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A B S T R A C T

Light scalar fields play a variety of roles in modern physics, especially in cosmology and modified theories of
gravity. For this reason, there is a zoo of experiments actively trying to find evidence for many scalar field
models that have been proposed in theoretical considerations. Among those are setups in which the pressures
expected to be induced by light scalar fields between two parallel plates are studied, for example, Casimir
force experiments. While it is known that classical and quantum pressures caused by light scalar fields could
have significant impacts on such experiments, in this article, we show that this can also be the case for thermal
pressure. More specifically, we derive expressions for the quantum and thermal pressures induced by exchanges
of light scalar field fluctuations between two thin parallel plates. As particular examples, we then look at
screened scalar fields. For chameleon, symmetron and environment-dependent dilaton models, we find large
regions in their parameter spaces that allow for thermal pressures to equal or exceed the quantum pressures.
By comparing with earlier constraints from quantum pressure calculations, we conclude that thermal pressures
induced by chameleons are actually of experimental significance.
. Introduction

Light scalar fields appear in many contexts in modern cosmology
r modifications of general relativity, for example, in scalar-tensor
heories of gravity [1]. They often serve as the basis for proposed
olutions of some of modern physics’ greatest open problems, including
ark energy (DE) and dark matter (DM) [2,3]. Many of such theories
ive rise to a universal coupling between the scalar degree of freedom
nd Standard Model matter, leading to an additional force of Nature.
uch a fifth force, however, is tightly constrained within our Solar
ystem [4–6].

Screening mechanisms were devised to provide a way of circum-
enting these constraints while also offering a rich phenomenology.
hey strongly suppress (screen) scalar fifth forces in environments of
ufficiently high mass densities, e.g., our Solar System, but enable them
o develop their full strengths in regions of lower densities. There are
 variety of different light scalar field models with screening mecha-
isms, so-called screened scalar fields, some of which are even being
iscussed as presenting an alternative to particle DM through their fifth
orces [7–10]. Some of the most popular screened scalar field mod-
ls are chameleons [11,12], symmetrons [13–20], and environment-
ependent dilatons [15,18,21–25]. They are the examples used in the
resent article, and have already been tested and discussed in multiple
xperimental setups; see, e.g., Refs. [26–61]. For an overview of current
onstraints on the parameter spaces of these models, see Refs. [62,63].
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E-mail addresses: hauke.fischer@tuwien.ac.at (H. Fischer), christian.kaeding@tuwien.ac.at (C. Käding), mario.pitschmann@tuwien.ac.at (M. Pitschmann).

While screened scalar fields are usually treated as classical fields, there
have already been first attempts to describe them in quantum field
theoretical frameworks [64–67] and from the perspective of particle
physics [68]. The present article will add to this.

Casimir force experiments like the upcoming Casimir And Non New-
tonian force EXperiment (Cannex) [58,69] are expected to further con-
strain the parameter spaces of light scalar field models [54,70–73].
This makes this type of experiments an interesting subject for theo-
retical analyses and motivates the investigation in the present article.
Ref. [64] initiated the discussion of quantum pressure induced between
two parallel plates, as can be found in Cannex, by interactions with
quantum fluctuations of screened scalar fields. For this, the plates
were approximated by having infinite widths and infinite thicknesses.
Using this approximation, Ref. [64] showed that the quantum pressures
of chameleons and symmetrons can actually be quite significant and
lead to tighter constraints on these models’ parameter spaces. In the
present article, we consider two equal, infinitely wide, but very thin
plates and also study the quantum pressures induced by light scalar
fields, while considering chameleons, symmetrons, and environment-
dependent dilatons as representative examples. In order to obtain ana-
lytically tractable results, we restrict our analysis to parameter regimes
in which these screened scalar fields have Compton wavelengths much
larger than the thickness of one plate. This means that throughout our
investigation, we can safely assume the scalar fields to have constant
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masses defined by the density of the vacuum surrounding the plates.
Consequently, the general parts of our results are applicable to any type
f scalar field model that exhibits a constant mass in the considered

situation. Motivated by the results of Refs. [65–67], which indicated
that finite-temperature effects of light scalar fields could be relevant
for experiments, we also compute expressions for the pressures induced
by thermal scalar fluctuations. Comparing the results for quantum and
thermal pressures, we find that both can be of comparable magnitudes
in some situations. Due to the proven significance of quantum pressures
according to Ref. [64], we consequently conclude that thermal pres-
sures are likely also relevant for screened scalar field models in some
xperimental setups and must therefore be taken into account.

