

The Polycentric Region, the Productive City,

and the Adaptable Building: Reflections on the Implementation

of an Urban Intervention

Oliver Dunkel

Diplomarbeit

The Polycentric Region, the Productive City, and the Adaptable Building:

Reflections on the Implementation of an Urban Intervention

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Diplom-Ingenieurs/Diplom-Ingenieurin

unter der Leitung

Mladen Jadric, Ass.Prof. Arch. DI. Dr.techn.

Institut für Hochbau und Entwerfen

Hochbau und Entwerfen E253-4

eingereicht an der Technischen Universität Wien

Fakultät für Architektur und Raumplanung von

Oliver Dunkel

01326856

Wien, am 30.05.2022

Abstract

The urgency of implementing urban

planning measures to reduce greenhouse

gas emissions is manifested by analyzing

current climate status reports. The

theoretical part of the present work

provides an overview of the relevant topics

of urban planning concerning this matter

in Vienna. These are examined from the

perspective of the region, the city, and the

individual building.

The findings of this examination are

tested on a conceptualization of an urban

intervention located at the Währinger

Gürtel. The implemented urban structure

is designed at a large scale and adaptable to

various uses. By outlining a hybrid structure

which is partially consisting of wood,

current trends in sustainable construction

are taken into account. In addition, this

structure is composed of a canon of serial

building elements which are algorithmically

calculated and pre-fabricated off-site. The

aim is to save material and further the

economy of the building. Sustainability

concepts are implemented by employing

reused scaffolding components as the

primary building material for the open

spaces attached to the facade. Due to

the task chosen for the practical part,

this thesis deals particularly with the

three-dimensional design of spatial

support structures as well as with the

implementation of green facades.

Kurzfassung

Durch die Analyse aktueller

Klimastatusberichte wird die Dringlichkeit

der Umsetzung städtebaulicher

Maßnahmen zur Reduktion von

Treibhausgasemissionen manifestiert. Der

Theorieteil der vorliegenden Arbeit bietet

eine Übersicht über die diesbezüglichen

Themenfelder der Wiener Stadtplanung.

Zur Verdeutlichung werden diese aus der

Perspektive der Region, der Stadt und des

einzelnen Gebäudes betrachtet.

Die daraus gewonnen Erkenntnisse

werden an der Konzeption einer

städtebaulichen Intervention amWähringer

Gürtel erprobt. Zur Umsetzung gelangt

eine großmaßstäbliche, nutzungsneutrale

Struktur im städtischen Raum, die den

aktuellen Trend der emissionsarmen

Konstruktion in Holz- bzw. Hybridbauweise

aufgreift. Außerdem soll sich diese Struktur

aus einem Bauteilkanon zusammensetzen,

dessen serielle Elemente algorithmisch

berechnet und abseits der Baustelle

industriell hergestellt werden. Hierdurch

kann Material eingespart und die Ökonomie

verbessert werden. Um der Nachhaltigkeit

Rechnung zu tragen, bestehen die an der

Fassade angeschlossenen Freiräume aus

recycelten Bauteilen – genauer gesagt aus

ausgemusterten Baugerüstteilen. Bedingt

durch die für den Praxisteil gewählte

Aufgabenstellung, setzt sich diese Arbeit

im Besonderen mit der dreidimensionalen

Ausgestaltung räumlicher Tragstrukturen,

ebenso wie mit der Umsetzung grüner

Fassaden auseinander.

Introduction

The Polycentric Region

The Productive City

The Adaptable Building

Conclusion

The Project

Appendix

Bibliography

List of Figures

Source code

1

7

15

26

35

37

112

113

115

119

Table of Contents

Acknowledgments
I want to thank Mladen Jadric, Ass.Prof. Arch. DI. Dr.techn. for his men-

torship over the last years and his exceptional support.

Furthermore, I am grateful to Dr. Robin Hodgson for proofreading my

work.

#1

Introduction

temperature has risen by 2 degrees since

the 1970s, even by 3 degrees in Vienna. The

change is perceptible by Vienna’s citizens

when today’s temperatures exceed 40

degrees and do not fall below 20 degrees

during nighttime.

From 1961 to 1990, ten days of the

year exceeded 30 degrees and therefore are

accounted as heat days. While heatwaves

usually lasted for five days on average

during the last 30 years, this could be 28

days by the end of this century. From 2015

to 2020, the records show an average of

33 heat days. This drastic increase does

not affect everyone’s comfort in the

Figure 1: The deviation of the annual mean air temperature from the long-term average temperature

of the years 1961 to 1990 in degrees Celsius. Figure 2: A visualization of the observable climate change.

1. Introduction

Vienna’s average temperature will

have changed drastically at the end of

this century and will be comparable to

the average temperature of cities like

Marseille and Dakar. The actual amount

of change will be determined by the

measurements of climate protection

taken and their effectiveness. Studies

suggest that Vienna will be one of the

most affected cities by the climate crisis

in Europe.

The records show that the average

+0,5

+1

+1,5

+2,0

+2,5

+3,0

0,0*

-0,5

-1,0

-1,5

-2,0

-2,5

-3,0

1775 2020

* 9,7 degrees celsius
long-term average temperature of the
years 1961-1990

#2

Introduction

same way. So is the impact on poorer

households more significant due to

smaller living spaces and rising expenses

on air conditioning. Physically restricted

persons and the elderly may suffer physical

afflictions due to lower tolerance to

high temperatures. When considering

the impaired cognitive capabilities and

productivity of city dwellers, heightened

temperatures even lead to a declining

economy and an overloaded health care

system.[1]

1 Municipal Department 20 — Energy

Planning, Wiener Klimafahrplan: Unser Weg

Figure 1: The deviation of the annual mean air temperature from the long-term average temperature

of the years 1961 to 1990 in degrees Celsius. Figure 2: A visualization of the observable climate change.

The Paris Agreement dictates a

maximal increase by 2 degrees, at its best

by 1.5 degrees of the average temperature,

based on pre-industrial times. Furthermore,

it is agreed to reduce global greenhouse gas

emissions by 55 % til 2050. The EU wants

to commit to a more ambitious plan named

the European Green Deal. Therefore, the

EU aims to reduce 55 % by 2030, based

on the emissions of 1990, pursuing CO2

zur klimagerechten Stadt (Vienna: Municipal

Administration, March 2022), 16, https://

www.wien.gv.at/umwelt-klimaschutz/pdf/klima-

fahrplan-lang.pdf.

40

60

20

0

20

40

40

60

1956 2020

number of annual heat days

number of annual ice days heat days: daily maximum temperature
at least 30 degrees celsius
ice days: daily maximum temperature
below 0 degrees celsius

#3

Introduction

neutrality by 2050. On the national level,

the Austrian government pursues CO2

neutrality and renewable energy supplies of

100% by 2030.

Apart from climate protection, the

emphasis lies on climate adaptation

and the implementation of a circular

economy.[1] The number of dwellers in

Vienna will reach 2 millions before 2030.

Recent developments, such as the war in

Ukraine, will contribute to the growth.[2]

Vienna will reduce its material footprint

concerning consumption per head by 30 %

until 2030, 40% until 2040, and 50 % until

2050.[3] Vienna will reduce its local energy

consumption per head by 30 % until 2030

1 Municipal Department 18 — Urban

Development and Planning, Smart Klima City

Strategie Wien: Der Weg zur Klimamusterstadt,

(Vienna: Municipal Administration, February

2022), 19, https://smartcity.wien.gv.at/

wp-content/uploads/sites/3/2022/03/scwr_

klima_2022_web-neu.pdf.

2 Municipal Department 18, Smart Klima

City Strategie Wien, 16.

3 Municipal Department 20, Wiener

Klimafahrplan, 32.

Figure 3: The map shows the average number of tropical nights in a year when measurements for

climate protection implemented are of low ambition. A night counts as a tropical night if the

daily minimum temperature is not below 20 degrees.

30

25

20

15

10

5

0

number daysfuture climate 2071-2100
low effort in climate protection
(RCP8.5)

current climate 1981-2010

#4

Introduction

and by 45 % in 2040 compared to 2005.[1]

Vienna aims to implement a circular

economy as well as a sharing economy. The

high consumption rate of materials is one

of the main factors concerning greenhouse

gas emissions. Future products will be

more durable and repairable. Reusing

materials and products contributes to

building a circular economy. If not possible,

products and materials are transformed

into secondary raw materials. Waste re-

enters the raw material cycle by recycling.

Only a tiny proportion of waste is recycled

today when excluding thermal recycling.

Thermal recycling is not preferable because

of the permanent loss of materials.[2] The

CO2 emissions of the transport sector per

1 Municipal Department 18, Smart Klima

City Strategie Wien, 40.

2 Municipal Department 18, Smart Klima

City Strategie Wien, 34.

head will decrease by 50 % until 2030 and

100 % until 2040. An additional challenge

is the implementation of a nearly zero-

emissive commercial traffic by 2030 in

the inner city. Vienna will not only be

fully accessible by public transport but

also be a walkable city, meaning the daily

necessities of its city dwellers will be at a

close distance, more precise in 15 minutes

walking distance. Shortly, each citizen

will reach a high-quality green space at a

maximum walking distance of 250 m. By

2030 the number of private-owned cars

will be down to 250 per 1000 city dwellers.

Therefore it will be possible to reduce the

parking infrastructure while converting the

freed space into green infrastructure.[3]

In particular, measures concerning

3 Municipal Department 18, Smart Klima

City Strategie Wien, 41.

Figure 4: The trajectory of greenhouse gas emissions in line with targets.

6

5

4

3

2

1

0

20402035203020252020201520102005

gr
ee

nh
ou

se
ga

s
em

is
si
on

s
in

m
io
.t
C
O
2
eq

ui
va

le
nt

remaining vienna greenhouse
gas budget 2021-2040: around
60 million tons of CO2
equivalent

#5

Introduction

the building industry include using a

building envelope for energy production

and as an additional space for greenery.

Applied shading devices protect against

solar radiation to prevent summerly

overheating. Therefore strategies of

passive cooling are sufficient. In a best-

case scenario, structures will be widely

demountable and re-useable, or at least

separable in their raw material components

by 2030. More precisely, by 2040, 70 %

of a structure, such as building elements,

products, or materials, will be re-useable.[1]

The characteristic of city-friendly

mobility is its availability for all city

dwellers. A city design ensuring walkability

shows a higher density of its districts.

Daily necessities like workspaces, schools,

healthcare facilities, food suppliers, green

spaces, and more are reachable by foot.

Furthermore, a diversified street scenery

invites to stroll and roam. Traffic design

within the accessible areas prioritizes

citizens’ safe and comfortable usage. More

precisely, streets have to stay cool during

summer, and infrastructures for active

mobility like walking and cycling have to be

spacious. For Vienna, that means planting

more trees and greening facades.

On the one hand, the evaporation of

the greenery cools the street scenery; on

1 Municipal Department 18, Smart Klima

City Strategie Wien, 42.

the other hand, fully grown trees shade

open space. Vienna will extend its cycle

path network while closing gaps and

widening its sidewalks. Noncommercial

open spaces intended for having a rest are

provided evenly in the future cityscape.

Commercial vehicles will be

electrified, including courier, delivery, and

transport services. Concepts in logistics

like the last mile are to be implemented in

urban design.[2]

Commercial and residential buildings

are designed to be long-lasting and efficient

in material usage. Vienna minimalizes

its material footprint by considering

structures as material storage for the city.

By generating layouts that are adaptable

to different kinds of users, the lifetime

expectancy of buildings can be extended.[3]

2 Municipal Department 18, Smart Klima

City Strategie Wien, 54.

3 Municipal Department 18, Smart Klima

City Strategie Wien, 60.

#6

Introduction

Figure 5: The contributors to global greenhouse gas emissions in 2016.

industry

w
aste

energy consum
ption

industry

energyconsumptionmobili
ty

sewage 1%
landfills 2%

cement production 3%
chemical production 2%

loss of grassland and farmland 2%
deforestation 2%

incineration of crop waste 4%

rice cultivation 1%

agriculture and fertilizing 4%

animal keeping and waste 6%

energy consumption
agriculture and fishery 2%

fugitive emissions from
energy production 6%

energy-related emissions
from energy production 8%

other mobility 1%
shipping 2%

air traffic 2% road traffic 12%

other buildings 7%

residential buildings
11%

other industry 11%

machine building 1%
paper and print 1%

food and beverage products 1%

chemistry and petrochemistry 4%

non-ferrous metals 1%
iron and steel industry 7%

energy
consum

ption
buildings

agriculture and
forestry,
land use

energy

#7

The Polycenric Region

2. The Polycenric Region

In Europe, urbanization manifests

primarily in movements from small

towns to the major cities and from rural

areas to suburbias. This process causes

gentrification, meaning that middle

and low-income households have to

move to the city’s outskirts as a result

of rising rents. Furthermore, the risk

of overloading a cities’ infrastructures

increases due to the rise of traffic

density.[1]

Low- and middle-income households

have to relocate as a result of rising rents,

if a city center is gaining more and more

significance. The social fabric eventually

segregates. Therefore Alexander Christoph

suggests the concept of decentralization,

meaning the development of additional

secondary centers. It is essential to equip

these secondary centers with a catchment

area inhabiting a sufficient number of

dwellers to support them. These secondary

centers can adopt unique features to

become of higher regional significance

and attract dwellers living outside their

catchment area. For example, specialized

departments of a city’s primary health care

infrastructure could be spread among these

1 Mathias Mitteregger et al., AVENUE21.

Automatisierter und vernetzter Verkehr:

Entwicklungen des urbanen Europa (Berlin:

Springer Vieweg, 2020), 18.

centers, providing maximum diversity.[2]

2 Christopher Alexander et al.,

Eine Muster-Sprache: Städte, Gebäude,

Konstruktion, 2th ed., trans. Hermann Czech

(Wien: Löcker, 2011), 61-65.

#8

The Car-Friendly City

2.1 The Car-Friendly City

The Athens Charter, published in 1933,

on the one hand, and the Leipzig Charter,

published in 2007, on the other hand, are

contradictory milestones in the European

cities’ early history of traffic and mobility

politics. The era between these dates

underwent a radical paradigm shift and

consists of three phases:

1. The substantial increase in private

car ownership due to a general growth

in wealth and pervasive enthusiasm

concerning the automobile.

2. Arising doubts about the idea of a

car-friendly city, caused by the city dwellers’

evident distress – the number of private-

owned cars climaxes as a result of this.

3. Finally, a decrease in the number of

private-owned cars, pursuing the ideal of a

liveable city.[1]

The extensive destruction of many

European cities during World War 2

provided the opportunity to redesign the

very structure of the cities. Built upon

the idealism of the Charta of Athens, the

concept of the structured and broken-up

city developed by Göderitz, Hoffmann, and

Rainer in 1957, provides the underlying

idea for this mission. When the book Die

Autogerechte Stadt written by Reichow and

1 Mitteregger et al., AVENUE21.

Automatisierter und vernetzter Verkehr, 25.

Hans Bernhard, was published in 1957,

city planners reasoned that a car should

encounter no hinderances on its way. Now

the remnants of traditional cities were at

risk of being demolished by the urge to

separate a city’s functions.

In the late 1960s, the high

motorization rate among city dwellers led

to urban sprawl. In the late 1960s and early

1970s, a countermovement started. In 1965,

Alexander Mitscherlich published the book

Die Unwirtlichkeit der Städte. He criticized

the sole focus on functionalism in modern

city planning.[2]

In Vienna, city planning politics

aimed at implementing the ideal of

modernism. So the Executive City

Councillor for Urban Planning, Franz Novy,

argumented in 1946, that the structure of

the liberal and medieval town is not only

wrong but also even dangerous and that

it is not suitable to form a habitat for a

future society. The new urban order has

to follow the concept of separation of

functions. Therefore it changes the urban

life inevitably.[3]

2 Mitteregger et al., AVENUE21.

Automatisierter und vernetzter Verkehr, 23.

3 Rudolf Scheuvens et al., “Wien:

polyzentral: Forschungsstudie zur

Zentrenentwicklung Wiens,” (Werkstattbericht

Paper No 158, Municipal Department 18 —

Urban Development and Planning, Vienna, 2016),

48, https://www.wien.gv.at/stadtentwicklung/

studien/pdf/b008475.pdf.

#9

The Car-Friendly City

The Wiener Gürtel partially circles

the central city district and is Vienna’s

busiest main road. In the second half of the

20th century, the traffic axis was known

for its red-light-milieu and heavy traffic.

Since then, the axis built on the former

foundations of the fortified town walls has

been reactivated.

Other essential traffic axes are the

Ringstraße – the circular main street

surrounding the first district and housing

government buildings, museums, and

various historical sites – and the radial

streets leading the traffic in and out of the

city. Accelerated by the motorization rate,

these arterial roads have lost their original

multifunctional character and became

single-purpose traffic axes.[1]

One of the most critical aspects of

city dwellers who take part in the city’s

economic, social, and cultural life is

mobility. A dense mixed-use urban tissue

leads to accessibility by foot or by bike.

Furthermore, dense population enables

the operation of high-ranking public

transport in an economical way. The

private vehicle becomes obsolete. On the

contrary, the urban sprawl provokes a rise

in motorization and an interspersing of

spacious monofunctional structures.[2]

1 Scheuvens et al., “Wien: polyzentral,”

80.

2 Scheuvens et al., “Wien: polyzentral,”

Figure 6: The pedestrian city around 1850.

The half-hour radius on foot can be seen.

Figure 7: The tram city around 1910. The half-

hour radius by the tramway can be seen.

x: the gravitational force of the centers
y: abstract section of the distribution of the centers

x

y

x: the gravitational force of the centers
y: abstract section of the distribution of the centers

x

y

#10

The Car-Friendly City

Above all, in cities, the potential

of the dwellers themselves is great to

actively shape the future of mobility. A

suggested strategy is to avoid the need

for transportation, especially when it is

environmentally harmful, by implementing

modern ways of communication in

our daily life that make encounters in

person obselete. In those cases, where

transportation is mandatory, the strategy is

to avoid using a car.

The use of public transport, biking

or walking is to be preferred. Last but not

least, progressive change in the design of

public space and the functional structure of

the city should be advocated. City districts

need to be compact to provide the daily

necessities to their inhabitants within

walking distance. Furthermore, concepts

like the ‘Last Mile’ in the transport and

delivery sector or the ‘Superblock’ in traffic

planning ought to be implemented fast.[1]

78.

1 Mitteregger et al., AVENUE21.

Automatisierter und vernetzter Verkehr, 18.

Figure 8: The walkable city in 2015.

Continuing to build the city of short

distances.

x: the gravitational force of the centers
y: abstract section of the distribution of the centers

x

y

x: the gravitational force of the centers
y: abstract section of the distribution of the centers

x

y

Figure 9: The car city around 1970. The half-

hour radius by car can be seen.

#11

TheRevivaloftheMedievalTown

2.2 The Revival of the Medieval Town

City centers are heterogeneous

structures merging a variety of functions

that define a city. Historically, one of

the most important of these functions

is the provision of daily goods. Today

the characteristics of centers are more

diverse. Since the increase of the dwellers’

mobility, the centers of the cities began to

specialize in niches and moved towards the

outskirts. The formerly dense and walkable

net of sub-centers began to vanish and

its small stores managed by their owners

were replaced by shopping centers in the

suburbias. Other examples of specialized

centers are office centers, entertainment

centers, and education centers. In the

recent past, international brands adopted

the newly formed vacancy in the historic

centers.

