
Computers & Graphics 125 (2024) 104123 

A
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

Me! Me! Me! Me! A study and comparison of ego network representations
Henry Ehlers a,∗, Daniel Pahr a, Velitchko Filipov a, Hsiang-Yun Wu b,a, Renata G. Raidou a

a TU Wien, Vienna, Austria
b St. Pölten University of Applied Sciences, St. Pölten, Austria

A R T I C L E I N F O

Keywords:
Ego network visualization
User study
Adjacency matrix
Straight-line node-link diagram
Layered node-link diagram
Radial node-link diagram

A B S T R A C T

From social networks to brain connectivity, ego networks are a simple yet powerful approach to visualizing
parts of a larger graph, i.e. those related to a selected focal node — the so-called ‘‘ego’’. While surveys
and comparisons of general graph visualization approaches exist in the literature, we note (i) the many
conflicting results of comparisons of adjacency matrices and node-link diagrams, thus motivating further study,
as well as (ii) the absence of such systematic comparisons for ego networks specifically. In this paper, we
propose the development of empirical recommendations for ego network visualization strategies. First, we
survey the literature across application domains and collect examples of network visualizations to identify
the most common visual encodings, namely straight-line, radial, and layered node-link diagrams, as well as
adjacency matrices. These representations are then applied to a representative, intermediate-sized network
and subsequently compared in a large-scale, crowd-sourced user study in a mixed-methods analysis setup
to investigate their impact on both user experience and performance. Within the limits of this study, and
contrary to previous comparative investigations of adjacency matrices and node-link diagrams (outside of
ego networks specifically), participants performed systematically worse when using adjacency matrices than those
using node-link diagrammatic representations. Similar to previous comparisons of different node-link diagrams,
we do not detect any notable differences in participant performance between the three node-link diagrams. Lastly, our
quantitative and qualitative results indicate that participants found adjacency matrices harder to learn, use, and
understand than node-link diagrams. We conclude that in terms of both participant experience and performance, a
layered node-link diagrammatic representation appears to be the most preferable for ego network visualization
purposes.
1. Introduction

Ego networks, sometimes also called egocentric or personal net-
works [1], are node-relative subgraph depictions of a larger graph’s
topology (Fig. 1). That is to say, instead of drawing a graph in its en-
tirety, one only draws those nodes and edges relevant to some selected
focal node. This focal node is commonly referred to as the ‘‘ego’’, and its
neighbors as ‘‘alters’’. More specifically, the ego’s immediate neighbors,
i.e. nodes of a 1-hop distance from the ego, are called 1-alters. The
ego’s neighbors’ neighbors, i.e. nodes a 2-hop distance from the ego,
are called 2-alters, and so on. This subgraph of a selected ego node and
its 𝑘-alters is called an ego network.

Ego network visualizations, especially widespread in the social sci-
ences [2,3], are a conceptually simple, yet powerful approach for
interactively reducing the visual complexity of larger networks. Con-
sider here a number of such examples: Pu et al. [4] go beyond tradi-
tional supervised and unsupervised methods and employ ego network
visualizations to enhance anomaly detection for fraud identification.
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Liu et al. [5] used split ego network representations to enable social
scientists to tackle the challenging task of comparing two ego net-
works simultaneously. However, ego network representations of graphs
have found (admittedly sparse) application outside of social network
analysis as well. For one, Al-Awami et al. [6]’s NeuroLines framework
visualizes nanoscale neuronal connectivity as node-relative networks.
Alternatively, Sayers et al. [7] proposed a node-centric visualization of
Resource Description Framework (RDF) graph topology.

In many applications, relationships within an ego network carry nu-
anced meaning that depends heavily on their importance. For instance,
in social networks, the importance of relationships is represented as
a weight (i.e., strength or frequency of interactions), allowing for
analysis of close versus casual associations [2]. Similarly, in neuro-
scientific studies, weighted connections capture the intensity or fre-
quency of neural interactions for identifying dominant pathways [6].
Weighted ego networks support tasks to reveal specific association
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Fig. 1. Construction of a 2-alter ego network representation (b) from some given input
raph (a). The selected ego, i.e. node a, is highlighted in orange in both the network’s

global topological representation as well as its own ego network. The alters of the ego
are shown in a tree-like structure, i.e. all its 1-alters are depicted on the tree’s first
layer, and all its 2-alters on the second.

patterns (i.e. identifying the most influential or strongest connections).

Depending on the particular application domain and graph data
at hand, different types of network embeddings are employed—from
onventional straight-line node-link diagrams [2] to dynamic adjacency

matrices [8]. However, no systematic work has yet been conducted to study
go networks, their representations, or their applications. Looking at gen-
ral network visualization, there are several, still very much conflicting,
ser performance and preference studies comparing different types of
etwork representations. For instance, node-link diagrams have been
ompared to adjacency matrices [9,10] or different types of node-link

diagrams to each other [11,12], in order to determine what types of
tasks and data are best served by which representations.

Ego networks are graphs centered around some particular node of
nterest, the ego, and are typically smaller-scale networks, compared to
onventional non-ego networks. Moreover, ego networks, typically, are
mployed for very different reasons than non-ego networks. Thus, while
ertain findings of such general network visualization comparisons
ransfer partially to ego networks and their visualization, their partic-
lar analytical goals, analytical tasks, and challenges warrant isolated
nd focused investigation. Here, we anticipate conventional straight-
ine node-link diagrams to be outperformed by more complex and
tructured visualizations that can better represent the layered nature
f ego networks — even if such visualizations prove more difficult to
earn and understand. To the best of our knowledge, these issues have
aused visualization researchers to lack guidelines and best practices
n when and how to use ego network visualizations effectively; a gap
e aim to start filling with this paper.

More specifically, we aim to highlight ego networks, commonly
pigeonholed as a social network analysis-specific approach, as a po-
entially effective network visualization technique across domains that
eserves greater attention. We make a first step in this direction by
dentifying which representations are common in the field and under-
tanding how effective they are for particular graph analysis tasks.
o do so, we provide an overview of various (weighted and) undi-
ected ego-network applications, tools, and examples across different
omains through an extensive survey of the literature of 50 papers.
ith the survey’s results in hand, we identify four common approaches

o visualizing ego networks, namely (i) straight-line node-link diagrams
), (ii) layered (tree-like) node-link diagrams ( ), (iii) radial node-link

diagrams ( ), and (iv) adjacency matrices ( ). To identify when a spe-
cific representation is preferred over another, we conduct a large-scale
crowd-sourced user study of 120 participants to empirically investigate
the effect the layouts have on user performance and experience across
six ego network-specific low-level graph analysis tasks. Additionally,
2 
we probe perception and preference in order to gauge which repre-
sentations are easiest to learn and use. Finally, to go beyond a purely
quantitative evaluation of user performance or preference, we collect

ritten user feedback throughout the conducted study whose qualita-
ive analysis is used to contextualize and understand more deeply our
tatistical results.

In summary, the contributions of this paper are:

1. an overview of ego network representations across application
domains (Section 3),

2. a large-scale user study to investigate, both quantitatively and
qualitatively, the effect of these representations on user perfor-
mance and preference (Section 4), and

3. a discussion of the (conceptual) (dis)advantages of the four se-
lected ego network representations to provide recommendations
on their usage (Section 6).

2. Related work

As we are interested in studying and comparing different layout
pproaches to ego network visualization, we deem it important to

understand what systematic evaluations have been conducted both
outside of and within the context of ego networks. Specifically, in this
section, we discuss comparison studies between adjacency matrices and
node-link diagrams, user performance and graph aesthetics of different
node-link diagrammatic layouts, and various evaluations conducted
within the context of ego network visualization.

