Projective metric geometry and Clifford algebras

Hans Havlicek

Forschungsgruppe Differentialgeometrie und Geometrische Strukturen Institut für Diskrete Mathematik und Geometrie

Combinatorics 2024 Carovigno, June 4th, 2024

Let V be a vector space over a (commutative) field F, and Q: V → F be a quadratic form. Then (V, Q) is called a metric vector space (E. M. Schröder [8]).

- Let V be a vector space over a (commutative) field F, and Q: V → F be a quadratic form. Then (V, Q) is called a metric vector space (E. M. Schröder [8]).
- Throughout, we assume dim V =: n + 1 to be finite.

- Let V be a vector space over a (commutative) field F, and Q: V → F be a quadratic form. Then (V, Q) is called a metric vector space (E. M. Schröder [8]).
- Throughout, we assume dim V =: n + 1 to be finite.
- A vector $r \in V$ is called *regular* if $Q(r) \neq 0$.

- Let V be a vector space over a (commutative) field F, and Q: V → F be a quadratic form. Then (V, Q) is called a metric vector space (E. M. Schröder [8]).
- Throughout, we assume dim V =: n + 1 to be finite.
- A vector $r \in V$ is called *regular* if $Q(r) \neq 0$.
- The *polar form* of *Q* is the symmetric bilinear form

$$B: \mathbf{V} \times \mathbf{V} \to F: (\mathbf{x}, \mathbf{y}) \mapsto Q(\mathbf{x} + \mathbf{y}) - Q(\mathbf{x}) - Q(\mathbf{y}).$$

- Let V be a vector space over a (commutative) field F, and Q: V → F be a quadratic form. Then (V, Q) is called a metric vector space (E. M. Schröder [8]).
- Throughout, we assume dim V =: n + 1 to be finite.
- A vector $r \in V$ is called *regular* if $Q(r) \neq 0$.
- The *polar form* of *Q* is the symmetric bilinear form

$$B \colon \mathbf{V} \times \mathbf{V} \to F \colon (\mathbf{x}, \mathbf{y}) \mapsto Q(\mathbf{x} + \mathbf{y}) - Q(\mathbf{x}) - Q(\mathbf{y}).$$

• Vectors $\mathbf{x}, \mathbf{y} \in \mathbf{V}$ are *orthogonal*, in symbols $\mathbf{x} \perp \mathbf{y}$, precisely when $B(\mathbf{x}, \mathbf{y}) = 0$.

- Let V be a vector space over a (commutative) field F, and Q: V → F be a quadratic form. Then (V, Q) is called a metric vector space (E. M. Schröder [8]).
- Throughout, we assume dim V =: n + 1 to be finite.
- A vector $r \in V$ is called *regular* if $Q(r) \neq 0$.
- The polar form of Q is the symmetric bilinear form

$$B: \mathbf{V} \times \mathbf{V} \to F: (\mathbf{x}, \mathbf{y}) \mapsto Q(\mathbf{x} + \mathbf{y}) - Q(\mathbf{x}) - Q(\mathbf{y}).$$

- Vectors $\mathbf{x}, \mathbf{y} \in \mathbf{V}$ are *orthogonal*, in symbols $\mathbf{x} \perp \mathbf{y}$, precisely when $B(\mathbf{x}, \mathbf{y}) = 0$.
- The *radical* of *B* is a subspace of *V*, namely

$$V^{\perp} := \{ x \in V \mid x \perp y \text{ for all } y \in V \}.$$

Each metric vector space (V, Q) determines its Clifford algebra Cl(V, Q), which has the following properties:

 Cl(V, Q) is an associative unital F-algebra containing V as a subspace.

- Cl(V, Q) is an associative unital F-algebra containing V as a subspace.
- By identifying $1 \in F$ with the unit element of Cl(V, Q), we obtain F < Cl(V, Q).

- Cl(V, Q) is an associative unital F-algebra containing V as a subspace.
- By identifying $1 \in F$ with the unit element of Cl(V, Q), we obtain $F \le Cl(V, Q)$.
- For all $\mathbf{x} \in \mathbf{V}$, we have $Q(\mathbf{x}) = \mathbf{x}^2$.