Today there is a renaissance of the

traditional city center. Even shopping malls

are now to be found on high frequented

shopping streets. If done thoughtfully, this

could even support the remaining small

businesses by complementing their mix of

offers. At the same time, with the upcoming

e-commerce and delivery service, profound

changes are recognizable.

While in general, commercial areas

are continuously declining, more dwellers

desire original products found in shops

with a unique assortment. Therefore the

former dense supply structure has to

be rebuilt to support the concept of the

walkable city.[1]

Nowadays, the holistic net of centers

is more multifunctional than ever, but

isolated structures are highly specialized.

With the radical change of mobility, starting

with the evolving public transport and later

on reinforced by the private motorized

transport, city dwellers are more attracted

to extensive assortments than to their

accessibility in walking distance.

Within the last few years, initiatives

(e.g., STEP 2025) started, which are aiming

at bringing back the formerly dense and

therefore walkable net of centers by

scattering their multifunctional fragments

in the urban tissue. Thereby, city-dwellers’

preferences should progressively shift

from being a car owner to using public

transport.[2]

The benefits of an ideal city center

unfolds to its full potential when the

following characteristics are in place:

1.) Centers are multifunctional and

frequented by different user groups at

different times.

2.) Centers are including retail,

1 Scheuvens et al., “Wien: polyzentral,”

11.

2 Scheuvens et al., “Wien: polyzentral,”

17.

#12

TheRevivaloftheMedievalTown

various services, social infrastructure,

cultural institutions, recreation parks,

leisure centers, educational and other

public facilities.

3.) Centers either already have or

should be developed at various transfer

points or axes of public transport and are

therefore well accessible.

4.) Centers have unique aesthetic

features in architecture and/or are of

specific historical or cultural significance.

5.) Centers offer a variety of high

quality open spaces.

6.) Centers are also fully accessible

and traversable by foot or by bike.

7.) Centers offer non-commercial

zones useable by a heterogenous group of

users at all days a week.[1]

According to the spatial model of the

STEP 2025, there are three different kinds

of center structures: the metropolitan

center, the main center, and the quarter

center. They have to be evaluated in a

hierarchical descending order, regarding

their offer for the neighborhood and their

significance for other parts of the town.

Metropolitan Centers have a

1 Municipal Department 18 — Urban

Development and Planning, “Mittelpunkte

des städtischen Lebens: polyzentrales Wien,”

(Werkstattbericht Paper No 158, Municipal

Department 18 — Urban Development and

Planning, Vienna, 2019), 18, https://www.wien.

gv.at/stadtentwicklung/studien/pdf/b008563.

pdf.

significance on a supra-regional level and

a public value far beyond the city borders.

They have the highest-ranked retail and

service offer, such as jewelers’ shops and

attorneys’ offices. Furthermore, they are

tourist hotspots. Their offers are highly

specialized.

Main centers have a significance on a

regional level and are attracting dwellers of

the neighboring city districts as well. Their

offers are moderately specialized.

Quarter Centers are of a significance

for their close neighborhood. Their retailers

offer a broad assortment of goods beyond

the daily needs of the dwellers. By being

close to metropolitan and main centers,

their services complement the more

prominent centers’ offers.[2]

On this background their are certain

future challenges regarding Vienna’s

centers to be observed:

1.) An increase of value regarding

open spaces amongst urban society is

recognizable. User groups want to actively

take part in the creation and organization

of recreational spaces.

2.) An increased need for sufficient

public transport and better accessibility

by foot and by bike as well as new mobility

concepts like vehicle sharing and on-

demand-mobility.

2 Municipal Department 18,

“Mittelpunkte des städtischen Lebens,” 30-31.

#13

TheRevivaloftheMedievalTown

3.) The need for developing new city

centers by the expansion of high-ranking

public transport systems. Only in the more

significant urban expansion areas new

centers will be sustainable.

4.) Mitigating against critical climatic

conditions such as the urban-heat-island-

effect and decreasing the city dwellers

motorization rate by realizing the walkable

city.(cf. Smart City Strategy)

5.) Social, demographic, and

economic changes are altering the needs

of user groups. An aging society has a

greater need for non-commercial zones and

recreational areas.

6.) Caused by the progressing

digitalization, the money spent in local

retail facilities decreases, despite rising

population figures. Gastronomy and the

offer of recreational activities are playing a

vital part in supporting the local retailers.[1]

To achieve the politically intended

walkable city, city planners have to

completely change city center structures

again, as they have done with the

development of the car-friendly city as well.

Therefore, a city center’s multifunctionality

is to be reestablished by offering a mix of

goods and services, including sufficient

integration of the public transport system.

Furthermore, close-by living should be

1 Municipal Department 18,

“Mittelpunkte des städtischen Lebens,” 23.

metropolitan centers main centers

quarter centers / central areas new centers

Figure 10: The Viennese spatial model of the polycentric urban structure.

#14

TheRevivaloftheMedievalTownTheRevivaloftheMedievalTown

3.) The need for developing new city

centers by the expansion of high-ranking

public transport systems. Only in the more

significant urban expansion areas new

centers will be sustainable.

4.) Mitigating against critical climatic

conditions such as the urban-heat-island-

effect and decreasing the city dwellers

motorization rate by realizing the walkable

city.(cf. Smart City Strategy)

5.) Social, demographic, and

economic changes are altering the needs

of user groups. An aging society has a

greater need for non-commercial zones and

recreational areas.

6.) Caused by the progressing

digitalization, the money spent in local

retail facilities decreases, despite rising

population figures. Gastronomy and the

offer of recreational activities are playing a

vital part in supporting the local retailers.[1]

To achieve the politically intended

walkable city, city planners have to

completely change city center structures

again, as they have done with the

development of the car-friendly city as well.

Therefore, a city center’s multifunctionality

is to be reestablished by offering a mix of

goods and services, including sufficient

integration of the public transport system.

Furthermore, close-by living should be

1 Municipal Department 18,

“Mittelpunkte des städtischen Lebens,” 23.

enabled to generate the needed user

frequencies.[2]

Developing each of these structures

as a single monofunctional project of its

own could result in lifeless homogenous

city districts. This leads to an increase

in motorized individual transportation

since only a mix of uses supports the

development of walkable cities similar to

those of the Viennese Gründerzeit.[3]

2 Scheuvens et al., “Wien: polyzentral,”

22.

3 Silvia Forlati et al., Mischung:

Possible!: Wege zur zukunftsfähigen

Nutzungsmischung, 2th ed. (Vienna: Institut

für Architektur und Entwerfen, Abteilung

Wohnbau und Entwerfen, Technische Universität

Wien, 2017), 15, https://smartcities.at/wp-

content/uploads/sites/3/Mischung-Possible-

Auflage-2-2-5.pdf.

#15

The Productive City

3. The Productive City

The idea of the spatial separation

of living and working was implemented

in the industrial city by Tony Garnier in

1929 and is a predecessor of the Athens

Charter. Because most artificial cities were

incorporating the principles of the Athens

Charter, Christopher Alexander asks in A

City is Not a Tree:

“Is this a sound principle? It is easy to

see how bad conditions at the beginning of

the [last] century prompted planners to try

to get the dirty factories out of residential

areas. But the separation misses a variety of

systems which require, for their sustenance,

little parts of both.”[1]

Christopher Alexander describes his

idea of an ideal system with an example: a

news rack, a traffic light, and a sidewalk are

fixed parts of a system. When city dwellers

have to wait at a red traffic light, they turn

to the news rack because they have nothing

else to do.[2]

Mixed used structures are more

sustainable than monofunctional structures

in the long term because they are more

easily adoptable when economic and social

1 Christopher Alexander, “A City is not

a Tree,” in Design After Modernism: Beyond

the Object, ed. John Thackara (New York:

Thames & Hudson Ltd, 1988), 67-84.

2 Christopher Alexander, “A City is not

a Tree,” 67-84.

changes occur. These ultimately lead to a

higher ecologic value of these structures.[3]

To be seen as a mix of uses, the

interlacing of structures for living and

non-living functions has to be the catalyst

of actual interactions. This is for example

the case, when a broad spectrum of daily

necessities of their occupants is within a

walkable distance.[4]

Christopher Alexander’s definition

of a neighborhood resembles the Viennese

Grätzl. Some common characteristics

are the relatively small area covered and,

therefore, a limited number of inhabitants.

Furthermore, areas of reduced traffic or no

traffic are required for such neighborhoods

to be formed. One of the most crucial

differences between those two concepts is

in the definition of their border. Christoph

Alexander’s neighborhood has a strongly

defined border, emphasized by a gateway.

This gateway is not closed, in contrast

to the concept of the gated community;

instead, it serves as a symbolic entrance.

The Viennese Grätzl has no generaly

accepted border at all. The extention of a

Grätzl is perceived differently and depends

on personal perspectives.[5]

3 Forlati et al., Mischung: Possible!,

22.

4 Forlati et al., Mischung: Possible!,

23.

5 Christopher Alexander et al., Eine

Muster-Sprache, 85-89.

#16

The Productive City

Christopher Alexander differentiates

between heterogeneous and homogeneous

city populations. He suggests forming

a homogeneous society by scattering

subcultures evenly within the urban

fabric. With this, a process of mutual

adjustment is initiated. Necessary traffic

infrastructure and high emissive industry

are placed between these subcultures,

forming a soft border implementing

Christopher Alexander’s idea of an

enclosed neighborhood. By inserting

commercial clusters in the urban fabric

and positioning workplaces either next

to or within residential buildings or even

residential units, the forming of mixed-use

neighborhoods is accomplished.[1]

Christopher Alexander’s vision of

an urban fabric formed by a mosaic of

subcultures does not correspond with

contemporary urban design methods.

Today’s experiences show that socially

diverse city districts tend to segregate

and form accumulations of subcultures

anyway. Therefore it is appropriate to

strengthen the social mix with most effort

to eventually achieve an acceptable result.[2]

Industrial production is a significant

1 Christopher Alexander et al., Eine

Muster-Sprache, 45-59.

2 Eva Winroither. “Analyse: Warum Aspern

Blau wählte,” diepresse.com, October 13, 2015,

https://www.diepresse.com/4842937/analyse-

warum-aspern-blau-waehlte.

part of the Viennese economy because of

its above-average value added. Therefore

it sustains and creates prosperity for its

city dwellers. Employees in the Viennese

industry are well paid and jobs are

accessible by workers of lower qualification.

Communal services like the power

generation in Freundenau, the wastewater

treatment in Simmering, or the waste

incineration in the Spittelau are essential in

the value-added chain and, therefore, part

of the productive city.[3]

Simultaneously, with Vienna’s

population growth, more employments

of decent conditions also for lower

qualified employees have to be generated

in the nearby future. These should be

settled not just in the service sector but

also in the manufacturing sector. The

Viennese city planning guidelines for a

productive city aim at repositioning the

industry and manufacturing sectors’ role

as an indispensable part of the Viennese

economy. This goal is noticeable in a

paradigm shift in city planning across

borders, more precisely going from the

post-industrial city to the productive city.[4]

3 Municipal Department 18 — Urban

Development and Planning, “Produktive Stadt,”

(Werkstattbericht Paper No 171, Municipal

Department 18 — Urban Development and

Planning, Vienna, 2017), 24, https://www.wien.

gv.at/stadtentwicklung/studien/pdf/b008500a.

pdf.

4 Municipal Department 18, “Produktive

#17

The Productive City

It is noticeable that city dwellers are

increasingly using their spare time to offer

services or self-produced goods in the form

of self-employment or as part of a sharing

economy. This trend is a catalyst for

strengthening city inhabitants’ resilience

and is to be supported by providing

workshops, small retail spaces, or open

workspaces.[1]

An open workspace is a facility that

houses small companies like start-ups

and individual entrepreneurs. The needed

infrastructure like restrooms, meeting

rooms, printers, and others are shared

among the tenants.

A provider manages the facility.

Potential tenants have several options of

membership to get access to the facility.

In this concept, the community and the

access to affordable working spaces play an

important role.

This concept enriches the walkable

city’s idea because its tenants can often

live in close distance. Furthermore, this

enterprise can be easily developed within

existing buildings as it can adapt to a

variety of different floorplans.

Stadt,” 21.

1 Municipal Department 18, “Produktive

Stadt,” 43.

A mixed-use approach seems to be

prone to evoke conflicts between city

dwellers. Some experts might raise the

question: do we even want an urban city? If

we ask city dwellers, the answer is yes, but

do they really understand the implications?

A discrepancy between imagination and

reality is observable. Nevertheless, there

are measures to soften upcoming conflicts.

These can be e.g., citizen participation and

careful planning.[2]

Justified by the substantial increase

of population, every economic activity

contributing to the city’s added-value and

job creation has to be supported. Despite

the achievements in technology, not every

economic activity will be sustainable

for being integrated into a mixed-use

city district; more precisely, a counter-

productive mix has to be avoided by all

means.[3]

An approach would be to arrange the

mercantile structures linearly, preferably at

high frequented streets; or to concentrate

them, to form a commercial area within the

quarter. Both strategies have the advantage

of keeping the remaining part of the

development area free for the allocation of

social housing.

2 Forlati et al., Mischung: Possible!,

51.

3 Municipal Department 18, “Produktive

Stadt,” 29.

#18

The Productive City

Another concept would be to spread

the business activities among the city

quarter.[1]

A decent mix of uses can be

implemented on various levels: starting

with the most extensive scope, the quarter

district itself, followed by the block

structure, the floor level, and the single

residential unit.[2]

A) An arrangement of non-residential

uses in mixed-use city quarters could be:

1.) The non-residential uses are clustered

within an area of their own.

2.) The non-residential uses are arranged

linearly.

3.) The non-residential uses are evenly

1 Forlati et al., Mischung: Possible!,

28.

2 Forlati et al., Mischung: Possible!,

42.

scattered among the quarter district.

B) The scope of distribution of non-

residential uses in mixed-use city quarters

could be:

1.) The construction site:

Each construction site covers a certain

percentage of non-residential uses

wanted for the city quarter.

2.) The construction field:

The non-residential uses are

concentrated on a subpart of a

construction field, therefore excluding

the remaining developments in this field

from the implementation of a mixed-use

approach.

3.) The sub-quarter:

The non-residential uses are

concentrated on a subpart of the

city quarter, therefore excluding the

Figure 11: Possible spatial principles by which non-residential uses are distributed.

A1 A2 A3

B1 B2 B3 B4

#19

The Productive City

remaining developments in the sub-

quarter from the implementation of a

mixed-use approach.

4.) The quarter:

The non-residential uses are

concentrated like a focal point within

a city quarter, therefore excluding the

remaining developments in the quarter

from the implementation of a mixed-use

approach.

It seems, the most radical approach

to a mixed-use urban design would be the

distribution of non-residential uses at the

scope of all construction sites within the

constructions fields. This would mean that

for the whole quarter, no development area

is excluded from the implementation of a

mixed-use approach.

At the other end of the scale, all non-

residential uses would be concentrated on

a single construction site or construction

field, leading to the effect that for the

rest of the developments there is no need

for the implementation of a mixed-use

approach. If this part of the quarter is

within a walkable distance to the residential

developments, a walkable city’s goal can

still be reached.

C) The arrangement of non-

residential uses inside structures could be:

1.) as layers:

Each floor is monofunctional.

2.) as plates:

Non-residential uses constitute the base

on which residential units are placed on

top. The roof-surface of the base could

also be used as a recreational area for

the residents.

3.) as sprinkles:

Non-residential units are scattered all

over a structure.

4.) as function-neutral structures:

The load-bearing structure of a building

is designed to support non-residential

and residential uses.[1]

1 Forlati et al., Mischung: Possible!,

97-100.

#20

The Productive City

The size range of commercial units

is an essential factor when planning

affordable spaces. It starts at over 5000

m² for hypermarkets and ends at below

20 m² for individual enterprises. Larger

units have the advantage of being easier

manageable in the long term due to tenants

with a more reliable financial stability.

Small units, on the other hand, further the

personal relations with the inhabitants of

the residential structures and thus support

the emergence of a mixed-use quarter.[1]

The necessities of the city dwellers’

1 Forlati et al., Mischung: Possible!,

28.

daily lives are within walkable distance if

they are obtainable within a range of 300 to

500 meters.[2]

The city of short distances relieves

the infrastructure from personal motorized

transportation and public transportation

and enables a more efficient usage of these

two.[3]

An economic activity that

manufactures material assets has to be

associated with the productive sector

according to the ÖNACE 2008, the

2 Forlati et al., Mischung: Possible!,

27.

3 Forlati et al., Mischung: Possible!,

22.

> 10.0
> 5.0 to 10.0
> 0.0 to 5.0
> -5.0 to 0.0
> -10.0 to -5.0
≤ -10.0

change in %
Austria: -4.3

Figure 12: Population development in the age group 20 to 64 years from 2021 to 2050.

#21

The Productive City

classification system for economic

activities.

The functional concept of the

productive city embedded in the Viennese

urban development plan Step 2025 includes

an extended portfolio of economic

activities in the productive sector.

Automotive trade and repair, cleaning,

construction industries, energy providers,

environmental technology, maintenance

services, passenger and freight transport,

postal and courier services, rental of tools

and vehicles guarding, repair, storage, waste

disposal and recycling, and wholesale trade

are to be included as well.[1]

By integrating the industry into

the city, the delivery distances as well

as the delivery times are shortened.

Furthermore, the proximity between power

generators and consumers allows for a

more efficient use of the supply grid and

an easier implementation of sustainable

smart grid strategies, like power supply

decentralization or energy-sharing.

By interlacing functions in dense city

districts, expertise and knowhow in various

fields is accumulated, supporting an open

knowledge transfer environment, that

helps enterprises to act innovatively and

sustainably.

Because of the climate change,

1 Municipal Department 18, “Produktive

Stadt,” 23.

environmental regulations are expected

to be more restrictive in the foreseeable

future, leading to rising prices in the

transportation sector. This provides

industries, which are close to their business

partners with a competitive advantage.

Those industries can also more

easily implement the circular environment

concept, which is especially important

when dealing with resource scarcity.[2]

Apart from the fields of business

that are present in the city structure, it is

also important to look at the jobs the city

dwellers are occupied with, to determine

how flexible a city structure can and has to

be.

According to the Statistik Austria, in

Vienna in 2012, most people were employed

in the following fields:

1.) knowledge and technology-based

segments such as electronics and IT

equipment (approx. 10,000 employees -

with leading companies such as Siemens,

Kapsch, TTTech, or IBM)

2.) food and fodder production (approx.

7,500 employees - e.g., traditional

Viennese companies such as Manner or

Ankerbrot, but also Felber, Wiesbauer,

Ottakringer, and others)

3.) pharmaceutical sector (approx.

4000 employees - e.g., Octapharma,

2 Municipal Department 18, “Produktive

Stadt,” 24.