This article is structured as follows: At first, in Section 2, we
shortly introduce the three considered screened scalar field models and
discuss their couplings to fermions. Next, in Section 3, we compute the
quantum and thermal potentials, and derive and discuss the resulting
ressures between two parallel plates. Finally, we draw our conclusions
n Section 4.

2. Scalar field models

While it should be noted that some of the main results in this article
are applicable to more general types of light scalar fields, we will use
hree popular types of screened scalar fields models as examples for
ur discussion. In this way, we are able to make comparisons with
he results of Ref. [64]. Therefore, in this section, we first give a short

overview of the considered screened scalar field models and provide all
necessary formulas. Afterwards, we discuss the couplings of the scalar
fields to fermions since they are required for the computations done in
this article.

2.1. Models

As examples, we consider three screened scalar field models:
hameleons, symmetrons, and environment-dependent dilatons. Each
f them can be generally described by the Einstein frame action

𝑆 =∫ 𝑑4𝑥
√

−𝑔

(

−
𝑚2

Pl
2
𝑅 + 1

2
(𝜕 𝜑)2 − 𝑉𝑋 (𝜑)

)

+ ∫ 𝑑4𝑥
√

−�̃�𝑋 SM(�̃�𝑋𝜇 𝜈 , 𝜓𝑖) ,
(1)

in which 𝑚Pl is the reduced Planck mass; 𝜑 represents the scalar field;
𝑋 ∈ {𝐶 , 𝑆 , 𝐷} labels the scalar field model, i.e., chameleon (𝐶),
symmetron (𝑆), or dilaton (𝐷); 𝑉𝑋 (𝜑) is the scalar’s potential; and

SM denotes a Lagrangian describing the Standard Model fields 𝜓𝑖. For
otational convenience, in Eq. (1), we kept the Jordan frame metric

defined in terms of the conformal factor 𝐴𝑋 (𝜑) as �̃�𝑋𝜇 𝜈 = 𝐴2
𝑋 (𝜑)𝑔𝜇 𝜈 . Due

to the conformal factor, the scalar 𝜑 couples to the field 𝜓𝑖. In turn,
this leads to an effective potential for the scalar:

𝑉𝑋;eff(𝜑) ∶= 𝑉𝑋 (𝜑) + 𝐴𝑋 (𝜑)𝑇 𝜇𝜇 (2)

with 𝑇 𝜇𝜇 as the trace of the energy momentum tensor of 𝜓𝑖.
For chameleons, we have

𝑉𝐶 = 𝛬𝑛+4

𝜑𝑛
, 𝐴𝐶 (𝜑) = exp

(

𝜑
𝑀𝐶

)

≈ 1 + 𝜑
𝑀𝐶

+
𝜑2

2𝑀2
𝐶

, (3)

where 𝑛 ∈ Z+ ∪ 2Z− ⧵ {−2} defines the exact chameleon model; 𝛬 is a
ass scale determining the chameleon’s self-interaction, except for the

case 𝑛 = −4, in which case it must actually be a dimensionless constant;
and 𝑀𝐶 is another mass scale, which controls the chameleon coupling
to matter. Here, we have assumed 𝜑 ≪ 𝑀𝐶 and kept the second order
term in order to allow for comparisons with symmetron and dilaton
models. If we only consider the conformal factor up to the first order
in 𝜑∕𝑀𝐶 , the effective potential defined by Eqs. (2) and (3) gives rise
o an effective chameleon mass

𝑚2
𝐶 =

𝑛(𝑛 + 1)𝛬𝑛+4
𝑛+2

(4)

𝜑𝐶

s

2 
with the chameleon vacuum expectation value (VEV) given by

𝜑𝐶 =

(

𝑛𝛬𝑛+4
𝑀𝐶

𝑇 𝜇𝜇

)1∕(𝑛+1)

. (5)

While we have kept the second order term of the conformal factor in
q. (3) in order to enable us to discuss the exchange of two chameleon

field fluctuations, the second order corrections to Eqs. (4) and (5) are
not relevant in the following discussions. Clearly, for any permitted
value of 𝑛, a larger 𝑇 𝜇𝜇 implies a larger 𝑚𝐶 in Eq. (4). Considering
the example of non-relativistic matter, this means that a quantum of a
chameleon field is the heavier the denser its surrounding environment
it couples to. A heavier chameleon induces a shorter-ranged fifth force.
This is the essence of the chameleon screening mechanism [11,12].

