
Received 10 July 2024, accepted 30 July 2024, date of publication 7 August 2024, date of current version 19 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3439850

Conformal Prediction Based Confidence for
Latency Estimation of DNN Accelerators:
A Black-Box Approach
MATTHIAS WESS , DANIEL SCHNÖLL , (Graduate Student Member, IEEE),
DOMINIK DALLINGER , (Graduate Student Member, IEEE), MATTHIAS BITTNER ,
AND AXEL JANTSCH , (Fellow, IEEE)
Institute of Computer Technology, TU Wien, 1040 Vienna, Austria
Christian Doppler Laboratory for Embedded Machine Learning, Institute of Computer Technology, TU Wien, 1040 Vienna, Austria

Corresponding author: Matthias Wess (matthias.wess@tuwien.ac.at)

This work was supported in part by Austrian Federal Ministry for Digital and Economic Affairs; in part by the National Foundation for
Research, Technology and Development; in part by the Christian Doppler Research Association; and in part by Technical University (TU)
Wien Bibliothek.

ABSTRACT Today, there exists a large number of different embedded hardware platforms for accelerating
the inference of Deep Neural Networks (DNNs). To enable rapid application development, a number of
prediction frameworks have been proposed to estimate the DNN inference latency on a wide range of
hardware platforms. This work presents a novel smart padding benchmarking method, which allows the
profiling of hardware platforms without requiring detailed per-layer reports. To mitigate the measurement
inaccuracies inherent in the black-box approach, a confidence framework comprising three metrics has been
developed. These metrics not only enhance the interpretation of prediction results but also significantly
contribute to the refinement of the estimation framework itself, as they facilitate to improve the coverage
of the training dataset for relevant layers and detect weaknesses in the training dataset. Empirical results
demonstrate the method’s robustness, with average prediction errors minimized to below 10% for smart
padding benchmarking-based ANNETTE predictions for the Jetson Xavier, NXP i.MX93, and NXP
i.MX8M+.

INDEX TERMS Estimation, latency, confidence, neural network hardware, conformal prediction.

I. INTRODUCTION
The vast design space of optimization, pruning, quantization
and mapping DNNs on embedded hardware platforms makes
it almost impossible to quickly find the best fitting solution
for an application. Neural Architecture Search (NAS) [1], [2]
provides a means to achieve a DNN optimized with regards
to certain requirements. Specifically in hardware-aware NAS
the inference latency is often used as the target constraint
and therefore needs to be computed or measured for each
selected DNN architecture. To avoid the need to deploy each
DNN on the requested platforms, various approaches have
been proposed to predict the inference latency. Solutions to
this problem range from the use of simple proxy metrics

The associate editor coordinating the review of this manuscript and

approving it for publication was Pinjia Zhang .

(such as the number of floating point operations) [3]
and analytical models [4], [5] to Graph Convolutional
Networks (GCNs) [6], [7]. Some solutions focus on specific
design spaces to enable hardware-aware NAS and therefore
provide limited generalization capabilities. Other methods
(e.g. ANNETTE [5], nn-Meter [8]) aim to provide accurate
predictions for a wide range of applications and cover the
aspects of graph optimizations in a separate step to correctly
model all steps in the deployment flow.

However, the vast amount of different hardware platforms
available for DNN inferencemakes the adaption of estimation
algorithms for each hardware platform cumbersome. There-
fore, Metrics that provide additional information.

Our goal is to address two challenges related to benchmark-
ing and predicting the inference time of neural networks on
constrained devices. First, benchmarking hardware platforms

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 109847

https://orcid.org/0000-0002-1877-4114
https://orcid.org/0009-0009-5834-6526
https://orcid.org/0009-0007-4789-2375
https://orcid.org/0009-0004-8022-2232
https://orcid.org/0000-0003-2251-0004
https://orcid.org/0000-0002-1288-956X

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

for specific DNNs is challenging due to layer fusion,
dependencies on layer sequences, data loading effects,
interference of profiling techniques with execution time,
and other complications. Additionally, it is important to
gain insights not only for entire networks but also at the
per-layer level. Currently, achieving this level of detail
necessitates the use of per-layer profiling results to accurately
model execution time. However, there are situations where
implementing per-layer profiling is not feasible or requires
additional implementation effort and possibly generates
additional profiling overhead. We tackle this challenge by
developing an intelligent benchmarking strategy that allows
for the generation of per-layer abstraction models without
relying on detailed insights.

Second, a latency estimate is only useful to designers
if they know to which extent it can be trusted. How can
we ensure the comparability of models and how can we
trust models trained on limited data points? To address
this concern, we propose three novel confidence metrics.
These metrics provide quantitative measures of the relia-
bility of our latency prediction models, enabling informed
decision-making when selecting hardware platforms and
DNN architectures for the application-specific DNN hard-
ware implementation. Additional applications of latency
prediction, such as hardware aware DNN compression [9],
[10] and DNN offloading and partitioning [11], [12] can also
potentially make use those prediction reliability measures.

Specifically, this paper makes the following contributions:

• We propose a method for profiling the latency of DNN
inference on hardware with padded models;

• We propose a conformal prediction framework for DNN
latency prediction to quantify the confidence of the
predicted values.

II. RELATED WORK
A. LATENCY PREDICTION
The goal of latency prediction is to estimate the total
execution time of a network composed of a sequence of
N layers L = {l1, l2, . . . , lN}. Each layer in the DNN has
specific attributes and parameters that define its configura-
tion, computation needs, and connections to other layers.
These connections determine the data flow through the entire
network. Current approaches for DNN latency prediction
range from simple analytical models based on the roofline
model [5] to elaborate Machine Learning (ML) based latency
estimators [13]. These ML based prediction algorithms are
trained on collected datasets Z = {(x⃗1, y1), (x⃗2, y2), . . .},
where x⃗i are the feature vectors, describing layer i, and yi are
the values to be predicted. In the case of latency estimation,
the target values can represent for example time or compute
efficiency. As a result, ML based prediction algorithms are
not limited to a specific hardware platform. They show good
accuracy [14], [15], [16] but are mostly limited to the selected
design space and are usually not designed for general network
prediction.

Analytical prediction methods such as those presented
in [17] and [18] provide high prediction accuracy for the
target hardware platforms. However, they require in-depth
hardware knowledge and are therefore not suitable when
in-depth architecture details cannot be obtained due to
confidentiality or when the required effort is excessive.

The latency prediction framework Blackthorn [4] encom-
passes analytical models constructed based on several
measurement points. The focus of Blackthorn is on finding
optimal measurement points to reduce the required amount of
overall measurements to profile NVIDIA Graphic Processing
Units (GPUs).

The framework ANNETTE [5] provides analytical models
based on a refinement of the rooflinemodel which, in addition
to the compute andmemory boundary, also takes into account
the underlying compute architecture. In addition, ANNETTE
relies on random forest regression models predicting the
per-operator compute efficiency and also deploys decision
trees to predict operator fusion rules.