- Cl(V, Q) is an associative unital F-algebra containing V as a subspace.
- By identifying $1 \in F$ with the unit element of Cl(V, Q), we obtain $F \le Cl(V, Q)$.
- For all $\mathbf{x} \in \mathbf{V}$, we have $Q(\mathbf{x}) = \mathbf{x}^2$.
- For all $x, y \in V$, we have B(x, y) = xy + yx.

Each metric vector space (V, Q) determines its Clifford algebra Cl(V, Q), which has the following properties:

- Cl(V, Q) is an associative unital F-algebra containing V as a subspace.
- By identifying $1 \in F$ with the unit element of Cl(V, Q), we obtain $F \leq Cl(V, Q)$.
- For all $\mathbf{x} \in \mathbf{V}$, we have $Q(\mathbf{x}) = \mathbf{x}^2$.
- For all $x, y \in V$, we have B(x, y) = xy + yx.
- If $\{e_0, e_1, \dots, e_n\}$ is a basis of V, then

$$\big\{ \boldsymbol{e}_{j_1} \, \boldsymbol{e}_{j_2} \cdots \boldsymbol{e}_{j_k} \mid 0 \leq j_1 < j_2 < \cdots < j_k \leq n \big\},$$

is a basis of Cl(V, Q); thereby an empty product is understood to be $1 \in Cl(V, Q)$.

Each metric vector space (V, Q) determines its Clifford algebra Cl(V, Q), which has the following properties:

- Cl(V, Q) is an associative unital F-algebra containing V as a subspace.
- By identifying $1 \in F$ with the unit element of Cl(V, Q), we obtain F < Cl(V, Q).
- For all $\mathbf{x} \in \mathbf{V}$, we have $Q(\mathbf{x}) = \mathbf{x}^2$.
- For all $x, y \in V$, we have B(x, y) = xy + yx.
- If $\{e_0, e_1, \dots, e_n\}$ is a basis of V, then

$$\{ e_{j_1} e_{j_2} \cdots e_{j_k} \mid 0 \le j_1 < j_2 < \cdots < j_k \le n \},$$

is a basis of Cl(V, Q); thereby an empty product is understood to be $1 \in Cl(V, Q)$.

• The dimension of Cl(V, Q) equals 2^{n+1} .

 The Clifford algebra Cl(V, Q) is Z/(2Z)-graded and so it is the direct sum of the even part Cl₀(V, Q), which is a subalgebra of Cl(V, Q), and the odd part Cl₁(V, Q).

- The Clifford algebra Cl(V, Q) is Z/(2Z)-graded and so it is the direct sum of the even part Cl₀(V, Q), which is a subalgebra of Cl(V, Q), and the odd part Cl₁(V, Q).
- In particular, $F \leq Cl_0(V, Q)$ and $V \leq Cl_1(V, Q)$.

- The Clifford algebra Cl(V, Q) is Z/(2Z)-graded and so it is the direct sum of the even part Cl₀(V, Q), which is a subalgebra of Cl(V, Q), and the odd part Cl₁(V, Q).
- In particular, $F \leq Cl_0(V, Q)$ and $V \leq Cl_1(V, Q)$.
- If $h \in Cl_i(V, Q)$, $i \in \{0, 1\}$, then we say that h is homogeneous of degree i and write $\partial h = i$.

- The Clifford algebra Cl(V, Q) is Z/(2Z)-graded and so it is the direct sum of the even part Cl₀(V, Q), which is a subalgebra of Cl(V, Q), and the odd part Cl₁(V, Q).
- In particular, $F \leq Cl_0(V, Q)$ and $V \leq Cl_1(V, Q)$.
- If $h \in Cl_i(V, Q)$, $i \in \{0, 1\}$, then we say that h is homogeneous of degree i and write $\partial h = i$.
- The *main involution* σ is that algebra automorphism of $Cl(\mathbf{V}, \mathbf{Q})$ which sends any $\mathbf{h} \in Cl_i(\mathbf{V}, \mathbf{Q})$, $i \in \{0, 1\}$ to $(-1)^{\partial \mathbf{h}} \mathbf{h} \in Cl_i(\mathbf{V}, \mathbf{Q})$.

