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A distributed Kerr-lens mode locking regime can be realized in a waveguide laser by spatial profiling
of the pump beam, thus creating a spatio-temporal soliton. Additional slow temporal modulation of the
pump source stabilizes the spatio-temporal solution in a broad range of parameters, which are defined
by the dynamic gain saturation. We choose a Cr:ZnS waveguide laser as a practical example, but such a
regime is feasible in various waveguide and fiber oscillators. A far-reaching analogy with Bose-Einstein
condensates allows using this approach to stabilization of the weakly dissipative BECs.
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1. INTRODUCTION

The unprecedented progress in the field of mesoscopic physics in
its general context, which comprises control of macro-quantum
states like Bose-Einstein condensate (BEC) [1–4] and quantum
supersolids [5], plasma and turbulence [6–8], attosecond [9], rela-
tivistic and high-energy physics [10–13], metaphorical modeling
and quantum computations [14–17], physics of ultra-strongly
coupled light-matter systems [18], nano-processing [19–21], and
other ranges of science, medicine, and technology, became fea-
sible due to the growth understanding of strongly nonlinear
phenomena in far-from-equilibrium systems [22, 23]. The coher-
ent, self-organized, and well-localized patterns, namely solitons,
play a crucial role in most of these phenomena. The class of such
structures, dissipative solitons (DSs), is particularly important
because DS develops in open systems, where energy exchange
with an environment defines its integrity, stability, and coher-
ence [24, 25]. In photonics, DSs are a road to generating ultrafast,
robust, and energy-scalable pulses in mode-locked lasers [26, 27]
bringing a high-field physics on tabletops of a mid-level univer-
sity lab [12, 28].

The modern tendencies in generating and exploring laser
DSs are based on a controllable enhancement of self-organizing
effects induced by nonlinearities and affected both temporal
and spatial degrees of freedom [23]. A partial realization of this
concept is a distributed Kerr-lens mode-locking (DKLM) [29–31].
In a solid-state laser, this technique uses a nonlinear medium
that affects a laser beam via self-focusing, thereby changing an
effective gain in a laser resonator [32]. The transversal spatial
structure of a field in this type of device is close to a fundamental
mode of laser oscillator and, thus, trivial, so only longitudinal

modes need synchronization. A remarkable breakthrough in
energy scalability of such oscillators was demonstrated in both
anomalous and normal group-delay dispersion regimes (ADR
and NDR, respectively) [30, 33, 34]. It was found that such
broad-range scalability could be explained by energy out/in-
flows induced by the nontrivial phase structure of DS [27, 35],
and the underlying theory of the DS resonance (DSR) [36] were
developed.

Using DS in the NDR fiber lasers [37] exploits the enhanced
and well-controllable nonlinearities. That bridges fiber and solid-
state ultrafast laser photonics [23]. The keystone is utilizing a
nonlinear propagation of many interacting spatial modes (e.g., in
the so-called multimode fibers, MMF) [38, 39]. Such a nonlinear
spatial mode coupling could be caused by nonlinear refraction
(or attractive boson interaction in BEC [4]) characterized by
the coefficient n2. A “confining potential” defined by spatial-
dependent refractive index n(x, y) (“graded refractive index
fibers,” or GRIN, nonlinear lattices [40, 41], or laser-induced
confinement in BEC) enhances the relaxation of the higher-order
modes to a ground-state, i.e., lowest-order spatial mode.

In this work, we propose utilizing a nonlinear mode conden-
sation for DKML aimed at a spatio-temporal mode-locking (STML)
[42, 43].

