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Metric vector spaces

Let V be a vector space over a (commutative) field F , and
Q : V → F be a quadratic form. Then (V ,Q) is called a
metric vector space (E. M. Schröder [8]).

Throughout, we assume dim V =: n + 1 to be finite.
A vector r ∈ V is called regular if Q(r) 6= 0.
The polar form of Q is the symmetric bilinear form

B : V × V → F : (x ,y) 7→ Q(x + y)−Q(x)−Q(y).

Vectors x ,y ∈ V are orthogonal, in symbols x ⊥ y ,
precisely when B(x ,y) = 0.
The radical of B is a subspace of V , namely

V⊥ := {x ∈ V | x ⊥ y for all y ∈ V}.
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Throughout, we assume dim V =: n + 1 to be finite.
A vector r ∈ V is called regular if Q(r) 6= 0.

The polar form of Q is the symmetric bilinear form

B : V × V → F : (x ,y) 7→ Q(x + y)−Q(x)−Q(y).

Vectors x ,y ∈ V are orthogonal, in symbols x ⊥ y ,
precisely when B(x ,y) = 0.
The radical of B is a subspace of V , namely

V⊥ := {x ∈ V | x ⊥ y for all y ∈ V}.



Metric vector spaces

Let V be a vector space over a (commutative) field F , and
Q : V → F be a quadratic form. Then (V ,Q) is called a
metric vector space (E. M. Schröder [8]).
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The Clifford algebra of (V ,Q)

Each metric vector space (V ,Q) determines its Clifford algebra
Cl(V ,Q), which has the following properties:

Cl(V ,Q) is an associative unital F -algebra containing V as
a subspace.
By identifying 1 ∈ F with the unit element of Cl(V ,Q), we
obtain F ≤ Cl(V ,Q).
For all x ∈ V , we have Q(x) = x2.
For all x ,y ∈ V , we have B(x ,y) = xy + yx .
If {e0,e1, . . . ,en} is a basis of V , then{

ej1ej2 · · · ejk | 0 ≤ j1 < j2 < · · · < jk ≤ n
}
,

is a basis of Cl(V ,Q); thereby an empty product is
understood to be 1 ∈ Cl(V ,Q).
The dimension of Cl(V ,Q) equals 2n+1.
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The Clifford algebra of (V ,Q) (cont.)

The Clifford algebra Cl(V ,Q) is Z/(2Z)-graded and so it is

the direct sum of the even part Cl0(V ,Q), which is a

subalgebra of Cl(V ,Q), and the odd part Cl1(V ,Q).

In particular, F ≤ Cl0(V ,Q) and V ≤ Cl1(V ,Q).

If h ∈ Cli(V ,Q), i ∈ {0,1}, then we say that h is

homogeneous of degree i and write ∂h = i .

The main involution σ is that algebra automorphism of

Cl(V ,Q) which sends any h ∈ Cli(V ,Q), i ∈ {0,1} to

(−1)∂hh ∈ Cli(V ,Q).
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The weak orthogonal group of (V ,Q)

A mapping ψ ∈ GL(V ) is called an isometry if Q = Q ◦ ψ.

All isometries of (V ,Q) constitute the orthogonal group

O(V ,Q).

The weak orthogonal group O′(V ,Q) consists of all

isometries of (V ,Q) that fix the radical V⊥ elementwise

(E. Ellers [2]).



The weak orthogonal group of (V ,Q)

A mapping ψ ∈ GL(V ) is called an isometry if Q = Q ◦ ψ.

All isometries of (V ,Q) constitute the orthogonal group

O(V ,Q).

The weak orthogonal group O′(V ,Q) consists of all

isometries of (V ,Q) that fix the radical V⊥ elementwise

(E. Ellers [2]).



The weak orthogonal group of (V ,Q)

A mapping ψ ∈ GL(V ) is called an isometry if Q = Q ◦ ψ.

All isometries of (V ,Q) constitute the orthogonal group

O(V ,Q).

The weak orthogonal group O′(V ,Q) consists of all

isometries of (V ,Q) that fix the radical V⊥ elementwise

(E. Ellers [2]).



Reflections

Let r ∈ V be regular. Then the

mapping

ξr : V → V : x 7→ x − B(r ,x)Q(r)−1r

is called the reflection of (V ,Q) in the

direction of r .

r
x

ξr (x)

A vector y ∈ V is fixed under ξr if, and only if, y ⊥ r .

We have ξr ∈ O′(V ,Q).
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Reflections in terms of Cl(V ,Q)

Let ξr be the reflection in the direction of a regular vector r ∈ V .

Then, for all x ∈ V ,

ξr (x) = x − B(r ,x) ·Q(r)−1 · r

= x − (rx + xr) · r−2 · r

= x − rxr−1 − x

= −rxr−1

= rxσ(r)−1,

where σ denotes the main involution.