#22

The Productive City

Boehringer Ingelheim)

4.) vehicle manufacturing (e.g., General

Motors, MAN, Bombardier)

5.) mechanical engineering (e.g., Hoerbiger,

Schiebel Antriebstechnik, Merten)

In contrast to the other federal states

of Austria and to other major European

cities, Vienna has a high employment rate

in the above-average paid knowledge and

technology-based segments. Except for the

food industry, the low-tech industry is of

minor importance in Vienna (e.g., leather,

textiles, and clothing).[1]

Vienna’s employee structure has

therefore to be considered ideal for the

implementation of further measures of the

current urban structuring – at the end of

which the transformation into a walkable

city shall be accomplished.

1 Municipal Department 18, “Produktive

Stadt,” 45.

The productive city does not only

consist of areas of a mix-used structure

and city dwellers who have the ability and

affinity to live in such structures. They also

have to be able to work there.

Thus, there is a definite demand for

different types of production places:

1.) Monolithic sites with a larger parcelling.

This is especially of interest for large

international companies.

2.) Clusters, i.e. small spatial structured

business parks that can accommodate

highly specialized companies and

embedded co-working spaces that are

also serving as reserves for job growth.

3.) Hubs and depots, providing the logistic

space for the progressively growing

e-commerce companies – alongside

other businesses of smaller or larger

sizes, either positioned in the outskirts

or in the city center(s). Such companies

usually have storage spaces with low

spatial requirements.

4.) Infills, i.e. small scale structures

integrated in mixed-use city quarters.

They are particularly of interest for

innovative enterprises that want to

profit from the synergies with their

surrounding context.[2]

2 Municipal Department 18, “Produktive

Stadt,” 52-53.

#23

The Productive City

Concerning the location of these

different types of production places within

the city, there are three different types of

operational zones to be distinguished:

1.) Industrial-commercial areas:

This type of operating zone usually

has a surface area over five hectares and is

exclusively reserved for economic activities.

These are predominately industries of the

primary or secondary sector (ÖANCE 2008)

which are not readily suitable for spatial

interlacing with enterprises of the tertiary

sector and certainly not with housing.

The reasons for this are the pollutant

and noise emissions, the traffic volume, or

the spatial extent of the buildings. Retail

should not be established in these precious

areas because of the continuing trend of

vanishing sales areas in the cities caused

by the growing e-commerce sector. The

only exception should be made for the local

supply providing necessities for workers

and employees.

Furthermore, unrestricted

operational use should be ensured at all

day times, small parcellations should be

offered, and the land price level should

be affordable. Concerning accessibility,

a connection to the highway system is

needed, and the availability of public

transport is essential.[1]

1 Municipal Department 18, “Produktive

Stadt,” 66.

2.) Commercial mixed areas:

This type of operating zone is a

traditional commercially used area, usually

located within the center of the city. It is

well accessible by individual as well as by

public transportation. Its central location

is desirable for densification and for mixing

with other uses such as housing. There are

multistorey high compact structures to

accommodate the full-range of different

uses, which are generating synergies among

each other – imaginably, every kind of

spatially compact commercial uses such as

crafts, on-demand manufacturing and such.

Not more than 50 percent of the above-

ground structure is used for residential

uses, in which common spaces (e.g.,

circulation, garbage room, bicycle parking)

are already included. A local supply for its

inhabitants has to be integrated.[2]

3.) Integrated individual sites:

This type of operation zone is

often positioned within residential areas.

They are highly connective with their

surroundings, implying advantages for

employees, customers, and suppliers.[3]

2 Municipal Department 18, “Produktive

Stadt,” 76.

3 Municipal Department 18, “Produktive

Stadt,” 87.

#24

The Productive City

Architectural solutions are often

categorized as hardware and the city’s way

of governance as the software in urban

design. Since there are many architectural

solutions available, the most output and the

best result can be expected by improving

the planning processes.[1]

For initializing a mixed-use and

creating a sustainable neighborhood,

giving the commercial mix an overarching

identity is beneficial. Simultaneously a

specialization in the offer within the city

quarter can be pursued, which gives the

neighborhood a relevance to the region.

Examples include branding the district as a

creative, healthcare, or innovation quarter.[2]

The wohnhausfonds_wien has

building sites for state-subsidized housing

construction available. A so-called

Bauträgerwettbewerb (project developer

competition) ensures sustainable use of

these sites and grants state subsidies for its

winners.

However, for building sites of private

owners, subsidies are possible, too. For this,

the Grundstückbeirat (property advisory

board) has to prove that the projects will

be developed on certain standards in four

categories, namely ecological and economic

1 Forlati et al., Mischung: Possible!,

15.

2 Forlati et al., Mischung: Possible!,

81-96.

aspects as well as architectural, and social

sustainability.

In the year 2011, Vienna has started a

smart city process, in the course of which

a guideline was formulated, the so-called

Smart City Wien Framework Strategy. Its

purpose is to ensure the sustainable

transformation of the city in the medium

and long run. In contrast to other cities’

smart city strategies, Vienna is also taking

CO2 emissions and social aspects into

account.[3]

In 2010, the Klima- und Energiefonds

has started the Smart-Cities-Initiatives.

The focus had been primarily on technical

solutions, but this has changed since the

beginning. Now it is more on developing

solutions that enable cities and their

dwellers to change their lifestyles to

support a sustainable future. Today,

holistic strategies are preferred that work

on improvements in energy balance and

the dwellers’ satisfaction in urban areas.

Key elements are affordable housing, the

promotion of mixed uses, and giving city

dwellers the chance to participate in project

developments at an early stage.[4]

3 Forlati et al., Mischung: Possible!,

17.

4 Forlati et al., Mischung: Possible!,

II.

#25

The Productive City

4. The Adaptable Building

During World War II, the MIT erected

a structure housing a laboratory in only

six months. Rumor has it that the MIT

graduate Don Whiston designed it within

a single afternoon. Researchers used the

space to conduct extensive research on

radar technology to support the war effort.

The volume was designed in the shape of

five fingers and had only three floors. The

roof was equipped with a variety of strange-

looking devices. Since the building was

constructed of wood, it violated the city’s

fire regulations. However, by claiming it to

be only temporary, the authority eventually

issued a building permit. Yet in fact, it was

demolished not before 1998. This building

met the needs of the MIT researchers for so

Figure 13: Building 20, 18 Vassar Street in Cambridge, Boston

#26

The Adaptable BuildingThe Productive City

4. The Adaptable Building

During World War II, the MIT erected

a structure housing a laboratory in only

six months. Rumor has it that the MIT

graduate Don Whiston designed it within

a single afternoon. Researchers used the

space to conduct extensive research on

radar technology to support the war effort.

The volume was designed in the shape of

five fingers and had only three floors. The

roof was equipped with a variety of strange-

looking devices. Since the building was

constructed of wood, it violated the city’s

fire regulations. However, by claiming it to

be only temporary, the authority eventually

issued a building permit. Yet in fact, it was

demolished not before 1998. This building

met the needs of the MIT researchers for so

long, just because of its adaptability.

Its structure was the strongest on

the MIT campus. It was able to support up

to 756 kg/m². The researchers were able to

implement additional wiring by themselves,

as the cable trays suspending from the

ceiling were easily accessible. Due to the

building’s improvised aesthetics, no one

felt obligated to ask for permission when an

experiment required minor alterations to

the layout.[1]

Former users described it as follows:

“Windows that open and shut at the will

of the owner!” (Martha Ditmeyer) “The

ability to personalize your space and shape

it to various purposes. If you don’t like

a wall, just stick your elbow through it.”

(Jonathan Allan) “If you want to bore a

hole in the floor to get a little extra vertical

space, you do it. You don’t ask. It’s the best

experimental building ever built.” (Albert

Hill) “One never needs to worry about

injuring the architectural or artistic value

of the environment.”(Morris Halle) “We

feel our space is really ours. We designed

it, we run it. The building is full of small

microenvironments, each of which is

different and each a creative space. Thus

the building has a lot of personality. Also

1 Stewart Brand, How Buildings Learn:

What Happens After They’re Built (New York:

Penguin Books, 1995), 3/4-6/14, https://www.

kobo.com/at/de/ebook/how-buildings-learn.

Figure 14: Stewart Brands Shearing Layers

#27

The Adaptable Building

it’s nice to be in a building that has such

prestige.” (Heather Lechtman)[1]

Such an adaptable building design

facilitates the change of short-lived layers

without affecting the structure of the

long-lived layers.[2] Stewart Brand extends

and revises the four major layers of a

building (shell, services, scenery, and set),

originally defined by Frank Duffy as the

four S. Brand now differentiates between

six layers of a building (site, structure,

skin, services, space plan, and stuff). Each

layer has a different life expectancy and

needs replacement at a different rate.

Brand describes this as “shearing layers

of change”. And he adds: ”Because of the

different rates of change of its components,

a building is always tearing itself apart.”[3]

Brand argues that the only eternal layer is

the site. The structure has a life expectancy

of 30 to 300 years but usually is demolished

after 60 years. The reasons for this are

usually adjustment difficulties that occur

with changing demands.

Inhabitants will not alter the

structure of a building because it is

expensive and unsafe. The skin has a

1 Stewart Brand, How Buildings Learn,

3/6/14.

2 “Manifesto Open Building,”

OpenBuilding.co, accessed May 10, 2022,

https://www.openbuilding.co/.

3 Stewart Brand, How Buildings Learn,

2/3/19.

life expectancy of 20 years. It needs

replacement due to a change in technical

requirements, material fatigue, or just

because it is out of fashion. Contemporary

buildings require a variety of internal

systems, such as different kinds of wiring,

plumbing, sprinkler systems, HVAC

(heating, ventilating, and air conditioning),

elevators, and escalators, just to name a

few. The technical components of these

systems need replacement every 7 to 15

years. If this is not feasible, a structure

might be demolished. The space plan is

very inconsistent regarding its operational

lifetime – it differs between 3 and 30 years.

A store’s layout might need an update every

three years, while residential floor plans

might last for over 30 years. The shortest-

lived layer is the stuff. Things like chairs,

desks, kitchen utensils, lamps, and so on

are used daily and are soon out of fashion[4]

4 Stewart Brand, How Buildings Learn,

2/1-3/19.

#28

The Adaptable Building

#29

The Adaptable Building

One example that illustrates the

separation of layers particularly well, is

a remarkable contribution made to the

IBA Hamburg. This building has been

erected as a solitaire in the IBA Hamburg

area, precisely Wilhelmsburg. Investment

costs for investors and residents had

been reduced by the contribution

of the later inhabitants during the

construction process. The construction

was accomplished in two phases.

First, a reinforced on-site concrete

structure of five floors was erected.

Storage rooms, staircases, and balcony

breastwork included. Then, settlers

built their individual apartments with

Ytong elements themselves, while the

balcony railing served as a fall protection.

Although the project was a success,

some aspects had to be reconsidered.

The outer shell was too complex to be

assembled by the settlers themselves.

With the project of such kind it would

be better to add the outer shell to the

basic construction and leave only the

assembling of non-isolated walls to the

settlers.[1]

1 Andrea Benze, Julia Gill, and

Saskia Hebert, Serieller Wohnungsbau:

Standardisierung der Vielfalt (Berlin:

Senatsverwaltung für Stadtentwicklung

und Umwelt, 2013), 74-78, https://www.

stadtentwicklung.berlin.de/staedtebau/

baukultur/iba/download/studien/IBA-Studie_

Serieller_Wohnungsbau.pdf.

Figure 15: Settlers Self-Build Housing, IBA

Hamburg 2013, BeL

Figure 16: Basic Construction, IBA Hamburg

2013, BeL

#30

The Adaptable Building

#31

The Adaptable Building

Many people consider the concept

of adaptability as expensive. The

construction industry and furniture stores

advertise expensive, supposedly flexible

products which are never used or are even

functioning properly (e.g., responsive

facades, moveable partitions, transformable

furniture). Additionally, if a building proves

itself to be highly adaptable over time,

it is often regarded as a good design by

accident.[1]

1 Robert Schmidt III et al., “What

Is The Meaning Of Adaptability In The

Building Industry?” (conference paper, 16th

International Conference on “Open and

Sustainable Building”: Proceedings of the

international conference jointly organized by

CIB W104 – Open Building Implementation and

TECNALIA, Bilbao, May 2010), 236, https://www.

A later adaptation of a building’s

structure is only feasible if this is already

taken into account in the design process.

A key concept in doing so is the use of

dry joints. Depending on the desired

intervention in a buildings structure, it may

just be sufficient to remove individual walls,

but not each construction system supports

this.

In elaborating this, Richard Roger-

Bruno categorizes various demountable

systems in: site-assembled-kits of parts,

factory-made 3D modules, and hybrids. To

simplify this list it is easier to differentiate

just between:

1.) post and beam

irbnet.de/daten/iconda/CIB17955.pdf.

SERVICABILITY
(characterized
as adaptive)

BIG SHED
tailored to
the most
possible uses

INDETERMINITE
(under-designed)

SOFT
(social process
between designer and
user over time)

QUALITY/CHARACTER
(characterized as maladaptive)

‘TIGHT-FIT’ FUNCTIONALISM
(tailored to a specific way of
using space)

DETERMINITE
(over-designed)

HARD
(designer determined;
change based
on a predetermined
framework)

SPATIAL
APPROACHES

DESIGN
APPROACHES

Adaptable
Design

Adaptable
Design

Good
Design

Good
Design

Figure 17: Different approaches towards adaptable design.

#32

The Adaptable Building

2.) slab and column

3.) panels

4.) space modules

The concept of post and beam

supports flexibility in three axes. Walls

and ceilings are infills with no structural

relevance. A big challenge is a need for stiff

structure joints.

Therefore the concept of slab and

column might be a more obvious choice.

By integrating a stiff core and rigid ceiling

elements, structures can be braced more

efficiently. Horizontal flexibility is kept

unaffected to a great extent. Walls are just

infills that can be removed or added at any

time.

Yet, the use of load-bearing panels

reduces flexibility in all three axes.[1]

However, this might be more than

adequate for residential structures and is

advantageous in terms of soundproofing.[2]

1 Richard Roger-Bruno, ““IFD” Systems

= Open Building “Plus”” (conference paper,

16th International Conference on “Open and

Sustainable Building”: Proceedings of the

international conference jointly organized by

CIB W104 – Open Building Implementation and

TECNALIA, Bilbao, May 2010), 257-259, https://

www.irbnet.de/daten/iconda/CIB17955.pdf.

2 Hans Drexler et al., Holz: form- und

kraftschlüssig: Entwicklung eines Voll-Holz-

Bausystems mit form- und kraftschlüssigen

geometrischen Verbindungen (Stuttgart:

Fraunhofer IRB Verlag, 2020), 16, https://

dgj.eu/dgj/wp-content/uploads/2020/03/

res022_BBSR_HFKS_Abschlussbericht-

LAYOUT-_2020.02.13_pr_5.4.pdf.

The space module is very much in

trend in the residential building sector.

It is favorable regarding the on-site

construction time, which is significant

when building in busy city districts. While

offering great flexibility during the design

process, altering the layout without

exchanging the modules once a structure is

completed, might not be feasible.[3]

3 Roger-Bruno, “IFD” Systems = Open

Building “Plus”, 257-259.

Figure 18: flexibility versus prefabrication

flexibility

prefabrication

1D 2D 3D

#33

The Adaptable Building

Lacol Arquitectura Cooperativa

uses the concept of load-bearing panels

to design a communal housing project

in Barcelona. It is located on the edge of

Can Batlló, a former industrial zone. The

layouts of the apartments are designed

to be adaptable by leaving gaps between

panels which can be used for doors if

needed. If not needed, they can be shut

using lightweight panels. In addition,

folding screens are used to divide single

rooms.

The structure is made of concrete

and CLT (cross laminated timber). The

staircase acts as a core and consists

of 30 cm thick slabs that withstand

the lateral forces. The timber used is

pinus insignis, a local species growing

in the Basque region. To reduce costs

and CO2 emissions, the inhabitants

decided to share an extensive common

infrastructure. The building has a

courtyard covered by a greenhouse. In

wintertime, this serves to capture solar

energy. In the summer, it is opened and

provides a refreshing breeze, utilizing the

chimney effect.[1]

1 George Kafka. “Sustainable building,

sustainable living: La Borda, Barcelona by

Lacol,” architectsjournal.co.uk, June 23,

2020, https://www.architectsjournal.co.uk/

buildings/sustainable-building-sustainable-

living-la-borda-barcelona-by-lacol.

Figure 19: La Borda social housing complex in

Barcelona, Lacol arquitectura cooperativa, A

Figure 20: La Borda social housing complex

in Barcelona, Lacol arquitectura cooperativa,

B

#34

The Adaptable Building

#35

Conclusion

5. Conclusion

It has become apparent that the

advent of the automobile drastically

expanded the daily radius of action of city

dwellers. Therefore, they are willing to

travel ever greater distances to run errands

or to get to work. Centers have had to

specialize in their offerings to provide a

rich assortment of products and services

that attract residents throughout the region.

In order to realize the politically desired

city of short distances, the centers have to

diversify their offerings once again to meet

the daily needs of residents within walking

distance.

By implementing the concept of the

productive city, quality jobs are provided

closer to the homes of the workers and

employees, and thereby further reversing

the separation of functions proclaimed in

the Athens Charter. Furthermore, close

synergies are created between commercial

and non-commercial uses, which ultimately

helps to reduce CO2 emissions and to

increase productivity.

The sustainability and operational

lifetime of a building depend largely on its

flexibility. In other words, the floor plan

of a building has to be adaptable to the

changing needs of the tenants. This is more

likely to be achieved when planners design

buildings and spaces to be use-neutral. This

means to dimension them spaciously and to

choose a construction method that allows

for changing floor plans afterwards. In any

case, the implementation of separation

layers according to Stewart Brand, that are

providing the users with a certain freedom

of design regarding the inner layers, is to

be preferred over the use of expensive

furnishing products such as portable

furniture systems, room dividers, and such

like.

The Vienna General Hospital is a

cornerstone of primary medical care in

Austria. The present project complements

the offer of the district to create a center

that is not only providing medical care but

also a recreational area of regional and local

importance. The center’s offer is extended

to create an urban space that meets the

challenges of a warming climate. The flows

of the individual motorized traffic, and

those of the subway will be either moved

underground or bridged. Thus, the site will

also be accessible on the east-west axis, i.e.,

crosswise to the Währinger Gürtel.

The project contributes to the

realization of the pedestrian city. The

neutral-use structure allows the

accommodation of a wide range of

commercial uses, which, with the help of

the surrounding area, creates a diverse offer

that meets the daily needs of the residents

in its vicinity. The establishment of an

#36

Conclusion

inner-city logistics center will not only

create high-quality jobs in the productive

sector. Furthermore, it will also make it

possible to supply the city’s residents with

everyday goods in a CO2-neutral manner.

The proposed structure is based

on a flexible grid that subdivides itself

according to a specially coded algorithm,

creating cells with a wide-span width for

commercial uses and cells with a narrow-

span width for non-commercial uses. Cells

with a wide-span width are attributed to

commercial uses as their construction

would be too expensive for affordable

housing. Non-commercial uses are

accommodated in cells with a narrow-span

width to build affordably. These narrow

cells are highly flexible by removing walls to

form continuous spaces that also allow for

commercial uses if needed, such as home

offices, offices or start-ups, and studios.

ed

#37

The Project

6. The Project

#38

The Project

Figure 21: Volkswagen AG financed the

former CargoTram in Dresden.

Figure 22: The freight tramway in

Amsterdam is loaded.

