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Abstract

Risk and uncertainty significantly shape human lives in many different ways, at different levels and over
different time scales. Examples can be found in the savings decisions at the individual level, which are
driven by short-term fluctuations in labour income. More long-term considerations are relevant for the
behaviour with respect to health. Unhealthy behaviour in the present can have long-term impacts on
health or even affect ones mortality risk in the future. Regarding risks affecting a multitude of people
simultaneously (instead of independently), we can consider natural disasters or other environmental
risks. These types of risks are not only relevant for policy makers on the macro level, but for decision
making at the individual level as well. On the other hand, as the Covid-19 pandemic has shown,
individual risks like a virus infection can also have aggregate effects, which make macro level intervention
necessary.

This thesis discusses human behaviour with respect to risk and uncertainty in these aforementioned
settings. The focus of each of the three models presented is on a different type of risk ranging from
health risk on the individual and macro level to environmental risk. Different frameworks are used to
account for the characteristics of each type of risk.

The first paper introduces large health shocks into individual life-cycle models. Compared to smaller
shocks, which mostly have transitory or temporary effects on a person’s life, large shocks (such as a
cancer diagnosis or a cardio-vascular disease) have the potential to put the individuals life course on a
completely different trajectory. Although large health shocks cannot be completely eliminated through
any type of behaviour, the individual can affect the hazard rate of the shock using general and disease
specific health investments. On the other hand one can also undertake precautionary measures for the
time after a potential shock to lessen its impact, such as keeping precautionary savings to finance future
health care.

Using this framework we extend the definitions of the classical statistical value of life with respect
to different aspects of the individual’s life and apply these new valuations to characterise the optimal
health investments over the life-cycle. Moreover we derive a decomposition for each valuation with
respect to its different contributing channels. We also calibrate the model for the scenario of a potential
cancer diagnosis for individuals in the US and are able to replicate the health decisions and outcomes
qualitatively and quantitatively. The results of the calibration exercise allow us to numerically assess the
impact of a cancer diagnosis on general consumption, and health investments and outcomes compared to
a cancer-free person. Moreover, we identify the role of the timing of the shock, i.e. the age at which the
individual is diagnosed with cancer, with respect to the optimal decision making. Using a decomposition
of Euler-type equations for consumption and health investments we further establish several different
drivers for the optimal behaviour resulting from the cancer diagnosis before and after it has occurred.

The second paper considers the optimal health policy on the macro level facing the pandemic spread
of an infections disease. The work extends a SIR-compartment model with respect to several aspects.
Distinction between light and heavy courses of the disease allows for a proper differentiation between
individuals contributing to the spread of infections and people putting burden on the health capacities
of an economy. Additional to the commonly used interventions in the form of lockdowns to reduce the
transmission rates we introduce testing as a potential strategy for the policy maker. Testing allows
to identify infectious individuals and remove them from the transmitting population. Furthermore we
allow for heterogeneity within the population analysed by introducing a network structure. This enables

9



10

us to consider the optimal containment of the pandemic across a regional network. At the same time a
network is also able to capture the interactions of different social groups within the same region. In both
cases (or even a combination of them) we are able to assign each group heterogeneous characteristics
from both an economic and epidemiological point of view. Using this framework we can identify group
specific optimal intervention strategies, which reduce the aggregated burden of the pandemic compared
to interventions applied uniformly.

Solving the model, we derive analytical characterisations of the optimal policy and identify a trade-off
between investments in testing and lockdowns. Furthermore we illustrate the capabilities of the model
numerically for a Covid-like disease (similar epidemiological characteristics) in a three-region setting
with an initial hotspot of infections in one of the regions. We show that region-specific measures are set
to simultaneously avoid overburdening the hospital capacities and homogenise the pandemic situation
across the different regions. Moreover we find that testing allows for both reductions in the total costs
of the pandemic as well relaxing of lockdown measures. However, the impact of testing is substantially
higher, if tests are allocated more specifically to individuals with a high probability of being infected
instead of broadly across the population. This suggests high potential benefits from properly conducted
contact tracing.

In the third paper we return to the decision making process at the individual level. Motivated by the
empirical literature assessing the correlation of education and different aspects of household behaviour
with respect to disaster risk, we introduce a dynamic household model to explain these correlations
systematically. Within the model we incorporate the four main channels through which education
shapes the individual decision making found in the literature: income, awareness, time preference and
access to prevention measures.

In our framework households face the risk of losing substantial amounts of their physical wealth (e.g.
housing or other valuable items), in case they are hit by a natural disaster. These losses can be replaced
through financial efforts, which can require reductions in consumption and/or financial saving and hence
need to be carefully chosen. On the other hand, these ex-post strategies can be substituted by ex-ante
interventions which either reduce the share of physical assets destroyed during a disaster (e.g. flood
protection measures) or decrease the probability that the household is affected in the first place (e.g.
relocation to different settlement).

Using empirical data from Thailand and Vietnam we parameterize and calibrate the model for the
numerical solution. Utilizing Monte-Carlo-Simulations we generate a synthetic population, which repli-
cates the socio-economic structure of the empirical data. We find, that our model is able to replicate
the empirical household outcomes qualitatively well. Graphical illustrations and regression analysis are
used to assess the impact of the educational distribution on the equilibrium outcomes of households
with respect to assets and disaster risk. We also investigate how the educational level affects the de-
cision making of households under similar conditions. Furthermore we decompose the total effects of
education on risk related variables into their direct and indirect impact channels. After controlling for
income, awareness, prevention access and time preference, the education level (and its impact on the
households expected income developments) still remains the most influential factor among all household
characteristics considered with respect to risk behaviour.

To conclude, this thesis illustrates three examples of human behaviour with respect to different types
of risk in the contexts of individual health, public health and environmental disasters. Although this
also requires different methodological approaches, the key aspect of finding trade-offs between preventive
efforts in anticipation of a potential shock and decisions to adjust/react after the shock are present in all
of them. The final outcomes naturally depend on the specific setting and characteristics of the decision
maker. In conclusion, this thesis provides strong insights into the driving forces behind the optimal
decisions at the individual and macro level when facing risk and uncertainty.



Kurzfassung

Risiken und Ungewissheiten prägen das menschliche Leben auf vielfältige Weise, auf verschiedenen Ebe-
nen und über unterschiedliche Zeiträume hinweg. Beispiele dafür finden sich in den Sparentscheidungen
auf individueller Ebene, die von kurzfristigen Schwankungen des Arbeitseinkommens getrieben werden.
Für das Gesundheitsverhalten andererseits sind längerfristige Überlegungen entscheidend. Ungesundes
Verhalten in der Gegenwart kann sich langfristig auf die Gesundheit auswirken oder sogar das zukün-
ftige Mortalitätsrisiko beeinflussen. Naturkatastrophen oder andere Umweltrisiken sind andererseits
Ereignisse, die Menschen nicht auf individueller Ebene sondern gleichzeitig und collektiv betreffen kön-
nen. Diese Arten von Risiken sind nicht nur für politische Entscheidungsträger auf der Makroebene rel-
evant, sondern auch für die Entscheidungsfindung auf individueller Ebene. Wie die Covid-19-Pandemie
wiederum gezeigt hat können individuelle Risiken (wie eine Virusinfektion) aufgrund ihrer aggregierten
Auswirkungen ein Eingreifen auf der Makroebene erforderlich machen.

Diese Dissertation behandelt menschliches Verhalten in Bezug auf Risiko und Unsicherheit in den
oben beschriebenen Situationen. Der Fokus der drei vorgestellten Modelle liegt jeweils auf einem an-
deren Risikotypus, i.e. vom Gesundheitsrisiko auf individueller und Makroebene bis zum Umweltrisiko.
Unterschiedliche Modellierungsansätze ermöglichen es die speziellen Merkmale jeder Risikoart zu berück-
sichtigen.

Das erste Modelle behandelt die Erweiterung klassischer Lebenszyklusmodelle um signifikante Gesund-
heitsschocks. Im Vergleich zu kleineren Schocks, die meist nur temporäre Auswirkungen auf das Leben
einer Person haben, verfügen ausgeprägte Schocks (wie z.B. eine Krebsdiagnose oder eine Herz-Kreislauf-
Erkrankung) über as Potenzial, den Lebensverlauf auf eine völlig andere Bahn zu lenken. Obwohl
ausgeprägte Gesundheitsschocks durch keinerlei Maßnahmen komplett eliminiert werden können, kann
durch krankheitsspezifische Gesundheitsinvestitionen die Auftretenswahrscheinlichkeit auf individuelle
Ebene beeinflusst werden. Andererseits können alternativ auch Vorsorgemaßnahmen getroffen werden
für die Zeit nach eine möglichen Schock, um dessen Auswirkungen abzufedern (z.B. Akkumulierung
zusätzlicher Ersparnisse um die zusätzlichen Gesundheitsausgaben zu finanzieren).

Im Rahmen dieses Modells erweitern wir die Definition des klassischen Value-of-Life auf weitere As-
pekte des persönlichen Lebens (insbesondere im Bezug auf Gesundheit) und verwenden diese neuen
Bewertungen, um die optimalen Gesundheitsinvestitionen über den Lebenszyklus zu charakterisieren.
Darüber hinaus präsentieren wir eine Zerlegung für jede dieser Bewertung in Bezug auf ihre verschiede-
nen Einflussfaktoren. Anschließend kalibrieren wir das Modell für das Szenario einer potenziellen Kreb-
sdiagnose für Personen in den USA und sind in der Lage, die individuellen Gesundheitsentscheidungen
und -entwicklungen qualitativ und quantitativ zu replizieren. Außerdem ermöglichen die Ergebnisse der
Kalibrierung die Auswirkungen einer Krebsdiagnose auf den allgemeinen Konsum sowie die Gesund-
heitsinvestitionen und -entwicklungen im Vergleich zu einer nicht diagnostizierten Person numerisch zu
evaluieren. Weiters können wir die Rolle des Zeitpunkts des Schocks, d. h. des Alters, in dem eine
Person mit Krebs diagnostiziert wird, im Hinblick auf die optimale Entscheidungsfindung analysieren.
Unter Verwendung von Zerlegungen der Euler-Gleichungen für Konsum und Gesundheitsinvestitionen
ermitteln wir identifizieren wir mehrere unterschiedliche Treiber für das optimale Verhalten vor und
nach einer Krebsdiagnose.

Der zweite Teil dieser Dissertation betrachtet die optimale Gesundheitspolitik auf der Makroebene
angesichts der pandemischen Ausbreitung einer Infektionskrankheit. Diese Arbeit erweitert ein SIR-
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Compartment-Modell in Bezug auf mehreren Aspekte. Die Unterscheidung zwischen leichten und schw-
eren Krankheitsverläufen ermöglicht eine entsprechende Unterscheidung zwischen Personen, die zur
Ausbreitung von Infektionen beitragen, und Personen, die die Kapazitäten des Gesundheitssystems be-
lasten. Zusätzlich zu den häufig verwendeten Interventionen in Form von Lockdowns zur Reduzierung
der Übertragungsraten führen wir Tests als mögliche Strategie für die politischen Entscheidungsträger
ein. Durch Tests können infektiöse Personen identifiziert und vom Infektionsgeschehen getrennt wer-
den. Um darüber hinaus die Heterogenität innerhalb der analysierten Population zu berücksichtigen
führen wir eine Netzwerkstruktur ein. Dies ermöglicht es uns, die optimale Eindämmung der Pandemie
über ein regionales Netzwerk hinweg zu betrachten. Gleichzeitig ist eine Netzwerkstruktur auch in der
Lage, die Interaktionen verschiedener sozialer Gruppen innerhalb derselben Region zu replizieren. In
beiden Fällen (oder auch in Kombination) können wir dadurch jeder Gruppe sowohl aus ökonomischer
als auch aus epidemiologischer Sicht heterogene Merkmale zuordnen. Mit Hilfe dieses Frameworks kön-
nen wir gruppenspezifische optimale Interventionsstrategien identifizieren, die die Gesamtbelastung der
Pandemie im Vergleich zu uniform angewandten Interventionen reduzieren.

Die analytische Lösung des Modells erlaubt uns die optimale Strategie zu charakterisieren und einen
Trade-off zwischen Investitionen in Tests und Lockdowns zu identifizieren. Darüber hinaus veran-
schaulichen wir die potentiellen Möglichkeiten des Modells numerisch für eine Infektionskrankheit mit
Covid-ähnlichen epidemiologische Merkmalen in einem Drei-Regionen-Setting mit einem anfänglichen
Infektionsherd in einer der Regionen. Wir zeigen, dass die optimalen regionalspezifische Maßnahmen
beinhalten gleichzeitig eine Überlastung der Krankenhauskapazitäten zu vermeiden und die Pandemiesi-
tuation über die verschiedenen Regionen hinweg zu homogenisieren. Weiters stellen wir fest, dass Tests
sowohl eine Reduzierung der Gesamtkosten der Pandemie als auch eine Reduzierung der Lockdown-
Maßnahmen ermöglichen. Die Effekt von Tests ist jedoch wesentlich höher, wenn diese für die geziel-
tere Testung von Personen mit hoher Wahrscheinlichkeit einer Ansteckung verwendet werden, anstatt
uniform über die Bevölkerung verteilt zu werden. Dies deutet auf hohe potenzielle Vorteile einer gewis-
senhaft durchgeführten Kontaktverfolgung hin.

Für den dritten Teil des Dissertation kehren wir zum Entscheidungsfindungsprozess auf individueller
Ebene zurück. Motiviert durch die empirische Literatur, die den Zusammenhang zwischen Bildung und
verschiedenen Aspekten des Haushaltsverhaltens in Bezug auf Risiken von Naturkatastrophen unter-
sucht, entwickeln wir ein dynamisches Haushaltsmodell, das versucht diese Zusammenhänge systema-
tisch zu erklären. In diesem Modell integrieren wir die vier Hauptkanäle aus der empirischen Literatur,
durch die Bildung die individuelle Entscheidungsfindung beeinflusst: Einkommen, Risikobewusstsein,
Zeitpräferenz und Zugang zu Präventionsmaßnahmen.

In unserem Framework sind Haushalte dem Risiko ausgesetzt, beträchtliche Mengen ihres materiellen
Vermögens (z.B. Wohnraum oder andere Wertgegenstände) zu verlieren, falls sie von einer Naturkatas-
trophe getroffen werden. Diese Verluste können mit Hilfe finanzieller Anstrengungen ersetzt werden,
die jedoch im Gegenzug Reduzierung des Konsums und/oder finanzielle Einsparungen erfordern können
und daher sorgfältig behandelt werden müssen. Andererseits können diese Ex-Post-Strategien poten-
tiell durch Ex-Ante-Interventionen ersetzt werden, die entweder den Anteil der bei einer Katastrophe
zerstörten Sachwerte (z.B. Hochwasserschutzmaßnahmen) verringern oder die Wahrscheinlichkeit ver-
ringern, dass der Haushalt überhaupt von einer Katastrophe betroffen ist (z.B. Umzug an einen anderen
Siedlungsort).

Für die numerische Lösung parametrisieren und kalibrieren wir das Modell anhand empirischer Daten
aus Thailand und Vietnam. Mithilfe von Monte-Carlo-Simulationen generieren wir eine synthetische
Population, die die sozioökonomische Struktur der empirischen Daten repliziert. Die Ergebnisse zeigen,
dass unser Modell in der Lage ist, die empirischen Haushaltsdaten qualitativ zu replizieren. Mit Hilfe von
geeigneten grafischen Darstellungen und Regressionsanalysen illustrieren wir den Einfluss von Bildung
auf die Gleichgewichtsverteilungen von Wohlstand und Katastrophenrisiko. Außerdem untersuchen wir,
wie sich das Bildungsniveau auf die Entscheidungsfindung von Haushalten unter ähnlichen Vorausset-
zungen auswirkt. Darüber hinaus zerlegen wir die Gesamteffekte von Bildung auf risikorelevante Vari-
ablen in ihre direkten und indirekten Wirkungskanäle. Selbst unter Berücksichtigung von Einkommen,
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Risikobewusstsein, Präventionszugang und Zeitpräferenz bleibt das Bildungsniveau (und sein Einfluss
auf die erwartete Einkommensentwicklung der Haushalte) immer noch der einflussreichste Faktor unter
allen betrachteten Haushaltsmerkmalen in Bezug auf das Risikoverhalten.