The symmetron model is defined by

𝑉𝑆 = −𝜇
2

2
𝜑2 +

𝜆𝑆
4
𝜑4 , 𝐴𝑆 (𝜑) = 1 + 𝜑2

2𝑀2
𝑆

(6)

with the tachyonic mass 𝜇, the dimensionless self-coupling parame-
er 𝜆𝑆 , and the mass scale 𝑀𝑆 defining the symmetron’s coupling
o matter. It is screened by the Damour–Polyakov mechanism [15],

which means that the symmetron’s effective coupling to matter varies
ith the density of the environment. In the case 𝑇 𝜇𝜇 ≥ 𝜇2𝑀2

𝑆 , the
symmetron VEV must vanish, which results in a complete decoupling
from matter if quantum or thermal fluctuations of the symmetron are
small enough to be ignored. However, if 𝑇 𝜇𝜇 < 𝜇2𝑀2

𝑆 , the symmetron
has a non-vanishing VEV

𝜑𝑆 = ±
√

√

√

√

1
𝜆𝑆

(

𝜇2 −
𝑇 𝜇𝜇
𝑀2

𝑆

)

, (7)

which implies that the symmetron fifth force is unscreened. The sym-
metron mass is given by

𝑚2
𝑆 =

⎧

⎪

⎨

⎪

⎩

𝑇 𝜇𝜇
2 − 𝜇2 , 𝑇 𝜇𝜇 ≥ 𝜇2𝑀2

𝑆

2
(

𝜇2 −
𝑇 𝜇𝜇
2

)

, 𝑇 𝜇𝜇 < 𝜇2𝑀2
𝑆

. (8)

Note that the symmetron also has an environment-dependent mass and
is therefore, technically, a chameleon as well. However, the variation
of the effective mass usually has only little influence on the fifth force
screening of this model.

Finally, the environment-dependent dilaton has

𝑉𝐷 = 𝑉0 𝑒
−𝜆𝜑∕𝑚Pl , 𝐴𝐷(𝜑) = 1 + 𝐴2

𝜑2

2𝑚2
Pl
, (9)

where 𝑉0 is a constant energy density, 𝜆 denotes the dilaton’s di-
mensionless self-coupling constant, and 𝐴2 is a dimensionless constant
determining the coupling to matter. Resulting from this, the dilaton has
 VEV [25]

𝜑𝐷 =
𝑚Pl
𝜆
𝑊

(

𝜆2𝑉0
𝐴2𝑇

𝜇
𝜇

)

(10)

with the Lambert 𝑊 -function

𝑊 (𝑥) =
∞
∑

𝑛=1

(−𝑛)𝑛−1

𝑛!
𝑥𝑛 . (11)

Consequently, its mass is given by

𝑚2
𝐷 = 1

𝑚2
Pl

(

𝜆2𝑉0 𝑒
−𝜆𝜑𝐷∕𝑚Pl + 𝐴2𝑇

𝜇
𝜇

)

. (12)

As can be inferred from Eq. (10), the dilaton VEV is the smaller the
larger 𝑇 𝜇𝜇 . This means that, as long as any dilaton fluctuations are
negligible, the coupling between dilaton and matter is small in dense
environments. In turn, this leads to the dilaton fifth being rendered
weak in such environments. Initially, it was thought that the dilaton
was only screened by this realization of the Damour–Polyakov mecha-
nism. However, Ref. [54] showed that this is only partially true. In fact,
there are only certain parts of the dilaton’s parameter space in which
he Damour–Polyakov mechanism is the dominant reason for fifth force
creening. In other parameter regions, the dilaton fifth force is mainly
creened by the chameleon mechanism.
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2.2. Couplings to fermions

For the computations in this article, we will consider that the
screened scalar fields couple to the nucleons in the two parallel plates.
Consequently, we must describe the interactions between screened
calar fields and fermions.

From the effective actions of the considered models, we can con-
clude for the following interaction Lagrangians:

𝐶;int = −
(

𝜑
𝑀𝐶

+
𝜑2

2𝑀2
𝐶

)

𝑇 𝜇𝜇 , 𝑆;int = − 𝜑2

2𝑀2
𝑆

𝑇 𝜇𝜇 ,

𝐷;int = − 𝐴2
𝜑2

2𝑚2
Pl
𝑇 𝜇𝜇 .