#4
0

#3
9

T
h
e
Pr

oj
e
c
t

Figure 23: The Streetscooter model drives

electric and can be configured by start-

ups as desired.

#4
2

#4
1

T
h
e
Pr

oj
e
c
t

Figure 24: The cargo vessel Zulu is fully

powered by hydrogen and is set to operate

on the Seine in Paris. A

Figure 25: B

#4
4

#4
3

T
h
e
Pr

oj
e
c
t

Figure 26: The EAV’s cargo bike is used to

operate on the last mile in the transport

and delivery sector.

#4
6

#4
5

T
h
e
Pr

oj
e
c
t

Figure 27: In this diagram, the higher-ranking road

network, tram tracks, train tracks, and waterways

are considered as a supply network used to

transport goods without emissions. The signs mark

potential sites for last-mile logistic hubs.

#4
8

#4
7

T
h
e
Pr

oj
e
c
t

Figure 28: Distribution of pubbllic pllaces in thhe

urban fabric.

#5
0

#4
9

T
h
e
Pr

oj
e
c
t

#5
2

#
51

T
h
e
Pr

oj
e
c
t

In
it
ia
l
si
te
,

sc
al

e
1:

50
00

Figure 29: Urbban space edges bbreakk up the urbban

fabric. The project weakens these edges in order

to allow passage without limiting their function as

orientation aids for city dwellers.

#5
4

#5
3

T
h
e
Pr

oj
e
c
t

35

7.98

2

Default Width

Maximal Distance Crosswise

Minimum Length

Crv

1

2

3

R

M
er
ge

W

V

V
ar
ia
bl
e
W
id
th

B

W

V

V
ar
ia
bl
e
W
id
th

B

1

2

3

R

M
er
ge

2.66Width

Crv

Crv

1

2

3

R

M
er
ge

3.99Width

Crv

Crv

#5
6

#5
5

T
h
e
Pr

oj
e
c
t

R

D

C

M

D

R

D

C

A
rr
ay

R

D

M

V

B
8.1Default Depth

G
ri
d H

B
Crv

W

V

V
ar
ia
bl
e
D
ep

th

B

1

2

3

R

M
er
ge

16.2Depth

Crv

Crv

1

2
R

M
er
ge

Pln

Pln

#5
8

#5
7

T
h
e
Pr

oj
e
c
t

si
te

pl
an
,
sc
al

e
1:

25
00

#6
0

#5
9

T
h
e
Pr

oj
e
c
t

lo
we
r
le
ve
l,

sc
al

e
1:

50
0

#6
2

#6
1

T
h
e
Pr

oj
e
c
t

gr
ou
nd

le
ve
l,

sc
al

e
1:

50
0

#6
4

#6
3

T
h
e
Pr

oj
e
c
t

up
pe
r
le
ve
l,

sc
al

e
1:

50
0

#6
6

#6
5

T
h
e
Pr

oj
e
c
t

lo
we
r
le
ve
l,

sc
al

e
1:

50
0

#6
8

#6
7

T
h
e
Pr

oj
e
c
t

gr
ou
nd

le
ve
l,

sc
al

e
1:

50
0

#7
0

#6
9

T
h
e
Pr

oj
e
c
t

up
pe
r
le
ve
l,

sc
al

e
1:

50
0

#7
2

#
71

T
h
e
Pr

oj
e
c
t

tw
o-
ro
om

fl
at
,
sc

al
e
1:

50

#7
4

#7
3

T
h
e
Pr

oj
e
c
t

th
re
e-
ro
om

fl
at
,
sc

al
e
1:

50

#7
6

#7
5

T
h
e
Pr

oj
e
c
t

fo
ur
-r
oo
m
fl
at

,
sc

al
e
1:

50

#7
8

#7
7

T
h
e
Pr

oj
e
c
t

se
ct
io
n
A-
A,

sc
al

e
1:

25
0

#8
0

#7
9

T
h
e
Pr

oj
e
c
t

se
ct
io
n
B-
B,

sc
al

e
1:

25
0

#8
2

#8
1

T
h
e
Pr

oj
e
c
t

se
ct
io
n
C-
C,

sc
al

e
1:

25
0

#8
4

#8
3

T
h
e
Pr

oj
e
c
t

se
ct
io
n
D-
D,

sc
al

e
1:

25
0

#8
6

#8
5

T
h
e
Pr

oj
e
c
t

se
ct
io
n
E-
E,

sc
al

e
1:

25
0

#8
8

#8
7

T
h
e
Pr

oj
e
c
t

se
ct
io
n
F-
F,

sc
al

e
1:

25
0

#9
0

#8
9

T
h
e
Pr

oj
e
c
t

fa
ca
de

se
ct
io
n
A-

A,
sc

al
e
1:

50

#9
2

#9
1

T
h
e
Pr

oj
e
c
t

fa
ca
de

se
ct
io
n

A-
A,

sc
al

e
1:

50

#9
4

#9
3

T
h
e
Pr

oj
e
c
t

fa
ca
de

se
ct
io
n
A-

A,
sc

al
e
1:

50

#9
6

#9
5

T
h
e
Pr

oj
e
c
t

el
ev
at
io
n,

sc
al

e
1:

50

#9
8

#9
7

T
h
e
Pr

oj
e
c
t

el
ev
at
io
n,

sc
al

e
1:

50

#10
0

#9
9

T
h
e
Pr

oj
e
c
t

fa
ca
de

se
ct
io
n
B-

B,
sc

al
e
1:

50

#10
2

#1
01

T
h
e
Pr

oj
e
c
t

el
ev
at
io
n,

sc
al

e
1:

50

#10
4

#10
3

T
h
e
Pr

oj
e
c
t

el
ev
at
io
n,

sc
al

e
1:

50

#10
6

#10
5

T
h
e
Pr

oj
e
c
t

el
ev
at
io
n,

sc
al
e
1:

50

#10
8

#1
07

T
h
e
Pr

oj
e
c
t

vi
su
al
iz
at
io
n

li
vi

ng

#1
10

#10
9

T
h
e
Pr

oj
e
c
t

vi
su
al
iz
at
io
n
ci

rc
ul
at

io
n

#1
12

#1
11

T
h
e
Pr

oj
e
c
t

vi
su
al
iz
at
io
n
of
fi
ce

#113

Appendix

7. Appendix

7.1 Bibliography

1.) Introduction

Municipal Department 20 — Energy Planning;

Erker, Susanne; Cerveny, Michael; Lutter,

Johannes. Wiener Klimafahrplan: Unser Weg

zur klimagerechten Stadt. Vienna: Municipal

Administration, March 2022. https://www.wien.

gv.at/umwelt-klimaschutz/pdf/klima-fahrplan-

lang.pdf.

Municipal Department 18 — Urban Development

and Planning; Deistler, Julia; Homeier, Ina;

Lengauer, Christina; Pangerl, Eva; Rücker,

Lena; Lutter, Johannes; Cerveny, Michael;

Bartik, Herbert; Hofinger, Johannes; Veigl,

Andreas. Smart Klima City Strategie Wien: Der

Weg zur Klimamusterstadt. Vienna: Municipal

Administration, February 2022. https://

smartcity.wien.gv.at/wp-content/uploads/

sites/3/2022/03/scwr_klima_2022_web-neu.pdf.

2.) The Polycentric Region

Mitteregger, Mathias; Bruck, Emilia M.;

Soteropoulos, Aggelos; Stickler, Andrea;

Berger, Martin; Dangschat, Jens S.. AVENUE21.

Automatisierter und vernetzter Verkehr:

Entwicklungen des urbanen Europa. Berlin:

Springer Vieweg, 2020.

Czech, Hermann; Alexander, Christopher;

Ishikawa, Sara; Silverstein, Murray (Hg.).

Eine Muster-Sprache: Städte, Gebäude,

Konstruktion, 2th ed., trans. Hermann Czech.

Wien: Löcker, 2011.

Scheuvens, Rudolf; Groh, Stefan; Söpper,

Katharina; Mittringer, Kurt. “Wien:

polyzentral: Forschungsstudie zur

Zentrenentwicklung Wiens.” Werkstattbericht

Paper No 158, Municipal Department 18 —

Urban Development and Planning, Vienna, 2016.

https://www.wien.gv.at/stadtentwicklung/

studien/pdf/b008475.pdf.

Municipal Department 18 — Urban Development

and Planning; Conrad, Katharina;

Bartik, Herbert. “Mittelpunkte des

städtischen Lebens: polyzentrales Wien.”

Werkstattbericht Paper No 158, Municipal

Department 18 — Urban Development and

Planning, Vienna, 2019. https://www.wien.

gv.at/stadtentwicklung/studien/pdf/b008563.

pdf.

Forlati, Silvia; Mann, Andrea; Peer,

Christian; Steeruwitz, Lina; Vlay, Bernd;

Vögele, Heike; Zechner, Thekla. Mischung:

Possible!: Wege zur zukunftsfähigen

Nutzungsmischung, 2th ed.. Vienna: Institut

für Architektur und Entwerfen, Abteilung

Wohnbau und Entwerfen, Technische Universität

Wien, 2017. https://smartcities.at/wp-

content/uploads/sites/3/Mischung-Possible-

Auflage-2-2-5.pdf.

3.) The Productive City

Christopher Alexander. “A City is not a Tree.”

in Design After Modernism: Beyond the Object,

ed. John Thackara. New York: Thames & Hudson

Ltd, 1988.

Municipal Department 18 — Urban Development

and Planning; Rosenberger, Michael; Braumann,

Alfried; Emrich, Hans. “Produktive Stadt,”

(Werkstattbericht Paper No 171, Municipal

Department 18 — Urban Development and

Planning, Vienna, 2017), 24, https://www.wien.

gv.at/stadtentwicklung/studien/pdf/b008500a.

pdf.

4.) The Adaptable Building

Stewart Brand. How Buildings Learn: What

Happens After They’re Built. New York:

Penguin Books, 1995. https://www.kobo.com/at/

de/ebook/how-buildings-learn.

Andrea Benze, Julia Gill, and Saskia Hebert,

Serieller Wohnungsbau: Standardisierung

der Vielfalt. Berlin: Senatsverwaltung für

Stadtentwicklung und Umwelt, 2013). https://

www.stadtentwicklung.berlin.de/staedtebau/

#114

Bibliography

baukultur/iba/download/studien/IBA-Studie_

Serieller_Wohnungsbau.pdf.

Schmidt, Robert, III; Eguchi, Toru; Austin,

Simon; Gibb, Alistair. “What Is The Meaning

Of Adaptability In The Building Industry?”

Conference paper, 16th International

Conference on “Open and Sustainable

Building”: Proceedings of the international

conference jointly organized by CIB W104 –

Open Building Implementation and TECNALIA,

Bilbao, May 2010. https://www.irbnet.de/daten/

iconda/CIB17955.pdf.

Richard Roger-Bruno. ““IFD” Systems = Open

Building “Plus”.” Conference paper, 16th

International Conference on “Open and

Sustainable Building”: Proceedings of the

international conference jointly organized by

CIB W104 – Open Building Implementation and

TECNALIA, Bilbao, May 2010. https://www.irbnet.

de/daten/iconda/CIB17955.pdf.

Drexler, Hans; Almeida, Filipa; Deilmann,

Marie; Ehling, Frederik; Rehfinger, Anna;

Rüdiger, Philip von. Holz: form- und

kraftschlüssig: Entwicklung eines Voll-Holz-

Bausystems mit form- und kraftschlüssigen

geometrischen Verbindungen. Stuttgart:

Fraunhofer IRB Verlag, 2020. https://dgj.eu/

dgj/wp-content/uploads/2020/03/res022_BBSR_

HFKS_Abschlussbericht-LAYOUT-_2020.02.13_

pr_5.4.pdf.

online

3.) The Productive City

Eva Winroither. “Analyse: Warum Aspern Blau

wählte,” diepresse.com, October 13, 2015,

https://www.diepresse.com/4842937/analyse-

warum-aspern-blau-waehlte. Accessed: 13th May

2022.

4.) The Adaptable Building

“Manifesto Open Building,” OpenBuilding.

co, accessed May 10, 2022, https://www.

openbuilding.co/. Accessed: 10th March 2022.

George Kafka. “Sustainable building,

sustainable living: La Borda, Barcelona by

Lacol,” architectsjournal.co.uk, June 23,

2020, https://www.architectsjournal.co.uk/

buildings/sustainable-building-sustainable-

living-la-borda-barcelona-by-lacol. Accessed:

15th March 2022.

#115

List of Figures

7.2 List of Figures

Figures 1: The deviation of the annual mean

air temperature from the long-term average

temperature of the years 1961 to 1990 in

degrees Celsius. [Chart]. 2022. Using data

from: Municipal Department 20 — Energy

Planning; Erker, Susanne; Cerveny, Michael;

Lutter, Johannes. Wiener Klimafahrplan:

Unser Weg zur klimagerechten Stadt. Vienna:

Municipal Administration, March 2022. https://

www.wien.gv.at/umwelt-klimaschutz/pdf/klima-

fahrplan-lang.pdf. 15. Accessed: 7 April 2021

Figure 2: A visualization of the observable

climate change. [Chart]. 2022. Using data

from: Municipal Department 20 — Energy

Planning; Erker, Susanne; Cerveny, Michael;

Lutter, Johannes. Wiener Klimafahrplan:

Unser Weg zur klimagerechten Stadt. Vienna:

Municipal Administration, March 2022. https://

www.wien.gv.at/umwelt-klimaschutz/pdf/klima-

fahrplan-lang.pdf. 16. Accessed: 4 May 2021

Figure 3: The map shows the average number of

tropical nights in a year when measurements

for climate protection implemented are of low

ambition. A night counts as a tropical night

if the daily minimum temperature is not below

20 degrees. [Chart]. 2022. Using data from:

Magistrat der Stadt Wien; Berndorfer, Sylvia;

Lutter, Johannes. Wiener Hitzeaktionsplan.

Für ein cooles Wien der Zukunft. Vienna:

Municipal Administration, March 2022. https://

www.wien.gv.at/umwelt‐klimaschutz/pdf/

hitzeaktionsplan.pdf. 18. Accessed: 2 May

2022.

Figure 4: The trajectory of greenhouse gas

emissions in line with targets. [Chart]. 2022.

Using data from: Municipal Department 18 —

Urban Development and Planning; Deistler,

Julia; Homeier, Ina; Lengauer, Christina;

Pangerl, Eva; Rücker, Lena; Lutter, Johannes;

Cerveny, Michael; Bartik, Herbert; Hofinger,

Johannes; Veigl, Andreas. Smart Klima City

Strategie Wien: Der Weg zur Klimamusterstadt.

Vienna: Municipal Administration, February

2022. https://smartcity.wien.gv.at/wp-content/

uploads/sites/3/2022/03/scwr_klima_2022_web-

neu.pdf. 16 Accessed: 2 May 2022.

Figure 5: The contributors to global

greenhouse gas emissions in 2016. [Chart].

2022. Using data from: Municipal Department

20 — Energy Planning; Erker, Susanne;

Cerveny, Michael; Lutter, Johannes. Wiener

Klimafahrplan: Unser Weg zur klimagerechten

Stadt. Vienna: Municipal Administration,

March 2022. https://www.wien.gv.at/umwelt-

klimaschutz/pdf/klima-fahrplan-lang.pdf. 14.

Accessed: 2 May 2022.

Figure 6: The pedestrian city around 1850.

The half-hour radius on foot can be seen.

[Chart]. 2022. Using data from: Scheuvens,

Rudolf; Groh, Stefan; Söpper, Katharina;

Mittringer, Kurt. “Wien: polyzentral:

Forschungsstudie zur Zentrenentwicklung

Wiens.” Werkstattbericht Paper No 158,

Municipal Department 18 — Urban Development

and Planning, Vienna, 2016. https://www.wien.

gv.at/stadtentwicklung/studien/pdf/b008475.

pdf. 16. Accessed: 2 May 2022.

Figure 7: The tram city around 1910. The

half-hour radius by the tramway can be seen.

[Chart]. 2022. Using data from: Scheuvens,

Rudolf; Groh, Stefan; Söpper, Katharina;

Mittringer, Kurt. “Wien: polyzentral:

Forschungsstudie zur Zentrenentwicklung

Wiens.” Werkstattbericht Paper No

158, Municipal Department 18 — Urban

Development and Plann O__ROK_212_OEROK‐

BevPrognose_2021‐2050 ing, Vienna, 2016.

https://www.wien.gv.at/stadtentwicklung/

studien/pdf/b008475.pdf. 16. Accessed: 2 May

2022.

#116

List of Figures

Figure 8: The car city around 1970. The half-

hour radius by car can be seen. [Chart]. 2022.

Using data from: Scheuvens, Rudolf; Groh,

Stefan; Söpper, Katharina; Mittringer, Kurt.

“Wien: polyzentral: Forschungsstudie zur

Zentrenentwicklung Wiens.” Werkstattbericht

Paper No 158, Municipal Department 18 —

Urban Development and Planning, Vienna, 2016.

https://www.wien.gv.at/stadtentwicklung/

studien/pdf/b008475.pdf. 17. Accessed: 2 May

2022.

Figure 9: The walkable city in 2015.

Continuing to build the city of short

distances. [Chart]. 2022. Using data

from: Scheuvens, Rudolf; Groh, Stefan;

Söpper, Katharina; Mittringer, Kurt.

“Wien: polyzentral: Forschungsstudie zur

Zentrenentwicklung Wiens.” Werkstattbericht

Paper No 158, Municipal Department 18 —

Urban Development and Planning, Vienna, 2016.

https://www.wien.gv.at/stadtentwicklung/

studien/pdf/b008475.pdf. 16. Accessed: 2 May

2022.

Figure 10: The Viennese spatial model of

the polycentric urban structure. [Chart].

2022. Using data from: Municipal Department

18 — Urban Development and Planning; Conrad,

Katharina; Bartik, Herbert. “Mittelpunkte

des städtischen Lebens: polyzentrales Wien.”

Werkstattbericht Paper No 158, Municipal

Department 18 — Urban Development and

Planning, Vienna, 2019. https://www.wien.

gv.at/stadtentwicklung/studien/pdf/b008563.

pdf. 32. Accessed: 2 May 2022.

Figure 11: Possible spatial principles by

which non-residential uses are distributed.

[Chart]. 2022. Using data from: Forlati,

Silvia; Mann, Andrea; Peer, Christian;

Steeruwitz, Lina; Vlay, Bernd; Vögele, Heike;

Zechner, Thekla. Mischung: Possible!: Wege

zur zukunftsfähigen Nutzungsmischung, 2th

ed.. Vienna: Institut für Architektur und

Entwerfen, Abteilung Wohnbau und Entwerfen,

Technische Universität Wien, 2017. https://

smartcities.at/wp-content/uploads/sites/3/

Mischung-Possible-Auflage-2-2-5.pdf. 97-100.

Accessed: 2 May 2022.

Figure 12: Population development in the

age group 20 to 64 years from 2021 to

2050. [Chart]. 2022. Using data from:

Geschäftsstelle der Österreichischen

Raumordnungskonferenz (ÖROK). “ÖROK-

Regionalprognosen 2021 BIS 2050: Bevölkerung”

Schriftenreihe 212, Österreichische

Raumordnungskonferenz (ÖROK), Vienna, April

2022. https://www.oerok.gv.at/fileadmin/user_

upload/publikationen/Schriftenreihe/212/O__

ROK_212_OEROK-BevPrognose_2021-2050.pdf. 27.