2.1. Comparisons of matrices and node-link diagrams

In their seminal study, Ghoniem et al. [9,13] compare the
‘readability ’’ of node-link diagrams and adjacency matrix representa-
tions: the more readable the graph, the faster and more accurately a
participant can complete a series of low-level graph tasks. With the
results of a completed user study, the authors conclude that node-link
diagrammatic representations are more suited for smaller and sparser
graphs, whereas matrix representations should be preferred for larger
and denser ones—with the possible exception of path-tracing tasks
which proved difficult in both representations. Several follow-up works
have further studied the differences between node-link diagrams and
adjacency matrices across graph analysis tasks [14,15], as references
against some third novel hybrid representation [16–18], and across
application domains, from brain connectivity networks [19] to terror
etworks [20]. Here, we discuss the results of those follow-up studies

for different graph tasks.
Adjacency tasks deal with the identification of a given node’s

immediate neighborhood, i.e. listing or counting its neighbors. Results
differ depending on the size of the network under study. For larger
networks, node-link diagrams appear to be favorable [21,22], whereas
for smaller and medium-sized graphs results are less conclusive, with
some finding adjacency matrices to be favorable [16,23], other finding
ode-link diagrams to be preferable [10,24], while others find no

difference between the two representations at all [25,26]. Accessibility
asks, closely related to adjacency tasks, concern themselves with the
dentification of incident edges between given nodes, e.g. checking

whether two given nodes are indeed adjacent to each other. Contrary
to Ghoniem et al.’s [9,13] (non-statistically significant) initial find-
ings, subsequent work, across graph sizes, appears to point towards
the superiority of node-link diagrams over matrices [21,24,25,27,28].
Indeed, only one paper, a replication of Ghoniem et al.’s original
study, showcases the statistical superiority of adjacency matrices [29].
Common connection tasks deal with the identification of nodes adja-
cent to not just one, but two or more given nodes, e.g. locating the
common neighbors of a set of given nodes. In their original work,
Ghoniem et al. [9,13] were unable to showcase any statistical dif-
ferences between the two representations. Here, results tentatively
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favor node-link diagrams: several works have shown the superiority of
node-link diagrams for the identification of common connections [16,
24–27], while others have shown the opposite [19,21]. Many were
nable to find any statistically significant results [10,22,30]. (Shortest)
path-finding tasks challenge the user with tracing multiple possible
aths between two given nodes and reporting the shortest one. Here,
honiem et al.’s [9,13] initial findings, i.e. the superiority of node-link

diagrams over adjacency matrices, has been confirmed by effectively
all follow-up studies [10,21,22,24]. Relatedly, path-following tasks
have also been systematically shown to be more accurate using node-
link diagrams [10,21,22]. Lastly, overview tasks deal, very generally,
with gaining a big-picture understanding of a graph, such as identifying
a graph’s class [31] or estimating the graph’s density [32]. In this
case, while Ghoniem et al. [9,13] found adjacency matrices to be
superior across all overview tasks, results since have been mixed, with
some finding node-link diagrams to be superior [32], others adjacency
matrices [31].

In general, looking at the last twenty years of comparisons, not
all of Ghoniem et al.’s [9,13] initial findings can be taken as fact.
The collected 21 comparisons certainly highlight the superiority of
node-link diagrams over matrix representations for path-finding, path-
tracing, and accessibility tasks, both in terms of task accuracy and
completion time. For topology or attribute-related tasks, it is difficult
to draw any similarly sweeping conclusion. Still, for increasingly large
nd dense graphs, performance in node-link diagrams does appear to
e more heavily affected than in matrices [21,32].

2.2. Comparisons of node-link diagram layouts

Node-link diagrams can take many different shapes and forms de-
pending on the particular layout approach. Classical node-link dia-
grams can be drawn using a wide variety of force-directed algorithms
nd spring embedders. Groups within these graphs can be highlighted
y embedding them using group-based layout techniques or laid out

radially or hierarchically to highlight other structures within the data.
However, it is unclear for which situations certain graph layouts are to
be preferred.

Early evaluations, such as the work of Blythe et al. [33] and Pur-
hase et al. [34] went beyond comparing classical layout algorithms

in terms of their produced graph aesthetic criteria and focused their
efforts on studying their effect on human performance. More recently,

eulemans and Schulz [12] studied the effect of three different graph
layout algorithms within the context of social networks on human per-
ception. In general, while (statistically significant) differences between
layouts can be detected, no meaningful differences between individ-
ual pairwise layouts can be identified (despite these layouts differing
substantially in terms of their graph aesthetic metrics). Beyond com-
parisons of classical node-link diagram layout algorithms, research
has focused on comparing, for example, different approaches to ‘‘so-
ciogram’’ layouts, i.e. radial, hierarchical, group, and free layouts [11],
or tree representations to classical node-link diagrams [35]. Once again,
no meaningful conclusion regarding the impact of graph layout on
performance can be drawn. Lastly, Didimo et al. [24] compared four
different approaches to the directed graph layout problem, namely,
hierarchical, orthogonal, overloaded orthogonal layouts, and matrix
representations. The results, however, indicated that, in terms of error
ates (for the particular data studied) overloaded orthogonal drawings
utperformed all other layout approaches.

In general, depending on the particular dataset presented, node-link
iagram layouts indeed seem to have an impact on human perception,
.e. different layouts result in different task accuracies and completion
imes. However, it is unclear whether a single ‘‘best’’ layout can be
dentified, as pairwise statistical differences between layouts are often

inconclusive. It is safe to conclude that any differences between such
layouts are either fairly minimal or highly task/data-dependent.
 a

3 
2.3. Ego-network evaluations

Most commonly, ego network visualization evaluations have been
conducted either as usage scenarios [36], or as case studies [6,37,38].
In some instances, additional early [2] or final user feedback [38–
40] was also collected. However, task-based evaluations are featured
in several papers. For example, within the context of dynamic ego
network visualization, e.g. visualizing the evolution of such networks
over time, several task-based evaluations have been conducted [41,42].
These evaluations naturally deal predominantly with time-dependent
tasks, such as summarizing the evolutionary trend of clusters for a
particular ego [3], identifying topological changes in the ego’s connec-
tivity [43], or determining whether the 1-alter subgraph increased or
decreased in size over time [8]. Alternatively, within the context of
dynamic) comparative ego network visualization approaches, such
s Liu et al.’s EgoComp [5] or Wu et al.’s EgoSlider [1], similar task-

based evaluations can be found. In such cases, tasks focus on evaluating
differences between egos, such as identifying which ego has the largest
number of 1-alters with certain properties, characterizing the overall
similarity between two selected egos, or inspecting whether a particular
alter of one ego exists in the network of another. Most importantly,
non-dynamic task-based evaluations focusing on a single ego can
also be found in Shikora et al.’s InfluViz [44] and Sorger et al. [45]’s
virtual reality ego network visualization. In such cases, participants
completed multiple topological tasks derived from Lee et al.’s [14]
graph analysis taxonomy, such as finding common neighbors of two
alter nodes, estimating the degree of a particular given node, or finding
 (shortest) path between two given nodes. Unlike previous studies
hat have primarily focused on either quantitative or qualitative eval-
ations of ego networks, our study introduces a novel mixed-methods
pproach that integrates both methodologies. This allows us to provide
 more comprehensive examination of differences between various ego
etwork visualization techniques and a more nuanced understanding of
ow different representations impact the interpretation of ego network

structures, compared to prior research.

3. Ego network representations

To better understand the current state of ego network visualization,
we perform a literature survey, collecting 50 papers, comprising visu-
alization techniques, systems, and application papers that feature ego
etwork visualization approaches. A complication to this search is the
ack of consensus on terminology to describe such networks. Examples
nclude ego networks, egocentric networks, node-relative networks, or
ubject-relative networks. In other cases, such networks are not explic-
tly identified as ego networks at all [6]. Owing to these difficulties, the

literature survey was conducted manually, driven by keyword searches
across multiple academic search engines, and, in a snowballing method,
combining through their bibliographies exhaustively. These collected
works were then manually read and filtered to ensure relevance to the
project. Each of the thus collected 50 references is categorized based on
the visual representation featured as well as the domain’s application
area (see Fig. 2). Ultimately, five common graph representations are
identified, namely (i) straight-line node-link diagrams ( ), (ii) radial
node-link diagrams ( ), (iii) trees/layered node-link diagrams ( ),
iv) adjacency matrix representations ( ), and (v) latent variable space

embeddings. However, as latent variable embeddings commonly omit
drawing edges altogether, they are unsuitable for topology-based tasks
that we investigate (Section 4.2.2). Therefore, we omit them from both
his section as well as our user study. Given the large prevalence of

weighted ego networks in literature, particularly in applications requir-
ng precise association analysis, we focus on weighted representations
or this study. Weighted networks offer critical insights into the strength
nd frequency of connections, which are pivotal in real-world tasks
cross diverse domains (see Section 2).
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Fig. 2. Mapping of the 50 collected ego network papers to both application area
and ego network representation. The number of papers that map to a combination
of categories is encoded in its circle’s size, color intensity, and numerical label. Papers
could map to multiple representations and application areas.

In this section, we briefly discuss the four remaining archetypal ego
network representations that are commonly used as well as how they
were designed and implemented. The implementation, as well as our
classification of the collected papers, has been made available on the
Open Science Framework.1

3.1. The straight-line node-link diagram

Straight-line node-link diagrams ( ) are arguably the most well-
known graph representation for networks. For some given graph 𝐺 =
(𝑉 , 𝐸), its nodes 𝑉 are represented as points, circles, or rectangles
placed freely in 2D space connected by straight line segments, repre-
senting its edges 𝐸 [46] (see Fig. 3(a)). Such diagrams also proved
to be the most popular form of ego network visualization, featured
in 28 unique papers. In its simplest form, such ego-centric node-link
diagrammatic representations lay out the graph’s global topology and
then (interactively) highlight egos and their 1-alters, as presented in
Fisher et al.’s [47] visualization of communication networks. In other
cases, the ego and its incident edges are not explicitly visualized at all,
and, instead, only the ego’s 1-alters and their intra-1-alter connectivity
are visualized, as discussed in the work of Ezaiza et al. [2], which
focuses on various friendship clusters in personal social networks.
However, we note that such representations naturally do not allow
users to investigate the ego–alters’ edge weights. Here, edge weights
were encoded in each edge’s line segment’s opacity, i.e. the greater
the edge weight, the more opaque the edge. This ensures that edges,
much like their node counterparts, remain the same size/thickness
both within and across node-link diagrammatic representations. Lastly,
opacity is also chosen to ensure comparability to the to-be-discussed
layered adjacency matrix representation.

