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H I G H L I G H T S

Long-term predictions are used to optimize a battery SoC reference trajectory.
Application-oriented experimental validation with a real fuel cell vehicle.
Real driving tests on public roads affected by real-world influences such as traffic.
Direct comparison with a nonpredictive method in reproducible dynamometer tests.
Significant reduction in fuel consumption by 6.4%.
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A B S T R A C T

Predictive information is highly valuable for energy management strategies (EMSs) of fuel cell vehicles.
In particular, long-term predictions can significantly improve the fuel efficiency because they allow for an
optimization of the energy management before departure. This potential has been demonstrated in numerous
simulation studies. This work extends the literature with an extensive experimental validation of a predictive
EMS that exploits route-based long-term predictions in the form of optimized reference trajectories for the
battery state of charge. The experimental validation is performed with a real passenger fuel cell vehicle and
strongly focuses on the real-world application where random influences such as traffic cause considerable
disturbances with respect to the long-term prediction. The validation comprises two stages: First, real driving
tests are repeatedly conducted on public roads, analyzing the robustness of the predictive EMS and assessing
fuel efficiency gains over a nonpredictive EMS. Second, chassis dynamometer tests are performed where a
selected real driving cycle is reproduced to compare the two EMSs directly. The chassis dynamometer tests
confirm a significant reduction in the fuel consumption by 6.4% compared to the nonpredictive EMS. The
experimental results are analyzed quantitatively and qualitatively in detail.
1. Introduction

Fuel cell vehicles commonly have a hybrid powertrain consisting
of the fuel cell system (FCS) and a battery (see Fig. 1), and the
power allocation between the two power sources is determined with
an energy management strategy (EMS). The EMS has a direct impact
on the operating ranges of the two powertrain components and can
strongly influence the fuel efficiency by avoiding inefficient operation.
In addition to fuel efficiency, ensuring feasible operation is important:
The requested system power must be satisfied within reasonable time,
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and powertrain constraints, such as constraints on the battery state of
charge (SoC), must not be violated.

The optimal energy management in view of these aspects is highly
specific to the power demand profile of the driving mission. Conse-
quently, the performance of an EMS can be enhanced by considering
appropriate predictive information of the driving mission. To improve
the fuel efficiency by actively involving the battery in the energy
management, long prediction horizons are necessary. For example, the
optimal energy management for a trip including an ascent could require
charging the battery already several kilometers before reaching the
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uphill section. Long-term predictive information can be retrieved from
ifferent sources. At a basic level, long-term information can just con-

sist of the trip length, which is often considered in predictive EMSs for
lug-in hybrids to achieve an even use of battery energy throughout the

driving mission [1–3]. However, the knowledge of the trip length alone
does not provide information regarding the power demand profile,
which is needed to optimally adapt the energy management to the
riving mission. More advanced and yet simply applicable approaches
onsider static route information, such as the altitude profile, legal
peed limits, or average segment speeds, to get long-term estimates
f the power demand [4]. Even though such long-term predictions

have limited accuracy, they can be highly effective for the energy
management because they are available for the entire driving mission in
advance. Consequently, the energy management for a planned trip can
be optimized before departure, yielding predictive control information
that can then be considered in the real-time EMS while driving. In
the literature, optimized reference trajectories for the battery SoC have
shown to be an effective way to inform the real-time EMS with the
long-term prediction. Simple and yet robust strategies directly track
the optimized SoC reference with basic control laws to determine the
real-time power allocation between the FCS and the battery while
onsidering powertrain constraints [5,6]. An optimization-based alter-
ative is the adaptive equivalent consumption minimization strategy
ECMS). Here, a proportional-integral (PI) controller that tracks the

SoC reference trajectory is used to determine the so-called equivalence
actor, which expresses a virtual fuel consumption for using energy
rom the battery [7–9]. The indirect consideration of the SoC feed-
ack combined with the continuous optimization of the equivalent
uel consumption allows for a more gradual adaption of the power
llocation, which can benefit the fuel efficiency. Also, ECMS-based
ethods that additionally consider real-time short-term predictions
hile tracking the SoC reference trajectory have been developed [10–

14]. Similarly, model predictive control (MPC) approaches combine
hort-term predictions with the long-term prediction in the form of the
oC reference while also taking into account powertrain constraints [2,

15–19]. Besides SoC reference trajectories, optimized maps expressing
the optimal equivalence factor or the optimal cost-to-go depending
on the covered distance and SoC can be used to inform the real-
time EMS with the long-term prediction. Such map-based approaches
are advantageous when the long-term prediction considerably deviates
because they allow the real-time EMS to continuously adapt to the
actual conditions and preserve close-to-optimal fuel efficiency. EMSs
based on the ECMS [20–22] and MPC [23] have been proposed to
onsider predictive control information in the form of optimized maps.

Regardless of the approach, considering long-term power demand pre-
dictions has shown significant fuel efficiency gains over nonpredictive
alternatives in simulation-based studies. However, experimental vali-
dations with real vehicles on real-world driving missions that confirm
these performance benefits are not available in the literature so far.

In general, the early development and performance evaluation of
EMSs, predictive and nonpredictive, happens in simulation. Simulation
studies are cost and time efficient, but their outcomes deviate from
reality because of modeling errors, unconsidered system behavior, and
ther influences. Validation with hardware-in-the-loop (HIL) testing is

more realistic but found less frequently in the literature. The signifi-
ance of HIL tests grows with their complexity. Simple HIL experiments

only consider controller hardware to validate the real-time capability
of the EMS and emulate the powertrain behavior, such as in [24–26],
whereas more complex HIL setups also include small-scale powertrain
components, as for example in [27–30]. Particularly HIL testing with
ull-scale powertrain components such as in [31–34] comes close to re-
lity but still does not entirely cover the vehicle behavior in real-world

driving.
Real driving tests with fully functional vehicles are the ultimate

level of validation, but they are rare in the literature due to high
cost and effort. For example, small experimental vehicles are used in
2 
Fig. 1. Hybrid powertrain of the investigated fuel cell vehicle consisting of the FCS,
battery, traction motor (M), and auxiliary systems (AS). The arrows indicate the possible
directions of the power flows.
Source: The scheme is taken from [23].

real driving tests to validate nonpredictive EMSs in [35–37] and a
model predictive controller considering short-term predictions in [38].
In [39–41], nonpredictive fuzzy logic strategies are demonstrated and
investigated with real fuel cell trucks and buses on public roads.
Similarly, extensive road tests with fuel cell buses are conducted in [42–
44] to validate further nonpredictive EMSs. Whereas the real vehicle-
alidated strategies mentioned so far do not take into account long-term
redictions, the EMS for plug-in hybrid fuel cell vehicles that was

experimentally validated in [45] considers a prediction of the expected
energy demand to determine the time when the FCS is turned on.

o sum up, real-vehicle validations of EMSs for fuel cell vehicles in
he literature were mainly conducted with buses, trucks, and small
xperimental vehicles and for nonpredictive strategies. In particular,

EMSs exploiting long-term power demand predictions to optimize an
SoC reference trajectory before departure have not been validated in
real-world driving tests with real vehicles so far.