Other similar approaches with iterative improvements and
slightly different focus with regard to the profiled hard-
ware [19], [20] have been proposed. nn-Meter [8] focuses
on the prediction of mobile devices and deploys similar
principles as ANNETTE relying on a larger training dataset.
MAPLE-X [21] incorporates explicit prior knowledge of
hardware devices to improve the prediction accuracy for
newly benchmarked devices.

Finally, Graph Neural Networks (GNNs) offer the option
to operate directly on the graph structure of the DNN
to be predicted. Sectum [22] deploys a GNN to detect
memory over-commitment in addition to an ANNETTE-
like structure. While frameworks like DNNPerf [13] and
GENNAPE [23] focus on the prediction of other DNN
performance parameters (such as accuracy, training time,
etc.), PerfSAGE [7] and DIPPM [24] rely on GNNs to predict
latency, energy, and memory consumption and promise
high prediction accuracy for different classes of network
architectures. In both cases, the GraphSAGE architecture is
deployed in different variants. Lastly, SLAPP [6] applies
GNNs at sub-graph level to preserve the advantage of gained
insights through per-operator prediction but still relying on a
large number of data points.

The black-box approach using smart padding, presented in
this work, can be a valuable method for most of the ML based
latency estimation frameworks. Even though the technique
does not replace detailed per-layer profiles, it enables in-
model latency measurement of single layers or blocks of
layers while decreasing the required effort for implementing
overhead-free per-layer profiling tools.

B. CONFORMAL PREDICTION
The conformal prediction framework, introduced by Vovk,
Grammerman and Shafer [25], [26] provides a general
method for quantifying the uncertainty of predictions for
arbitrary prediction algorithms and provides guarantees on

109848 VOLUME 12, 2024

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

the prediction error. Traditionally, confidence intervals are
estimated using quantile regression [27], [28] or Bayesian
methods [29]. In the context of this work, which leverages
random forest regression [30], conformal prediction is
particularly beneficial for uncertainty quantification, as it not
only demonstrates good efficiency [31] but also ensures broad
applicability across different machine learning algorithms.
Furthermore, conformal prediction offers many additional
advantages, such as its straightforward interpretability,
model-agnostic nature, and adaptability.

For uncertainty quantification, conformal prediction relies
on the computation of a nonconformity score α for each
instance in a calibration set distinct from the initial training
set. In regression, α is typically computed as the absolute
error αj = |ŷj−yj| [31], where ŷ is the predicted value. For the
prediction of confidence intervals with significance δ, these
calculated nonconformity scores are used to formulate the
prediction region for each instance j as Ŷj

δ
= ŷj ± α(δ) [31].

This means the predicted region Ŷ will cover the true value
of y with probability p = 1 − δ. In the standard case, this
results in confidence intervals of uniform width across all
input feature vectors x⃗.
Thus, to minimize the average interval width, it is possible

to implement normalized nonconformity functions [32].
Here, the nonconformity scores are scaled by σ , an estimate
of the model’s accuracy for the predicted instance. The
resulting prediction regions are then computed as Ŷj

δ
=

ŷj ± α(δ) · σj. This quality estimate can be obtained by
various methods, such as predicting the errors with additional
trained models or using the errors of the k nearest neighbors.
Conformal prediction has been successfully applied in
various domains, including medical diagnosis [33], face
recognition [34], and financial risk prediction [35]. However,
to our knowledge, this work presents the first approach to
leverage conformal prediction for confidence estimation in
latency estimation of DNNs.

III. METHODOLOGY
Currently, for latency estimation of DNN hardware accelera-
tors, we encounter two primary challenges:

1. Across the broad spectrum of available DNN accelera-
tors the availability of knowledge, insight, and profiling
tools varies widely. This diversity necessitates tailored
benchmarking and modeling approaches for each type.

2. The accuracy of latency prediction models varies
widely due to variations in benchmarking methodolo-
gies, dataset size (e.g. limited due to the compilation
time), and hardware architectures. These issues com-
promise the reliability of latency estimates and affect
the coverage of the DNN design space.

The following sections address the identified challenges in
estimating latency for DNN hardware. Section III-A provides
an overview of the model generation process, highlighting
the additions to the latency estimation framework. To tackle
issue (1), Section III-B presents a flexible methodology

FIGURE 1. Overview of the compilation flow for inference on embedded
hardware platforms.

that allows us to profile hardware platforms based on a
minimal requirement on the available hardware insights and
profiling possibilities. Lastly, to address the diverse latency
prediction model quality (2), in Section III-C we propose the
application of conformal prediction methods as measures for
the confidence of the per-layer and per-network estimation.

A. OVERVIEW
Figure 1 depicts the usual stages to compile a trained Neural
Network (NN) for hardware inference:

• The trained DNN model is exported from a training
framework such as Tensorflow or Pytorch to an inter-
mediate exchange format (e.g. ONNX, TFlite).

• Backend independent optimizations are applied to
optimize the graph for inference. These can include
removing layers from the graph that are only required
for training (e.g. Dropout), or fusing layers while still
maintaining mathematical equivalency (e.g. Batch Nor-
malization). While most inference frameworks apply
this step automatically, it is still recommended to make
use of tools such as NVIDIA’s ONNX-GraphSurgeon1

or ONNX-simplifier2 in a separate step. Hence, this step
can similarly be applied in the latency estimation flow.

• Backend dependent optimizations represent the
changes applied to the DNN model, that are either
required or beneficial with regard to latency and/or
efficiency, and which are not executable on all hardware
platforms. Since each hardware platform provides a
different set of operations and possibly allows for
multiple operations in a pipelined manner (composite
layers) to reduce data transfer these optimizations need
to be considered in the estimation framework [5], [8].

• Lastly, the model is compiled and executed on
the hardware platform using the hardware-specific
inference backend. Some compilers provide different

1https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon
2https://github.com/daquexian/onnx-simplifier

VOLUME 12, 2024 109849

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

optimization targets (e.g. latency, memory) or optimize
the workload for a specific hardware setting. It has
to be considered that, with the current methods, each
prediction model can only provide the predictions for
one specific combination of compiler and hardware
settings.

From the inference workflow, there are different levels
of insights that can be gathered and used for the latency
estimation framework:

• DNN graph before and after backend-dependent opti-
mization

• Per layer latencies
• Overall network latency

Ideally, these insights not only include the hardware
mapping of the computational graph but also precise timing
for each layer. This would allow for the development of
accurate latency estimation models and the identification of
further optimizations, such as combining individual layers
into composite layers. In this context, Composite layers
refer to the fusion of multiple neural network operations
(e.g., Conv2D + ReLU + MaxPool) into a single operation
executed as one unit, enhancing processing efficiency and
reducing latency.