3.2. The radial node-link diagram

A radial node-link diagrammatic representation ( ) is a more
constrained form of the previously discussed straight-line node-link di-

1 https://osf.io/qzd9x/?view_only=20e4ffa7fedb4f9d897e3144b29d9f97
4 
agrams. Instead of allowing nodes to be drawn freely in 2D space, their
placement is restricted to a given circle. Edges are then drawn either as
straight line segments or smooth arcs, mostly within the confines of the
given circle. With 19 papers, radial node-link diagrams form the second
most common representation of ego networks. In their simplest form,
such radial representations display the ego at the center of the circle
and its 1-alters radially around it, with both ego–alter and alter–alter
edges displayed within the formed circle’s area (see Fig. 3(b)) [36].
As discussed previously, ego–alter edges are sometimes omitted and
only intra-1-alter connectivity is visualized [2]. Multiple alter-levels
can also be visualized as multiple concentric circles, i.e. 1-alters placed
along the first ring, 2-alters along the second ring, and so on. In such
representations, intra-alter edges are commonly omitted and only inter-
alter edges rendered [3,42]. However, these concentric circles need
not only denote different alter levels. For example, in the context of
dynamic ego network visualization, each ring can indicate a particular
time slice instead. An ego’s various 1-alters’ presences/absences are
then indicated for each such time slice [48]. Lastly, for the sake of
completeness, radial layouts are also utilized for the comparison of
egos’ 1-alters by, for example, juxtaposing their concentric alter rings
and rendering ego–alter edges not only within each circle but also
between them [49]. Again, edge weights are encoded using each edge’s
line segment’s opacity.

3.3. The layered node-link diagram

Similar to radial node-link diagrams, layered node-link diagrams
( ) opt to restrict node placement instead of allowing them to be
drawn freely in 2D space. Unlike radial diagrams, such representa-
tions arrange nodes not along the circumference of concentric circles,
but instead along equidistant lines called layers. Edges are commonly
represented as straight-line segments between them. For ego networks
specifically, layered node-link diagrams are tree-like representations
of ego networks, which are notably less popular than straight-line or
radial node-link diagrams, with only 3 papers mapping to this particular
category. Here, the aforementioned layers in layered ego network node-
link diagrams encode the specific alter level, and nodes are placed along
it accordingly (see Fig. 3(c)). Consider, Sayers et al.’s [7] RDF graph
visualization, which provides a very representative example hereof.
While in all examples found, only inter-alter edges were rendered, we
opt to render all edges of the ego network to investigate their utility for
both inter and intra-alter connectivity analysis. Edge weights are again
encoded using each edge’s line segment’s opacity.

3.4. The layered adjacency matrix

Unlike the previously discussed node-link diagrams, an adjacency
matrix representation ( ) takes the form of a data table, in which
nodes are represented both as rows and columns. An undirected edge
connecting two particular nodes is then represented by ‘‘filling’’ the
two corresponding matrix cells of the symmetric table with a 1 (0
otherwise). For example, should nodes 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 be connected by some
undirected edge {𝑣𝑖, 𝑣𝑗} ∈ 𝐸, the matrix cells (𝑖, 𝑗) and (𝑗 , 𝑖) are corre-
spondingly ‘‘filled in’’. Here, in line with the conclusions of previous
surveys of network visualization outside of the context of ego network
visualization, only very few approaches make use of (adjacency) matrix
representations [50,51]. Across the 50 collected ego network visualiza-
tion papers, only one uses an adjacency matrix representation, namely
Zhao et al.’s dynamic egocentric network representation EgoLines [8].

In order to meaningfully exploit and visually display an ego net-
work’s topological connectivity as well as its various alter levels, and
ensure it is comparable to both radial and layered node-link dia-
grams, we visualize these networks as layered adjacency matrices (see
Fig. 3(d)), akin to a centered matrix representation [52] or a quilt [53,
54]. In such representations, nodes are grouped by some layer structure
(here their 𝑘-alter level). This ensures that all intra-𝑘-alter connectivity
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Fig. 3. Illustrative visualizations of the implemented ego network representations. Nodes and intra-alter edges are colored-coded according to their alter-level using an appropriate
color palette. More specifically, 1-alters are colored green, 2-alters orange, 3-alters blue, and 4-alters purple. Inter-alter edges, as well as the ego, are colored dark gray.
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is displayed only within a block of 𝑘-alter nodes. Additionally, because
a 𝑘-alter can, by definition, only be connected to (𝑘− 1) or (𝑘+ 1) alters,
all inter-alter connectivity is displayed within blocks adjacent to their
corresponding intra-alter blocks. This, in turn, results in larger portions
of the off-diagonal elements remaining empty, resulting in overall less
visual clutter. To provide a meaningful one-dimensional ordering of the
nodes (an important consideration when evaluating adjacency matrix
representations [22,24,25]), nodes are sorted according to their graph-
theoretic distance to the ego within each alter level. Hop-distance ties
within a block of 𝑘-alters were broken using their weighted distance
to the ego, i.e. the closer their graph-theoretic distance, the closer
their visual distance to the ego within their corresponding 𝑘-alter
block. In line with the previously discussed node-link diagrammatic
representations’ visualization of edge weight, we opt to encode edge
weight using opacity. More specifically, the greater the edge weight of
some undirected edge between nodes 𝑣𝑖 and 𝑣𝑗 , the more opaque the
corresponding matrix cells (𝑖, 𝑗) and (𝑗 , 𝑖).

3.5. Implementation

For our implementations, many different spring-embedded and
force-directed approaches to laying networks as node-link diagrams
present themselves [55]. For the straight-line, radial, and layered
ode-link representations, we make use of D3js’s [56] particle-based
orce-directed algorithm to lay out the networks, as it produces con-

sistently visually pleasing results while remaining computationally
tractable for the kinds of undirected, weighted graphs we consider
here. It is important to note that while the four node-link diagrammatic
representations may, in certain circumstances, share visual similarities,
they should never look identical to each other, thereby distinguishing
themselves from each other both conceptually and visually. The
layered adjacency matrix was also implemented in D3js. Additionally,
across all representations, in order to visually communicate the alter
levels, nodes, and intra-alter edges are color-coded using an appro-
priate Color Brewer [57] palette (see Fig. 3). Specifically, 1-alters are
colored green, 2-alters orange, 3-alters blue, and 4-alters purple. Inter-
lter edges, as well as the ego, are colored dark gray. Similar to
revious (ego) network visualization evaluations, we also implemented
asic interactivity [10,22,25]. Interactions include highlighting (in
ed) incident edges and adjacent nodes when hovering over a node
or all node-link representations. For the adjacency matrix, when
overing over a cell (edge) at location (𝑖, 𝑗), row 𝑖, column 𝑗, and
odes 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 are also highlighted in red. Additionally, basic
avigation, i.e. panning and zooming, are provided. We refer the

reader to the supplement’s Figure 1 or the previously mentioned OSF
repository for visual examples of the implementation as presented to
tudy participants.
5 
4. Study

We aim to evaluate the ego network representation’s effect on user
erformance and experience in a mixed methods approach in order to
etter understand and contextualize our quantitative results. Given
hat ego networks are highly specialized tools, a group of expert users
ould be optimal to test these effects, such as network scientists
r domain experts, e.g. social scientists or biologists. However, to
chieve adequate statistical power and sufficient numbers of qualitative
eedback, we instead opt to conduct an online, crowd-sourced user
tudy.

First, we wish to quantitatively evaluate the effect of ego network
representation on participants’ performance, i.e. their ability to com-
plete a series of low-level graph analysis tasks as quickly (response
times) and correctly (accuracy) as possible. To do so, we employ a
between-subjects study design, in which each participant completes six
low-level graph analysis tasks for one randomly assigned archetypal
representation. Here, a between-subjects study design was selected to
ensure the study could be completed in less than 30 min in an online
setting, which (based on our prior experiences with online studies)
should be considered the upper limit for such online studies. Requiring
each participant to complete all six tasks for all four representations
would have (i) introduced a possible learning effect, and (ii) taken
too long, thereby affecting participant concentration. To curb any
further systematic learning effects in our results, the order in which
participants are asked to complete these six tasks is randomized, and
the presented graph’s nodes’ labels are randomized for each task,
mitigating memorization.