The main contribution of this work is an extensive experimental
validation of an EMS for fuel cell vehicles that considers a long-term
rediction of the power demand to optimize SoC reference trajectories.

The experimental validation is conducted with a real fuel cell vehicle
nd strongly focuses on real-world driving. It comprises two stages,

where the performance of the predictive EMS is compared with a
nonpredictive charge sustaining strategy (see Fig. 2(a)):

1. Various real driving tests are conducted on two routes on pub-
lic roads. The real driving tests involve all random influences
relevant in the actual application, such as dense traffic, traf-
fic regulation, vehicle standstills, and varying driver behavior,
which are hardly predictable over a long-term prediction hori-
zon. In addition, the behavior of the real vehicle deviates from
the prediction due to model errors. Therefore, the real driving
tests evaluate the robustness of the predictive EMS against these
unpredicted real-world disturbances and its feasibility regarding
specified powertrain constraints. Because the power demand
profile varies between individual tests due to the random influ-
ences, the performance advantage of the predictive EMS cannot
be quantized directly. However, comparisons based on the equiv-
alent fuel consumption, which takes into account differences in
the battery energy and energy demand between tests, enable an
indirect assessment of the fuel efficiency gains.

2. Chassis dynamometer tests based on measurements of a selected
real driving cycle are conducted. Here, power demand profiles
can be reproduced for multiple tests, which allows for a direct
performance comparison between the predictive EMS and the
nonpredictive EMS. Since the dynamometer tests are based on
a real driving cycle and include the entire vehicle, the tests still
cover the unpredicted real-world influences and appropriately
replicate the actual application.
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Fig. 2. Experimental validation of predictive SoC reference tracking.
3 
Table 1
Model parameters of the demonstrator vehicle.

Vehicle dynamics model

Vehicle mass, 𝑚 (k g) 1950
Frontal area, 𝐴f (m2) 2.12
Air density, 𝜌 (k g m−3) 1.204
Aerodynamic drag coefficient, 𝑐d 0.346
Rolling friction coefficient, 𝑐r 0.0055
Traction motor efficiency, 𝜂m 0.87
Auxiliary power demand (estimate), 𝑃aux (k W) 1

Powertrain model

FCS idle power, 𝑃 idle
FCS (k W) 8

Max. FCS power, 𝑃max
FCS (k W) 50

Battery energy capacity (k Wh) 9.9
Battery capacity, 𝑄nom (A h) 28.28
Internal resistance, 𝑅int (Ω) 0.15
Min. battery power (continuous), 𝑃min

b (k W) −20

Max. battery power (continuous), 𝑃max
b (k W) 30

Min. SoC, 𝜉min 0.2
Max. SoC, 𝜉max 0.8

The investigated predictive EMS derives a long-term power demand
prediction for a planned driving mission from easily available static
route information, i.e., the altitude profile and legal speed limits. Based
on the long-term prediction and a control-oriented vehicle model, a
distance-based reference trajectory for the battery SoC is optimized
before departure (see Fig. 2(b)). While driving, a simple real-time
controller tracks the optimized SoC reference trajectory to determine
the real-time power split between the FCS and the battery. The simple
real-time EMS is chosen for the validation to assess the baseline for
performance improvements by considering route-based power demand
predictions, which might even be exceeded with more advanced meth-
ods. Moreover, the low computational complexity and robustness of the
investigated EMS make it an interesting candidate for an immediate
industrial application. To ensure a fair comparison, the nonpredictive
charge sustaining strategy used as a benchmark is based on the same
tracking controller as the proposed predictive SoC reference tracking
but considers a constant SoC reference.

The remainder of this article is structured as follows. First, the fuel
cell vehicle used for the validation and the control-oriented vehicle
modeling are described in Section 2. Then, the predictive SoC reference
tracking strategy is introduced in Section 3. In Section 4, the computa-
tion of the equivalent fuel consumption is described, which is the basis
for the quantitative evaluation of the fuel efficiency. The experimental
validation of the predictive SoC reference tracking based on real driving
tests and dynamometer tests is presented in Section 5. A conclusion in
Section 6 finalizes this article.

2. Fuel cell vehicle and control-oriented modeling

The predictive EMS investigated in this work is evaluated and
compared with the nonpredictive strategy in experiments with a fuel
cell demonstrator vehicle of AVL List GmbH. The demonstrator vehicle,
which is shown in Fig. 2(a), is based on a Volkswagen Passat GTE and
equipped with an FCS with a nominal power of 50 k W and a battery
with a nominal energy capacity of 9.9 k Wh.

To conduct the offline optimization of the SoC reference trajectory
before departure, appropriate models of the vehicle components are
required. First, a model of the vehicle longitudinal dynamics is used to
derive a prediction of the power demand for the entire driving mission
from static route information, i.e., the altitude profile and legal speed
limits. Second, a model of the hybrid powertrain is used to optimize the
energy management for the predicted power demand. To keep the com-
putational complexity of the offline optimization low, simplified and
control-oriented models are used. Nevertheless, the simplified modeling



S. Kofler et al.

t
p
q

c

d
F
b

I
t
s

n
s
t
F
𝑃
r
f
c
f
w
i

𝜉
r
w
o

Journal of Power Sources 629 (2025) 235901 
does not affect the performance of the predictive concept because the
accuracy of the long-term power demand prediction is limited in any
case. In the following, the vehicle dynamics model is described first
before the powertrain model is introduced.

