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ABSTRACT

Understanding the nature of dark energy and dark matter is one of modern physics’ greatest open problems. Scalar-tensor theories with
screened scalar fields like the chameleon model are among the most popular proposed solutions. In this article, we present the first analysis of
the impact of a chameleon field on the dynamical Casimir effect, whose main feature is the particle production associated with a resonant
condition of boundary periodic motion in cavities. For this, we employ a recently developed method to compute the evolution of confined
quantum scalar fields in a globally hyperbolic spacetime by means of time-dependent Bogoliubov transformations. As a result, we show that
particle production is reduced due to the presence of the chameleon field. In addition, our results for the Bogoliubov coefficients and the
mean number of created particles agree with known results in the absence of a chameleon field. Our results initiate the discussion of the evo-
lution of quantum fields on screened scalar field backgrounds.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0222082

I. INTRODUCTION

Quantum field theory in curved spacetime (QFTCS) studies the
behavior of quantum fields propagating in a classical relativistic back-
ground geometry.1–3 This theory has predicted many physical phe-
nomena, such as cosmological particle creation,3–5 Hawking
radiation,6 and the Unruh effect,7 as well as the dynamical Casimir
effect (DCE),8 which refers to the generation of particles due to the
motion of boundaries (see Refs. 9–11 for reviews). The first computa-
tions of the DCE were done in flat spacetime.8,12 Over the past five
decades, numerous developments have appeared including distinct
geometries of the cavities,13–15 entanglement generation,16–19 and
extensions to a few other metrics.20,21 Performing a mathematically
rigorous study of the DCE is challenging due to the complexity of
studying quantum field theory with dynamical boundary condi-
tions.22,23 For this reason, within the framework of QFTCS, in Refs. 24
and 25, some of the authors of the present work introduced a general
method to compute the evolution of a confined quantum scalar field
in a globally hyperbolic spacetime by means of a time-dependent

Bogoliubov transformation. Part I24 considers spacetimes without
boundaries or with timelike boundaries that remain static in some syn-
chronous frame, while Part II25 considers spacetimes with timelike
boundaries that do not remain static in any synchronous frame.

QFTCS builds on the framework of general relativity (GR), which
has proven to be a remarkably successful theory of gravity and cosmol-
ogy.26,27 Many physical predictions of GR have been experimentally vali-
dated over the last century, the most recent being the detection of
gravitational waves.28 However, GR has some well-known limitations,
such as the breakdown of the equivalence principle at singularities, or the
accelerating expansion of the Universe and the mystery of dark energy
(responsible for this accelerated expansion). Therefore, many different
modifications to GR have been proposed. Among these modified theo-
ries of gravity, scalar-tensor theories29 are some of the most studied.
There are two major reasons to study such theories; first, it is one of the
simplest ways to modify GR, and second, some extensions of the stan-
dard model of particle physics predict the existence of scalar fields.30,31

This is further motivated by the experimentally confirmed existence of
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one scalar field in Nature, namely, the Higgs field.32–34 Moreover, there
are several proposed explanations for the nature of dark energy based on
scalar-tensor theories.35,36 Some of these models predict a fifth force,
which has not yet been detected on Earth or in the Solar System.37–39

One way to mitigate this tension between theory and observation
is by introducing a “screening mechanism,”40 which allows the effects
of the additional scalar fields to vary depending on the environment.
Therefore, a screening mechanism would enable additional scalar fields
to contribute to dark energy or dark matter while evading current
experimental constraints on fifth forces. There are several models for
such screened scalar fields with different types of screening mecha-
nisms, such as chameleons;41,42 symmetrons,43–50 whose fifth forces
have been suggested as alternatives to particle dark matter;51–54 gali-
leons;55–57 and environment-dependent dilatons.45,58–62 Most of these
models have been or are proposed to be tested in a zoo of different
experiments and observations, for example, Refs. 40 and 63–89.
Furthermore, in recent years, there have been initial attempts to study
screened scalars as quantum fields,90–93 and it was proposed to study
screened scalar-tensor theories in analog gravity simulations.94

Additional proposals in the particular case of chameleon fields sug-
gest that experiments which measure Casimir forces may also be used to
constrain chameleon theories.95–102 From a theoretical point of view, a
natural extension of the previous proposals then arises: if the chameleon
field can be constrained by the static Casimir effect, then it might also be
constrained by the dynamical Casimir effect. Thus, the aim of the present
work is to study the DCE in the presence of a chameleon field, and to
explore the relationship between the particle production and the chame-
leon field parameters. As a first step toward estimating the feasibility of
constraining chameleon fields with the DCE, we consider a toy model
with only the effect of the chameleon field and no gravity. Since the prob-
lem we want to solve in this work is that of a confined quantum field
with moving boundaries, we will use the techniques developed in Ref. 25.

