Projective metric geometry and Clifford algebras

Hans Havlicek

TU WIEN (AUSTRIA) — INSTITUTE OF DISCRETE MATHEMATICS AND GEOMETRY

Abstract

Let V be a finite dimensional vector space over any field F. Also, let V be endowed with a quadratic form Q. There is a widespread literature dealing with the representation of orthogonal transformations of (V,Q) in terms of the associated Clifford algebra $\mathrm{Cl}(V,Q)$. Thereby, several substructures of $\mathrm{Cl}(V,Q)$ play a crucial role. These include the Lipschitz monoid $\mathrm{Lip}(V,Q)$ and the Lipschitz group $\mathrm{Lip}^\times(V,Q)$. See [1] for an extensive bibliography.

Our aim is to interpret these results in projective terms. For example, we consider the quotient of the Lipschitz group $\operatorname{Lip}^{\times}(\boldsymbol{V},Q)$ by the multiplicative group of F. This quotient group, say $\mathcal{G}(\boldsymbol{V},Q)$, can be viewed as a set of points in the projective space on $\operatorname{Cl}(\boldsymbol{V},Q)$. Furthermore, the group $\mathcal{G}(\boldsymbol{V},Q)$ acts on the projective metric space $\mathbb{P}(\boldsymbol{V},Q)$ as a group of motions.

However, the following issue crops up: If Q is replaced by a non-zero multiple, say cQ with $c \in F \setminus \{0\}$, then this does not affect the geometry of $\mathbb{P}(V,Q)$. On the other hand, the Clifford algebras $\mathrm{Cl}(V,Q)$ and $\mathrm{Cl}(V,cQ)$ (and likewise the respective Lipschitz groups) need not be isomorphic. Still, by virtue of a particular linear bijection $\mathrm{Cl}(V,Q) \to \mathrm{Cl}(V,cQ)$, the problem can be resolved. The point sets $\mathcal{G}(V,Q)$ and $\mathcal{G}(V,cQ)$ turn out to be projectively equivalent. Furthermore, the groups $\mathcal{G}(V,Q)$ and $\mathcal{G}(V,cQ)$ are isomorphic and they act in an isomorphic way on $\mathbb{P}(V,Q)$.

Keywords: projective metric space, Clifford algebra, Lipschitz monoid, Lipschitz group

MSC: 51F25 15A66 51F15

References

[1] H. Havlicek. Projective metric geometry and Clifford algebras, *Result. Math.*, **76**(4):Art. No. 219, 2021.