Such an approach utilizes a dissipative (i.e., ℑ[n(x, y)] ̸= 0,
where n is, e.g., a complex index of refraction in optics) trapping
potential [44] for a spatiotemporal DS (STDS) without involving
other nonlinear dissipative processes. The 2D dissipative poten-
tial, unlike that in Refs. [45, 46] transversal (x, y)-confinement
induced by a complex n(x, y) can be associated with a so-called
“cigar-type” trapping potential in a weakly dissipative BEC or
GRIN (see Table 1) [15]. Then, an evolutionary (“slow”) coordi-
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Table 1. Correspondences between photonics and BEC [15]

Laser BEC

Propagation coordinate Z ↔ time T

Pulse local time t ↔ third spatial coordinate z

Diffraction + anomalous
GDD

↔ boson kinetic energy

Kerr-nonlinearity ↔ boson attractive colliding
potential

GRIN ↔ cigar-like (x, y) trapping
potential

Non-selective loss ↔ homogeneous BEC dissipa-
tion

Graded gain + local time
modulation

↔ pancake (x, y, z)-shaped in-
flow of bosons

Spectral dissipation ⇔ “kinetic cooling”

nate T is associated with time for BEC or propagation distance
Z in a fiber or cavity round-trip in a laser.

A further step is to introduce “longitudinal” (“slow” time
T-dependent, or propagation length Z-dependent) modulation
of ℜ[n(x, y, T)] (or ℜ[n(x, y, Z]), which is one of the manage-
ment techniques stabilizing an ST soliton in BEC [47]. In a
mode-locked laser, it is also possible to identify a “fast” coor-
dinate (local time t) associated with the frame co-moving with
a soliton. The dependence of trapping potential on that coor-
dinate allows a 3D confinement corresponding to a “pancake-
like” potential in BEC. In a laser, this corresponds to an ac-
tive mode-locking driven by an external synchronous phase
modulation[48–50], which varies as ℜ[∆n(t)] ∝ cos(2πt/TR),
where TR is a cavity round-trip period. This modulation is slow
(pulse duration τp is much shorter than TR) and can be described
by ℜ[∆n(t)] ∝ t2 + H.O.T.. It was found that such a modulation
stabilizes a driven cavity DS [51, 52] and STDS [53]. Here, we
intend to exploit a concept of 3D dissipative confinement to de-
velop a spatiotemporal mode-locking mechanism to generate
stable and energy-scalable STDS (“light bullet”). This technique
can be considered as a road to forming a stable mass-scalable
STDS in BEC and pattern formation in dissipative turbulent
systems, which could be modeled by the dissipative version
of the Gross-Pitaevskii equation (GPE) [4, 54]. In contrast to
[53, 55], a transversely graded dissipation (i.e., ℑ[n(x, y)] ̸= 0)
will be supplemented by dissipative trapping along t-coordinate
(ℑ[n(t) ̸= 0), which is a result of periodical loss modulation
(or synchronous pumping) synchronized with the laser cavity
round-trip. For BEC, this corresponds to a “pancake-like” dissi-
pative confining potential.

2. A “SOFT-APERTURE” DKLM LASER

A. Model
Let us consider a waveguide laser composed of a fiber or crys-
talline waveguide active medium enclosed in a Fabri-Perót or
ring resonator and driven by a pump beam with a parabolic-like
transverse G(x, y)− profile and a pump intensity varying with
time t at the frequency synchronized with a laser repetition rate.
The t−coordinate corresponds to a “local time” (in a coordinate

Fig. 1. Multi-scale scheme with a local-time coordinate t syn-
chronized with an STDS group velocity and a global evalu-
ation coordinate Z (see Table 1). The gain (filled by a red) is
profiled along the radial coordinate r and the local time t. The
last is synchronized with a laser round-trip period.

frame co-moving with an STDS) in photonics or to a longitudinal
space coordinate for BEC (see Fig. 1 and Table 1) [15].

Such pump beam acts as a “soft aperture” guiding the laser
beam and controlling (“cleaning”) its mode structure so that a
laser field a(z, x, y, t) tends to condensate into a lowest-order
mode. Simultaneously, t−modulation provides confinement
in the time domain. Thus, this scheme corresponds to a three-
dimensional (“pancake-like”) dissipative confinement for a BEC
or a hybrid mode-locking under synchronous pumping or an
active assisting mode locking by synchronous loss modulation
[50, 52, 56, 57].