Reflections in terms of Cl(V ,Q)

Let ξr be the reflection in the direction of a regular vector r ∈ V .

Then, for all x ∈ V ,

ξr (x) = x − B(r ,x) ·Q(r)−1 · r

= x − (rx + xr) · r−2 · r

= x − rxr−1 − x

= −rxr−1

= rxσ(r)−1,

where σ denotes the main involution.



Reflections in terms of Cl(V ,Q)

Let ξr be the reflection in the direction of a regular vector r ∈ V .

Then, for all x ∈ V ,

ξr (x) = x − B(r ,x) ·Q(r)−1 · r

= x − (rx + xr) · r−2 · r

= x − rxr−1 − x

= −rxr−1

= rxσ(r)−1,

where σ denotes the main involution.



Reflections in terms of Cl(V ,Q)

Let ξr be the reflection in the direction of a regular vector r ∈ V .

Then, for all x ∈ V ,

ξr (x) = x − B(r ,x) ·Q(r)−1 · r

= x − (rx + xr) · r−2 · r

= x − rxr−1 − x

= −rxr−1

= rxσ(r)−1,

where σ denotes the main involution.



Reflections in terms of Cl(V ,Q)

Let ξr be the reflection in the direction of a regular vector r ∈ V .

Then, for all x ∈ V ,

ξr (x) = x − B(r ,x) ·Q(r)−1 · r

= x − (rx + xr) · r−2 · r

= x − rxr−1 − x

= −rxr−1

= rxσ(r)−1,

where σ denotes the main involution.



Reflections in terms of Cl(V ,Q)

Let ξr be the reflection in the direction of a regular vector r ∈ V .

Then, for all x ∈ V ,

ξr (x) = x − B(r ,x) ·Q(r)−1 · r

= x − (rx + xr) · r−2 · r

= x − rxr−1 − x

= −rxr−1

= rxσ(r)−1,

where σ denotes the main involution.



The Lipschitz group Lip×(V ,Q)

Below we follow J. Helmstetter [5].

The Lipschitz group Lip×(V ,Q) is the multiplicative group in
Cl(V ,Q) generated by the set comprising all non-zero scalars
in F , all regular vectors in V and all elements

1 + st with s, t ∈ V and Q(s) = Q(t) = B(s, t) = 0.

Up to some exceptional cases, the Lipschitz group
Lip×(V ,Q) is already generated by the set of regular
vectors in V .

Lip×(V ,Q) contains only homogeneous elements.
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The Lipschitz group Lip×(V ,Q) (cont.)

The mapping

ξ : Lip×(V ,Q)→ O′(V ,Q) : p 7→
(
ξp : x 7→ pxσ(p)−1) (1)

is a surjective homomorphism of groups, known as the twisted
adjoint representation of Lip×(V ,Q) (M. F. Atiyah, R. Bott and
A. Shapiro [1]).



Main issue

In projective metric geometry one deals with P(V ,Q), the

projective space on (V ,Q) (E. M. Schröder [8]).

If the quadratic form Q is replaced by a non-zero multiple,

say cQ with c ∈ F× := F \ {0}, then this does not affect

the geometry of P(V ,Q).

On the other hand, the Clifford algebras Cl(V ,Q) and

Cl(V , cQ) need not be isomorphic. Likewise, the Lipschitz

groups Lip×(V ,Q) and Lip×(V , cQ) need not be

isomorphic.
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If the quadratic form Q is replaced by a non-zero multiple,

say cQ with c ∈ F× := F \ {0}, then this does not affect

the geometry of P(V ,Q).

On the other hand, the Clifford algebras Cl(V ,Q) and

Cl(V , cQ) need not be isomorphic. Likewise, the Lipschitz

groups Lip×(V ,Q) and Lip×(V , cQ) need not be

isomorphic.



Main issue

In projective metric geometry one deals with P(V ,Q), the

projective space on (V ,Q) (E. M. Schröder [8]).
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Example

Let |F | = 3 and dim V = 1. We pick a basis vector e0 ∈ V and

define Q : V → F by Q(e0) = 1.

The Clifford algebra Cl(V ,Q) contains zero divisors, since

1− e0 6= 0 and (1− e0)(1 + e0) = 1− e2
0 = 1− 1 = 0.

Lip×(V ,Q) = {1,−1,e0,−e0}, where

12 = (−1)2 = e2
0 = (−e0)

2 = 1.
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Example (cont.)

Next, we replace Q with −Q.

The Clifford algebra Cl(V ,−Q) is a field with 9 elements.
Indeed, now e2

0 = −1 gives that

1− e0, (1− e0)
2 = e0,

(1− e0)
3 = 1 + e0, (1− e0)

4 = −1,
(1− e0)

5 = −1 + e0, (1− e0)
6 = −e0,

(1− e0)
7 = −1− e0, (1− e0)

8 = 1

are all non-zero elements of Cl(V ,−Q).