Second, we aim to quantitatively evaluate the effect of these repre-
entations on user experience. To assess this aspect, each participant is
resented with five rankable statements, relating to the ease of use and

learning, participants’ perceived accuracy and efficiency, as well as the
aesthetic appeal of the presented visualization, which they are required
to answer on a 5-point Likert scale.

Third, we aim to enrich these quantitative analyses with addi-
tional qualitative data. So, after each of the tasks given to a user, we
present the task’s description again and ask the users to provide a short
comment on how the assigned ego network representation assisted or
hindered them in the task performed. Finally, at the end of the survey
we collect participant feedback pertaining to their final thoughts about
the assigned ego network representation.

4.1. Graph data

Similar to the evaluation conducted by Okoe et al. [21], we opt to
investigate a single network; more specifically, the real-world network
representing the ‘‘Les Misérables’’ character interaction graph, consisting
of |𝑉 | = 77 nodes and a total of |𝐸| = 254 undirected edges, in which
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Fig. 4. Studied network sizes of 53 ego-networks from our gathered 50 papers. For
several papers, no specific sizes were specified nor could have been estimated from
figures. Network size is displayed on the log scale for readability. The overall median
network size, |𝑉 | = 45, is illustrated by the dashed black line, and the chosen ‘‘Les
Misérables’’ character interaction graph, |𝑉 | = 77, by the dashed black line [58].

edge weights encode the number of times two particular characters
co-occurred [58]. To simulate the process of creating an ego network
from a larger network, with ‘‘Valjean’’ as the selected ego, an ego
network is constructed from this graph by computing the shortest hop-
distance paths from the ego to each other node. Ties in path length are
broken by their weighted distances. Labels were randomly generated
integers to ensure that, even though a user was investigating the same
network, the network’s labels were never the same across the various
tasks investigated (Section 4.2.2). Here, this particular network was
chosen for six key reasons. First, by utilizing a real-world network, we
avoid non-representativeness often associated with simulated (scale-
free) graph data [59]. Second, by focusing on a single network, we
are able to statistically investigate a larger number of tasks relevant to
ego networks without sacrificing statistical power. Third, depending on
the particular ego chosen, here ‘‘Valjean’’, said dataset features a larger
number of alter levels than most investigated data while remaining
overall representative: while most (31) ego networks focused on either
1 or 2-alters, several (7) also studied ego networks of 3-alters and
higher. Fourth, by evaluating the size of ego networks investigated in
previous approaches and applications, we determined this particular
dataset’s size to be slightly larger than the median graph size studied
in ego network literature while remaining representative (see Fig. 4).
Moreover, a graph of this size and density was deemed appropriate for
the non-expert user group that would be tasked with analyzing it. Fifth,
in order to build on work done previously, this network has already
found use as a benchmark in both ego network [5] as well as more
general network visualization evaluations [24]. Lastly, with |𝑉 | = 77
nodes and a total of |𝐸| = 254 undirected edges, this particular network
falls nicely within the most commonly explored/visualized sizes of
graphs [60], thereby further ensuring it is representative in terms of
its numbers of nodes and edges.

4.2. Procedure

To conduct our mixed methods analysis of user experience and
performance, we must ensure that participants are properly instructed
and trained before they commence a series of graph analysis tasks and
a final user experience evaluation.

4.2.1. Training
In line with other comparative network visualization studies, we

employ pre-study training to familiarize participants with the upcoming
representations and tasks. Following the definitions of Nobre et al. [10],
we use a mixture of active and passive training. Each participant was
presented with both (i) a written tutorial explaining the details of
ego networks and the assigned network representation to familiarize
them with concepts and terminology, as well as (ii) an interactive
6 
visualization of a simple network using the network representation they
could expect during the evaluation to familiarize themselves with the
modes of interaction we provide. Key definitions remained available
to participants in a small glossary throughout the study to avoid
terminology-related errors.

4.2.2. User performance: Tasks
Following existing quantitative (ego) network evaluations (Sec-

tion 2.3), we are interested in statistically comparing how quickly
and accurately participants were able to complete a series of low-level
graph analysis tasks using the different representations we provide (see
Section 3). However, a key challenge here lies in the selection of a set
of tasks: they must remain general enough for their results to transfer
to other network types, yet be specific enough to be meaningful for
ego networks specifically. We derive our set of tasks from existing
ego network evaluations. Of the 50 collected papers, nine featured a
quantitative, task-based evaluation of their proposed techniques.

From these evaluations, we identify twelve common tasks when
placed within Lee et al.’s [14] low-level graph task taxonomy: one
browsing task, two overview tasks, and nine topological tasks (Fig. 5).
More specifically, these twelve tasks include (i) following the path
between a series of nodes, (ii) estimating the number of (k-) alters,
(iii) estimating the number of unique edges among alters or between
1-alters and ego, (iv) identifying the alter closest to the ego, (v) identi-
fying the node (ego or alter) with the highest adjacency, (vi) identifying
the shortest path between two nodes, (vii) identifying the alter closest
to some other alter, (viii) identifying the common neighbors of two
given nodes, (ix) counting the neighbors of a given alter, (x) identifying
the neighbors of a given alter, (xi) determining whether an edge
between two nodes exists, and (xii) finding bridges between clusters.

It should also be noted that several of these dynamic egocen-
tric network visualization system evaluations [1,3,43,62] also featured
extensive time-dependent tasks, such as estimating changes of alter
numbers between time steps [43] or estimating the number of relation-
ships that lasted for a certain number of time steps [8]. However, as
the scope of this paper is explicitly related to investigating differences
in the perception and execution of topological ego-centric tasks across
different ego network representations, we exclude tasks that focus on
either the temporal or attribute-based nature of data. We argue that
before one investigates tasks related to more complex multivariate or
dynamic graph data, potentially requiring more sophisticated interac-
tion techniques and training, it is necessary to first understand the
effect of ego network representation in the context of relatively simpler
and mostly static graphs. Therefore, from the thirteen common tasks,
we selected the six most common to investigate in our user performance
study [63], i.e., two overview tasks, two topological adjacency tasks,
one topological common neighbor task, and one topological association
task.

Overview tasks [14] can take many different shapes and forms,
such as the identification of a network’s graph class [31,32], the count-
ing or approximation of a network’s nodes and/or edges [9,13], or the
estimation of a network edge density [32]. Based on the ego network-
specific overview tasks we identified in the literature, we investigated
two such tasks:

Tedges Count the intra-alter edges between all 1-alters.

Talters Count the number of 2-alters in the graph drawing.
Adjacency tasks focus on the immediate adjacency of a node,

i.e., its neighbors, and can take several forms, such as counting a
given/highlighted node’s neighbors [29] or edges [26], counting in-
coming and outgoing edges separately [32], or finding the most con-
nected node [9,13], the highest degree node [23], or the node with
the highest number of edges [16]. Based on our literature review, we
investigated tasks:

T Count the neighbors of a given alter.
neighbors
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Fig. 5. Categorization of (non-dynamic and attribute-related) graph analysis tasks according to nine previous works that featured a task-based evaluation of ego networks (i.e. Liu
et al. [42], Liu et al. [5], Shikora et al. [44], Shi et al. [41], Sorger et al. [45], Wu et al. [1], Zhao et al. [8], Zhao et al. [8], and Zhao et al. [61]). Additionally, the twelve
tasks are categorized, faceted, and color-coded according to Lee et al.’s [14] graph task taxonomy, i.e. Browsing Tasks, Overview-based Tasks, and Topology-based Tasks.
Tdegree Which 2-alter has the highest degree of all 2-alters?

Common neighbor tasks involve the identification of two (or more)
nodes’ common neighbors and subsequently list them by their identi-
fier [16,25] or count them [26]. Here, we specifically investigated the
former:

Tcommon Which neighbors do two alters have in common?
Finally, accessibility tasks [14] involve the identification of inci-

dent edges between nodes, such as finding the edge between two given
nodes [9,13], determining whether a node is connected to another in
two hops or fewer [25], or determining whether two given nodes are
connected or not [21]. Based on our literature review, we specifically
tasked participants with:

Tassociation Which alter’s edge to the ego has the largest weight?
Note that for tasks Tdegree and Talters, 𝑘 = 2 was chosen to ensure

there was a layer of alters, i.e. 𝑘 = 1 and 𝑘 = 3, surrounding it to
better capture the visual complexity of arbitrary-sized ego networks.
Moreover, it should be noted that despite its frequent occurrence in
ego network evaluations (Fig. 5), we opted to ignore shortest path
identification tasks owing to the by now well-documented superiority
of node-link diagrams over adjacency matrix representations [10,21,22,
24] which may bias our results. Additionally, as there always exists a
path between two nodes through the ego, therefore, the (shortest) path
lookup becomes a trivial task.