(13)

We consider an interaction with a Dirac particle of mass 𝑚 with
stress–energy tensor

𝑇 𝜇𝜈 = �̄� i𝛾𝜇𝜕𝜈𝜓 − �̄� i∕𝜕 𝜓 𝛿𝜇𝜈 + 𝑚 ̄𝜓 𝜓 𝛿𝜇𝜈 . (14)

From this follows the trace

𝑇 𝜇𝜇 = −3�̄� i∕𝜕 𝜓 + 4 𝑚 ̄𝜓 𝜓
= 𝑚 ̄𝜓 𝜓 , (15)

where we have used the Dirac equation in the last step. After expanding
the fields in terms of their VEVs and fluctuations 𝜙, such that 𝜑 =
𝜑𝑋+𝜙, we find that the Lagrangians in Eq. (13) give rise to interactions
of fermions with one or two scalar fluctuations. This can be summarized
in terms of two general interaction Lagrangians:

(1)
𝑋;int = −𝑔(1)𝑋 𝜙 ̄𝜓 𝜓 , (2)

𝑋;int = −𝑔(2)𝑋 𝜙2�̄� 𝜓 . (16)

The dimensionless 𝑔(1)𝑋 are given by

𝑔(1)𝐶 ≈ 𝑚
𝑀𝐶

, 𝑔(1)𝑆 =
𝜑𝑆𝑚
𝑀2

𝑆

, 𝑔(1)𝐷 =
𝐴2𝜑𝐷𝑚
𝑚2

Pl
, (17)

while the 𝑔(2)𝑋 have dimensions of an inverse mass and are

𝑔(2)𝐶 = 𝑚
2𝑀2

𝐶

, 𝑔(2)𝑆 = 𝑚
2𝑀2

𝑆

, 𝑔(2)𝐷 =
𝐴2𝑚
2𝑚2

Pl
. (18)

In Eq. (17), we have dropped the second order term of 𝑔(1)𝐶 since it will
always be much smaller than the first order term. However, in order
to also allow for a two-scalar exchange, we have kept the second order
erm that defines 𝑔(2)𝐶 in Eq. (18).

3. Quantum and thermal pressures

In this section, we compute the quantum and thermal pressures
induced by light scalar fields between two infinitely wide, but very thin
lates. For this, we first derive the quantum and thermal potentials
rom the interaction Lagrangians in Eq. (16). From those we then

obtain the corresponding pressures. Finally, we compare quantum and
thermal pressures in order to identify conditions for which both are of
comparable magnitude. The obtained results are generally applicable
o any scalar field model that has, in the considered experimental
ituation, a constant mass and couples to fermions as in Eq. (16).

Note that, for our examples of screened scalar fields, we assume
a constant mass 𝑚𝑋 throughout this discussion. This mass is defined
only by the constant density of the vacuum or gas surrounding the
two parallel plates. Such an assumption is well-justified as long as
the Compton wavelength of a screened scalar field within one of the
plates is much larger than the plate’s thickness. In this case, the scalar
field will not be able to minimize its potential within the plate. Conse-
p

3 
quently, the density of the plate will only lead to small perturbations
of the scalar’s VEV and mass between the plates, which we can safely
gnore. Certainly, this restricts the validity of the following discussion
nly to regions of the model parameter spaces that can comply with
he requirements of our assumption.

3.1. Potentials

We have to consider the exchanges of one or two scalar fluctuations
between two nucleons, one within one plate and one within the other
late. At first, we look at the single-particle exchange. In order to

compute the quantum potential induced by light scalar fields from the
interaction Lagrangian (1)

𝑋 in Eq. (16), we follow Ref. [74]. Eq. (16)
implies the scattering amplitude

i(1)
𝑋;𝑄 =

(

i𝑔(1)𝑋
)2

�̄�(𝑝′2, 𝜎2)𝑢(𝑝2, 𝜎2)
i

𝑞2 − 𝑚2
𝑋

�̄�(𝑝′1, 𝜎1)𝑢(𝑝1, 𝜎1) , (19)

where the subscript 𝑄 indicates that we refer to the amplitude resulting
from the quantum fluctuations of the scalar fields. In the non-relativistic
limit, the amplitude takes the form

(1)
𝑋;𝑄 = −

(

i𝑔(1)𝑋
)2

2𝑚 1
𝒒2 + 𝑚2

𝑋

2𝑚 . (20)

A comparison with

(1)
𝑋;𝑄 = −(2 𝑚)2 𝑉 (1)