However, the level of detail available in profiling data can
vary significantly across different hardware platforms. Some
allow for more detailed analysis than others. Additionally,
the generation of per-layer reports can also lead to additional
overhead resulting in inaccurate latency measurements.
In cases where direct profiling at this level is not feasible,
alternative methods, like employing GNNs for overall net-
work latency estimation or block-wise estimation [15], have
been explored. However, these approaches do not provide
insights at the layer-level and are limited in their coverage
of the design space, as they cannot account for all possible
blocks and network configurations in the training dataset.
The experiments conducted in this study demonstrate that
simply benchmarking each layer type through single-layer
measurements (profiling NNs consisting of only one layer)
does not yield the required level of measurement accuracy.
This is due to the overhead associated with data transfer at
the start and end of the execution.

While each hardware architecture presents unique com-
plexities, the smart padding method introduced in this work
enables benchmarking across a wide array of current hard-
ware platforms. This technique accounts for the data transfer
overhead during the measurement process, thus isolating the
actual computation time within a DNN with multiple layers.
However, it operates under the assumption that the hardware
platform performs computations on a per-layer basis. This
assumption aligns with the operational characteristics of most
modern hardware architectures, where parallel execution of
layers typically does not yield substantial performance gains.

As an example, when taking a closer look at the
block diagram of an ARM Ethos Neural Processing Unit
(NPU) (see Figure 2) and the attached main components of

FIGURE 2. Blockdiagram of the ARM Ethos NPU [36] and connections to
the main CPU and DDR.

the NXP i.MX93 (Main CPU and DDR Memory), we can
gain insight into the underlying cause of this overhead.
During the computation of the NN the intermediate feature
maps are stored in a shared buffer, which is tightly coupled
to the compute units. This setup enables fast data transfer and
optimal compute efficiency. However, at the start and end of
the NN inference, data must be transferred via the AXI-bus
into or from this shared buffer. Additionally, potential data
reordering or similar steps can further impede the speed of
this process.

Considering the benchmarked hardware as a black-box,
without in-depth knowledge of the specific relationships
between the amount of transferred or processed data and
the resulting latency, the developed methodology therefore
needs to be able to account for this overhead. Furthermore,
the implemented confidence metrics should reflect the
added estimation uncertainty stemming from the black-box
approach.

For this work, we build on Accurate Neural Network
Execution Time Estimation (ANNETTE) [5], an open-source
framework for NN latency estimation on embedded hardware
platforms. Figure 3 provides an overview of the modules of
ANNETTE and the components that are added for this work.

The ANNETTE workflow comprises two phases: the
characterization phase and the estimation phase. Initially,
in the characterization phase, Benchmark Tool (Fig. 3)
executes the benchmarks on the hardware, by autonomously
measuring the latencies for a set of parametric dummy
network models and stores the results in a data frame.
Subsequently, the Model Generator utilizes this data to
generate prediction models for the assessed layer types
and fusion rules. Predominantly, the end user interacts
with the Estimation Tool, which loads a DNN model
description in ONNX format and predicts the latency

109850 VOLUME 12, 2024

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

FIGURE 3. Overview of the components in ANNETTE. The color-shaded
components are added in this work.

using the previously generated models. This work relies on
the random forest-based estimation models of ANNETTE.
However, it is possible to apply the same methodology to
other latency estimation frameworks, such as nn-Meter or
PerfSAGE since they are compatible with the conformal
prediction approach [37].

To facilitate the proposed black-box benchmarking
approach, the set of benchmarks is expanded with smart
padding models (described in Section III-B). To enable
uncertainty quantification for latency prediction, we apply
conformal predictionmethods to the random forest regression
models (see Section III-C). This requires modifications to
both the Model Generator and the Estimation Tool to
support the conformal prediction framework. Specifically, the
Model Generator is extended to include support for training
the quality estimators and calculating non-conformity scores.
Updates to the Estimation Tool enable the inference
of conformal prediction, including the quality estimators,
and the use of bootstrapping to compute the per-network
confidence metrics.

B. BLACK-BOX BENCHMARKING
This section describes the techniques used to achieve
per-layer prediction models for hardware with limited
profiling capabilities. The notation used in this section is
outlined in Table 1.
As mentioned in Section III-A, when measuring individual

layers, there is additional overhead due to data transfer times,

TABLE 1. Definitions of time-related symbols.

complicating the accurate assessment of execution times.
The measured execution time T of a NN on hardware that
executes layer by layer is determined by the computation time
tcomp,i per layer, as well as the additional data transfer times
tdata_in and tdata_out.

T = tdata_in + tdata_out +
layers∑
i=1

tcomp,i (1)

As a result, when benchmarking single-layer models based
on themeasured latency of the entiremodel, the estimator will
overestimate the execution time of multi-layer models (see
Section IV). Figure 4 illustrates a model with three layers.
The effects of pipelining result in the overlaps of the compute
and actual data read and data write times (t ′data_in and t

′

data_out)
since the compute unit can start computation without having
all the data available. While in most cases t ′data_in and t

′

data_out
are proportional to the amount of data to be transferred, due to
the irregular pipelining effects, estimating tdata_in and tdata_out
is more complicated and requires a different approach.

FIGURE 4. Relationship between measured, compute and data transfer
times for a DNN with three layers.

At this point, the main challenge lies in disentangling the
data read/write times from the computation latency of the
Layer Under Measurement (LUM) tLUM. At first glance,
this task may seem straightforward; however, the intricate
relationship between layer configuration and the dimensions
of the resulting input and output feature maps requires a smart
approach. To address this issue, we propose a smart padding

VOLUME 12, 2024 109851

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

FIGURE 5. The three models used for benchmarking the different platforms. The Single Layer Model (a) is the simplest way but does not provide accurate
measurements of tLUM. The black-box benchmarking method makes use of padding-only (b) and padded layer models (c) to solve this problem.

strategy to measure the computation latency of the LUM
within a multi-layer model. Figure 5 depicts the models for
the smart padding strategy (Figure 5b,c), alongside a simple
single-layer model (Figure 5a). Our strategy is based on two
key concepts: firstly, to reduce data transfer times (tdata_in and
tdata_out) to a bare minimum, thereby mitigating their impact
on the latency measurements. Secondly, we independently
measure the execution latency of a padding-only model. This
enables the calculation of T LUM by subtracting the times of
the padding-only models (Figure 5b) from the padded layer
model (Figure 5c).

According to Equation 1, the measured latency T a for the
single layer model includes the data transfer times (tdata_in,
tdata_out) and the actual computation time tLUM. The padded
model consists of the LUM padded by an input and output
padding 1×1 2D convolution layer with cin=1 input channels,
for the input padding layer and cout=1 output channels for the
output padding layer. However, to calculate tLUM accurately,
those padding layers also need to be benchmarked separately.
To minimize the error when calculating the latency of the
LUM, we construct those padding-only models by pairing
input and output padding convolution layers with matching
dimensions. Therefore, each measured padding-only model
consists of two convolution layers with the same number
of operations and equal data input and output dimensions.
Equations 2 and 3 describe T b,n and T c.