4.2.3. User experience: A Likert scale
In order to probe each participant’s perceived and subjective effec-

tiveness and preferences [63], at the end of the study, similar to existing
ego network evaluations [3,8], each participant is required to answer
five statements on a 5-point Likert scale:

Slearn I found the ego network’s visual representation easy to
learn.

Suse I found the ego network’s visual representation easy to use.

Spleasing I found the ego network’s visual representation aestheti-
cally pleasing.

Saccurately I found the ego network’s visual representation allowed me
to answer questions accurately.

Squickly I found the ego network’s visual representation allowed me
to answer questions quickly.

4.2.4. Qualitative feedback: Participant comments
Finally, to go beyond a purely quantitative evaluation, we addi-

tionally probe both user performance and experience qualitatively. To
7 
do so, participants were required to provide written feedback after
each completed task as well as at the very end of the survey together
with their Likert-scale-ranked experience. Specifically, we asked for
feedback on how the representation was helping with or hindering
each task’s completion and the participant’s general experience with
the representation.

4.3. Analysis

The collected data must be evaluated both statistically and quali-
tatively. To do so, we formulate a series of hypotheses regarding our
quantitatively evaluated metrics, i.e. task accuracy, task completion
time, and user preference. Subsequently, we outline how the statisti-
cal analysis is conducted. Finally, we outline how the coding of the
qualitative analysis is performed.

4.3.1. Hypotheses
Based on comparisons of node-link diagrams and adjacency matrices

(Section 2.1), as well previous comparisons of ego networks (Sec-
tion 2.3), we formulate four hypotheses regarding user performance
and experience.

H1: Counting on matrices. The overall findings in the literature seem
to tentatively point towards the superiority of adjacency matrix rep-
resentations over node-link diagrams for non-path-tracing/finding and
accessibility tasks, especially for larger and denser graphs [13,32].
Subsequently, though we do not study the densest and largest graphs
possible to not overwhelm non-expert users, we hypothesize that our
layered adjacency matrix representation should result in higher accu-
racy than the three node-link diagrammatic representations for such
tasks, i.e. (i) counting the number of edges (Tedges) and 2-alters (Talters),
(ii) estimating the 2-alter with the highest degree (Tdegree), as well as
(iii) counting the number of neighbors of a given alter (Tneighbors). How-
ever, given past results comparing node-link diagrams and adjacency
matrices [10,25,64], we also hypothesize this increased accuracy will
require additional time.

H2: Node-link nuance. While past evaluations comparing different types
of node-link diagrams have not shown meaningful differences
[12,33,65], we expect the inherently layered structure of ego networks
to tease out differences between the three node-link diagrammatic
representations for the investigated overview and adjacency tasks.
Specifically, given the 1D arrangement of nodes in both radial and
layered node-link diagrams, we anticipate said representations to out-
perform the classical node-link diagram for the 2-alter-counting task
(Talters). For layered node-link diagrams especially, the clarity of this 1D
arrangement of nodes comes at the cost of effectively visualizing intra-
alter edges. Subsequently, we anticipate the layered node-link diagram
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to perform worse than the radial or classical node-link diagrams for
the intra-alter edge counting task (Tedges). Lastly, while disadvanta-
geous for node/edge counting tasks, the unbounded embedding of the
classical node-link diagram should communicate the neighborhood of
individual nodes more effectively. As a result, we anticipate this rep-
resentation to lead to more accurate results than the radial or layered
node-link diagrams for the two tasks related to node neighborhood,
i.e. Tdegree and Tneighbors.

H3: Topologically topsy-turvy. Given the findings of individual papers
ointing tentatively towards the superiority of node-link diagrams for
ertain topological tasks [13,25], we anticipate the three node-link

diagrammatic representations to outperform the layered adjacency ma-
rix for the two topological tasks under study, i.e. locating the ego’s
ost closely associated alter (Tassociation) and identifying the common
eighbors of two given alters (Tcommon). Given this difficulty, we addi-
ionally hypothesize the matrix representation will require participants
o spend more time answering these tasks. Within these three node-link
iagrammatic representations, however, we anticipate the straight-line
ode-link diagram to outperform the other two for task Tassociation in
articular, as closely associated nodes can be placed closer to each
ther in 2D space, whereas layered and radial representation limit node
lacement along layered lines or concentric circles, respectively.

H4: Where the instruction booklet at. Looking at past studies comparing
ode-link diagrams and adjacency matrix representations, it would ap-
ear as though (i) node-link diagrams are easier to learn than adjacency

matrices [10,25], and (ii) participants might be more familiar with
ode-link diagrammatic representations a priori [10,32]. Subsequently,

we hypothesize that participants will find the three different types of
node-link diagrams easier to learn (SLearn and SUse) than the adjacency
matrix representation. Additionally, owing to the additional layers of
complexity they presented, radial and layered node-link diagrams are
hypothesized to be more difficult to learn compared to the straight-line
layout. However, as these additional layers should allow for certain
tasks to be answered more easily, we anticipate them to be easier to
use.

4.3.2. Quantitative evaluation
We collect each participant’s task answer, task completion times,

and user experience questionnaire results. Specifically, for each task,
participants’ performance was measured using the number of errors
made based on their given answers. For example, for Talters or Tedges,
he error is defined as the difference between the true number of
uch nodes/edges and the participant’s answer. Alternatively, for task
association, i.e. identifying the most strongly associated 1-alter with the
go, the error is defined as the difference in edge weights between
he participant’s answer and the ego, and the ego and the actually
losest node. To statistically analyze the impact of ego network repre-
entation on these three quantities, we employ Wobbrock et al.’s [66]
on-parametric aligned rank-transformed ANOVA, as standard assump-
ions of normality could neither be made nor validated when probed
ith Shapiro–Wilk tests. The overall statistical significance of ego
etwork representations on these quantities is first probed with an
mnibus 𝐹 -test, which, if significant, is followed by a series of pair-
ise 𝑡-tests between individual representations using the computed
stimated marginal means [67], both at an a priori, Bonferroni-adjusted

family-wise type-I error rate of 𝛼 = 0.05 [68].

4.3.3. Qualitative evaluation
We collect qualitative feedback from participants in the form of

pen questions after every task and summarily at the end of the session.
iven the 120 participants, six task-related questions, and one summary
uestion, 840 qualitative comments are to be collected. These comments
re then broken up further into individual utterances. We analyze
hese utterances in inductive and deductive coding sessions [69], with

three independent coders. In the first inductive coding session, each
8 
coder assigns a single concept to each utterance. These are ultimately
unified into a single set of unique codes. In a second, deductive coding
ession, every coder assigns one of the thus agreed-upon codes to each
tterance. Coders also assign a positive or negative qualifier to every
tterance. In a final discussion, each utterance’s coding is discussed
ntil 100% consensus is reached.

5. Results

In this section, we enumerate the quantitative and qualitative results
ollected on user performance and experience.

5.1. Participants

In order to evaluate the impact of ego network representation on
oth graph analysis task completion time and accuracy, as well as user
xperience, a large-scale, interactive online user study was conducted
n the user recruitment platform Prolific [70]. Each participant was

randomly assigned to one of the four representations, provided said
representation had not already received its total number of participants,
guaranteeing a balanced number of participants per representation.
In total 120 participants, i.e. 30 per representation, were recruited,
of which 60 identified as ‘‘female’’, 59 as ‘‘male’’, and 1 as ‘‘other’’.
Each participant was paid 10£ per hour, slightly above Prolific’s rec-
ommended hourly rate of 9£ per hour. In terms of age, 38 participants
were between the ages of 21–25, 42 between 26–30, 21 between 31–35,
7 between 36–40, 3 between 41–45, 2 between 46–50, and 6 older than
50. Given the academic bent of both the conducted literature survey as

ell as the selected tasks, we opted to (insofar possible) target a non-
ayperson participant group, i.e. people who had already completed or
ere in the process of completing some form of higher education. As

uch, 8 participants were in the process of completing their bachelor’s
egree, 75 participants had completed their bachelor’s degree, and 37
ad completed their master’s degree. Finally, in terms of self-described
revious experience with graph visualizations and analysis, 34 par-
icipants reported ‘‘no experience’’, 36 ‘‘little experience’’, 34 ‘‘some
xperience’’, and 16 ‘‘good experience’’. When probed statistically using

Wobbrock et al.’s previously discussed ART-ANOVA [66], no significant
ssociation between the expertise of users and their performance was

found.

