0.55 1.00  

Table A1 
Train parameters.  

Parameter Unit ICE-2 [10] Eurostar [10] Railjet [8] ICE-4 [23] 

Loc PC Loc PC 1 PC 2-8 PC 9 Loc PC powered PC unpowered PC 

mc kg 60,768 33,930 51,500 35,860 22,525 27,122 51,500 47,316 52,896 55,279 
Jc kgm2 1.344e6 2.115e6 1.05e6 1.658e6 0.81e6 1.254e6 8.82e5 3.07e6 3.55e6 3.91e6 
mb kg 5600 2373 2200 2200 2900 2900 13,220 2800 4427 2414 
Jb kgm2 21,840 1832 1900 1900 2508 2508 27,100 1700 3090 770 
mw kg 2003 1728 1700 1700 1900 1900 2495 1900 2322 1430 
ks N/m 1.76e6 3e5 3.26e6 0.9e5 5.8e5 2.5e5 2.72e6 2.8e5 5e6 7.2e5 
kp N/m 4.8e6 1.6e6 2.6e6 2.6e6 2e5 1.32e6 3.68e6 1.69e6 2e6 1.3e7 
cs Ns/m 1.52e5 6e3 0.9e5 2e4 / 2e4 2e5 1.4e4 2e4 1e4 
cp Ns/m 1.08e5 2e4 0.12e5 1.2e4 1.2e4 1.2e4 8e4 2e4 2e4 / 
d m 20.9 26.4 22.5 21.845 18.7 21.965 19.28 26.5 28.75 28.75 
r m 11.5 19 14 18.7 / 18.7 9.9 19 19.5 19.5 
b m 3 2.5 3 3 3 3 3 2.5 2.6 2.3 
F kN 196 112 153.8 152.1/139.4 143.3 143/111 215.6 148.4 174.2 161.4  
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Appendix B. . Numerical values for lower bound functions 

The lower bound functions for each considered train are defined as 
cubic polynomials. The results are depicted in Fig. 18, their numerical 
values can be obtained by applying the parameters from the following 
Tables B1-B4 to Eq. (20). The application boundaries for the resulting 
polynomials are set to 2.1 Hz as lower limit and their first intersection 
with the abscissa as upper limit. The respective upper limits for every 
train and bridge mass are also given in Tables B1-B4. 
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[7] Doménech A, Museros P. Influence of the vehicle model on the response of high- 
speed railway bridges at resonance. Analysis of the additional damping method 
prescribed by Eurocode 1. In: Proceedings of the 8th International Conference on 
Structural Dynamics, EURODYN 2011; 2011. p 1273–80. 

[8] Glatz B, Fink J. Einfluss der Zugmodelle auf die dynamische Antwort von 75 Stahl-, 
Verbund- und Stahlbetonbrücken. Stahlbau 2019;88(5):470–7. https://doi.org/ 
10.1002/stab.201900014. 

[9] Glatz B, Fink J, Bettinelli L. Triebfahrzeuge und Fahrzeug-Brücken-Interaktion in 
der dynamischen Berechnung von Eisenbahnbrücken. Bautechnik 2020;97(7): 
453–61. https://doi.org/10.1002/bate.201900113. 

[10] ERRI. D214/RP 4. Train Bridge Interaction. European Rail Research Institute; 1999. 
[11] Arvidsson T, Karoumi R, Pacoste C. Statistical screening of modelling alternatives 

in train-bridge interaction systems. Eng Struct 2014;59:693–701. https://doi.org/ 
10.1016/j.engstruct.2013.10.008. 
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[14] Mähr TC. Theoretische und experimentelle Untersuchungen zum dynamischen 
Verhalten von Eisenbahnbrücken mit Schotteroberbau unter Verkehrslast. 
Dissertation, TU Wien; 2008. 

[15] Clough RW, Penzien J. Dynamics of Stuctures. 3rd ed. Berkeley: Computers & 
Structures, Inc.; 2003. 