For modeling a (3D+1)-dimensional trapped STDS, we use
a distributed model describing the evolution of the (z, x, y, t)-
dependent field a propagating along the z-axis (see Table 1 for
comparison with BEC) of an active waveguide with the linear
and nonlinear refractive indexes n(x, y) and n2, respectively.
Under the action of (x, y, t)-graded pump (Fig. 1), the evolution
can be described by a sort of the driven nonlinear Helmholtz
equation:

−
[

1
2k0n0

(
∆x,y −

∂2

∂z2

)
+ (

β2
2

− iτ)
∂2

∂t2

]
a = (1)[

k0
2n0

(
n(x, y)2 − n2

0)
)
+ i (L − G(x, y, t)) + k0n2 |a|2 + i

∂

∂z

]
a,

where ∆x,y is a Laplace operator in the Cartesian coordinates, n0
is a waveguide cladding refractive index, k0 is a free-space wave
number, and the second-order derivative over z contributes only
for large beam numerical apertures NA [58, 59]. The terms in Eq.
1 define: (I) – diffraction, (II) – group-delay dispersion with the
coefficient β2, (III) – spectral dissipation with the squared inverse
bandwidth τ, (IV) – trapping potential induced by GRIN, (V) –
(x, y, t)- graded saturated gain with the coefficient G and linear
net-loss L, and (VI) – Kerr-nonlinearity. One has to emphasize
the decisive contribution of a saturable and transversely profiled
gain G(x, y, t) in Eq. (1).

For a low NA, one may omit the ∂2

∂z2 -term in Eq. (1). That
leads to the nonlinear driven Schrödinger, or the Lugiato-Lefever
equation (LLE), which is a test bed model for the study of soli-
tons and non-equilibrium patterns in driven Kerr resonators,
micro-cavity and fiber lasers, VCSEL, etc. [60–63].

The rescaling ψ = a exp(−iV0z) (V0 = (k0/2n0)(n2
1 − n2

0),
and n1 is a waveguide core refractive index) leads to the dimen-
sionless mean-field LLE [64–66]:
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i
∂ψ (Z, X, Y, t′)

∂Z
=

{
−1

2

[
∂2

∂X2 +
∂2

∂Y2 +
∂2

∂t′2
− 2iτ

∂2

∂t′2

]}
ψ+{

(X2 + Y2)− |ψ|2 − i
[
Λ + κ(X2 + Y2) + ωt′2

]}
ψ, (2)

for the normalizations shown in Table 2 [64, 67].
The dimensional extension by the “fast-time” (or “local time”)

coordinate t′ allows describing the pulse dynamics in the co-
moving frame (Z, X, Y, t′). Since an ultrashort pulse is sensitive
to a group-delay dispersion (GDD), it has to be taken into ac-
count by including the β2-term in Eq. (1). The normalized
version (2) assumes an anomalous net-GDD.

In this work, we assume the parabolic-like transverse pro-
file of the gain beam with the size. Such transversely confined
nonlinear gain acts as a “soft aperture” with an effective size ≈
wp

√
G0 − Λ (Table 2). Our model introduces a gain modulation

along the t−axis described in a parabolic approximation by the
modulation coefficient ω [50, 57]. The last resembles the mecha-
nism of the so-called active mode-locking (AM) [68]. In contrast
to [53], the proposed method does not use additional phase mod-
ulation but only a pumping pulse train synchronized with a res-
onator period. For simplicity, we manipulate with a graded sat-
urated gain G(X, Y, t) = G(0, 0, 0) ×

[
1 − κ(X2 + Y2)− ωt′2

]
,

where G(0, 0, 0) or G0 (see Table 2) corresponds to a saturated
gain along a waveguide axis at t′ = 0, and κ = G0w−2

p ,
ω = G0T

−2 (T is a “pump pulse duration”). Such an ap-
proximation is valid under the condition of quasi-steady state
operation of a laser in the vicinity of the lasing threshold, where
the saturated net-loss coefficient Λ′ = L − G0 is close to zero
[55].

Another essential factor in Eqs. (1,2) is a spectral dissipation
described by the parameter τ. This parameter is inversely pro-
portional to a squared spectral width of the gain band or spectral
filter (Table 2).

Thus, one may treat the resulting equation (2) as a dissipative
extension of the driven Gross-Pitaevskii equation, which is a
well-known tool for analyzing trapped BEC (Table 1) [4].