The weak orthogonal group of (V, Q)

• A mapping $\psi \in GL(V)$ is called an *isometry* if $Q = Q \circ \psi$.

The weak orthogonal group of (V, Q)

- A mapping $\psi \in GL(V)$ is called an *isometry* if $Q = Q \circ \psi$.
- All isometries of (V, Q) constitute the orthogonal group O(V, Q).

The weak orthogonal group of (V, Q)

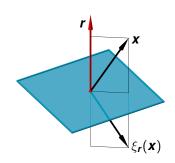
- A mapping $\psi \in GL(V)$ is called an *isometry* if $Q = Q \circ \psi$.
- All isometries of (V, Q) constitute the orthogonal group O(V, Q).
- The weak orthogonal group O'(V, Q) consists of all isometries of (V, Q) that fix the radical V[⊥] elementwise (E. Ellers [2]).

Reflections

Let $r \in V$ be regular. Then the mapping

$$\xi_{\mathbf{r}} \colon \mathbf{V} \to \mathbf{V} \colon \mathbf{x} \mapsto \mathbf{x} - B(\mathbf{r}, \mathbf{x}) Q(\mathbf{r})^{-1} \mathbf{r}$$

is called the *reflection* of (V, Q) in the direction of r.

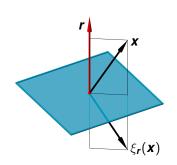


Reflections

Let $r \in V$ be regular. Then the mapping

$$\xi_{\boldsymbol{r}} \colon \boldsymbol{V} \to \boldsymbol{V} \colon \boldsymbol{x} \mapsto \boldsymbol{x} - B(\boldsymbol{r}, \boldsymbol{x}) Q(\boldsymbol{r})^{-1} \boldsymbol{r}$$

is called the *reflection* of (V, Q) in the direction of r.



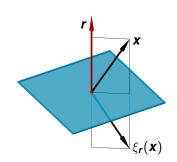
• A vector $\mathbf{y} \in \mathbf{V}$ is fixed under $\xi_{\mathbf{r}}$ if, and only if, $\mathbf{y} \perp \mathbf{r}$.

Reflections

Let $r \in V$ be regular. Then the mapping

$$\xi_{\mathbf{r}} \colon \mathbf{V} \to \mathbf{V} \colon \mathbf{x} \mapsto \mathbf{x} - B(\mathbf{r}, \mathbf{x}) Q(\mathbf{r})^{-1} \mathbf{r}$$

is called the *reflection* of (V, Q) in the direction of r.



- A vector $y \in V$ is fixed under ξ_r if, and only if, $y \perp r$.
- We have $\xi_r \in O'(V, Q)$.

Let ξ_{r} be the reflection in the direction of a regular vector $r \in V$.

Let $\xi_{\it r}$ be the reflection in the direction of a regular vector $\it r \in \it V$.

Then, for all $\mathbf{x} \in \mathbf{V}$,

$$\xi_{\mathbf{r}}(\mathbf{x}) = \mathbf{x} - B(\mathbf{r}, \mathbf{x}) \cdot Q(\mathbf{r})^{-1} \cdot \mathbf{r}$$

Let $\xi_{\pmb{r}}$ be the reflection in the direction of a regular vector $\pmb{r} \in \pmb{V}$.

Then, for all
$$\mathbf{x} \in \mathbf{V}$$
,

$$\xi_{\mathbf{r}}(\mathbf{x}) = \mathbf{x} - B(\mathbf{r}, \mathbf{x}) \cdot Q(\mathbf{r})^{-1} \cdot \mathbf{r}$$
$$= \mathbf{x} - (\mathbf{r}\mathbf{x} + \mathbf{x}\mathbf{r}) \cdot \mathbf{r}^{-2} \cdot \mathbf{r}$$

Let ξ_r be the reflection in the direction of a regular vector $r \in V$. Then, for all $x \in V$.