T b,n = tpadding_in,n + tpadding_out,n (2)

T c = tpadding_in,1 + tLUM + tpadding_out,2 (3)

Padding the LUM with convolutional layers at the input
and output offers two major advantages: Firstly, it reduces

Algorithm 1 Smart Padding for Latency Benchmarking
Initialize look-up table for padding-only models
for each required combination of padding-only model do

Construct the padding-only models as in Fig. 5b
Measure total latency Tb,1
Measure total latency Tb,2
Store Tb,1 and Tb,2 in the look-up table

end for
for each LUM to be measured do

Construct a padded layer model as in Fig. 5c
Measure total latency Tc
Load correct Tb,1 and Tb,2 from look-up table
Compute TLUM using the Equation 4

end for

the amount of input data transfer to a minimum since cin
and cout can be set to 1. Consequently, we only need to
determine the latency of the padding layers including the data
transfer times. Secondly, using padding layers allows us to
profile layers with different input and output dimensions (e.g.
convolution layers with stride) compared to other solutions
such as repeating the same layer multiple times.

The algorithm for computing all TLUM is summarized
in Algorithm 1. Firstly, we measure the latency of the
padding-only models with configuration sets characterized
by the height (h), width (w), and channel dimensions (cin
and cout). These measurements allow the creation of an
exhaustive look-up table that accounts for any combination of
input and output padding dimensions required for the padded
layer models. Secondly, the latencies for the padded layer

109852 VOLUME 12, 2024

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

models are measured. However, by using Equations 2 and 3
it is neither possible to determine tLUM nor the distribution
between the input and output padding layers (tpadding_in,1 and
tpadding_out,2).
For layers where the dimensions of the input padding

layer and the output padding layer are not identical, without
per-layer profiling, the exact numbers for tpadding_in,1 and
tpadding_out,2 are not obtainable. However, it is possible to
compute the upper and lower bound of the latency interval
of the LUM with:

tLUM_upper := T c − min
n∈{1,2}

(T b,n)

tLUM_lower := T c − max
n∈{1,2}

(T b,n)

T LUM := [tLUM_lower, tLUM_upper] (4)

Compared to alternative methods, smart padding drasti-
cally reduces the interval width of T LUM. This is due to the
small number of additional operations and minimized data
transfer of the padding layers. For example, when measuring
the single layer model of a 2D convolution layer with a stride
of 1, the time required for data transfer is proportional to
w·h·(cin+cout). Here,w and h represent the width and height
of the layer, while cin and cout refer to the number of input and
output channels, respectively. The computation time scales
with w · h · cin · cout · kh · kw, where kh and kw are the kernel
height and width. In contrast, when considering the padded
layer model, the data transfer time remains the same for the
input and output padding. However, the computation time
for the entire model is now determined by the computation
time of the LUM and an additional term that accounts for the
computation time padding layers.

tcomp_padded ∝ w · h · cin · cout · kh · kw
+ win · hin · cin + wout · hout · cout (5)

This means that the resulting width of the possible latency
interval is the difference between T b,1 and T b,2. As a result,
there are three major possible outcomes:

1) cin = cout, win = wout, hin = hout:
tLUM_upper = tLUM_lower as a result of T b,1 = T b,2

2) cin ̸= cout, win = wout, hin = hout: The error margin
is dominated by the difference in computation time of
the input and output padding layers

3) cin ̸= cout, win ̸= wout, hin ̸= hout: The error margin
is composed of the difference in computation time and
data transfer time of the input and output padding layers

As an example, Figures 6 and 7 depict the computed T LUM
for the case 2 (cin ̸= cout, win = wout, hin = hout). We note
that the computed median and error interval of tLUM are
magnitudes smaller than the measured T a for the single layer
model on the NXP i.MX93 development board (i.MX93) and
the NVIDIA Jetson Xavier AGX (Jetson Xavier).

For the final dataset generation, T LUM is computed for
each individual padded model measurement alongside the
calculated interval. Using this method, we can utilize the
smart padding benchmarks for the layer model generation as

FIGURE 6. Computed and measured times for the three models of a 2D
convolution layer with cin = 64, cout ∈ [1, 256], h = 64, w = 64 for the
i.MX93.

FIGURE 7. Computed and measured times for the three models of a 2D
convolution layer with cin = 64, cout ∈ [1, 256], h = 64, w = 64 for the
Jetson Xavier.

described in [4], [5], and [8]. In general, the decision to use
2D convolution layers (including a non-linearity) as padding
layers is motivated by two main factors.

Firstly, unlike when padding with slicing or concatenation
operations, it ensures that there is no possibility for the
compiler to further simplify the computation graph. Secondly,
the same procedure can be applied to 1D and 3D convolutions
while still achieving a similar reduction in operations and data
transfer. Lastly, based on our understanding, the presented
method of smart padding could be applied to other operators
that meet those specific requirements.

Table 2 contains a list of all used features for the
benchmarked layers. The width and height of the images are
limited to 1024 and the kernel sizes (kh, kw) are limited to
11. The resulting parameter space is sub-sampled randomly
and then balanced across the FLOPs dimension, to ensure
a balanced dataset. The resulting number of data points is
around 1000 per layer type.

C. LATENCY ESTIMATION WITH CONFIDENCE
The primary target of latency estimation frameworks is to
accurately predict the application of optimization strategies
layer execution time of DNNs. However, incorporating
confidence metrics into latency prediction frameworks

VOLUME 12, 2024 109853

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

TABLE 2. Layer feature specifications and sample sizes.

significantly improves their interpretability and practical
usefulness. This enhancement not only provides insights into
the precision of the predictions but also informs downstream
decision-making processes by flagging areas of low certainty.
The implementation of confidence metrics should improve
the usability of the predictors for two primary applications:

• Hardware Platform Selection: Since the modeling
process does not work with the same accuracy for each
hardware platform, providing a confidence level helps in
selecting the most appropriate hardware platform.

• Network Architecture Comparison:When comparing
DNNs with different layer types and configurations, it is
important to understand which layers are outside the
distribution of the training datasets and therefore not
correctly predicted by the estimator.

Based on these two major use-cases, the confidence metrics
should demonstrate several key properties at both the layer
and accelerator levels. The confidence metric should:

1) Take into account the method of data acquisition,
providing insights into the reliability of the data,
especially in cases where the black-box measurement
method from Section III-B is deployed.

2) Enable comparison of confidence in estimation at the
levels of per-layer compute efficiency and per-layer
latency.

3) Assess the coverage of the benchmark dataset and
identify configurations of layers that are outside of the
benchmarked design space.

To implement such confidence metrics, we rely on the
conformal prediction framework which offers various options
to generate statistically valid prediction regions for any under-
lying point predictor [25], [26]. As a result, we implement
three confidence metrics that enable the comparison of DNNs
prediction results and the underlying prediction models,
on layer and network level:

• Confidence Metric Throughput Variance (CMTV)
• Confidence Metric Latency Variance (CMLV)
• Confidence Metric Outliers (CMO)

For these confidence metrics, the concepts of quality estima-
tion for conformal prediction are used to estimate different
systematic uncertainties in the latency prediction models.