Accessed: 2 May 2022.

Figure 13: Building 20, 18 Vassar Street

in Cambridge, Boston. [digital Image]

Retrieved from: https://blog.se.com/building-

management/2015/06/16/designing-healthcare-

facilities-with-change-in-mind/. Accessed: 2

May 2022.

Figure 14: Stewart Brands Shearing Layers

[digital Image] Retrieved from: https://

www.archdaily.com/965934/the-shape-of-our-

existing-buildings/61025facf91c81518e000146-

the-shape-of-our-existing-buildings-image.

Accessed: 2 May 2022.

Figure 15 & Figure 16: Settlers Self-Build

Housing, IBA Hamburg 2013, BeL & Basic

Construction, IBA Hamburg 2013, BeL [digital

Image] Retrieved from: https://bel.cx/

projects/. Accessed: 2 May 2022.

#117

List of Figures

Figure 17: Different approaches towards

adaptable design. [Chart] 2022. Using

data from: Schmidt, Robert, III; Eguchi,

Toru; Austin, Simon; Gibb, Alistair. “What

Is The Meaning Of Adaptability In The

Building Industry?” Conference paper, 16th

International Conference on “Open and

Sustainable Building”: Proceedings of the

international conference jointly organized by

CIB W104 – Open Building Implementation and

TECNALIA, Bilbao, May 2010. https://www.irbnet.

de/daten/iconda/CIB17955.pdf. 4. Accessed: 2

May 2022.

Figure 18: flexibility versus prefabrication.

[Chart] 2022. Using data from: Drexler,

Hans; Almeida, Filipa; Deilmann, Marie;

Ehling, Frederik; Rehfinger, Anna; Rüdiger,

Philip von. Holz: form- und kraftschlüssig:

Entwicklung eines Voll-Holz-Bausystems mit

form- und kraftschlüssigen geometrischen

Verbindungen. Stuttgart: Fraunhofer IRB

Verlag, 2020. https://dgj.eu/dgj/wp-

content/uploads/2020/03/res022_BBSR_HFKS_

Abschlussbericht-LAYOUT-_2020.02.13_pr_5.4.pdf.

15. Accessed: 2 May 2022.

Figure 19 & 20: La Borda social housing

complex in Barcelona, Lacol arquitectura

cooperativa, A & B. [digital Image] Retrieved

from: https://www.lacol.coop/projectes/

laborda/. Accessed: 2 May 2022.

Figure 21: Volkswagen AG financed the

former CargoTram in Dresden. [digital Image]

Retrieved from: https://www.tag24.de/dresden/

lokales/verwirrung-um-aus-fuer-die-cargotram-

durfte-die-glaeserne-manufaktur-nur-gebaut-

werden-weil-es-die-blauen-bahnen-gab-1767130.

Accessed: 2 May 2022.

Figure 22: The freight tramway in Amsterdam

is loaded. [digital Image] Retrieved

from: https://www.flickr.com/photos/

tramlijn30/8598873661. Accessed: 2 May 2022.

Figure 23: The Streetscooter model drives

electric and can be configured by start-

ups as desired. [digital Image] Retrieved

from: https://www.gegenheit.de/portfolio/uze-

mobility-gmbh/. Accessed: 2 May 2022.

Figure 24 & 25: The cargo vessel Zulu is fully

powered by hydrogen and is set to operate

on the Seine in Paris. A & B. [digital Image]

Retrieved from: https://www.fleetmon.com/

vessels/zulu-06_0_8865954/?language=fr.

Accessed: 2 May 2022.

Figure 26: The EAV’s cargo bike is used to

operate on the last mile in the transport and

delivery sector. [digital Image] Retrieved

from: https://twitter.com/k4rgo?lang=bn.

Accessed: 2 May 2022.

Figure 27: In this diagram, the higher-

ranking road network, tram tracks, train

tracks, and waterways are considered as

a supply network used to transport goods

without emissions. The signs mark potential

sites for last-mile logistic hubs. [Chart].

2022. Using data from: Neuhaus, Markus.

Strategiepfad für ein Urbanes Logistik-System

Wien. Handlungsoptionen zur Reduzierung

von CO2-Emissionen des Straßengüterverkehrs

in Wien 2030. Diplomarbeit. TU Vienna,

Faculty of Architecture and Planning,

Wien, 2019. https://repositum.tuwien.at/

handle/20.500.12708/10490. 94. zuletzt geprüft

am 21.02.2021. Accessed: 2 May 2022.

Figure 28: Distribution of public places in

the urban fabric. [Chart]. 2022. Using data

from: https://www.data.gv.at/. Accessed: 2 May

2022.

Figure 29: Urban space edges break up the

urban fabric. The project weakens these

edges in order to allow passage without

limiting their function as orientation aids

for city dwellers. [Chart]. 2022. Using data

from: https://www.data.gv.at/. Accessed: 2 May

2022.

#118

List of Figures

Listing 1: CreateLinearArrayGhc

1 using Grasshopper.Kernel;
2 using Grasshopper.Kernel.Data;
3 using Grasshopper.Kernel.Types;
4 using Rhino.Geometry;
5

6 using System;
7 using System.Collections.Generic;
8

9

10 namespace FlexibleGrid.Array
11 {
12 public class CreateLinearArrayGhc : GH_Component
13 {
14 /// <summary>
15 /// Initializes a new instance of the MyComponent1 class.
16 /// </summary>
17 public CreateLinearArrayGhc()
18 : base("Array", "Array",
19 "This component provides an array by subdividing lines presented.",
20 "Flexible Grid", "Array")
21 {
22 }
23

24 /// <summary>
25 /// Registers all the input parameters for this component.
26 /// </summary>
27 protected override void RegisterInputParams(GH_Component.GH_InputParamManager

pManager)
28 {
29 pManager.AddCurveParameter("Rail Curves", "R", "Segmented rail curves

which are used to generate an array. " +
30 "Each linear rail curve has to have a length of its associated width x

2, or if shorter, " +
31 "it has to be divisible by its associated width evenly. ",

GH_ParamAccess.list);
32 pManager.AddNumberParameter("Default Width", "D", "Default width of one

structural module.", GH_ParamAccess.item);
33 pManager.AddNumberParameter("Maximal Distance Crosswise", "C", "The

maximal distance crosswise of which splitting the linear base curve
affects adjacent segments.", GH_ParamAccess.item);

34 pManager.AddNumberParameter("Minimum Length", "M", "No linear rail curve
is subdivided if one of the resulting halves would be shorter than the
factor minimum length x associated width." +

35 "The factor minimum length has to be at least 2.", GH_ParamAccess.item);
36 pManager.AddGenericParameter("Variations Width", "D", "Variations of the

width regarding the default structural module.", GH_ParamAccess.list);
37 }
38

39 /// <summary>
40 /// Registers all the output parameters for this component.
41 /// </summary>
42 protected override void RegisterOutputParams(GH_Component.

GH_OutputParamManager pManager)
43 {
44 pManager.AddCurveParameter("Rail Curves Subdivided", "R", "Rail curves are

subdivided according to a set of rules.", GH_ParamAccess.list);
45 pManager.AddPlaneParameter("Linear Array", "L", "Linear array presented as

an array of perpendicular frames.", GH_ParamAccess.tree);
46 pManager.AddPlaneParameter("Extracted Frames", "E", "Frames extracted.",

1

7.3 Source code

#119

Source code

GH_ParamAccess.tree);
47 }
48

49 /// <summary>
50 /// This is the method that actually does the work.
51 /// </summary>
52 /// <param name="DA">The DA object is used to retrieve from inputs and store

in outputs.</param>
53 protected override void SolveInstance(IGH_DataAccess DA)
54 {
55 List<Curve> iLines = new List<Curve>();
56 double iDefaultWidth = double.NaN;
57 double iMaximalDistanceCrosswise = double.NaN;
58 double iMinimumLength = double.NaN;
59 List<GH_ObjectWrapper> iVariationsWidth = new List<GH_ObjectWrapper>();
60

61

62 if (!DA.GetDataList(0, iLines)) { return; }
63 if (!DA.GetData(1, ref iDefaultWidth)) { return; }
64 if (!DA.GetData(2, ref iMaximalDistanceCrosswise)) { return; }
65 if (!DA.GetData(3, ref iMinimumLength)) { return; }
66 DA.GetDataList(4, iVariationsWidth);
67

68

69 var linearArray = new FlexibleGrid.Array.Array
70 (iLines, iDefaultWidth, iMaximalDistanceCrosswise, iMinimumLength,

iVariationsWidth);
71

72

73 // test if each provided segement is valid
74 foreach (Curve pathCrv in iLines)
75 {
76 if (!pathCrv.IsValid)
77 {
78 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,
79 "At least one segment is not valid.");
80 return;
81 }
82 }
83

84

85 // test if paths do intersect
86 if (iLines.Count >= 1)
87 {
88 FlexibleGrid.Misc.Analyze intersect = new FlexibleGrid.Misc.Analyze();
89 if (intersect.TestIfCrvsIntersect(iLines))
90 {
91 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,
92 "Parts of rail curves do intersect.");
93 return;
94 }
95 }
96

97

98 // test if each line sufficient in its length
99 if (linearArray.Lines.Count >= 1)

100 {
101 if (!linearArray.TestIfRailCurveIsTooShort())
102 {
103 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,

2

#120

Source code

104 "At least one linear rail curve is shorter than its associated
width x 2 and simultaneously not evenly divisible by its

associated width.");
105 return;
106 }
107 }
108

109

110 // group lines
111 if (linearArray.Lines.Count >= 1)
112 {
113 if (!linearArray.GroupParallelLines())
114 {
115 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,
116 "Lines could not be grouped.");
117 return;
118 }
119 }
120

121

122 // subdivide lines
123 if (linearArray.LinesParallel.PathCount >= 1)
124 {
125 if (!linearArray.SubdivideLines())
126 {
127 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,
128 "Lines could not be subdivided.");
129 return;
130 }
131 }
132

133

134 // get section points of linear paths
135 if (linearArray.LinesParallel.PathCount >= 1)
136 {
137 if (!linearArray.GetLinearSectionPts())
138 {
139 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,
140 "Section points could not be retrieved, because at least one

line subdivided is not evenly divisible by its associated
width.");

141 return;
142 }
143 }
144

145

146 // get perp frames
147 if (linearArray.SectionPts.Count >= 1)
148 {
149 if (!linearArray.GetPerpFrames())
150 {
151 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,
152 "Perp Frames could not be created.");
153 return;
154 }
155 }
156

157

158 // get reference points
159 if (linearArray.PerpFrames.PathCount >= 1)

3

#121

Source code

160 {
161 if (!linearArray.GetReferencePts())
162 {
163 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,
164 "Exceptions are spotted. two possible reasons: first path

segment is too short to be subdivided and has not a
divisible length without remainder.");

165 return;
166 }
167 }
168

169

170 DA.SetDataList(0, linearArray.LinesSubdivided);
171 DA.SetDataTree(1, linearArray.PerpFrames);
172 DA.SetDataTree(2, linearArray.ExtractedFrames);
173

174 }
175

176 /// <summary>
177 /// Provides an Icon for the component.
178 /// </summary>
179 protected override System.Drawing.Bitmap Icon
180 {
181 get
182 {
183 //You can add image files to your project resources and access them

like this:
184 // return Resources.IconForThisComponent;
185 return null;
186 }
187 }
188

189 /// <summary>
190 /// Gets the unique ID for this component. Do not change this ID after release

.
191 /// </summary>
192 public override Guid ComponentGuid
193 {
194 get { return new Guid("419fdf6c-96b0-462f-884b-fcb37619c778"); }
195 }
196 }
197 }

4

#122

Source code

Listing 2: VaryWidthStructuralModuleGhc

1 using System;
2 using System.Collections.Generic;
3

4 using Grasshopper.Kernel;
5 using Rhino.Geometry;
6

7 namespace FlexibleGrid.Array
8 {
9 public class VaryWidthStructuralModuleGhc : GH_Component

10 {
11 /// <summary>
12 /// Initializes a new instance of the MyComponent1 class.
13 /// </summary>
14 public VaryWidthStructuralModuleGhc()
15 : base("Varying Width", "Varying Width",
16 "This component introduces a variation of a structural modules width.",
17 "Flexible Grid", "Array")
18 {
19 }
20

21 /// <summary>
22 /// Registers all the input parameters for this component.
23 /// </summary>
24 protected override void RegisterInputParams(GH_Component.GH_InputParamManager

pManager)
25 {
26 pManager.AddNumberParameter("Width", "W", "Width of one structural module.

", GH_ParamAccess.item);
27 pManager.AddCurveParameter("Boundaries", "B", "Planar polyline as

delimitation for a variation of the default width of one structural
module.", GH_ParamAccess.list);

28 }
29

30 /// <summary>
31 /// Registers all the output parameters for this component.
32 /// </summary>
33 protected override void RegisterOutputParams(GH_Component.

GH_OutputParamManager pManager)
34 {
35 pManager.AddGenericParameter("Variation Width", "V", "Deviated width of

the default width of one structural module.", GH_ParamAccess.item);
36 }
37

38 /// <summary>
39 /// This is the method that actually does the work.
40 /// </summary>
41 /// <param name="DA">The DA object is used to retrieve from inputs and store

in outputs.</param>
42 protected override void SolveInstance(IGH_DataAccess DA)
43 {
44 var iWidth = double.NaN;
45 List<Rhino.Geometry.Curve> iBoundaryCrvs = new List<Rhino.Geometry.Curve

>();
46 if (!DA.GetData(0, ref iWidth)) { return; }
47 if (!DA.GetDataList(1, iBoundaryCrvs)) { return; }
48

49 // test if each boundary curve is planar and closed
50 foreach (Curve boundary in iBoundaryCrvs)
51 {

5

#123

Source code

52 if (!boundary.IsClosed || !boundary.IsPlanar())
53 {
54 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,
55 "At least one boundary curve is not closed or planar.");
56 return;
57 }
58

59 }
60

61 // define size array
62 int countCorners = 0;
63 foreach (Curve curve in iBoundaryCrvs)
64 {
65 List<Point3d> cornerPts = new List<Point3d>();
66 var kinks = new FlexibleGrid.Misc.Analyze();
67 cornerPts = kinks.GetDiscontinuitys(curve);
68 countCorners += cornerPts.Count;
69 countCorners += 1;
70 }
71

72 /*___________________________________
73 * COMPOSITION OF ABSTRACT DATA ARRAY
74 * __________________________________
75 * 1.) 2.) 3.)
76 * width int.MaxValue int.MaxValue
77 * position x position y position z => coordinates of

first corner point
78 * position x position y position z => coordinates of

second corner point
79 * ...
80 * int.MaxValue int.MaxValue int.MaxValue => marking for the

start of a new boundary curve
81 * position x position y position z => coordinates of

first corner point
82 * position x position y position z => coordinates of

second corner point
83 * ...
84 * int.MaxValue int.MaxValue int.MaxValue => end of array
85 */
86

87 // initialize array
88 var abstractData = new double[countCorners + 1, 3];
89 for (int i = 0; i < abstractData.GetLength(0); i++)
90 {
91 for (int j = 0; j < abstractData.GetLength(1); j++)
92 {
93 abstractData[i, j] = int.MaxValue;
94 }
95 }
96

97 // pass on span width
98 abstractData[0, 0] = iWidth;
99

100 // pass on corner points of boundary curve
101

102 int u = 0;
103 foreach (Curve curve in iBoundaryCrvs)
104 {
105 List<Point3d> cornerPts = new List<Point3d>();
106 var kinks = new FlexibleGrid.Misc.Analyze();

6

#124

Source code

107 cornerPts = kinks.GetDiscontinuitys(curve);
108

109 for (int i = 0; i < cornerPts.Count; i++)
110 {
111 abstractData[u + 1, 0] = cornerPts[i].X;
112 abstractData[u + 1, 1] = cornerPts[i].Y;
113 abstractData[u + 1, 2] = cornerPts[i].Z;
114 u++;
115 }
116

117 // empty line as marker for the begin of a new boundary curve
118 u++;
119 }
120

121 // output abstract data array
122 var oAbstractData = new Grasshopper.Kernel.Types.GH_ObjectWrapper(

abstractData);
123 DA.SetData(0, oAbstractData);
124 }
125

126 /// <summary>
127 /// Provides an Icon for the component.
128 /// </summary>
129 protected override System.Drawing.Bitmap Icon
130 {
131 get
132 {
133 //You can add image files to your project resources and access them

like this:
134 // return Resources.IconForThisComponent;
135 return null;
136 }
137 }
138

139 /// <summary>
140 /// Gets the unique ID for this component. Do not change this ID after release

.
141 /// </summary>
142 public override Guid ComponentGuid
143 {
144 get { return new Guid("6886c783-03e0-4d7c-b370-05dd259a8f84"); }
145 }
146 }
147 }

7

#125

Source code

Listing 3: Array

1 using Grasshopper.Kernel;
2 using Grasshopper.Kernel.Data;
3 using Grasshopper.Kernel.Types;
4 using Rhino.Geometry;
5

6 using System;
7 using System.Collections.Generic;
8

9 namespace FlexibleGrid.Array
10 {
11 class Array
12 {
13 private double _tolerance = 0.00001;
14 public GH_Structure<GH_Plane> ExtractedFrames { get; private set; }
15 public GH_Structure<GH_Curve> LinesParallel { get; private set; }
16 public List<Curve> LinesSubdivided { get; private set; }
17 public List<Curve> Lines { get; private set; }
18 public GH_Structure<GH_Plane> PerpFrames { get; private set; }
19 public List<Point3d> SectionPts { get; private set; }
20 public double DefaultWidth { get; private set; }
21 public List<double> VariationsWidth { get; private set; }
22 public List<Rhino.Geometry.PolylineCurve> VaryingWidthsBoundaryCrvs { get;

private set; }
23 public double MaximalDistanceCrosswise { get; private set; }
24 public double MinimumLength { get; private set; }
25 FlexibleGrid.Array.ArrayMethods library = new FlexibleGrid.Array.ArrayMethods

();
26

27

28 public Array(List<Curve> lines, double defaultWidth, double
maximalDistanceCrosswise, double minimumLength, List<GH_ObjectWrapper>
variationsWidth)

29 {
30 this.DefaultWidth = defaultWidth;
31 ExtractedFrames = new GH_Structure<GH_Plane>();
32 this.Lines = lines;
33 LinesSubdivided = new List<Curve>();
34 LinesParallel = new GH_Structure<GH_Curve>();
35 PerpFrames = new GH_Structure<GH_Plane>();
36 SectionPts = new List<Point3d>();
37 VariationsWidth = new List<double>();
38 VaryingWidthsBoundaryCrvs = new List<PolylineCurve>();
39 this.MaximalDistanceCrosswise = maximalDistanceCrosswise;
40 this.MinimumLength = minimumLength;
41

42 // unwrap array
43 foreach (GH_ObjectWrapper variation in variationsWidth)
44 {
45 var dataAbstract = variation.Value as double[,];
46