Zusammenfassend veranschaulicht diese Arbeit drei Beispiele menschlichen Verhaltens in Bezug auf
unterschiedliche Typen von Risiken im Zusammenhang mit individueller Gesundheit, öffentlicher Gesund-
heit und Umweltkatastrophen. Obwohl wir für die Analyse unterschiedliche methodische Ansätze ver-
wenden, ist der zentrale Aspekt Kompromisse zwischen präventiven Maßnahmen in Erwartung eines
potenziellen Schocks und adaptiven Reaktionen nach dem Schock zu finden, in allen Modellen vorhan-
den. Die detaillierten Ergebnisse hängen dabei klarerweise von den spezifischen Rahmenbedingungen
und den Eigenschaften des Entscheidungsträgers ab. In seiner Gesamtheit bietet diese Dissertation
tiefgehende Einblicke in die treibenden Kräfte hinter den optimalen Entscheidungen unter Einfluss von
Risiko und Unsicherheit auf individueller und Makroebene.
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Chapter 1

Introduction and Motivation

Dealing with risk and uncertainty in every day life is inherent to the human existence. However the
extensive formalisation of random events only dates back to the 17th century. The contributions of
mathematician Blaise Pascal were essential for the development of probability theory, which were in-
terestingly motivated by problems arising in gambling. On the other hand his argumentation on the
rationality of believing in god (or at least living as if god exists) was one of the first known considera-
tion of expected utility maximisation and sets the origin for the emergence and progression of expected
utility theory.1

In the present day modelling of uncertainty and risk is naturally far more developed as numerous
different techniques for the formalisation of these problems and their solution have been established
especially since the second half of the 20th century. Before giving an overview of the historic progression
of the scientific literature on risk behaviour, we start with definitions of subsequently used relevant
terminology. As different research areas evolve in parallel, popular terms often are improperly (and
wrongfully) used interchangeably. This holds true for everyday language, but also the scientific language.

For the definition of the term Risk itself, we follow the glossary of the IPCC (Masson-Delmotte et
al., n.d.) describing it as the result of the combination of hazard, exposure and vulnerability. Risk covers
“the potential for adverse consequences where something of value is at stake and where the occurrence
and degree of an outcome is uncertain.” Hazard captures "the potential occurrence of a natural or
human-induced physical event or trend that may cause loss of life, injury, or other health impacts,
as well as damage and loss to property, infrastructure, livelihoods, service provision, ecosystems and
environmental resources”, and therefore describes the aspects of risk on the large/aggregated scale.
Meanwhile exposure and vulnerability describe facets on smaller scales or individual levels. Exposure
specifies "the presence of people (. . .) or economic, social, or cultural assets in places and settings that
could be adversely affected. Vulnerability is maybe the most abstract aspect of risk and is defined
as "The propensity or predisposition to be adversely affected” or in other words covers the extent of
affectedness in case an individual (or other entity) is hit by an adverse event.

Another term often used in the same vein (especially in the context of socio-ecological models) is
Resilience. However, as Li et al. (2018) state many different interpretations of resilience have been
used in the literature. From a systems approach one of the most practical definition might originate
from Holling (1973): ”Resilience is concerned with the capacity of a system to persist and develop in
its regime without shifting into another regime.”2 In their discussion of various aspects of resilience, Li
et al. (2018) also tie in the terms of mitigation and adaptation. While both try to increase the resilience
of a system, their means for success are substantially different. Mitigation efforts aim to reduce the
probability of adverse events occurring in the first place, whereas Adaptation includes preparations
and capacity building before the adverse event. Proper adaptation measures lead to effective reactions
to a shock and potentially remove the disruptive nature of such an event.

While adaptation and mitigation are often used in context of (larger scale) socio-ecological models,
1See Lengwiler (2009) for a comprehensive summary of the origins of expected utility theory.
2See Li et al. (2018) p. 311.
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on the smaller scale (or individual level) terms like prevention and precaution are more common. As
Courbage et al. (2013) describe, Prevention measures themself can be classified into two subcategories.
Loss prevention (or also called self-protection) has similar objective as mitigation, i.e. to reduce the
probability of an adverse event actually occurring. Loss reduction (or self-insurance) measures on
the other hand have the aim to reduce the impact of a negative shock once it strikes and hence has
similarities to the concept of adaptation described above. Tying back to definitions of hazard, exposure
and vulnerability, loss prevention/mitigation can be seen as actions to reduce hazard and/or exposure,
whereas loss reduction/adaptation targets the vulnerability aspect of risk.

Independent of the terminology used, the points to be answered within the modelling effort in most
contexts mostly revolve around the following questions:

(i) What efforts should be made before an adverse event has occurred? These efforts can include:
• Measures to reduce the probability of the event occurring.
• Interventions to reduce the direct impact of the event.
• Efforts to increase capabilities to deal with the effects of the event ex-post.

(ii) What is the optimal strategy to deal with the impacts of a negative shock in case it occurs?

(iii) What are the trade-offs between ex-ante and ex-post measures?

This thesis has the goal to answer these questions and generate new insights in the fields of health and
environmental economics. We consider decisions on the individual level as well as optimal policies on
larger scales. Thereby the models used are based on a long history of developments in different fields of
economics and mathematics and contain different systemic approaches. For the three models presented
in this thesis we choose the modelling approach according to specific needs of the research questions
posed. The first two models follow the latest developments in optimal control theory, whereas the third
model is based on a dynamic programming approach. The historic progress since the second half of
the 20th century for the two distinct model classes applied to the modelling of risk behaviour is quite
different.

For the branch of literature using optimal control theory, Yaari (1965) and Kamien and Schwartz (1971)
were the first to introduce a stochastic element into an optimal control model, i.e. a stochastic time-
horizon. While the former considers the optimal consumption over the life-cycle of individuals with
uncertain time of death, the latter investigates the handling of stochastic failure of production machin-
ery. Both works build a foundation for large amounts of literature in their respective areas. In health
economics, e.g. the development and formalisation of the concept of the value of life (i.e. the willingness
to pay for a reduction in the mortality risk) in Rosen (1988) is based on the framework of Yaari (1965)
with uncertain end of life. Many other publications like Ehrlich (2000), Schuenemann et al. (2017) or
Kuhn et al. (2011) (to name just a few) consider uncertain survival as an incentive for investments into
individuals health. Kamien and Schwartz (1971) on the other hand inspired consecutive works of Alam
et al. (1976), Eichenbaum et al. (2021) and Gaimon and Thompson (1984). However, both approaches
of Yaari (1965) and Kamien and Schwartz (1971) share that the salvage value of the proposed optimal
control model is equal to zero.

In the field of environmental economics Reed applied similar frameworks with stochastic time-frames
(Reed, 1984; Reed, 1987; Reed, 1989) to the optimal protection of natural resources. Thereby he used
non-zero salvage-functions in the process and transformed the models into equivalent deterministic ones.
Boukas et al. (1990), Sorger (1991) and Carlson et al. (2012) formalised this framework with a given
salvage-function and analysed models of that kind from a theoretical point of view. Although all these
findings allow for assessments and analysis of prevention strategies in the face of risk and uncertainty,
models with exogenous salvage-functions do not provide information on the optimal adaptation and
reaction strategies after a stochastic shock. To resolve this issue multi-stage optimal control models
emerged in the literature. Tomiyama (1985) and Tomiyama and Rossana (1989) develop theoretical tools
for two-stage optimal control models, however, the time of the switch between the two stages thereby is
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a control variable. Hence, these frameworks are not directly applicable for the modelling of a stochastic
adverse event. Tsur and Zemel (1995); Tsur and Zemel (1996); Tsur and Zemel (1998) discussed the
scenario of a state-dependent stochastic regime shift in an environmental economic setting, yet still
used exogenous “post-event” salvage-functions. Polasky et al. (2011) and De Zeeuw and Zemel (2012)
were one of the first works considering a stochastic switch between two different regimes with explicit
consideration of the solution of the second stage. Nevertheless, their insights were still limited to some
degree, as they either needed to analytically solve for the optimal solution of the second stage (which
is only possible for certain types of models) or derived numerical solutions using specifically developed
numerical methods (again not generally applicable).

Most recently Wrzaczek et al. (2020) proved the general equivalence of two-stage optimal control
problems with stochastic switching and deterministic vintage-structured optimal control models and
showed how the former can be transformed into the latter. This transformation significantly simplifies
the analytical and numerical treatment of this model class and has been applied in several different
areas (Kuhn and Wrzaczek, 2021; Buratto et al., 2022). The first part of the thesis aims to substantially
contribute to and extend this strain of the literature with an application of the transformation technique
to an individual life-cycle model with potential large shocks to health (see Chapter 2).

On the other hand, literature based on dynamic programming started the inclusion of stochastic
elements by extending the Hamilton-Jacobi-Bellman (HJB) equations (Bellman, 1954) with Markov-
processes. Schechtman (1976) presents the stochastic income fluctuation problem and uses stochastic
dynamic programming for the solution. Kydland and Prescott (1982) significantly extend these findings
and build the foundation for the extensive Real-Business-Cycle (RBC) literature. This framework is
quite flexible and almost any stochastic process, which can be described with a Markov-Process, is
relatively easy to incorporate into the basic framework. However, this flexibility results in the downside
of comparatively few analytical insights into the optimal strategies and the dependency on numerical
results is significant. Despite these downsides we find this framework to be most appropriate way to
assess the behaviour of households with respect to disaster risk (see Chapter 4).

For both types of approaches (optimal control as well as dynamic programming) the possibilities to
gain theoretical insights become increasingly scarce, as models get more involved. Hence, in a lot of
cases we have to rely on the numerical solution of the model to gain insights on the dynamics of the
model and the optimal solutions. However, the process of deriving an optimal solution numerically
is far from a trivial problem itself. For optimal control models the Pontryagin Maximum Principle
(Pontryagin, 1987) provides a set of ordinary differential equations (ODE) with boundary conditions
and point-wise optimality conditions of the Hamiltonian.

For the solution of dynamic programming problems the stochastic HJB equations (Bellman, 1954)
provide optimality conditions for all possible combinations of state variable, however, in general they
involve an unknown value-function. Again, this poses significant difficulties for the analytical inspection
and numerical solution of the model.

Standing on the shoulders of the literature discussed above, the aim of this thesis is to enhance the
understanding of human decision making in face of risk and uncertainty. Chapter 2 shows how large
stochastic shocks to health can be integrated into life-cycle models. Compared to smaller transitory
shocks with mostly temporary effects, large health shocks can put an individual’s life on a whole dif-
ferent trajectory. We transform the arising two-stage optimal control model into a vintage-structured
optimal control model (following Wrzaczek et al. (2020)) and derive the driving forces of the individuals
preventive and precautionary behaviour in anticipation of a potential diagnosis and adaptive decisions
after a diagnosis for all potential shock scenarios. We solve the model numerically for a potential cancer
diagnosis for an individual in the United States and assess the impacts of a cancer diagnosis on various
aspects of the individual’s life.

Chapter 3 remains in the field of health economics, but switches the perspective from the individual
to a policy maker as she faces the problem of containing the spread of an infectious disease across
a network. Beside lockdown measures to decrease the transmission rates we introduce testing as a
potential policy measure. We derive some analytical insights on the lockdown and testing strategies
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and assess the group-specific heterogeneous policy measures within a numerical example to illustrate
the capabilities of the framework.

For the numerical solution of the optimal control models in these first two chapters we use a gradient-
based approach. We base the algorithm on the work of Veliov (2003) and extend it according to the
specific needs of our models (e.g. introduce a solution process for state end-constraints or non-trivial
feasible regions of the control variables).

In Chapter 4 we return to decision making on the individual level. In this model we investigate the
behaviour of households with respect to risks from natural disasters. We investigate the interaction
between different strategies to reduce disaster risk including mitigation measures such as relocation of
the settlement location as well as loss reduction efforts like insurance and personal damage protection.
Furthermore households can increase their resilience by keeping financial savings to increase their adap-
tive capabilities after a natural disaster. We approach the numerical solution of this model with well
established value function iteration (VFI) techniques. As this method is prone to the curse of dimen-
sionality, substantial computational efforts had to be made to obtain solutions in reasonable time. With
consequent Monte-Carlo-simulations we assess the impact of different household characteristics with a
special focus on the direct and indirect effects of education on disaster risk behaviour.

Finally, Chapter 5 provides some ultimate conclusions and summarises the findings of this thesis. We
also discuss some of limitations of the models and present an outlook for potential extensions and future
work in related areas.



Chapter 2

Integrating large health shocks into
life-cycle models -
Modelling impacts of a cancer
diagnosis

This chapter in its entirety directly corresponds to the paper Freiberger, Kuhn and Wrzaczek (2022b) in
final preparation for submission to Econometrica. The work received financial support from the FWF
within the project “Life-cycle behaviour in the face of large shocks to health” (P 30665-G27).

Abstract
Most of the models on the life-cycle utilization of health care assume that individuals are able to foresee
the development of their health perfectly. However, health shocks with significant impact (e.g. severe
life-threatening conditions, the onset of chronic disease or accidents) should not be averaged into a mean
value, as they have the potential to put the life-course onto a different trajectory. In this paper, we
introduce a dynamic optimal control framework incorporating a stochastic health shock with individuals
allocating their resources to consumption and different kinds of health care over their life-cycle. We
distinguish between general health care and shock specific prevention, acute and chronic care. This set-
up enables us to analyse how the health risk shapes individual behaviour with respect to the different
types of health care and how health shocks change the trajectories of consumption and savings. Newly
developed transformation techniques allow us to investigate the optimal decisions made in anticipation
of a potential health shock and the optimal reaction to all possible shock scenarios. We are able to
obtain analytic expressions for the consumption and health care utilization profiles before and after the
shock and identify the driving forces. Furthermore, we extend the value of life concept to other aspects
of individual health. Finally, we illustrate our findings by calculating a numerical solution calibrated to
an individual facing a potential cancer diagnosis in the US.

2.1 Introduction
Typically, life-cycle models of health behaviour take an ex-ante stance, where a representative individual
is subject to the depreciation of a health stock (Grossman, 1972), subject to some mortality process
(Ehrlich, 2000; Murphy and Topel, 2006; Hall and Jones, 2007; Kuhn et al., 2015), or subject to
the accumulation of deficits (Dalgaard and Strulik, 2014). Individuals fix their life-cycle decisions in
perfect anticipation of these processes, regardless of whether they are deterministic or stochastic. In a
similar vein, the statistical value of a life is based on an ex-ante evaluation of survival (Shepard and
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Zeckhauser, 1984; Rosen, 1988; Murphy and Topel, 2006; Hall and Jones, 2007; Kuhn et al., 2010; Kuhn
et al., 2011; Kuhn et al., 2015).

While hugely simplifying analytical complexity, the ex-ante perspective amounts to a gross stylization.
In reality, health is not developing according to a smooth process which may be shaped to some extent
by health investments, but it is rather subject to smaller or greater shocks. Some of these, such as severe
life-threatening diseases (e.g. heart attacks, stroke or cancer) or accidents as well as chronic diseases
(e.g. diabetes or dementia), have the potential to put the entire life-course on a different trajectory.
Even if individuals are anticipating the risk of such a shock, the optimization problem changes in as far
as the shock subjects the individual to different constraints (e.g. a permanently lower income stream due
to disability or a persistently higher mortality risk after the shock) and, thus, to a different behavioural
regime. In consequence, individuals are also prone to alter their behaviour prior to a health shock by
engaging in precautionary saving or in preventive actions. The nature and intensity of such actions is
shaped by institutions, such as the availability (or not) of health or disability insurance, as well as by
policy interventions, such as the subsidization of preventive behaviour.

In this paper, we detail a life-cycle model, allowing us to study large, singular shocks to health. Thus,
we consider a life-cycle model with endogenous health and survival in the spirit of Kuhn et al. (2015)
but allow for the onset of a disease or accident at some random time s. The individual is only aware
of the risk, modelled as a hazard rate, that can be influenced through prevention. If the health shock
materializes at s, the health of the individual is affected, implying that (i) acute life-saving and/or
disability-preventing health care may be required at s; (ii) mortality may be permanently elevated in
the course of a chronic disease; (iii) a state of disease/disability emerges that may subsequently affect
the individual’s utility and earnings; (iv) chronic health care may be required to mitigate the adverse
longer-term consequences of the shock. Since we model the life of an individual over time (i.e. age)
and since the health shock can set in at any time during the life-course, the health state, assets and
the individual’s consumption and health care choices are age and duration dependent. This goes well
beyond most of the analysis to date.