FIGURE 8. Overview of the confidence prediction methodology.

Additional confidence metrics could be easily integrated by
following the same principles. In this work, the primary
emphasis is on the prediction confidence of layer time
predictors. Although the prediction of model optimizations
performed by the optimization toolchain is also crucial in
accurately estimating total network execution times, it is
not the central focus of this study. The motivation behind
this decision is that the correct prediction of fusion rules
represents a simpler challenge than the per-layer latency
prediction, due to the limited amount of possible and
useful combinations of layers, in comparison to the myriad
configurations of each layer type. Nevertheless, the presented
concepts have the potential to be applied to the model
optimization predictors in future work. Furthermore, the
following methodology requires that all occurring layer
types within the investigated networks are benchmarked and
modeled with the statistical method of ANNETTE.

1) INFERENCE
Figure 8 depicts an overview of the confidence estimation
extension for ANNETTE. The network topology is described
by a set of N layers where each layer is described by a feature

109854 VOLUME 12, 2024

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

vector x⃗ which is composed of the configuration parameters
describing the layer. Furthermore, x⃗ also includes additional
high-level features such as the number of parameters, number
of input features, etc.:

L = {l1, l2, l3 . . . lN} where li = x⃗i (6)

Based on the measured times for each layer type an individual
random forest regressor is trained. For this work, the target
value is the time per operation top instead of the number
of operations per second. This adaption is required to avoid
potential zero division for broad confidence intervals since
the final computation time of a layer tcomp is now computed
with tcomp = top · numops. Based on the predictions of the
regressors the expected value for the computation time of
the entire network is computed as the sum of the predicted
computation times of all layers:

t̂net =

N∑
i

numops,i · t̂op,i (7)

Consequently, from a probabilistic perspective if PCM(t̂i)
with i ∈ {1, 2, . . . ,N} are the probability distributions for
all layers of the network computed by the three different
conformal interval predictors, the probability distribution for
the total computation time for each interval predictor is
computed by the convolution of the probability distributions.
With ∗ as the notation of the convolution operator this results
in the Equation:

PCM(t̂net) = PCM(t̂1) ∗ PCM(t̂2) ∗ . . . ∗ PCM(t̂N) (8)

To ensure that PCM(t̂net) is computed correctly in all cases,
we apply bootstrapping. This helps overcome limitations in
the case that only a few data points are used in the calibration
step for the uncertainty quantification.

2) TRAINING
For the training of the conformal regressors this work relies
on the techniques implemented in CREPES [38] a Python
package for generating conformal regressors and predictive
systems. To ensure the robustness of our latency prediction
models, the predictors are specifically trained on the median
of the measured times, focusing on the quantification of
the predictor’s uncertainty rather than variations in latency
for the same network. For each trained regressor CREPES
provides a multitude of methods for the generation of
confidence intervals. Firstly, to avoid splitting the training
data into calibration and proper training dataset, we apply out-
of-bag calibration. In contrast to standard non-normalized
conformal regressors, which predict constant confidence
intervals for all instances, normalized conformal regressors
produce instance-specific confidence intervals based on
difficulty estimates.

As mentioned in Section II there are several ways to
perform the difficulty estimate. For CMTV and CMLV,
variance-based difficulty estimation is applied. For CMO,
k-nearest neighbors (k-NN)-based difficulty estimation is

used. Additionally, while the difficulty estimation in CMLV
is calibrated based on the absolute prediction error of the
layer latency, for CMTV it is calibrated based on the absolute
prediction error of the layer efficiency (s/operation). The
difficulty estimation for CMO is solely based on the feature
vectors x⃗ of the calibration data.
The effects of applying the three different normalization

methods are depicted in Figure 9, which shows the 95%
confidence intervals around the predicted value for the mea-
surements performed on the Jetson Xavier from Section III-B
Figure 7.
The confidence interval for CMTV is depicted in Figure 9a.

Since the confidence interval estimation is calibrated via
the absolute error of the time per operation, the resulting
confidence intervals increase with the number of operations.
Hence, this CMTV is more useful when comparing the
prediction quality of the compute efficiency rather than the
overall layer execution time.

To address this limitation, we introduce CMLV. For this
measure, the confidence intervals are computed based on
the residuals of the computed layer execution time (see
Figure 9b). It is worth noting that the confidence intervals
for this measure closely align with the error interval extracted
earlier, as shown in Figure 7. As a result, this CMLV is most
useful for comparing the confidence intervals of the overall
layer execution times.

For CMO (Fig. 9c), it can be observed that the width
of the confidence intervals increase towards the boundary
values of cout within the example dataset. This is because
the distance to the k-Nearest Neighbor data points increases
for predictions in those regions. This indicates a sparse local
coverage by the benchmark data, which may compromise
the prediction accuracy. Thus, CMO serves as a tool to
pinpoint predictions for layers with feature vectors that are
not well covered by the training dataset. For feature vectors
far beyond the dataset’s scope, the resulting confidence
intervals might extend to negative values. However, as it
is unrealistic for a layer to be computed in negative time,
such wide confidence intervals should rather be viewed as
indicators of underrepresented areas in the dataset than as
precise latency ranges.

IV. RESULTS
For the evaluation of themethodology presented in Section III
we conduct a series of experiments. First, we compare the
smart padding (see Section III-B) benchmarking method with
padded models to simple single-layer benchmarking in terms
of overall prediction quality. Secondly, to evaluate the confi-
dence prediction method, we perform a series of experiments
to determine if the desired properties listed in Section III-C
are met. The experiments include the results for three
different hardware platforms: the NVIDIA Jetson Xavier
AGX, NXP i.MX 93, and NXP i.MX8M+ development board
(i.MX8M+). The Jetson Xavier was operated at maximum
power setting with TensorRT as the inference runtime,
using integer 8-bit precision and offering 22 TOPs, not

VOLUME 12, 2024 109855

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

FIGURE 9. Overview of predicted Confidence Intervals for 2D convolution layer with cin = 64, cout ∈ [1, 256], h = 64, w = 64 on the Jetson Xavier:
(a) Confidence s/Operations Normalized, (b) Confidence Normalized with respect to time, (c) Confidence with k-NN difficulty estimation.

TABLE 3. Percentage prediction errors for the ANNETTE models for the
i.MX93 in comparison to the Vela compiler estimates.

considering the Deep Learning Accelerator (DLA) cores. The
i.MX93 utilized TensorFlow Lite with 8-bit quantization and
the TensorFlow Lite inference runtime delegate, providing
up to 1 TOPS using the ARM Ethos U65 microNPU.
The i.MX8M+ employed the VeriSilicon VIP9000 NPU,
delivering up to 2.3 TOPS also using the TensorFlow Lite
inference runtime.