This paper is organized as follows: In Sec. II A, we introduce
screened scalar fields using the example of the chameleon mechanism;
and, in Sec. II B, we describe some relevant aspects of QFTCS applied
to the DCE and, in particular, the method developed in Ref. 25.
Section III is the nuclear part of the article, where we obtain the main
result, and analyze it both analytically and with a numerical example.
We conclude in Sec. IV. In addition, in Appendix A, we show the deri-
vation of the normalization constant of the cavity modes. We use natu-
ral units �h ¼ c ¼ 1 throughout the article.

II. BACKGROUND

In this section, we give an overview of scalar-tensor theories of
gravitation, in particular screened scalar fields and the chameleon
model. In addition, we show schematically the usual approach to
studying the DCE within the framework of QFTCS, and we then out-
line the techniques that are used in the present work.

A. Screened scalar fields

The aim of scalar-tensor theories of gravitation is to study the
modifications of GR due to an additional scalar field which is coupled
to the metric tensor. A common way of performing such a coupling
between a scalar field u and the metric tensor gl� is through a confor-
mal factor A2ðuÞ, such that

~g l� ¼ A2ðuÞgl�: (1)

In this sense, scalar-tensor theories of gravity are defined up to a confor-
mal transformation leading from one so-called conformal frame to
another.103 These conformal frames are merely different mathematical
formulations. Hence, the theoretical prediction for an observable quan-
tity cannot be altered due to a change of conformal frame. The advan-
tage is that some calculations might be easier to perform in one frame
than in another. Two popular conformal frames are the Jordan frame—
with a metric we denote ~g l�—and the Einstein frame denoted as gl� .

Even though the physical measurement cannot be changed, the
physical interpretation can actually differ from one frame to
another.104 For example, in the Jordan frame formulation, Einstein’s
theory of gravity is modified in such a way that test particles follow dif-
ferent geodesics from those predicted in GR, while in the Einstein
frame formulation, test particles still follow GR’s geodesics but are also
subject to a gravity-like fifth force of Nature carried by the additional
scalar field u. The problem with such a prediction is that fifth forces
are tightly constrained in our Solar System. An interesting way to solve
this issue is given by so-called screening mechanisms. Such a mecha-
nism allows the fifth force to be weak within our Solar System but cos-
mologically significant on intergalactic scales. As we describe in the
Introduction, Sec. I, there are several models for such screened scalar
fields with different types of screening mechanisms such as the chame-
leon model, which will be presented in more detail in Sec. IIA 2.

1. Einstein-frame action

In this article, we consider a universe containing a free scalar field
U, which we denote as the “matter,” with mass mU; and an additional
scalar field u conformally coupling to the metric tensor. In the
Einstein frame, this universe’s action is schematically given by

SUniverse ¼ Sgravity þ Sm þ Su; (2)

where Sgravity is the usual Einstein–Hilbert gravitational action, Sm is the
matter action, and Su is the action of the scalar field u. Following Ref.
91, the conformal coupling to the metric tensor induces an interaction
between U and u, which in turn leads to a rescaling of the free field’s
mass by the conformal factor. More precisely, Ref. 91 starts with a free
Jordan frame scalar field ~U described by the Jordan frame Lagrangian
~Lm, translates both into the Einstein frame via U ¼ AðuÞ~U and
Lm ¼ A4ðuÞ~Lm, and then, using that the conformal factor is an analytic
function of u, keeps only operators up to dimension four. Consequently,
the Lagrangian matter density associated with the action Sm is given by

Lm ¼ � 1
2
gl�@lU@�U� 1

2
A2 uð Þm2

UU
2: (3)

Subsequently, from the Euler–Lagrange equations, we obtain the equa-
tion of motion for the probe fieldU:

gl�@l@�U� A2 uð Þm2
UU ¼ 0: (4)

Later, in Sec. III, we will ignore gravity for simplicity and consequently
set gl� ¼ gl� .

