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Metric vector spaces

@ Let V be a vector space over a (commutative) field F, and

Q: V — F be a quadratic form. Then (V, Q) is called a
(E. M. Schréder [8]).

Throughout, we assume dim V =: n+ 1 to be finite.

A vector r € V is called if Q(r) # 0.

@ The of Q is the symmetric bilinear form

B:VxV—=F:(xy)— Qx+y)— Qx)— Q).

® ©

Vectors x,y € V are ,insymbols x L y,
precisely when B(x,y) = 0.
@ The of B is a subspace of V, namely

Vi={xeV|xLyforalye V}
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@ For all x € V, we have Q(x) = x°.
@ Forall x,y € V, we have B(x,y) = xy + yx.



The Clifford algebra of (V, Q)

Each metric vector space (V, Q) determines its
CI(V, Q), which has the following properties:

o

CI(V, Q) is an associative unital F-algebra containing V as
a subspace.

By identifying 1 € F with the unit element of CI(V, Q), we
obtain F < CI(V, Q).

For all x € V, we have Q(x) = x?.
Forall x,y € V, we have B(x,y) = xy + yx.
If {€o,e1,...,en}is abasis of V, then

{ej1ej2---ejk|0§j1 <j2<-..<jk§n}v

is a basis of CI(V, Q); thereby an empty product is
understood to be 1 € CI(V, Q).



The Clifford algebra of (V, Q)

Each metric vector space (V, Q) determines its
CI(V, Q), which has the following properties:

@ CI(V, Q) is an associative unital F-algebra containing V as
a subspace.

@ By identifying 1 € F with the unit element of CI(V, Q), we
obtain F < CI(V, Q).

@ Forall x € V, we have Q(x) = x2.

@ Forall x,y € V,we have B(x,y) = Xy + yX.

o If {ep,eq,...,en} is abasis of V, then

{ej1ej2---ejk|0§j1 <j2<-..<jk§n}v

is a basis of CI(V, Q); thereby an empty product is
understood to be 1 € CI(V, Q).

@ The dimension of CI(V, Q) equals 2"+1,
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The Clifford algebra of (V, Q) (cont.)

@ The Clifford algebra CI(V, Q) is Z/(27Z)-graded and so it is
the direct sum of the Clp(V, Q), which is a
subalgebra of CI(V, Q), and the Cli(V, Q).

@ In particular, F < Clp(V,Q) and V < Cl{(V, Q).

e IfheCli(V,Q), i {0,1}, then we say that his

of i and write 0h = J.

@ The o is that algebra automorphism of
CI(V, Q) which sends any h € Cl;(V,Q), i € {0,1} to
(-1)%"h c CI;(V, Q).
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@ All isometries of (V, Q) constitute the orthogonal group
o(V, Q).

@ The weak orthogonal group O'(V, Q) consists of all
isometries of (V, Q) that fix the radical V* elementwise
(E. Ellers [2]).
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Let r € V be regular. Then the
mapping

GV Vixox—Brx)Qr) 'r

is called the reflection of (V, Q) in the

direction of r.

@ Avector y € Vs fixed under & if, and only if, y L r.

@ We have & € O'(V, Q).
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Then, for all x € V,

&(X)=x—-B(r,x)-Q(r)~"-r
=Xx—(rx+xr)-r2.r
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=X—rxr —X

= —rxr!



Let & be the reflection in the direction of a regular vector r € V.

Then, forall x € V,

&(X)=x—-B(r,x)-Q(r)~"-r
=Xx—(rx+xr)-r2.r

=x—rxr’

—x
= —rxr’
= rxo(r)”",

where ¢ denotes the main involution.
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The Lipschitz group Lip™(V, Q)

Below we follow J. Helmstetter [5].

The Lip*(V, Q) is the multiplicative group in
CI(V, Q) generated by the set comprising all non-zero scalars
in F, all regular vectors in V and all elements

1+ st with s, te V and Q(s) = Q(t) = B(s,t) =0.

@ Up to some exceptional cases, the Lipschitz group
Lip*(V, Q) is already generated by the set of regular
vectors in V.

e Lip*(V, Q) contains only homogeneous elements.