In order to solve the underlying stochastic optimal control model with a random stopping rule (akin
e.g. to a problem considered by Boukas et al. (1990)) we transform the model into a vintage optimal
control model, following a novel approach by Wrzaczek et al. (2020). This allows us to analyse in
a coherent framework the way in which the pre- and post-shock dynamics of both state and control
variables are linked through anticipation and retrospection. In so doing and in contrast to most of the
previous literature, we make a clear distinction between preventive health care (lowering the hazard rate
directly or indirectly), acute health care (lowering the instantaneous impact of the shock on survival
and/or subsequent disability) and chronic health care (lowering the disease/disability state after the
shock).

Our analysis allows us to generalize the value of life (VOL) and apply it to a setting with a health shock.
Specifically, we derive the value of health before and after the health shock, the value of prevention,
the value of surviving the shock, and the value of morbidity. We can also calculate an ex-ante value of
health. As it turns out, these values can be used to write the first order conditions for the different forms
of health care in a compact form with a straightforward interpretation. Furthermore, the valuations are
instrumental in understanding the dynamics of the different forms of health care.

In order to illustrate these dynamics, we employ numerical techniques developed by Veliov (2003)
to present how the development of health and survival states depends on both age and duration of
the disease (following the shock). We illustrate the age-duration specific dynamics by focusing on an
application of our model to the onset of cancer as one major type of a health shock. For this purpose we
calibrate our model (to reasonable extent) to reflect the dynamics of survival and health care spending
relating to cancer, based on US data.

The economic literature on health-related shocks to the life-cycle is disperse. The largest part of this
literature analyses the impact of health-related shocks to labour productivity, to health care expenditure,
and to survival. Palumbo (1999), De Nardi et al. (2010), and Kopecky and Koreshkova (2014), for
instance, focus on the impact of risky health care expenditure during old age on precautionary saving;
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while French (2005) and French and Jones (2011) focus on the impact of health shocks on labour supply
and retirement.1 Capatina (2015) provides an overall assessment of how four channels of health-related
risk (productivity, medical expenditure, time endowment, and survival) bear on income inequality and
precautionary saving. Common to all of these papers is that they model health risks as a sequence
of possibly state-dependent shocks over the life-cycle without emphasizing the scope for "catastrophic"
shocks with a propensity to drastically shift the life-cycle trajectory. Furthermore and importantly,
they do not provide scope for individuals to reduce the probability of shocks and/or mitigate their
consequences by purchasing preventive and/or curative health care, or engaging in other health-related
actions. Reichling and Smetters (2015) allow for possibly large shocks when showing that stochastic
mortality risks may explain the (rational) abstinence from private annuities when these shocks are
correlated with medical expenses. This notwithstanding, the focus of their work is again not on the
impact of such shocks on the utilization of health care and resulting health outcomes.2

Few works so far have studied how the risk of health shocks bears on an individual’s health investments,
either in response to a shock or, more importantly, in anticipation of a shock. Cole et al. (2019) consider
a setting where (curative) health expenditure and labour productivity are subject to health shocks, the
propensity for which depends on health status. The authors examine how the individual’s incentive to
engage in preventive efforts aimed at improving their health status are shaped by non-discriminatory
health insurance and wage-setting. There is no mortality risk and, as the authors themselves remark
in their conclusions, the focus is on small (transitory) shocks to health. In Hugonnier et al. (2013)
individual productivity and mortality both depend on an underlying health stock a la Grossman (1972).
Individuals can invest into this stock of health, which is assumed to be subject to morbidity shocks
following a Poisson process. The key distinction to our approach is that their modelling of uniform
health investments and a sequence of (at least principally) transitory shocks (apart from death) does
not allow them to discriminate between preventive health care (lowering the probability of a shock)
and curative health care (reducing the damage from a shock). Neither do they distinguish between the
valuation of preventive care as opposed to the value of curative or chronic care,3 distinctions which will
feature prominently in our work. Finally, Hugonnier et al. (2013) apply their model to understand the
relationship between financial as opposed to health investments, whereas our focus lies on how the life-
cycle allocation of preventive and curative care is shaped by the nature of the health shock. The notion
of permanent health shocks is only taken up by Laporte and Ferguson (2007) who consider a version of
the Grossman (1972) model in which the health stock is subject to a single irreversible shock, the arrival
of which follows a Poisson process. They examine how the nature of this shock bears on the ex-ante
path of health investments; however, health is assumed to bear on morbidity and, thus, on period utility
but not on survival. Indeed, the length of life is assumed to be exogenous and deterministic.

This leads us to conclude that while the theoretical literature on health shocks has made considerable
advances in terms of understanding the consequences of (a sequence of) small shocks for life-cycle
patterns of labour supply, income, expenditure, and savings/consumption, comparatively little is known
yet about the implications of shocks for the demand for health care and for health behaviours in regard to
both their preventive and curative aspect. In particular, this applies to large shocks, such as the onset of
severe chronic disease (diabetes, heart disease, cancer) or debilitating accidents, which induce permanent
rather than transitory shifts in the mortality, morbidity and income patterns over the remaining life-
cycle. These issues lie at the heart of the present work.4

The remainder of the paper is structured as follows. The next section contains a description of the

1The literature on health shocks as motivation for precautionary savings ties in with a large literature on the savings
response to (general) life-cycle risks (Eeckhoudt et al. (2005) and Eeckhoudt and Schlesinger (2008))

2Smith and Keeney (2005) examine the valuation of health in a setting where individuals face lotteries over their health
and income at distinct phases of their life-cycle. While these lotteries may involve large shocks, the authors do not
model the timing of these shocks; nor do they endogenize the health risks.

3The same applies to the models in Picone et al. (1998), Fonseca et al. (2013), Jung and Tran (2016) and Yogo (2016).
4From an empirical perspective, the behavioural adjustments and consequences for income and well-being of health shocks

have been studied extensively. Adjustments have been studied in regard to saving and consumption (Bíró (2013)) as
well as in regard to health behaviours, in particular smoking (e.g. Smith et al. (2001); Khwaja et al. (2006); Marti and
Richards (2017)).
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model. Section 2.3 presents the analytical solution, involving in particular the derivation of various
value (of health) terms from the set of relevant shadow prices (Subsection 2.3.1) and their subsequent
employment in the first-order conditions (Subsection 2.3.2). Section 2.4 then proceeds to present the
necessary foundations for the numerical analysis, with Subsections 2.4.1 through 2.4.4 setting out data,
functional specifications as well as details of the solution strategy. Section 2.5 finally examines the
numerical solution of our framework starting with a comparison of data and the calibrated model output
in Subsection 2.5.1. Subsections 2.5.2 to 2.5.4 break down the numerical consumption, expenditure,
health and survival profiles and provide an exploration of the driving forces behind their behaviour as
well as illustrations of the numerical assessment of several distinguished values of health. Section 2.6
concludes.

2.2 Model
In this section we present a framework that integrates a large shock to the health of an individual
into a life-cycle model. For the timing of the shock we make the following assumptions (which apply
throughout the paper).

(A1) A large shock to health occurs at some age s, which is random. The probability rate of arrival is
known by the individual.

(A2) The event at s occurs only once, thus the life-time of an individual can be separated into a stage
before and a stage after s.

These two assumptions allow us to formulate the model as a stochastic optimal control model with a
random stopping time (see Boukas et al. (1990)) and analyse it in terms of a vintage optimal control
model (see Wrzaczek et al. (2020)). In both stages the individual chooses consumption and different
types of health care in order to optimize (expected) life-time utility. Denoting by t ∈ [0, T ] the age of
the individual, where T > 0 gives the maximum feasible age, we then have that s ∈ [0, T ] is the age
at which the model switches from stage 1 (where t < s) to stage 2 (where t > s). In the following, we
introduce both stages of the model and specify the rate at which the shock arrives.

Using the index i (i = 1, 2) to denote the life-cycle stage that is referred to, we assume that the survival
probability S1(t) in stage 1 is determined by the stage-1 mortality rate µ1(·).5 This rate is assumed
to be equal to the base mortality rate µb(t, S1, b1) which depends on age t, decreases in survival S1(t),
and decreases in the quantity b1(t) of general health care subject to decreasing returns. Here, b1(t) is a
generic measure of all health care that is unrelated to the condition(s) relating to the health shock. As
described in Kuhn et al. (2015), the high correlation between survival and health implies that S1(t) can
be interpreted as a proxy for the health status. We thus capture the negative dependency of mortality
on health by including S1(t) as an argument in µb.6 Altogether, the survival probability evolves with
age according to

Ṡ1(t) = −µ1(t, S1(t), b1(t))S1(t)

= −µb(t, S1(t), b1(t))S1(t), S1(0) = 1. (2.1)

The individual maximizes expected life-time utility

Es

s

0
e−ρtS1(t)u1(c1(t)) dt + e−ρsV ∗ (S1(s), A1(s), s) . (2.2)

5Note that we will omit t wherever it is not of particular importance.
6This formulation might be surprising at first sight, but following the explanations in Freiberger and Kuhn (2020) and

under some weak assumptions it is consistent with a deficit accumulation model as developed in Schuenemann et
al. (2017), or a classic Grossman-type (Grossman, 1972) model with a monotonously depreciating health stock over
the life-cycle.
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The first term contains the aggregated utility from birth up to s, where the period utility u1(c1(t))
from consumption c1(t) is weighted by survival S1(t) and a discount factor e−ρt (the discount rate ρ is
assumed to be exogenous).7 The function u1(·) is assumed to fulfil the classic assumptions of positive but
diminishing marginal utility as well as the Inada conditions if consumption tends to zero or infinity. The
second part of the expected utility denotes the discounted aggregated utility of the remaining life-time,
given that the individual has suffered a health shock at age s. Here, V ∗(·) denotes the optimal value
(i.e. the value function) of the optimal control problem in the second stage and not only depends on the
age s at the occurrence of the shock itself, but also on the survival/health state S1(s) and the assets
A1(s) at the point of the shock. The expected value is built with respect to the random variable s. The
likelihood of a shock occurring at a given age can be influenced by the individual through investments in
preventive care h1. Let the probability distribution of s be defined by F(t) = P [s ≤ t]. The probability
distribution of s can be characterized by the hazard rate η of the shock, which is generally defined
by (2.3) and for which equation (2.4) holds:

η(t) = F (t)
1 − F(t) , (2.3)

F(t) = 1 − e
− t

0
η(a)da

. (2.4)

More specifically, we assume the hazard rate

η(t) = η(t, S1(t), h1(t)) (2.5)

to depend on age t, to decrease in survival/health S1(t), and to decrease in the utilization of preventive
care h1(t) (again subject to diminishing returns). One might think, for instance, of h1 as the propensity
to invest in the vaccination against an infectious disease or as the propensity to attend precautionary
screenings for cancer or heart disease.

The asset dynamics in stage 1 follow

Ȧ1(t) = (r(t) + µ̄(t))A1(t) + w1(t) − c1(t) − pb(t)b1(t) − p1(t)h1(t), (2.6)

A1(0) = 0 and A1(T ) = 0; (2.7)

where in stage 1 assets A1(t) are annuitized and generate a return (r(t) + µ̄(t)), with r(t) and µ̄(t)
denoting the interest rate and the mortality risk premium on annuities8, respectively; where w1(t)
denote stage-1 earnings; where the price for consumption c1(t) is normalized to one; and where pb(t)
and p1(t) denote the prices for general and specific preventive health care, b1(t) and h1(t), respectively.
As usual we assume zero assets at birth and at the end of the maximum life-span T .

In stage 1, the individual chooses the (non-negative) control variables c1(t), b1(t) and h1(t) so as to
maximize the objective function (2.2) subject to the constraints (2.1) and (2.5)–(2.7).

Stage 2 is modelled in a similar vein but we now consider a disease stock E(t, s) as an additional state
variable that bears on the individual’s utility and constraints. For all variables in the second stage t and
s describe the age of the individual and the age at which the health shock has occurred respectively. We
assume that the condition that sets in at s may be associated with a specific mortality µm(t, s, E(t, s)),
depending on age, the time of the shock (or onset of disease), and on the disease stock. In addition,
the individual continues to be subject to a base mortality µb(t, S2(t, s), b2(t, s)) which can be reduced
by general health investments b2(t, s). With the total mortality rate µ2 of the individual in the second

7This formulation reaches back to Yaari (1965).
8From an individual point of view the annuity rate is exogenously given. However Section 2.4.2 presents details about

the actuarially fair annuity rate within our framework.
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stage being the sum of µb and µm, the dynamics of stage-2 survival S2(t, s) can be written as

Ṡ2(t, s) := dS2(t, s)
dt

= −µ2(t, s, S2(t, s), b2(t, s), E(t, s))S2(t, s)

= − µb(t, S2(t, s), b2(t, s)) + µm(t, s, E(t, s)) S2(t, s).

The disease stock E(t, s) evolves according to

Ė(t, s) := dE(t, s)
dt

= f(t, s, E(t, s), h2(t, s)) (2.8)

where f depends on age, age at the time of the shock, the disease stock itself, and on disease-specific
(chronic) health care h2(t, s), which is aimed at lowering the disease stock (again subject to diminishing
marginal effects). Our general formulation of the disease dynamics allows for a range of different
interpretations. These include, in particular, the cases of (i) an accident or acute disease at the point of
the shock, which leaves the individual disabled initially but where a natural healing process, supported
perhaps by health care, leads to a gradual reduction of E(t, s) (understood to be the extent of disability);
and (ii) a progressive disease, such as cancer, diabetes or Alzheimer dementia, where E(t, s) tends to
increase unless it is kept in check or lowered by the consumption of health care.

To further account for the negative consequences of the onset of disease (or disability), E(t, s) is
assumed to lower stage-2 earnings, w2, and stage-2 utility u2, i.e.

∂u2(c2, E)
∂E

≤ 0 ∂2u2(c2, E)
∂E2 ≤ 0,

∂w2(t, s, E)
∂E

≤ 0 ∂2w2(t, s, E)
∂E2 ≤ 0.

Finally, we assume the (initial) level of the disease state at the time of the shock t = s to be a decreasing
function of the general health state, as proxied by S1(s), and of one-off (acute) health care d(s), i.e.
E(s, s) = B(S1(s), d(s)). We assume that acute care affects initial deficits in addition to the probability
of surviving the health shock, as the example of cardiac arrest shows, that effective emergency care also
affects the long run consequences of the heart attack (see Hassager et al. (2018)).

The dynamics of stage-2 assets A2(t, s) are similar to those in stage 1 with the following differences.
First, earnings are not exogenous but depend on E(t, s), as detailed above. Second, expenditures for
chronic health care, purchased at price p2(t), substitute for preventive health care. Third, the initial
stage-2 assets A2(s, s) (just after the shock) equal the stage-1 assets A1(s) (just before the shock) net
of the expenditure for acute care which is purchased at a price pd(s)). Thus,

Ȧ2(t, s) = (r(t) + µ̄(t))A2(t, s) + w2(t, s, E(t, s)) − c2(t, s) − pb(t)b2(t, s) − p2(t)h2(t, s) (2.9)

A2(s, s) = A1(s) − pd(s)d(s) and A2(T, s) = 0. (2.10)

According to the last boundary condition, assets have to equal 0 at the end of life regardless of when the
shock has occurred. The aggregated utility during stage 2 consists of the present value of the expected
(i.e. survival weighted) utility stream over the remaining life-course

P (S1(s), d(s)) ·
T

s

e−ρtS2(t, s)u2(c2(t, s), E(t, s)) dt, (2.11)

where P (S1(s), d(s)) ∈ [0, 1] is the probability that the individual survives the health shock, which
similar to the initial value of the disease stock increases in the level of the stage-1 health state S1(s) and
the quantity of acute health care d(s) (subject to diminishing returns). Note that P (·) < 1 captures the
potential that the individual does not survive the shock (e.g. an accident, a cardiac event or a stroke),
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whereas P (·) = 1 would reflect a disease that is not mortal upon its onset at s but only potentially
so over time (e.g. cancer, diabetes, Alzheimer’s disease). Finally, our model also embraces the case
of health shocks leading to instantaneous death, P (·) = 0. From now on, we will refer to P (·) as the
“continuation probability”.

