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Abstract
The rotary inverted pendulum, known as the Furuta pendulum, is a well-studied, non-linear,
and underactuated system consisting of a driven arm with a freely rotating pendulum
attached. Previous studies focused on controlling the Furuta pendulum by directly
measuring the pendulum’s angle. This thesis aims to stabilize the Furuta pendulum using
neuromorphic vision feedback from an event-based camera.

In this thesis, a mechanical design of the Furuta pendulum is introduced. Subsequently,
a mathematical model is derived, and the respective parameters are estimated using a
non-linear least squares method. The reference trajectories, including the swing-up and
the swing-down trajectories, are obtained by solving an optimal control problem. The
system states are estimated using an Extended Kalman Filter to stabilize the Furuta
pendulum about the reference trajectories with a time-varying LQR. An exponential decay
for the accumulator of the traditional Hough transform algorithm is introduced as the
proposed method to obtain the pendulum’s angle from the camera events directly.

The proposed method is validated through simulation and experiments on the physical
Furuta pendulum. It is shown that the stabilization of the Furuta pendulum with event
camera feedback about the reference trajectories can be achieved by applying the proposed
method.
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Kurzzusammenfassung
Das rotierende, inverse Pendel, auch Furuta-Pendel genannt, ist ein gut erforschtes,
nichtlineares und unteraktuiertes System, welches aus einem aktuierten Arm besteht, an
dem ein frei rotierendes Pendel befestigt ist. Frühere Arbeiten konzentrierten sich auf
die Regelung des Furuta-Pendels durch direkte Messung des Pendelwinkels. Diese Arbeit
zielt jedoch darauf ab, das Furuta-Pendel durch neuromorphes Vision-Feedback von einer
event-basierten Kamera zu stabilisieren.

Es wird der für diese Arbeit konstruierte mechanischer Aufbau des Furuta-Pendels
vorgestellt. Anschließend wird daraus ein mathematisches Modell hergeleitet und die Mo-
dellparameter werden mithilfe der Methode der nichtlinearen kleinsten Quadrate geschätzt.
Die Solltrajektorien, einschließlich der Auf- und Abschwingtrajektorie, werden durch Lö-
sung eines Optimalsteuerungsproblems ermittelt. Der Zustand des Systems wird mit einem
Extended Kalman Filter geschätzt, um das Furuta-Pendel um die Solltrajektorien mit einem
zeitvarianten LQR zu stabilisieren. Ein adaptierter Hough-Transformations-Algorithmus
mit exponentiellem Abklingen der Akkumulatoreinträge zur Detektion von Geraden wird
als Methode eingeführt, um den Winkel des Pendels direkt aus den Kamera-Events unter
Berücksichtigung der projektiven Geometrie zu berechnen.

Die vorgestellte Methode wird erfolgreich in Simulation und am physischen Furuta-
Pendel validiert. Es wird gezeigt, dass die Stabilisierung des Furuta-Pendels mit event-
basiertem Kamera-Feedback um die Referenztrajektorien durch Anwendung der vorge-
stellten Methode erreicht werden kann.
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1 Introduction
Robotic systems often operate in environments specifically designed for robots without
perceiving the surrounding scene. However, with adequate perception, these systems would
be able to perform increasingly complex tasks – just like humans do. One key modality
for visual perception is the camera. More specifically, conventional frame cameras are
often used to enable vision-based feedback, which typically provides camera images to the
image processing algorithm at equidistant time intervals [1].

While frame-based cameras are still popular choices for vision feedback, they come with
various limitations. Full frames are transferred, and at least parts are processed at each
time step, leading to high computational effort. Latency induced due to low frame rates
or high computation times can be inadequate for specific applications. Moreover, images
from frame-based cameras can suffer from motion blur, posing additional challenges for
the image processing algorithm to perceive the scene. [1]

Event-based cameras, further referred to as event cameras, are a new type of camera that
transmit changes in the brightness of the scene for each individual pixel asynchronously
rather than full frames. This approach has several advantages, such as low latency in the
µs range, a high dynamic range, and reduced motion blur. Using asynchronous feedback
from event cameras can be referred to as neuromorphic vision feedback because of the
bio-inspired working principle. [1]

The rotary inverted pendulum, also called the Furuta pendulum [2], is an underactuated,
non-linear system, as shown in Figure 1.1. It consists of an actuated arm and an attached
pendulum that can freely rotate around the arm’s longitudinal axis [2]. The Furuta
pendulum is well-studied (see [2–4]) in control engineering and is known to have an
unstable equilibrium point in the upright pendulum position.

Figure 1.2 shows a subset of the captured frames from a conventional frame camera
and a subset of the events from the event camera of the Furuta pendulum swinging back
and forth around the lower equilibrium position. The event camera generates a stream
of events rather than full frames, as the frame camera does. Green markings denote an
increase in the brightness of the corresponding pixel, while blue markings represent a
decrease in brightness. The images at t = 6.8 s and t = 7.2 s hardly show motion blur
because of the low angular velocity. The image shows some noticeable motion blur at
t = 7 s due to the pendulum’s high angular velocity, as depicted in Figure 1.2.

1.1 Aim of this Thesis
To the best of the author’s knowledge, the inverted pendulum has only been stabilized
around the upper equilibrium using feedback from an event camera, as shown in [5].

This thesis, however, aims to extend prior work and additionally stabilize the rotary
inverted pendulum about reference trajectories, including the swing-up, with event-based



2 1 Introduction

Pendulum

Arm

Drive Motor
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Encoder

Figure 1.1: An overview showing the main components of the Furuta pendulum and the
event camera, as utilized in this work.

vision feedback. Moreover, this work investigates how the Hough transform can be used
with event cameras in low-latency applications to track objects despite additional events
generated by the movement of background objects in the environment.

1.2 Literature and Previous Works
Since the inverted pendulum is a common experimental platform for demonstrating
non-linear control, it has also been used for experiments with vision-based feedback.

In [6], a pendulum on a cart is stabilized around its upper equilibrium using an infrared
LED on the tip. The camera captures the tip of the pendulum from the top. From the
cart’s position and the position of the pendulum’s tip, the pendulum’s angle is calculated
and used as feedback for the controller [6]. However, this approach requires the infrared
LED as an active element. Furthermore, this setup would not allow for the pendulum’s
swing-up because of the ambiguity of the tip’s position information and occlusions. A
fisheye camera model is used in [7], where an inverted pendulum on a cart is stabilized
by introducing a calibration-free method to obtain the pendulum’s angle. However, the
vision processing algorithm detects the pendulum using two LEDs, which not only requires
active elements on the pendulum but also induces a time delay of 20 ms. The work in [8]
uses a smartphone attached to the pendulum to detect a static marker in the background
to stabilize the inverted pendulum on a cart around the upper equilibrium point. This
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Figure 1.2: A subsampled set of the events generated by the event camera and the images
taken from a traditional frame camera.

eye-in-hand method detects the translation and the rotation of the pendulum’s state
and transmits the measurement data over a wireless network [8], inducing a time delay
of approximately 30 ms. Hence, this approach is only applicable to systems with slow
dynamics. In [9], the swing-up of the pendulum mounted on an industrial robot using
vision feedback is achieved. However, after the swing-up, the feedback signal is switched
to a potentiometer angle measurement to stabilize the pendulum initially before switching
again to the camera-based angle measurements [9]. In [10], the swing-up of an inverted
pendulum on a cart is performed using a conventional frame camera and a cascaded
particle filter to estimate the system’s state. The camera measurement updates at a rate
of 30 Hz are sufficient to stabilize this specific pendulum [10].

In [11], an event camera, compared to a conventional frame camera, achieved significant
data reduction and faster object tracking with a two-axis robot, showing the benefits of
event cameras. Another comparative analysis is done in [12], where eye-in-hand visual
servoing was applied to an industrial robot. The comparison shows that the image-based
Kanade-Lucas-Tomase tracker with the Harris corner detector fails to detect and track
the objects under low light conditions or when the tracked object moves too fast [12]. The
loss of tracking data is caused by latency and motion blur [12].
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A closed-loop control of a dual-copter platform utilizing an event camera, aligning the
dual-copter’s orientation to a half-black and half-white-colored disc, is shown in [13]. The
disc’s orientation is determined by means of a sliding-window Hough transform and acts
as an input to a Kalman filter to estimate the system’s state [13]. Using this approach, all
events in this sliding window have the same weighting factor. Thus, the latest events are
not prioritized, which could lead to an error for larger window sizes. In [5], the angle of a
pencil is obtained from the event stream without the need for a sliding window. Unlike in
[13], the events are directly transformed into the Hough space, which is updated on every
new event with an additional decay. This approach has the benefit that the latest events
have a higher weighting factor in the Hough space than older events. Using this approach,
a pencil was stabilized in the upright equilibrium position in [5]. Another example of
event-camera-based closed-loop tacking control can be found in [14], where the events are
directly the inputs of a spiking neural network, whose neurons are in a Hough space-like
alignment. This method, however, requires a neuromorphic processor to benefit from the
spiking neural network architecture.

1.3 Overview of this Thesis
Chapter 2 gives an overview of the mechanical design and the considerations taken
regarding subsequent tracking with the event camera. In order to derive the mathematical
model of the Furuta pendulum using the Euler-Lagrange equations, the coordinate frames
are introduced. The model parameters are estimated using a non-linear least squares
parameter estimation method.