47 List<Point3d> cornerPts = new List<Point3d>();
48 for (int i = 1; i < dataAbstract.GetLength(0); i++)
49 {
50 if (dataAbstract[i, 0] != int.MaxValue && dataAbstract[i, 1] !=

int.MaxValue)
51 {
52 cornerPts.Add(new Point3d(dataAbstract[i, 0], dataAbstract[i,

1], dataAbstract[i, 2]));
53 }

8

#126

Source code

54

55 else
56 {
57 VariationsWidth.Add(dataAbstract[0, 0]);
58 VaryingWidthsBoundaryCrvs.Add(new Rhino.Geometry.PolylineCurve

(cornerPts));
59 cornerPts.Clear();
60 }
61 }
62 }
63 }
64

65

66 public bool TestIfRailCurveIsTooShort()
67 {
68 for (int i = 0; i < Lines.Count; i++)
69 {
70 double width = library.GetAssociatedWidth(Lines[i], DefaultWidth,

VaryingWidthsBoundaryCrvs, VariationsWidth);
71 double crvLength = Lines[i].GetLength();
72 double remainder = Math.Round(crvLength % width, 5);
73 if (crvLength < MinimumLength * width)
74 {
75 if (remainder != width && remainder != 0)
76 {
77 return false;
78 }
79 }
80 }
81 return true;
82 }
83

84

85 public bool GroupParallelLines()
86 {
87 try
88 {
89 List<Vector3d> sharedTangents = new List<Vector3d>();
90 for (int i = 0; i < Lines.Count; i++)
91 {
92 Vector3d tangent = Lines[i].TangentAtStart;
93 tangent.Unitize();
94

95 bool existing = false;
96 for (int j = 0; j < sharedTangents.Count; j++)
97 {
98 Vector3d crossProduct = new Vector3d(sharedTangents[j].Y *

tangent.Z - sharedTangents[j].Z * tangent.Y,
99 sharedTangents[j].Z * tangent.X - sharedTangents[j].X *

tangent.Z,
100 sharedTangents[j].X * tangent.Y - sharedTangents[j].Y *

tangent.X);
101 if (crossProduct.Length < _tolerance)
102 {
103 LinesParallel.Append(new GH_Curve(Lines[i]), new GH_Path(j

));
104 existing = true;
105 break;
106 }
107 }

9

#127

Source code

108

109 if (!existing)
110 {
111 LinesParallel.Append(new GH_Curve(Lines[i]), new GH_Path(

sharedTangents.Count));
112 sharedTangents.Add(tangent);
113 }
114 }
115 return true;
116 }
117 catch
118 { return false; }
119 }
120

121

122 // subdivide lines
123

124 /*
125 Each iteration, a line is picked to begin the subdivision process with.
126 This line has the highest position in the z-direction and is the shortest

amongst all lines sharing this position.
127 After splitting this line at its midpoint, each half is extended
128 by the remainder of its length divided by its associated width, and a

perpendicular frame is generated.
129 Now each remaining line is subdivided if there is an intersection event with

the perpendicular frame.
130 If so, the line is split at the point of intersection
131 and is extended by the same amount as the line picked to start the subdivision

process with.
132 Further rules will be introduced.
133 */
134 public bool SubdivideLines()
135 {
136 try
137 {
138 for (int i = 0; i < LinesParallel.PathCount; i++)
139 {
140 List<Curve> linesToProcess = new List<Curve>();
141

142 var list = LinesParallel.Branches[i];
143 for (int j = 0; j < list.Count; j++)
144 {
145 linesToProcess.Add(list[j].Value);
146 }
147

148 while (linesToProcess.Count != 0)
149 {
150 Curve lineToStartSubdivisionProcessWith = null;
151 Plane planeOfIntersection;
152

153 // remove lines that have been processed
154 for (int u = linesToProcess.Count - 1; u >= 0; u--)
155 {
156 double width = library.GetAssociatedWidth(linesToProcess[u

], DefaultWidth, VaryingWidthsBoundaryCrvs,
VariationsWidth);

157

158 if (Math.Round(linesToProcess[u].GetLength() % width, 5)
== 0

159 || Math.Round(linesToProcess[u].GetLength() % width,

10

#128

Source code

5) == width)
160 {
161 LinesSubdivided.Add(linesToProcess[u]);
162 linesToProcess.RemoveAt(u);
163 if (linesToProcess.Count == 0) goto Finish;
164 }
165 }
166

167 // sort rail curves in descending order by their position
along the z-axis

168 FlexibleGrid.Misc.Sort sort = new FlexibleGrid.Misc.Sort();
169 List<double> zPos = new List<double>();
170 foreach (Curve line in linesToProcess)
171 {
172 zPos.Add(line.PointAtStart.Z);
173 }
174 sort.BubbleSort(ref zPos, ref linesToProcess);
175 linesToProcess.Reverse();
176 lineToStartSubdivisionProcessWith = linesToProcess[0];
177

178 // rail curve at index 0 is the rail curve to start the
subdivision process with,

179 // except a shorter rail curve at the same position along the
z-axis can be found

180 bool shorterLineToStartSubdivisionProcessWithFound = false;
181 int x = 0;
182 if (linesToProcess.Count > 1)
183 {
184 for (int u = 1; u < linesToProcess.Count; u++)
185 {
186 if (linesToProcess[u].GetLength() < linesToProcess[0].

GetLength()
187 && Math.Round(linesToProcess[u].PointAtStart.Z

, 5) == Math.Round(linesToProcess[0].
PointAtStart.Z, 5))

188 {
189 x = u;
190 lineToStartSubdivisionProcessWith = linesToProcess

[u];
191 shorterLineToStartSubdivisionProcessWithFound =

true;
192 }
193 }
194 }
195 if (!shorterLineToStartSubdivisionProcessWithFound)

linesToProcess.RemoveAt(0);
196 if (shorterLineToStartSubdivisionProcessWithFound)

linesToProcess.RemoveAt(x);
197

198 // get plane of intersection at the midpoint of picked rail
curve to start subdivision process with

199 double[] t = lineToStartSubdivisionProcessWith.DivideByCount
(2, false);

200 Point3d midpoint = lineToStartSubdivisionProcessWith.PointAt(t
[0]);

201 Vector3d tangent = new Vector3d(
lineToStartSubdivisionProcessWith.TangentAt(t[0]));

202 planeOfIntersection = new Plane(midpoint, tangent);
203

204 // start subdivision process

11

#129

Source code

205 List<Curve> linesProcessed = new List<Curve>();
206 List<Curve> linesSubdivided = new List<Curve>();
207

208 linesProcessed = library.SubdivideLines(
lineToStartSubdivisionProcessWith, linesToProcess, ref
linesSubdivided, planeOfIntersection,

209 MaximalDistanceCrosswise, MinimumLength, DefaultWidth,
VaryingWidthsBoundaryCrvs, VariationsWidth);

210

211 linesToProcess.Clear();
212 foreach (Curve line in linesSubdivided) LinesSubdivided.Add(

line);
213 foreach (Curve line in linesProcessed) linesToProcess.Add(line

);
214 }
215 }
216 Finish:
217 return true;
218 }
219 catch { return false; }
220 }
221

222

223 public bool GetLinearSectionPts()
224 {
225 try
226 {
227 for (int i = 0; i < LinesSubdivided.Count; i++)
228 {
229 // get width
230 double width = library.GetAssociatedWidth(LinesSubdivided[i],

DefaultWidth, VaryingWidthsBoundaryCrvs, VariationsWidth);
231 // test if curve length is evenly divisible by its associated

width
232 if (LinesSubdivided[i].GetLength() % width < _tolerance
233 || Math.Round(LinesSubdivided[i].GetLength() % width, 5) ==

width)
234 {
235 double[] t = LinesSubdivided[i].DivideByCount((int)Math.Round

((LinesSubdivided[i].GetLength() / width)), true);
236 foreach (double parameter in t) SectionPts.Add(LinesSubdivided

[i].PointAt(parameter));
237 }
238 else return false;
239 }
240 return true;
241 }
242 catch { return false; }
243 }
244

245

246 public bool GetPerpFrames()
247 {
248 try
249 {
250 for (int i = 0; i < Lines.Count; i++)
251 {
252 // extract section points which are lying on the path curve
253 List<Point3d> extractedSectionPts = new List<Point3d>();
254 for (int j = 0; j < SectionPts.Count; j++)

12

#130

Source code

255 {
256 double t;
257 Lines[i].ClosestPoint(SectionPts[j], out t);
258 if (SectionPts[j].DistanceTo(Lines[i].PointAt(t)) < _tolerance

) extractedSectionPts.Add(SectionPts[j]);
259 }
260

261 if (extractedSectionPts.Count == 0) return false;
262

263 // delete duplicates
264 Restart:
265 for (int u = 0; u < extractedSectionPts.Count - 1; u++)
266 {
267 for (int v = u + 1; v < extractedSectionPts.Count; v++)
268 {
269 if (extractedSectionPts[u].DistanceTo(extractedSectionPts[

v]) < _tolerance)
270 {
271 extractedSectionPts.RemoveAt(v);
272 goto Restart;
273 }
274 }
275 }
276

277 // sort points
278 List<double> crvParameters = new List<double>();
279 foreach (Point3d pt in extractedSectionPts)
280 {
281 double temp;
282 Lines[i].ClosestPoint(pt, out temp);
283 crvParameters.Add(temp);
284 }
285

286 FlexibleGrid.Misc.Sort sort = new FlexibleGrid.Misc.Sort();
287 sort.BubbleSort(ref crvParameters);
288

289 // get perp frames
290 if (true)
291 {
292 GH_Path temp = new GH_Path(i);
293 foreach (double t in crvParameters)
294 {
295 Point3d origin = new Point3d(Lines[i].PointAt(t));
296 Vector3d tangent = new Vector3d(Lines[i].TangentAt(t));
297 if (tangent.Rotate(90 * (Math.PI / 180), new Vector3d(0,

0, 1)))
298 {
299 PerpFrames.Append(new GH_Plane(new Plane(origin,

tangent, new Vector3d(0, 0, 1))), temp);
300 }
301 }
302 }
303 }
304 return true;
305 }
306 catch { return false; }
307 }
308

309

310 public bool GetReferencePts()

13

#131

Source code

311 {
312 try
313 {
314 for (int i = 0; i < PerpFrames.PathCount; i++)
315 {
316 List<Plane> extractedFrames = new List<Plane>();
317 List<Plane> PlaneArray = new List<Plane>();
318 var temp = PerpFrames.Branches[i];
319

320 foreach (GH_Plane plane in temp)
321 {
322 Plane rc_plane = new Plane();
323 if (GH_Convert.ToPlane(plane, ref rc_plane, GH_Conversion.Both

))
324 PlaneArray.Add(rc_plane);
325 }
326

327 // get for branch existing variations of width
328 // get associated rail curve
329 List<double> existingVariationsWidth = new List<double>();
330 Curve railCurve = Lines[i];
331 double[] t = railCurve.DivideByCount(500, true);
332 for (int j = 0; j < t.GetLength(0); j++)
333 {
334 Point3d ptToTest = railCurve.PointAt(t[j]);
335 double width = library.GetAssociatedWidth(ptToTest,

DefaultWidth, VaryingWidthsBoundaryCrvs, VariationsWidth);
336

337 // test if width already exists
338 // if not add to list
339 bool exists = false;
340 foreach (double storedWidth in existingVariationsWidth)
341 {
342 if (width == storedWidth) exists = true;
343 }
344 if (!exists) existingVariationsWidth.Add(width);
345 }
346

347 extractedFrames = library.GetReferencePts(PlaneArray,
existingVariationsWidth);

348

349 // reinsert output
350 // convert
351 GH_Path path = new GH_Path(i);
352 List<GH_Plane> convertedFrames = new List<GH_Plane>();
353 foreach (Plane plane in extractedFrames) convertedFrames.Add(new

GH_Plane(plane));
354 ExtractedFrames.AppendRange(convertedFrames, path);
355 }
356 return true;
357 }
358 catch { return false; }
359 }
360

361

362 }
363 }

14

#132

Source code

Listing 4: ArrayMethods

1 using Grasshopper.Kernel;
2 using Grasshopper.Kernel.Data;
3 using Grasshopper.Kernel.Types;
4 using Rhino.Geometry;
5

6 using System;
7 using System.Collections.Generic;
8

9 namespace FlexibleGrid.Array
10 {
11 class ArrayMethods
12 {
13 private double _tolerance = 0.00001;
14

15

16 public double GetAssociatedWidth(Curve railCurveToTest, double defaultWidth,
List<PolylineCurve> varyingWidthBoundaries, List<double> variationsWidth)

17 {
18 if (varyingWidthBoundaries.Count > 0)
19 {
20 double[] t = railCurveToTest.DivideByCount(2, false);
21 Point3d midPt = railCurveToTest.PointAt(t[0]);
22 var groundPlane = new Plane(new Point3d(0, 0, 0), new Vector3d(0, 0,

1));
23 for (int i = 0; i < varyingWidthBoundaries.Count; i++)
24 {
25 PointContainment isContained = varyingWidthBoundaries[i].Contains(

midPt, groundPlane, 0.01);
26 if ((int)isContained == 1 && midPt.Z >= varyingWidthBoundaries[i].

PointAtStart.Z - _tolerance)
27 {
28 return variationsWidth[i];
29 }
30 }
31 return defaultWidth;
32 }
33 else return defaultWidth;
34 }
35

36

37 public double GetAssociatedWidth(Point3d ptToTest, double defaultWidth, List<
PolylineCurve> varyingWidthBoundaries, List<double> variationsWidth)

38 {
39 if (varyingWidthBoundaries.Count > 0)
40 {
41 var groundPlane = new Plane(new Point3d(0, 0, 0), new Vector3d(0, 0,

1));
42 for (int i = 0; i < varyingWidthBoundaries.Count; i++)
43 {
44 PointContainment isContained = varyingWidthBoundaries[i].Contains(

ptToTest, groundPlane, 0.01);
45 if ((int)isContained == 1 && ptToTest.Z >= varyingWidthBoundaries[

i].PointAtStart.Z - _tolerance)
46 {
47 return variationsWidth[i];
48 }
49 }
50 return defaultWidth;
51 }

15

#133

Source code

52 else return defaultWidth;
53 }
54

55

56 public List<Plane> GetReferencePts(List<Plane> perpFrames, List<double>
existingVariationsWidth)

57 {
58 // step 1:
59 // include all points which distance to one of the next three points in

line are matching to one of the span widths
60

61 List<Plane> extractedFrames = new List<Plane>();
62

63 for (int j = 0; j < perpFrames.Count - 1; j++)
64 {
65 double dist = double.NaN;
66 bool x = false;
67

68 // test if the first point after point to test is matching the span
width

69 dist = Math.Round(perpFrames[j].Origin.DistanceTo(perpFrames[j + 1].
Origin), 2);

70 foreach (double spanWidth in existingVariationsWidth)
71 {
72 if (dist == spanWidth)
73 {
74 extractedFrames.Add(perpFrames[j]);
75 x = true;
76 break;
77 }
78 }
79

80 // test if the second point after point to test is matching the span
width

81 if (!x && j < perpFrames.Count - 2)
82 {
83 dist = Math.Round(perpFrames[j].Origin.DistanceTo(perpFrames[j +

2].Origin), 2);
84 foreach (double spanWidth in existingVariationsWidth)
85 {
86 if (dist == spanWidth)
87 {
88 extractedFrames.Add(perpFrames[j]);
89 x = true;
90 break;
91 }
92 }
93 }
94

95 // test if the third point after point to test is matching the span
width

96 if (!x && j < perpFrames.Count - 3)
97 {
98 dist = Math.Round(perpFrames[j].Origin.DistanceTo(perpFrames[j +

3].Origin), 2);
99 foreach (double spanWidth in existingVariationsWidth)

100 {
101 if (dist == spanWidth)
102 {
103 extractedFrames.Add(perpFrames[j]);

16

#134

Source code

104 break;
105 }
106 }
107 }
108 }
109

110 // add last point in array
111 extractedFrames.Add(perpFrames[perpFrames.Count - 1]);
112

113

114 // step 2:
115 //if the distance from one point to the point after the next one is

matching to one of the span widths, toss the middle point.
116

117 int u = 0;
118 while (u < extractedFrames.Count - 2)
119 {
120 double dist = double.NaN;
121 dist = Math.Round(extractedFrames[u].Origin.DistanceTo(extractedFrames

[u + 2].Origin), 2);
122

123 foreach (double spanWidth in existingVariationsWidth)
124 {
125 if (dist == spanWidth)
126 {
127 extractedFrames.RemoveAt(u + 1);
128 break;
129 }
130 }
131 u += 1;
132 }
133 return extractedFrames;
134 }
135

136

137 public List<Curve> SubdivideLines(Curve lineToStartSubdivisionProcessWith,
List<Curve> linesToProcess, ref List<Curve> linesSubdivided, Plane
planeOfIntersection,

138 double maximalDistanceCrosswise, double minimumLength, double defaultWidth
, List<PolylineCurve> varyingWidthsBoundaries, List<double>
variationsWidth)

139 {
140 List<Curve> linesProcessed = new List<Curve>();
141 double width = GetAssociatedWidth(lineToStartSubdivisionProcessWith,

defaultWidth, varyingWidthsBoundaries, variationsWidth);
142 double extensionLength = width - ((lineToStartSubdivisionProcessWith.

GetLength() / 2) % width);
143

144 // split and extend line to start subdivision process with
145 if (true)
146 {
147 Curve[] lineToStartWithSplitted;
148 double[] t = lineToStartSubdivisionProcessWith.DivideByCount(2, false)

;
149 lineToStartWithSplitted = lineToStartSubdivisionProcessWith.Split(t

[0]);
150 lineToStartWithSplitted[0] = lineToStartWithSplitted[0].Extend(

CurveEnd.End, extensionLength, CurveExtensionStyle.Line);
151

152 if (lineToStartWithSplitted[1].Reverse())

17

#135

Source code

153 {
154 lineToStartWithSplitted[1] = lineToStartWithSplitted[1].Extend(

CurveEnd.End, extensionLength, CurveExtensionStyle.Line);
155 linesSubdivided.Add(lineToStartWithSplitted[0].Rebuild(2, 1, true)

);
156 linesSubdivided.Add(lineToStartWithSplitted[1].Rebuild(2, 1, true)

);
157 }
158 }
159

160 // split lines to process at their intersection with the plane of
intersection provided it exists

161 for (int i = 0; i < linesToProcess.Count; i++)
162 {
163 Point3d ptIntersection;
164 var intersections = Rhino.Geometry.Intersect.Intersection.CurvePlane(

linesToProcess[i], planeOfIntersection, _tolerance);
165

166 if (intersections != null)
167 {
168 ptIntersection = intersections[0].PointA;
169 if (ptIntersection.DistanceTo(linesToProcess[i].PointAtStart) >

_tolerance
170 && ptIntersection.DistanceTo(linesToProcess[i].PointAtEnd) >

_tolerance)
171 {
172 double t;
173 if (linesToProcess[i].ClosestPoint(ptIntersection, out t))
174 {
175 // split
176 Curve[] lineToProcessSplitted = linesToProcess[i].Split(t)

;
177 lineToProcessSplitted[0] = lineToProcessSplitted[0].Extend

(CurveEnd.End, extensionLength, CurveExtensionStyle.
Line);

178 if (lineToProcessSplitted[1].Reverse())
179 {
180 lineToProcessSplitted[1] = lineToProcessSplitted[1].

