

Smartphone PPP

with the Galileo HAS

Marcus Franz Wareyka-Glaner¹, Gregor Möller¹

¹ Department of Geodesy and Geoinformation, Technische Universität Wien, Austria

Challenges

Results

Summary

Smartphone + GNSS

- Since 2016, Android allows accessing the raw GNSS measurements
- Self-developed PVT algorithms
- Application of correction data
- \rightarrow improve positioning performance

Precise Point Positioning

PPP relies on:

- Precise satellite products: orbits, clocks and biases
- Complex models and algorithms

Geodetic accuracy: cm, or even mm Major drawback: convergence time

Galileo High Accuracy Service

- Real-time corrections for GPS & Galileo
- Free-of-charge
- Dissemination over
 - Signal in space (E6-B)
 - The Internet (since January 24, 2023)

Galileo HAS

HAS	SERVICE LEVEL 1	SERVICE LEVEL 2	
COVERAGE	Global	European Coverage Area (ECA)	
TYPE OF CORRECTIONS	PPP - orbit, clock, biases (code and phase)	PPP - orbit, clock, biases (code an incl. atmospheric corrections	d phase)
SUPPORTED FREQUENCIES	E1/E5a/E5b/E6; E5 AltBOC L1/L5; L2C	E1/E5a/E5b/E6; E5 AltBOC L1/L5; L2C	
HORIZONTAL ACCURACY 95%	<20 cm	<20 cm	Depending on
VERTICAL ACCURACY 95%	<40 cm	<40 cm	Depending on:
CONVERGENCE TIME	<300 s	<100 s	PPP software
AVAILABILITY	99%	99%	
USER HELPDESK	24/7	24/7	GNSS equipment
© ESA (2020), MODIFIED	Initial service (since January 2023)	Full service (planned for 2024)	

FĠIJ

Challenges

Results

Summary

- Observation generation
 - Android API provides time-stamps
 - Generation of pseudorange is tricky¹
- Observation quality:
 - Factor 10-100 worse
 - C/N0: ~10 dBHz lower
- Observation weighting

¹ more details: (Zangenehnejad et al., 2023)

. .

Quality Checks

- Code Triple-Time Difference: $(C_i C_{i-1}) (C_{i-2} C_{i-3}) < 35 m$
- Observed-minus-computed:

$$C - C_{model} < 25 m$$

$$L - L_{model} < 5 m$$

$$L_{old} + dt \sqrt{D_{now} D_{old}} < 0.8 \ cy$$

... with Doppler-Shift

 $dL_{E1} - dL_{E5a} < 0.05 \ cm$

... with phase difference

$$P_{1} = \rho + c(dt_{r} + \delta t^{g}) + dTrop^{wet} + dIono_{1} + \varepsilon$$
$$L_{1} = \rho + c(dt_{r} + \delta t^{g}) + dTrop^{wet} - dIono_{1} + \lambda_{1}N_{1} + \varepsilon$$
$$dIono_{pseudo} = dIono_{1} + \varepsilon$$

- Uncombined model with ionospheric constraint
- Maintains raw observation noise
- Flexibel, handles any number of frequencies

$$P_{1} = \rho + c(dt_{r} + \delta t^{g}) + dTrop^{wet} + dIono_{1} + \varepsilon$$
$$L_{1} = \rho + c(dt_{r} + \delta t^{g}) + dTrop^{wet} - dIono_{1} + \lambda_{1}N_{1} + \varepsilon$$
$$dIono_{1} = dIono_{1} + \varepsilon$$

 $dIono_{pseudo} = dIono_1 + \varepsilon$

smartphone
$$P_{2} = \rho + c(dt_{r} + \delta t^{g}) - DCB_{12} + dTrop^{wet} + \frac{f_{1}^{2}}{f_{2}^{2}}dIono_{2} + \varepsilon$$

$$L_{2} = \rho + c(dt_{r} + \delta t^{g}) - DCB_{12} + dTrop^{wet} - \frac{f_{1}^{2}}{f_{2}^{2}}dIono_{2} + \lambda_{2}N_{2} + \varepsilon$$

Challenges

Results

Summary

Test Environment

Smartphone	Google Pixel 7 Pro
Data	April 4, 2023 and December 12, 2023
	60 min in total, recorded with GnssLogger
Satellite products	Galileo HAS, quasi-real-time processing
Software	raPPPid

Processing Settings

Smartphone	Google Pixel 7 Pro
Date and period	April 4, 2023 and December 12, 2023; 60 minutes in total
Observation interval	1 second, reset of the solution every 6 minutes / no reset
Processed measurements	GPS (C1C, L1C + C5Q, L5Q), Galileo (C1C, L1C + C5Q, L5Q)
Satellite products	Galileo HAS, real-time correction stream
Processing mode	Static / static-kinematic, quasi-real-time
Observation model	Uncombined model with ionospheric constraint
Raw observation noise	Code: 7 m, phase: 0.01 m, ionosphere: 3 m
Observation weighting	$10^{\frac{\max(0; 55-SNR)}{a}}$, with a = 10
Ionosphere model	IGS RT GIM, released after 1 min
Troposphere model	GPT3, ZWD estimated
Correction models	Solid Earth tides, relativistic effects, Phase Wind-Up
Satellite exclusion	$C/N0 < 20 \text{ dB.Hz}$ or elevation $< 10^{\circ}$
Data quality checks (thresholds)	Observed minus computed (code: 25 m, phase 5 m), code triple-time difference (35 m), cycle-slip detection with $dL_i - dL_j$ (5 cm) and Doppler (0.8 cy)

EĞU

(cc)

raPPPid

- Open-source PPP software
- GitHub:

https://github.com/TUW-VieVS/raPPPid

Documentation:

https://vievswiki.geo.tuwien.ac.at/en/raPPPid

承 raPPPid File Models Estimation Run Plotting				- 0	×
Input-File Observation File:		Analyze			
Approximate Position	Processed Frequencies		Ranking:		
X-Coordinate: [m]	GPS L1 V	L2 ~ L5 ~	PWCSLXYMND		
Y-Coordinate: [m]	GLONASS G1 V	G2 ~ G3 ~	PCIQX		
2-coordinate: [m]	GALILEO E1 ~	E5a 🗸 E5b 🗸	BCIQXAZ		
	BEIDOU B1 V	B2 ~ B3 ~	IQX		
Close All Figures	Subdirector	ry/Processing-Name:			
Version 1.0 © TUW 2023	Batch-Processing DELET	E DOWNLOAD	STOP	RUN	

median 2D error: 62 cm

mean convergence: 71 s

median 3D error: 138 cm

static, reset every 6 minutes

convergence: 2D < 1m

static-kinematic, no reset

Challenges

Results

Future investigations:

- Refine observation model (e.g., observation weighting)
- Kinematic and challenging environments
- Include other sensors (e.g., accelerometer)

- Glaner, M. F., & Weber, R. (2023). Breaking the One-Meter Accuracy Level with Smartphone GNSS Data. Engineering Proceedings, 54(1). <u>https://doi.org/10.3390/ENC2023-15465</u>
- ESA (2020). Galileo High Accuracy Service. doi:10.2878/581340. Retrieved January 17, 2023, from <u>https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_HAS_Info_Note.pdf</u>
- Zangenehnejad F, Jiang Y, Gao Y (2023). GNSS Observation Generation from Smartphone Android Location API: Performance of Existing Apps, Issues and Improvement. Sensors 23(2):777. <u>https://doi.org/10.3390/s23020777</u>

Thank you for your attention!

© Thomas Fabian (flickr)