2.1. Vehicle dynamics for power demand prediction

To estimate the power demand for the entire driving mission based
on the speed limits and the altitude profile along the route, a model of
the longitudinal vehicle dynamics is used. The model considers the trac-
tion force, aerodynamic drag, rolling resistance, and the gravitational
force

𝑚 d𝑣
d𝑡

= 𝜂sgn𝑃tr
m

𝑃tr
𝑣

−
𝜌𝐴f𝑐d
2

𝑣2 − 𝑐r𝑚𝑔 cos 𝜃 − 𝑚𝑔 sin 𝜃 (1)

where 𝑚 denotes the vehicle mass, 𝑣 the velocity, 𝑡 the time, 𝜂m the trac-
tion motor efficiency, 𝑃tr the traction motor power, 𝜌 the air density,
𝐴f the frontal area of the vehicle, 𝑐d the aerodynamic drag coefficient,
𝑐r the rolling friction coefficient, 𝑔 the gravitational acceleration, and
𝜃 the road inclination angle, which can be derived from the altitude
profile. The parameters are assumed to be known and summarized in
the upper part of Table 1. Based on the model of the longitudinal vehi-
cle dynamics, a prediction of the traction motor power can be derived
from the speed limits and the inclination angle along the route. Here,
system power constraints are considered to prevent infeasible power
demands during velocity transients and uphill sections. Additionally,
he vehicle velocity is saturated depending on the road curvature to
revent infeasible cornering speeds, which improves the prediction
uality particularly in urban and mountainous areas.

The prediction of the overall electric power demand 𝑃el can then be
omputed with

𝑃el = 𝑃tr + 𝑃aux (2)

where 𝑃aux denotes the power demand of the auxiliary systems. The
variation of the auxiliary power demand is hardly predictable over
long-term prediction horizons, and its magnitude is relatively small
compared to the traction power demand. Therefore, a constant estimate
of the auxiliary power demand serves as a sufficient approximation
for the prediction. The prediction of the overall power demand is the
input for the offline optimization of the energy management before
departure.

2.2. Powertrain model for offline optimization

The offline optimization of the SoC reference trajectory before
eparture is based on a model of the powertrain, which consists of the
CS and the battery (see Fig. 1). The sum of the FCS power 𝑃FCS and
attery power 𝑃b satisfies the overall electric power demand

𝑃el = 𝑃FCS + 𝑃b (3)

whereby the power split between the two power sources is determined
by the EMS and, therefore, the variable to be optimized. To provide the
optimized SoC reference trajectory for the real-time energy manage-
ment shortly after the route was determined, the offline optimization
must be fast, i.e., its computational complexity must be low. Therefore,
the two power sources are described with simplified, quasistatic models
focusing on the characteristics relevant for the long-term optimization.
Note that a consideration of more detailed power source dynamics
would not necessarily improve the overall performance because the
accuracy of the long-term prediction is limited and certain deviations
due to real-world influences are expected.

The FCS is considered with a quadratic polynomial model describing
the fuel consumption rate �̇�FCS(𝑃FCS) as a function of the FCS power,
where the compressor power demand is implicitly taken into account.
n this study, the fuel consumption curve was identified based on
ank measurements, which include purging losses, considering mea-
urements of several real-world driving missions. The fuel consumption
 b

4 
Fig. 3. Identified FCS model and battery model compared to sets of measurements.

curve is compared to a set of measurements in Fig. 3(a). The mea-
surements deviate from the model within a certain range due to the
eglected system dynamics and other influences. However, the model
ufficiently describes the characteristic of the fuel consumption rate for
he offline optimization based on the long-term prediction. To mitigate
CS degradation, the FCS is only operated between the idle power limit
idle
FCS and the maximum power limit 𝑃max

FCS when active. If the power
equest is low, the EMS can put the FCS into a stopmode where the
uel consumption rate is zero but FCS-related auxiliaries including the
ompressor remain active. Because the auxiliaries are not shut down,
requent switching between active operation and stopmode is possible
ithout restrictions. The FCS power in stopmode is assumed to be zero,

.e., the electric load of the auxiliaries is neglected.
The battery behavior is approximated with an equivalent circuit

model considering ohmic losses where the battery voltage 𝑉b linearly
depends on the battery current 𝐼b:

𝑉b = 𝑉OC(𝜉) − 𝑅int𝐼b. (4)

Here, the open-circuit voltage 𝑉OC varies depending on the battery SoC
, which is described with a quadratic polynomial, whereas the ohmic
esistance 𝑅int is assumed constant. In this study, the battery model
as identified based on battery voltage and current measurements
f several real-world driving missions. Despite the simplification, the
attery fits the measurements well, as shown in Fig. 3(b). With the
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equivalent circuit model, the dynamics of the battery SoC can be
escribed as a nonlinear function of the battery power 𝑃b with

̇ = −
𝑉OC −

√

𝑉 2
OC − 4𝑃b𝑅int

2𝑄nom𝑅int
(5)

where the battery capacity 𝑄nom is assumed to be known. The power-
train model parameters of the demonstrator vehicle are summarized in
the lower part of Table 1.

3. Predictive SoC reference tracking

The goal of the predictive EMS is to improve the fuel efficiency
nd ensure feasible operation by considering a long-term prediction
f the driving mission that is based on easily available static route

information, i.e., the altitude profile and legal speed limits. Therefore,
the basic assumptions of the predictive approach are that the route is
determined before departure and the mentioned static route informa-
tion is accessible, e.g., through map services or the onboard navigation
system. Although this kind of prediction has limited accuracy, it has
shown to be highly effective for optimizing the energy management
because it covers the entire driving mission and, thus, provides the
long prediction horizon necessary to actively involve the battery in the
energy management. Moreover, the route-based prediction is available
before departure so that the predictive EMS can be divided into two
stages (see Fig. 2(b)):

1. In the offline optimization before departure, the energy man-
agement is optimized based on the long-term power demand
prediction, yielding an optimized, distance-based SoC reference
trajectory. The optimization can be conducted either onboard,
if the required computational resources are available, or on a
cloud computing server.

2. The onboard real-time energy management determines the set-
point for the FCS power by tracking the optimized SoC reference
trajectory considering the actual power demand and system
constraints.

The significant advantage of the two-stage approach is that the real-
ime control can be realized with a computationally simple tracking
ontroller because the predictive information is already processed be-
ore departure. In the following, the two stages are described in more
etail.