The complete model is summarized in Equations (2.12) - (2.20).

max
c1(t),h1(t),b1(t)≥0

Es

s

0
e−ρtS1(t)u1(c1(t)) dt + e−ρsV ∗ (S1(s), A1(s), s) (2.12)

Ṡ1(t) = −µ1(t, S1(t), b1(t))S1(t), (2.13)

Ȧ1(t) = (r(t) + µ̄(t))A1(t) + w1(t) − c1(t) − pb(t)b1(t) − p1(t)h1(t), (2.14)

S1(0) = 1, A1(0) = 0, A1(T ) = 0 (2.15)

where

V ∗ (S1(s), A1(s), s) := max
c2(t,s),h2(t,s),
b2(t,s),d(s)≥0

P (S1(s), d(s)) ·
T

s

e−ρtS2(t, s)u2(c2(t, s), E(t, s)) dt (2.16)

Ṡ2(t, s) = −µ2 (t, s, S2(t, s), b2(t, s), E(t, s)) S2(t, s) (2.17)

Ȧ2(t, s) = (r(t) + µ̄(t))A2(t, s) + w2(t, s, E(t, s)) − c2(t, s) − pb(t)b2(t, s) − p2(t)h2(t, s) (2.18)

Ė(t, s) = f(t, s, E(t, s), h2(t, s)) (2.19)

S2(s, s) = S1(s), A2(s, s) = A1(s) − pd(s)d(s), A2(T, s) = 0, E(s, s) = B(S1(s), d(s)) (2.20)

Problem (2.12)-(2.15) can be interpreted as an optimal control model with random stopping time (see
Boukas et al. (1990)). For the analysis and for the numerical solution we transform the model into
a vintage optimal control model, as this offers additional economic insights as well as an established
numerical solution method (see Veliov (2003)).9 For the theoretical background and other examples
of the transformation method we refer to Wrzaczek et al. (2020). As the presentation of the model in
vintage optimal control form is not immediately instructive, we relegate it to appendix 2.7.1. Here, we
only note that the vintage formulation implies that all second-stage variables are indexed by both age t

and the time of the shock s, which can be interpreted as the arrival-date of a (potential) vintage of the
remaining life-course (in disease). Indeed, the notation we have introduced earlier meets this criterion.

The transformation includes the introduction of the following two auxiliary variables, which we will
subsequently employ in our calculations and for which interpretations are straightforward. First, Z1(t)
denotes the probability, that an individual has not suffered a health shock up to age t. We will also
relate to Z1(t) as the survival in good health10. As described above, the arrival rate of the health
shock η(t, S1(t), h1(t)) depends on age, health status and preventive health care. This implies that the
development of Z1 can be formulated through the following differential equation

Ż1(t) = −η(t, S1(t), h1(t))Z1(t) , Z1(0) = 1. (2.21)

Second, we need the auxiliary variable Z2(s), which is defined by

Z2(s) = Z1(s)η(s, S1(s), h1(s))P (S1(s), d(s)), (2.22)

and can be interpreted as the joint probability of experiencing and surviving a shock at age s.11

9The solution process is, nevertheless, not trivial as Veliov (2003) sets up a general framework, requiring multifaceted
adaptations for the solution of specific problems.

10It directly holds that Z1(t) = 1 − F(t).
11The term probability is not precise as we are analysing a time-continuous model and, strictly speaking, Z2(s) defines
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For further reference, Table 2.1 summarizes the control and state variables in the two life-cycle stages.

Control variables Stage 1 Stage 2 Shock time s

Consumption c1(t) c2(t, s) -

General Health investments b1(t) b2(t, s) -

Prevention expenditures h1(t) - -

Chronic care - h2(t, s) -

Acute treatment - - d(s)

State variables

Survival probability S1(t) S2(t, s) S2(s, s) = S1(s)

Assets A1(t) A2(t, s) A2(s, s) = A1(s) − pd(s)d(s)

Survival in good health Z1(t) - -

Joint “probability” of shock and survival at s - Z2(s) Z2(s) = P (S1(s), d(s))Z1(s)×
×η(s, S1(s), h1(s))

Severity of health deficits - E(t, s) E(s, s) = B(S1(s), d(s))

Table 2.1: Summary of all state and control variables in the basic framework

2.3 Analytical results
For the vintage optimal control model, we apply the Maximum Principle presented in Feichtinger et
al. (2003) to arrive at a set of necessary optimality conditions. Specifically, we obtain

• a set of differential equations describing the dynamics of the adjoint variables;

• a set of transversality conditions for the adjoint variables, corresponding to state variables with a
free endpoint;

• a set of first-order optimality conditions for all control variables at every point in time/age, and
for the stage-2 control variables for every possible point in life at which the health shock can occur.

These conditions, together with the state equations (with initial and boundary conditions), are used to
find the optimal solution. In the following section, we will employ the first order conditions and the
adjoint variables (together with the corresponding differential equations) to identify and characterize
the various behavioural channels of the model.

2.3.1 Valuations of Health
Following Rosen (1988), Murphy and Topel (2006), Hall and Jones (2007), Kuhn et al. (2015) and others
we investigate the individual willingness to pay for changes in health. However, while the original works
focus on a reduction in the mortality risk, i.e. the value of life (VOL), we distinguish between the
willingness to pay for changes in a range of different aspects of health.

Definition 1

For the analysis of problem (2.12) - (2.20), we define the following valuations of health, which we will
use throughout. Here, V denotes the value function of problem (2.12)-(2.15).

the probability density function of s multiplied with the continuation probability P . However the term “probability”
makes for more intuitive reading.
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Value of health ψi
H in stage i = 1, 2: Willingness to pay for a reduction in the mortality rate (de-

preciation rate of the survival stock) µi in stage i = 1, 2. ψi
H := − dV

dµi / dV
dAi

.

Value of prevention ψP : Willingness to pay for a reduction in the risk of a health shock by reducing η,
ψP := − dV

dη / dV
dA1

.

Value of acute survival ψAS: Willingness to pay for an increase in the probability P of surviving the
shock, ψAS := dV

dP / dV
dA2

.

Value of morbidity ψM : Willingness to pay for a reduction in the disease/disability stock E,
ψM := − dV

dE / dV
dA2

.

In addition, it is convenient to define the value of second-stage life as

ψ2
life(t, s) =

T

t

R(t, τ) u2(τ, s)
u2

c2(τ, s) dτ, (2.23)

with

R(t, τ) := exp −
τ

t

r(τ ) + µ̄(τ )dτ ,

i.e. as the present value at age t of the stream of consumer surplus over the remaining life-course in stage
2, with the return on annuities being applied as discount rate. Note the similarity to the "‘conventional"’
value of life in earlier works (e.g. Kuhn et al., 2015).

Based on this, Proposition 1 presents an explicit analytical formulation of the valuations defined
above.

Proposition 1

Assume the existence of optimal trajectories of consumption and (the various) health investments in
both stages of the individual life-cycle model (2.12)-(2.20) together with an interior solution for the
consumption profiles c1 and c2. The valuation terms in Definition 1 can then be written as follows.12

Stage-2 valuations:

ψ2
H(t, s) =

T

t

R2
H(t, τ, s) u2(τ, s)

u2
c2(τ, s) dτ, (2.24)

ψM (t, s) =
T

t

R2
M (t, τ, s) µ2

E(τ, s)ψ2
H(τ, s) − w2

E(τ, s) − u2
E(τ, s)

u2
c2(τ, s) dτ. (2.25)

Stage-1 valuations:

ψAS(t) =
ψ2

life(t, t)
P (t) , (2.26)

ψ1
H(t) =

T

t

R1
H(t, τ) u1(τ)

u1
c1(τ) − ηS1(τ)S1(τ)ψP (τ) + η(τ)P (τ)

u2
c2(τ, τ)
u1

c1(τ) ×

× ψ2
H(τ, τ) + PS1(τ)S1(τ)ψAS(τ) − S1(τ)BS1(τ)ψM (τ, τ) dτ, (2.27)

ψP (t) =
T

t

R1
P (t, τ) u1(τ)

u1
c1(τ) + ηP

u2
c2(τ, τ)
u1

c1(τ) ψ2
life(τ, τ) dτ − u2

c2(t, t)
u1

c1(t) Pψ2
life(t, t). (2.28)

12For notational convenience we omit the state and control arguments in all functions and just indicate at which time-point
the state and control values should be evaluated, e.g. u2

c2 (τ, s) ≡ u2
c2 (c2(τ, s), E(τ, s)).



32 CHAPTER 2 Integrating large health shocks

The various discount factors are defined by

R1
P (t, τ) := R(t, τ) exp −

τ

t

η(τ )P (τ )
u2

c2(τ , τ )
u1

c1(τ ) dτ , (2.29)

R1
H(t, τ) := R(t, τ) exp −

τ

t

µ1
S1(τ )S1(τ ) + η(τ )P (τ )

u2
c2(τ , τ )
u1

c1(τ ) dτ , (2.30)

R2
H(t, τ, s) := R(t, τ) exp −

τ

t

µ2
S2(τ , s)S2(τ , s)dτ , (2.31)

R2
M (t, τ, s) := R(t, τ) exp

τ

t

fE(τ , s)dτ . (2.32)

The proof is technical and thus relegated to the Appendix 2.7.3. Although the above expressions
look involved, the individual terms can be assigned to the forward and backward incentives that shape
the qualitative behaviour of the optimal solution. Before discussing the economic interpretations of all
valuations in detail we want to stress, that the prerequisites of Proposition 1 are rather weak. Besides
the assumption of existence of an optimal solution, it is sufficient to have interior solutions for the
consumption paths to be able to derive the presented terms. Consequently all valuations still hold
in the absence of some control variables (shocks may only require some of the controls for a proper
modelling) or for cases with boundary solutions concerning any types of health investments.

Value of health in the second stage: ψ2
H(t, s)

The value of health in the second stage ψ2
H (see equation (2.24)) is closely related to the value of life, i.e.

the discounted value of consumer surplus over the remaining life-cycle, as defined in equation (2.23). The
only difference is that the value of health takes into additional account a term µ2

S2
S2 in the discounting

function R2
H , reflecting that better health, as measured by S2, contributes to lower mortality over the

remaining life-course. Given that µ2
S2

< 0, the new term decreases the discount factor and, thereby,
raises the value of health over and above the conventional value of life. Intuitively, this reflects the
additional value of health/survival as an asset that by lowering mortality yields a return in terms of
additional consumer surplus over the remaining life-course.

Value of acute survival: ψAS(t, s)
The value of marginally increasing the continuation probability, ψAS , (see equation (2.26)) at the time
of the shock directly corresponds to the conventional value of life in the second stage, ψ2

life.13 The
weighting of ψ2

life by 1/P (t) implies that the willingness to pay for acute survival increases with the
risk of not surviving the health shock.

Value of morbidity: ψM (t, s)
The willingness to pay for a (marginal) reduction in the disease/disability stock, ψM , (see equa-
tion (2.25)) depends on the interaction of three effects: (i) the first part µ2

Eψ2
H captures the impact

of the disease/disability stock on mortality or, equivalently, on the depletion of the health stock. A
marginal increase in the disease stock increases the mortality risk by µ2

E , which consequently leads to
a change in second-stage survival, S2, which is valued at the willingness to pay ψ2

H . (ii) the part −w2
E

contains the impact of the disease/disability on earnings, which directly translates into a willingness-to-
pay to lower the disease/disability stock. (iii) The last part − u2

E

u2
c2

measures the reduction in consumer
surplus in the presence of disease/disability, or equivalently the marginal rate of substitution between
consumption and degree of illness/disability. The greater the marginal impact of disability on utility,
the greater the willingness-to-pay for reductions in morbidity. Finally, we have to adjust the standard
discount rate R by accounting for the direction and speed of disease progression, as measured by the
13The discounting term µ2

S2
S2 is not present here, as a marginal change in P (t) has no effect on survival Si.
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impact fE of the disease stock on its own accumulation. Thus, the value of future changes in morbidity
tends to be discounted more heavily if the disease is accelerating, i.e. fE > 0, and less heavily if it is
decelerating, i.e. fE < 0. Intuitively, this suggests that reductions in morbidity are more valuable in
the future (present) if the disease is accelerating (decelerating).

Value of prevention: ψP (t)
The willingness to pay for a reduction in the hazard rate of the health shock, ψP , (see equation (2.28))
is equivalent to the net value of remaining in (the healthy) stage 1 as opposed to transiting into (the
diseased/disabled) stage 2. Accordingly, the integral term measures the value of remaining in stage 1,
which in itself is composed of two distinct factors. The first part u1(c1(τ))

u1
c1 (c1(τ)) amounts to the consumer

surplus for each year that continues to be spent in stage 1, whereas the second part adds the expected
value of stage 2 utility should a transition occur at rate η(τ) in some future year τ > t. Note that this
value corresponds to the stage-2 value of life, ψ2

life, weighted with the probability P (τ) of surviving a
health shock at τ . As ψ2

life is counted in units of stage-2 consumption, a conversion into units of stage-1

consumption takes place by multiplication with u2
c2 (t,t)

u1
c1 (t) . Notably, the discount factor R1

P applied to the
utility stream associated with remaining in stage 1 through t now takes into account the (weighted) risk
of a transition into stage 2.

The value of remaining in stage 1 (integral part in equation (2.28)) is then offset against the value of
switching to stage 2 at t (last term in (2.28)). This value corresponds to the stage-2 value of life, again
weighted with the survival probability, P (t), at the time of the shock and converted into stage-1 values.
Note here that the value of avoiding a deadly health shock, for which P (τ) = 0 for all τ ∈ [t, T ], exactly
corresponds to the conventional stage-1 value of life.

Value of health in the first stage: ψ1
H(t)

After having introduced all other valuations of health we can finally analyse the value of health in
the first stage ψ1

H , which contains multiple terms presented above (see equation (2.27)). In total we
separate five distinct impact channels. (i) The stream of stage-1 consumer surplus, u1

u1
c1

. (ii) The value of
health/survival in reducing the hazard rate and, thus, preventing the shock, ηS1S1ψP . The remaining
three parts capture the value of stage-1 health for reaching and living through a stage 2 life-cycle
conditional on surviving a shock at age τ . Thus, all three factors are weighted with ηP

u2
c2

u1
c1

, the joint
probability of experiencing and surviving the health shock at τ as well as with the conversion factor.
(iii) The term ψ2

H measures the direct value of health upon entering stage 2; (iv) the term PS1S1ψAS

captures the value of stage-1 health in enhancing acute survival following a shock; and (v) the term
BS1S1ψM captures the value of stage-1 health in lowering the intensity of disease/disability and, thus,
morbidity at the point of the shock. We conclude by noting that the discount factor R1

H includes the
long run impacts of survival on future mortality µ1

S1
S1 like R2

H as well as the (weighted) risk of entering
stage 2 upon survival of a shock, ηP

u2
c2

u1
c1

.

Ex-ante value of health
From an ex-ante stance the future development of the individual’s health is stochastic. Thus the value
of health in its general form, comparable to the well-known value of life in other contributions, should
account for this uncertainty. Hence we define the (ex-ante) value of health as the expected value of
the different values of health in stages 1 and 2, weighted with the corresponding probabilities. This is
summarized in the following definition.

Definition 2

Assuming the existence of optimal trajectories of consumption and (the various) health investments in
both stages of the individual life-cycle model (2.12)-(2.20), the (ex-ante) value of health can be defined
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as

ΨH(t) := Z1(t)ψ1
H(t) +

t

0
Z2(s)ψ2

H(t, s)ds. (2.33)

Following from this definition, the ex-ante value of health at age t can also be interpreted as an
averaged value of health across individuals who have not experienced a shock up to age t and individuals
who, at age t, have experienced different stages of disease progression following a shock experienced at
an earlier age s < t.

Note that such a measure is useful when it comes to assessing the value of health at population level.
In particular for normative purposes, it is considered unethical to distinguish individuals according to
their value of life. Thus, the value of life is typically averaged across income strata, health states and
often age (for an exception see Aldy and Viscusi, 2008). The ex-ante value of health would provide a
value that is averaged across the possible health states at age t, including the potential health-driven
inequality in earnings.

2.3.2 First order optimality conditions
As one crucial part of the system of optimality conditions presented in Appendix 2.7.2, the first-order
optimality conditions give insight into the economic trade-offs between the different control variables.
Using the valuations of health presented in the previous section, we can formulate these FOCs in a
compact and intuitive way.

Proposition 2

Assume the existence of optimal trajectories of consumption and (the various) health investments in
both stages of the individual life-cycle model (2.12)-(2.20) together with an interior solutions for the
(various) choices of health care. The first-order optimality conditions can then be written as follows.