In Chapter 3, an adapted Hough transform with exponential decay is introduced. This
method obtains the pendulum’s angle by transforming the events generated by the event
camera into the Hough space. An analytical function is derived from the pinhole camera
model to compensate for the perspective projection of the pendulum.

In Chapter 4, an optimization problem is formulated to obtain the Furuta pendulum’s
reference swing-up, transfer, and swing-down trajectories. Due to model errors and
unmodeled dynamics, a feedback controller is introduced to stabilize the pendulum about
the reference trajectories and the equilibrium points. Next, an Extended Kalman Filter is
derived to estimate the Furuta pendulum’s state.

The proposed method is validated by simulation and by means of experiments on the
physical Furuta pendulum in Chapter 5. A comparative analysis between the stabilization
about the reference trajectories with encoder feedback and with event camera feedback
validates the closed-loop performance.

Chapter 6 summarizes this thesis and concludes with the main findings of stabilizing
the Furuta pendulum about the reference trajectories using event camera feedback.



2 Design and Mathematical Modeling

This chapter describes the mechanical design of the Furuta pendulum and emphasizes
the decisions made regarding the subsequent vision processing. A mathematical model is
derived using the Euler-Lagrange equations to allow for model-based control of the Furuta
pendulum. This chapter concludes with a non-linear least-squares parameter estimation
based on physical measurements from the assembled Furuta pendulum.

2.1 Mechanical Design
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ϕ2
l2

rc

x0

y0
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y1

z1

h
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x2

y2
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Encoder

Figure 2.1: The mechanical design of the Furuta pendulum with the event camera and the
coordinate systems for the mathematical modeling.

Figure 2.1 shows a schematic overview of the mechanical construction of the Futura
pendulum. It essentially consists of a drive motor, an arm, and the pendulum itself. The
drive motor is mounted on a baseplate, bolted to four aluminum profiles, and drives the
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arm, allowing it to rotate in the horizontal plane, as described by the angle ϕ1. The
rotary encoder connects the arm’s rod with the drive motor to let the pendulum, which
has a fixed connection to the rod of the arm, freely rotate around the rotating axis of the
encoder. The pendulum’s angle ϕ2 is measured from the vertical axis to the pendulum,
as depicted in Figure 2.1. In order to have a reference measurement of the pendulum’s
angle ϕ2, an encoder is installed. Since this thesis aims to obtain the pendulum’s angle
by processing the events of the camera, the visual appearance of the pendulum is crucial.
Therefore, dark blue paintwork is chosen to ensure that the pendulum stands out against
the light-colored background. Reflections on the pendulum are minimized by choosing a
matt finish. A cylindrical shape of the pendulum is chosen to ensure that the projection
on the camera sensor has clear edges.

In order to simplify the mathematical modeling, several Cartesian coordinate systems
are introduced, as shown in Figure 2.1. The space-fixed base coordinate system (x0, y0, z0),
further denoted as Σ0, acts as the reference frame. The body-fixed coordinate frame
(x1, y1, z1), further denoted as Σ1, is attached to the encoder at the height h with respect
to the z0-direction. The origin of the coordinate frame (x2, y2, z2), further denoted as Σ2,
is shifted by l1 in the x1-direction to the center of the pendulum’s rod.

The event camera’s optical axis zc is parallel to the x0-axis and it is placed at the
distance rc with respect to the base frame Σ0. The origin of the camera’s coordinate
system (xc, yc, zc) is at the optical center of the camera.

Figure 2.2: The assembled Futura pendulum.

Figure 2.2 shows an image of the assembled Furuta pendulum. The baseplate is built
from aluminum and bolted to the aluminum profiles. The drive motor is a NEMA 17
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stepper motor with 200 steps per revolution [15] and is linked to the 3D-printed mounting
bracket for connecting the encoder with the drive motor adaptor. The 600 pulses per
revolution incremental encoder is connected via a rod to the 3D-printed pendulum adaptor.

2.2 Pendulum Modeling
In this section, the equations of motion based on the mechanical model of the Furuta
pendulum are derived using Lagrangian mechanics. An overview of the Furuta Pendulum
with the coordinate systems and respective dimensions is depicted in Figure 2.1. Consider
the base coordinate system Σ0 and the arm-fixed coordinate system Σ1, whose translation
of the origin with respect to Σ0 is described by the vector

d1
0 =

0
0
h

 . (2.1)

In order to describe the relative rotations of the coordinate systems, the basic rotation
matrices about the y-axis and the z-axis are written as [16]

Ry(ϕ) =

 cos(ϕ) 0 sin(ϕ)
0 1 0

− sin(ϕ) 0 cos(ϕ)

 , (2.2a)

Rz(ϕ) =

cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 . (2.2b)

Let the rotation matrix R1
0 = Rz(ϕ1) describe the rotation ϕ1 of the coordinate system

Σ1 around the z0-axis, yielding to the homogeneous transformation matrix [16]

T1
0 =

[
R1

0 d1
0

0T 1

]
. (2.3)

By introducing the vector

d2
1 =

l1
0
0

 (2.4)

originating from the arm’s coordinate system Σ1 to the origin of the pendulum’s coor-
dinate system Σ2 with the respective rotation matrix R2

1 = Ry(90◦)Rz(ϕ2 + 180◦), the
homogeneous transformation matrix

T2
1 =

[
R2

1 d2
1

0T 1

]
(2.5)

is obtained. The arm’s center of gravity in its coordinate system Σ1 is

p1,1c =

lc1
0
0

 , (2.6)
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where lc1 is the respective distance to the origin of Σ1. Similarly, the pendulum’s center
of gravity in its coordinate system Σ2 can be written as

p2,2c =

lc2
0
0

 , (2.7)

allowing us to express the homogeneous coordinates [16] of the centers of gravity as

Pi,ic =
[
pi,ic

1

]
, i = 1, 2 . (2.8)

Finally, the centers of gravity, transformed into the base coordinate frame Σ0, are given
by

P0,1c = T1
0P1,1c (2.9)

and
P0,2c = T1

0T2
1P2,2c = T2

0P2,2c . (2.10)

The velocities of the centers of gravity of the pendulum and arm

v0,ic = d
dt

p0,ic , i = 1, 2 (2.11)

in the base frame Σ0 are expressed using the time derivative of the centers of gravity in
the respective coordinate systems p0,ic.

In order to determine the rotational kinetic energy, the angular velocity matrix [16] for
the arm and the pendulum in the base coordinates Σ0 is written as

S(ω0,i) =
( d

dt
Ri

0

)(
Ri

0
)T

, i = 1, 2 (2.12)

and has the form of a skew-symmetric matrix [16]

S(ω) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 , (2.13)

with the angular velocity vector ω =
[
ωx ωy ωz

]T
. This allows for extracting the

angular velocity vectors of the arm ω0,1 and the pendulum ω0,2 in the base frame Σ0.
The arm and pendulum’s body-fixed coordinate systems are chosen such that the

principal axes of the bodies are aligned with the coordinate systems, leading to diagonal
inertia matrices [16]

Ii =

Ii,xx 0 0
0 Ii,yy 0
0 0 Ii,zz

 , i = 1, 2 . (2.14)
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The kinetic energy is the sum of the rotational and translational energies of the pendulum
and the arm [16]

T =
2∑

i=1

1
2(ω0,i)TRi

0Ii(Ri
0)Tω0,i +

2∑
i=1

1
2mivT

0,icv0,ic . (2.15)

Similarly, the potential energy

V = −
2∑

i=1
aT

g p0,icmi (2.16)

is expressed using the constant gravitational acceleration ag =
[
0 0 −g

]T
, the centers

of gravity p0,ic, and the respective masses mi.
The Lagrangian, denoted by L, is the difference between the system’s kinetic and the

potential energy and can be written as [16]

L = T − V . (2.17)

Previous research modeled the pendulum and the arm with viscous damping using the
damping coefficients di, i = 1, 2 [2]. Thus, the dissipative energy can be described using
Rayleigh’s dissipation function [17]

R =
2∑

i=1

1
2diω

2
i , i = 1, 2 (2.18)

with ωi = ϕ̇i to finally derive the equations of motion [17]

d
dt

(
∂L
∂ω1

)
− ∂L

∂ϕ1
+ ∂R

∂ω1
= τm , (2.19a)

d
dt

(
∂L
∂ω2

)
− ∂L

∂ϕ2
+ ∂R

∂ω2
= τext (2.19b)

from the Lagrangian L, Rayleigh’s dissipation function R, the motor torque τm, and the
external torque τext = fextl2 induced by an external force at the tip of the pendulum
that is perpendicular to the x1-x2 plane. The stepper motor, that actuates the arm, is
controlled by a stepper motor driver. The interaction of the dynamics from the pendulum
to the arm is therefore neglected allowing to use the arm’s angular acceleration as the
system input u resulting in the non-linear model of the pendulum

ẋ = f(x, u, fext) (2.20)

with the state vector x =
[
ϕ1 ω1 ϕ2 ω2

]T
and the non-linear system dynamics

f(x, u, fext) =


ω1
u
ω2

(−ω2
1(I2,xx−I2,yy−l2c2m2) sin(ϕ2)+l1lc2m2u) cos(ϕ2)+g sin(ϕ2)lc2m2+fextl2−d2ω2)

l2c2m2+I2,zz

 .