3.1. Offline optimization before departure

To optimize the SoC reference trajectory for the planned driving
ission before departure, a long-term power demand prediction is
eeded. The power demand prediction is derived from the altitude
rofile and speed limits along the route based on the vehicle dynamics
odel as described in Section 2.1. Due to the limited accuracy of the

long-term prediction, a relatively rough discretization interval can be
chosen for the offline optimization, which allows for a considerable
acceleration of the optimization without affecting the overall perfor-
mance of the predictive EMS. For this purpose, the power demand
prediction is segmented with

𝑃el,𝑙 =
∫ 𝑡𝑙+1
𝑡𝑙

𝑃el d𝑡

𝛥𝑡𝑙
(6)

for all 𝑙 = 1 … (𝐿− 1) before the offline optimization, where 𝛥𝑡𝑙 denotes
he time spent in the 𝑙th segment and (𝐿− 1) is the number of segments.

The objective is to minimize the fuel consumption, which is spec-
ified in discrete-time form assuming a zero-order hold for the power
 a

5 
demand, the FCS power, and the battery power

min 𝐽 =
𝐿−1
∑

𝑙=1
�̇�FCS(𝑃FCS,𝑙)𝛥𝑡𝑙

s.t. 𝜉1 = 𝜉init

𝜉𝐿 ≥ 𝜉end

𝜉min ≤ 𝜉𝑙 ≤ 𝜉max

𝑃min
b ≤ 𝑃b,𝑙 ≤ 𝑃max

b
𝑃FCS,𝑙 ∈ 

(7)

where the feasible FCS power range  includes the stopmode

 =
{

𝑃 ∈ R ∶ 𝑃 idle
FCS ≤ 𝑃 ≤ 𝑃max

FCS ∨ 𝑃 = 0 W}

(8)

and 𝜉init denotes the initial SoC, 𝜉end the minimum SoC at the end of the
driving mission, 𝜉min the minimum SoC, and 𝜉max the maximum SoC.
The minimum battery power 𝑃min

b and maximum battery power 𝑃max
b

are chosen conservatively according to the continuous charging and
discharging current specifications of the battery to ensure feasibility of
the SoC reference.

In this study, the optimal control problem is solved with dynamic
rogramming (DP), which is a dynamic optimization method [46].

The significant advantage of DP over methods based on Pontryagin’s
inimum principle, a common alternative for solving optimal energy
anagement problems, is that all specified constraints including the

oC constraints can be considered directly. Thanks to the simplified
owertrain modeling, the problem includes only one state (𝜉) and one
ontrol input (𝑃FCS). Together with the rough discretization intervals,
he low dimension of the problem results in a low computational
omplexity, which ensures that the optimization results can be provided
hortly after the route was determined. More details regarding the DP
mplementation for the present problem can be found in the literature,

e.g., [20,23].
The output of the offline optimization is the optimized SoC refer-

nce trajectory. To limit the effects of unpredicted velocity deviations
nd vehicle standstills on the predictive energy management, the SoC
eference trajectory 𝜉ref(𝑠) is specified in the distance-domain, i.e., as
unction of the position 𝑠 along the route and not as a function of time.

Consequently, unpredicted variations in the driving time that have
occurred in the past do not affect the optimality of the SoC reference
trajectory for the trip remainder.

3.2. Real-time SoC reference tracking

The real-time EMS determines the FCS power setpoint based on a
computationally simple controller that tracks the optimized reference
rajectory while driving. The position along the driving mission, which
s required to access the current SoC reference value, is determined
y measuring the covered distance. In this study, the real-time SoC
eference tracking strategy extends an already implemented nonpredic-
ive charge sustaining controller with a PI controller considering the
eviation from the optimized SoC reference 𝛥𝜉 = (𝜉ref(𝑠) − 𝜉) at the
urrent position:

𝑃 track
FCS = 𝑘P𝛥𝜉 + 𝑘I ∫

𝑡

0
𝛥𝜉 d𝜏 + 𝑃NP

FCS(𝑃el, 𝜉). (9)

Here, 𝑃 track
FCS denotes the FCS power according to the tracking controller

nd 𝑃NP
FCS(𝑃el, 𝜉) the nonpredictive component, which is described by

2-D map depending on the measured power demand and SoC. The
onpredictive component, which was tuned and tested based on expert
nowledge, is included to ensure reliable operation where the power
emand is robustly satisfied within reasonable time in any situation.
ecause the SoC reference is optimized based on the power demand
rediction, which is expected to deviate from the actual power demand
o some extent, the PI controller gains 𝑘P and 𝑘I are chosen such that
ertain freedom for deviation from the SoC reference is provided to

dapt to the unpredicted disturbances.
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To prevent infeasible power requests from the FCS, the FCS power
resulting from the tracking controller is saturated within the feasible
power range determined by the constraints on the FCS power, FCS
power increments, and battery power, which yields the FCS power
setpoint 𝑃 setp

FCS :

𝑃 setp
FCS = min

𝑃FCS

|

|

|

𝑃 track
FCS − 𝑃FCS

|

|

|

+ 𝑞s𝑠

s.t. 0 W ≤ 𝑃FCS ≤ 𝑃max
FCS

𝛥𝑃min
FCS ≤ 𝑃FCS − 𝑃 prev

FCS ≤ 𝛥𝑃max
FCS

𝑃min
b − 𝑠 ≤ 𝑃el − 𝑃FCS ≤ 𝑃max

b + 𝑠.

(10)

Here, 𝑃 prev
FCS denotes the FCS power in the previous instance, and 𝛥𝑃min

FCS
nd 𝛥𝑃max

FCS are the minimum and maximum FCS power increments
er time step, respectively. The battery power constraints 𝑃min

b and
̄max
b adapt according to the battery management system in real time
nd are considered as soft constraints to avoid infeasibility. For this
urpose, a slack variable 𝑠 ≥ 0 and a weighting coefficient 𝑞s > 1 are
sed. Note that the problem in Eq. (10) can be solved efficiently with
 series of logical operations, see [3]. The constraints on the battery
oC are implicitly considered by tracking the optimized SoC reference
rajectory.

If the resulting FCS power setpoint is considerably lower than the
dle power limit, the real-time EMS puts the FCS into the stopmode
here the fuel supply is stopped:

𝑃FCS =

{

min(𝑃 setp
FCS , 𝑃 idle

FCS ), if 𝑃 setp
FCS ≥ 𝑃 thr

FCS
0 W, otherwise.

(11)

Here, the power threshold 𝑃 thr
FCS is a tuning parameter. Because FCS-

elated auxiliaries such as the compressor remain active in stopmode,
 fast switch to active operation is possible at any time.