A. BLACK-BOX BENCHMARKING
The goal of the following experiments is to compare the
quality of the collected smart padding benchmark data with
the single-layer benchmark data and assess how well they
serve as ground-truth data for prediction models. For the
presented results, we generate ANNETTE prediction models
using both the single-layer and smart paddingmethods. These
generated prediction models are then compared in terms of
total network latency against the measured network latencies.
Additionally, we compare the results to the predictions
provided by the ARMVela compiler 3 for the Ethos U65NPU
on the i.MX93.

3https://pypi.org/project/ethos-u-vela

TABLE 4. Percentage prediction errors for the ANNETTE models for the
Jetson Xavier in comparison to the ANNETTE model based on the
per-layer profiling.

TABLE 5. Percentage prediction errors for the ANNETTE models for the
i.MX8M+.

Table 3 shows the prediction accuracy for a set of state-
of-the-art DNNs for the i.MX93. In the case of the i.MX93,
the smart padding-based ANNETTE prediction demon-
strates superior performance compared to the single-layer
ANNETTE prediction and the Vela estimates, achieving
higher prediction accuracy across all networks. The average
prediction errors for the smart padding-based ANNETTE

109856 VOLUME 12, 2024

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

prediction, single layer-based ANNETTE prediction, and
Vela estimates are 5.7%, 298.8%, and 57.8% respectively.
Further in-depth analysis revealed that benchmarking individ-
ual layers on the i.MX93 results in additional time overhead
due to an extra quantization step. This leads to a more
substantial improvement than expected, thanks to the smart
padding method. Likewise, for the smart padding-based
and single layer-based ANNETTE prediction, the average
percentage errors are 6.9% and 64.6% for the Jetson Xavier,
and 9.2% and 89.6% for the i.MX8M+. The detailed results
for the Jetson Xavier and i.MX8M+ are shown in Tables 4
and 5, respectively.

Notably, only in 3 instances, the smart padding-based
ANNETTE estimation errors are larger than 10%. These
errors can be explained by the limited dataset used for this
work, which does not cover a stride different than 1 and
asymmetric convolution kernels. These limitations result in
not optimal prediction results for InceptionV4, MobilenetV1,
and YOLOv8n but also allow us to evaluate the confidence
metrics.

To compare the accuracy of the smart padding strategy
with per-layer profiling, we utilized the built-in per-layer
profiling from the Nvidia benchmarking script for the
Jetson Xavier. The Pearson correlation coefficient between
the Nvidia per-layer profiling and the computed mean
value of TLUM was found to be 0.975. The ANNETTE
predictions based on per-layer profiling data for the Jetson
Xavier showed similar accuracy to those from the smart
padding-based ANNETTE models. Therefore, we conclude
that smart padding benchmarking provides profiling accuracy
comparable to per-layer benchmarking, while significantly
reducing implementation efforts. The overhead associated
with the smart padding benchmarking strategy is limited to
measuring 854 padding-only models.

B. CONFIDENCE METRICS
For the evaluation of the confidence metrics, we display the
results on model, network, and layer levels. Firstly, since
CMTV is throughput calibrated, it mostly serves to compare
the normalized per-layer confidence interval size for different
models. This can, for example, be used to compare the overall
confidence of the previously computed models.

1) MODEL-LEVEL COMPARISON
Figure 10 displays the average normalized 90% confidence
interval size for the generated models for all tested networks.
To evaluate the influence of the smart padding method on the
generated latency predictionmodels, we also generatemodels
based on the mean value without including the previously
computed intervals (see Section III-B).
As outlined in Section III-B, the CMTV, which is used

for this comparison, is calibrated with regard to the layer
throughput. As a result, this metric provides a measure
for comparing the confidence for the compute efficiency
predictions across the tested hardware platforms and all
tested layers. As expected, including the smart padding

FIGURE 10. Average normalized 90% confidence intervals for CMTV on
the all tested networks.

FIGURE 11. CMLV for the tested networks.

intervals in the calibration of the confidence metrics leads
to larger confidence intervals. Notably, the increase of
the confidence interval widths differs for the different
hardware platforms. We conclude that CMTV can be used
to determine which hardware platforms would profit the
most from implementing per-layer profiling and for which
hardware platforms, the smart padding method is sufficient.
Furthermore, CMTV can guide engineers in situations where
a platform may show consistently high throughput variance
across different network layers. By using CMTV, engineers
can prioritize hardware that demonstrates lower throughput
variance, suggesting more stable performance across diverse
workloads.

2) NETWORK-LEVEL COMPARISON
For the network-level comparison, the 90% confidence
intervals of CMLV and CMO are displayed for all networks in
Figure 11 and 12 respectively. As mentioned in Section IV-A,
these confidence metrics provide a deeper understanding
of the predictions performed for each individual network.
It is noticeable that the confidence intervals for MobilenetV1
and InceptionV4 are particularly large, which aligns with
the occurrence of inaccurate predictions in certain cases.
A large confidence interval for CMLV indicates sub-optimal

VOLUME 12, 2024 109857

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

FIGURE 12. CMO for the tested networks.

prediction accuracy due to high variances in the dataset
within the prediction region. To address this, engineers can
use CMLV as an indicator to refine the training datasets
by incorporating more diverse network configurations that
mirror the operational settings. This can help in reducing
the confidence intervals and thus improving the accuracy of
latency predictions Conversely, a large confidence interval
for CMO suggests inadequate coverage of one or more
layers in the collected dataset, potentially leading to inac-
curate prediction results. In this case, we can go one
step further and analyze the prediction results on a layer
level.

3) LAYER-LEVEL COMPARISON
CMLV and CMO provide insights into the root causes of
potentially inaccurate prediction on a layer level. Figure 13
displays the confidence interval widths for the latency
predictions of YOLOv8n on the Jetson Xavier. The layers
with large confidence interval widths almost exclusively have
a stride of 2 which is not covered well in the example
benchmark dataset. This can be detected by the large
confidence interval widths of the CMO for those specific
layers.

On the other hand, the CMLV interval widths for hint
layers 1 and 4 at prediction regions with high variance of
measured latencies. However, comparedwith the per-network
CMLV and CMO, we see that the prediction confidence for
InceptionV4 for the Jetson Xavier could be improved by
extending the dataset so that the required layer configurations
are well covered.

For example, in a hardware-aware NAS process, the CMO
can prevent the NAS from settling on a seemingly optimal
architecture that performs poorly in untested conditions.
Meanwhile, CMTV and CMLV ensure the chosen architecture
consistently meets performance expectations across a range
of architecture variations, thereby avoiding costly misestima-
tions of network efficiency

FIGURE 13. YOLOv8n per-layer confidence interval widths of CMLV and
CMO for predictions for the Jetson Xavier.

