
Metamodels: Built-In BIM Compliance Checking (1)
Galina Paskaleva1,2, Thomas Bednar2 & Christian Huemer1

1TU Wien, Institute of Information Systems Engineering, Favoritenstr. 9-11, A-1040 Vienna, Austria
2TU Wien, Institute of Material Technology, Building Physics and Building Ecology, Karlsplatz 13,

Vienna, 1040, Austria

Abstract
Making sure that Building Information Modelling (BIM) models comply with building codes and contractual

requirements is typically a time-consuming and overhead-heavy task. For this reason, there is a push for its automa-
tion. However, there are significant challenges to overcome. For example, most technical guidelines and contractual
requirements are formulated in a natural language and would need to be translated into a formal representation
for digital processing. Furthermore, there is no formal mechanism that enables the declaration, enforcement, and
verification of compliance to those in a BIM model. In this work, we present a fundamental approach that makes
the last three possible at any level of granularity, i.e., throughout the building’s entire life cycle.

Introduction

Digital data models have become the backbone of information exchange in the Architecture, Engineer-
ing, and Construction (AEC) industry’s domains. They have the potential to hold all data a single
domain expert might need to perform a task, while at the same time, they have to be standardized
enough to enable interoperability among multiple domains. This dichotomy drives the development
of BIM models in two rather contradictory directions, towards greater flexibility and towards greater
standardization, i.e., unification. This presents an implementation problem for any BIM software
relying on the type-object paradigm and on type safety as a guarantee of correctness.

Figure 1: Different viewpoints of the concept ”wall” in: (a) architecture, (b) structural engineering, (c) building physics.

First, this paradigm has no mechanism for managing abstraction, i.e., progressing from a more ab-
stract to a more specific model. Second, multiple types corresponding to the requirements of multiple
domains on the same model element (see Figure 1) can be implemented, e.g., via interfaces; however,
those are defined by software engineers, typically indirectly following the specifications, generally in
a natural language, of the domain experts. The domain experts themselves cannot define new types
as they need them. What’s more, software development cycles can range from one to multiple years,
proprietary applications cannot be customised to all experts in the field worldwide, and experts them-
selves often have diverging views on their own domain and require different data models. This leads to
the necessity for domain experts to be able to define new types for their models on demand, while at
the same time, providing some sort of type safety to ensure correctness and reliable interoperability.
Figure 1 shows how much the view of different experts on the same concept can diverge, even con-

cerning as ”obvious” a concept as a wall. For example, architecture sees the wall’s multiple functions
and general extents, but is not overly concerned with its interface to its neighbours. Structural en-
gineering, on the other hand, considers only the wall’s load-bearing properties, all its joints to all its
neighbours, and only the size of its load-bearing layer. Finally, building physics regards the wall as
a part of an interconnected structure that conducts sound, heat, and water, both as a vapour and
a liquid. It is understandable that such vastly different viewpoints require different data models.
Taking the various calculation and simulation methods in use in each of these domains into account,
the requirements on these models become even more complex.

Figure 2: The dimensions of a digital domain model: (a) syntax, semantics, and pragmatics regarded separately, (b)-(c)
separating independent semantic dimensions for better understanding.

Therefore, domain experts need to be able to not only define new types on demand, but also to keep
the resulting data models interoperable and maintainable, i.e., to keep up with the rise in complexity.
In this work we present a method and a metamodel capable of providing these features to any domain
expert without the involvement of a software engineer.

Approach

A domain model generally has at least two dimensions, the syntactic, and the semantic [3]. In addi-
tion, there might be a representational dimension, a pragmatic dimension, and others. The semantic
dimension itself might be heterogeneous enough for us to be able to split it into two ore more in-
dependent, i.e., orthogonal, dimensions, e.g., semantics of geometry and semantics of materials (see
Figure 2). Regarding these dimensions separately can help remove some misunderstandings, e.g.,
when syntax and semantics get conflated.

Figure 3: An example of four levels of semantic abstraction and two levels of syntactic support.