(2.21)
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The mathematical model with the system dynamics, as expressed in (2.21), is derived using
Maple [18]. Further, the equation f(xe, ue, fext,e) = 0 for u = ue = 0 and fext = fext,e = 0
is solved to derive the equilibrium points{

xe | xe =
[
x1,e 0 k180◦ 0

]T
: x1,e ∈ R ∧ k ∈ Z

}
, (2.22)

whereas even numbers of k denote the equilibrium points, where the pendulum is upright.
Uneven numbers of k are the points of equilibrium where the pendulum is hanging
downwards.

2.3 Non-linear Least Squares Parameter Estimation
This chapter describes the estimation of the parameters of the mathematical model from
(2.21). The pendulum’s mass m2, the length l2, and the arm’s length l1 are directly
measured. The remaining parameters are estimated using a non-linear least-squares
method based on measurements from the physical Furuta pendulum.

Considering the geometrical properties of the pendulum and the dynamics given in
(2.21), the moment of inertia I2,xx has a minor influence on the model dynamics and is
therefore calculated. The pendulum is modeled as a hollow cylinder with the mass m2,
the outer radius ro and the inner radius ri, which leads to the following expression for
calculating the moment of inertia:

I2,xx = m2
2 (r2

o + r2
i ) . (2.23)

The remaining model parameters of the Furuta pendulum from (2.21), namely the
moment of inertia I2,zz, the friction coefficient d2, and the distance to the pendulum’s
center of mass lc2, are obtained using a non-linear least squares parameter estimation.
To do so, the model input u∗ of a swing-up trajectory with guessed parameters close to
the actual parameters is calculated by solving the optimization problem for the swing-up,
as described in Chapter 4. The input u∗ is used as the input on the physical Furuta
pendulum with the initial state xT

0 =
[
0 0 180◦ 0

]
at the lower equilibrium point. The

measured angle ϕ2,m in the time interval t ∈ [t0, tm], taken from the encoder, is used to
formulate the non-linear least squares optimization problem

min
p

J(p) =
∫ tm=2.5 s

t0=0 s
(ϕ2,m(t) − ϕ2(t))2 dt (2.24a)

subject to ẋ = f(x, u∗, 0, p), x(t0) = x0 , (2.24b)
pmin ≤ p ≤ pmax , (2.24c)

similarly to [19] with the parameter vector

pT =
[
d2,est I2,zz,est lc2,est

]
, (2.25)

the lower bound pmin, the upper bound pmax with

pT
min =

[
10−4 N m s 0 kg m2 0.1 m

]
, (2.26a)

pT
max =

[
10−3 N m s ∞ kg m2 0.3 m

]
, (2.26b)
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and the initial guess of the parameter vector

p̂T
0 =

[
5.5 · 10−4 N m s 4 · 10−4 kg m2 0.15 m

]
. (2.27)

The constrained optimization problem (2.24) was solved using Matlab’s fmincon function
[20] in combination with the interior-point method, additionally requiring an ordinary
differential equation solver for (2.24b), which was solved using Matlab’s ode45 [20]. The
optimization algorithm converged to the minimum

p̂T =
[
5.5429 · 10−4 N m s 3.5052 · 10−4 kg m2 0.159 29 m

]
. (2.28)

Due to the pendulum’s symmetry, the moment of inertia about the y2-axis I2,yy can be
assumed as I2,yy = I2,zz.
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Figure 2.3: Comparison of the measured and the simulated open loop swing-up of the
Furuta pendulum with the final set of parameters. The plot shows the error
e(t) = ϕ2(t) − ϕ2,m(t), where ϕ2(t) denotes the simulated pendulum angle,
and ϕ2,m(t) is the encoder measurement from the physical Furuta pendulum.

Figure 2.3 shows a comparative plot of the measured angle ϕ2,m(t) and the simulated
angle ϕ2(t) of the Furuta pendulum model from (2.21) with the final set of parameters
as summarized in Table 2.1. The simulated pendulum angle ϕ2(t) fits the measured
pendulum angle ϕ2,m(t) well over a wide time range, as shown in the error plot with
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e(t) = ϕ2(t) − ϕ2,m(t). However, during high angular acceleration of the pendulum’s arm
at t ∈ [1.8 s, 2.0 s], the magnitude of the error increases. This behavior could indicate
that unmodeled effects, such as the finite stiffness of the 3D-printed mounting bracket,
contribute to the error. Furthermore, noise in the error plot e(t) is prominent due to the
quantization from the encoder in the measured angle ϕ2,m(t).

Parameter Method Value
I2,xx calculated 2.83 · 10−6 kg m2

I2,yy estimated 3.51 · 10−4 kg m2

I2,zz estimated 3.51 · 10−4 kg m2

l2 measured 0.3 m
lc2 estimated 0.159 m
m2 measured 0.05 kg
d2 estimated 5.54 · 10−4 N m s
g constant 9.81 m/s2

ro measured 0.008 m
ri measured 0.007 m
l1 measured 0.131 m

Table 2.1: The parameters used for the mathematical model of the Furuta pendulum and
the respective identification method.



3 Vision-Based Pendulum Angle Detection
Event cameras generate asynchronous events based on brightness changes, specifically
the photocurrent changes of each individual pixel [1]. In order to obtain the pendulum’s
angle from these asynchronous events, an event processing algorithm is required. The
events generated by the movement of the pendulum in a sufficiently small time window
can be approximated to be collinear and, therefore, lie in a straight line. A well-known
algorithm for detecting straight lines and their respective angle is the Hough transform
[21, 22]. However, this algorithm is typically used for detecting lines in full-frame images.
The following section describes a method for applying the Hough transform on sparse
event streams.

Since the aim is to obtain the pendulum’s angle from events generated by the stationary
camera, the perspective projection must be considered. This chapter derives a mathemati-
cal representation of this projection using the pinhole camera model [23], which allows
for compensating the non-linear relation between the pendulum’s actual angle and the
projected angle obtained from the Hough transform.

3.1 Event-based Hough Transform with Exponential Decay
This section introduces the method used in this work to obtain the angle of collinear
events from the set of events generated by the event camera. Each event

ek = (tk, pk, xk, yk) (3.1)

from an event camera consists of the timestamp tk, the polarity of the brightness change
pk ∈ {−1, 1}, and the coordinates on the camera sensor Pk = (xk, yk) [1]. However, the
event camera used in this work transmits event packets as a set of events εi at the time ti

rather than individual events ek [24, 25].
The coordinates (xk, yk) of one isolated event ek on the sensor plane can lie on an

infinite number of straight candidate lines

dk(ϕ2,h) = xk sin(ϕ2,h) + yk cos(ϕ2,h) , ϕ2,h ∈ [0, π[ , (3.2)

parametrized by the candidate line’s signed normal distance to the origin dk and its angle
ϕ2,h with respect to the sensor’s y-axis [22].

Figure 3.1 illustrates the set of event coordinates Pi and Pi−1 on the sensor plane from
two subsequent event packets, which are transformed into the Hough space using (3.2),
forming a set of sinusoidal-shaped functions, where each event ek on the sensor plane
refers to one sinusoidal-shaped function dk(ϕ2,h) in the Hough space. Since the events in
Figure 3.1 are collinear, the sinusoidal-shaped functions have a unique intersection point
(dint, ϕ2,int) [22], as shown in Figure 3.1. Thus, the problem of detecting collinear events
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Figure 3.1: Graphical representation of the Hough transform with two subsequent event
packets of collinear events.

on the sensor plane is transformed into a problem of finding the intersection point in the
Hough space [22]. In order to find the intersection point, the angle

ϕ2,h = aΔϕ2 , a = 0, 1, . . . , Nϕ − 1 , (3.3a)

Δϕ2 = 180◦

Nϕ
, (3.3b)

is quantized to Nϕ ∈ N angles. Further, the distance dk is quantized to

dk = Nd

2 + round(xk sin(aΔϕ2) + yk cos(aΔϕ2)) , a = 0, 1, . . . , Nϕ − 1 , (3.4)

with the function for rounding to the closest integer value

round(r) = ⌊r + 0.5⌋ , (3.5)

where the operator ⌊·⌋ denotes the floor function. The even parameter Nd must be chosen
such that the offset Nd/2 is at least the size of the camera’s sensor diagonal in pixels. For
every tuple (dk, a), the respective entry hdk,a in the Nd × Nϕ matrix

H =


h0,0 h0,1 · · · h0,Nϕ−1
h1,0 h1,1 · · · h1,Nϕ−1

...
... · · · ...

hNd−1,0 hNd−1,1 · · · hNd−1,Nϕ−1

 (3.6)

is incremented. This allows for the detection of collinear events by finding the maximum
in the matrix H. More specifically, for every new set of received event coordinates Pi, the
set of hough-transformed events

Hi = {(dk(xk, yk, a), a) | a = 0, ...., Nϕ − 1, ∀(xk, yk) ∈ Pi} (3.7)
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is calculated, and each element hdk,a of the matrix H is incremented by one if the tuple
(dk, a) is in the set Hi. The intersection point in the quantized Hough space is the entry
in the matrix H with the highest number of increments.