Lip×(V ,Q) = {1,−1,e0,−e0}, where

12 = (−1)2 = 1 6= −1 = e2
0 = (−e0)
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A Clifford algebra for (V , cQ)

Theorem ([3, Sect. 6]).

Let (V ,Q) be a metric vector space and c ∈ F×. The vector
space underlying Cl(V ,Q) can be made into a Clifford algebra
for (V , cQ) by defining a multiplication �c as follows:

Given any f ,g ∈ Cl(V ,Q) write f = f 0 + f 1 and g = g0 + g1,
where f i ,g i ∈ Cli(V ,Q) for i ∈ {0,1} and put

f �c g := f 0g0 + cf 1g1︸ ︷︷ ︸
∈Cl0(V ,Q)

+ f 0g1 + f 1g0︸ ︷︷ ︸
∈Cl1(V ,Q)

.

Our proof is based upon a result by M.-A. Knus [6, Ch. IV
(7.1.1)].
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A Clifford algebra for (V , cQ) (cont.)

Definition.
We denote the Clifford algebra for (V , cQ), as defined in the

previous theorem, as Cl(V ,Q,�c).

The even Clifford algebras Cl0(V ,Q) and Cl0(V ,Q,�c) are

identical (as algebras).

The subspaces Cl1(V ,Q) and Cl1(V ,Q,�c) are identical.

Let p,q be homogeneous elements of Cl(V ,Q). Then

p �c q = c∂p ∂qpq.
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The group G(V ,Q)

The Lipschitz group Lip×(V ,Q) gives rise to the point set

G(V ,Q) :=
{

Fp | p ∈ Lip×(V ,Q)
}

in P
(
Cl(V ,Q)

)
, which can be made into (multiplicative) group in

the following way:

(Fp)(Fq) := F (pq) for all Fp,Fq ∈ G(V ,Q).

G(V ,Q) ∼= Lip×(V ,Q)/F×.

G(V ,Q) = G(V ,Q,�c) for all c ∈ F× [3, Cor. 6.6 (e)].
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Action of G(V ,Q) on P(V ,Q)

From (1), the group G(V ,Q) acts on the projective space
P(V ,Q) as follows: For all points Fp ∈ G(V ,Q) and all flats
X ∈ P(V ,Q), we have

Fp 7→
(
X 7→ ξp(X ) = pXσ(p)−1). (2)

This action of G(V ,Q) on P(V ,Q) yields a surjective
homomorphism of groups

G(V ,Q)→ PO′(V ,Q),

where PO′(V ,Q) denotes the image of O′(V ,Q) under the
canonical homomorphism GL(V )→ PGL(V ).
The group action (2) remains unaltered when going over to
any Cl(V ,Q,�c) with c ∈ F× [3, Cor. 6.6 (f)].
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Final remarks

There are several other notions that remain unchanged

under the transition from Cl(V ,Q) to Cl(V ,Q,�c); see [3,

Cor. 6.6].

Among these notions is the point set arising from the

Lipschitz monoid. This point set is the union of two

algebraic varieties—one in P
(
Cl0(V ,Q)

)
and one in

P
(
Cl1(V ,Q)

)
(J. Helmstetter [5]).



Final remarks

There are several other notions that remain unchanged

under the transition from Cl(V ,Q) to Cl(V ,Q,�c); see [3,

Cor. 6.6].

Among these notions is the point set arising from the

Lipschitz monoid. This point set is the union of two

algebraic varieties—one in P
(
Cl0(V ,Q)

)
and one in

P
(
Cl1(V ,Q)

)
(J. Helmstetter [5]).



References

For related work see [3], [4], [5], [7], [8] and the references
therein.

[1] M. F. Atiyah, R. Bott, A. Shapiro, Clifford modules. Topology
3 (1964), 3–38.

[2] E. W. Ellers, Decomposition of orthogonal, symplectic, and
unitary isometries into simple isometries. Abh. Math. Sem.
Univ. Hamburg 46 (1977), 97–127.

[3] H. Havlicek, Projective metric geometry and Clifford
algebras. Results Math. 76 (2021), Art. No. 219, 22 pp.
Corrected version: https://arxiv.org/abs/2109.11470v2

[4] H. Havlicek, Affine metric geometry and weak orthogonal
groups. Mitt. Math. Ges. Hamburg 43 (2023), 47–70.



References (cont.)

[5] J. Helmstetter, A survey of Lipschitz monoids. Adv. Appl.
Clifford Algebr. 22 (2012), 665–688.

[6] M.-A. Knus, Quadratic and Hermitian forms over rings,
volume 294 of Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag, Berlin 1991.

[7] B. Murphy, G. Petridis, T. Pham, M. Rudnev, S. Stevens, On
the pinned distances problem in positive characteristic. J.
Lond. Math. Soc. (2) 105 (2022), 469–499.
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