$$\xi_{\mathbf{r}}(\mathbf{x}) = \mathbf{x} - B(\mathbf{r}, \mathbf{x}) \cdot Q(\mathbf{r})^{-1} \cdot \mathbf{r}$$
$$= \mathbf{x} - (\mathbf{r}\mathbf{x} + \mathbf{x}\mathbf{r}) \cdot \mathbf{r}^{-2} \cdot \mathbf{r}$$
$$= \mathbf{x} - \mathbf{r}\mathbf{x}\mathbf{r}^{-1} - \mathbf{x}$$

Let ξ_r be the reflection in the direction of a regular vector $r \in V$. Then, for all $x \in V$.

$$\xi_{\mathbf{r}}(\mathbf{x}) = \mathbf{x} - B(\mathbf{r}, \mathbf{x}) \cdot Q(\mathbf{r})^{-1} \cdot \mathbf{r}$$

$$= \mathbf{x} - (\mathbf{r}\mathbf{x} + \mathbf{x}\mathbf{r}) \cdot \mathbf{r}^{-2} \cdot \mathbf{r}$$

$$= \mathbf{x} - \mathbf{r}\mathbf{x}\mathbf{r}^{-1} - \mathbf{x}$$

$$= -\mathbf{r}\mathbf{x}\mathbf{r}^{-1}$$

Let ξ_r be the reflection in the direction of a regular vector $r \in V$. Then, for all $x \in V$.

$$\xi_{\mathbf{r}}(\mathbf{x}) = \mathbf{x} - B(\mathbf{r}, \mathbf{x}) \cdot Q(\mathbf{r})^{-1} \cdot \mathbf{r}$$

$$= \mathbf{x} - (\mathbf{r}\mathbf{x} + \mathbf{x}\mathbf{r}) \cdot \mathbf{r}^{-2} \cdot \mathbf{r}$$

$$= \mathbf{x} - \mathbf{r}\mathbf{x}\mathbf{r}^{-1} - \mathbf{x}$$

$$= -\mathbf{r}\mathbf{x}\mathbf{r}^{-1}$$

$$= \mathbf{r}\mathbf{x}\sigma(\mathbf{r})^{-1},$$

where σ denotes the main involution.

The Lipschitz group $Lip^{\times}(V, Q)$

Below we follow J. Helmstetter [5].

The *Lipschitz group* $Lip^{\times}(V, Q)$ is the multiplicative group in Cl(V, Q) generated by the set comprising all non-zero scalars in F, all regular vectors in V and all elements

$$1 + st$$
 with $s, t \in V$ and $Q(s) = Q(t) = B(s, t) = 0$.

The Lipschitz group $Lip^{\times}(V, Q)$

Below we follow J. Helmstetter [5].

The *Lipschitz group* $Lip^{\times}(V, Q)$ is the multiplicative group in Cl(V, Q) generated by the set comprising all non-zero scalars in F, all regular vectors in V and all elements

$$1 + st$$
 with $s, t \in V$ and $Q(s) = Q(t) = B(s, t) = 0$.

 Up to some exceptional cases, the Lipschitz group Lip[×](V, Q) is already generated by the set of regular vectors in V.

The Lipschitz group $Lip^{\times}(V, Q)$

Below we follow J. Helmstetter [5].

The *Lipschitz group* $Lip^{\times}(V, Q)$ is the multiplicative group in Cl(V, Q) generated by the set comprising all non-zero scalars in F, all regular vectors in V and all elements

$$1 + st$$
 with $s, t \in V$ and $Q(s) = Q(t) = B(s, t) = 0$.

- Up to some exceptional cases, the Lipschitz group Lip[×](V, Q) is already generated by the set of regular vectors in V.
- Lip $^{\times}(V, Q)$ contains only homogeneous elements.

The Lipschitz group $Lip^{\times}(V, Q)$ (cont.)

The mapping

$$\xi \colon \operatorname{Lip}^{\times}(\boldsymbol{V}, Q) \to \operatorname{O}'(\boldsymbol{V}, Q) \colon \boldsymbol{p} \mapsto (\xi_{\boldsymbol{p}} \colon \boldsymbol{x} \mapsto \boldsymbol{p} \boldsymbol{x} \sigma(\boldsymbol{p})^{-1})$$
 (1)

is a surjective homomorphism of groups, known as the *twisted* adjoint representation of $Lip^{\times}(V,Q)$ (M. F. Atiyah, R. Bott and A. Shapiro [1]).