2. Chameleon model

A chameleon scalar field model has the defining property of cou-
pling to matter in such a way that its effective mass increases with
increasing local matter density. As its name suggests, the chameleon
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field adapts to its environment and becomes almost impossible to
detect in regions of high matter density like our Solar System. The con-
formal coupling factor in Eq. (1) of a chameleon is given by

A2ðuÞ ¼ e2u=M ; (5)

where M is a mass scale which determines the strength of the
chameleon-matter coupling. As is common practice when dealing with
chameleons, we assume thatu=M � 1. The Lagrangian density describ-
ing the chameleon field and associated with the action Su in Eq. (2) is

Lu ¼ � 1
2

@uð Þ2 � K4þN

uN
� u
M

q; (6)

where N 2 Zþ [ 2Z�nf�2g distinguishes between different chame-
leon models; the parameter K determines the strength of the self-
interaction; and q is the density of non-relativistic matter that the
chameleon is interacting with. It should be noted that, in the case
N ¼ �4, the self-interaction term in Eq. (6) is actually given by ku4=4!
with a dimensionless constant k. The sum of the last two terms in Eq.
(6) results in an effective potential with a local minimum, and conse-
quently a non-vanishing chameleon mass which increases with the mat-
ter density. Since the chameleon fifth force usually has a Yukawa-like
suppression,41 its range is the shorter the larger the chameleon’s mass.
Consequently, in environments of sufficiently high density, the chame-
leon fifth force is effectively quite feeble, i.e., screened.

Consider a static spherically symmetric source of radius R and
homogeneous density qobj immersed in a homogeneous medium of
density qbg . The field profile outside of this source, but still within an
ambient Compton wavelength ðr < m�1

bg Þ with mbg being the chame-
leon’s mass in the medium of density qbg , is approximately given by71

u ’ ubg �
R
r

ubg � uobjð Þ; (7)

where uobj is the value of the chameleon field inside the source and
ubg is the value of the chameleon field outside the source or the so-
called background value. In the case of a large density contrast
qobj � qbg , we can consider ubg � uobj. If the source is screened,
then uobj is actually the minimum of the chameleon within the source
apart from a thin shell near the surface. Only the matter in this thin
shell sources the chameleon fifth force in the exterior while the interior
is not contributing. This is due to the short range of the fifth force in
case of a large effective chameleon mass, and is known as the thin-shell
effect. In order to know if the chameleon field is screened or not, we
define the shell thickness

DR ¼ Mubg

qobjR
: (8)

The object is said to be screened if DR � R or

Mubg

qobjR2
� 1: (9)

B. Dynamical Casimir effect, quantum field theory, and
particle content

The usual approach to studying the DCE is to consider a free sca-
lar field U in a one-dimensional105 cavity with perfectly reflecting
boundaries satisfying the Klein–Gordon equation,

gl�rlr�U�m2
UU� nRU ¼ 0; (10)

where mU � 0 is the rest mass of the field, gl� is the spacetime metric,
R its scalar curvature, and n 2 R is a coupling constant. Let us con-
sider flat spacetime in inertial coordinates ðt; xÞ. The boundaries of the
cavity are moved during the time t0 < t < tf . Since we are considering
ideally reflecting boundaries, we impose Dirichlet vanishing boundary
conditions,

U t; x ¼ xl tð Þð Þ ¼ U t; x ¼ xr tð Þð Þ ¼ 0; (11)

where the functions xlðtÞ and xrðtÞ determine the positions of the left
and right boundaries for t0 < t < tf , respectively. Before the bound-
aries move ðt < t0Þ, we assume that the walls are static. For such initial
conditions, the quantized field operator is decomposed as follows:1

Û t; xð Þ ¼
X
n

ân/n t; xð Þ þ â†n/
�
n t; xð Þ

� �
; (12)

where the mode functions /nðt; xÞ are solutions to the Klein–Gordon
equation (10). In addition, ân and â†n are the bosonic annihilation and
creation operators, respectively. Hence, the Fock space and vacuum
state are defined in the canonical way. Two sets of mode solutions are
related by a Bogoliubov transformation. In this way, the effects of the
moving boundaries on the quantum field can be computed using a
Bogoliubov transformation,1 such that

~/m ¼
X
n

amn/n þ bmn/
�
n

� �
;

~am ¼
X
n

a�mnân � b�mnâ
†
n

� �
;