B. Variational approximation
The study of STDS of Eq. (2) is based on analytical and nu-
merical approaches. The first uses the well-known variational
approximation (VA) [55]. The generating Lagrangian for a non-
dissipative part of (2) is

L =
i
2
(ψ∗∂Zψ − ψ∂Zψ∗) +

1
2

(
|∂Xψ|2 + |∂Yψ|2 + |∂t′ψ|2

)
−

|ψ|4 +
(

X2 + Y2
)
|ψ|2 . (3)

The dissipative factors can be described in the form of a
“force” source term

Q = −i
[

Λ′ + κ(X2 + Y2) + ωt′2 − τ
∂2

∂t′2

]
ψ (4)

in the Euler-Lagrange equation

∂
∫ ∞
−∞ L dt′

∂f
− d

dZ
∂
∫ ∞
−∞ L dt′

∂f
= 2ℜ

∫ ∞

−∞
Q δψ

δf
(5)

in agreement with Kantorovitvh’s method (see [15, 53, 55] and
references herein).

Table 2. Normalizations for the LLE (2)

Value Normalizations and definitions

(X, Y) transverse coordinates,
(x, y)/wT

Z propagation distance, z/ζ

t′ local time, t/
√
|β2|ζ

ζ propagation scale, k0now2
T

wT transverse scale, 4
√

w2
0/k2

0n0δ

δ GRIN contrast, n1 − n0

(k0/2n0)
(
n2

1 − n(x, y)2)
)

GRIN confining potential,
≃ k0 (n1 − n(r))

|ψ|2 intensity, k0n2ζ |a|2

Λ′ net-loss, Λ − G0

Λ averaged loss, LLw/ζ

κ spatial confinement parameter,
G0/w2

p

ω temporal confinement parame-
ter, G0/T 2

wp
√

G0 − Λ soft aperture size

τ squared inverse spectral filter,
bandwidth normalized to |β2|ζ

k0 wave-number, 2π/λ

λ central wavelength

n1 GRIN core refractive index

n0 GRIN cladding refractive index

n2 nonlinear refractive index

L loss coefficient

Lw waveguide (“lattice”) length

G0 or G(t = 0, x = 0, y = 0) maximum saturated gain coef-
ficient

wp pump beam size

T pump pulse width
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It is convenient to assume the axial symmetry, which corre-
sponds to the symmetry of a cylindrical waveguide, and transit
to a radial coordinate R =

√
X2 + Y2. The next assumption is a

Gaussian-sech approximation for an STDS profile:

ψ(Z, R, t′) = α(Z) sech
[

t′

Υ(Z)

]
×

exp
[

i(ϕ(Z) + χ(Z)t
′2 + θ(Z)R2)− R2

2ρ(Z)2

]
, (6)

where the Z−dependent STDS parameters of f in Eq. (5) are: α -
amplitude, ϕ - phase, χ and θ are the temporal and spatial chirps,
respectively; ρ and Υ are the beam size and STDS duration,
respectively. After some algebraic manipulations, one can obtain
the expressions for the steady-state (i.e., Z−independent) STDS
parameters (the phase ϕ is irrelevant in our context):

ρ2 =
1

384π2κτΥ2 × (7)[
15

(√
64τ

(
30τ − π4Υ4ω

)
+ 225 − 15

)
−

64τ
(

15τ + 2π2
(

τ + 3Λ′Υ2
))]

,

χ =

√
Υ4

(
64τ

(
30τ − π4Υ4ω

)
+ 225

)
− 15Υ4

16π2τΥ4 , (8)

α2
0 =

−6κ2ρ8 − 6ρ4 + 6
2ρ2 ,

θ = − κρ2

2
.

The remaining equation for the STDS duration Υ

144
(

π2 − 25
)

τ2 +
(

16
(

3 + π2
)

τ2 + 45
)
× (9)√

64τ
(
30τ − π4Υ4ω

)
+ 225 + 96π4Υ4ω+

+
21333π4κτ3Υ4

(
− A4

3×215π8κ2τ4Υ8 − 3A2

2π4κ2τ2Υ4 + 1
)

A
= 675, (10)

A = 64τ
(

2π2
(

3Λ′Υ2 + τ
)
+ 15τ

)
−

15
(√

64τ
(
30τ − π4Υ4ω

)
+ 225 − 15

)
must be solved numerically.