4. Evaluation of fuel consumption

The predictive SoC reference tracking is compared with a nonpredic-
ive method in experiments with the real fuel cell vehicle in Section 5.

The experiments include real driving tests on public roads, where vari-
ations in the power demand are inevitable due to numerous real-world
influences, such as traffic, driver behavior, and weather. But also in the
subsequently conducted dynamometer tests, the power demand varies
within certain tolerances. Moreover, the final battery SoC generally
differs from the initial SoC depending on the power demand profile
because both EMSs must ensure freedom for deviation from the SoC
reference to adapt to unpredicted disturbances. Consequently, the net
energy contribution of the battery varies between different tests.

To allow for a performance comparison despite these variations,
he experimental results are evaluated based on the equivalent fuel
onsumption 𝑚eq that takes into account corrections for variations in
he battery energy contribution 𝛥𝑚b and the traction motor energy
𝑚tr:

𝑚eq(𝑡) = 𝑚H2
(𝑡) + 𝛥𝑚b(𝑡) + 𝛥𝑚tr(𝑡). (12)

Here, the actual fuel consumption 𝑚H2
is computed based on tank

easurements and, thus, includes purging losses.
The correction for the battery energy is based on the deviation of

the SoC from the initial SoC considering the open-circuit voltage model

𝛥𝑚b(𝑡) = − 𝑄nom
𝐻i�̄�FCS ∫

𝜉(𝑡)

𝜉init

𝑉OC(𝜉) d𝜉 (13)

where 𝐻i = 120 MJ k g−1 denotes the lower heating value of hydrogen.
he mean FCS efficiency

�̄�FCS =
∫ 𝑡end
0 𝑃FCS d𝑡
𝐻 𝑚

(14)

i H2

6 
is computed individually for each test because it strongly varies de-
pending on the EMS.

The power demand correction takes into account variations in the
raction motor power with respect to a reference test. Variations in

the power demand of the auxiliaries are not considered because they
depend on the EMS. This means that, for example, an increased fuel
consumption due to higher cooling power demands is not corrected.
For the dynamometer tests, where the driving times are identical, the
power demand correction can be evaluated continuously over time with

𝛥𝑚tr(𝑡) =
∫ 𝑡
0 𝑃tr(𝜏) − 𝑃tr,ref(𝜏) d𝜏

𝐻i�̄�FCS
(15)

where 𝑃tr,ref denotes the traction motor power of the reference test.
or the real driving tests, the driving time varies depending on traffic.
herefore, the correction is only computed for the entire test with

𝛥𝑚tr =
𝐸tr − 𝐸tr,ref
𝐻i�̄�FCS

(16)

where 𝐸tr and 𝐸tr,ref denote the traction energies of the entire test and
reference test, respectively.

5. Experimental results

The predictive SoC reference tracking is evaluated and compared
ith a nonpredictive EMS in experiments with the real fuel cell pas-

enger vehicle. The nonpredictive EMS is a charge sustaining strategy
hat maintains the SoC around a constant reference value of 0.6. The
onpredictive charge sustaining is based on the same real-time tracking
ontroller as the predictive SoC reference tracking, which allows for a
air evaluation of the fuel efficiency gains by considering route-based
ong-term predictions.

To ensure an application-oriented validation of the predictive EMS,
the experimental evaluation puts a strong emphasis on real-world
driving. Unlike synthetic driving cycles, real-world driving is affected
y various random influences, such as traffic, traffic regulation, driver
ehavior, and weather, which cause considerable deviations from the
ong-term velocity prediction including vehicle standstills with varying
tandstill times. The experimental validation is based on two types of
ests:

• Real driving tests were conducted on predetermined routes on
public roads including urban, rural, and freeway driving. These
tests are influenced by varying traffic conditions and vehicle
standstills, which have an impact on the total driving time. The
tests are therefore particularly interesting for analyzing the ro-
bustness of the predictive EMS against unpredicted disturbances
in the real-world application.

• Dynamometer tests were carried out based on a selected real driving
cycle on a chassis dynamometer testbed. In contrast to the real
driving tests conducted on public roads, traction power demand
profiles can be reproduced multiple times on the dynamometer
testbed, which enables a direct comparison between the two
EMSs and drawing more significant conclusions regarding the
benefit of the predictive EMS on the fuel efficiency. Also in the
dynamometer tests, the real driving cycle covers real-world dis-
turbances including vehicle standstills, which are not considered
in the speed limit-based prediction. In addition, dynamometer
tests based on the ‘‘Worldwide Harmonized Light-Duty Vehi-
cles Test Cycle’’ (WLTC), a standard cycle widely used in the
literature, were conducted.

All tests started and ended with an SoC close to 0.6, and the small
ifferences between the initial and the final SoC are considered in the

quantitative evaluation based on the equivalent fuel consumption as
described in Section 4.

The predictive strategy considers route-based predictive informa-
tion, i.e., the altitude profile along the route and a speed limit-based
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prediction of the velocity, to conduct the offline optimization before
departure. In this work, both pieces of information were obtained from
VL Route Studio, a test cycle preparation tool. The tool considers

ongitudinal vehicle dynamics during transients and limits the veloc-
ty depending on the road curvature. In this way, feasible long-term
elocity predictions can be generated conveniently for testing purposes.

In the following, the real driving tests are presented first, focusing
on quantitative results. Then, the dynamometer tests are discussed,

here the qualitative differences in the energy management of the two
EMSs are analyzed in addition to a quantitative evaluation.

5.1. Real driving tests

The real driving tests were conducted on two different routes on
ublic roads, which are labeled ‘‘route A’’ and ‘‘route B’’ in the fol-
owing. The two routes represent day-to-day driving missions such as

commuting and include shares of urban, rural, and freeway driving.
On both predetermined routes, tests were repeated several times with
the predictive SoC reference tracking and the nonpredictive charge
sustaining. The covered distance, the altitude profile, the speed limits,
and the speed limit-based prediction of the individual tests on a route
are identical, whereas the velocity profile and, thus, the power demand
profile and the total driving time vary because of real-world influences,
such as traffic, traffic regulation, driver behavior, and weather. These
influences also cause vehicle standstills with varying standstill times.
The primary objective of the real driving tests is the experimental
validation of the robustness of the predictive SoC reference tracking
in the actual application, where unpredicted disturbances caused by
the real-world influences are inevitable. For this purpose, the perfor-
mance advantage over the nonpredictive EMS is assessed based on
the equivalent fuel consumption. Moreover, the quality of the long-
term velocity predictions is assessed with plots comparing the measured
and predicted velocity profiles over distance. The distance-based plots
do not reflect the effects of velocity deviations on the driving time,
which is meaningful for the assessment because the predictive EMS
compensates for these effects by using a distance-based SoC reference
trajectory.