For example, in Figure 3 we can see the model of a wall in the 2d space of semantics (vertically
in orange) and syntax (horizontally in blue). In our approach we utilize Model Driven Engineering
(MDE), the Metamodelling Stack [2], and our own metamodel, SIMULTAN1 [4], which implements
the clabject, a syntactic construct capable of depicting both a class and an object, and the instance
of relationship between them [1]. This works not just for two, but for arbitrarily many levels, in
essence allowing a class to be an object relative to another class, hence the name clabject. In addition
to the instance of relationship, the clabject enables all standard relationships between types, e.g.,
inheritance, association, containment, etc. All of this allows us to implement an arbitrary number of
abstraction levels along the semantic axis. Each level utilizes the instance of relationship to place
requirements on the level below as well as to comply with the requirements of the level above.
This gives us a stack of models [2], each fulfilling three roles for the models below it: it declares

the valid types (or classes) that can be instantiated, it enforces compliance with those types, and
it offers a way towards automatic verification of compliance with them. For example, the layered
construction defined on semantic LEVEL 3 in Figure 3 requires all model elements that instantiate it
to have layers, which can be observed in the instance constr. AW01 one level below, on LEVEL

2. In the same way AW01 in w1 on LEVEL 1 complies with the requirement of constr. AW01
that there can be only the five layers defined in constr. AW01, even if, for example, AW01 in
w1 splits the inhomogeneous layer into its parts, columns and insulation, in order to model their
geometry and behaviour separately.

References

[1] Colin Atkinson and Thomas Kühne. Reducing accidental complexity in domain models. Software
& Systems Modeling, 7(3):345–359, Jul 2008.

[2] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software engineering in practice. chapter
Metamodeling, page 14. Morgan & Claypool, USA, 2 edition, 2017. isbn: 978-1627057080.

[3] Thomas Kühne. Matters of (meta-) modeling. Software & Systems Modeling, 5(4):pp. 369–385,
Dec 2006.

[4] Galina Paskaleva, Alexandra Mazak-Huemer, Manuel Wimmer, and Thomas Bednar. Lever-
aging integration facades for model-based tool interoperability. Automation in Construction,
128:103689, 2021.

1Actively developed by the Institute of Material Technology, Building Physics and Building Ecology at TU Wien.

13



Metamodels: Built-In BIM Compliance Checking (2)
Galina Paskaleva1,2, Thomas Bednar2 & Christian Huemer1

1TU Wien, Institute of Information Systems Engineering, Favoritenstr. 9-11, A-1040 Vienna, Austria
2TU Wien, Institute of Material Technology, Building Physics and Building Ecology, Karlsplatz 13,

Vienna, 1040, Austria

Results

Here, we present one possible application of this approach on the use case of the AEC industry’s
concept of ”wall” (Figure 3). Here, on LEVEL 4, we start with two very generic types, CONTAINER
and CONTENT. On LEVEL 3, type layered constr. instantiates CONTAINER, which means that
if the recursive relationship children is mandatory, then layered constr. has to contain at least
one other instance of CONTAINER (see opening: CONTAINER and layer: CONTAINER on
LEVEL 3). On this level, the layered construction definition is enriched by additional types that declare
that its layers refer to materials (see material: CONTENT ).
This allows us to instantiate one specific layered construction in the next level, LEVEL 2, constr.

AW01. By virtue of being in an instance of relationship with type LAYERED CONSTR., it is
guaranteed to have layers. This particular wall has five: plaster, thermal insulation, a load-bearing
laminated timber board, timber columns, and a gypsum fibre board. A further instantiation of this
specific layered wall is shown on LEVEL 1, as AW01 in w1: CONSTR. AW01, i.e., the application
of this wall construction to one specific wall, w1. This model design guarantees that AW01 in w1
complies with all requirements placed on it by CONSTR. AW01, i.e., the material layers have the
exact same sequence, thickness and material properties. However, in addition to those, the instance
on LEVEL 1 can add a more detailed geometry, e.g., individual volume representations for each column
in the inhomogeneous layer.