5.2. User performance

Accuracy. For each task, participants’ performance was measured us-
ng the number of errors made, depending on the user’s answers and the
articular task. Six answers in total had to be manually removed, such

as lists of nodes when the question only asked for one, or long textual
descriptions that did not actually provide an answer. The calculated er-
ror rates are depicted in Fig. 6. Here, of the six tasks analyzed, we found
the impact of ego network representation on performance to be statis-
tically significant for four of them, namely Tcommon, Tneighbors, Tedges,
and Talters. For these statistically significant tasks, representations were
then compared pairwise. Here, for Tcommon, we observe adjacency ma-
trices (median( ) = 0.35) to produce statistically significantly worse
performance than both straight-line ( = 0.0) and radial node-link
( = 0.06) representations. For Tneighbors, the adjacency matrix ( =
.06) was also statistically significantly less accurate compared to all
ther representations ( = = = 0.0). For Tedges, participants
sing adjacency matrices ( = 0.7) were statistically significantly

less accurate than those using straight-line ( = 0.33) and layered
ode-link diagrams ( = 0.2). Finally, despite notable differences

observable visually in Fig. 6 for Talters, the only statistically significant
pairwise differences observed were between adjacency matrices ( =
.1) and layered node-link diagrams ( = 0.0). Please refer to the

supplement’s Table 1 for a complete account of our results.

https://www.prolific.com/
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Fig. 6. Participants’ task error rates are visualized per task and represented as a box-and-whisker plot. The center of each boxplot corresponds to the median, and its lower and
upper hinges to the first and third quartiles, i.e. the 25th and 75th percentiles, respectively. Finally, the ‘‘whiskers’’ correspond to 1.5 × 𝐼 𝑄𝑅 from the hinge, where 𝐼 𝑄𝑅 denotes
the inter-quartile range, i.e. the distance between the first and third quartiles.
Fig. 7. 5-Point Likert Scale results visualized as normalized stacked bar chart. Each statement corresponds to a particular row, across the individual subplots corresponding to the
four archetypal ego network representations investigated. Likert scale answers are color-coded, i.e. strongly disagree, disagree, neutral, agree, and strongly agree.
Time taken. The time needed to complete the survey varied between
participants. At the extremes, the fastest participant completed the
entire tutorial and survey in 9 min, whereas the slowest took 90 min.
Most participants, i.e. 50%, however, took between 20 and 35 min,
with a median time taken of 25 min. More importantly, we also track
the time taken for each participant to complete each task, excluding
instructions and training. Here, differences in time taken per task
are fairly small and we refer to the supplementary material’s Figure
2 for details. The only task for which the ego network representa-
tion proved to have a statistically significant impact was TAlters. In
the subsequently performed pairwise comparisons, only matrices were
statistically significantly slower than the layered node-link diagram.

5.3. User experience

As discussed previously, at the end of the study, each participant
was required to answer five statements on a five-point Likert scale.
The results can be seen in Fig. 7. Here, the effect of ego network
representation was only found to be statistically significant for two of
these five statements, namely Slearn, i.e. the ease of learning a particular
ego network representation, and Suse, i.e. the ease of using an ego
network representation.

For these two statements, the marginal means of each represen-
tation are pairwise compared. For Slearn participants rated matrices
statistically significantly lower than all three node-link diagrammatic
representations. For Suse, adjacency matrices were rated statistically
significantly lower than both layered and straight-line node-link dia-
grams. Please note that, as Spleasing, Saccurately, and Slearn were not found
to be statistically or substantively significant, they will not be further
discussed in the results.

5.4. User feedback

We collected user feedback per task and summarily after all tasks
were completed, resulting in a total of 840 comments, which were
9 
ultimately broken down into a total of 1031 utterances. In the first in-
ductive coding round, the three coders independently identified 30, 75,
and 73 separate concepts. These emergent concepts were subsequently
unified into 17 unique codes, and categorized into five broader classes,
namely (i) layout, (ii) task load, (iii) interactivity, (iv) comprehension,
and (v) graph tasks. In the subsequent deductive coding step, the
coders individually assigned one of the 17 agreed-upon codes to each
of the utterances, ignoring utterances that held no value or were in-
comprehensible. Additionally, each utterance was also labeled as either
positive or negative, denoted here as (pos, –neg). Ultimately, in a final
meeting, the three coders discussed their choices for each utterance
until a consensus for every one of the 837 remaining utterances was
reached, the results of which are presented in Fig. 8.

Layout, the largest class of codes with 299 total utterances, con-
tains sentiments related to the four visual embeddings, i.e. the use of
‘‘Color ’’ for nodes and edges, the chosen ‘‘Edge Weight Encoding ’’, node
‘‘Labels’’ and ‘‘Layers’’, as well as the representations’ ‘‘Edge Placement ’’
and ‘‘Node Placement ’’. ‘‘Colors’’ (105, −5) and ‘‘Edge Weight Encoding ’’
(56, −7) used in the graphs were regarded generally positive. ‘‘Node
Placement ’’ (7, −19), ‘‘Edge Placement ’’ (8, −47), and ‘‘Labels’’ (3, −5)
were often mentioned in connection with visual clutter. Representa-
tions using ‘‘Layers’’ to separate alter levels were often mentioned
in a positive manner (27, −1). Interestingly, the ‘‘Visual Appeal’’ of
individual representations was sparsely mentioned (8, −1).

Task Load was broken down into three codes derived from the
well-known NASA TLX questionnaire [71]. Notably, however, ‘‘Physical
Demand’’, ‘‘Effort ’’, and ‘‘Performance’’ were omitted as utterances re-
lated to them could not be identified. In total, 215 utterances related
to task load were identified. The largest portion of these utterances
describe the ‘‘Cognitive Demand’’ that the participants perceived (104,
−78) when performing the six low-level graph tasks. The remain-
ing comments in this category describe the participants’ subjective
‘‘Time Demand’’ (3, −16), or general ‘‘Frustration’’ with the task and
representation (3, −11).

The Comprehension class consists of codes relating to the partic-
ipants’ general experience in the study. In total, 126 utterances are
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Fig. 8. The number of negative and positive statements made by participants relating to (i) comprehension, labeled as ‘‘Comp’’., (ii) nodes of interaction, labeled as ‘‘I’’., (iii) the
layout, (iv) participant’s perceived task load, and (v) particular graph tasks, labeled as ‘‘Tasks’’, organized by each of the four ego network visualizations. Comment counts by
statement type are color-coded based on whether they are negative or positive.
mapped to this class. Several utterances highlighted participants’ (lack
of) ‘‘Understanding ’’ as a result of the representation (47, −50). Several
participants lamented problems with the clarity of the ‘‘Instructions’’
(6, −15), as well as the insufficiency of the ‘‘Training ’’ (−8) that was
provided.

The Graph Tasks class comprised codes referring to challenges
with specific low-level graph tasks, totaling a sum of 62 utterances.
Several participants had problems with the ‘‘Comparison’’ of two nodes’
adjacencies (6, −33), the ‘‘Localization’’ of specific nodes in the graph
drawing (−12), or the ‘‘Counting ’’ of nodes and edges (5, −6).

Finally, the Interaction class was made up of solely a single code,
namely the interactive ‘‘Highlighting ’’ of nodes and, in the case of the
adjacency matrix, edges. In total, 135 utterances are mapped to this par-
ticular class. In general, comments were overwhelmingly positive (124),
with only a few comments left complaining about the implementation
of interaction (−11).

6. Discussion

In the following section, we discuss the quantitative and qualitative
differences between straight-line node-link diagrams ( ), radial node-
link diagrams ( ), layered node-link diagrams ( ), and adjacency
matrices ( ) within the broader context of related literature.

6.1. Matrix mayhem

As previously discussed, (conflicting) results of previous quanti-
tative comparisons of participants’ performance between adjacency
matrices and node-link diagrams indicate that (i) observed differences
are highly task-dependent, and (ii) for many tasks no clear ‘‘winner’’
can be determined. Here, we discuss this study’s observed differences in
participant performance across the six tasks investigated. Additionally,
we also discuss differences in understanding that participants exhibited
between adjacency matrices and node-link diagrams.
10 
A surprisingly systematic subpar showing. The tabular nature of adja-
cency matrices, i.e. its linear arrangement of nodes and non-obscured
display of edges, has been speculated (and partially shown) to make
certain tasks easier, namely the localizing of nodes, based on identifier
and degree, as well as the general estimation of a node’s degree and
the counting of edges, respectively [9,13]. It is subsequently surprising
that our results do not agree with the results of related work on
adjacency matrices. Specifically, for the overview (Tedges and Talters)
and adjacency (Tdegree and Tneighbors) tasks, we hypothesized that the
tabular nature and layered grouping of alter-levels in the adjacency ma-
trix representations would be advantageous. Participants using layered
adjacency matrices either performed equivalently to those using node-
link diagrams (Talters) or systematically statistically significantly worse
(Tedges, Tdegree, and Tneighbors). These quantitative results indicate that
we are unable to produce the evidence necessary to confirm (parts of)
our performance-oriented hypotheses stated in H1.