The mapping

¢ Lip*(V,Q) » O'(V,Q): p— (&p: x = pxo(p)™") (1)

is a surjective homomorphism of groups, known as the fwisted
adjoint representation of Lip* (V, Q) (M. F. Atiyah, R. Bott and
A. Shapiro [1]).
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Main issue

In one deals with P(V, Q), the
projective space on (V, Q) (E. M. Schrdder [8]).
@ If the quadratic form Q is replaced by a non-zero multiple,
say cQ with ¢ € F* := F \ {0}, then this does not affect
the geometry of P(V, Q).
@ On the other hand, the Clifford algebras CI(V, Q) and
CI(V, cQ) need not be isomorphic. Likewise, the Lipschitz
groups Lip*(V, Q) and Lip*(V, cQ) need not be

isomorphic.
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Let |F| =3 and dim V = 1. We pick a basis vector ey € V and
define Q: V — F by Q(ep) = 1.

@ The Clifford algebra CI(V, Q) contains zero divisors, since
1-e#0 and (1 —ey)(1+e)=1-€=1-1=0.
e Lip*(V,Q)={1,-1,e9, —€p}, Where

12 (12 = ef = (~ep=1.
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Next, we replace Q with —Q.

@ The Clifford algebra CI(V, —Q) is a field with 9 elements.
Indeed, now €3 = —1 gives that

1— e, (1-e)?= e,
(1—e)®= 1+ey, (1 —ep)* =—1,
(1—ep)®=—1+ey, (1 —e)® = —e,
(1 —90)72—1 — €p, (1 —80)8: 1

are all non-zero elements of CI(V, —Q).
o Lip™(V,Q) = {1,-1,e0, —eo}, where

1= ()2 =141 = ef = (~eo)?
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Let (V, Q) be a metric vector space and ¢ € F*. The vector
space underlying CI(V, Q) can be made into a Clifford algebra
for (V, cQ) by defining a multiplication ®. as follows:




A Clifford algebra for (V, cQ)

Theorem ([3, Sect. 6]).

Let (V, Q) be a metric vector space and ¢ € F*. The vector
space underlying CI(V, Q) can be made into a Clifford algebra
for (V, cQ) by defining a multiplication ®. as follows:
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A Clifford algebra for (V, cQ)

Theorem ([3, Sect. 6]).

Let (V, Q) be a metric vector space and ¢ € F*. The vector
space underlying CI(V, Q) can be made into a Clifford algebra
for (V, cQ) by defining a multiplication ®. as follows:

Given any f,g € Cl(V, Q) write f = fo + f1 and g = g, + 91,
where f;, g; € Cl;(V, Q) fori € {0,1} and put

fOc g = fogo + cf19; +fog1 + F19q -

-~ -~

€Clo(V,Q) €Cli(V,Q)

Our proof is based upon a result by M.-A. Knus [6, Ch. IV
(7.1.1)].



Definition.
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A Clifford algebra for (V, cQ) (cont.)

Definition.
We denote the Clifford algebra for (V, cQ), as defined in the

previous theorem, as CI(V, Q, ®¢).

@ The even Clifford algebras Clo(V, Q) and Clo(V, Q, ®¢) are
identical (as algebras).

@ The subspaces Cl{(V, Q) and Cly(V, Q, ®¢) are identical.

@ Let p, g be homogeneous elements of CI(V, Q). Then

p ©c q = c?P9pq.
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The Lipschitz group Lip* (V, Q) gives rise to the point set

G(V,Q) = {Fp|pelLip*(V,Q)}

in P(CI(V, Q)), which can be made into (multiplicative) group in
the following way:

(Fp)(Fq) :== F(pq) forall Fp,Fqc G(V,Q).

e G(V,Q)=Lip*(V,Q)/F*.
® G(V,Q)=3(V,Q,e,) for all ¢ € F* [3, Cor. 6.6 (e)].
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Action of G(V, Q) on P(V, Q)

@ From (1), the group G(V, Q) acts on the projective space
P(V, Q) as follows: For all points Fp € G(V, Q) and all flats
X € P(V,Q), we have

Fp— (X = &p(X) = pXo(p)™"). 2

@ This action of G(V, Q) on P(V, Q) yields a

G(V,Q) = PO(V,Q),

where PO'(V, Q) denotes the image of O'(V, Q) under the
canonical homomorphism GL(V) — PGL(V).

@ The group action (2) remains unaltered when going over to
any CI(V, Q, ®¢) with ¢ € F* [3, Cor. 6.6 (f)].
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@ There are several other notions that remain unchanged
under the transition from CI(V, Q) to CI(V, Q, ®¢); see [3,
Cor. 6.6].

@ Among these notions is the point set arising from the
Lipschitz monoid. This point set is the union of two
algebraic varieties—one in P(Clo(V, Q)) and one in
P(Cli(V,Q)) (J. Helmstetter [5]).



For related work see [3], [4], [5], [7], [8] and the references
therein.
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