Main issue

In projective metric geometry one deals with $\mathbb{P}(V, Q)$, the projective space on (V, Q) (E. M. Schröder [8]).

Main issue

In projective metric geometry one deals with $\mathbb{P}(V, Q)$, the projective space on (V, Q) (E. M. Schröder [8]).

If the quadratic form Q is replaced by a non-zero multiple, say cQ with c ∈ F[×] := F \ {0}, then this does not affect the geometry of P(V, Q).

Main issue

In projective metric geometry one deals with $\mathbb{P}(V, Q)$, the projective space on (V, Q) (E. M. Schröder [8]).

- If the quadratic form Q is replaced by a non-zero multiple, say cQ with c ∈ F[×] := F \ {0}, then this does not affect the geometry of P(V, Q).
- On the other hand, the Clifford algebras Cl(V, Q) and Cl(V, cQ) need not be isomorphic. Likewise, the Lipschitz groups Lip[×](V, Q) and Lip[×](V, cQ) need not be isomorphic.

Example

Let |F|=3 and dim $\textit{\textbf{V}}=1$. We pick a basis vector $\textit{\textbf{e}}_0\in \textit{\textbf{V}}$ and define $Q\colon \textit{\textbf{V}}\to F$ by $Q(\textit{\textbf{e}}_0)=1$.

Example

Let |F|=3 and dim ${\it V}=1$. We pick a basis vector ${\it e}_0\in {\it V}$ and define ${\it Q}\colon {\it V}\to F$ by ${\it Q}({\it e}_0)=1$.

The Clifford algebra Cl(V, Q) contains zero divisors, since

$$1 - \boldsymbol{e}_0 \neq 0$$
 and $(1 - \boldsymbol{e}_0)(1 + \boldsymbol{e}_0) = 1 - \boldsymbol{e}_0^2 = 1 - 1 = 0$.

Example

Let |F|=3 and dim ${\it V}=1$. We pick a basis vector ${\it e}_0\in {\it V}$ and define ${\it Q}\colon {\it V}\to F$ by ${\it Q}({\it e}_0)=1$.

• The Clifford algebra Cl(V, Q) contains zero divisors, since

$$1 - \boldsymbol{e}_0 \neq 0$$
 and $(1 - \boldsymbol{e}_0)(1 + \boldsymbol{e}_0) = 1 - \boldsymbol{e}_0^2 = 1 - 1 = 0$.

• $Lip^{\times}(V, Q) = \{1, -1, e_0, -e_0\}$, where

$$1^2 = (-1)^2 = \boldsymbol{e}_0^2 = (-\boldsymbol{e}_0)^2 = 1.$$

Example (cont.)

Next, we replace Q with -Q.

Example (cont.)

Next, we replace Q with -Q.

• The Clifford algebra Cl(V, -Q) is a field with 9 elements. Indeed, now $e_0^2 = -1$ gives that

$$1 - \mathbf{e}_0,$$
 $(1 - \mathbf{e}_0)^2 = \mathbf{e}_0,$ $(1 - \mathbf{e}_0)^3 = 1 + \mathbf{e}_0,$ $(1 - \mathbf{e}_0)^4 = -1,$ $(1 - \mathbf{e}_0)^5 = -1 + \mathbf{e}_0,$ $(1 - \mathbf{e}_0)^6 = -\mathbf{e}_0,$ $(1 - \mathbf{e}_0)^7 = -1 - \mathbf{e}_0,$ $(1 - \mathbf{e}_0)^8 = 1$

are all non-zero elements of Cl(V, -Q).

Example (cont.)

Next, we replace Q with -Q.