Table B1 
Parameters for LB functions ICE-2 according to Eq. (20); Δζ in (%); n0 in (Hz).  

Train Bridge mass a b c d Upper limit (Hz) R2 Max. res. (%) Min. res. (%) 

ICE-2 μ1 3.231e-4 − 0.01361  0.1289 − 0.07025  13.25  0.88  0.07722 − 0.08517 
μ2 6.926e-4 − 0.02412  0.2177 − 0.2199  14.02  0.8994  0.08938 − 0.08367 
μ3 7.282e-4 − 0.02644  0.2478 − 0.236  14.81  0.931  0.08573 − 0.09826 
μ4 − 6.987e-4 − 0.002785  0.1327 0.08258  12.27  0.7411  0.2526 − 0.2034 
μ5 − 6.434e-4 − 0.0126  0.264 − 0.107  12.41  0.7577  0.2943 − 0.3083 
μ6 1.139e-3 − 0.06146  0.6776 − 0.5997  13.91  0.8498  0.306 − 0.3328  

Table B2 
Parameters for LB functions Eurostar according to Eq. (20); Δζ in (%); n0 in (Hz).  

Train Bridge mass a b c d Upper limit (Hz) R2 Max. res. (%) Min. res. (%) 

Eurostar μ1 − 2.591e-4  0.00138 − 0.00994  0.1146  7.75  0.9315  0.01474 − 0.01716 
μ2 − 5.37e-4  0.001198 0.01328  0.07694  7.78  0.9327  0.02308 − 0.2602 
μ3 − 0.001008  0.006074 − 0.001486  0.1201  7.80  0.9488  0.02788 − 0.03093 
μ4 − 0.002363  0.02815 − 0.1286  0.5019  8.45  0.8649  0.06619 − 0.04498 
μ5 − 0.002322  0.01912 − 0.05523  0.4709  8.31  0.9497  0.08058 − 0.0419 
μ6 6.386e-5  − 0.03572 0.2484  0.1952  7.77  0.8232  0.2463 − 0.1986  

Table B3 
Parameters for LB functions Railjet according to Eq. (20); Δζ in (%); n0 in (Hz).  

Train Bridge mass a b c d Upper limit (Hz) R2 Max. res. (%) Min. res. (%) 

Raljet μ1 − 5.631e-4  0.007015 − 0.02098  0.2931  12.74  0.8611  0.07455 − 0.05901 
μ2 − 5.083e-4  0.004266 0.006318  0.2768  12.73  0.8679  0.1035 − 0.06763 
μ3 − 0.001104  0.01497 − 0.05015  0.4376  12.47  0.8698  0.1421 − 0.1117 
μ4 − 0.004615  0.07522 − 0.3699  1.172  11.15  0.6573  0.3317 − 0.1757 
μ5 − 0.007272  0.1238 − 0.6329  1.78  11.21  0.6261  0.5104 − 0.2401 
μ6 − 0.01547  0.2867 − 1.598  3.844  11.37  0.6874  0.4025 − 0.3079  

Table B4 
Parameters for LB functions ICE-4 according to Eq. (20); Δζ in (%); n0 in (Hz).  

Train Bridge mass a b c d Upper limit (Hz) R2 Max. res. (%) Min. res. (%) 

ICE-4 μ1 − 0.003214  0.07749 − 0.6049  1.604  11.58  0.9407  0.06067 − 0.05099 
μ2 − 0.004115  0.09777 − 0.7529  1.964  11.32  0.9449  0.07996 − 0.06977 
μ3 − 0.005526  0.1301 − 0.9886  2.531  11.29  0.9443  0.1027 − 0.09913 
μ4 − 0.01156  0.252 − 1.783  4.283  10.37  0.8828  0.2637 − 0.2303 
μ5 − 0.01389  0.3006 − 2.11  5.076  10.46  0.9145  0.1934 − 0.3303 
μ6 − 0.02314  0.4684 − 3.087  7.118  9.92  0.9111  0.2858 − 0.4821  
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