Looking at the feedback provided by participants (see Fig. 8), we
note some interesting differences that provide insights into these quan-
titative results. For example, as hypothesized by Ghoniem et al. [13]
and categorized here under ‘‘Understanding ’’, we noted several (11)
participants explicitly voice their confusion when (double) counting
(intra/inter-layer) edges in the layered adjacency matrix representation
during task Tedges, possibly explaining the observed poor participant
performance for this specific task. Additionally, despite the differences
in user performance (see Fig. 6) across tasks, it is interesting that partic-
ipants were critical of all three node-link diagrammatic representations,
specifically their ‘‘Edge Placement ’’ ( : −19, : −12, : −15), and
to a lesser extent ‘‘Node Placement ’’ ( : −6, : −4, : −7). This
was not the case for the adjacency matrix, i.e. ( : −1) and ( : −2),
respectively (Fig. 8). This gives credence to the notion that matrices are
possibly preferable for larger and denser graphs owing to the absence of
edge and node occlusions [13,19,22]. Similarly, the adjacency matrix
participants were also less critical of both node ‘‘Localization’’ ( : 0)
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and neighbor ‘‘Counting ’’ ( : 0) tasks (Fig. 8) compared to those using
node-link diagrams, i.e. ( : −3, : −4, : −5) and ( : −2, : −1,

: −3) respectively. This further highlights the previously theorized
advantages of adjacency matrices [9,13]. Nonetheless, at least for the
chosen graph data, provided training, and user group, these conceptual
advantages of adjacency matrices were not beneficial enough to posi-
tively impact participant performance for the overview and adjacency
tasks. A possible explanation, based on the self-reported user experience
see Fig. 7), could be the fact that adjacency matrices were statistically

significantly harder to learn and use, i.e., SLearn and SUse respectively,
compared to their node-link diagrammatic counterparts. This, coupled
with the disproportionate number of comments illustrating the poor
‘‘Understanding ’’ of participants using adjacency matrices ( : −29),
ompared to the three node-link diagrams ( : −4, : −10, : −6),

indicates that participants were not fully equipped to utilize adjacency
matrices, despite their having received equivalent training.

A friend of a friend of a friend. While the tabular nature of adja-
ency matrices can make certain tasks conceptually simpler, it can also
ake others more difficult, such as the investigated common neighbor

Tcommon) and accessibility (Tassociation) tasks. In our study, in line
ith inconclusive related literature [19,26,30], we demonstrate (i) the

statistical inferiority of adjacency matrices to straight-line and radial
node-link diagrams for Tcommon, and (ii) the statistical inferiority of
adjacency matrices to layered node-link diagrams for Tassociation. This,
in turn, provides partial evidence for our hypotheses stated in H3.

Looking at the results of Tassociation more closely (see Fig. 6), it
is notable how many participants, especially those using adjacency
matrices, failed to select a 1-alter node, thereby incurring a maximal
error. On the one hand, participants found adjacency matrices statisti-
cally significantly more difficult to learn and use. On the other hand,

any participants positively and correctly described the representa-
ion’s ‘‘Edge Weight Encoding ’’ ( : 11) and its utility, thereby clearly
emonstrating an understanding of the task and representation. Per-
aps these observations highlight the divide between those participants
emonstrating a good and bad ‘‘Understanding ’’ of the representation,

i.e., ( : 15) and ( : −29), respectively. It is also possible that the
‘‘Cognitive Demand’’ ( : −21) was high for the participants using adja-
cency matrices, especially for the complex Tcommon task for which five
adjacency matrix users explicitly voiced the high cognitive demand.

Visible confusion. Looking at user experience (see Fig. 7), participants
ound adjacency matrices both statistically significantly more difficult

to learn (compared to all three node-link diagrammatic representations)
nd use (compared to layered and straight-line node-link diagrams).
ooking at the provided user comments (see Fig. 8), the most striking
ifference between adjacency matrices and all three node-link diagrams
cross all tasks investigated, is the many negative comments left regard-
ng participant ‘‘Understanding ’’, i.e. ( : −29) and ( : −4, : −10,

: −6) respectively. Here, previous comparisons of straight-line node-
link diagrams and adjacency matrices have speculated that differences
in performance may be, at least partially, attributable to participants’
lack of a priori familiarity and experience with adjacency matrix repre-
entations of graphs [20,23]. Moreover, past studies have shown that

extensive training [10] as well as gaining familiarity over the course of
 longer study [25] positively impacted participant performance using
djacency matrices. In line with these previous studies, participants
sing adjacency matrices did respond more critically regarding the pro-
ided ‘‘Training ’’ ( : −5) and ‘‘Instructions’’ ( : −11) compared to those
sing the three node-link diagrams, i.e. ( : −1, : −1, : −1) and ( :

0, : −1, : −3) respectively. This could indicate that longer and more
n-depth pre-study training could have assisted participants in better

understanding the presented layered adjacency matrix representation.
This, in turn, could have assisted them in overcoming the hypothesized
a priori unfamiliarity with the representation, thereby allowing them
also to perform better.
11 
6.2. The holy node-link trinity

Here, given the previously enumerated quantitative and qualitative
esults, we discuss the differences between the investigated node-link

diagrams.

History repeating itself. In line with previous studies conducted compar-
ing different node-link diagram representations and layouts [11,12],
we observe a statistically significant effect of network representation
on user performance generally, namely for Tcommon, Tneighbors, Tedges,
and Talters, but ultimately cannot detect any statistically significant dif-
ferences between individual node-link diagrammatic representations.
Additionally, differences in the time taken per task proved to be fairly
small. Specifically, for the ego network representation only one task
had a significant impact on the time taken, namely for Talters and,
again, no significant pairwise differences between the three node-
link diagrammatic representations could be found. Beyond statistical
evaluations, visual inspection of participant performance (see Fig. 6)
does not reveal any meaningful trends in the differences between these
three node-link representations either. Ultimately, it would appear as
though we must concur with past evaluations [11,12], i.e. differences
between different node-link diagrams are present though very small
nd are not statistically detectable. This also means we cannot find

evidence for our hypotheses of H2 and H3. Similarly, it is interesting
how, for most categories (Fig. 8), all three node-link diagrams proved
airly comparable, with some particular exceptions to be discussed
elow.

Structural speculation. Looking at participants’ comments across the six
tasks (Fig. 8), it is notable how, for both the radial and layered repre-
entations, ‘‘Layers’’ were mentioned exclusively positively, i.e. ( : 11)
nd ( : 9) respectively. This indicates that the partitioning of nodes, in

addition to their ‘‘Color ’’-coding ( : 25, : 26, : 33), by alter-level
was indeed helpful to participants. Relatedly, negative comments re-
garding the three representations’ ‘‘Edge Placement ’’ were slightly more
requent for the straight-line node-link diagram ( : −19) than either

the radial ( : −12) or layered node-link diagram ( : −15), potentially
further highlighting the utility of a more structured representation.
Here, we speculate that the more structured and straightforward repre-
sentation of the layered node-link diagram could explain the difference
in negative ‘‘Cognitive Demand’’ comments left ( : −10), compared to
node-link ( : −24) and radial ( : −23) representations.

Experiential escapades. Looking at differences in user experience, it is
nteresting that the ego network representation only had a statisti-

cally significant impact on participants’ self-reported ease of use, Suse,
nd ease of learning, Slearn. However, for those two statements, there
ere no statistically significant pairwise differences between node-

ink diagrams, which, in turn, means that we are unable to provide
evidence for our hypothesis H4. Looking at the qualitative feedback
provided by participants, we note some interesting visual observations.

s discussed previously, while participants were positive regarding
he use of ‘‘Color ’’ across node-link representations, it is notable how
requently participants commented positively about radial and layered
ode-link diagrams’ ‘‘Layers’’. Specifically, these comments often de-
cribed how helpful these layers were in distinguishing alter levels or
nter- and intra-alter edges from each other. This could explain the
inor visual differences between layered and the other two node-link
iagrammatic representations across statements (see Fig. 7). For Slearn

this could indicate that layers assisted participants in understanding
the fundamentally layered structure of ego-networks. This, to a lesser
extent, could also explain the visual differences observed in Squickly and
Saccuracy. At least for the data presented, these hypothesized benefits did
not translate to statistically significant differences in user experience.
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6.3. Increasingly interactive illustrations

While not directly related to the representations investigated, many
participants left positive comments on the ‘‘Interactive Highlighting ’’ that
ach visual representation featured, i.e. 124 in total. These comments
ere especially numerous across the three node-link diagrammatic

epresentations ( : 39, : 30, : 39) compared to the adjacency
atrix ( : 16), pointing out that certain tasks would have been much

more difficult or even impossible without such interaction.
We note several negative comments regarding user interaction,

ften regarding the specific graph tasks, i.e. ‘‘Localization’’ (total = −12),
‘Counting ’’ (total = −6), and ‘‘Comparison’’ (total = −33). Again, such
omments were more numerous for the three node-link diagrammatic
epresentations, with no single negative utterance across these cate-

gories from users of the adjacency matrix. Participants often voiced
their desire for some form of automation to make such tasks less
complex or arduous. They often wished for certain features such as the
ability to filter nodes and edges, a node-lookup feature, the automatic
counting of a node’s neighbors, or the ability to select and compare
multiple nodes at once. Coupled with some of the previously discussed
difficulties participants had answering certain questions and the sub-
sequently increased ‘‘Cognitive Demand’’ required, these results further
point towards the need for meaningful interaction and automated
analysis tools in (seemingly especially in node-link diagrammatic) ego
network visualizations designed for application and production [72–
74].