• The Clifford algebra Cl(V, -Q) is a field with 9 elements. Indeed, now $e_0^2 = -1$ gives that

$$1 - \mathbf{e}_0,$$
 $(1 - \mathbf{e}_0)^2 = \mathbf{e}_0,$ $(1 - \mathbf{e}_0)^3 = 1 + \mathbf{e}_0,$ $(1 - \mathbf{e}_0)^4 = -1,$ $(1 - \mathbf{e}_0)^5 = -1 + \mathbf{e}_0,$ $(1 - \mathbf{e}_0)^6 = -\mathbf{e}_0,$ $(1 - \mathbf{e}_0)^7 = -1 - \mathbf{e}_0,$ $(1 - \mathbf{e}_0)^8 = 1$

are all non-zero elements of Cl(V, -Q).

• $Lip^{\times}(V, Q) = \{1, -1, e_0, -e_0\}$, where

$$1^2 = (-1)^2 = 1 \neq -1 = \boldsymbol{e}_0^2 = (-\boldsymbol{e}_0)^2.$$

A Clifford algebra for (V, cQ)

Theorem ([3, Sect. 6]).

Let (V, Q) be a metric vector space and $c \in F^{\times}$. The vector space underlying Cl(V, Q) can be made into a Clifford algebra for (V, cQ) by defining a multiplication \odot_c as follows:

A Clifford algebra for (V, cQ)

Theorem ([3, Sect. 6]).

Let (V, Q) be a metric vector space and $c \in F^{\times}$. The vector space underlying Cl(V, Q) can be made into a Clifford algebra for (V, cQ) by defining a multiplication \odot_c as follows:

Given any $f, g \in Cl(V, Q)$ write $f = f_0 + f_1$ and $g = g_0 + g_1$, where $f_i, g_i \in Cl_i(V, Q)$ for $i \in \{0, 1\}$ and put

$$\mathbf{f} \odot_{c} \mathbf{g} := \underbrace{\mathbf{f}_{0}\mathbf{g}_{0} + c\mathbf{f}_{1}\mathbf{g}_{1}}_{\in \operatorname{Cl}_{0}(\mathbf{V}, Q)} + \underbrace{\mathbf{f}_{0}\mathbf{g}_{1} + \mathbf{f}_{1}\mathbf{g}_{0}}_{\in \operatorname{Cl}_{1}(\mathbf{V}, Q)}.$$

A Clifford algebra for (V, cQ)

Theorem ([3, Sect. 6]).

Let (V, Q) be a metric vector space and $c \in F^{\times}$. The vector space underlying Cl(V, Q) can be made into a Clifford algebra for (V, cQ) by defining a multiplication \odot_c as follows:

Given any $f, g \in Cl(V, Q)$ write $f = f_0 + f_1$ and $g = g_0 + g_1$, where $f_i, g_i \in Cl_i(V, Q)$ for $i \in \{0, 1\}$ and put

$$\mathbf{f} \odot_{\mathbf{c}} \mathbf{g} := \underbrace{\mathbf{f}_{0} \mathbf{g}_{0} + \mathbf{c} \mathbf{f}_{1} \mathbf{g}_{1}}_{\in \operatorname{Cl}_{0}(\mathbf{V}, Q)} + \underbrace{\mathbf{f}_{0} \mathbf{g}_{1} + \mathbf{f}_{1} \mathbf{g}_{0}}_{\in \operatorname{Cl}_{1}(\mathbf{V}, Q)}.$$

Our proof is based upon a result by M.-A. Knus [6, Ch. IV (7.1.1)].

Definition.

We denote the Clifford algebra for (V, cQ), as defined in the previous theorem, as $Cl(V, Q, \odot_c)$.

Definition.

We denote the Clifford algebra for (V, cQ), as defined in the previous theorem, as $Cl(V, Q, \odot_c)$.

• The even Clifford algebras $Cl_0(V, Q)$ and $Cl_0(V, Q, \odot_c)$ are identical (as algebras).

Definition.

We denote the Clifford algebra for (V, cQ), as defined in the previous theorem, as $Cl(V, Q, \odot_G)$.

- The even Clifford algebras Cl₀(V, Q) and Cl₀(V, Q, ⊙_c) are identical (as algebras).
- The subspaces $Cl_1(V, Q)$ and $Cl_1(V, Q, \odot_c)$ are identical.

Definition.

We denote the Clifford algebra for (V, cQ), as defined in the previous theorem, as $Cl(V, Q, \odot_c)$.