Stage 1: −µ1
b1(t) · ψ1

H(t) = pb(t) (2.34)

[−ηh1(t)] · ψP (t) = p1(t) (2.35)

Stage 2: −µ2
b2(t, s) · ψ2

H(t, s) = pb(t) (2.36)

[−fh2(t, s)] · ψM (t, s) = p2(t) (2.37)

At the time of shock s: [−Bd(s)] · ψM (s, s) + Pd(s) · ψAS(s) = pd(s) (2.38)

Consequently, the optimal allocation of health care involves that for each age/point in time t and for
every possible onset of the shock s, the unit price for each type of health care equals the corresponding
marginal benefit, consisting of the respective marginal effectiveness and the respective valuation of the
health dimension involved. Thus, the price pb(t) for general first-stage health care, b1(t), has to equal
its marginal impact on mortality (−µ1

b1
) (tantamount to the depreciation rate of health) multiplied with

the first-stage value of health, ψ1
H . The interpretation for the other types of health care is analogous.

Furthermore, we note that the marginal benefits of acute care, d, consist of the sum of two separate
terms, as acute care does not only (potentially) increase the chances of surviving the shock but also
(potentially) reduce the initial level of morbidity.

The FOCs provide immediate and intuitive information on the (relative) drivers of health care choices.
Thus, the individual will demand a higher quantity of health care if it is more effective, if it has a higher
value or it has a lower price. Note that the FOCs can also be read as reflecting the optimal trade-
off between the different types of health care and consumption. Here, the left-hand side (LHS) of
each condition reflects the marginal rate of substitution between the particular type of health care and
consumption, whereas the right-hand side (RHS) gives the price ratio, with the price of the consumption
good normalized to one. Thus, a higher price for health care would either have to be offset by an increase
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in effectiveness and/or an increase in the value of this care, the latter being reflective of greater need.
The system of FOCs also allows to trace the allocation across different types of health care in light of
relative effectiveness and relative valuations. Consider e.g. the condition

−Bd(s)
−fh2(s, s) + Pd(s) · ψAS(s)

[−fh2(s, s)] · ψM (s, s) = pd(s)
p2(s)

as implied by the FOCs (2.37) and (2.38). To understand the intuition, assume first a setting in which
the health shock does not impose a risk to survival, implying there is no role for acute care in enhancing
acute survival, i.e. P = 1 and Pd(s) = 0, as would be the case e.g. with cancer. In such a case the
condition would tell us that a higher price for acute care (e.g. immediate surgery) as opposed to chronic
care (e.g. pharmaceutical therapy) at the point of the onset of the disease would need to be offset by
greater effectiveness of acute care in containing the disease (i.e. the progression of cancer). If acute
care also bears on survival, the price ratio does not only reflect differences in the effectiveness of care
in curbing morbidity but, in addition, the marginal rate of substitution between the (valued) change in
acute survival for the acute treatment and the change in morbidity for the chronic treatment. Thus, a
higher price for acute care at the point of the shock is supported to the extent that it not only reduces
initial morbidity but also improves survival chances by Pd(s) > 0. Note that this argument extends
to settings, where the provision of acute care, e.g. cancer surgery, may carry a risk to survival, such
that Pd(s) < 0. Here, the survival risk lowers the willingness to pay for acute care, implying that its
utilization is lower relative to chronic care for a given price ratio and/or a given level of utilization
is supported only at a lower price.14 Similar trade-offs between other dimensions of health care, e.g.
between general health care and preventive health care in stage 1 or between preventive health care
in stage 1 and chronic health care in stage 2, can be constructed by appropriate combination of the
relevant FOCs.

Isolating the value terms on the LHS of the FOCs, as e.g. in ψP (t) = p1(t)
[−ηh1 (t)] for preventive care

or ψM (t, s) = p2(t)
[−fh2 (t,s)] for chronic care allows us to interpret the FOCs in terms of the underlying

dimensions of health as a final good rather than health care as an intermediate good. Thus, we find
that for an optimal allocation, the value of prevention should equal the effective price of prevention,
as given by the price of preventive health care adjusted for its effectiveness in curbing the arrival rate
of a shock. Similarly, the value of (reducing) morbidity should equal the effective price of lowering
morbidity, as given by the price of chronic health care adjusted for its effectiveness in curbing or
reverting the progression of the disease. Analogous expressions can be derived for other dimensions of
health care. Following Frankovic et al. (2020) who undertake this analysis in the context of survival, we
can infer that medical progress that raises the effectiveness of a certain type of health care, prevention
say, may be associated with a decline in the value of this dimension of health. Notably, this reflects
the greater consumption of preventive health care leading to reductions in the health risk to a level for
which any further reduction is less valuable (or in micro-economic terms, the decline in the effective price
of prevention relative to consumption is associated with a decline in the marginal rate of substitution
between prevention and consumption). We conclude with the following empirical observation: In many
practical settings, the valuation of different types of health is difficult to observe. A revealed preference
argument would then suggest that the willingness to pay equals the effectiveness-adjusted price of health
care, which can be calculated on the basis of observable nominal prices of health care and scientific
evidence on medical effectiveness.

Given the multi-dimensionality of health, we can extend the previous argument to examine the relative
valuation of different types of health care. Drawing on the FOCS (2.36) and (2.37), for instance, we can
write

ψM (t, s)
ψ2

H(t, s) =
p2(t)/ −µ2

b2
(t, s)

pb(t)/ [−fh2(t, s)] .

14Recall here our assumption that all controls exhibit diminishing returns.
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Thus, the value of lower morbidity relative to the value of survival can be understood to reflect the
relationship between the effective price of morbidity relative to the effective price of survival. This has
important repercussions from a practical point of view, where many studies in medical evaluation seek
to probe into consumer/patient assessment of improvements to the health-related quality of life relative
to survival (see e.g. Rowen and Brazier, 2011:for a survey). While such studies are often carried out in
the context of an abstract decision-framework, we note that when resulting from market assessments
(e.g. when asking expert physicians to state these trade-offs), differences (across individuals, populations
or over time) in the relative valuations of health may be as reflective of differences in the underlying
preferences as of differences in the relative effectiveness of the different types of health care. Here, again
revealed preference analysis may be brought to bear to deduce relative valuations.

2.4 Numerical analysis: an application to cancer
Within the next two sections, we illustrate insights from our model by conducting a calibration exercise
and calculating optimal individual behaviour numerically. To provide a concrete context, we study the
impact of a (potential) cancer diagnosis on the life-cycle allocation of health care and consumption.

In order to avoid adding the substantial complexity that is involved with the hidden progression of
cancer up to the point of a diagnosis, we assume that (i) a diagnosis at age/time s coincides with the
onset of cancer. Thus, we disregard the building-up of the cancer-stock prior to s, which is a reasonable
assumption when assuming that a diagnosis coincides with the point of first symptoms. As there is no
clear empirical correlation15 between the stage of cancer at the time of diagnosis and the general health
status (or the respective age), we suppose (ii) that the individual enters with a constant positive disease
stock E(s, s) = φ0 > 0 independent of its stock of health, S1(s), at the point of diagnosis. While it is
further reasonable to assume that (iii) a diagnosis at s is not associated with an acute risk to survival,
such that P (S1, d) ≡ 1, we also assume for the purpose of this analysis that (iv) there is no role of acute
care at the time of diagnosis, i.e. d(s) ≡ 0. This is justified when assuming that the diagnosis is early
enough to rule out a significant role for surgery. To avoid the complexity involved with the timing of
diagnosis, we abstract from (v) screening measures. Finally, in order to limit the number of states and
controls we assume (vi) that healthy and unhealthy behaviours such as smoking, drinking, eating habits
or exercising that affect the risk of cancer are captured by "‘generic"’ investments in health, b1. Note
that these feed into the hazard rate η(t, S1(t), h1(t)) through their impact on the health stock/survival
and thereby generate health benefits beyond cancer, a reasonable assumption. We, thus, assume (vii)
that there is no further role for specific cancer prevention, such that h1(t) ≡ 0. We also assume that
age does not have a direct bearing on the hazard rate, implying that we work with η(S1(t)).

Altogether, we obtain a slightly reduced model, which nevertheless enables us to analyze the im-
pacts of cancer on the utilization of health care before and after the diagnosis, including a detailed
characterization of the utilization pattern of chronic care, which from now on we refer to as cancer care.

2.4.1 Data sources
We calibrate our model to the data of an individual in the United States in the 2010s, using a number
of data sources for the input parameters.16 We assume that an individual receives earnings from age
20, which is also the age at which the individual begins to make life-cycle decisions.

Input parameters
One of the few fully exogenous inputs is the base earnings profile {w1(t) | t ∈ [20, 110]}, which in our
15Goodwin et al. (1986) find a positive correlation between the stage of cancer and the age at diagnosis for some types

of cancer, while for other types this correlation turns out to be negative. Even for breast cancer alone the results turn
out to be unclear. While Satariano et al. (1986) and Mandelblatt et al. (1991) find a positive relationship between age
and severity, Yancik et al. (2001) find it to be non-significant.

16Due to limitations in data availability we are unable to use all data from the same year.
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model we assume to be the average earnings age-profile for the US in 2011, as taken from the National
Transfer Accounts (NTA) database17. We account for the fact, that there are no public pensions in our
model and all health care expenditures are paid out of pocket, by adding the net health and pension
transfer profiles (which are also contained in the NTA database) to the base working income to obtain
a profile of disposable income.

We abstain from trying to fit the (non-health) consumption profile from the NTA database, as it
shows the typical hump-shape over the life-cycle. Hansen and İmrohoroğlu (2008) have shown that
such a pattern can only be explained consistently within a life-cycle model when assuming that annuity
markets are absent (or severely incomplete).18 However, we quite deliberately prefer to model a complete
annuity market for the explicit purpose of establishing a flat consumption profile as a benchmark against
which to assess the impact of health shocks on consumption and identify the underlying channels. Here,
an imperfect annuity market would obscure some of the effects. This notwithstanding, we aim for a
level of consumption that is in line with the average consumption over the life-cycle.19

In further pursuit of establishing a flat benchmark consumption profile, we opted to set two of the
other exogenous inputs, the interest rate r(t) and the discount rate ρ, both equal to 3%. If we eliminated
the possibility of a health shock in our model, this would then lead to a completely flat consumption
profile, with the annuity rate perfectly covering the mortality risk in this scenario. Therefore r(t) = ρ

enables us to directly identify the impact of the existence of a potential health shock in the consumption
profile before and after the cancer diagnosis.

Calibration goals
We use health expenditure data from the NTA-Database (available for the year 2011) and combine it with
age-specific information about the share of cancer specific health care expenditures from healthdata.
org20 to construct age profiles for (i) the general (non cancer) health expenditure and (ii) cancer
specific expenditures. We compare these against the average general health expenditure and average
cancer care expenditure profiles generated by our model and aim to match the latter with their empirical
counterparts.21

Furthermore, we use the age-specific mortality profile for the US in 2011 from the human mortality
database22 as a basis for establishing survival profiles. Using the mortality rate directly to calculate
the corresponding survival profile within our model, we obtain the equivalent of the average survival
S(t) := Z1(t)S1(t) + t

0 Z2(s)S2(t, s)ds in our model. To obtain the appropriate data against which to
compare first-stage survival in our model, we take age-specific cancer mortality rates from the SEER-
database23 and subtract them from the corresponding general mortality rates. From the resulting age-
profile of non-cancer mortality we construct a cancer-free survival profile as the appropriate comparison
for the S1 profile in the model.

We then employ the cancer-free survival profile from the data together with age-specific rates of cancer
incidence24, again taken from the SEER-database, to calibrate the hazard rate η(S1), which we assume
to depend only on the survival state. Finally, we use information from the SEER-database about
cancer-specific survival depending on the duration after the cancer diagnosis to calibrate the cancer
17www.ntaccounts.org, see Lee and Mason (2011) and United Nations (2013) for details.
18From the Euler-equation (2.42) we see that the absence of annuities (µ̄ = 0) implies that increasing mortality µi with

age ultimately leads to a decline in consumption. Annuities eliminate this risk (or, as in our case, even overcompensate
it), so there is no significant force anymore that would shift consumption to younger ages, implying a hump-shaped
pattern cannot be obtained.

19The US exhibit a significant life-cycle deficit, implying that life-time consumption is significantly higher than life-time
income. Thus, the raw data contradicts our assumption of zero assets at the end of life. To fulfil the equivalent
condition of life-time consumption and life-time income being equal, we have decided to raise income by 15% for our
calibration.

20Institute for Health Metrics and Evaluation (IHME) (2016) (Accessed 2020-01-13)
21We define average health expenditure at age t as b(t) := Z1(t)b1(t) + t

0 Z2(s)b2(t, s)ds and, similarly, average cancer
care expenditure as h2(t) := t

0 Z2(s)h2(t, s)ds.
22Human Mortality Database (accessed 2019-10-04)
23SEER*Explorer: An interactive website for SEER cancer statistics [Internet]
24We take average incidence rates between 2012 and 2016.
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specific mortality rates for four different (rough) age-groups over the first ten years after the diagnosis.
For further details about the estimation and calibration strategy for the general and cancer-specific
mortality rates (µb and µm) and the cancer incidence rate (η) we refer to appendix 2.7.6.

2.4.2 Remarks on the annuity market
In most models annuity markets are assumed to be either absent or complete with the equilibrium
annuity rate being equal to the mortality rate. Our setting is more complex, as it contains two mortality
rates reflecting different health regimes: one with cancer and one without. Thus the rate of return for
annuities µ̄(t) crucially depends on the way the annuity market is structured.

In this calibration exercise we assume that the insurer has no information about whether or when an
individual has been diagnosed with cancer. As a result the annuity rate at time t turns out to be the
expected (or averaged in a population context) mortality rate, which can be calculated as

µ̄(t) =
Z1(t)(−Ṡ1(t)) + t

0 Z2(s)(−Ṡ2(t, s))ds

Z1(t)S1(t) + t

0 Z2(s)S2(t, s)ds
=

Z1S1µ1 + t

0 Z2S2µ2ds

Z1S1 + t

0 Z2S2ds
. (2.39)

The nominator adds up all deaths across the two groups with and without cancer and relates them to
the total population in the denominator.25

2.4.3 Solution strategy
The numerical solution of a two-stage optimal control problem with random switching time is a far-from-
trivial problem. As already indicated in the problem introduction the transformation into a vintage-
structured optimal control problem is the first step in the solution process. The transformation (see
Wrzaczek et al. (2020) for further details) allows our numerical strategy to rest on an existing gradient-
based optimization algorithm, as described by Veliov (2003). However, particular features of our model,
e.g. the asset end-point constraints and the balanced annuity market, as well as variation by orders of
magnitude across some of the gradients of the controls26 made further non-trivial adaptations to the
numerical method necessary.

2.4.4 Functional specifications
To generate a numerical solution of our model, as summarized in equations (2.12) - (2.20), we need to
specify the following functional forms.

Utility
Following Hall and Jones (2007) and many others, we employ an adjusted CRRA-utility function for
the instantaneous utility from consumption:

u1(c) = c1−σ

1 − σ
+ u, 0 < σ = 1 .

Here, we assume u to be a sufficiently large constant, which guarantees u1(c) > 0 for all reasonable
consumption levels. For the second period, we assume that the cancer stock affects the utility of
25One of multiple alternative assumptions would be that the insurer has perfect information about a cancer diagnosis. In

this case the annuity rate would be equal to the mortality rate for each individual. Investigating the implications of
different annuity markets is an interesting task in its own right that goes beyond the scope of the present paper.

26The gradients of stage 1 are initially weighted way higher than that of stage 2, what results in the effects of the gradient
in the second stage being levered out. Without adjustments this would imply a faster convergences of the controls in
the first stage and could lead to premature termination of the algorithm as either (i) the gradients of the second stage
are directly below a reasonable numerical threshold or (ii) the improvements in the objective value for adjustment
of second-stage-controls are swallowed by numerical inaccuracies due to the small directional gradient step combined
with their resp. small weights in the objective function.
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consumption in a multiplicative form:

u2(c, E) = u1(c)v(E) = u1(c) exp {κ0 · Eκ1} ,

with v(E) ∈ [0, 1] and v (E) < 0 for κ0 < 0. The mixed derivative u2
cE = u1

c(c)v (E) is negative,
implying that a higher cancer stock reduces the marginal utility of (non health care) consumption. Note
that this is in line with empirical evidence (see Finkelstein et al. (2013)).