V. CONCLUSION
This study introduces a novel approach for benchmarking
DNN accelerators that eliminates the need for per-layer pro-
filing for existing latency estimation frameworks. As a result,
the setup for benchmarking new hardware is simplified,
and the potential profiling overhead can be eliminated. The
experiments underscore the method’s effectiveness across
three distinct hardware platforms (Jetson Xavier, i.MX8M+
and i.MX93), improving the latency prediction accuracy by
a large margin in comparison to single-layer benchmarking
and outperforming the latency prediction of the ARM Vela
compiler. Furthermore, this study integrates three confidence
metrics to improve the usability and interpretability of latency
prediction frameworks.

From the perspective of developers, the introduction of
smart padding not only decreases the implementation effort
when benchmarking new hardware platforms but also allows
benchmarking without profiling overhead. Furthermore, the
adoption of our confidence framework has already yielded
significant insights into the prediction models for certain
hardware platforms. With the guidance of the confidence
metrics, we were able to precisely identify and correct
inaccuracies in layer-specific predictions.

For end-users, the introduced confidence metrics offer a
more informed basis for selecting hardware and network
models for DNN deployment.

109858 VOLUME 12, 2024

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

Future research could further refine the smart padding
method by exploring its application across diverse network
layers and other domains like time series and 3D model-
ing. Expanding the use of conformal prediction methods
to include GNN based latency prediction methods and
developing automated benchmark point selection based on
confidence levels are also promising directions.

REFERENCES
[1] H. Cai, L. Zhu, and S. Han, ‘‘ProxylessNAS: Direct neural architecture

search on target task and hardware,’’ in Proc. ICLR, 2019.
[2] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,

and Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture search for
mobile,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 2815–2823.

[3] A. Anderson, J. Su, R. Dahyot, and D. Gregg, ‘‘Performance-oriented
neural architecture search,’’ in Proc. Int. Conf. High Perform. Comput.
Simul. (HPCS), Jul. 2019, pp. 177–184.

[4] M. Lechner and A. Jantsch, ‘‘Blackthorn: Latency estimation framework
for CNNs on embedded NVIDIA platforms,’’ IEEE Access, vol. 9,
pp. 110074–110084, 2021.

[5] M. Wess, M. Ivanov, C. Unger, A. Nookala, A. Wendt, and A. Jantsch,
‘‘ANNETTE: Accurate neural network execution time estimation with
stacked models,’’ IEEE Access, vol. 9, pp. 3545–3556, 2021.

[6] Z. Wang, P. Yang, L. Hu, B. Zhang, C. Lin, W. Lv, and Q. Wang, ‘‘SLAPP:
Subgraph-level attention-based performance prediction for deep learning
models,’’ Neural Netw., vol. 170, pp. 285–297, Feb. 2024.

[7] Y. Chai, D. Tripathy, C. Zhou, D. Gope, I. Fedorov, R. Matas,
D. Brooks, G.-Y. Wei, and P. Whatmough, ‘‘PerfSAGE: Generalized
inference performance predictor for arbitrary deep learningmodels on edge
devices,’’ 2023, arXiv:2301.10999.

[8] L. L. Zhang, S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang, and Y. Liu,
‘‘Nn-meter: Towards accurate latency prediction of deep-learning model
inference on diverse edge devices,’’ in Proc. 19th Annu. Int. Conf.
Mobile Syst., Appl., Services, Jun. 2021, pp. 81–93.

[9] M. Sabih, A. Mishra, F. Hannig, and J. Teich, ‘‘MOSP: Multi-objective
sensitivity pruning of deep neural networks,’’ inProc. IEEE 13th Int. Green
Sustain. Comput. Conf. (IGSC), Oct. 2022, pp. 1–8.

[10] Z. Chen, C. Liu, W. Yang, K. Li, and K. Li, ‘‘LAP: Latency-aware
automated pruning with dynamic-based filter selection,’’ Neural Netw.,
vol. 152, pp. 407–418, Aug. 2022.

[11] Y. Xu, T. Mohammed, M. Di Francesco, and C. Fischione, ‘‘Distributed
assignment with load balancing for DNN inference at the edge,’’ IEEE
Internet Things J., vol. 10, no. 2, pp. 1053–1065, Jan. 2023.

[12] Y. Duan and J. Wu, ‘‘Optimizing job offloading schedule for collabo-
rative DNN inference,’’ IEEE Trans. Mobile Comput., vol. 23, no. 4,
pp. 3436–3451, Apr. 2023.

[13] Y. Gao, X. Gu, H. Zhang, H. Lin, and M. Yang, ‘‘Runtime performance
prediction for deep learning models with graph neural network,’’ in Proc.
IEEE/ACM 45th Int. Conf. Softw. Eng., Softw. Eng. Pract. (ICSE-SEIP),
May 2023, pp. 368–380.

[14] L. Dudziak, T. Chau, M. S. Abdelfattah, R. Lee, H. Kim, and
N. D. Lane, ‘‘BRP-NAS: Prediction-based NAS using GCNs,’’ 2020,
arXiv:2007.08668.

[15] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, ‘‘Once-for-all: Train one
network and specialize it for efficient deployment,’’ in Proc. ICLR, 2020.

[16] H. Lee, S. Lee, S. Chong, and S. J. Hwang, ‘‘HELP: Hardware-
adaptive efficient latency prediction for NAS via meta-learning,’’ 2021,
arXiv:2106.08630.

[17] K. Lübeck, A. L. Jung, F. Wedlich, and O. Bringmann, ‘‘Work-in-progress:
Ultra-fast yet accurate performance prediction for deep neural network
accelerators,’’ in Proc. Int. Conf. Compil., Archit., Synth. Embedded Syst.
(CASES), Oct. 2022, pp. 27–28.

[18] L. Mei, H. Liu, T. Wu, H. E. Sumbul, M. Verhelst, and E. Beigne, ‘‘A
uniform latency model for DNN accelerators with diverse architectures
and dataflows,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2022, pp. 220–225.

[19] J. Li, R. Ma, V. S. Mailthody, C. Samplawski, B. Marlin, S. Chen, S. Yao,
and T. Abdelzaher, ‘‘Towards an accurate latency model for convolutional
neural network layers on GPUs,’’ in Proc. IEEE Mil. Commun. Conf.
(MILCOM), Nov. 2021, pp. 904–909.

[20] S. Nair, S. Abbasi, A. Wong, andM. J. Shafiee, ‘‘MAPLE-edge: A runtime
latency predictor for edge devices,’’ 2022, arXiv:2204.12950.

[21] S. Abbasi, A. Wong, and M. J. Shafiee, ‘‘MAPLE-X: Latency prediction
with explicit microprocessor prior knowledge,’’ 2022, arXiv:2205.12660.

[22] Y. Li, J. Ma, D. Cao, and H. Mei, ‘‘Sectum: Accurate latency prediction
for TEE-hosted deep learning inference,’’ in Proc. IEEE 42nd Int. Conf.
Distrib. Comput. Syst. (ICDCS), Jul. 2022, pp. 906–916.