5.1.1. Real driving tests on route A
Route A has a length of 26 k m and includes rural and urban roads.

The altitude profile and the speed limit-based velocity prediction of
route A are shown in Figs. 4(a) and 4(b), respectively. Based on this
information, the long-term power demand prediction for the driving
mission was derived, and the energy management was optimized (also
see Fig. 4(a)). The optimized SoC trajectory, which is used as reference
or the predictive SoC reference tracking, plans that the battery sup-

ports the FCS in the high-power uphill section and is recharged in the
subsequent downhill section. In this way, the FCS is operated close to
he idle power limit, where the FCS efficiency peaks, unless the power

demand significantly exceeds the maximum continuous battery power
limit of 30 k W.

Seven real driving tests, which are labeled A1 to A7, were performed
on route A. Their measured velocity signals are compared to the long-
term velocity prediction in Fig. 4(b). The speed limit-based prediction
rovides a good estimate but inevitably deviates because of traffic

influences, particularly in the final urban part, where several stops were
required.

To evaluate the potential of the predictive EMS under these varying
disturbances, the route was driven twice with the nonpredictive charge
sustaining (tests A1 and A2) and five times with the predictive SoC ref-
erence tracking (tests A3 to A7). The quantitative results are presented
in Table 2a and 2b. The strong influence of traffic is reflected in the
cumulated standstill time, which varies between 3.7 and 12.2 min and
ffects the total driving time. The fuel efficiency of the individual tests
s evaluated based on the equivalent fuel consumption, which takes into
ccount corrections for deviations in the traction energy and the final
7 
Fig. 4. Real driving tests on route A.

SoC. The two tests that applied the nonpredictive charge sustaining
strategy (tests A1 and A2) showed an identical performance with an
equivalent fuel consumption of 0.242 k g. Compared to this result, all
tests using the predictive SoC reference tracking showed a reduced
equivalent fuel consumption with improvements ranging from 0.4 %
to 7.4 %. On average, the predictive SoC reference tracking yielded a
considerable improvement of 4.6 %. The measurements indicate that
his improvement results from an increase in the mean FCS efficiency
hanks to the predictive information. Regarding the effect of the EMS on
hmic battery losses, no clear statement is possible. Feasible operation
as ensured, i.e., the power demand was satisfied without violating
owertrain constraints, in all tests.

Remarkably, the considerable improvements in the fuel efficiency
were achieved with a rather small amplitude in the SoC reference
trajectory for this route. This indicates that the results could also be
achieved with a considerably smaller battery capacity.
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Fig. 5. Real driving tests on route B.

5.1.2. Real driving tests on route B
Three tests were conducted on route B, which has a length of 96 k m

and covers urban, rural, and freeway driving. The route-based long-
term prediction, the results of the prediction-based offline optimization,
and the comparison between the predicted and the measured velocities
f the three tests are shown in Fig. 5. Again, the long-term velocity
rediction gives a good estimate but shows traffic-induced deviations,
articularly in the urban parts of the route. Similar to the optimization
utcome for route A, the optimal energy management for the predicted
ower demand plans a rather steady operation of the FCS in the low-
ower range, where the FCS efficiency is high. Consequently, most of
he dynamic share of the predicted power demand is covered by the
attery, which can be seen in optimized SoC profile. Due to the longer
istance and the higher changes in altitude compared to route A, the
ptimized SoC profile shows a considerably higher amplitude here.

The first test (B1) was performed with the nonpredictive charge sus-
aining, and the other two tests (B2 and B3) applied the predictive SoC
eference tracking. The results are presented in Table 2c. Both B2 and
3 show a considerable reduction in the equivalent fuel consumption
 i

8 
Table 2
Results of the real driving tests comparing the two EMSs: nonpredictive charge
sustaining (CS) vs. predictive SoC reference tracking (SoC RT).

(a) Real driving tests on route A.

A1 A2 A3 A4

EMS CS CS SoC RT SoC RT
Traction energy (k Wh) 3.44 3.42 3.28 3.32

Total driving time (min) 36.7 43.5 35.8 35.3
Standstill time (min) 4.7 12.2 3.7 4.4

𝒎𝐞𝐪 (kg) 𝟎.𝟐𝟒𝟐 𝟎.𝟐𝟒𝟐 𝟎.𝟐𝟐𝟖 𝟎.𝟐𝟑
Relative difference 𝟎% 𝟎% −𝟓.𝟖% −𝟓%

Mean FCS efficiency 49.1% 49.5% 51.7% 50.8%
Battery losses (kWh) 0.061 0.088 0.069 0.046

(b) Real driving tests on route A (continuation).

A5 A6 A7

EMS SoC RT SoC RT SoC RT
Traction energy (k Wh) 3.2 3.31 3.38

Total driving time (min) 38.7 39.8 39.1
Standstill time (min) 4.7 5.3 6.7

𝒎𝐞𝐪 (kg) 𝟎.𝟐𝟐𝟒 𝟎.𝟐𝟑𝟏 𝟎.𝟐𝟒𝟏
Relative difference −𝟕.𝟒% −𝟒.𝟓% −𝟎.𝟒%

Mean FCS efficiency 52.4% 51.4% 50.4%
Battery losses (kWh) 0.057 0.044 0.057

(c) Real driving tests on route B.

B1 B2 B3

EMS CS SoC RT SoC RT
Traction energy (k Wh) 12.09 13.88 11.96

Total driving time (min) 120.7 120.8 112.4
Standstill time (min) 13.8 13.7 8.5

𝒎𝐞𝐪 (kg) 𝟎.𝟖𝟏𝟏 𝟎.𝟕𝟔𝟕 𝟎.𝟕𝟖𝟐
Relative difference 𝟎% −𝟓.𝟒% −𝟑.𝟔%

Mean FCS efficiency 51.4% 55% 55%
Battery losses (kWh) 0.163 0.262 0.25

with respect to the test applying the nonpredictive EMS with improve-
ments of 5.4 % and 3.6 %, respectively. On average, the equivalent fuel
consumption was reduced by 4.5 %. The predictive strategy caused an
increase in the ohmic battery losses due to the enhanced battery use.
However, the mean FCS efficiency was improved significantly from
51.4 % for the nonpredictive EMS to 55 % for the predictive strategy,
which overcompensated for the increased battery losses and resulted
in the significantly higher fuel efficiency. Also, feasible operation was
ensured in all tests.