C. STDS parameters

Figs. 2-5 show the STDS width Υ and peak intensity α2
0 obtained

from Eqs. (7-9). Υ grows, and α2
0 decreases with κ when a

spectral dissipation τ is sufficiently low (Figs. 2, 3). Such a
tendency corresponds to that of a DKLM regime with ω = 0
and manifests the growth of spatial mode loss with an aperture
squeezing [55].

In the vicinity of a “threshold” (Λ′ →0), the additional lon-
gitudinal (3D) trapping defined by ω noticeably squeezes an
STDS with the simultaneous peak power growth (Fig. 3). The
additional solution branch in the region of small κ (Fig. 2) disap-
pears with Λ′ →0. In general, the STDS intensity growth and its
width shortening with ω could result from an appearance of the
external confinement along the t− coordinate.

Fig. 2. Dimensionless pulse width Υ (left axis) and intensity α2
0

(right axis) in dependence on the transverse (κ) and longitudi-
nal (ω) gain grading parameters. Λ′ =-0.01, τ =0.01.

Fig. 3. Dimensionless pulse width Υ (left axis) and intensity α2
0

(right axis) in dependence on the transverse (κ) and longitudi-
nal (ω) gain grading parameters. Λ′ = −0.001, τ =0.01.

The spectral dissipation increases with τ. That leads to an
STDS collapse for κ → |Λ′| when the net-loss coefficient Λ′ is
more significant in comparison with Fig. 3. Such a collapse is
asymmetrical in space and time. That is, STDS spreads along t
and squeezes on R. A longitudinal mode selection growth with
τ (i.e., STDS spreading in the time domain) parallels a transverse
mode selection (STDS spatial squeezing) in the spatial domain.

The solutions bifurcate close to the threshold Λ′ (Fig. 5). Such
behavior leads to the thought of stability loss here. These oddi-
ties require numerical simulations of STDS dynamics presented
below.

D. STDS stability
We performed large-scale numerical simulations of Eq. (2) based
on the COMSOL Multiphysics software to analyze the stability
of the analytical solutions based on the VA. The characteristic
case is illustrated in Fig. 6, where the numerical STDS profile
corresponds to one of the VA solutions from Fig. 4. The red
line shows the analytical and numerical solutions shown by the
black curve. One can see an oscillatory approach from the last
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Fig. 4. Dimensionless pulse width Υ (left axis) and intensity α2
0

(right axis) in dependence on the transverse (κ) and longitudi-
nal (ω) gain grading parameters. Λ′ = −0.01, τ =0.1.

Fig. 5. Dimensionless pulse width Υ (a) and intensity α2
0 (b) in

dependence on the transverse (κ) and longitudinal (ω) gain
grading parameters. Λ′ = −0.001, τ =0.1.

to the first, analogous to the damping of excitations in a weakly
dissipative BEC [69]. Interestingly, the peak intensity of the
numerical solution is slightly lower than the analytical one. The
difference in the exact solution from the Gaussian ansatz for VA
could explain it.

Fig. 6. Evolution of the STDS peak intensity α2
0 (black solid

curve) and its contour plot at Z =8000 (inset) for the parame-
ters of Fig. 4 and ω =10−4, κ =0.004. The red line shows the
analytical α2

0 from Fig. 4 for ω =10−4, κ =0.004.

Besides the stable STDS solutions, the numerical simulations
demonstrate three main destabilization scenarios. The first is the
STDS decay with the |Λ′|-decrease. The second is the collapse-
like behavior for small κ, ω, and τ. Both demonstrate the im-
portance of dissipative factors (i.e., dissipative confinement and
spectral filtering) for STDS stability.