Mortality
For this numerical presentation, we assume that the non-cancer mortality rate µb does not depend on
the state of survival, enabling us to better disentangle cancer specific mortality in the second stage. The
parameters γi and αi will be calibrated to reproduce the survival profile without a cancer diagnosis (see
appendix 2.7.6).

µb(t, S1, b1) = µb(t, b1) = g(t)bε(t)
1 g(t) = exp γ0 + γ1t + γ2t2 + γ3t3

ε(t) = α0 + α1t (< 0)

Cancer incidence
Comparing the survival data adjusted for cancer mortality and the cancer incidence rates from the
SEER-database we find that the function in equation (2.40) delivers the best fit, while still using just
three parameters.

η(t, S1) = η(S1) = β0

1 + β1( 1−S1
S1

)β2
(2.40)

Cancer stock
For the progression of the cancer stock, we decided to draw on the biological development and spread of
cancerous cells. Talkington and Durrett (2015) present multiple established processes for the untreated
spread of cancerous cells. We use the simplest version (which is sufficient for our purposes) and hence
assume that the number of cancerous cells grows over time at the constant rate δ0. Following the work
of Heuser et al. (1979), who estimated the average doubling time for breast cancer cells to be 327 days,
we propose a rate of δ0 = 0.774 (per year). In a normative step, we set the initial number of cancerous
cells when diagnosed constant to 1, i.e. B(S, d) = φ0 = 1.0.

For the effects of cancer care we lean on the development of health deficits introduced by Dalgaard
and Strulik (2014). Depending on the intensity of cancer care h2 (which exhibits diminishing returns
modelled with δ2 ∈ (0, 1)) and the available technology (captured by δ1), we propose that the growth
can be slowed down or also turned negative to hopefully eradicate cancerous cells in the long-run.

f(t, s, E, h2) = δ0E − δ1hδ2
2 Eδ3 .

However, in contrast to Dalgaard and Strulik (2014) we propose that the effectiveness of cancer care
also increases with the number of cancerous cells and is therefore multiplied by Eδ3 with δ3 > 0.

Cancer specific mortality
For the cancer specific mortality function µm(t, s, E), we eliminate the dependence on age t and assume
that the whole mortality process is driven by the number of cancerous cells E and the age at which
cancer was diagnosed. As we find in the data, mortality increases with the age at diagnosis. Hence we
propose the following functional form:

µm(t, s, E) = µm(s, E) = ψ0 · E · exp ψ1 · s

T

ψ2
(2.41)
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We estimate these parameters ψi using the cancer incidence and survival data as described in ap-
pendix 2.7.6.

Prices for health care
After the abstraction from preventive and acute care for this numerical exercise, there remain two prices
for health care goods and services (each expressed in units of the consumption good):

• Price of general health care pb

As we will detail in the appendix, we write mortality directly as a function of health care ex-
penditures, pbb1 for the purpose of this calibration. We can therefore set the price equal to one
=⇒ pb = 1.

• Price of cancer care p2

Due to the multiple types and combinations of cancer treatment, it turns out to be most practical
to also measure cancer care directly in its monetary units. Hence we have decided to set the price
for cancer care equal to one =⇒ p2 = 1.

Table 2.2 summarizes the functional forms and parameter choices. We wish to stress, that we did
not attempt to obtain a full calibration of the model, since this would have required the introduction
of further state and control variables to represent the involved nature of cancer risk, prevention, de-
velopment and treatment in the first place. Instead we aimed for a reduced model formulation, which
nevertheless replicates key patterns of cancer progression and cancer care and thereby enables excep-
tional new insights into the behavioural patterns regarding health care (general and cancer-specific) and
consumption.

Note that some parameter values shown in Table 2.2 are not the result of an automated calibration
process, but are manually chosen to improve the calibration fit. The high complexity of the model
and intricacy of the solution process in addition to relatively long computation times for one set of
parameters did not allow us to conduct standard calibration methods. Hence the parameters δ1, δ2, δ3
and κ0, κ1 are not chosen through a process minimizing a strictly defined quality of calibration criterion
(e.g. minimizing the maximum absolute difference in the cancer mortality rates), but are manually set
to obtain a qualitatively appropriate fit of the several profiles presented.
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u1(c) = c1−σ

1−σ + u
σ 1.13+

u 11.355+

ε(t) = α0 + α1 · t
α0 −0.2700∗

α1 0.0667∗

g(t) = eγ0+γ1t+γ2t2+γ3t3 γ0 −6.690∗

γ1 −0.982∗

µb(t, b) = µ0(t) · g(t) · bε(t) γ2 15.846∗

γ3 −7.560∗

Interest rate r 0.03
Discount rate ρ 0.03

η(t, S) = β0
1+β1( 1−S1

S1
)β2

β0 0.0243∗∗

β1 0.0087∗∗

β2 −2.020∗∗

B(S, d) = φ0 φ0 1.0

f(t, s, E, h2) = δ0E − δ1hδ2
2 Eδ3

δ0 0.7740+

δ1 2.0
δ2 0.03
δ3 1.3

µm(t, s, E) = ψ0 · E · exp ψ1 · s
T

ψ2

ψ0 0.1705∗∗

ψ1 1.8475∗∗

ψ2 1.5574∗∗

v(E) = exp {κ0 · Eκ1} κ0 ln(0.7)
κ1 1.2

Table 2.2: Summary of functional specifications and parameters in the model. Parameters indicated
by ∗∗ are estimated before the solution process using only the empirical data. Parameters indicated
with ∗ result from the calibration process within the solution process. Parameters marked with + are
chosen from the literature. Parameters without indications are either educated guesses (ρ, r,κi) or are
manually chosen to improve the calibration (δ1, δ2, δ3).

2.5 Numerical results

Turning to the numerical results, we will first show to which degree we were able to replicate the data
and thereby meet our calibration goals (Section 2.5.1). In a next step we discuss and compare the
profiles of consumption before and after a cancer diagnosis and use the Euler-equations to identify
how these profiles are impacted by the different aspects of the (potential) diagnosis (Section 2.5.2).
Section 2.5.3 presents the profiles of general health investments and cancer care together with the
resulting developments of the health state in both stages and the disease stock capturing the progression
of cancer. In so doing, we also examine the numerical evaluations of the various valuations of health
presented in Section 2.3.1 and their respective decomposition. Finally Section 2.5.4 presents the Euler-
type equations for the different types of health care both in the most general formulation as well as
their numerical evaluations for the optimal solution. These calculations allow us (as for the consumption
profiles) to pin down the several impacts a potential diagnosis has on the individual’s decision making.
Throughout the whole section we summarise the key outcomes in corollaries 1–6.
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consumption in their late years.
The remaining factors in equations (2.42) and (2.43) differ and we analyse them separately along some

numerical illustrations in Figures 2.4 and 2.5. These figures show the different terms Fi(t) in the Euler-
equations aggregated from the beginning of the life-cycle (resp. from the time of diagnosis) up to each
point in time t. Considering, for instance, stage-1 consumption c1(t) and defining ċ1(t)

c1(t) =: Fi(t) we
can write c1(t) = c1(t0) exp{ t

t0
Fi(s)ds} and, thus, log(c1(t)) − log(c1(t0)) = t

t0
Fi(s)ds. Hence,

the aggregated terms are direct expressions of the (log) difference between current consumption c1(t) and
initial consumption c1(t0). We apply the same reasoning to all other control variables in the subsequent
sections.

First stage
In the first stage the uninsured risk of suffering a health shock, η, shifts consumption towards younger
ages, but in contrast to the mortality risk, there is an additional effect associated with a health shock.
The term ηP

u2
c2

u1
c1

shows that the desire for consumption smoothing tends to shift consumption back
to later ages. The term contains the product of the hazard rate, η, the probability of surviving the
shock, P , and the ratio of the marginal utilities relating to the consumption levels c2(t, t) and c1(t)
immediately after and before the shock. The rationale behind this shift lies in the incentive to accumulate
precautionary savings which can be used to maintain a given level of consumption following the shock.

Three thought experiments can illustrate how the two offsetting effects combine. If the health shock
has no effect on the household at all, P = 1 and c2(t, t) = c1(t) hold. As a result, η = ηP (S1, d) u2

c2
u1

c1
and, as expected, the two terms cancel out in the c1-dynamics. For a second experiment, we propose
a health shock with no chance of survival (P = 0). Here, the hazard rate η has the same impact as
the mortality rate µ1 as there is no more desire for consumption smoothing. Finally, suppose that a
health shock lowers the marginal utility of consumption such that u2

c2 < u1
c1 for c2(t, t) = c1(t). For

any P ≤ 1 we then have that η > ηP (S1, d) u2
c2

u1
c1

, implying that the incentive to advance consumption
dominates the precautionary savings motive. However, our numerical analysis for the case of cancer
shows that in general a drop in consumption after the diagnosis is possible (e.g. for early diagnosed
individuals). In combination with the negative impact of the cancer stock on the marginal utility, this
implies ambiguity for u2

c2 u1
c1 . Hence we are unable to make general statements about the combined

effect and the desire for precautionary saving could potentially be more pronounced than the incentive
to advance consumption.

In Figure 2.4, we illustrate the different parts of equation (2.42) aggregated up to each time-point t.
We can see that the desire to advance consumption resulting from the term −η (dashed purple line)
dominates the incentive for precautionary savings, ηP (S1, d) u2

c2
u1

c1
(dash-dotted green line). However the

difference between the two only becomes significant after the ages around 50, but strongly increases
towards the end of life. As P = 1, the combined effect can be simplified to η · (u2

c2/u1
c1 − 1). Hence the

increasing cancer incidence rate η predominantly defines the magnitude of the combined effect, while its
sign is determined by the divergence of the marginal utility ratio u2

c2
u1

c1
from 1. Thus the combined effect

being non-positive for all ages indicates, that the impact of the cancer stock on the marginal utility
still implies u2

c2 < u1
c1 , although c2(t, t) < c1(t) for diagnoses in younger ages. Consequently, desire for

precautionary savings is curbed compared to the health shock risk and we would obtain a tendency for
consumption to decline over the cancer-free life-cycle (from this combined effect alone). However, as
Figure 2.4 shows, the growing saving incentive that arises from the increasing gap between the annuity
return and mortality risk for individuals who remain cancer-free (dotted blue line) overcompensates this
effect and leads to an overall increasing consumption profile (black solid line, which we also have already
seen in Figure 2.3).31 We summarise our findings in Corollary 1.

31This analysis for the consumption profile already highlights how the introduction of a stochastic health shocks affects
the individual on multiple levels and how intricate the effort to disentangled the different driving forces can be.
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Figure 2.4: Illustrations of the impacts of the different parts of the Euler equation for consumption
before the diagnosis

Corollary 1 (Consumption before diagnosis)

Compared to an individual not facing the risk of a cancer diagnosis, its introduction implies an increasing
consumption profile for cancer free individuals. This results from the incentive to defer consumption (as
the annuity rate overcompensates their mortality risk) dominating the desire to advance consumption
(as the marginal utility of consumption is higher when cancer-free).

Second stage
In the second stage there is no risk of a further shock, but the individual takes into account the
development of the shock-specific deficit stock E, i.e. the cancer stock. This leads to the term u2

c2E

u2
c2

f

in the growth rate of consumption in equation (2.43). In the more intuitive case32 of u2
c2E < 0, where

the marginal utility of consumption declines with the deficit stock, two possible scenarios can arise: (i)
consumption is shifted towards earlier ages where the marginal utility is still high if the deficit stock
increases over time f > 0, or (ii) consumption is deferred if the deficit stock decreases after the shock
f < 0.

For illustration, we consider in Figure 2.5 the consumption profiles following a diagnosis at ages 30
and 70, respectively. As we have already seen (lower right panel in Figure 2.2), the mortality risk after
the diagnosis is significantly increased for several years and consequently is only partially offset by the
annuity rate. This implies advanced consumption right after the diagnosis as depicted by the dotted
blue line in both panels in Figure 2.5. However, individuals diagnosed early in life can have an incentive
to defer consumption if they survive long enough for their mortality risk to reapproach that of cancer-
free individuals, such that the term µ − µ2 becomes positive. Altogether this results in a U-shaped
consumption pattern illustrated by the dotted blue line in the left panel.

As we will present later (see Figure 2.7), the cancer stock decreases in a convex pattern regardless
of the age at diagnosis, hence f < 0 during the first years after the diagnosis. Therefore, u2

c2E

u2
c2

f > 0
captures the incentive of individuals to postpone their consumption in line with their recovery from
cancer (dash-dotted green line). In our calibration this would imply a steep increase in consumption
in the first few years after the diagnosis, followed by a fairly constant profile as the deficit stock is
significantly decreased and has limited impact (similar for early and late diagnoses).

Adding up both terms to obtain the total effect, we are able to explain why the consumption profiles
of early and late diagnosed individuals feature such pronounced qualitative differences. In the left panel
32The marginal utility of consumption is higher for lower levels of the deficit stock. This holds for the multiplicative

specification of the stage-2 utility function in our calibration and is empirically supported by Finkelstein et al. (2013).
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we see, that for s = 30 the desire to defer consumption dominates the incentive to advance consumption
in the first two years resulting in an initial increase in consumption in total (solid black line). As the
impact of the cancer stock vanishes, the difference between annuity returns and mortality risk adds
the U-shape for the consumption profile over the remaining life-course. For s = 70, the above average
mortality risk after a cancer diagnosis becomes the dominant driver after the first 6 months. Following
an initial boost, consumption then declines until the end of life (solid black line), as post-cancer mortality
never decreases to levels, where it falls short of the annuity rate.
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Figure 2.5: Illustrations of the impacts of the different parts of the Euler equations for consumption
after the diagnosis.

Corollary 2 (Consumption after diagnosis)

The increased mortality risk following a cancer diagnosis implies, that individuals strongly advance
their consumption. This effect can be dampened or even overcompensated by the incentive to postpone
consumption to ages where a reduction in the intensity of cancer allows for a higher marginal utility of
consumption.

2.5.3 Health expenditure and state profiles
In this section we focus on the health expenditure choices and the resulting profiles of the health/survival
stock and cancer deficits. We also calculate, for our numerical specification, the valuations of health
from Definition 1 and decompose them according to Proposition 1, noting that they will play a crucial
role in the analysis of the health care Euler-type equations in Section 2.5.4.

Health expenditure profiles
For the life-cycle allocation of general health expenditures, as shown in the upper left panel in Figure 2.6,
a cancer diagnosis does not imply a great difference regarding the qualitative shape over the life-cycle.
Quantitatively, however, we obtain some significant differences. For early diagnoses up to age 70 health
expenditures initially drop by around 2000$ per year, which amounts to around 50% of the expenditures
before a diagnosis for the youngest groups. This gap persists for the remaining lifetime following a cancer
diagnosis and even widens after the age of 70. On the other hand a diagnosis already late in life leads
to an even more sizeable immediate reduction in general health care spending (in absolute values).

The instantaneous reduction in general health care spending (difference between the dashed and
dotted lines) can be traced back to the sudden and large increase in spending on cancer care that
is triggered by a diagnosis (see the upper right panel of Figure 2.6). For all age groups, the initial
expenditures are highest immediately following the diagnosis and then decline rapidly within around
ten years after the diagnosis where the residual level can be be interpreted as regular screenings to
avoid the reemergence of cancer. Strikingly, (initial) expenditures on cancer-care (dotted line) slightly
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The Euler equations for all types of health investments share a similar pattern as they consist of
three main terms. (a) Intuitively the dynamics of a specific type of health care are connected to the
dynamics of the valuation of health, which enters the respective FOC. E.g. for life-cycle pattern of
general health care investments, the value of health is the decisive valuation, while for chronic care, the
value of morbity is a determining factor. (b) Changes in the efficiency of health investments over time
due the impacts of other variables or external factors like age or technology can contribute significantly
towards the qualitative pattern over the life-course. (c) The price development of different health care
types imposes further incentives to either postpone investments to later ages or conduct them earlier in
life.

General health expenditure

The Euler equations for general health expenditure before and after a cancer diagnosis in equations (2.44)
and (2.45) directly illustrate these three main contributing factors. Note that all terms are finally
scaled with −µi

bi

µi
bibi

bi
respectively, which is the equivalent to the inverse of the intertemporal elasticity of

substitution in the consumption Euler equation.