An example of a Hough space, represented by the matrix H, generated from event
packets with collinear events is shown in Figure 3.1, where the entries of the matrix H are
illustrated as rectangular cells. Darker-colored cells refer to larger matrix entries. However,
to consider older events while also taking the latest events with a higher weighting factor
into account, a discrete-time exponential decay

H(t)|t=jΔt+ = τH(t)|t=jΔt− , H(0) = 0 , (3.8)

with the design parameter τ ∈ [0, 1[ and a cycle time of Δt, is introduced1. The index
j ∈ N0 denotes the j-th computation time step. Figure 3.1 shows that the events from
Pi−1 are considered to have already decayed and are thus shown with a lighter color tone.
Figure 3.2 visualizes the state of the matrix H from the example in Figure 3.1 as a 3D
bar plot.

0
2
4
6
8
10
12
14
16
18
20
22
24 0 2 4 6 8 10 12 14 16 18

0

1

2

3

4

d

a

hd,a

Figure 3.2: A 3D bar plot of the elements hd,a of the matrix H with events from two
subsequent event coordinate packets containing collinear events.

In order to find the indices (di,int, ai,int) of the matrix H with the largest entry at
the computation step i ∈ N0, a maximum search in the region Si around the previous
maximum (di−1,int, ai−1,int) is used, as shown in Figure 3.3. The maximum search starts
in the region S0, which covers the pendulum’s known initial position with ϕ1 = 0◦ and
ϕ2 = 180◦. The search region ~Si that does not extend beyond the boundaries of the Hough

1The time t = jΔt− denotes the moment of the function call in the program that computes the exponential
decay. Similarly, t = jΔt+ refers to the completion time of the respective function call.
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Figure 3.3: An overview of the processing pipeline for the event packets generated by the
event camera.

space can be expressed as

Di =
{

d ∈ Z | d ∈
[
di−1,int − Δd, di−1,int − Δd + 1, . . . , di−1,int + Δd

]}
, (3.9a)

Ai = {a ∈ Z | a ∈ [ai−1,int − Δa, ai−1,int − Δa + 1, . . . , ai−1,int + Δa]} , (3.9b)~Si =
{

(d, a) | (d, a) ∈ Di × Ai : a ≥ 0 ∧ a < Nϕ

}
, (3.9c)

with the design parameters Δd and Δa that define the search region’s size. If the maximum
is located at the border of the Hough space, Ai may contain negative values or values
larger than Nϕ −1. If this occurs, the search region must be wrapped accordingly. Imagine
a line with an event at (x0, y0) in a continuous Hough space with an angle of ϕ2,h = 0◦

at the distance d0. Equation (3.2) must be satisfied for the event (x0, y0). However, the
same line can be represented in the Hough space with an angle of ~ϕ2,h = 180◦ at a signed
distance ~d0 = −d0. This fact is taken into account with the term Nd − d in the extended
search region

Si =
{

(Nd − d, a mod Nϕ) | (d, a) ∈ Di × Ai : a ≥ Nϕ ∨ a < 0
}

∪ ~Si , (3.10)

as it extends over the boundaries of the Hough space. The expression (a mod Nϕ) is the
modulo operation used to wrap the indices of a to its respective range from 0, . . . , Nϕ − 1.
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Considering the Furuta pendulum’s system dynamics, it is important to design the search
region sufficiently large to ensure that the maximum in the matrix H is always in the
search region Si. However, a larger search region leads to a higher computation time.

The first element (di,int, ai,int) found in the set{
(d, a) | hd,a ≥ hn,m∀(n, m) ∈ Si ∧ hd,a > hT

}
(3.11)

of indices, with the threshold hT > 0, is taken to obtain the angle of collinear events

ϕ2,h,i = ai,intΔϕ2 − 90◦ + ni180◦ , (3.12)

where ni ∈ Z shifts the angle obtained from the Hough transform such that it is not
restricted to the quantization of the Hough space, as expressed in (3.3a).

3.2 Pinhole Camera Projection of the Detected Line
The previously described Hough transform algorithm for event data outputs the angle of
collinear events from the pendulum’s movement. However, the projective geometry must
be considered in general to calculate the pendulum’s angle from the angle of the collinear
events. The projective geometry is derived from a simplified model of the Furuta pendulum,
where the diameter of the pendulum is neglected, which can be done for sufficiently small
pendulum diameters. The projected angle on the sensor plane ϕ2,h coincides with the
pendulum’s angle ϕ2 if the arm is aligned with the camera’s optical axis. In the general
case, however, the perspective projection must be taken into account. This is done by
deriving an analytical function φ2,p(ϕ1, ϕ2,h), which expresses the pendulum angle ϕ2
from the projected angle obtained by the Hough transform ϕ2,h and the arm’s angle ϕ1
using the pinhole camera model [23].

Figure 3.4 depicts the projective geometry of the Furuta pendulum using the pinhole
camera model. The camera’s optical center is at the origin of the coordinate system
(xc, yc, zc). The principal axis originates from the optical center and passes through the
arm’s center of rotation. The principal axis crosses the sensor plane at the point Oi,
the origin of the sensor coordinate system (xi, yi). The position of the sensor coordinate
system Oi along the principal axis is irrelevant for obtaining the pendulum’s angle because
the projected angle ϕ2,h is translational invariant with respect to translations along the
camera’s principal axis in the following considerations. The sensor plane is defined to
be orthogonal to the principal axis. In order to get the pendulum’s representation on
the sensor plane, the intersection points I1 and I2 of the respective projection lines are
marked. The vector dp between these two intersection points represents the projection of
the pendulum. The angle between the pendulum’s projection vector dp and the vertical
unit vector −ey is denoted as the projected angle ϕ2,h.

In order to obtain the projected angle ϕ2,h, the pendulum’s position is expressed with
respect to the camera’s frame (xc, yc, zc), as described by the matrix [23]

CE =
[
R0

c d0
c

0T 1

]
, (3.13)
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Figure 3.4: A schematic overview of the simplified Furuta pendulum, the event camera’s
sensor plane, and the respective coordinate systems.

with the rotation matrix
R0

c = Rx(90◦)Rz(−90◦) (3.14)
and the vector

d0
c =

 0
h

xcam

 . (3.15)

Considering square pixels on the sensor plane and a coinciding origin of the sensor’s
coordinate system (xi, yi) with the principal point Oi, the internal camera matrix with
the focal length from the event camera’s datasheet fc [25] is written as [23]

CI =

fc 0 0 0
0 fc 0 0
0 0 1 0

 . (3.16)

Further, the lens distortion is neglected. Next, the points in the two-dimensional sensor
coordinate system are represented by the homogeneous coordinates ~Mc,i ∈ R3. The pro-
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jection, described by the pinhole camera model, is written using homogeneous coordinates
as ~Mc,i = CICEP0,i , i = 1, 2 , (3.17)

with P0,i ∈ R4. The homogeneous coordinates of the pendulum’s tip P0,2 and the arm’s
tip P0,1 are expressed as

P0,i =
[
p0,i

1

]
, i = 1, 2 . (3.18)

Transforming the homogeneous coordinates ~Mc,i back to Euclidean coordinates ~mc,i ∈ R2

with i = 0, 1, the vector of the projected pendulum in the sensor frame can be written as

dp(ϕ1, ϕ2) = ~mc,2(ϕ1, ϕ2) − ~mc,1(ϕ1) , (3.19)

with the position vector ~mc,2(ϕ1, ϕ2) of point I2 and the position vector ~mc,1(ϕ1) of point
I1, as shown in Figure 3.4. The relation to obtain the angle between the unit vector −ey

and dp is given by
−dT

p ey = cos(ϕ2,h)∥dp∥2 . (3.20)

Solving the equation for ϕ2 using Maple [18] gives the non-linear function φ2,p(ϕ1, ϕ2,h),
as shown in Figure 3.5. It is evident that the pendulum’s angle coincides with the angle
ϕ2,h for arm angles of ϕ1 = l180◦, l ∈ Z. However, as the arm angle ϕ1 increases, the
function φ2,p(ϕ1, ϕ2,h) becomes increasingly non-linear.

Finally, the pendulum’s angle at the computation time step i

ϕ2,i = φ2,p(ϕ1,i, ϕ2,h,i) (3.21)

is calculated from the arm’s angle ϕ1,i and the projected angle obtained by the Hough
transform ϕ2,h,i.

At a certain critical angle ϕ1,crit, when the angle between the arm and its projection
line is 90◦, any rotation of the pendulum would not lead to a change in the angle of the
vector dp. Deriving the critical angle ϕ1,crit and evaluating it for xcam = 0.52 m gives

ϕ1,crit = arccos
(

l1
xcam

)
≈ 75.4◦ . (3.22)

Therefore, the absolute arm angle should remain smaller than the critical angle ϕ1,crit. It
is also important to be aware that the angular resolution of the pendulum angle measure-
ment ϕ2,i can significantly decrease towards larger arm angles due to the quantization
in the Hough transform as expressed in (3.3a) and the non-linearity of the function
φ2,p(ϕ1,i, ϕ2,h,i).
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4 Trajectory Generation, State Estimation,
and Control of the Furuta Pendulum

This chapter describes the reference trajectory generation for the Furuta pendulum’s swing-
up and swing-down trajectories. Further, the generation of a trajectory for balancing the
pendulum in the upright position from an arm angle of ϕ1 = 0◦ to ϕ1 = −30◦, denoted as
transfer trajectory, is described. An optimal control problem is formulated and solved
using an interior-point method to obtain the reference trajectories. In order to stabilize the
Furuta Pendulum about the reference trajectories and the equilibrium points, a discrete,
time-varying Linear Quadratic Regulator (LQR) is designed. This, however, requires the
knowledge of the entire system state. Therefore, a discrete-time Extended Kalman Filter
is designed to estimate the Furuta pendulum’s system state.