(13)

where amn and bmn are called Bogoliubov coefficients. Note that if
bmn 6¼ 0, then the transformation of the annihilation operator of Eq.
(13) contains creation operators. Therefore, the two vacua do not coin-
cide. Hence, the b-coefficients quantify particle creation due to the
transformation. Starting with a vacuum state, the average number of
particles in modem after a Bogoliubov transformation is given by

N m ¼
X
n

jbnmj2: (14)

In general, the computation of the Bogoliubov coefficients is difficult.
Thus, mathematical techniques and simplifications adapted to a spe-
cific problem make the computations manageable. For instance, the
presence of symmetries like homogeneity or isotropy is convenient to
obtain results on particle creation in cosmological models. In Refs. 24
and 25, the authors developed a method to compute the Bogoliubov
transformation experienced by a confined quantum scalar field in a
globally hyperbolic spacetime due to the changes in the geometry and/
or the confining boundaries. The second part25 extends the method to
cases in which the timelike boundaries of the spacetime do not remain
static in any synchronous frame. This method is especially useful in
the presence of resonances of the field modes due to small perturba-
tions of the metric and/or the motion of the cavity boundaries. This is
because in these cases, the Bogoliubov coefficients take the following
simple expressions:

annðtf ; t0Þ � 1;

anmðtf ; t0Þ � e
ðtf
t0

dt e�iðx0
n�x0

mÞtDânmðtÞ; n 6¼ m;
(15)
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bnmðtf ; t0Þ � e
ðtf
t0

dt e�iðx0
nþx0

mÞtDb̂nmðtÞ; (16)

where e � 1 is a small parameter that characterizes the perturbation
of the confined field (e.g., oscillation amplitude), and x0

n are the mode
frequencies for the static problem ðe ¼ 0Þ. For Dirichlet boundary
conditions,

DânmðtÞ � i
ð
R0
dV0 �

mD̂ðtÞW0
n

h i
W0

m

� i
ð
@R0

dS0 DxðtÞ n 	 rh0W
0
n

� �
n 	 rh0W

0
m

� �
; (17)

Db̂nmðtÞ � �i
ð
R0
dV0 þ

mD̂ðtÞW0
n

h i
W0

m

þ i
ð
@R0

dS0 DxðtÞ n 	 rh0W
0
n

� �
n 	 rh0W

0
m

� �
: (18)

Here, R0 is a fixed spatial hypersurface, around which the perturbation
occurs, with volume element dV0; boundary @R0; boundary surface
element dS0; proper distance eDxðtÞ between the boundary @Rt and
the fixed boundary @R0; and connectionrh0 associated with the static
metric h0ij.

þ
mD̂ðtÞ are linear operators determined by their actions on

the mode basis fW0
ng as defined in Eq. (50) of Ref. 25.

The Bogoliubov transformation differs maximally from the iden-
tity just by terms of first order in e, except for the cases where there are
resonances. If the perturbation considered contains some characteristic
frequency xp, such that it coincides with some difference between the
frequencies of two modes, xp ¼ x0

n � x0
m, then the corresponding

coefficient anmðtf ; t0Þ grows linearly with the time difference tf � t0
and eventually grows to be a non-perturbative correction. Respectively,
if the characteristic frequency coincides with some sum between the
frequencies of two modes, xp ¼ x0

n þ x0
m, then the coefficient

bnmðtf ; t0Þ grows linearly in time. The duration of the perturbation Dt
should be such that 1 � xpDt � 1=e. This is because the period of
time should be reasonably larger than the inverse of the frequency
being described, but on the other hand, one should keep higher order
terms in e significantly smaller than the first order term to ensure the
validity of the perturbative computation.

III. DYNAMICAL CASIMIR EFFECT IN A SPACETIME
WITH A SCREENED SCALAR FIELD

In this section, we study the toy model of a DCE for a minimally
coupled massive quantum scalar field in a spacetime affected by a cha-
meleon field u ¼ uðxÞ. Let us consider the spacetime metric to be the
Minkowski metric gl� and a quantum field trapped inside an effec-
tively one-dimensional cavity106 of average proper length L. The cavity
is placed at a distance d to a sphere of radius R, which acts as a source
for the chameleon force. We consider coordinates centered on the
sphere, where x is the radial distance to the center of the sphere.
The boundaries of the cavity are placed at xl (left) and xr (right), and
the right boundary oscillates with frequency X and amplitude eL � L,
such that the cavity is oscillating as

xl ¼ s; xr tð Þ ¼ sþ L 1þ e sin Xtð Þ½ 
; (19)

where s ¼ Rþ d. We impose Dirichlet boundary conditions on the
scalar field at the boundaries and ignore the gravitational field of the
chameleon source mass. This toy model will help us to understand

the qualitative behavior of a confined quantum field with moving
boundaries in a spacetime with a screened scalar field.