The third scenario is the DS splitting with possible oscillations
between multiple pulse states. Fig. 7 shows such regimes. The
splitting in a local time domain could be explained by weaker
confinement in the time domain due to lower ω. However, a
more precise analysis of the STDS requires considering the gain
saturation dynamics.

E. STDS stability under the saturable gain dynamics

To take into account the dynamical gain saturation, it is conve-
nient to use the Frantz-Nodvik equation [70]:

∂G0
∂t

=
Gss − G0

Tr
− G0 |ψ|2

Es
, (11)

where Gss is a small signal gain, Tr is a gain relaxation time,
Es = hν/Sσem is a gain saturation energy (ν is a central gain-
band wavelength coinciding with the STDS carrier frequency,
S is a beam area, σem is a stimulated emission cross-section).
Specifically, we base on the characteristics of the Cr:ZnS waveg-
uide laser [71]. Table 3 presents the corresponding dimensional
laser parameters.

The calculations demonstrate a visible effect of the gain sat-
uration on the DS dynamics. For a small level of linear loss Λ,
some characteristic profiles of STDS are shown in Fig. 8. As one
can see, a sufficiently large ω stabilizes DS (a), but the driving
frequency decrease leads to the STDS shape distortion, which
is periodically asymmetrical along t-coordinate. Oscillations
accompany these distortions and result in STDS decay. STDS
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Fig. 7. Contour plot of the STDS peak intensity α2
0 at Z =40000

(a) and 35000 (b) for ω = 10−5 (a) and 2 × 10−6 (b), κ =0.005,
Λ′ =-0.01, and τ =0.1.

cannot be stabilized for the parameters considered for a smaller
Λ (Fig. 5).

The region of STDS stability is shown in Fig. 9 for a larger
linear loss coefficient Λ. The STDS decay confines this region
for larger κ, so there are no stable pulses for κ ≳ 0.006. The
difference with the analytical results lies in the reduction of a net
gain required for the soliton formation. Such a gain reduction is
a direct consequence of the gain saturation. For smaller κ, the
main destabilization factor is periodical pulse splitting, which al-
ternates with a single-pulse regime (Figs. 8 (b-d) and inset in Fig.
9). The asymmetry of the STDS complex appears periodically
due to dynamic gain saturation. When κ approaches zero, very
strong STDS power and width oscillations appear. They reach
more than two orders of magnitude, so STDS is periodically
“reborn”. This phenomenon confines the stability region from
below on κ.

3. DISCUSSION AND CONCLUSION

Similar to the mechanism of STDS stabilization by non-
dissipative confinement along the longitudinal (t) coordinate
[53], which corresponds to an additive phase mode-locking in
a laser, the dissipative confinement due to synchronous pulse
pumping or active amplitude mode-locking leads to a stable
STDS, as well. Such stabilization is possible at very low values
of the modulation “depth” parameter ω = G0/T 2 ≈ Λ/T 2 ≈
10−4. This means that gain variations along a laser axis could be
very small. For instance, it means that a pumping pulse, synchro-
nized with the cavity round-trip, could be very “long” compared
to the STDS temporal width. The contribution of dynamical gain
saturation lowers this value to ≈ 10−6. Simultaneously, there is
a lower threshold on the value of the saturated net gain |Λ′|. In
our case, it was ≈ 0.01. Too low net gain could not provide the
3D dissipative confinement and, thereby, STDS stabilization. We
also found that the most optimal stabilization region is located
near κ ≈ |Λ′|/2. Considering the dynamical gain saturation,
the corresponding value is κ ≈ Λ/4 − Λ/3. It is important that
spectral dissipation (τ) is required for STDS stabilization. One
may assume that the too-low value of this parameter cannot
prevent a tendency to the STDS collapse.