ḃ1
b1

=
−µ1

b1

µ1
b1b1

b1
− µ1

b1S1

µ1
b1

µ1S1 +
µ1

b1t

µ1
b1

− ṗb

pb
+

+r + µ̄ + µ1
S1S1 − u1/u1

c1

ψ1
H

+ ηS1S1
ψP

ψ1
H

− ηP
u2

c2

u1
c1

(ψ2
H − ψ1

H)
ψ1

H

+ PS1S1
P

ψ2
life

ψ1
H

+ (−BS1)S1
ψM

ψ1
H

=
˙

ψ1
H

(t)

ψ1
H

(t)

(2.44)

ḃ2
b2

=
−µ2

b2

µ2
b2b2

b2
− µ2

b2S2

µ2
b2

µ2S2 +
µ2

b2t

µ2
b2

− ṗb

pb
+ r + µ̄ + µ2

S2S2 − u2/u2
c2

ψ2
H

=
˙

ψ2
H

(t,s)

ψ2
H

(t,s)

(2.45)

We will now discuss the economic interpretations of the three driving forces (a), (b), and (c) and their
respective decompositions in detail.

(a) Value of Health: The rate of change of the VOH, ˙ψ1
H(t)/ψ1

H(t) resp. ˙ψ2
H(t, s)/ψ2

H(t, s), plays
a crucial part in the Euler equations. Using the results of Proposition 1 these rates can be
decomposed into several parts. Parts (i) and (ii) discussed below show up in both stages and the
interpretations are relevant for general health expenditures in both stages. Meanwhile the effects
discussed in (iii)-(vi) are only present before the cancer diagnosis.

(i) The discount rate of the VOH (r + µ̄ + µi
Si

Si 0) incentivizes later health investments for
high market returns (r + µ̄). This effect is partially offset as the individuals take the effect
of higher health on the mortality rate into account (µi

Si
Si ≤ 0).

(ii) − ui/ui
ci

ψi
H

≤ 0 captures the depreciation of the value of life (relative to the VOH) and motivates
health investments earlier in life.

(iii) ηS1S1
ψP

ψ1
H

≤ 0 implies advancement of health investments towards younger ages, since S1 has
an impact on the hazard rate and decreases the probability of a cancer diagnosis. The extent
of this effect depends on the value of prevention relative to the value of health.

(iv) −ηP
u2

c2
u1

c1

(ψ2
H −ψ1

H )
ψ1

H

0 infers that if the value of health is smaller in the second stage compared
to the first stage (as we have seen in Figure 2.8), health investments are less attractive in the
present (in case of a shock, health is instantaneously valued less) and consequently delayed to
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later stages in life. This factor becomes more pronounced at ages at which a cancer diagnosis
is more likely (increased η).

(v) −ηP
u2

c2
u1

c1

PS1 S1
P

ψ2
life

ψ1
H

≤ 0 accounts for the positive effect of health S1 on the continuation
probability and results in another force shifting health investment to younger ages. This
aspect is equal to zero in our scenario, as health has no impact on the continuation probability

(vi) −ηP
u2

c2
u1

c1
(−BS1)S1

ψM

ψ1
H

≤ 0 lastly represents that as initial deficits are lower, if an individual
is in good health at time of the diagnosis, individuals have another incentive to keep their
health at high levels over the life-cycle. This results in health investments being advanced
towards younger ages. This aspect is equal to zero in our scenario, as health has no impact
on the initial deficits.

(b) Effectiveness: Changes in the effectiveness of health investments over the life-cycle also play a
decisive role for the shape of the profile. This aspect contains two separate parts:

(i) − µi
biSi

µi
bi

µiSi covers that if health investments tend to have a higher impact for already depleted
health (µi

biSi
> 0), people are more likely to defer until their health is depleted to increase

their health expenditures. This aspect is equal to zero in our scenario, as health has no
impact on the base mortality rate.

(ii) µi
bit

µi
bi

shows that people have an incentive to postpone their health investment to later ages,
if marginal effectiveness of health expenditures increase with age (µi

bit < 0). This could also
include a set-up, in which individuals expect health technologies to improve during their
lifetime.

(c) Price: Expected increases of the prices of health care over time push health investments towards
earlier stages in life (and vice versa) as the term − ṗb

pb indicates. This aspect is equal to zero in our
scenario, as prices are assumed to be constant.

Similarly to the consumption profiles we want to illustrate these theoretical driving forces using our
numerical calibration. As already indicated above, some of the terms are equal to zero due to the
assumptions made for the scenario of a cancer diagnosis and are therefore omitted in the presentation in
the figures below. Like in Figure 2.4 and 2.5, we present the terms in the Euler equations aggregated up
to timepoint t as their sum corresponds to the difference of log-expenditures at point t and age t0 = 20.
Figure 2.10 shows the numerical evaluations of the different (non-zero) parts and their aggregated sum
for general health expenditure of cancer-free individuals.

We can easily identify the two main driving forces behind the overall increasing health expenditures
over the life-cycle. First, intuitively the sum of market and annuity interest alone would impose a
strong delay in health expenditure (dashed red/dark grey line) especially towards the end of life, where
the annuity rate strongly increases. The second strong incentive to postpone health investments is the
increasing efficiency of general health care for older ages (dotted orange/light grey line), which by itself
would imply nearly linearly increasing health expenditures after the age of 45. Consequently the effect
of interest is more pronounced in the early ages and for ages 100+, while the impact of the increasing
effectiveness is stronger between ages around 45 to 100.

However the aggregated effect of these two terms is dampened by two other factors. While the
advancing effect of the preventive aspect of higher health is only present up to age 70 (dash-dotted
green/grey line), the depreciation of the value of life (dotted blue/grey line) becomes increasingly strong
over the life-course. This leads to the health expenditures in total becoming stagnant at the end of the
time horizon (the solid black line becomes flat). Finally we see that the last term containing the impact
of a change in the VOH through diagnosis (dashed purple/grey line) has no significant impact over the
whole life-course.34

34The insignificant impact can be explained similarly to the small difference between the expected and the cancer-free
VOH.
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Figure 2.10: Illustrations of the impacts of the different parts of the Euler equations for general health
expenditure before a cancer diagnosis

In Figure 2.11 we continue with the analogous decomposition for general health expenditure after a
cancer diagnosis. In the left panel we illustrate the decomposition for an early diagnosed individual at
age 30, while in the right panel the diagnosis occurs later in life at age 70. Although we already identified
in Figure 2.6 that the age-profile for health expenditures after a cancer diagnosis follows a qualitatively
similar pattern to the one of cancer free patients, this decomposition still helps us to identify the smaller
differences. First of all, there are only three terms remaining for health expenditures after the diagnosis
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Figure 2.11: Illustrations of the impacts of the different parts of the Euler equations

compared to the previous five terms. However the three with the strongest magnitude are still present.
Again the interest and annuity rate (dashed (red) line) incentiveses individuals to defer health care,
however now the postponing effect of increasing effectiveness of health care (dash-dotted (green) line)
is the most distinct reason behind overall increasing health expenditures (solid black line). The sole
dampening effect of the otherwise strongly increasing profile results from the depreciation of the value
of health (dotted (blue) line). The absence of an additional advancing force (like the preventive aspect
of health before the diagnosis) at least partially explains, why the total effect is actually slightly higher
for ages after 60 in case of an early diagnosis compared to the cancer free profile.35

35Furthermore we would like to stress that these figures evidently show how an analytical derivation and assessment of
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Corollary 5 (General Health Expenditure)

The main driving forces behind increasing health expenditures over the life-course are the market and
annuity interest rate and the increasing effectiveness of health care in older ages. In the presence of a
potential cancer diagnosis the dampening effect of the depreciation of the value of life is enhanced by
an additional term, which covers the preventive effect of health and motivates advancement of general
health expenditure. This term is only present before the cancer diagnosis and only shapes the behaviour
of cancer-free individuals.

Cancer specific chronic care expenditure

As the last part of our numerical analysis we focus on cancer care after the diagnosis, present the
corresponding Euler equation and again evaluate the decomposition along the optimal numeric solution.
The dynamics of chronic care can differ quantitatively between the different shock scenarios, however
the qualitative shaping forces are the same independent of the age at diagnosis. Similar to the general
health expenditures all terms in equation (2.46) are scaled with −fh2

fh2h2 h2
, the equivalent to the inverse of

the intertemporal elasticity of substitution in the consumption Euler equation.

ḣ2
h2

= −fh2

fh2h2h2
r + µ̄ − fE + w2

E

ψM
+

u2
E/u2

c2

ψM
− µ2

E

ψ2
H

ψM

=
˙ψM (t,s)

ψM (t,s)

+fh2t

fh2

+ fh2Ef

fh2

− ṗ2

p2 (2.46)

Furthermore we also obtain the same three main parts in the dynamics: (a) value of morbidity dynamics,
(b) chronic care efficiency aspects and (c) the price developments.

(a) Value of Morbidity: As we have seen in Figure 2.8, the value of morbidity follows a surprising
profile after the diagnosis. Consequently decomposing its rate of change ˙ψM (t,s)

ψM (t,s) can enhance our
understanding extensively:

(i) The discount rate of the value of morbidity (r + µ̄−fE) again leads to chronic care postpone-
ment for high market rates (r + µ̄). If deficits accumulate slower (faster) if they are already
on a high level, i.e. fE < 0 (fE > 0) individuals further delay (accelerate) their chronic care
expenditures.

(ii) w2
E

ψM
≤ 0 captures the impact of the deficit stock on the wage, what also incites individuals to

conduct chronic care earlier in life or closer to the time of the diagnosis. This term is equal
to zero in our scenario, as deficits are assumed to have no impact on working income.

(iii) u2
E/u2

c2
ψM

≤ 0 is another reason for individuals to invest into chronic care earlier, as the deficits
have a negative impact on the utility. The extent of the shift of chronic care towards younger
ages depends on the ratio of marginal utility gains through deficit reduction and consumption.

(iv) −µ2
E

ψ2
H

ψM
≤ 0 implies advancements of chronic care as increasing deficits impose an additional

mortality risk. The strength of this factor depends on the value of health relative to the value
of morbidity.

(b) Effectiveness: Changes in the effectiveness of chronic care over the life-course also play a decisive
role for the shape of the patterns:

(i) fh2Ef

fh2
0 covers the effect of the cancer stock on the marginal impact of chronic care. The

sign of this term depends on several factors, e.g. first the sign of the mixed derivative fh2E

might be ambiguous. Depending on the specific health shock, chronic care might be more
effective if a certain deficit stock has been accumulated (fh2E < 0). On the other hand it
is also possible, that an higher accumulated deficit stock makes it harder to eliminate the

dominating terms in the Euler equations would be fairly impossible. The numerical evaluation nevertheless give great
insight into to driving behavioural forces.
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remaining deficits as the treatment is effective (fh2E ≥ 0). Second it is crucial whether
deficits are accumulated or reduced at every point in time as it defines the sign of f .

(ii) Again we might expect fh2t

fh2
0 to lead to a delay in chronic care investments, since it

is reasonable for chronic care to be more effective for older ages. Still we cannot make a
statement about the sign of this term in general. This term is equal to zero in our scenario,
as the progression of cancer is assumed to be independent of age.

(c) Price: Expected increases of the price of cancer care over time can push cancer care closer to the
diagnosis (and vice versa) as the term − ṗ2

p2 indicates. This term is equal to zero in our scenario,
as prices are assumed to be constant.

In Figure 2.12 we present the numerical profiles aggregated from the time of diagnosis analogue to the
previous analyses. First of all we find, that the qualitative patterns of each decompositional term are
similar regardless the age at diagnosis, however the absolute values and consequently the composite
effect can be different.
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Figure 2.12: Illustrations of the impacts of the different parts of the Euler equations for cancer specific
care after a diagnosis.

Similarly to all types of health expenditures presented so far, the total interest rate r + µ alone would
lead to deferral of chronic care especially late in life (dashed red/dark grey line). Strikingly, as the
marginal impact of deficits on the efficiency of chronic care is (for the optimal chronic care profile)
stronger than the cancer growth rate δ0, the term −fE implies a delay in cancer care, especially in the
first years after the diagnosis (dotted blue/dark grey line). Consequently through this channel we would
expect a chronic care profile even more concentrated right after the diagnosis, if the efficiency of chronic
care was independent or even increasing with a decreasing cancer stock.

On the other hand the negative impacts of the cancer stock are an incentive for the advancement of
cancer treatments. Notably the term concerning the additional mortality risk (dashed violet/grey line)
implies a continuously decreasing chronic care pattern after the diagnosis. This effect is strengthened by
the term containing the impact of cancer deficits on utility, which, however, is comparatively small and
only increases in magnitude at very late ages (dash-dotted green/light grey line).36 As a last part the
dotted orange/light grey line shows, that the decreasing efficiency of cancer treatments for decreasing
cancer stock leads to investments closer to the diagnosis, but has no significant impact on the qualitative
shape of the pattern after the first ten years. Adding all terms up, we obtain the total profile (solid
black line), which highlights the dominance of negative terms over the positive ones. The strongest
decrease in the cancer expenditure profile occurs right after the diagnosis, which is followed by a period
of relatively flat resp. slightly diminishing expenditures.
36Note that this reassures, that changes in our educated guesses for the parameters of the utility function likely do not

have significant impact on the overall structure of the optimal solution.
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Corollary 6 (Cancer treatment)

A spike in cancer care right after the diagnosis is mainly driven by the high additional mortality risk
and decreasing efficiency of cancer care for a decreasing cancer stock. However the combined impact
is attenuated as the direct effect of the cancer stock on cancer progression (under the optimal cancer
care regime) acts in an opposing way. Compared to the other types of health care, the total interest rate
significantly affects the cancer care profile only towards older ages 70+.

Preventive care

Lastly we want to analyse the theoretical results we can derive for preventive care, which we unfor-
tunately cannot underline with our numerical solution as for the other types of health care. However
the interpretations of the analytical results still hold true in general. In equation (2.47) we present the
Euler type equation for preventive care.

ḣ1
h1

= −ηh1

ηh1h1h1
r + µ̄ + ηP

u2
c2

u1
c1

− u1/u1
c1

ψP
+ ρ − Ṗ

P
−

d
dt V ∗(t)
V ∗(t)

u2
c2

u1
c1

Pψ2
life

ψP

=
˙ψP

ψP

−ηh1S1µ1S1
ηh1

+ ηh1t

ηh1

− ṗ1

p1

(2.47)

Analogous to the other health care measures the Euler equation consists of the equivalent of the inverse
of the intertemporal elasticity of substitution as a scaling factor and the three main impact factors: (a)
value of prevention dynamics, (b) preventive care efficiency aspects, and (c) the price developments.
While the latter two are straight forward as for the other types of health care, the decomposition of
the former can be significantly more involved. This follows intuitively from preventive care (resp. the
value of prevention) generating costs in the cancer-free present, while its impacts and benefits are on
the probabilistic side.

(a) Value of Prevention: The rate of change of the value of prevention ψ̇P (t)
ψP (t) can be split up in the

following parts:

(i) The discount rate of the value of prevention (r + µ̄ + ηP
u2

c2
u1

c1
> 0) again leads to chronic care

postponement for high market rates (r+µ̄). Additionally the desire for precautionary savings
ηP

u2
c2

u1
c1

(which we also discussed in Section 2.5.2 regarding the consumption profiles) further
delays preventive care.

(ii) − u1/u1
c1

ψP
< 0 captures the the value of life lost, when being diagnosed with cancer, relative

to the value of prevention and motivates advancements of preventive care to earlier ages.

(iii) ρ − Ṗ
P − d

dt V ∗(t)
V ∗(t)

u2
c2

u1
c1

P ψ2
life

ψP
0 is the most involved part. It contains the comparison

between the value of life in the second stage and the value of prevention. The sign of this
term depends on whether the utility discount rate (ρ) is higher then the sum of the rate of
change in the continuation probability and the optimal objective value in the second stage
( Ṗ

P +
d

dt V ∗(t)
V ∗(t) ). However it is more than plausible that

d
dt V ∗(t)
V ∗(t) < 0 in general, since the length

of the remaining time horizon after a health shock shrinks as t increases. Furthermore as
Ṗ
P ≤ 0 is more likely than not for most diseases, the total effect is probably positive in many
cases (without general applicability) and implies deferral of preventive investments towards
older ages, where the cancer diagnosis (or general health shock) has a more significant impact
on the individual.

(b) Effectiveness: Changes in the effectiveness of preventive care over the life-cycle also play a decisive
role for the shape of the profile:
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(i) − ηh1S1 µ1S1
ηh1

indicates, that depending on whether preventive care is more (ηh1S1 < 0) or
less (ηh1S1 > 0) effective while in better health, individuals are either motivated to conduct
preventive care earlier or later in life.