Since the Minkowski metric gl� is a synchronous frame, we can
use the method displayed in Ref. 25 right away. Focusing on the small
perturbations regime for the problem under consideration, the quanti-
ties needed to compute Eqs. (17) and (18) are

6
mD̂ ¼ 0; (20)

DxðsÞ ¼ 0; Dxðsþ LÞ ¼ L sinðXtÞ: (21)

Using Eq. (4), the static spatial eigenvalue equation (34) of Ref. 25 and
the boundary conditions read

@2
xW

0
n þ x0

n

� �2 � A2 uð Þm2
U

h i
W0

n ¼ 0;

W0
n xl ¼ sð Þ ¼ W0

n xrð0Þ ¼ sþ Lð Þ ¼ 0:
(22)

A. Solution to the static eigenvalue equation

Since we have assumed u=M � 1, see Sec. II A2, the chameleon
coupling function in Eq. (5) can be approximated by

A2 uð Þ ¼ 1þ 2
u xð Þ
M

þO u2

M2

� �
: (23)

The chameleon profile given in Eq. (7) is a function of 1=r with r > 0.
Thus, assuming that the cavity is sufficiently far from the source mass
center, i.e., L � s, it is possible to linearize the field profile within the
cavity x 2 ½xl; xr 
, such that

u xð Þ � ubg � 2ubg
R
s
þ ubg

R
s2
x: (24)

Substituting Eq. (24) in the eigenvalue equation (22), we have

@2
xW

0
n � 2

ubg

M
R
s2
xm2

UW
0
n

þ x0
n

� �2 � 1þ 2
ubg

M
� 4

ubg

M
R
s

� 	
m2

U

� 	
W0

n ¼ 0: (25)

Following the technique presented in Ref. 107, we define the quantities

a :¼ 2
ubg

M
R
s2
m2

U; (26)

b :¼ 1þ 2
ubg

M
� 4

ubg

M
R
s
; (27)

k2n :¼ x0
n

� �2 � bm2
U: (28)

Furthermore, we introduce a new variable,

u :¼ un xð Þ ¼ k2n
a
� x

� �
að Þ1=3: (29)

From here on, we omit the explicit dependence of u on n for simplicity
in the notation. Then the eigenvalue equation (25) can be rewritten as

@2
uW

0
n þ uW0

n ¼ 0; (30)

which is an Airy differential equation. The solution of Eq. (30) is given
by means of Bessel functions,

W0
n uð Þ ¼ ffiffiffi

u
p

c1J1=3
2
3
u3=2

� �
þ c2J�1=3

2
3
u3=2

� �� 	
: (31)
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To progress further in this derivation, we must assume that u � 1.
Therefore, we can apply the asymptotic form of Eq. (31) as seen in Ref.
107, such that

W0
n uð Þ ¼ Anu

�1=4 sin
2
3
u3=2 þ /

� �
(32)

with An and / being constants. While u � 1 is not globally true, we
show in Sec. III C that the region of the parameter space of the consid-
ered chameleon models, for which this assumption can be applied, is
largely unconstrained by experiments.

To guarantee that the field satisfies the Dirichlet boundary condi-
tions, we require that

2
3

u3=2 xrð Þ � u3=2 xlð Þ
h i

¼ np; n 2 N: (33)

The next approximation we make is that the variation of u within the
cavity is small. This lets us linearize ½uðxÞ
3=2 at the point s,

u xð Þ½ 
3=2 � u sð Þ½ 
1=2 u sð Þ þ 3
2

u0 sð Þ� �
x � sð Þ

� 	
: (34)

Then Eq. (33) becomes

u sð Þ½ 
1=2u0 sð ÞL ¼ np: (35)

Substituting Eqs. (29) and (28) in Eq. (35), we obtain

x0
n

� �2 ¼ k2n þm2
U 1þ 2

ubg

M
1� R

s

� 	� �
; (36)

where kn ¼ np
L . Note that if the chameleon field is turned off, we

recover the usual frequencies of the static problem in flat spacetime for
a massive field,1

x0
nf
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

U

q
: (37)