4.1 Optimization Problem for the Trajectory Generation
This work aims to stabilize the Furuta pendulum about reference trajectories using vision
feedback. The optimization problem to obtain these reference trajectories is described
in this section. First, starting from the Furuta pendulum’s initial position, hanging
downwards with ϕ1 = 0◦ and ϕ2 = 180◦, the reference swing-up trajectory aims to guide
the Furuta pendulum to the upright position with ϕ1 = ϕ2 = 0◦. Starting from the upright
position, the Furuta pendulum follows the transfer trajectory to the terminal arm angle
at ϕ1 = −30◦ while balancing the pendulum. After reaching the arm’s terminal angle, the
Furuta pendulum follows a swing-down trajectory that ends at the lower equilibrium point
with ϕ1 = 0◦ and ϕ2 = 180◦.

The three reference trajectories are obtained by solving an optimal control problem
with the angular acceleration u as input to get a smooth trajectory for the velocity input
of the drive motor. In order to formulate the discrete-time optimal control problem, an
equidistant time grid

ti = t0 + iΔt, i = 0, ..., N − 1 , (4.1a)

Δt = tN − t0
N − 1 , (4.1b)

with the start time t0 of the respective trajectory, the end time tN , the step size Δt, and
the total number of grid points N . Without limiting the generality, the start time is
defined to be t0 = 0 s, tN = 2.5 s, and N = 2501. Both the system state x(ti) = xi ∈ R4

and the system input u(ti) = ui ∈ R for i = 1, 2, . . . , N are discretized to write the vector
of system states and inputs

y =
[
xT

1 u1 xT
2 u2 . . . xT

N uN

]T
. (4.2)
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The optimal control problem is formulated as

min
y

J(y) =
N∑

i=1
l(xi, ui) , (4.3a)

subject to g(y) = 0 , (4.3b)
− bx ≤ xi ≤ bx , (4.3c)
− bu ≤ ui ≤ bu, i = 1, 2, . . . , N , (4.3d)

with the vector of equality constraints g(y) ∈ R4(N+1), the bound for the system state
bT

x =
[
45◦ ∞ ∞ ∞

]
, the bound for the system input bu = 120 rad/s2 ≈ 6875.5 ◦/s2,

the terminal state xT, and the cost function

l(xi, ui) = 1 + 1
2

(
(xi − xT)TQ(xi − xT) + Ru2

i

)
, (4.4)

with Q > 0 ∈ R4×4 and R > 0 ∈ R. Further, the Furuta pendulum’s system dynamic is
discretized using a Runge-Kutta 4th-order method [26], formulated as equality constraints

gi = xi+1 − xi − 1
6(ξ1,i + 2ξ2,i + 2ξ3,i + ξ4,i), i = 1, 2, . . . , N − 1 , (4.5)

with

ξ1,i = Δtf(xi, ui, 0) , (4.6a)

ξ2,i = Δtf(xi + 1
2ξ1,i, ui, 0) , (4.6b)

ξ3,i = Δtf(xi + 1
2ξ2,i, ui, 0) , (4.6c)

ξ4,i = Δtf(xi + ξ3,i, ui+1, 0) . (4.6d)

Together with the equality constraints for x1 and xN ,

g0 = x1 − xI , (4.7a)
gN = xN − xT , (4.7b)

the vector of equality constraints is written as

g(y) =


g0
g1
g2
...

gN

 . (4.8)

The optimization problem was solved using Matlab’s non-linear programming solver
fmincon [27] for constrained optimization problems. It is configured to use the interior-
point algorithm because it is the recommendation for large-scale optimization problems
[28].



4.1 Optimization Problem for the Trajectory Generation 23

Figure 4.1 shows the calculated reference swing-up trajectory, which starts at xT
I,sup =[

0 0 180◦ 0
]

and ends at tN = 2.5 s with xT
T,sup =

[
0 0 0 0

]
. The deflection of

the arm’s angle ϕ1 stays well within the box constraints. Low deflections of the arm’s
angle ϕ1 are important for detecting the pendulum’s angle with the introduced Hough
transform algorithm because the angular resolution of the detected angle ϕ2,i can decrease
with larger arm deflections due to the projection, as shown in Figure 3.5. Therefore,
the arm’s angle ϕ1 is box-constrained to ±45◦ as expressed in (4.3c). Additionally, the
respective element in the matrix Q is chosen to be considerably higher than all other
matrix elements in Q. The box constraints for the input u limit the angular acceleration
of the stepper motor, as shown in Figure 4.1. This is important to avoid losing steps
when performing experiments on the physical Furuta pendulum. Therefore, the stepper
motor’s holding torque τhold = 0.45 N m [15] is compared to the nominal motor torque,
which is derived from the Euler-Lagrange equations (2.19). Neglecting viscous damping
for the arm by setting the damping coefficient d1 = 0 N m s, measuring the arm’s mass
m1, calculating the arm’s moment of inertia I1, and assuming that the arm’s center of
gravity is at lc1 = l1/2, the motor torque τm for each trajectory is calculated and shown
in Figures 4.1, 4.2, and 4.3. The plots show that the nominal motor torque has a margin
with respect to the holding torque τhold.

The obtained transfer trajectory starts at xI,tf = xT,sup and moves the arm’s angle ϕ1
to the terminal angle −30◦ while balancing the pendulum, as shown in Figure 4.2. The
transfer trajectory ends at tN = 2.5 s at the terminal state xT

T,tf =
[
−30◦ 0 0 0

]
.

The initial state for the swing-down at t0 = 0 s is xI,sdo = xT,tf, as shown in Figure
4.3. The swing-down trajectory ends at tN = 2.5 s at the terminal state xT

T,sdo =[
0 0 180◦ 0

]
. Unlike for the swing-up, the input u stays well within the box constraints.

The chosen parameters for obtaining the reference trajectories by solving the optimiza-
tion problem (4.3) are summarized in Table 4.1.

Trajectory xI xT Q R

Swing-up


0
0

180◦
0




0
0
0
0

 diag(400, 1, 1, 1) 0.01

Transfer


0
0
0
0




−30◦
0
0
0

 diag(1, 1, 1, 1) 0.1

Swing-down


−30◦

0
0
0




0
0

180◦
0

 diag(1, 1, 1, 1) 0.01

Table 4.1: The parameters used to solve the optimal control problems for the Fututa
pendulum.
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Figure 4.1: The reference swing-up trajectory for the Furuta pendulum.
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Figure 4.2: The reference transfer trajectory for the Furuta pendulum.
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Figure 4.3: The reference swing-down trajectory for the Furuta pendulum.
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4.2 Design of the Extended Kalman Filter
Since the Furuta pendulum’s system states ϕ1 and ω1 from (2.21) are derived by integrating
the input u, a reduced-order system is introduced for the state estimation with an Extended
Kalman Filter [29, 30]. Reducing the state vector to xT

r =
[
ϕ2 ω2 fext

]
allows for writing

the reduced-order system

ẋr = fr(xr, ur) , xr(t0) = xr,0 , (4.9a)
yr = h(xr) = ϕ2 , (4.9b)

with the new input uT
r =

[
u uω

]
, and the reduced-order system dynamics

fr(xr, ur) =


ω2

(−u2
ω(I2,xx−I2,yy−l2c2m2) sin(ϕ2)+l1lc2m2u) cos(ϕ2)+g sin(ϕ2)lc2m2+fextl2−d2ω2)

l2c2m2+I2,zz

0

 .