6.4. It’s not you, it’s me

Based on previous work, particularly non-ego-network comparisons
of adjacency matrices and various node-link diagrams (Section 2.1),
we formulated a series of hypotheses regarding the performance and
references of users (Section 4.3.1). However, we were unable to find

evidence for all posited hypotheses. Most notably, we expected adja-
cency matrices to perform better than the three node-link diagrammatic
representations for all tasks (H1) but Tassociation and Tcommon (H3). We
found our layered adjacency matrices to perform (statistically signifi-
cantly) worse across all six tasks (Fig. 6). We posit that, in addition to
he usual difficulties of learning and understanding adjacency matrices

(Section 6.1), the complexity introduced by an ego network’s alter
ayers exacerbated these issues. While the layered structure of the

implemented layered ego network adjacency matrix should have made
ertain tasks easier, it was even more complex to understand than
onventional, non-ego-network adjacency matrices. Given the limited

work on centered/layered adjacency matrices, it is difficult to relate
these findings to previous work. However, in Bae et al.’s [53] com-
arison of centered adjacency matrices, quilts, and node-link diagrams,
djacency matrices consistently required more time of participants to
omplete the low-level graph tasks presented. As also speculated by
ae et al. [53], this could indicate that certain tasks are indeed harder
o complete with a layered adjacency matrix than other embedding
ypes. The layered structure of ego networks appears to have been

understood much better in both radial and layered node-link diagrams.
This indicates that more research in this direction is necessary to
fully understand how an ego network’s layered structure can be most
effectively communicated in adjacency matrices specifically and what
essons can be learned from node-link diagrams.

7. Limitations and future work

Layout limitations. In this study, in the interest of comparability across
the three node-link diagrammatic representations and (layered) adja-
cency matrix, we have focused on one particular set of visual mappings
mplemented in D3.js (Section 3). Given its preattentive properties, we
12 
selected color as the visual variable to encode alter levels, i.e. embed-
ded node attributes [51], and (where possible) node position, as well
as edge weight using line segment opacity. However, several visual
channels were not utilized at all, such as node size, node shape, or
edge thickness, which could have additionally been utilized to further
ommunicate topological properties. For example, alter/ego degree
ould have been communicated using node size. Alternatively, alter
evel could have been redundantly encoded in the nodes’ shapes. Here,
n both the interest of simplicity and comparability to adjacency ma-
rices, such additional mappings were not considered. As our design
hoices would have impacted a user’s interpretation of the data and
dentification of patterns, we opted to keep these visual attributes
onstant across all representations.

Future work as well as application-driven implementations of the
network representations featured here should make appropriate use
of the visual channels to communicate as effectively as possible the
necessary topological information. For example, redundantly encoding
alter level with node color and shape could allow for greater accessi-
bility for color-blind users. Additionally, layout approaches outside of
D3.js’ force-based layout should be considered, such as Sugiyama-based
algorithms [75] for layered node-link diagrams, or frameworks akin
o Circos [76] for radial node-link diagrams. We opted to utilize D3.js
or all representations to ensure aesthetic and run-time comparability
cross all representations. Future research endeavors and application-
riven implementations should consider and investigate further these
lternative layout approaches.

Bringing out the worst in you. Given the hypothesized and shown poor
scalability of node-link diagrams (compared to adjacency matrices) [9,
19,32,77,78] and the many negative comments left regarding node-
ink diagrams but not adjacency matrices, it is interesting that (i)

participants using adjacency matrices performed systematically worse
and that (ii) no statistical differences between node-link diagrammatic
representations could be detected. We speculate that the selected net-
work size and density may have played a role in this. Increased numbers
of nodes and edges could render straight-line node-link diagrams in-
reasingly unreadable, complicating counting, adjacency, and look-up
asks. On the other hand, the orderly arrangements of nodes in radial

and layered node-link diagrams, as well as adjacency matrices, could
mitigate these effects. We, therefore, recommend that future works
nvestigates the differences in participant performance and experience,
aking also into account graphs of greater sizes and complexities with
ifferent selected egos in an even larger follow-up user study.

Practice, practice, practice. Participants appear to have had less of an
‘‘Understanding ’’ of the representation and tasks when using adjacent

atrices (Fig. 8); an observation underscored by their systematically
poor performance. It is worth asking to what extent this observation is
owed to the representation itself, the training and instructions partici-
pants received, or, as hypothesized in previously conducted studies [13,
20,23,79], participants’ a priori lack of familiarity with adjacency matri-
es. Given previous studies highlighting the benefits of more extensive

training [10,25] as well as the participants’ negative comments on
using the adjacency matrices related to ‘‘Training ’’ and ‘‘Instructions’’,
we wonder whether our results would have painted a more favorable
picture, had we employed longer and more in-depth training. We argue
that, despite participants’ poor performance using adjacency matrices,
the previously discussed conceptual advantages of adjacency matrices
over node-link diagrams still hold and are a direction worth pursuing.
Future research efforts should continue to investigate this representa-
tion as a potentially powerful alternative to node-link diagrams. To
make such adjacency representations more useful, it would be interest-
ing to thoroughly investigate the measurable effect of different types
of training on participant performance when using adjacency matrices.
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Such results would be invaluable in guiding researchers and engi-
neers alike in selecting their ego network representation and choosing
appropriate methods of training.

Not my type. In this paper, we focus exclusively on an undirected,
eighted ego network. While the majority of the findings presented
ere should hold for unweighted graphs as well, not all do. Most

notably, the tie-breaking mechanism of the layered adjacency matrix re-
uires weights to determine the order of the ego network’s nodes within
ach 𝑘-alter block (Section 3.4). Future work should certainly make

an effort to study the impact these visual representations could have
on different types of networks, which feature directed or unweighted
edges, multiple node or edge types, (hierarchical) group structures, or
multivariate attributes that need to be displayed.

Merely a first look. While great care was taken in selecting a repre-
entative dataset (Section 4.1), it must naturally be acknowledged that
 single dataset cannot fully capture the complexities of all possible
go networks. For example, one could have selected multiple different

egos to investigate within the investigated ‘‘Les Misérables’’ dataset,
resulting in different maximum values of 𝑘, different topologies, and
subsequently different network visualizations. Alternatively, multiple
different datasets of different node sizes |𝑁| and edge numbers |𝐸|

could be investigated, each with its own set of ego, 𝑘, and visual-
izations. However, within the context of the labor-intensive mixed
methods analysis conducted here, such larger-scale studies were be-
yond the capabilities of this first systematic look at different layout
approaches to ego networks. Future work should entertain investigating
such scenarios (perhaps purely quantitatively) to paint a fuller picture
of when these different visualizations are to be put to best use.

8. Conclusion

In this paper, we compile a list of 50 ego network visualizations
n order to identify the most common approaches, i.e. straight-line,
adial, and layered node-link diagrams, as well as adjacency matrices.
e then study these approaches’ quantitative and qualitative impact

cross six different ego network-specific graph analysis tasks on user
erformance and user experience in a large-scale, crowd-sourced user
tudy of 120 participants on a single, intermediate-sized, representative
raph dataset. Our results indicate that:

1. Participants using adjacency matrices performed systematically
worse than those using node-link representations, despite the
former’s conceptual advantages highlighted both in literature
and in the participants’ comments.

2. In line with previous studies, all three node-link diagrams per-
formed very similarly to each other, despite the many positive
comments highlighting the conceptual benefits of alter-layers on
both user performance and learning.

3. The representation had hardly any impact on the time partici-
pants needed to complete the six tasks investigated.

4. There is a need for greater training and appropriate instruc-
tions in order to overcome participants’ lack of familiarity with
adjacency matrix representations in particular.

Ultimately, unless an ego network’s user group is already familiar
ith or receives extensive training on a particular representation, we

recommend the use of a layered node-link diagram, as these proved
tatistically comparable to other node-link diagrams and superior to
djacency matrices in terms of both user performance and experience.
otable differences in user experience and comments left by our study
articipants hint at the value of the layered node-link diagram’s more
tructured and straightforward representation of the ego, its alters,
nd their inter and intra-alter relationships, compared to radial and
traight-line node-link diagrams.
13 
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