Extend(CurveEnd.End, extensionLength,
CurveExtensionStyle.Line);

181 }
182

183 // get width of future splitted line to process
184 double associatedWidthFirstPartOfLineToProcess =

GetAssociatedWidth(lineToProcessSplitted[0],
defaultWidth, varyingWidthsBoundaries, variationsWidth
);

185 double associatedWidthSecondPartOfLineToProcess =
GetAssociatedWidth(lineToProcessSplitted[1],
defaultWidth, varyingWidthsBoundaries, variationsWidth
);

186

187 // if rail curve is out of reach or too short skip it
188 double dist = planeOfIntersection.Origin.DistanceTo(new

Point3d(ptIntersection.X, ptIntersection.Y,
planeOfIntersection.OriginZ));

189 if (dist <= maximalDistanceCrosswise
190 && lineToProcessSplitted[0].GetLength() >

associatedWidthFirstPartOfLineToProcess *
minimumLength + _tolerance

18

#136

Source code

191 && lineToProcessSplitted[1].GetLength() >
associatedWidthSecondPartOfLineToProcess *
minimumLength + _tolerance)

192 {
193 linesProcessed.Add(lineToProcessSplitted[0].Rebuild(2,

1, true));
194 linesProcessed.Add(lineToProcessSplitted[1].Rebuild(2,

1, true));
195

196 }
197 else linesProcessed.Add(linesToProcess[i]);
198 }
199 }
200 else linesProcessed.Add(linesToProcess[i]);
201 }
202 else linesProcessed.Add(linesToProcess[i]);
203 }
204 return linesProcessed;
205 }
206

207

208 }
209 }

19

#137

Source code

Listing 5: CreateFlexibleGridGhc

1 using Grasshopper.Kernel;
2 using Grasshopper.Kernel.Data;
3 using Grasshopper.Kernel.Types;
4 using Rhino.Geometry;
5

6 using System;
7 using System.Collections.Generic;
8

9 namespace FlexibleGrid.Grid
10 {
11 public class CreateFlexibleGridGhc : GH_Component
12 {
13 /// <summary>
14 /// Initializes a new instance of the MyComponent1 class.
15 /// </summary>
16 public CreateFlexibleGridGhc()
17 : base("Grid", "Grid",
18 "This component creates a flexible grid.",
19 "Flexible Grid", "Grid")
20 {
21 }
22

23 /// <summary>
24 /// Registers all the input parameters for this component.
25 /// </summary>
26 protected override void RegisterInputParams(GH_Component.GH_InputParamManager

pManager)
27 {
28 pManager.AddPlaneParameter("Reference Frames", "R", "The needed frames to

generate the grid.", GH_ParamAccess.tree);
29 pManager.AddNumberParameter("Default Depth", "D", "The default depth of

one structural module.", GH_ParamAccess.item);
30 pManager.AddCurveParameter("Markings Height", "M", "The Heights of the

structural modules marked as lines.", GH_ParamAccess.list);
31 pManager.AddGenericParameter("Variations Depth", "V", "Introducing

variations of the depth of the structural modules.", GH_ParamAccess.
list);

32 }
33

34 /// <summary>
35 /// Registers all the output parameters for this component.
36 /// </summary>
37 protected override void RegisterOutputParams(GH_Component.

GH_OutputParamManager pManager)
38 {
39 pManager.AddPlaneParameter("Support Bases", "B", "supporting bases",

GH_ParamAccess.tree);
40 pManager.AddPlaneParameter("Support Heads", "H", "supporting heads",

GH_ParamAccess.tree);
41 pManager.AddCurveParameter("Bridges", "B", "Bridges", GH_ParamAccess.list)

;
42 }
43

44 /// <summary>
45 /// This is the method that actually does the work.
46 /// </summary>
47 /// <param name="DA">The DA object is used to retrieve from inputs and store

in outputs.</param>
48 protected override void SolveInstance(IGH_DataAccess DA)

20

#138

Source code

49 {
50 GH_Structure<GH_Plane> iReferenceFrames;
51 double iDefaultDepth = double.NaN;
52 List <Curve> iMarkingsHeight= new List<Curve>();
53 List<GH_ObjectWrapper> iVariationsDepth = new List<GH_ObjectWrapper>();
54

55 if (!DA.GetDataTree(0, out iReferenceFrames)) { return; }
56 if (!DA.GetData(1, ref iDefaultDepth)) { return; }
57 if (!DA.GetDataList(2, iMarkingsHeight)) { return; }
58 if (!DA.GetDataList(3, iVariationsDepth)) { return; }
59

60 FlexibleGrid.Grid.Grid spatialGrid = new FlexibleGrid.Grid.Grid(
iReferenceFrames, iDefaultDepth, iMarkingsHeight, iVariationsDepth);

61

62

63 // get supporting heads
64 if (spatialGrid.ReferenceFrames.PathCount > 0)
65 {
66 if (!spatialGrid.GetSupportingHeads())
67 {
68 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,
69 "A marking curve does not cover at least one reference point

for introducing height.");
70 return;
71 }
72 }
73

74

75 // level heights
76 if (spatialGrid.ReferenceFrames.PathCount > 0)
77 {
78 if (!spatialGrid.LevelHeights())
79 {
80 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,
81 "level heights.");
82 return;
83 }
84 }
85

86

87 // fit supporting bases and heads
88 if (spatialGrid.ReferenceFrames.PathCount > 0)
89 {
90 if (!spatialGrid.FitSupportingBasesAndHeads())
91 {
92 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,
93 "Reference frames and supporting tops could not be fitted.");
94 return;
95 }
96 }
97

98

99 // extract bridges
100 if (spatialGrid.SupportBasesFitted.PathCount > 0)
101 {
102 if (!spatialGrid.GetBridges())
103 {
104 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,
105 "Bridges could be not extracted.");
106 return;

21

#139

Source code

107 }
108 }
109

110 DA.SetDataTree(0, spatialGrid.SupportBasesFitted);
111 DA.SetDataTree(1, spatialGrid.SupportHeadsFitted);
112 DA.SetDataList(2, spatialGrid.Bridges);
113 }
114

115 /// <summary>
116 /// Provides an Icon for the component.
117 /// </summary>
118 protected override System.Drawing.Bitmap Icon
119 {
120 get
121 {
122 //You can add image files to your project resources and access them

like this:
123 // return Resources.IconForThisComponent;
124 return null;
125 }
126 }
127

128 /// <summary>
129 /// Gets the unique ID for this component. Do not change this ID after release

.
130 /// </summary>
131 public override Guid ComponentGuid
132 {
133 get { return new Guid("62c6b42c-3819-43f3-a04d-1ea69bbd073b"); }
134 }
135 }
136 }

22

#140

Source code

Listing 6: VaryDepthStructuralModuleGhc

1 using Grasshopper.Kernel;
2 using Rhino.Geometry;
3 using System;
4 using System.Collections.Generic;
5

6 namespace FlexibleGrid.Grid
7 {
8 public class VaryDepthStructuralModule : GH_Component
9 {

10 /// <summary>
11 /// Initializes a new instance of the MyComponent1 class.
12 /// </summary>
13 public VaryDepthStructuralModule()
14 : base("Varying Depth", "Varying Depth",
15 "This component introduces a variation of a structural modules depth.",
16 "Flexible Grid", "Grid")
17 {
18 }
19

20 /// <summary>
21 /// Registers all the input parameters for this component.
22 /// </summary>
23 protected override void RegisterInputParams(GH_Component.GH_InputParamManager

pManager)
24 {
25 pManager.AddNumberParameter("Depth", "D", "Depth of a structural module",

GH_ParamAccess.item);
26 pManager.AddCurveParameter("Markings", "M", "Planar lines as marking for a

variation of the default depth.", GH_ParamAccess.list);
27 }
28

29 /// <summary>
30 /// Registers all the output parameters for this component.
31 /// </summary>
32 protected override void RegisterOutputParams(GH_Component.

GH_OutputParamManager pManager)
33 {
34 pManager.AddGenericParameter("Variation Depth", "V", "Deviation of the

default depth.", GH_ParamAccess.item);
35 }
36

37 /// <summary>
38 /// This is the method that actually does the work.
39 /// </summary>
40 /// <param name="DA">The DA object is used to retrieve from inputs and store

in outputs.</param>
41 protected override void SolveInstance(IGH_DataAccess DA)
42 {
43 var iDepth = double.NaN;
44 List<Rhino.Geometry.Curve> iMarkings = new List<Rhino.Geometry.Curve>();
45 if (!DA.GetData(0, ref iDepth)) { return; }
46 if (!DA.GetDataList(1, iMarkings)) { return; }
47

48 // test if each boundary curve is planar and closed
49 foreach (Curve marking in iMarkings)
50 {
51 if (!marking.IsPlanar())
52 {
53 AddRuntimeMessage(GH_RuntimeMessageLevel.Error,

23

#141

Source code

54 "At least one marking curve is not planar.");
55 return;
56 }
57

58 }
59

60 // define size array
61 int sizeArray = iMarkings.Count * 3 + 1;
62

63 /*___________________________________
64 * COMPOSITION OF ABSTRACT DATA ARRAY
65 * __________________________________
66 * 1.) 2.) 3.)
67 * depth int.MaxValue int.MaxValue
68 * position x position y position z => coordinates of

first corner point
69 * position x position y position z
70 * int.MaxValue int.MaxValue int.MaxValue => mark for the start

of a new boundary curve
71 * position x position y position z => coordinates of

first corner point
72 * position x position y position z
73 * int.MaxValue int.MaxValue int.MaxValue => mark for the start

of a new boundary curve
74 * position x position y position z => coordinates of

first corner point
75 * position x position y position z
76 * int.MaxValue int.MaxValue int.MaxValue => end array
77 * ...
78 */
79

80 // initialize array
81 var abstractData = new double[sizeArray, 3];
82 for (int i = 0; i < abstractData.GetLength(0); i++)
83 {
84 for (int j = 0; j < abstractData.GetLength(1); j++)
85 {
86 abstractData[i, j] = int.MaxValue;
87 }
88 }
89

90 // pass on span width
91 abstractData[0, 0] = iDepth;
92

93 int u = 0;
94 foreach (Curve curve in iMarkings)
95 {
96 abstractData[u + 1, 0] = curve.PointAtStart.X;
97 abstractData[u + 1, 1] = curve.PointAtStart.Y;
98 abstractData[u + 1, 2] = curve.PointAtStart.Z;
99

100 abstractData[u + 2, 0] = curve.PointAtEnd.X;
101 abstractData[u + 2, 1] = curve.PointAtEnd.Y;
102 abstractData[u + 2, 2] = curve.PointAtEnd.Z;
103 // empty line as marker for the begin of a new boundary curve
104 u = u + 3;
105 }
106

107 // output abstract data array
108 var oAbstractData = new Grasshopper.Kernel.Types.GH_ObjectWrapper(

24

#142

Source code

abstractData);
109 DA.SetData(0, oAbstractData);
110 }
111

112 /// <summary>
113 /// Provides an Icon for the component.
114 /// </summary>
115 protected override System.Drawing.Bitmap Icon
116 {
117 get
118 {
119 //You can add image files to your project resources and access them

like this:
120 // return Resources.IconForThisComponent;
121 return null;
122 }
123 }
124

125 /// <summary>
126 /// Gets the unique ID for this component. Do not change this ID after release

.
127 /// </summary>
128 public override Guid ComponentGuid
129 {
130 get { return new Guid("17487d37-3544-45cf-9789-807972dd8e64"); }
131 }
132 }
133 }

25

#143

Source code

Listing 7: Grid

1 using Grasshopper.Kernel.Data;
2 using Grasshopper.Kernel.Types;
3 using Rhino.Geometry;
4

5 using System;
6 using System.Collections.Generic;
7 namespace FlexibleGrid.Grid
8 {
9 class Grid

10 {
11 private double _tolerance = 0.00001;
12 public List<PolylineCurve> Bridges;
13 public double DefaultDepth { get; private set; }
14 public List<Curve> MarkingsHeight { get; private set; }
15 public GH_Structure<GH_Plane> ReferenceFrames { get; private set; }
16 public GH_Structure<GH_Plane> SupportBasesFitted { get; private set; }
17 public GH_Structure<GH_Plane> SupportHeads { get; private set; }
18 public GH_Structure<GH_Plane> SupportHeadsFitted { get; private set; }
19 public List<double> VariationsDepth { get; private set; }
20 public List<PolylineCurve> VaryingDepthMarkings { get; private set; }
21

22 // constructor for creating spatial grid
23 public Grid(GH_Structure<GH_Plane> referenceFrames, double defaultDepth, List<

Curve> markingsHeight, List<GH_ObjectWrapper> variationsDepth)
24 {
25 this.Bridges = new List<PolylineCurve>();
26 this.DefaultDepth = defaultDepth;
27 this.MarkingsHeight = markingsHeight;
28 this.ReferenceFrames = referenceFrames;
29 this.SupportBasesFitted = new GH_Structure<GH_Plane>();
30 this.SupportHeads = new GH_Structure<GH_Plane>();
31 this.SupportHeadsFitted = new GH_Structure<GH_Plane>();
32 this.VariationsDepth = new List<double>();
33 this.VaryingDepthMarkings = new List<PolylineCurve>();
34

35 // unwrap array
36 foreach (GH_ObjectWrapper variation in variationsDepth)
37 {
38 var dataAbstract = variation.Value as double[,];
39

40 List<Point3d> startEndPts = new List<Point3d>();
41 for (int i = 1; i < dataAbstract.GetLength(0); i++)
42 {
43 if (dataAbstract[i, 0] != int.MaxValue && dataAbstract[i, 1] !=

int.MaxValue)
44 {
45 startEndPts.Add(new Point3d(dataAbstract[i, 0], dataAbstract[i

, 1], dataAbstract[i, 2]));
46 }
47

48 else
49 {
50 VariationsDepth.Add(dataAbstract[0, 0]);
51 VaryingDepthMarkings.Add(new Rhino.Geometry.PolylineCurve(

startEndPts));
52 startEndPts.Clear();
53 }
54 }
55 }

26

#144

Source code

56 }
57

58

59 public bool GetSupportingHeads()
60 {
61 try
62 {
63 for (int i = 0; i < ReferenceFrames.PathCount; i++)
64 {
65 List<Plane> referenceFrames = new List<Plane>();
66

67 var list = ReferenceFrames.Branches[i];
68 for (int j = 0; j < list.Count; j++)
69 {
70 referenceFrames.Add(new Plane(list[j].Value));
71 }
72

73 List<GH_Plane> supportHeads = new List<GH_Plane>();
74

75 for (int j = 0; j < referenceFrames.Count; j++)
76 {
77 bool supportingTopFound = false;
78 Point3d tempSupportTop = new Point3d();
79 double dist = double.MaxValue;
80

81 for (int k = 0; k < MarkingsHeight.Count; k++)
82 {
83 double t;
84

85 if (MarkingsHeight[k].ClosestPoint(referenceFrames[j].
Origin, out t))

86 {
87 Point3d closestPt = MarkingsHeight[k].PointAt(t);
88 Vector3d direction = closestPt - referenceFrames[j].

Origin;
89

90 Vector3d crossProduct = new Vector3d(Vector3d.
CrossProduct(direction, new Vector3d(0, 0, 1)));

91

92 // Vector a and b are parallel if, and only if, a x b
= 0;

93 if (crossProduct.Length < _tolerance)
94 {
95 double dotProduct = direction.X * 0 + direction.Y

* 0 + direction.Z * 1;
96

97 // positive dot product -> vectors go in the same
direction; negative dot product -> Vectors are
going in the opposite direction

98 // A; in normal direction (positive world y axis)
99 if (dotProduct >= 0)

100 {
101 if (referenceFrames[j].Origin.DistanceTo(

closestPt) < dist
102 && referenceFrames[j].Origin.DistanceTo(

closestPt) > _tolerance)
103 {
104 supportingTopFound = true;
105 tempSupportTop = closestPt;
106 dist = referenceFrames[j].Origin.

27

#145

Source code

DistanceTo(closestPt);
107 }
108 }
109 }
110 }
111 }
112 if (!supportingTopFound) return false;
113 else
114 {
115 Point3d transformedOrigin = new Point3d(referenceFrames[j

].Origin.X, referenceFrames[j].Origin.Y,
tempSupportTop.Z);

116 supportHeads.Add(new GH_Plane(new Plane(transformedOrigin,
referenceFrames[j].ZAxis)));

117 }
118 }
119 GH_Path x = new GH_Path(i);
120 SupportHeads.AppendRange(supportHeads, x);
121 }
122 return true;
123 }
124 catch { return false; }
125 }
126

127

128 public bool LevelHeights()
129 {
130 try
131 {
132 for (int i = 0; i < SupportHeads.PathCount; i++)
133 {
134 List<Plane> supportHeads = new List<Plane>();
135

136 var list = SupportHeads.Branches[i];
137 for (int j = 0; j < list.Count; j++)
138 {
139 supportHeads.Add(new Plane(list[j].Value));
140 }
141

142 List<double> zPosReferencePts = new List<double>();
143 List<int> groupSizesSameZPos = new List<int>();
144

145 for (int j = 0; j < supportHeads.Count; j++)
146 {
147 bool exists = false;
148 for (int k = 0; k < zPosReferencePts.Count; k++)
149 {
150 if (Math.Round(supportHeads[j].Origin.Z, 5) ==

zPosReferencePts[k])
151 {
152 exists = true;
153 int count = groupSizesSameZPos[k] + 1;
154 groupSizesSameZPos[k] = count;
155 }
156 }
157 if (!exists)
158 {
159 zPosReferencePts.Add(Math.Round(supportHeads[j].Origin.Z,

5));
160 groupSizesSameZPos.Add(1);

28

#146

Source code

161 }
162 }
163

164 // sort
165 List<int> indexes = new List<int>();
166 int x = 0;
167 while (x < groupSizesSameZPos.Count)
168 {
169 indexes.Add(x);
170 x++;
171 }
172

173 FlexibleGrid.Misc.Sort sort = new FlexibleGrid.Misc.Sort();
174 sort.BubbleSort(ref groupSizesSameZPos, ref indexes);
175 double heightGuideValue = zPosReferencePts[indexes[indexes.Count -

1]];
176

177 // adjust heights to guide value
178 for (int j = 0; j < supportHeads.Count; j++)
179 {
180 Point3d temp = supportHeads[j].Origin;
181 temp.Z = heightGuideValue;
182 Plane frameTransformed = new Plane(temp, supportHeads[j].ZAxis

);
183 supportHeads[j] = frameTransformed;
184 }
185

186 List<GH_Plane> oSupportTops = new List<GH_Plane>();
187 foreach (Plane plane in supportHeads) oSupportTops.Add(new

GH_Plane(plane));
188

189 GH_Path y = new GH_Path(SupportHeads.Paths[i]);
190 SupportHeads.RemovePath(new GH_Path(SupportHeads.Paths[i]));
191 SupportHeads.AppendRange(oSupportTops, y);
192 }
193 return true;
194 }
195 catch { return false; }
196 }
197

198

199

200 //3.) fitting
201

202 public bool FitSupportingBasesAndHeads()
203 {
204 try
205 {
206 // find associated depth by checking marks
207 List<int> indexesAssociatedDepth = new List<int>();
208