(4.10)
Next, the reduced-order system is discretized with the new input variable uT

r (kTs) =
uT

r,k =
[
uk uω,k

]
, which is constant over the sampling interval Ts, and the system state

xr(kTs) = xr,k, with k ∈ N0. The angular velocity input uω,k is derived by integrating uk

using the Euler method, which is also used for discretizing the reduced-order system

xr,k+1 = Fr,k(xr,k, ur,k, wk) = xr,k + Tsfr(xr,k, ur,k) + wk , (4.11a)
yr,k = h(xr,k) + vk , (4.11b)

where wk ∈ R3 is the process noise, and vk ∈ R is measurement noise. Both wk and vk are
assumed to be zero-mean Gaussian noises. The estimated state x̂r,k =

[
ϕ̂2,k ω̂2,k f̂ext,k

]T

is denoted as x̂+
r,k for the posteriori estimate at the computation step k with measurements

up to the computation step k. Similarly, x̂−
r,k denotes the a-priori estimate considering

measurements up to the computation step k − 1. Together with the output matrix

C =
∂h(x̂−

r,k)
∂xr,k

=
[
1 0 0

]
, (4.12)

the update step from the measurement yk is given as [29, 30]

lk = P−
k CT(CP−

k CT + R)−1 , (4.13a)
x̂+

r,k = x̂−
r,k + lk(yk − h(x̂−

r,k)) , x̂−
r,0 = xr,0 , (4.13b)

P+
k = (I − lkC)P−

k , P−
0 = 0.1I , (4.13c)

with the gain lk ∈ R3, the covariance matrix of the estimation error Pk ∈ R3×3, and the
parameter R ∈ R. The covariance matrix Pk is initialized to P−

0 = 0.1I because the initial
state xT

r,0 =
[
180◦ 0 0

]
of the Furuta pendulum is well-known. Let

Φr,k =
∂Fr,k(x̂+

r,k, ur,k, 0)
∂xr,k

(4.14)



28 4 Trajectory Generation, State Estimation, and Control of the Furuta Pendulum

be the time-varying dynamic matrix of the reduced-order system; then, the propagation
step [29, 30] is given as

x̂−
r,k+1 = Fr,k(x̂+

r,k, ur,k, 0) , (4.15a)
P−

k+1 = Φr,kP+
k ΦT

r,k + Q , (4.15b)

with the parameter Q ∈ R3×3. Experiments on the physical Furuta pendulum have shown
that choosing the parameters Q = diag(0.01, 0.01, 0.005) and R = 1 results in sufficient
estimation characteristics.

The arm’s estimated angular velocity ω̂1,k at the computation step k is integrated using
the Euler method and can be expressed as ω̂1,k+1 = ω̂1,k + Tsuk. Further, the arm’s
estimated angle ϕ̂1,k is obtained from the stepper motor controller. Finally, the Furuta
pendulum’s estimated state

x̂k =


ϕ̂1,k

ω̂1,k

ϕ̂2,k

ω̂2,k

 (4.16)

is formed from the arm’s estimated angle ϕ̂1,k, the arm’s estimated angular velocity ω̂1,k,
and the estimated state variables ϕ̂2,k and ω̂2,k. The estimation of the external force f̂ext,k
has the benefit that external forces at the tip of the pendulum are estimated without
leading to a large estimation error of ϕ̂2,k and ω̂2,k.

4.3 Design of the Time-Varying LQR
In order to control the Futura pendulum about the previously described reference trajecto-
ries for the swing-up, the transfer, and the swing-down, a time-varying Linear Quadratic
Regulator (LQR) [29] is designed. Further, the Furuta pendulum is stabilized in the upper
and the lower equilibrium points after the swing-up and the swing-down, respectively.

Let Δx(t) and Δu(t) be sufficiently small deviations from the reference trajectory with
x∗(t) and u∗(t). Then, the actual system state x(t) and the actual input u(t) from the
Furuta pendulum system, as expressed in (2.21), are written as

x(t) = x∗(t) + Δx(t) , (4.17a)
u(t) = u∗(t) + Δu(t) . (4.17b)

The state space model for small deviations from the reference trajectory is given as

Δẋ(t) = A(t)Δx(t) + bu(t)Δu(t) , Δx(t0) = Δx0 , (4.18)

with the system matrix A(t) and the input vector bu(t), as expressed in

A(t) = ∂f(x∗(t), u∗(t), 0)
∂x , bu(t) = ∂f(x∗(t), u∗(t), 0)

∂u
. (4.19)

Further, the system is approximated using the zero-order hold method [31] with Matlab’s
c2d function [20] and is written as the discretized system

Δxk+1 = ΦkΔxk + ΓkΔuk, Δx(t0) = Δx0 , (4.20)
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with Δxk = Δx(kTs), Δuk = Δu(kTs), and k ∈ 0, 1, . . . , N . The discretized system is
extended by an integrator

ΔxI,k+1 = ΔxI,k + aT
I Δxk, ΔxI(t0) = 0 , (4.21)

with the vector
aT

I =
[
−Ts 0 0 0

]
(4.22)

to compensate for constant disturbances. Finally, the extended system[
Δxk+1
ΔxI,k+1

]
. .. .

Δxe,k+1

=
[
Φk 0
aT

I 1

]
. .. .

Φe,k

[
Δxk

ΔxI,k

]
. .. .

Δxe,k

+
[
Γk

0

]
. .. .
Γe,k

Δuk, Δxe(t0) =
[
Δx0

0

]
,

(4.23)

is written with the extended system matrix Φe,k, the extended state vector Δxe,k, and the
extended input vector Γe,k. This allows for designing the time-varying LQR by solving
the discrete Riccati equation [29]

kT
k = (ΓT

e,kPk+1Γe,k + R)−1ΓT
e,kPk+1Φe,k , (4.24a)

Pk = Q + ΦT
e,kPk+1Φe,k − ΦT

e,kPk+1Γe,kkT
k , (4.24b)

with the positive definite matrix Q ∈ R5×5, the positive design parameter R ∈ R, the gain
vector kk ∈ R5, and the matrix Pk ∈ R5×5 backward in time starting from the solution
of the algebraic Riccati equation where PN+1 = PN = P∞ [29]. The control law of the
time-varying LQR is given by

Δuk = −kT
k Δxe,k . (4.25)
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∥k
k
∥ 2

Figure 4.4: The Euclidean norm of the LQR gain vector during the swing-up. The peak
of the norm of the gain vector around the uncontrollable state is dashed.

However, the controllability matrix C =
[
Γe,k , Φe,kΓe,k , . . . , Φ4

e,kΓe,k

]
loses its

full rank when the pendulum angle is ϕ2 = 90◦ + i180◦, i ∈ Z. Therefore, the LQR from
(4.25) is switched off when following the reference swing-up trajectory when the pendulum
is close to the uncontrollable state. However, the Euclidean norm of the gain vector
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∥kk∥2 peaks around the uncontrollable state, as shown with the dashed line in Figure 4.4.
Therefore, the LQR is switched off when kTs ∈ [1.7 s, 1.996 s] in order to avoid switching
the LQR at high magnitudes of kk. The continuous line in Figure 4.4 shows the Euclidean
norm of the gain vector ∥kk∥2 considering that kk = 0 when kTs ∈ [1.7 s, 1.996 s]. Further,
the LQR is switched off around the uncontrollable state when following the swing-down
trajectory at kTs ∈ [0.9 s, 1.0 s]. Additionally, the integrator state ΔxI,k is reset to zero
when the controller is switched off and during the swing-up.

The Furuta pendulum is stabilized at each equilibrium point using the gain vector

kT
∞ = (ΓT

e,N P∞Γe,N + R)−1ΓT
e,N P∞Φe,N , (4.26)

where P∞ is the solution of the algebraic Riccati equation, which was obtained using
Matlab’s idare function [20].

Experiments on the physical Furuta pendulum have shown that choosing the design
parameters as Q = diag(5 · 103, 102, 10−1, 10−1, 102) and R = 10 achieves sufficient control
characteristics for low arm deflections from the reference trajectories for the swing-up and
transfer trajectory control. Similarly, Q = diag(102, 1, 102, 1, 1) and R = 0.1 are chosen
for the swing-down trajectory control.



5 Validation
This chapter discusses the results from the validation of the proposed method introduced in
the previous chapters to stabilize the Furuta pendulum about the reference trajectories by
means of event camera feedback. Firstly, the closed-loop system, consisting of the Furuta
pendulum’s mathematical model, the Extended Kalman Filter, the reference trajectory
generator, the simulated event camera feedback, and the time-varying LQR, is validated
by simulation. Secondly, experiments on the physical Furuta pendulum with event-based
camera feedback are conducted to validate the functionality and compare the closed-loop
system performance using encoder feedback. Thirdly, an experiment with an external
force applied to the tip of the pendulum is performed to assess the robustness to external
disturbances.

5.1 Validation by Simulation
In this section, the simulated Furuta pendulum is stabilized about the reference trajec-
tories in Matlab/Simulink [20] in order to validate the proposed system design and
architecture.

The camera feedback is simulated by first projecting the simulated pendulum angle ϕ2
onto the camera sensor to obtain the projected angle of the pendulum ϕ2,h,i by solving
(3.20). In order to simulate the output of the Hough transform algorithm, the projected
angle ϕ2,h,i is quantized to 0.1◦ to match the Hough space quantization. Next, the angle
ϕ2,i is calculated from the quantized projected angle ϕ2,h,i using (3.21) to obtain the
pendulum’s angle from the simulated camera feedback.

The trajectory generator is implemented using a finite-state machine and performs the
swing-up, followed by a 10 s stabilization phase in the upper equilibrium point. After the
stabilization phase, the transfer trajectory moves the arm’s angle to a terminal angle of
−30◦ while balancing the pendulum, followed by another 10 s stabilization phase. Then,
the simulated Furuta pendulum follows the reference swing-down trajectory starting from
the arm’s angle of −30◦ to reach the final state at the lower equilibrium point. The
Extended Kalman Filter and the time-varying LQR are implemented with the parameters
described in Sections 4.2 and 4.3 with a cycle time of 1 ms.

Figure 5.1 shows the results of the Furuta pendulum’s simulated swing-up. The area
highlighted in red shows where the controller is switched off. The proposed control system
architecture successfully swings up the Furuta pendulum in simulation. However, between
t = 2 s and t = 2.5 s the simulated trajectory deviates from the reference trajectory. The
reason for this could be the discretization of the system dynamics in the formulation of
the optimization problem and the numerical inaccuracies induced by the simulation solver.