- The even Clifford algebras Cl₀(V, Q) and Cl₀(V, Q, ⊙_c) are identical (as algebras).
- The subspaces $Cl_1(V, Q)$ and $Cl_1(V, Q, \odot_c)$ are identical.
- Let p, q be homogeneous elements of Cl(V, Q). Then $p \odot_c q = c^{\partial p \partial q} pq$.

The group $\mathcal{G}(V, Q)$

The Lipschitz group $\operatorname{Lip}^{\times}(V,Q)$ gives rise to the point set

$$\mathcal{G}(\textit{\textbf{V}},\textit{\textbf{Q}}) := \left\{ \textit{\textbf{F}}\textit{\textbf{p}} \mid \textit{\textbf{p}} \in \mathsf{Lip}^{\times}(\textit{\textbf{V}},\textit{\textbf{Q}}) \right\}$$

in $\mathbb{P}(\mathrm{Cl}(V,Q))$, which can be made into (multiplicative) group in the following way:

$$(Fp)(Fq) := F(pq)$$
 for all $Fp, Fq \in \mathcal{G}(V, Q)$.

The group $\mathcal{G}(\boldsymbol{V}, \boldsymbol{Q})$

The Lipschitz group $\operatorname{Lip}^{\times}(V,Q)$ gives rise to the point set

$$\mathcal{G}(\textit{\textbf{V}},\textit{\textbf{Q}}) := \left\{ \textit{\textbf{F}}\textit{\textbf{p}} \mid \textit{\textbf{p}} \in \mathsf{Lip}^{\times}(\textit{\textbf{V}},\textit{\textbf{Q}}) \right\}$$

in $\mathbb{P}(\mathrm{Cl}(V,Q))$, which can be made into (multiplicative) group in the following way:

$$(Fp)(Fq) := F(pq)$$
 for all $Fp, Fq \in \mathcal{G}(V, Q)$.

• $\mathcal{G}(\mathbf{V}, \mathbf{Q}) \cong \operatorname{Lip}^{\times}(\mathbf{V}, \mathbf{Q})/F^{\times}$.

The group $\mathcal{G}(\boldsymbol{V}, \boldsymbol{Q})$

The Lipschitz group $Lip^{\times}(V,Q)$ gives rise to the point set

$$\mathcal{G}(\mathbf{V}, \mathbf{Q}) := \left\{ F \mathbf{p} \mid \mathbf{p} \in \mathsf{Lip}^{\times}(\mathbf{V}, \mathbf{Q}) \right\}$$

in $\mathbb{P}(\mathrm{Cl}(V,Q))$, which can be made into (multiplicative) group in the following way:

$$(Fp)(Fq) := F(pq)$$
 for all $Fp, Fq \in \mathcal{G}(V, Q)$.

- $\mathcal{G}(\mathbf{V}, \mathbf{Q}) \cong \operatorname{Lip}^{\times}(\mathbf{V}, \mathbf{Q})/F^{\times}$.
- $\mathcal{G}(\mathbf{V}, \mathbf{Q}) = \mathcal{G}(\mathbf{V}, \mathbf{Q}, \odot_{\mathbf{c}})$ for all $\mathbf{c} \in F^{\times}$ [3, Cor. 6.6 (e)].

Action of $\mathcal{G}(V, Q)$ on $\mathbb{P}(V, Q)$

• From (1), the group $\mathcal{G}(V, Q)$ acts on the projective space $\mathbb{P}(V, Q)$ as follows: For all points $F p \in \mathcal{G}(V, Q)$ and all flats $X \in \mathbb{P}(V, Q)$, we have

$$F \boldsymbol{p} \mapsto (\boldsymbol{X} \mapsto \xi_{\boldsymbol{p}}(\boldsymbol{X}) = \boldsymbol{p} \boldsymbol{X} \sigma(\boldsymbol{p})^{-1}).$$
 (2)

Action of $\mathcal{G}(\boldsymbol{V}, \boldsymbol{Q})$ on $\mathbb{P}(\boldsymbol{V}, \boldsymbol{Q})$