209 for (int i = 0; i < ReferenceFrames.PathCount; i++)
210 {
211 List<Plane> supportingBases = new List<Plane>();
212

213 var list = ReferenceFrames.Branches[i];
214 for (int j = 0; j < list.Count; j++)
215 {
216 supportingBases.Add(new Plane(list[j].Value));
217 }

29

#147

Source code

218

219 indexesAssociatedDepth.Add(int.MaxValue);
220

221

222 for (int j = 0; j < VaryingDepthMarkings.Count; j++)
223 {
224 for (int k = 0; k < supportingBases.Count; k++)
225 {
226 double t;
227 if (VaryingDepthMarkings[j].ClosestPoint(supportingBases[k

].Origin, out t))
228 {
229 if (VaryingDepthMarkings[j].PointAt(t).DistanceTo(

supportingBases[k].Origin) > _tolerance)
230 {
231 break;
232 }
233 if (k == supportingBases.Count - 1)
234 {
235 indexesAssociatedDepth[i] = j;
236 j = VaryingDepthMarkings.Count;
237 }
238 }
239 }
240 }
241 }
242

243

244 GH_Structure<GH_Plane> supportHeadsFitted = new GH_Structure<GH_Plane
>();

245 GH_Structure<GH_Plane> supportBasesFitted = new GH_Structure<GH_Plane
>();

246

247 for (int i = 0; i < ReferenceFrames.PathCount; i++)
248 {
249 List<Plane> supportingBases = new List<Plane>();
250 List<Plane> supportingHeads = new List<Plane>();
251

252 var list = ReferenceFrames.Branches[i];
253 for (int j = 0; j < list.Count; j++)
254 {
255 supportingBases.Add(new Plane(list[j].Value));
256 }
257

258 list.Clear();
259 list = SupportHeads.Branches[i];
260 for (int j = 0; j < list.Count; j++)
261 {
262 supportingHeads.Add(new Plane(list[j].Value));
263 }
264

265 // get depth
266 double depth;
267 if (indexesAssociatedDepth[i] == int.MaxValue) depth =

DefaultDepth;
268 else depth = VariationsDepth[indexesAssociatedDepth[i]];
269

270 for (int j = 0; j < supportingBases.Count; j++)
271 {
272 // move reference points

30

#148

Source code

273 Vector3d normalA = new Vector3d(supportingBases[j].ZAxis);
274 Vector3d a = new Vector3d();
275 Vector3d b = new Vector3d();
276 if (normalA.Rotate(Math.PI * 0.5, new Vector3d(0, 0, 1)))
277 {
278 Vector3d origin = new Vector3d(supportingBases[j].Origin);
279 a = new Vector3d(origin + (normalA * depth / 2));
280 }
281 if (normalA.Rotate(Math.PI, new Vector3d(0, 0, 1)))
282 {
283 Vector3d origin = new Vector3d(supportingBases[j].Origin);
284 b = new Vector3d(origin + (normalA * depth / 2));
285 }
286 // append to list
287 List<GH_Plane> tempA = new List<GH_Plane>() { new GH_Plane(new

Plane(new Point3d(a), supportingBases[j].ZAxis)), new
GH_Plane(new Plane(new Point3d(b), supportingBases[j].
ZAxis)) };

288 GH_Path pathA = new GH_Path(i, j);
289 supportBasesFitted.AppendRange(tempA, pathA);
290

291 // move support tops
292 Vector3d normalB = new Vector3d(supportingHeads[j].ZAxis);
293 Vector3d d = new Vector3d();
294 Vector3d c = new Vector3d();
295 if (normalB.Rotate(Math.PI * 0.5, new Vector3d(0, 0, 1)))
296 {
297 Vector3d origin = new Vector3d(supportingHeads[j].Origin);
298 d = new Vector3d(origin + (normalB * depth / 2));
299 }
300 if (normalB.Rotate(Math.PI, new Vector3d(0, 0, 1)))
301 {
302 Vector3d origin = new Vector3d(supportingHeads[j].Origin);
303 c = new Vector3d(origin + (normalB * depth / 2));
304 // append to list
305 List<GH_Plane> tempB = new List<GH_Plane>() { new GH_Plane

(new Plane(new Point3d(c), supportingHeads[j].ZAxis)),
new GH_Plane(new Plane(new Point3d(d),

supportingHeads[j].ZAxis)) };
306 GH_Path pathB = new GH_Path(i, j);
307 supportHeadsFitted.AppendRange(tempB, pathB);
308 }
309 }
310 }
311

312 SupportBasesFitted = supportBasesFitted;
313 SupportHeadsFitted = supportHeadsFitted;
314 return true;
315 }
316 catch { return false; }
317 }
318

319

320 public bool GetBridges()
321 {
322 try
323 {
324 FlexibleGrid.Misc.Sort sort = new FlexibleGrid.Misc.Sort();
325

326 // flatten tree and delete duplicates

31

#149

Source code

327 List<Plane> supportBases = new List<Plane>();
328 for (int i = 0; i < SupportBasesFitted.PathCount; i++)
329 {
330 var list = SupportBasesFitted.Branches[i];
331

332 //check if reference point lies on a marking curve for height
333 double x = (list[0].Value.Origin.X + list[1].Value.Origin.X) / 2;
334 double y = (list[0].Value.Origin.Y + list[1].Value.Origin.Y) / 2;
335 double z = list[0].Value.Origin.Z;
336 Point3d avgPt = new Point3d(x, y, z);
337

338 bool covered = false;
339 for (int u = 0; u < MarkingsHeight.Count; u++)
340 {
341 double t;
342 if (MarkingsHeight[u].ClosestPoint(avgPt, out t))
343 {
344 if (avgPt.DistanceTo(MarkingsHeight[u].PointAt(t)) <

_tolerance)
345 {
346 covered = true;
347 break;
348 }
349 }
350 }
351

352 if (covered)
353 {
354 for (int j = 0; j < list.Count; j++)
355 {
356 supportBases.Add(list[j].Value);
357 }
358 }
359 }
360 sort.DeleteDuplicates(ref supportBases);
361

362 List<Plane> supportHeads = new List<Plane>();
363 for (int i = 0; i < SupportHeadsFitted.PathCount; i++)
364 {
365 var list = SupportHeadsFitted.Branches[i];
366

367 for (int j = 0; j < list.Count; j++)
368 {
369 supportHeads.Add(list[j].Value);
370 }
371 }
372 sort.DeleteDuplicates(ref supportHeads);
373

374 // generate bridges
375 for (int i = 0; i < supportBases.Count; i++)
376 {
377 Point3d supportBase = new Point3d(supportBases[i].Origin);
378 Vector3d normal = supportBases[i].ZAxis;
379

380

381 // test if support base is already supported
382 bool supported = false;
383 for (int j = 0; j < supportHeads.Count; j++)
384 {
385 if (supportBase.DistanceTo(supportHeads[j].Origin) <

32

#150

Source code

_tolerance)
386 {
387 supported = true;
388 break;
389 }
390 }
391 if (supported) continue;
392

393

394 // if not supported generate bridge
395 int indexClosestSupportHeadA = int.MaxValue;
396 int indexClosestSupportHeadB = int.MaxValue;
397 int indexClosestSupportBaseA = int.MaxValue;
398 int indexClosestSupportBaseB = int.MaxValue;
399

400 double distBaseHeadA = double.MaxValue;
401 double distBaseHeadB = double.MaxValue;
402 double distBaseBaseA = double.MaxValue;
403 double distBaseBaseB = double.MaxValue;
404

405

406 // find closest support heads
407 for (int j = 0; j < supportHeads.Count; j++)
408 {
409 Vector3d bridge = new Vector3d(supportHeads[j].Origin -

supportBase);
410 Vector3d crossProduct = new Vector3d(Vector3d.CrossProduct(

normal, bridge));
411

412 // Vector a and b are parallel if, and only if, a x b = 0;
413 if (crossProduct.Length < _tolerance)
414 {
415 double dotProduct = bridge.X * normal.X + bridge.Y *

normal.Y + bridge.Z * normal.Z;
416

417 // positive dot product -> vectors go in the same
direction; negative dot product -> Vectors are going
in the opposite direction

418 // A; in normal direction (positive world y axis)
419 if (dotProduct < 0)
420 {
421 if (bridge.Length < distBaseHeadA)
422 {
423 indexClosestSupportHeadA = j;
424 distBaseHeadA = Math.Round(bridge.Length, 5);
425 }
426 }
427

428 // B; in opposite direction of normal(negative world y
axis)

429 if (dotProduct >= 0)
430 {
431 if (bridge.Length < distBaseHeadB)
432 {
433 indexClosestSupportHeadB = j;
434 distBaseHeadB = Math.Round(bridge.Length, 5);
435 }
436 }
437 }
438 }

33

#151

Source code

439

440

441 // find closest support bases
442 for (int j = 0; j < supportBases.Count; j++)
443 {
444

445 Vector3d bridge = new Vector3d(supportBases[j].Origin -
supportBase);

446 Vector3d crossProduct = new Vector3d(Vector3d.CrossProduct(
normal, bridge));

447

448 // Vector a and b are parallel if, and only if, axb= 0;
449 if (crossProduct.Length < _tolerance)
450 {
451 double dotProduct = bridge.X * normal.X + bridge.Y *

normal.Y + bridge.Z * normal.Z;
452

453 // positive dot product -> vectors go in the same
direction; negative dot product -> Vectors are going
in the opposite direction

454 // A; in normal direction (positive world y axis)
455 if (dotProduct < 0)
456 {
457 if (bridge.Length < distBaseBaseA && bridge.Length >

_tolerance)
458 {
459 indexClosestSupportBaseA = j;
460 distBaseBaseA = Math.Round(bridge.Length, 5);
461 }
462 }
463

464 // B; in opposite direction of normal(negative world y
axis)

465 if (dotProduct >= 0)
466 {
467 if (bridge.Length < distBaseBaseB && bridge.Length >

_tolerance)
468 {
469 indexClosestSupportBaseB = j;
470 distBaseBaseB = Math.Round(bridge.Length, 5);
471 }
472 }
473 }
474 }
475

476

477 // check if head or base is closer and assign
478 Point3d bearingA = new Point3d();
479 Point3d bearingB = new Point3d();
480

481 if (distBaseHeadA != double.MaxValue || distBaseBaseA != double.
MaxValue)

482 {
483 if (distBaseHeadA <= distBaseBaseA)
484 {
485 bearingA = supportHeads[indexClosestSupportHeadA].Origin;
486 }
487 else bearingA = supportBases[indexClosestSupportBaseA].Origin;
488 }
489 else continue;

34

#152

Source code

490

491 if (distBaseHeadB != double.MaxValue || distBaseBaseB != double.
MaxValue)

492 {
493 if (distBaseHeadB <= distBaseBaseB)
494 {
495 bearingB = supportHeads[indexClosestSupportHeadB].Origin;
496 }
497 else bearingB = supportBases[indexClosestSupportBaseB].Origin;
498 }
499 else continue;
500

501 //generate ouput
502 List<Point3d> tempA = new List<Point3d>() { bearingA, supportBase

};
503 List<Point3d> tempB = new List<Point3d>() { supportBase, bearingB

};
504 Bridges.Add(new PolylineCurve(tempA));
505 Bridges.Add(new PolylineCurve(tempB));
506 }
507 // delete duplicates
508 for (int j = Bridges.Count - 1; j >= 0; j--)
509 {
510 double[] tA = Bridges[j].DivideByCount(2, false);
511 Point3d midPtA = Bridges[j].PointAt(tA[0]);
512 for (int k = j - 1; k >= 0; k--)
513 {
514 double[] tB = Bridges[k].DivideByCount(2, false);
515 Point3d midPtB = Bridges[k].PointAt(tB[0]);
516

517 if (midPtA.DistanceTo(midPtB) < _tolerance)
518 {
519 Bridges.RemoveAt(j);
520 break;
521 }
522 }
523 }
524 return true;
525 }
526 catch { return false; }
527 }
528

529

530 }
531 }

35

#153

Source code

Listing 8: Analyze

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Text;
5 using System.Threading.Tasks;
6 using Grasshopper.Kernel;
7 using Rhino.Geometry;
8

9 namespace FlexibleGrid.Misc
10 {
11 class Analyze
12 {
13 public List<Point3d> GetDiscontinuitys(Rhino.Geometry.Curve curveToTest)
14 {
15 List<Point3d> crvPts = new List<Point3d>();
16 double t0 = curveToTest.Domain.Min;
17 double t1 = curveToTest.Domain.Max;
18 double t;
19 bool search = true;
20

21 while (search)
22 {
23 if (curveToTest.GetNextDiscontinuity(Continuity.C1_locus_continuous,

t0, t1, out t))
24 {
25 Point3d pt = curveToTest.PointAt(t);
26 crvPts.Add(pt);
27 if (t1 != t) t0 = t; else search = false;
28 }
29 else search = false;
30 }
31 crvPts.Insert(0, curveToTest.PointAtStart);
32 return crvPts;
33 }
34

35

36 public List<Point3d> GetDiscontinuitys(Rhino.Geometry.PolylineCurve
curveToTest)

37 {
38 List<Point3d> crvPts = new List<Point3d>();
39 double t0 = curveToTest.Domain.Min;
40 double t1 = curveToTest.Domain.Max;
41 double t;
42 bool search = true;
43

44 while (search)
45 {
46 if (curveToTest.GetNextDiscontinuity(Continuity.C1_locus_continuous,

t0, t1, out t))
47 {
48 Point3d pt = curveToTest.PointAt(t);
49 crvPts.Add(pt);
50 if (t1 != t) t0 = t; else search = false;
51 }
52 else search = false;
53 }
54 crvPts.Insert(0, curveToTest.PointAtStart);
55 return crvPts;
56 }

36

#154

Source code

57

58

59 public bool TestIfCrvsIntersect(List<Curve> segments)
60 {
61 // Test if input curves do intersect.
62 // The test is negative if two segments are connected.
63 // The test is positive if a third crv points to a knot. (T joint)
64 // The test is positive if one or more curve are intersected
65 // inbetween their end points and start points.
66 bool intersect = false;
67

68 // test for T joints
69 List<Point3d> startAndEndPts = new List<Point3d>();
70 for (int i = 0; i < segments.Count; i++)
71 {
72 startAndEndPts.Add(segments[i].PointAtStart);
73 startAndEndPts.Add(segments[i].PointAtEnd);
74 }
75

76 int counterDuplicates = 0;
77 for (int i = 0; i < startAndEndPts.Count; i++)
78 {
79 for (int j = 0; j < startAndEndPts.Count; j++)
80 {
81 if (j == i) continue;
82 else
83 {
84 if (startAndEndPts[i].DistanceTo(startAndEndPts[j]) < 0.01)

counterDuplicates++;
85 }
86 }
87 if (counterDuplicates >= 2)
88 {
89 intersect = true;
90 return intersect;
91 }
92 counterDuplicates = 0;
93 }
94

95 // test for intersections
96 for (int i = 0; i < segments.Count; i++)
97 {
98 for (int j = i + 1; j < segments.Count; j++)
99 {

100 // Calculate the intersection
101 const double intersection_tolerance = 0.001;
102 const double overlap_tolerance = 0.0;
103 var events = Rhino.Geometry.Intersect.Intersection.CurveCurve(

segments[i], segments[j],
104 intersection_tolerance, overlap_tolerance);
105

106 // Process the results
107 if (events.Count != 0)
108 {
109 intersect = true;
110 List<Point3d> tempStartAndEndPt = new List<Point3d>();
111 tempStartAndEndPt.Add(segments[i].PointAtStart);
112 tempStartAndEndPt.Add(segments[i].PointAtEnd);
113 tempStartAndEndPt.Add(segments[j].PointAtStart);
114 tempStartAndEndPt.Add(segments[j].PointAtEnd);

37

#155

Source code

115 for (int k = 0; k < tempStartAndEndPt.Count - 1; k++)
116 {
117 for (int l = k + 1; l < tempStartAndEndPt.Count; l++)
118 {
119

120 if (tempStartAndEndPt[k].DistanceTo(tempStartAndEndPt[
l]) < 0.01)

121 {
122 intersect = false;
123 }
124 }
125 }
126 if (intersect)
127 {
128 return intersect;
129 }
130 }
131 }
132 }
133 return intersect;
134 }
135

136

137 }
138 }

38

#156

Source code

Listing 9: Sort

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Text;
5 using System.Threading.Tasks;
6 using Grasshopper.Kernel;
7 using Rhino.Geometry;
8

9

10 namespace FlexibleGrid.Misc
11 {
12 class Sort
13 {
14 private double _tolerance = 0.00001;
15

16 public void BubbleSort(ref List<double> valuesToSort)
17 {
18 bool swapped = true;
19

20 while (swapped)
21 {
22 swapped = false;
23 for (int i = 0; i < valuesToSort.Count - 1; i++)
24 {
25 if (valuesToSort[i] > valuesToSort[i + 1])
26 {
27 double tempKey;
28 tempKey = valuesToSort[i];
29 valuesToSort[i] = valuesToSort[i + 1];
30 valuesToSort[i + 1] = tempKey;
31

32 swapped = true;
33 }
34 }
35 }
36 }
37

38

39 public void BubbleSort(ref List<double> keys, ref List<Curve> crvsToSort)
40 {
41 bool swapped = true;
42

43 while (swapped)
44 {
45 swapped = false;
46 for (int i = 0; i < keys.Count - 1; i++)
47 {
48 if (keys[i] > keys[i + 1])
49 {
50 double tempKey;
51 tempKey = keys[i];
52 keys[i] = keys[i + 1];
53 keys[i + 1] = tempKey;
54

55 List<Curve> tempValues = new List<Curve>();
56 tempValues.Add(crvsToSort[i]);
57 crvsToSort[i] = crvsToSort[i + 1];
58 crvsToSort[i + 1] = tempValues[0];
59

39

#157

Source code

60 swapped = true;
61 }
62 }
63 }
64 }
65

66

67 public void BubbleSort(ref List<int> keys, ref List<int> integersToSort)
68 {
69 bool swapped = true;
70

71 while (swapped)
72 {
73 swapped = false;
74 for (int i = 0; i < keys.Count - 1; i++)
75 {
76 if (keys[i] > keys[i + 1])
77 {
78 int tempKey;
79 tempKey = keys[i];
80 keys[i] = keys[i + 1];
81 keys[i + 1] = tempKey;
82

83 List<int> tempIntegersToSort = new List<int>();
84 tempIntegersToSort.Add(integersToSort[i]);
85 integersToSort[i] = integersToSort[i + 1];
86 integersToSort[i + 1] = tempIntegersToSort[0];
87

88 swapped = true;
89 }
90 }
91 }
92 }
93

94

95 public void DeleteDuplicates(ref List<Plane> planesToTest)
96 {
97 for (int i = 0; i < planesToTest.Count - 1; i++)
98 {
99 Next:

100 for (int j = i + 1; j < planesToTest.Count; j++)
101 {
102 if (planesToTest[i].Origin.DistanceTo(planesToTest[j].Origin) <

_tolerance)
103 {
104 planesToTest.RemoveAt(j);
105 goto Next;
106 }
107 }
108 }
109 }
110

111

112 }
113 }

40

#158

Source code