[23] K. G. Mills, F. X. Han, J. Zhang, F. Chudak, A. S. Mamaghani,
M. Salameh, W. Lu, S. Jui, and D. Niu, ‘‘GENNAPE: Towards generalized
neural architecture performance estimators,’’ in Proc. AAAI, 1609,
pp. 9190–9199.

[24] K. P. Selvam and M. Brorsson, ‘‘DIPPM: A deep learning inference
performance predictive model using graph neural networks,’’ in Proc.
Euro-Par. Cham, Switzerland: Springer, 2023, pp. 3–16.

[25] A. Gammerman, V. Vovk, and V. Vapnik, ‘‘Learning by transduction,’’ in
Proc. UAI, G. F. Cooper and S. Moral, Eds. San Mateo, CA, USA: Morgan
Kaufmann, 1998, pp. 148–155.

[26] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a
Random World, vol. 29. New York, NY, USA: Springer, 2005.

[27] N. Meinshausen, ‘‘Quantile regression forests,’’ J. Mach. Learn. Res.,
vol. 7, pp. 983–999, Nov. 2006.

[28] T. Gneiting, ‘‘Quantiles as optimal point forecasts,’’ Int. J. Forecasting,
vol. 27, no. 2, pp. 197–207, Apr. 2011.

[29] L. Hespanhol, C. S. Vallio, L. M. Costa, and B. T. Saragiotto,
‘‘Understanding and interpreting confidence and credible intervals around
effect estimates,’’ Brazilian J. Phys. Therapy, vol. 23, no. 4, pp. 290–301,
Jul. 2019.

[30] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[31] U. Johansson, H. Boström, T. Löfström, and H. Linusson, ‘‘Regression
conformal prediction with random forests,’’ Mach. Learn., vol. 97,
nos. 1–2, pp. 155–176, Oct. 2014.

[32] H. Boström, H. Linusson, T. Löfström, and U. Johansson, ‘‘Accelerating
difficulty estimation for conformal regression forests,’’ Ann. Math. Artif.
Intell., vol. 81, nos. 1–2, pp. 125–144, Mar. 2017.

[33] C. Lu, A. Lemay, K. Chang, K. Höbel, and J. Kalpathy-Cramer, ‘‘Fair
conformal predictors for applications in medical imaging,’’ in Proc. AAAI,
2022, pp. 12008–12016.

[34] C. Eliades and H. Papadopoulos, ‘‘Conformal prediction for automatic
face recognition,’’ in Proc. COPA, in Proceedings of Machine Learning
Research, vol. 60, A. Gammerman, V. Vovk, Z. Luo, and H. Papadopoulos,
Eds., 2017, pp. 62–81.

[35] W. Wisniewski, D. Lindsay, and S. Lindsay, ‘‘Application of conformal
prediction interval estimations to market makers’ net positions,’’ in
Proc. COPA, in Proceedings of Machine Learning Research, vol. 128,
A. Gammerman, V. Vovk, Z. Luo, E. N. Smirnov, G. Cherubin, and
M. Christini, Eds., 2020, pp. 285–301.

[36] ARM. ARM Ethos NPU Technical Reference Manual. Accessed:
Mar. 1, 2024. [Online]. Available: https://developer.arm.com/documenta
tion/102420/0200/Functional-description/Functional-blocks-

[37] S. H. Zargarbashi, S. Antonelli, and A. Bojchevski, ‘‘Conformal prediction
sets for graph neural networks,’’ in Proc. ICML, in Proceedings of
Machine Learning Research, vol. 202, A. Krause, E. Brunskill, K. Cho,
B. Engelhardt, S. Sabato, and J. Scarlett, Eds., 2023, pp. 12292–12318.

[38] H. Boström, ‘‘crepes: A Python package for generating conformal
regressors and predictive systems,’’ in Proc. COPA, in Proceedings
of Machine Learning Research, vol. 179, U. Johansson, H. Boström,
K. A. Nguyen, Z. Luo, and L. Carlsson, Eds., 2022, pp. 24–41.

MATTHIAS WESS received the B.Sc. and M.Sc.
degrees from the Department of Electrical Engi-
neering, TU Wien, Vienna, Austria, in 2013 and
2017, respectively, where he is currently pursuing
the Ph.D. degree with the Institute for Computer
Technology. As amember of the Christian Doppler
Laboratory for Embedded Machine Learning, his
research is primarily focused on the latency esti-
mation of deep neural networks and enhancing the
energy efficiency of machine learning algorithms.

VOLUME 12, 2024 109859

M. Wess et al.: Conformal Prediction Based Confidence for Latency Estimation of DNN Accelerators

DANIEL SCHNÖLL (Graduate Student Member,
IEEE) received the M.Sc. degree in embedded
systems from TU Wien, Vienna, Austria, in 2021.
He is currently pursuing the Ph.D. degree with
the Institute for Computer Technology, Chris-
tian Doppler Laboratory for Embedded Machine
Learning, TU Wien. He is a part of the Chris-
tian Doppler Laboratory for Embedded Machine
Learning, TU Wien. His current research interests
include TinyML and optimization of deep neural

networks for embedded inference.

DOMINIK DALLINGER (Graduate Student
Member, IEEE) received the Bachelor of Science
degree in electrical engineering from TU Wien,
Vienna, Austria, in 2021, where he is currently
pursuing the master’s degree in embedded sys-
tems, with a broad focus onmechatronics, machine
vision, computer systems, and electronics design.
He is also engaged with the Christian Doppler
Laboratory for Embedded Machine Learning,
focusing his research on TinyML.

MATTHIAS BITTNER received the M.Sc. degree
in automation and control from TUWien, Vienna,
Austria, in 2021, and the M.Sc. degree in artificial
intelligence from Johannes Kepler University,
Linz, Austria, in 2024. He is currently pursuing
the Ph.D. degree with the Institute for Computer
Technology, Christian Doppler Laboratory for
Embedded Machine Learning, TU Wien. He is
affiliated with the Christian Doppler Laboratory
for Embedded Machine Learning, TU Wien. His

research interests include energy-efficient machine learning for time-series
applications and leveraging artificial intelligence for sustainability.

AXEL JANTSCH (Fellow, IEEE) received the
Dipl.-Ing. and Ph.D. degrees in computer science
from TU Wien, Vienna, Austria, in 1987 and
1992, respectively. From 1997 to 2002, he was an
Associate Professor with the KTH Royal Institute
of Technology, Stockholm. From 2002 to 2014,
he was a Full Professor of electronic systems
design with KTH. Since 2014, he has been a
Professor of systems on chips with the Institute
of Computer Technology, TU Wien. He has

published five books as an editor and one as an author and over 300 peer-
reviewed contributions in journals, books, and conference proceedings.
His current research interests include systems on chips, self-aware cyber-
physical systems, and embedded machine learning. He has given over
100 invited presentations at conferences, universities, and companies.

109860 VOLUME 12, 2024