𝑋;𝑄(𝒒) , (21)

where 𝑉 (1)
𝑋;𝑄(𝒒) is the Fourier transformed of the quantum potential

𝑉 (1)
𝑋;𝑄(𝑟), yields immediately

𝑉 (1)
𝑋;𝑄(𝒒) = −

(

𝑔(1)𝑋
)2 1

𝒒2 + 𝑚2
𝑋

. (22)

With the inverse Fourier transform

𝑉 (1)
𝑋;𝑄(𝑟) = ∫

𝑑3𝑞
(2𝜋)3

𝑉 (1)
𝑋;𝑄(𝒒) 𝑒

i𝒒⋅𝒓 , (23)

we obtain the quantum potential for the single-scalar exchange:

𝑉 (1)
𝑋;𝑄(𝑟) = −

(

𝑔(1)𝑋
)2 1

4𝜋 𝑟 𝑒
−𝑚𝑋 𝑟 . (24)

Next, we say that the thin parallel plates and the nucleons within
them have a constant temperature 𝑇 . Further, we follow Refs. [65–
67] in assuming that the screened scalar field had sufficient time to
thermalize with the plates, such that we can expect thermal scalar
fluctuations associated with the temperature 𝑇 . In this case, we can add
a finite temperature contribution [75] to the propagator. However, as
is explained below, the thermal contribution at tree level vanishes for
kinematical reasons. In fact, the amplitude for the exchange of a single
thermal scalar fluctuation between two nucleons is given by

i(1)
𝑋;𝑇 =

(

i𝑔(1)𝑋
)2

�̄�(𝑝′2, 𝜎2)𝑢(𝑝2, 𝜎2) 2𝜋 𝛿(𝑞2−𝑚2
𝑋 )𝑛(𝑇 , 𝐸𝑞) �̄�(𝑝′1, 𝜎1)𝑢(𝑝1, 𝜎1) ,

(25)

where we use the Boltzmann distribution

𝑛(𝑇 , 𝐸𝑞) = exp (−𝐸𝑞∕𝑇
)

(26)

with energy 𝐸𝑞 .1 Though, since in the rest frame of a nucleon, i.e., 𝑝1 =
(𝑚, 𝟎)𝑇 , we have

𝑞2 − 𝑚2
𝑋 =

(

𝑝1 − 𝑝′1
)2 − 𝑚2

𝑋

= 2𝑚2 − 2𝑝1 ⋅ 𝑝′1 − 𝑚2
𝑋

= 2𝑚
(

𝑚 −
√

𝑚2 + 𝒑′𝟏
2
)

− 𝑚2
𝑋 < 0 , (27)

relativistic invariance implies 𝛿(𝑞2 − 𝑚2
𝑋 ) = 0 as well as (1)

𝑋;𝑇 = 0, as
xpected. This means that there are no thermal potential and pressure
rom a single-scalar exchange between two on-shell fermions.

1 Note that we have approximated the Bose–Einstein distribution by the
oltzmann distribution for analytical reasons. This restricts our discussion to

arts of the scalar field parameter spaces for which 𝑚𝑋 ≫ 𝑇 .
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For the quantum and thermal potentials from the two-scalar ex-
change, we take and validate the results from Ref. [75], which itself
makes use of Refs. [76–78]. Therefore, for the quantum contribution,
we find

𝑉 (2)
𝑋;𝑄(𝑟) = −

(

𝑔(2)𝑋
)2 𝑚𝑋

8𝜋3𝑟2
𝐾1(2𝑚𝑋𝑟) . (28)

Furthermore, for the thermal contribution, we obtain

𝑉 (2)
𝑋;𝑇 (𝑟) = −

(

𝑔(2)𝑋
)2 1

2𝜋3
1
𝑟

𝑇 𝑚𝑋
√

1 + (2𝑟𝑇 )2
𝐾1

(𝑚𝑋
𝑇

√

1 + (2𝑟𝑇 )2
)

. (29)

It should be noted that this usual procedure of obtaining potentials
implicitly assumes the nucleons to be on-shell, as is the case for
free asymptotic scattering states. However, in the next section, we
consider the case in which the nucleons are bound within the macro-
scopic plates. Hence, for our discussion, such a procedure of obtaining
effective macroscopic potentials is an approximation.