From Eq. (32) and the boundary conditionW0
nðxlÞ ¼ 0, we see that

/ ¼ � 2
3
u3=2 xlð Þ: (38)

Applying the normalization condition given in Eq. (36) of Ref. 25, we
obtain

An ¼ 2x0
n

ðxr
xl

dxu�1=2 xð Þ sin2 2
3
u3=2 xð Þ� 2

3
u3=2 xlð Þ

� �" #�1=2

: (39)

Using Eq. (34) and doing another linearization of u�1=2ðxÞ at the point
s, we obtain after some algebra,

An ¼
2 k2n
� �3=4

x0
nL

� �1=2 að Þ1=6 4k2n þ aL
� �1=2 : (40)

The full derivation of this normalization constant can be found in the
Appendix.

B. Bogoliubov coefficients

In order to compute the Bogoliubov coefficients in Eqs. (15) and
(16), we first need to compute the quantities in Eqs. (17) and (18).

Note that the first integrals of Eqs. (17) and (18) vanish since the oper-
ator 6

mD̂ is zero [as seen in Eq. (20)]. For the second integrals, we sub-
stitute Eq. (21). Since we are considering one spatial dimension, the
“surface integral” is simply the evaluation of the integrand at the two
static boundaries, such that

Dânl ¼ �iL sin Xtð Þ �1ð ÞnþlAnAl að Þ1=3 k2n � axr
� �

k2l � axr
� �� �1=4

¼ �Db̂nl: (41)

Substituting Eq. (40) in Eq. (41) and considering that the oscillation
frequency of the boundary coincides with the difference of the mode
frequencies, that is X ¼ jx0

n � x0
l j, then we see that the a-coefficients

from Eq. (15) are given by

anl tf ; t0ð Þ

��e
2 �1ð Þnþl tf � t0ð Þ

x0
nx

0
l

� �1=2 k2nk
2
l

� �3=4
k2nk

2
l � aL k2nþ k2l

� �þ a2L2
� �1=4

16k2nk
2
l þ aL 4k2n þ 4k2l

� �þ a2L2
� �1=2 :

(42)

If, instead, the oscillation frequency of the boundary coincides with the
sum of the mode frequencies, that is X ¼ x0

n þ x0
l , then Eq. (16) is

bnl tf ; t0ð Þ

� e
2 �1ð Þnþl tf � t0ð Þ

x0
nx

0
l

� �1=2 k2nk
2
l

� �3=4
k2nk

2
l � aL k2nþ k2l

� �þ a2L2
� �1=4

16k2nk
2
l þ aL 4k2nþ 4k2l

� �þ a2L2
� �1=2 :

(43)

Equations (42) and (43) are the general results of this work. Recall that
these coefficients are obtained in the presence of resonances where the
corresponding coefficient grows linearly with time. Hence, after
enough time the effect becomes significant and non-perturbative.

C. Analysis

If we expand Eq. (43) around the small parameter
ubg

M up to first
order [since the second order is negligible, see Eq. (23)], we obtain

bnl tf ; t0ð Þ �
�1ð Þnþleknkl tf � t0ð Þ

2 x0
nf
x0

lf

� �1=2 1� Bnl þO u2
bg

M2

� �
 �
: (44)

We see that the zeroth order approximation, when the chameleon field
is turned off, gives the usual coefficients of the DCE in Minkowski
spacetime.25,108,109 Thus, the zeroth order approximation exhibits the
familiar resonance behavior in the b-coefficients. The first order
approximation is given by

Bnl ¼ m2
U

2

ubg

M
1

x0
nf

� �2 þ 1

x0
lf

h i2
0
@

1
A� R

s
1

x0
nf

� �2 þ 1

x0
lf

h i2
0
@

1
A

2
4

þ 3
2
RL
s2

k2n þ k2l
k2nk

2
l

 !35: (45)

Equation (45) gives a novel contribution due to the chameleon field,
where the first term is a constant independent of the geometry. The
second contribution depends on the position of the cavity in relation
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to the chameleon source, while the third term depends on the length
of the cavity and tells us about the strength of the chameleon gradient
between the two ends of the cavity, reminiscent of the structure of a
linearized Newtonian gravitational potential. Since we are already in
the resonance regime X ¼ x0

n þ x0
l , the sum in the number of par-

ticles in Eq. (14) disappears, such that the average particle number is
given by

jbnl tf ; t0ð Þj2 �
e2k2nk

2
l tf � t0ð Þ2

4 x0
nfx

0
lf

� � 1� 2Bnlf g: (46)

To see how the chameleon contribution affects the b-coefficients and
thus the particle number, let us consider that the cavity and the chame-
leon source are inside a vacuum chamber of radius Rvac. We plot the
contours for Bnl using the parameters shown in Table I. Note that we
consider a kaon K0 as the massive quantum scalar field in our toy
model.

