

Rechargeable oxygen ion batteries based on mixed conducting oxides Alexander Schmid, Barbara Wagner, Jürgen Fleig

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 824072.

http://harvestore.eu

Ionia Institute for Energy Resear

La_{0.6}Sr_{0.4}FeO_{3-δ} electrodes - Charge voltage characteristics

- 915 C cm⁻³ at -0.3 V vs. 1 bar O₂ (255 mA h cm⁻³)
- <0.1 % capacity loss per cycle</p>
- >99 % coulomb efficiency

450 nm LSF film, 350 °C, 58 $\mu\text{A\,cm}^{\text{-2}}$ (5 C), 25 Pa O_2

In-situ synchrotron X-ray absorption spectroscopy

- Electrode charge/discharge leads to Fe oxidation state change
- $2 \operatorname{Fe}_{\operatorname{Fe}}^{\operatorname{x}} + V_{\operatorname{O}}^{\cdot \cdot} + \operatorname{O}^{2-} \rightleftharpoons 2 \operatorname{Fe}_{\operatorname{Fe}}^{\cdot} + \operatorname{O}_{\operatorname{O}}^{\operatorname{x}} + 2e^{-}$
- Agrees with bulk defect model

200 nm LSF film, 350 °C, 100 kPa O₂

$\mathbf{I}_{\mathsf{WIEN}} \quad \mathsf{La}_{0.5}\mathsf{Sr}_{0.5}\mathsf{Cr}_{0.2}\mathsf{Mn}_{0.8}\mathsf{O}_{3-\delta} \text{ anodes}$

⁶³⁰ nm LSCrMn film, 400 °C, 17 $\mu A\,cm^{\text{-}2}$ (0.8 C), 25 Pa O_2

- 1250 C cm⁻³ at -0.6 V vs. 1 bar O₂ (350 mA h cm⁻³)
- Up to 3500 C cm⁻³ at -2 V
- Poster by B. Wagner

- Intercalation of oxygen as interstitials
- High half cell potential

•
$$2 \operatorname{Ni}_{\operatorname{Ni}}^{x} + O^{2-} \rightleftharpoons 2 \operatorname{Ni}_{\operatorname{Ni}}^{\cdot} + O_{i}^{\prime\prime} + 2e^{-}$$

200 nm LNO film, 400 °C, 17 $\mu A\,cm^{-2}$, 1000 Pa O_2 , prepared by LMGP, Grenoble

Complete oxygen ion battery: LSCrMn I YSZ-SC I LSF

- 420 C cm⁻³ at 0.6 V
- 250 J cm⁻³
- >99 % coulomb efficiency

320 nm LSF, 192 nm LSCrMn, 350 °C, 8.5 $\mu A\,cm^{-2}$ (1.6 C), 25 Pa O_2

Full cell battery with thin film electrolyte

- Thin film electrolyte 800 nm
- Reactive DC sputtering from Y/Zr metal target

500 nm LSF, 400 nm LSCrMn, 350 °C, 200 $\mu A\,cm^{-2}$ (20 C), 1 kPa O_2

Full cell battery with thin film electrolyte

500 nm LSF, 400 nm LSCrMn, 350 °C, 200 μA cm⁻² (20 C), 1 kPa O₂

- Interface resistance relevant
- < 0.05 % charge lost per cycle</p>
- Cell stable over >2000 cycles in total (with regeneration steps)

⁵⁰⁰ nm LSF, 400 nm LSCrMn, 350 °C, 1000 $\mu A\,cm^{\text{-}2}$, 1 kPa O_2

Regeneration of degraded cell capacity

- Removal of leaked oxygen via auxiliary electrode
- Cell capacity repeatedly regenerable

320 nm LSF, 192 nm LSCrMn, 350 °C, 17 μA cm⁻² (3.2 C), 1 kPa O₂

- Cell voltage: 1V
- Electrode capacity: 2250 C cm⁻³
- 1 µm electrolyte
- 25 µm electrodes

Energy: 900 J cm⁻³
Charge rate: 1 - 100 h⁻¹
Power: 1 - 18 W cm⁻³

- Abundant elements (Fe, Cr, Mn, Ti, Ca, Sr, …)
- Non-flammable, non-toxic oxides
- Regenerable cell capacity

High temperature energy storage via variable oxygen stoichiometry

Non-flammable, non-toxic oxides, not reliant on critical raw elements

Cell capacity repeatedly regenerable via atmosphere exchange

Thank you for your attention!

For more information, please visit :

 Schmid, M. Krammer, and J. Fleig, "Rechargeable Oxide Ion Batteries Based on Mixed Conducting Oxide Electrodes," Advanced Energy Materials, 2023, 13, 2203789.

LSF electrodes – A defect chemical explanation

- Thin film oxygen ion battery coupled to SrTiO₃ PV cell
- Battery charged by photo-current under illumination
- Discharged without illumination

Combined power harvesting and storage

- OIB repeatedly charged with PV
- Discharged without illumination

⁵⁰⁰ nm LSF, 400 nm LSCrMn, 350 °C, 200 $\mu A\,cm^{-2}$ (36 C), 25 Pa O_2

- Up to 200 µA cm⁻² (36 C)
- Up to 10 mJ cm⁻²
- 86 % energy storage efficiency