Table 3. Correspondences between photonics and BEC

Cr:ZnS laser parameters (see Table 1) values

gain relaxation time Tr, µs 4.9

gain cross-section σem, cm2 1.38·10−18

coefficient of nonlinear refraction n2, cm2 W−1 9·10−15

central wavelength λ, µm 2.3

w0, µm 40

n0 2.2629

δ 0.0077

numerical aperture NA =
√

n2
1 − n2

0 ≈ 0.19

wT , cm 0.001

ζ, cm 0.03

S = πw2
0/2, cm2 2.5·10−5

β2, fs2/cm 1280

The numerical simulations demonstrated that, besides the
STDS destabilization due to decay for low |Λ′|, κ → 0∧ |Λ′|, and
small ω and τ, there is a tendency to STDS splitting in the time
domain with the growth of κ if ω is not sufficiently high. That
means a “transverse” confinement needs an adequate “longitu-
dinal” one. Despite the case of longitudinal phase confinement
[53], we did not observe complicated spatial dynamics and split-
ting that testifies to the intensification of the mode cleaning
process. Although “ring-like” spatial structures and the STDS
“breathing” in the transverse direction are possible in the initial
stages of evolution.

We found that the gain saturation could significantly impact
the STDS dynamics. For the considered values of gain coefficient
Gss there is a confined range of driving frequency ω providing
the STDS stability, and this region is the broadest in the vicinity
of κ ≈ 0.0003− 0.0004. The main mechanism of destabilization is
STDS decay. A possible explanation is the following. Too small ω
does not provide sufficient confinement along t−dimension for a
chosen Gss. Too large driven frequency squeezes a gain window
so STDS cannot be amplified sufficiently to start a Kerr effect for
spatial squeezing, and spatial confinement becomes destructive.
Also, the dynamical gain saturation defines some maximum κ
because it decreases an effective gain, and the spatial losses lead
to the STDS decay. STDS peak power and width oscillations
appear for small κ. These oscillations can be extremely strong
and accompanied by alternating between asymmetric one and
two pulses.

We must note, that the cavity round-trip period could excess
essentially 2Lw/c in order to provide the STDS energy scalability
[59]. This method is practiced in high-energy passively mode-
locked oscillators (e.g., see [12, 30]). In a waveguide oscillator, it
is possible to use the Herriott cell or fiber loop for this aim. The
last approach could be the most effective for the STDS generation
in a fiber laser [53].

In conclusion, we propose a mechanism of STDS stabilization
using longitudinally and transversely graded gain in a waveg-
uide laser with transversely graded refractive index and Kerr
nonlinearity. Practically, that means realizing a DKLM in a
waveguide laser operating in ADR and pumped by a Gaussian
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Fig. 8. Contour plots of the STDS peak intensity α2
0. ω = 5 × 10−6, Z = 7 × 104 (a), and ω = 5 × 10−7 (b–d) for different lengths of

propagation. κ =0.005, Λ =0.01, Gss =1.1Λ, and τ =0.1. GDD is anomalous.

Fig. 9. Region of STDS stability on (κ–ω)-plane under the action of dynamical gain saturation. Λ =0.1, and other parameters as in
Fig. 8. Inset shows the |α0|2 contour plot for κ = 5 × 10−4, ω = ×10−6.

beam with slow amplitude temporal modulation synchronized
with a laser repetition rate. In some sense, that is a dissipative
analog of “pancake-like” confining potential in a weakly dissipa-
tive BEC. The analytical solutions for such STDS are obtained in
the framework of VA depending on the parameters of the pump
beam, such as its width, modulation depth, and saturated net
gain. The essential ingredient of our model is spectral dissipa-
tion due to finite spectral gain bandwidth, which contributes
to STDS stabilization. Numerical simulations under cylindrical

symmetry conditions demonstrate the STDS’s stability within a
limited region of parameters defined by net gain, pump beam
width, and spectral bandwidth. Considering the dynamical gain
saturation, we defined the main destabilization scenarios: decay
and STDS oscillations asymmetrically alternating one and two
pulses. We assume that the self-control of the transverse modes
by the combination of enhanced nonlinearity, specific for the
distributed nonlinear systems like waveguides composed from
highly-nonlinear media, with the dissipative confinement, could
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provide the breakthrough in developing the new generation of
high-stable and energy scalable sources of STDS. In principle,
this approach is a further development of the DKLM concept
that proved its efficiency for energy-scalable solid-state lasers.
Moreover, it could be useful for stabilizing other localized coher-
ent structures, e.g., a weakly dissipative BEC.
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