3.2. Pressures

Having derived the quantum and thermal potentials between two
nucleons, we can now use these results to compute the pressures
between two parallel plates at separation 𝓁, with thicknesses 𝐷 and
widths 2𝐿 in both transversal dimensions; see Fig. 1. The induced
pressure between the two plates is computed by

 (𝑍)
𝑋;𝑌 (𝓁) = − 𝜕

𝜕𝓁

U(𝑍)
𝑋;𝑌 (𝓁)

𝑆
, (30)

where U(𝑍)
𝑋;𝑌 (𝓁)∕𝑆 is the integrated potential per area 𝑆 = 4𝐿2 of both

plates with 𝑌 ∈ {𝑄, 𝑇 } and 𝑍 ∈ {1, 2}. We restrict our discussion to
the case 𝐷 ≪ 𝓁 and 𝐿 → ∞, and note that the results are only valid
for parameters where 𝐷 ≪ 1∕𝑚𝑋;Plat e is fulfilled. The last assumption
corresponds to a field’s Compton wavelength within a plate being much
larger than the plate’s thickness. In this case, the field cannot reach
its VEV, 𝜑𝑋;Plat e, within the plate but instead stays close to its VEV in
vacuum,2 𝜑𝑋;Vac. Consequently, we can safely assume that 𝜑𝑋;Plat e ≈
𝜑𝑋;Vac =∶ 𝜑𝑋 and 𝑚𝑋;Plat e ≈ 𝑚𝑋;Vac =∶ 𝑚𝑋 . In turn, the assumptions we
make allow us to approximate the potential per area by
U(𝑍)
𝑋;𝑌 (𝓁)

𝑆
≈ lim
𝐿→∞

𝐷2𝜌2

𝑆 ∫

𝐿

−𝐿
𝑑 𝑥∫

𝐿

−𝐿
𝑑 𝑥′ ∫

𝐿

−𝐿
𝑑 𝑦

× ∫

𝐿

−𝐿
𝑑 𝑦′𝑉 (𝑍)

𝑋;𝑌

(
√

𝓁2 + (𝑦′ − 𝑦)2 + (𝑥′ − 𝑥)2
)

,

(31)

where the factor 𝐷2 stems from our approximation of the two integrals
over the longitudinal direction, 𝜌 is the nucleon number density of each
plate,3 and we set 𝑟 =

√

𝓁2 + (𝑦′ − 𝑦)2 + (𝑥′ − 𝑥)2. We introduce new
coordinates

𝑥± = 𝑥′ ± 𝑥 , 𝑦± = 𝑦′ ± 𝑦 . (32)

Hence, we obtain
U(𝑍)
𝑋;𝑌 (𝓁)

𝑆
≈ lim

𝐿→∞

𝐷2𝜌2

4𝑆 ∫

2𝐿

−2𝐿
𝑑 𝑥− ∫

2𝐿−|𝑥−|

|𝑥−|−2𝐿
𝑑 𝑥+ ∫

2𝐿

−2𝐿
𝑑 𝑦− ∫

2𝐿−|𝑦−|

|𝑦−|−2𝐿
𝑑 𝑦+

× 𝑉 (𝑍)
𝑋;𝑌

(

√

𝓁2 + 𝑦2− + 𝑥2−

)

≈ lim
𝐿→∞

𝐷2𝜌2

𝑆 ∫

2𝐿

−2𝐿
𝑑 𝑥− ∫

2𝐿

−2𝐿
𝑑 𝑦−

(

2𝐿 − |𝑥−|
) (

2𝐿 − |𝑦−|
)

× 𝑉 (𝑍)
𝑋;𝑌

(

√

𝓁2 + 𝑦2− + 𝑥2−

)

. (33)

Taking the limit, we find
U(𝑍)
𝑋;𝑌 (𝓁)

𝑆
≈ 𝐷2𝜌2 ∫

∞

−∞
𝑑 𝑥− ∫

∞

−∞
𝑑 𝑦−𝑉 (𝑍)

𝑋;𝑌

(

√

𝓁2 + 𝑦2− + 𝑥2−

)

≈ 2𝜋 𝐷2𝜌2 ∫

∞

0
𝑑r r𝑉 (𝑍)

𝑋;𝑌

(√

𝓁2 + r2
)

. (34)

2 Here, the term vacuum also refers to any residual gases.
3 We note, that the electron contributions can be safely neglected at our
level of precision.
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Fig. 1. Schematic depiction of the two parallel plates; the plates are identical
in dimensions and material. We consider thin plates, which means that 𝐷 ≪ 𝓁.
Furthermore, we take the limit 𝐿 → ∞. The plates are surrounded by vacuum or
some kind of gas, and they themselves consist of a material with a density that leads to
𝐷 ≪ 1∕𝑚𝑋;Plat e for the considered regions of the screened scalar fields models’ parameter
spaces.