5.1.3. Summary of real driving tests
The evaluation based on the equivalent fuel consumption validated

he robustness of the predictive SoC reference tracking for the real-
orld application. Even though the tests were affected by considerable

disturbances with respect to the speed limit-based long-term prediction,
the results of the real driving tests indicate that the predictive SoC
eference tracking performs significantly better than the nonpredictive
harge sustaining with average reductions in the equivalent fuel con-
umption of 4.6 % on route A and 4.5 % on route B. The analysis of the
esults also indicates that the improved fuel economy is achieved by
n increase in the mean FCS efficiency, whereas influences of ohmic
attery losses are less relevant.

However, the variances in the velocity and power demand profiles
and the standstill times of the real driving tests do not allow for a direct
comparison between the predictive SoC reference tracking and the
onpredictive charge sustaining. Therefore, dynamometer tests were
onducted based on a selected real driving cycle, which are presented
n the following.
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5.2. Dynamometer tests

To draw more significant conclusions regarding improvements in
he fuel efficiency and compare the two EMSs also qualitatively, tests
ere performed on the chassis dynamometer testbed, where velocity
nd traction power profiles can be reproduced within certain toler-
nces. The dynamometer tests are based on the velocity measurements
f a selected real driving cycle, namely B3. Therefore, the dynamome-
er tests cover the significant disturbances with respect to the speed

limit-based prediction that were experienced in the corresponding real
riving test including vehicle standstills. Moreover, the chassis dy-
amometer tests involve the entire vehicle, and thus, influences of the

auxiliary systems and the drivetrain are also included. In addition to
he dynamometer tests based on the real driving cycle, tests based on
he standard WLTC were conducted. The results are described below.

5.2.1. Dynamometer tests based on the real driving cycle
The altitude profile, velocity profile, and traction power profile of

he real driving cycle B3 are shown in Fig. 6(a). The driving cycle cov-
rs urban, rural, and freeway driving and includes substantial changes
n altitude, which dominate the traction power profile. The influence
f the altitude profile on the traction power is particularly evident on
he freeway section between 55 k m and 85 k m. Besides measurements,

Fig. 6(a) also includes the speed limit-based velocity prediction, which
considers the vehicle dynamics during transients and limits the velocity
epending on the road curvature. As already discussed for the real

driving tests, the long-term velocity prediction gives a good estimate of
the actual velocity but inevitably deviates due to real-world influences.
Particularly in the urban parts at the beginning and the end of the
driving cycle, the actual velocity is affected by numerous unpredicted
vehicle stops and dense traffic. Nevertheless, the long-term traction
power prediction, which is derived from the predicted velocity and
the altitude profile, provides a good estimate of the measured power
demand except for fast dynamics, i.e., spikes in the measured traction
power, which are strongly influenced by the unpredicted disturbances.
Based on the power demand prediction, the energy management was
optimized.

The result of the offline optimization and the comparison of the pre-
dictive SoC reference tracking and the nonpredictive charge sustaining
are shown in Fig. 6(b). The optimal energy management regarding the
prediction aims at operating the FCS closely to the idle power limit,

here the FCS efficiency peaks, but also shows a slight power-following
ehavior, which reduces ohmic battery losses. Consequently, the opti-
ized SoC reference is clearly influenced by the changes in altitude

nd the implicated variations in the traction power. The optimized
oC reference basically plans to charge the battery in the low-power
ections of the driving cycle, e.g., during descents, and discharge the
attery in the high-power sections, e.g., in the uphill freeway section
tarting at 55 k m.

Not considering this predictive information, the charge sustaining
strategy maintains the SoC around a constant reference of 0.6. Although
he controller provides certain freedom for deviation from the constant
eference, the charge sustaining strategy shows a clear power-following
ehavior, i.e., the FCS power follows the power demand. Thus, the FCS
s operated in the low-power range frequently entering the stopmode
n the low-power sections of the cycle and must satisfy high power
equests during the high-power sections, particularly in the uphill
reeway section starting at 55 k m.

Unlike the charge sustaining strategy, the predictive SoC refer-
ence tracking strategy tracks the optimized SoC reference trajectory.
Even though the measured FCS power of the predictive SoC reference
racking deviates from the offline solution due to the unpredicted real-

world influences, the SoC follows the reference trajectory adequately.
Compared to the nonpredictive strategy, the predictive SoC reference
tracking requests more power from the FCS in the low-power sections

of the cycle and charges the battery in this way. In return, the battery

9 
Fig. 6. Dynamometer tests based on the real driving cycle B3.

actively supports the FCS in the high-power sections of the cycle, which
avoids operating the FCS in its inefficient high-power range.

The effects of the two EMSs on the fuel efficiency are visually
compared based on the equivalent fuel consumption, which takes into
account the energy stored in the battery and is also shown in Fig. 6(b).
Remarkably, the time courses of the equivalent fuel consumption of the
two EMSs are almost identical in the initial 55 k m of the driving cycle,
indicating that potentially higher battery losses due to the increased

battery use of the predictive SoC reference tracking are inconsiderable.
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Table 3
Results of the dynamometer tests comparing the nonpredictive charge sustaining with
he predictive SoC reference tracking.

(a) Real driving cycle B3.

Charge sustaining SoC tracking
Traction energy (k Wh) 12.93 12.8

𝒎𝐞𝐪 (kg) 𝟎.𝟖𝟕𝟒 𝟎.𝟖𝟏𝟖
Relative difference 𝟎% −𝟔.𝟒%

Mean FCS efficiency 50.1% 54.2%
Battery losses (kWh) 0.217 0.234

(b) WLTC.

Charge sustaining SoC tracking
Traction energy (k Wh) 3.46 3.45

𝒎𝐞𝐪 (kg) 𝟎.𝟐𝟐𝟓 𝟎.𝟐𝟏𝟖
Relative difference 𝟎% −𝟑.𝟏%

Mean FCS efficiency 51.8% 53.1%
Battery losses (kWh) 0.057 0.062

However, a significant gap between the equivalent consumption tra-
ectories of the two strategies opens up during the high-power uphill
ections on the freeway starting around 55 k m, where the predictive

SoC reference tracking successfully avoids the inefficient high-power
CS range.