The experimentally chosen external force of 5 mN is applied at the tip of the pendulum
at t = 5.5 s to induce an arm deflection, similar to the discussed experiment on the physical
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Furuta pendulum. However, it is important to have low arm deflections to limit the loss of
angular resolution with event camera feedback. Figure 5.2 shows the stabilization phase
with the external force at the tip of the pendulum. The time-varying LQR stabilizes the
Furuta pendulum in simulation, but the arm’s angle deflects to approximately ϕ1 ≈ −20◦.
In this phase, the integrator state ΔxI,k is increasing. Thus, the arm’s angle is approaching
the reference value. After releasing the external force at t = 7.5 s, the arm’s angle returns
to the reference trajectory, but it shows an offset of approximately 5◦. This behavior can
be observed because the error of the arm’s angle to the reference trajectory is integrated
with the integrator state ΔxI,k while the external force is present. As the integrator state
ΔxI,k decreases, the arm’s angle ϕ1 returns to the reference trajectory. The quantization
effect is clearly visible in the estimated system states and the estimated external force,
as shown in Figure 5.2. Further, oscillations of the arm’s angle ϕ1 about the reference
trajectory are observed. Disabling the quantization of the projected angle ϕ2,h,i eliminates
these noticeable oscillations. Thus, the angular resolution should be as high as possible
to reduce these oscillations. Compared to Figure 5.1, the quantization noise seems more
prominent because of the axis’ scaling.

After the transfer, the Furuta pendulum follows the swing-down trajectory at t = 25 s,
as shown in Figure 5.3, to be finally stabilized about the lower equilibrium point. Similarly
to the swing-up, the controller is switched off in the area highlighted in red. The observed
trajectory of the simulated Furuta pendulum matches the reference trajectory well.

This section shows, that the system architecture with its chosen design parameters
is able to stabilize the Furuta pendulum about the reference trajectories in simulation.
However, the Hough transform algorithm is not implemented in simulation. The following
section describes the implementation and the experimental setup on the physical Furuta
pendulum with event camera feedback. Further, the results from experiments on the
physical Furuta pendulum are discussed.
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Figure 5.1: The simulation of the swing-up with the estimated system states ϕ̂1, ω̂1, ϕ̂2,
ω̂2, the simulated input u, and the reference trajectory.
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5.2 Validation by Experiments

This section starts with a description of the experimental setup and discusses the results of
the conducted experiments with the physical Furuta pendulum. Experiments with encoder
feedback and with event camera feedback are performed to do a comparative analysis.
Similarly to the experiment in simulation, an external force is applied at the tip of the
pendulum while balancing with event camera feedback in order to assess the robustness
against external forces. Figure 5.4 shows an overview of the experimental setup and its
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Figure 5.4: An overview of the setup for the experiments showing the hardware components
and the respective software modules.

components with their respective software modules. The event camera is connected via
USB to a Windows 10 PC, where the Hough transform algorithm with exponential decay,
as described in Chapter 3, is implemented. The Metavision SDK [32] is used to interface
the event camera and to implement the Hough transform with exponential decay using
Microsoft’s Visual C++ [33]. An Ethernet connection to the Beckhoff CX5130 Embedded
PC is used to establish a UDP connection for the transfer of the angle obtained from the
Hough transform algorithm ϕ2,h,i. Further, the calculated event rate over a time window of
30 ms is transferred for evaluation purposes. The Embedded PC receives the UDP frames
with the angle obtained from the Hough transform algorithm to perform an unwrapping
of the angle, as described in (3.12). Subsequently, the projection, as described in (3.21), is
calculated. The Extended Kalman Filter (EKF) estimates the Furuta pendulum’s system
state to stabilize the Furuta pendulum about the reference trajectories from Chapter 4
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using the time-varying LQR. The trajectory generator module outputs the offline calculated
reference swing-up, the transfer, and the swing-down trajectories. Communication with
the Beckhoff terminals to drive the stepper motor using the EL7041 terminal with 1/64
micro-stepping and to interface the encoder with the EL5101 terminal is achieved utilizing
the EtherCAT protocol. The Beckhoff EK1100 is the EtherCAT bus coupler for the
terminals.

The software modules on the Embedded PC, as depicted in Figure 5.4, are implemented
using Beckhoff’s TC1200 PLC [34], TF6311 [35] for the UDP communication, and TF2000
[36] for interacting with the PLC using a web-based user interface.

The SilkyEvCam EvC3A event camera offers a resolution of 640 × 480 pixels and is
equipped with an 8 mm focal length lens [25]. The event camera is mounted at the distance
xcam = 0.52 m. The aperture is set to 16 to have an extensive depth of field. The lens was
focused using a smartphone with an OLED display with a blinking pattern, allowing the
event camera to be focused like a frame camera. The contrast sensitivity bias settings
bias_diff_on and bias_diff_off of the event camera are set to have a good trade-off
between noise and sensitivity to the movement of the pendulum [24]. The dead time bias
bias_refr is increased to reduce the number of generated events from the same pixel by
a significant brightness change [24]. All other bias settings are left to their default values.
Table 5.1 summarizes the chosen bias settings.

Bias Setting Value
bias_diff 299

bias_diff_off 171
bias_diff_on 445

bias_fo 1477
bias_hpf 1448
bias_pr 1250

bias_refr 1652

Table 5.1: The bias settings of the event camera used in the experimental setup.

Parameter Value
Nϕ 1800
Nd 1600 pixel
Δd 60
Δa 50
τ 0.3

hT 10 events

Table 5.2: The parameters for the vision processing algorithm.

The Hough transform algorithm was implemented using Microsoft Visual C++ [33], as
described in Chapter 3. The Hough space is quantized to 0.1◦ and 1600 pixel, respectively.
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Figure 5.5: An event frame during the end of the swing-up with an accumulation time of
100 ms and with the line detected by the Hough transform algorithm.

The maximum search is done in the region ±60 pixel and ±5◦ around the previously found
maximum, which is a good trade-off between processing time and detection reliability.
Further, the threshold hT for updating the last found maximum in the Hough space from
(3.11) is chosen to be 10 events to detect the pendulum reliably but still be robust against
noise. The decay parameter from (3.8) is chosen to be τ = 0.3 with a cycle time of 2 ms,
which allows for detecting the pendulum when having fast movements during the swing-up
and the swing-down, but also to reliably detect the pendulum when there are few events
while balancing the pendulum in the upper or lower equilibrium position. The cycle time
for the computation of the decay is chosen to be 2 ms because it is a computation-intensive
calculation. The parameters for the vision processing are summarized in Table 5.2. In
order to increase the maximum event rate that is processable by the algorithm, the
compiler optimization was set to optimize for speed. Moreover, optimizations in the code,
such as parallelizing the exponential decay calculation using Microsoft’s Parallel Patterns
Library [33], are implemented. The UDP communication to send the detected angle in
the Hough space every 1 ms is done using Microsoft’s winsock2 library [33]. Prophesee’s
metavision_hal_viewer [32] example is extended to additionally visualize the detected
line from the Hough transform using OpenCV [37]. Figure 5.5 shows an event frame with
an accumulation time of 100 ms of the detected line during the swing-up.

5.2.1 Stabilization about the Reference Trajectories

Figures 5.6 and 5.7 compare the Furuta pendulum’s swing-up using event-based vision and
encoder feedback. The proposed setup stabilizes the Furuta pendulum about the reference
swing-up trajectory with event camera feedback. The controller is turned off in the red
highlighted area, leading to errors relative to the reference trajectory for the pendulum’s
angular velocity Δω2 = ω∗

2 − ω̂2 and the pendulum’s angle Δϕ2 = ϕ∗
2 − ϕ̂2, which both

peak in this phase for the swing-up with encoder and event camera feedback. However,
Δω2 and Δϕ2 reach sufficiently small values before the controller is switched back on
at t = 1.997 s. The arm’s angle ϕ1 deflects almost 30◦ from the reference trajectory,
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as shown in Figure 5.7 with Δϕ1 = ϕ∗
1 − ϕ̂1 and Δω1 = ω∗

1 − ω̂1. This effect could
result from unmodeled effects, such as the finite stiffness of the 3D-printed parts. The
encoder measures the pendulum’s angle ϕ2,enc to compare the accuracy of the event-based
angle measurement. The error of the camera measurement Δϕ2,cam = ϕ2,enc − ϕ2,cam
correlates with the estimated angular velocity of the pendulum ω̂2, indicating that the
error results from the latency of the camera measurement ϕ2,cam. The event rate Rev
reaches its maximum of approximately 1.5 ·106 events per second during the fast movement
of the pendulum and the arm in the event camera’s field of view. This shows that the
implemented Hough transform with exponential decay detects the pendulum even with
extensive movement in the scene. However, a considerable amount of generated events
does not originate from the pendulum’s movement but from the movement of the arm or
the encoder.