Substituting 𝑣 =
√

𝓁2 + r2, we have
U(𝑍)
𝑋;𝑌 (𝓁)

𝑆
≈ 2𝜋 𝐷2𝜌2 ∫

∞

𝓁
𝑑 𝑣 𝑣 𝑉 (𝑍)

𝑋;𝑌 (𝑣) . (35)

After substituting this into Eq. (30), we obtain

 (𝑍)
𝑋;𝑌 (𝓁) ≈ −2𝜋 𝐷2𝜌2𝜕𝓁 ∫

∞

𝓁
𝑑 𝑣 𝑣 𝑉 (𝑍)

𝑋;𝑌 (𝑣)

≈ 2𝜋 𝐷2𝜌2𝓁𝑉 (𝑍)
𝑋;𝑌 (𝓁) . (36)

This means, from Eqs. (24), (28) and (29) we obtain:

 (1)
𝑋;𝑄(𝓁) ≈ −

(

𝑔(1)𝑋
)2 𝐷2𝜌2

2
𝑒−𝑚𝑋𝓁 , (37)

 (2)
𝑋;𝑄(𝓁) ≈ −

(

𝑔(2)𝑋
)2 𝑚𝑋𝐷2𝜌2

4𝜋2𝓁
𝐾1(2𝑚𝑋𝓁) , (38)

 (2)
𝑋;𝑇 (𝓁) ≈ −

(

𝑔(2)𝑋
)2 𝐷2𝜌2

𝜋2
𝑇 𝑚𝑋

√

1 + (2𝓁𝑇 )2
𝐾1

(𝑚𝑋
𝑇

√

1 + (2𝓁𝑇 )2
)

. (39)

Consequently, the total pressure, excluding pressures from classical
fifth forces, induced by a scalar field of model 𝑋 is given by

𝑋 (𝓁) =  (1)
𝑋;𝑄(𝓁) +  (2)

𝑋;𝑄(𝓁) +  (2)
𝑋;𝑇 (𝓁)

≈ −𝐷2𝜌2
{

(

𝑔(1)𝑋
)2 1

2
𝑒−𝑚𝑋𝓁 +

(

𝑔(2)𝑋
)2 𝑚𝑋

𝜋2

[

1
4𝓁
𝐾1(2𝑚𝑋𝓁)

+ 𝑇
√

1 + (2𝓁𝑇 )2
𝐾1

(𝑚𝑋
𝑇

√

1 + (2𝓁𝑇 )2
)

]}

. (40)

It should be noted, that each of the three pressure contributions, and
as such the total pressure as well, are negative. This corresponds to an
attractive force between the plates.

3.3. Discussion

We now discuss the regions of the considered screened scalar field
models’ parameter spaces where the induced thermal pressures are at
least as large as the quantum pressures. This means that we are looking
for model parameters that fulfill

𝜋2

2

(

𝑔(1)𝑋
𝑔(2)𝑋

)2
𝑒−𝑚𝑋𝓁

𝑚𝑋
+ 1

4𝓁
𝐾1(2𝑚𝑋𝓁)

≤ 𝑇
√

1 + (2𝓁𝑇 )2
𝐾1

(𝑚𝑋
𝑇

√

1 + (2𝓁𝑇 )2
)

,

(41)

where 𝑚𝑋 ≫ 𝑇 due to our assumption of a Boltzmann distribution. In
order to obtain quantitative results, we consider a plate separation of



H. Fischer et al. Physics of the Dark Universe 47 (2025) 101756 
Fig. 2. Areas in the model parameter spaces for which Eq. (41) is valid for a hydrogen gas with 𝑇 = 300 K and a pressure of 9.6 × 10−10 mbar surrounding the two parallel plates;
note that the plots continue where they touch one of the axes; (a): chameleon model with 𝑛 = 1; (b): symmetron in the symmetry-broken (unscreened) phase for 𝜆𝑆 = 0.1; (c):
environment-dependent dilaton with 𝑉0 = 1MeV4; note that the plot barely changes for larger 𝑉0.
55 μm, as was also used in Ref. [64]. In addition, we follow Ref. [67]
and assume the parallel plates to be surrounded by a residual hydrogen
gas of temperature 𝑇 = 300 K and with a pressure of 9.6 × 10−10
mbar that is in thermal equilibrium with the plates and the light
scalar fields. The resulting hydrogen mass density 𝜌H2

determines the
VEVs and masses of the considered screened scalar field models. Using
these exemplary experimental conditions, the parts of the three models’
parameter spaces that fulfill Eq. (41) are depicted in Fig. 2.