Figure 4: Adding semantic types to an already existing model: at high abstraction levels.

These dependencies become particularly useful, if we need to add model elements at a later stage,
as shown in Figure 4 and Figure 5. For example, while a layered constr. is useful for calcu-
lating thermal transmittance, a voxelised constr. may be necessary for simulating the thermal
transmittance. Figure 4 demonstrates not only that both types of construction can be instantiated
from CONTAINER, i.e., be forced to comply with its requirements, but also that we can establish a
correspondence between material and voxel data that will be a requirement of all models on the lower
levels of the model stack. Similarly, we can add a new AW01 in w2 on LEVEL 1 (see Figure 5),
which, just as AW01 in w1, is an instance of CONSTR. AW01, i.e., the application of the same
construction to a different wall, w2, that can put emphasis on other layers, if desired. For example,
by instantiating all sub-layers of the thermal insulation from the same type on LEVEL 2, layer ther-
mal insulation, we make sure that they are forced to fulfil the same requirements, i.e. of material
and context, which removes multiple potential error sources from the transition from calculation to
simulation of thermal transmittance.

Figure 5: Adding semantic types to an already existing model: at lower abstraction levels.

Another feature of our approach, the separation of (nearly) independent semantic aspects into sep-
arate dimensions in a Common Reference Frame (CRF) is shown in Figure 6. As mentioned above,
a construction can be modelled as consisting of layers or of voxels (see Figure 4). In Figure 6, we
have the four semantic levels of the voxelised construction in blue under semantic aspect simulation,
orthogonal to the semantic levels of the layered construction in orange under semantic aspect con-
struction. A third aspect, the geometry, is another independent dimension, as shown in grey at the
bottom. This enables us to maintain model continuity by, e.g., utilizing semantic LEVEL 3 to model
a wall in the design phase as wD1, and semantic LEVEL 4 to model its more detailed version in the
tender document phase, as wT1. This guarantees that all requirements placed on wD1 are enforced
in wT1 as well. At the same time, despite its complexity, the domain model remains both consistent
and maintainable due to the separation of semantic aspects and abstraction levels.
We have tested this approach on real world examples encompassing not just architecture, building

physics, and structural engineering, but also building services and automation. The separation of
semantic aspects enabled us, for example, to handle the topology of a ventilation network separately
from its other properties, e.g., its connection to the data network supporting automation [4].

Figure 6: Multiple semantic dimensions and multiple abstraction levels: enabled by metamodels.

Contribution

The metamodel SIMULTAN implements a syntactic tool, the clabject, which allows us to produce
an arbitrary number of semantic levels of abstraction in any BIM model.

This meta-model stack allows each model to declare, enforce and formulate rules for the verification
of domain-specific requirements for all models on the lower abstraction levels.

Dependencies between different domains can be declared on high abstraction levels and, subse-
quently, enforced on all lower abstraction levels, thereby making collaboration between domains in
the AEC industry less error-prone.

Different semantic aspects can be modelled separately, which reduces the complexity and increases
the maintainability of the large BIM models typical for the AEC industry.

References

[1] Colin Atkinson and Thomas Kühne. Reducing accidental complexity in domain models. Software
& Systems Modeling, 7(3):345–359, Jul 2008.

[2] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software engineering in practice. chapter
Metamodeling, page 14. Morgan & Claypool, USA, 2 edition, 2017. isbn: 978-1627057080.

[3] Thomas Kühne. Matters of (meta-) modeling. Software & Systems Modeling, 5(4):pp. 369–385,
Dec 2006.

[4] Galina Paskaleva, Thomas Lewis, Sabine Wolny, and Thomas Bednar. Simultan as a big-open-
real-bim data model - evolution of virtual building from design through construction into operation
phase. In 21st CIB World Building Congress. Constructing Smart Cities, pages 1116–1126,
Jun 2019.

[5] Galina Paskaleva, Alexandra Mazak-Huemer, Manuel Wimmer, and Thomas Bednar. Lever-
aging integration facades for model-based tool interoperability. Automation in Construction,
128:103689, 2021.

14