In order to obtain the chameleon background value, we use the
relation given in Refs. 68 and 71,

ubg Kð Þ ¼ n N N þ 1ð ÞK4þNR2
vac

� �1=Nþ2
; (47)

where n is a “fudge factor” largely insensitive to N, K, andM, as well as
to the assumed chamber geometry. Here, we assume the conservative
value of n ¼ 0:55.71 We consider the chameleon models N ¼ 1 and
N ¼ �4, which are the most studied ones.40 For the chameleon model
with N ¼ �4, the Lagrangian in Eq. (6) changes to

L ¼ � 1
2

@uð Þ2 � k
4!
u4 � u

Mq: (48)

Hence, in this case, Eq. (47) is given by

ubg ¼ n

ffiffiffi
2
k

r
1
R
; (49)

where k ¼ ðK=KDEÞ4 andKDE ¼ 2:4meV is the dark energy scale.40

Figure 1 shows the chameleon contribution to the Bogoliubov
coefficients and consequently to the particle number for the chameleon
model N ¼ 1, where, more precisely, Fig. 1(a) depicts the chameleon
contribution as a function of K andM. The parameterM is essentially
unconstrained but probably below the reduced Planck mass
MPl � 2:4� 1018 GeV.68 Here, we use a subset of the parameter
spaces shown in Refs. 81 and 85, where the assumption made in Eq.
(29) is fulfilled, namely u � 1.110 Figure 1(b) shows the chameleon
contribution as a function of the cavity mode number n. Note that the
chameleon contribution is stronger for the upper left corner in
Fig. 1(a). In addition, also note that, for fixed K andM, the chameleon
contribution is the strongest for the quantum number n ¼ 1, but
decays with increasing n.

Furthermore, in Fig. 2, we present the chameleon contribution to
the Bogoliubov coefficients and consequently to the particle number
for the chameleon model N ¼ �4. Figure 2(a) shows the chameleon
contribution as a function of K and M, and Fig. 2(b) depicts it as a
function of the cavity mode number n. Note that, in contrast to
Fig. 1(a), the chameleon contribution is stronger in the lower left cor-
ner in Fig. 2(a), while, for fixed K andM, it behaves in the same way as
it did for the chameleon modelN ¼ 1.

TABLE I. Parameters used to compute the chameleon contribution to the particle con-
tent of the confined quantum field.

Parameter Symbol Value

Cavity length L 50 eV�1 (�10�5 m)
Cavity field mass mU 497� 106 eV (mass of kaon K0)
Source mass radius R 1000 eV�1 (2� 10�4 m)
Distance from center
of source mass to cavity

s 5000 eV�1 (�10�3 m)

Vacuum chamber radius Rvac 2:5� 105 eV�1 (5� 10�2 m)

FIG. 1. Plots of the logarithmic values of the chameleon contribution to the b-coefficients and the particle number for the chameleon model N ¼ 1. (a) shows the contour plot of
such a contribution as a function of K and M for fixed the quantum number n ¼ 1. For this part of the parameter space, u � 1 is true. Plot (b) shows the contribution as a func-
tion of the quantum number n for K ¼ 1� 10�3 eV and M ¼ 1� 10�1MPl .
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This difference in behavior can be understood by examining the
chameleon-induced force. The acceleration experienced by a test particle
due to a chameleon field near a spherical source mass is given by Ref. 111,

a ¼ �r lnA uð Þ ¼ �ru
M

¼ � R
Mr2

ubg � uobjð Þr; (50)

where A is the conformal coupling factor defined in Eqs. (1) and (5),
and we have used the chameleon field profile in Eq. (7). It can immedi-
ately be seen that a smaller M results in a stronger force. When com-
paring Eqs. (47) and (49), we see that the chameleon field scales
oppositely with K for N ¼ 1 and N ¼ �4 models, i.e., ubg increases
with increasing K for N ¼ 1 but decreases for N ¼ �4.