The quantitative results are summarized in Table 3a and confirm
hese findings. The predictive SoC reference tracking reduces the equiv-
lent fuel consumption by remarkable 6.4 % with respect to the non-

predictive charge sustaining. The dynamometer tests confirm that the
reduction in the fuel consumption is based on an improvement in
the mean FCS efficiency, which is significantly increased from 50.1 %
for the charge sustaining strategy to 54.2 % for the predictive SoC
reference tracking strategy. Compared to the nonpredictive strategy,
the predictive SoC reference tracking produces higher ohmic battery
osses because of the enhanced battery use, but this increase is of
inor significance regarding the overall fuel efficiency, as already

bserved in the real driving tests. The outcomes confirm that long-
erm predictions derived from easily available static route information
re highly effective for improving the fuel efficiency although their
rediction quality is limited due to real-world disturbances. Also, the
ffectiveness of the simple and easily implementable real-time SoC
eference tracking controller is confirmed.

5.2.2. Dynamometer tests based on the WLTC
The WLTC is a standard cycle for determining fuel consumption and

mission levels. As such, the WLTC is a widely used test cycle in the
literature, which is why it is interesting to evaluate the performance
benefit of the predictive SoC reference tracking for the WLTC. However,
one must keep in mind that the official test procedure does not consider
the use of predictions, and thus, the WLTC tests are hypothetical
tests here. Since speed limits are also not specified for the WLTC, the
actual velocity reference for the dynamometer testbed is considered
as theoretical velocity prediction (see Fig. 7(a)). However, vehicle
standstills are considered unpredictable and therefore not represented
in the prediction. Because the WLTC does not consider changes in
altitude, this dynamometer test also investigates the potential of the
predictive EMS for driving missions where the traction power profile is
dominated by the velocity.

The close-to-ideal prediction offers the possibility to evaluate the
accuracy of the long-term power demand prediction based on the
vehicle dynamics. The predicted traction motor power estimates the
measured traction motor power well (see Fig. 7(a)), confirming the
suitability of the vehicle model. Only fast dynamics, i.e., the spikes
in the measured traction motor power, are not represented due to the
segmentation of the prediction for the offline optimization. However,
 p

10 
Fig. 7. Dynamometer tests based on the WLTC.

this segmentation error does not limit the performance of the pre-
dictive concept because the real-time SoC tracking controller ensures
enough freedom to deviate from the SoC reference optimized based on
the prediction. Also, power demand spikes are assumed to be almost
unpredictable in the real-world application.

The result of the offline optimization and the comparison of the
wo EMSs are shown in Fig. 7(b). Because of the relatively low mean

power demand of the WLTC, the solution of the optimization indicates
to operate the FCS mainly at the idle power limit. The corresponding
SoC profile, which is used as reference for the predictive SoC reference
racking, basically plans to charge the battery in the initial low-power

art of the cycle and discharge the battery in the final high-power part.
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Fig. 8. Effects of the EMSs on the FCS operation: relative shares of the FCS operation
modes (left plots) and the energy-weighted FCS power distribution (right plots).

The qualitative differences between the nonpredictive charge sus-
aining and the predictive SoC reference tracking are similar to the
ifferences observed in the test based on the real driving cycle. Track-
ng the optimized SoC reference, the predictive SoC reference tracking
onsiderably reduces high-power FCS operation compared to the charge
ustaining strategy thanks to the active use of the battery, particularly
n the final high-power section starting around 18 k m. This is also where
 significant difference in the equivalent fuel consumption graphs
rises. Note that the equivalent fuel consumption decreases at the end
f the test cycles because the battery is charged through regenerative
reaking.

The quantitative results are summarized in Table 3b. The predictive
oC reference tracking strategy decreases the equivalent fuel consump-
ion by 3.1 % with respect to the nonpredictive strategy. This result is

notable and indicates that the predictive EMS can also bring significant
improvements for driving missions without changes in altitude. The
improvement again results from an increase in the mean FCS efficiency.

5.2.3. Analysis of the FCS power distribution
The effect of the predictive EMS on the FCS operation is analyzed

in Fig. 8 for the two dynamometer tests. The histograms illustrate
the energy-weighed FCS power distribution and confirm the afore-
mentioned findings. Compared to the charge sustaining strategy, the
predictive SoC reference tracking strategy shifts energy provided by
high-power operation to low-power operation in both tests. Particularly
the operation in the FCS power range just above the idle power limit,
where the efficiency peaks, is significantly increased with the predictive
EMS. For the dynamometer test based on the real driving cycle, the
predictive SoC reference tracking also considerably reduces the time
spent in the stopmode, which is beneficial because the mean FCS power
in active operation is decreased in this way.

6. Conclusions

This work experimentally validated an easily implementable predic-
tive EMS considering a long-term prediction derived from static route
11 
information to optimize a distance-based SoC reference trajectory be-
fore departure. Extensive experiments were conducted with a real fuel
cell passenger vehicle on public roads and on a chassis dynamometer
testbed. The real driving tests on public roads proofed the robustness of
the predictive SoC reference tracking strategy in real driving situations
affected by unpredicted disturbances such as varying traffic. Moreover,
the real driving tests indicated a considerable reduction in the fuel con-
sumption compared to a nonpredictive charge sustaining strategy with
an average reduction of around 4.5 %. Reproducible dynamometer tests
based on a selected real driving cycle, which included real-world traffic
influences and vehicle standstills, confirmed these findings: Although
these disturbances were not considered in the prediction, the predictive
SoC reference tracking reduced the fuel consumption by remarkable
6.4 % compared to the nonpredictive charge sustaining. This result
onfirmed that simple, route-based long-term predictions are highly

effective for improving the fuel efficiency in the real-world application,
ven though their accuracy is limited due to unpredictable random
nfluences. Additionally, dynamometer tests based on the WLTC re-

vealed a reduction in the fuel consumption by 3.1 % compared to the
nonpredictive EMS. This result indicated that the predictive EMS can
also improve the fuel efficiency for driving missions without changes
in altitude. Finally, a detailed qualitative evaluation showed that the
significant improvements arose by avoiding high FCS power ranges,
which considerably increased the mean FCS efficiency.
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