After t = 2.5 s, in the stabilization phase, the arm’s angle ϕ1 approaches the reference
angle as the integrator starts to integrate the error Δϕ1 between the arm’s angle and the
reference trajectory. However, oscillations in the arm’s angle ϕ1 and the pendulum’s angle
ϕ2 are observed, as shown in Figures 5.8 and 5.9. The oscillations in the stabilization with
encoder feedback could result from the low angular resolution of the encoder measurement
of 0.15◦. Similarly, oscillations in the stabilization with event camera feedback are observed,
but with a higher magnitude and a higher frequency in ϕ2 and ω2. These oscillations
could originate from the angular quantization in the Hough space of 0.1◦ in combination
with the measurement noise and the latency in the camera measurement ϕ2,cam. The error
of the camera-based measurement Δϕ2,cam shows some outliers of over 2◦ in magnitude,
but although the event rate Rev is relatively low, the Hough transform with exponential
decay successfully detects the pendulum even in conditions with low event rates. The
transfer starts after the stabilization phase at t = 12.5 s to move the arm’s angle ϕ1 to its
terminal angle of −30◦ while balancing the pendulum. Both the control with event camera
feedback and with the encoder feedback achieve the transfer of the Furuta pendulum’s arm
to the terminal angle and stabilize it before the Furuta pendulum follows the swing-down
trajectory.

The swing-down trajectory starts at t = 25 s, as depicted in Figure 5.10, and ends at
the lower equilibrium point. The controller is turned off at t ∈ [25.9 s, 26.0 s], as shown
in the plot Δu in Figure 5.11. The errors with respect to the pendulum’s reference
trajectory Δϕ2 and Δω2 for the swing-down with encoder and with camera feedback
show a similar behavior, indicating that model errors or unmodeled effects could be
the reason for this. Increased noise is visible for the swing-down by means of event
camera feedback. The camera measurement error Δϕ2,cam correlates with the estimated
pendulum’s angular velocity ω̂2. This correlation could be prominent due to the latency
of the camera measurements. As depicted in Figure 5.10, the event rate Rev peaks at
t ≈ 25.95 s to its maximum of over 1.5 · 106 events per second, which is similar to the
event rate during the swing-up.

The swing-down trajectory ends at t = 27.5 s to start the stabilization at the lower
equilibrium point with hardly any movement of the pendulum, as shown in the plot of
the pendulum’s angular velocity ω2 in Figure 5.10. Although the event rate decays to
approximately 200 events per second, the Hough transform with exponential decay is still
able to detect the pendulum reliably.
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Figure 5.6: The experimental swing-up trajectory with encoder and event-based vision
feedback. The reference values refer to u∗, ϕ∗

1, ω∗
1, ϕ∗

2, and ω∗
2, respectively.

The state variables denote the estimated values of ϕ̂1, ω̂1, ϕ̂2, and ω̂2 based
on encoder or camera feedback respectively. The event rate Rev is calculated
over a time window of 30 ms.
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Figure 5.7: The error of the estimated system state with respect to the reference swing-up
trajectory with encoder and event-based vision feedback.
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Figure 5.8: The experimental transfer trajectory with encoder and event-based vision
feedback. The reference values refer to u∗, ϕ∗

1, ω∗
1, ϕ∗

2, and ω∗
2, respectively.

The state variables denote the estimated values of ϕ̂1, ω̂1, ϕ̂2, and ω̂2 based
on encoder or camera feedback respectively. The event rate Rev is calculated
over a time window of 30 ms.
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trajectory with encoder and event-based vision feedback.
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Figure 5.10: The experimental swing-down trajectory with encoder and event-based vision
feedback. The reference values refer to u∗, ϕ∗

1, ω∗
1, ϕ∗

2, and ω∗
2, respectively.

The state variables denote the estimated values of ϕ̂1, ω̂1, ϕ̂2, and ω̂2 based
on encoder or camera feedback respectively. The event rate Rev is calculated
over a time window of 30 ms.
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Figure 5.11: The error of the estimated system state with respect to the reference swing-
down trajectory with encoder and event-based vision feedback.
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5.2.2 Stabilization with an External Force
The conducted experiments on the physical Furuta pendulum for the stabilization about the
reference trajectories did not consider an external force acting at the tip of the pendulum.
Figure 5.12 depicts the experimental results, where an external force is manually applied at
t ≈ 3 s at the tip of the pendulum while balancing the Furuta pendulum using event-based
vision feedback about the upper equilibrium point. The Extended Kalman Filter estimated
the force applied to be approximately f̂ext ≈ 15 mN. This external force leads to an
arm deflection of about −30◦ with a pendulum’s angle of approximately −4◦. As soon
as the external force is released at t ≈ 4.5 s, the Furuta pendulum’s arm returns back
to the reference value. However, prominent noise can be observed in the estimation
of the external force. This may be explained by the quantization and the noise of the
measurement of the pendulum’s angle. Furthermore, unmodeled effects such as friction in
the encoder bearings could contribute to estimation errors of the external force even in
the absence of an external force.
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Figure 5.12: The experimental results when applying an external force manually at the
tip of the pendulum while balancing the Furuta pendulum with event-based
vision feedback.





6 Summary and Conclusions

This chapter summarizes this thesis and concludes with the findings on stabilizing the
Furuta pendulum about the reference trajectories using event camera feedback.

A Furuta pendulum was built, considering its visual appearance for detecting and
stabilizing the pendulum with event camera feedback. A mathematical model of the
Furuta pendulum was derived in order to formulate the optimal control problem, estimate
the state with an Extended Kalman Filter, and stabilize the Furuta pendulum with a
time-varying LQR. A non-linear least squares parameter estimation was implemented to
estimate the parameters that were not directly measurable.

Then, the event-based Hough transform with exponential decay, an adaption of the
classical Hough transform algorithm for lines, was introduced to apply it to event packets
from the event camera without the need for event frames. This event-processing algorithm
was used to detect the pendulum’s angle in dynamic scenarios, such as the swing-up.
Next, the pinhole camera model considered the projection of the pendulum onto the event
camera’s sensor. An analytical function was derived to calculate the pendulum’s angle
from the output of the Hough transform algorithm and the arm’s angle.

An optimal control problem was formulated and solved to obtain the reference swing-up,
the transfer, and the swing-down trajectories. The respective box constraints took into
account that the pendulum’s arm should not deflect too much in order to limit the loss of
resolution resulting from the camera’s projection. The estimation of the state and the
external force at the tip of the pendulum was done using an Extended Kalman Filter. In
order to stabilize the Furuta pendulum about the reference trajectories, a time-varying
LQR with an integrator was implemented. Further, the feedback controller was switched
off based on the norm of the feedback gain vector and the loss of controllability when the
pendulum is horizontal.

The proposed method was successfully applied in the simulation using Matlab/Si-
mulink, demonstrating its ability to swing-up, transfer, and swing-down the simulated
Furuta pendulum. However, the quantization of the pendulum’s angle measurements was
clearly visible in the estimated state vector and in the estimation of the external force.

After the validation by simulation, experiments on the physical Furuta pendulum were
conducted. The physical Furuta pendulum followed the reference trajectories while being
controlled with the time-varying LQR and event camera feedback. The encoder was
used to compare the accuracy of the vision-based measurement of the pendulum’s angle
and to perform a comparative analysis of the swing-up, the transfer, and the swing-
down of the Furuta pendulum. During the swing-up and swing-down, the error between
the camera measurement and the encoder measurement correlated with the pendulum’s
velocity. This indicates that the latency of the vision pipeline could be the reason for this
behavior. Further, oscillations in the stabilization about the upper equilibrium position
were observed. These oscillations may be affected by the quantization of the measured
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pendulum angle, as similar oscillations were observed in the simulation. It was found that
the stabilization in simulation without quantization led to an absence of these prominent
oscillations. The bias settings of the event camera were chosen to have a good trade-off
between the sensitivity to the pendulum’s movement and the noise while also reducing the
event rate. The proposed event-processing algorithm detects the pendulum in dynamic
scenarios, such as the swing-up with over 1.5 · 106 events per second or in the stabilization
about the lower equilibrium point with approximately 200 events per second.

The stabilization with camera feedback was compared to the stabilization with encoder
feedback. The analysis showed a comparative stabilization of the swing-up and swing-down
trajectory, although the error of the state variables with event camera feedback tended to
be noisier compared to the stabilization with encoder feedback.

The presence of an external force at the tip of the pendulum led to a deflection of
the arm’s angle while it was controlled. This deflection could have been reduced by
penalizing the respective state in the time-varying LQR design, but the closed-loop system
became unstable with event camera feedback at a particular increase of the respective
design parameter. The proposed design of the time-varying LQR successfully controlled
the Furuta pendulum while being sufficiently robust against the noise in the camera
measurements.

The proposed method was able to stabilize the Furuta pendulum about the reference
trajectories using event camera feedback with a maximum arm deflection of approximately
45◦ for the swing-down. The Hough transform with exponential decay detected the
pendulum in dynamic scenarios with event rates ranging from 200 events per second up
to over 1.5 · 106 events per second. It was found that the standard deviation between
the encoder and the event camera measurement was approximately 0.77◦ during the
stabilization about the reference trajectories with event camera feedback.

Future work could contribute by improving the introduced Hough transform with
exponential decay. This could be achieved by implementing a non-uniform Hough space
quantization, which could improve the latency of the vision processing algorithm. Further,
a non-blocking implementation of the event processing algorithm could potentially reduce
the latency and, thus, the error in the pendulum angle measurement.
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