At first, we look at the 𝑛 = 1 chameleon. Taking into account 𝜑𝐶 ≪
𝑀𝐶 and Eq. (41), we find that large parts of this model’s parameter
space allow for a thermal pressure at least as strong as the quantum
pressure terms; see Fig. 2(a). Interestingly, the area depicted in Fig. 2(a)
is entirely contained in the region that Ref. [64] constrains by solely
using the chameleon quantum pressure. This means that the thermal
pressure induced by chameleons is of experimental significance and
must be taken into account.

Next, we look at the symmetron model. We only consider sym-
metrons in the symmetry-broken phase, in which the fifth force is not
screened, and which is determined by the condition 𝜇2 > 𝜌H2

∕𝑀2
𝑆 .

Furthermore, we set 𝜆 = 0.1 as Ref. [64] also did. In Fig. 2(b), we see
𝑆

5 
that also for large parts of the symmetron parameter space, the thermal
pressure can be at least as strong as the quantum pressure.

Finally, we look at environment-dependent dilatons. Again, we find
that large parts of the model parameter space allow for a thermal
pressure that is significant in comparison to the quantum pressures.
However, as of yet, nobody has computed quantum pressures for
environment-dependent dilatons in specific experiments. Therefore, we
cannot make a statement about the absolute magnitude of quantum and
thermal pressures induced by this model. Such computations might be
subject of a future work that takes into account a more realistic setup.

4. Conclusions

Light scalar fields appear in many discussions throughout modern
physics, and serve as candidates for dark energy or dark matter. While
there are many experiments searching for evidence of such fields, there
are physical aspects that are still not fully considered in experimental
and theoretical analyses. A few years ago, Ref. [64] showed that the
pressure induced by quantum fluctuations of screened scalar fields
between two infinitely wide and infinitely thick plates can be of great
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experimental importance. However, thermal pressures were not taken
nto account.

In the present article, we took first steps in the discussion of thermal
ressures from light scalar fields. For this, we computed quantum and
hermal potentials from one- and two-scalar exchanges between two nu-
leons. Next, we integrated these potentials over two thin but infinitely
ide parallel plates, and subsequently derived expressions for quantum
nd thermal pressures from light scalar fields. Interestingly, we found
hat there is no thermal pressure from a single-particle exchange.

As explicit examples, we looked at three popular screened scalar
field models: chameleons, symmetrons, and environment-dependent
dilatons. Since we derived our general results for scalar fields with
onstant masses, we had to restrict our discussion to model parameters

and experimental specifications for which the screened scalar fields
annot reach the minima of their potentials within each one of the two
lates, such that we were allowed to set the scalar’s VEVs and masses

to the values corresponding to the density of the vacuum or gas the
two plates are embedded in. Using an explicit experimental setup as an
example, for all three considered screened scalar field models, we found
large regions in their parameter spaces for which the thermal pressures
are at least as significant as the quantum pressures. The region for
the 𝑛 = 1 chameleon model is fully included in the area constrained
in Ref. [64], which prompted us to conclude that chameleon thermal
pressures are actually of experimental significance.

Our findings imply that re-evaluations of the chameleon and sym-
metron constraints presented in Ref. [64], that also take into account
thermal pressures, might be necessary. However, this quite likely also
applies to many other constraints on screened scalar fields, including
environment-dependent dilatons, for which thermal effects were not
aken into account. Therefore, we believe that finite-temperature effects
ust necessarily be discussed in future analyses of experiments that aim

o constrain screened scalars or light scalar fields in general. For this,
e must go beyond the initial steps taken here. This means that future
nalyses should make use of less assumptions than we did in ours.
or example, if looking at screened scalar fields, the changes of VEVs
nd masses due to the presence of the two plates must be accurately
escribed. In addition, the impact of the possible presence of a vacuum
hamber or other experimental equipment should be taken into account
nd the assumption 𝐷 ≪ 𝓁 might have to be dropped. However, in
his case, analytical solutions can most likely not be obtained, which
ecessitates the use of sophisticated numerical methods.
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