• From (1), the group $\mathcal{G}(V,Q)$ acts on the projective space $\mathbb{P}(V,Q)$ as follows: For all points $F p \in \mathcal{G}(V,Q)$ and all flats $X \in \mathbb{P}(V,Q)$, we have

$$F \boldsymbol{\rho} \mapsto (\boldsymbol{X} \mapsto \xi_{\boldsymbol{\rho}}(\boldsymbol{X}) = \boldsymbol{\rho} \boldsymbol{X} \sigma(\boldsymbol{\rho})^{-1}).$$
 (2)

 This action of G(V, Q) on P(V, Q) yields a surjective homomorphism of groups

$$\mathcal{G}(\mathbf{V}, \mathbf{Q}) \to \mathsf{PO}'(\mathbf{V}, \mathbf{Q}),$$

where PO'(V, Q) denotes the image of O'(V, Q) under the canonical homomorphism $GL(V) \to PGL(V)$.

Action of $\mathcal{G}(\boldsymbol{V}, \boldsymbol{Q})$ on $\mathbb{P}(\boldsymbol{V}, \boldsymbol{Q})$

• From (1), the group $\mathcal{G}(V, Q)$ acts on the projective space $\mathbb{P}(V, Q)$ as follows: For all points $F p \in \mathcal{G}(V, Q)$ and all flats $X \in \mathbb{P}(V, Q)$, we have

$$F \boldsymbol{\rho} \mapsto (\boldsymbol{X} \mapsto \xi_{\boldsymbol{\rho}}(\boldsymbol{X}) = \boldsymbol{\rho} \boldsymbol{X} \sigma(\boldsymbol{\rho})^{-1}).$$
 (2)

• This action of $\mathcal{G}(\mathbf{V}, Q)$ on $\mathbb{P}(\mathbf{V}, Q)$ yields a surjective homomorphism of groups

$$\mathcal{G}(\boldsymbol{V},Q) \to \mathsf{PO}'(\boldsymbol{V},Q)$$

where PO'(V, Q) denotes the image of O'(V, Q) under the canonical homomorphism $GL(V) \to PGL(V)$.

 The group action (2) remains unaltered when going over to any Cl(V, Q, ⊙_c) with c∈ F[×] [3, Cor. 6.6 (f)].

Final remarks

• There are several other notions that remain unchanged under the transition from Cl(V, Q) to $Cl(V, Q, \odot_c)$; see [3, Cor. 6.6].

Final remarks

- There are several other notions that remain unchanged under the transition from Cl(V, Q) to $Cl(V, Q, \odot_c)$; see [3, Cor. 6.6].
- Among these notions is the point set arising from the Lipschitz monoid. This point set is the union of two algebraic varieties—one in P(Cl₀(V, Q)) and one in P(Cl₁(V, Q)) (J. Helmstetter [5]).

References

For related work see [3], [4], [5], [7], [8] and the references therein.

- [1] M. F. Atiyah, R. Bott, A. Shapiro, Clifford modules. *Topology* **3** (1964), 3–38.
- [2] E. W. Ellers, Decomposition of orthogonal, symplectic, and unitary isometries into simple isometries. *Abh. Math. Sem. Univ. Hamburg* **46** (1977), 97–127.
- [3] H. Havlicek, Projective metric geometry and Clifford algebras. *Results Math.* **76** (2021), Art. No. 219, 22 pp. Corrected version: https://arxiv.org/abs/2109.11470v2
- [4] H. Havlicek, Affine metric geometry and weak orthogonal groups. *Mitt. Math. Ges. Hamburg* **43** (2023), 47–70.

References (cont.)

- [5] J. Helmstetter, A survey of Lipschitz monoids. *Adv. Appl. Clifford Algebr.* **22** (2012), 665–688.
- [6] M.-A. Knus, Quadratic and Hermitian forms over rings, volume 294 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin 1991.
- [7] B. Murphy, G. Petridis, T. Pham, M. Rudnev, S. Stevens, On the pinned distances problem in positive characteristic. *J. Lond. Math. Soc.* (2) 105 (2022), 469–499.
- [8] E. M. Schröder, Metric geometry. In: F. Buekenhout, editor, Handbook of Incidence Geometry, 945–1013, North-Holland, Amsterdam 1995.