Therefore, we come to the natural conclusion that the chameleon
field effect on the cavity particle production is the strongest where the
chameleon-induced force is also the strongest. In both considered cases
for N, we find a reduction in the particle production of the usual DCE
due to the presence of the chameleon scalar field.

IV. CONCLUSIONS

In this paper, we have shown the effect of a chameleon field on
the number of particles created in a massive quantum scalar field by
the DCE. We have considered an effectively one-dimensional cavity,
with one of its boundaries allowed to move, placed near a chameleon
source mass. Since the chameleon field is coupled to the mass of the
quantum field, the Klein–Gordon equation and, in particular, the
Lagrange–Beltrami operator acting on the quantum field in a spatial
hypersurface, are affected by the chameleon field. We then computed
the Bogoliubov coefficients in the presence of parametric resonances
using the techniques developed in Ref. 25. For this computation, we
have linearized the chameleon field profile, in analogy to studies of lin-
earizations of the Newtonian potential.20 As expected, when the cha-
meleon is turned off, the Bogoliubov coefficients are those of the DCE
in Minkowski spacetime. Finally, we have analyzed how the particle
content is affected by the presence of the chameleon field. We showed
that the mean number of created particles is diminished by the

presence of the chameleon field, and we gave representative numerical
estimates for how the particle content is affected depending on the
choice of the chameleon model, the parameters of the model, and the
mode number of the quantum field.

This work can also be seen as an extension of the method pre-
sented in Refs. 24 and 25 since, for the first time, we were effectively con-
sidering a spatially dependent mass, which we can define as
~mUðxÞ :¼ A2ðuðxÞÞmU. We note that the results presented here are
constructed with a toy model in the absence of gravity, i.e., no gravita-
tional effect due to the source mass generating the chameleon field gra-
dient. Any testable predictions will need to include a more realistic and
sophisticated model, which will most likely only be solvable numerically.

To our knowledge, this article is the first work on the effect of
screened scalar fields on particle creation. In the future, it will be inter-
esting to create a more realistic study, also taking into account the
gravitational field, not linearizing the chameleon field, and treating the
chameleon as a quantum field as in Refs. 90–93. The last would lead to
loop corrections that could potentially be significant for the DCE, cp.
Refs. 112–116. However, such a fully quantum treatment is beyond the
scope of the present article. In addition, other screened scalar field
models could also be studied in the same way, and we leave for future
work the study of entanglement between modes, their relation to the
chameleon parameters, and the implementation of quantum metrol-
ogy to estimate and constrain chameleon parameters.
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APPENDIX: DERIVATION OF THE NORMALIZATION
CONSTANT

In order to compute the normalization constant in Eq. (39), we
use Eq. (34) and another linearization of u�1=2ðxÞ at the point s.
Thus, the integral of the constant in Eq. (39) is

I ¼
ðxr
xl

dx u�1=2 xð Þ sin2 2
3
u3=2 xð Þ � 2

3
u3=2 xlð Þ

� �

¼
ðxr
xl

dx u sð Þ½ 
�1=2 1� 1
2
u sð Þ½ 
�1u0 sð Þ x � sð Þ

� �� �

	 sin2 2
3
u sð Þ½ 
1=2 3

2
u0 sð Þx � 3

2
u0 sð Þxl

� 	� �
: (A1)

Hence,

I ¼ u sð Þ½ 
�1=2 x � sð Þ
2

1þ 1
2
su�1 sð Þu0 sð Þ

� �(

� 1
2
u�1 sð Þu0 sð Þ x2 � s2ð Þ

4

� �)xr

xl

¼ u sð Þ½ 
�1=2 L
2

1þ s
2
� 2sþ L

4

� �
u�1 sð Þu0 sð Þ


 �
: (A2)

Substituting Eq. (29) in Eq. (A2), we obtain

I ¼ k2n
a
� s

� �
að Þ1=3

� 	�1=2
L
2

1þ s
2
� 2sþ L

4

� �
u sð Þ½ 
�1u0 sð Þ


 �

¼ að Þ1=2

k2n � as
� �1=2

að Þ1=6
L
2

1þ L
4

a

k2n � as
� �� �( )

: (A3)

Replacing Eq. (A3) in Eq. (39), we have that

An ¼ 2x0
n

að Þ1=3
k2n � as
� �1=2 L2 1þ L

4
a

k2n � as
� �� �( )2

4
3
5
�1=2

: (A4)

Plugging Eq. (28) into Eq. (A4), we finally obtain Eq. (40).
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