(ii) ηh1t

ηh1
shows that the expectation of higher effectiveness of preventive care in the future (ηh1t <

0) leads to postponement of preventive care to older ages.

(c) Price: Expected increases of the price of preventive care over time push investments into preventive
actions towards earlier stages in life (and vice versa) as the term − ṗ1

p1 indicates.

Corollary 7 (Preventive Care)

The Euler equation for preventive care is the most involved within all types of health care. Beside
the price, effectiveness and interest rate impacts similar to other types of health care, the demand for
precautionary savings potentially delays preventive efforts. While the depreciation of the value of life
incentiveses earlier investments in preventive care, a counter acting deferral effect towards later ages
where the shock has more significant impact is likely to exist.

2.6 Conclusions
We have constructed a life-cycle model in which individuals respond to the risk of a singular, life-changing
shock to their health (e.g. heart attack, stroke, cancer, diabetes, disabling accident) by investing besides
their general health expenditures in a range of distinct forms of health care: preventive care to reduce,
directly or indirectly, the arrival rate of the shock; acute care to lower instantaneous survival and
the extent of morbidity/disability at the point of the shock; and chronic care to lower mortality and
morbidity in the follow-up of the shock. We solve the complex underlying stochastic optimal control
problem with a random time horizon by applying an innovative transformation into an age-structured
control model. This enables us to derive (i) intuitive expressions for the first-order conditions for the
choice of health care based on their respective (monetary) valuations; and (ii) Euler equations that reflect
both age and duration of disease after the onset of the shock and forward-looking behaviour before the
arrival of the shock. The first-order conditions first of all affirm the intuitive notion, individuals choose
their optimal level of all distinct types of health care, so that the marginal costs of any additional
effort match the monetary valuation of the respective aspect of health. On the other hand they also
provide a basis for empirical derivations of the valuations of different facets of health following a revealed
preference argument.

Calibrated to US data, our model illustrating the risk of onset of cancer provides a very good fit
between (i) general and cancer-specific health care expenditure, (ii) age-specific survival and age-specific
prevalence of cancer; (iii) age- and duration-specific cancer mortality rates, as well as (iv) average cancer
and non-cancer specific mortality. Under the assumption that assets are exclusively held as annuities
the return of which is based on the average mortality rate, relatively young individuals respond to
a cancer diagnosis by adjusting their consumption in the light of an increased mortality risk, from a
gradually increasing pattern to a U-shaped pattern (after a brief initial adjustment phase). To finance
high temporary cancer-specific care they reallocate resources from consumption and health expenditures
putting both respective profile on a lower level compared to cancer free individuals. Given the possibility
to do so in a perfect annuity market, they also run up substantial debt in order to finance cancer-
specific health care. With the duration of the disease, cancer-specific health care is reduced, reflecting
an intuitive tendency of such care to evolve from urgent life-protecting care into less intensive chronic
care, conditional on the individual’s survival. A hike in consumption early-on for individuals diagnosed
late in life coincides with a larger drop in general health expenditures and a smaller investment in
cancer-specific care, showing that a cancer diagnosis affects individuals differently at different points
within the life-cycle. However consumption of individuals diagnosed during old age subsequently steeply
reduces to levels below those that would be realized for healthy individuals.
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We calculate various expressions for the value of health. Here, the value of health before a diagnosis
of cancer starts from a level of around 16.3 Mio $ at age 20 and then declines steadily. Our analysis
shows that up to around age 70 a cancer diagnosis lowers the value of health dramatically. While both
the cancer-free value of health and the value of health at the point of diagnosis decline with age, the
decline is much more pronounced for the cancer-free value of health. From around age 85 onwards, the
cancer-free value of health no longer differs much from the value at the onset of diagnosis, reflecting
the much diminished remaining life time in either case. Contrasting the cancer-free value of health
with the ex-ante value of health, which involves a weighting with the prevalence function, we find little
difference between the two. This may come as a surprise given the strong drop in the value of health
for individuals diagnosed at young ages. Notably, however, for these age groups a cancer is an unlikely
diagnosis, implying a low weight, whereas for higher ages, the two values of health have converged.

Considering the components of the cancer-free value of health, we find that while the largest part
falls on the value of survival (tantamount to the conventional value of life), the preventive value of
good health (i.e. the value of prevention weighted with the health-related reduction in the incidence of
cancer) makes up for a significant proportion of the total value up to age 65. Standing at slightly above
6 Mio $ up to the early thirties, it compares to a value of survival around 9.5 Mio $ and makes up more
than a third of the total value of health at age 20. From age 50 onwards, however, the preventive value
of good health diminishes quickly and vanishes almost entirely for the highest ages.

Finally, turning to the Euler equations, we see that under our assumption that the rate of time
preference equals the interest rate, two offsetting forces emerge as drivers of consumption in the healthy
state: On the one hand, given that the individual remains healthy, the average mortality component
(including expected mortality due to cancer) exceeds (to increasing extent) the non-cancer mortality
as a source of risk, allowing the individual to increase consumption over the remaining life-course. On
the other hand, a desire for consumption smoothing leads to the advancement of consumption into
the healthy stage, which subsequently translates into a tendency to reduce consumption of the life-
course. As it turns out, the former effect is slightly stronger for our calibration, leading to an increase
in consumption with age for individuals who remain cancer-free. After the onset of cancer, again two
main forces determine the consumption choice: Assuming that the marginal utility of consumption is
reduced through cancer, there is a tendency for individuals to defer consumption into the future when
(conditional on survival) they expect to experience a higher marginal utility from consumption. As it
turns out, for the most part this tendency tends to be offset by the desire of individuals to consume
instantaneously given the high mortality risk, following the onset of cancer.

The demand for health care generally develops under the presence of two forces: On the one hand, the
return to annuities tends to imply an increase, whereas the writing off of life-years from the respective
value of health tends to imply a decline. For general health investments, these effects tend to be
moderated by age-related changes to their effectiveness. While for cancer-free individuals the shock-
preventive aspect of health implies an additional incentive to advance general health investment, this
factor is absent for individuals after a diagnosis. Overall, in our calibration there is a moderate increase
in general health investments over the life-course both in the absence and, from a much lower level, in
the presence of cancer. While the former three forces also tend to be at play for cancer-specific health
care, there are two additional effects: On the one hand, individuals have an incentive to delay the
consumption of cancer care, given it is more effective for a disease that has progressed already; on the
other hand, the mortality risk that is increasing with the progression of the disease provides a strong
incentive to advance cancer care; and this is, indeed, the dominating effect.

While in this paper we have developed a rich framework for the study of large, singular health shocks,
there is considerable scope for extensions and applications. First, we are planning to provide analysis for
other types of health shocks, in particular cardio-vascular events that involve an instantaneous threat
to survival and, thus, warrant the consumption of acute health care. Second, especially in the case of
cancer, there is an important issue about the lag between onset and diagnosis, which we plan to address
in future work. Third, there is large scope for employing the model to study the role of the annuity
market and the role of health and disability insurance. Finally, we are considering extensions of the
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model to involve multiple shocks and differences in severity of the health shock as a second dimension
of uncertainty.

2.7 Appendix

2.7.1 The model as a vintage optimal control model

The transformation from the stochastic formulation defined by equations (2.12)–(2.20) into a vintage
structured optimal control problem follows the technique developed by Wrzaczek et al. (2020). We will
present the two crucial steps here, for the proof and detailed derivations we will however refer to the
work of the original authors.

In the first step we transform the stochastic formulation into an equivalent deterministic version. The
dynamics of the state variables thereby do not change, but we need to introduce the new state variable
Z1(t), which is already presented in Section 2.2 and its dynamics are described in equation (2.21).
Following the description in Wrzaczek et al. (2020) we obtain the new deterministic objective function
shown below.

max
c1(t),h1(t),b1(t)≥0
c2(t,s),h2(t,s),b2(t,s)≥0
d(t)≥0

T

0
e−ρt Z1(t)S1(t)u1(c1(t)) +

+ Z1(t)η(t, S1(t), h1(t))P (S1(t), d(t)) ·
T

t

e−ρ(τ−t)S2(τ, t)u2(c2(τ, t), E(τ, t))dτ

:=Ṽ (t)

dt

The integrand consists of two parts. The first part is the probability of surviving in good health Z1(t)
multiplied with the expected utility derived from consumption at this age S1(t)u1(c1(t)). The second
part captures the "probability" of suffering the health shock at age t (→ Z1(t)η(t, S1(t), h1(t))) times
the probability of surviving the shock (→ P (S1(t), d(t))) times the expected aggregated utility over the
remaining life-time after health shock at age t. To abbreviate some equations below we define this term
as Ṽ (t) (as it directly corresponds to the objective value of the second stage).

For the next step in the transformation process we need to introduce the variable Q(t) as the expected
utility at age t with the expectation taken over the distribution of all possible prior shocks s ≤ t, i.e.

Q(t) =
t

0
Z2(s)S2(t, s)u2(c2(t, s), E(t, s))ds (2.48)

with Z2(s) being defined as in equation (2.22). Wrzaczek et al. (2020) then show, that the equation (2.49)
for the aggregated utility over all possible second stage scenarios holds,

T

0
e−ρtṼ (t)dt =

T

0
e−ρtQ(t)dt (2.49)

This is illustrated by a diagram similar to a Lexis-diagram (see figure 2.13). The left respectively right
panel in figure 2.13 illustrate the different integrations techniques on the left respectively right side
of equation (2.49). In both panels (corresponding to the resp. side in equation (2.49)) the utility is
aggregated over the triangle below the 45◦-line. In the left panel the integration first takes place along
each shock scenario from the age at the health shock until the end of the maximum life-span. In a second
step all scenarios weighted with their occurrence probability of Z1(t)η(t, S1(t), h1(t)) get aggregated. On
the right side, for each age t, first the utility generated in each scenario, where the shock has occurred
at an age s < t, is aggregated and in the second step the integration over all ages takes place.
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Figure 2.13: Graphical illustration of the change in the order of integration

In a final step we need to introduce another artificial dimension to the variable Z2(s) as follows:

dZ2(t, s)
dt

= 0, t ≥ s,

Z2(s, s) = Z1(s)η(s, S1(s), h1(s))P (S1(s), d(s)), ∀s ≥ 0.

This is a pure technical point (i.e. it eliminates the time lag) and ensures that the optimisation problem
fits the problem framework of Feichtinger et al. (2003). Finally we can summarise the whole problem
formulation in equations (2.50)–(2.66).

max
c1(t),h1(t),b1(t)≥0
c2(t,s),h2(t,s),b2(t,s)≥0
d(t)≥0

T

0
e−ρt Z1(t)S1(t)u1(c1(t)) + Q(t) dt (2.50)

s.t. Ṡ1(t) = −µ1(t, S1(t), b1(t))S1(t) = −µb(t, S1(t), b1(t))S1(t) (2.51)

S1(0) = 1 , (2.52)

Ȧ1(t) = (r(t) + µ̄(t))A1(t) + w1(t) − c1(t) − pb(t)b1(t) − p1(t)h1(t) (2.53)

A1(0) = 0 , A1(T ) = 0 (2.54)

Ż1(t) = −η(t, S1(t), h1(t))Z1(t) (2.55)

Z1(0) = 1 , (2.56)

dS2(t, s)
dt

= −µ2 t, s, S2(t, s), b2(t, s), E(t, s) S1(t) (2.57)

= − µb (t, S2(t, s), b2(t, s)) + µm(t, s, E(t, s)) S2(t, s), t ≥ s (2.58)

S2(s, s) = S1(s) , ∀s ≥ 0 (2.59)

dA2(t, s)
dt

= (r(t) + µ̄(t))A2(t, s) + w2(t, s, E(t, s)) − c2(t, s) − pb(t)b2(t, s) − p2(t)h2(t, s) (2.60)
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A2(s, s) = A1(s) − pd(s)d(s), , A2(T, s) = 0, ∀s ≥ 0 (2.61)

dZ2(t, s)
dt

= 0 (2.62)

Z2(s, s) = Z1(s)η(s, S1(s), h1(s))P (S1(s), d(s)), ∀s ≥ 0 (2.63)

dE(t, s)
dt

= f(t, s, E(t, s), h2(t, s)) (2.64)

E(s, s) = B(S1(s), d(s)), ∀s ≥ 0 (2.65)

Q(t) =
t

0
Z2(t, s)S2(t, s)u2(c2(t, s), E(t, s)) ds (2.66)

2.7.2 Necessary optimality conditions
Using the vintage structured model formulation (2.50)–(2.66) we can derive the necessary optimality
conditions following the theoretical work of Feichtinger et al. (2003). These conditions consist of (i) a
system of differential equations (2.67)–(2.71) for first stage co-state variables, (ii) a system of partial
differential equations (2.72)–(2.78) and (iii) a set of first order optimality conditions (accounting for
boundary solutions for the controls) (2.79)–(2.92). Note there are not endpoint condition for λA(t) and
ξA(t, s) as we included the terminal conditions A1(T ) = 0 and A2(T, s) = 0 ∀s ≥ 0 in the problem
formulation.

λ̇S = (ρ + µ1 + µ1
S1S1)λS + Z1ηS1 [λZ(t) − PξZ(t, t)] − ξS(t, t) − ξE(t, t)BS1−

− Z1 u1 + ηPS1ξZ(t, t) (2.67)

λS(T ) = 0 (2.68)

λ̇A = (ρ − r − µ̄)λA − ξA(t, t) (2.69)

λ̇Z = (ρ + η)λZ − ηPξZ(t, t) − S1u1 (2.70)

λZ(T ) = 0 (2.71)

dξS(t, s)
dt

= (ρ + µ2 + µ2
S2S2)ξS − Z2u2 (2.72)

ξS(T, T ) = 0 (2.73)

dξA(t, s)
dt

= (ρ − r − µ̄)ξA (2.74)

dξZ(t, s)
dt

= ρξZ − S2u2 (2.75)

ξZ(T, T ) = 0 (2.76)

dξE(t, s)
dt

= (ρ − fE)ξE + µ2
ES2ξS − w2

EξA − S2Z2u2
E (2.77)

ξE(T, T ) = 0 (2.78)

0 ≥ Z1S1u1
c1 − λA (2.79)

0 = Z1S1u1
c1 − λA · c1 (2.80)

0 ≥ −Z1ηh1 (λZ − P (S1, d)ξZ) − λAp1 (2.81)
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0 = −Z1ηh1 (λZ − P (S1, d)ξZ) − λAp1 · h1 (2.82)

0 ≥ −µ1
b1S1λS − λApb (2.83)

0 = −µ1
b1S1λS − λApb · b1 (2.84)

0 ≥ ξE(t, t)Bd + Z1ηξZ(t, t)Pd − ξA(t, t)pd (2.85)

0 = ξE(t, t)Bd + Z1ηξZ(t, t)Pd − ξA(t, t)pd · d (2.86)

0 ≥ Z2S2u2
c2 − ξA(t, s) (2.87)

0 = Z2S2u2
c2 − ξA(t, s) · c2 (2.88)

0 ≥ ξE(t, s)fh2 − ξA(t, s)p2 (2.89)

0 = ξE(t, s)fh2 − ξA(t, s)p2 · h2 (2.90)

0 ≥ −µ2
b2S2ξS − ξA(t, s)pb (2.91)

0 = −µ2
b2S2ξS − ξA(t, s)pb · b2 (2.92)

2.7.3 Proof of proposition 1 on the valuations of health

Following the calculations of Rosen (1988) we derive the following terms for the valuations:

ψ1
H(t) = S1λS

λA
(2.93)

ψ2
H(t, s) = S2ξS

ξA
(2.94)

ψP (t) = Z1(λZ − PξZ(t, t))
λA

(2.95)

ψAS(t) = Z1(t)η(S1(t), h1(t))ξZ(t, t)
ξA(t, t) (2.96)

ψM (t, s) = −ξE(t, s)
ξA(t, s) (2.97)

Since we assume an interior solution for the consumption profiles, the first order conditions for con-
sumption (2.79) and (2.87) have to be fulfilled in strict form and we can derive the following equations.

λA(t) = Z1(t)S1(t)uc1(c1(t))

ξA(t) = Z2(t, s)S2(t, s)uc2(c2(t, s), E(t, s))

∀t ∈ [0, T ] and s ∈ [0, t]

Furthermore we can easily derive the following relationship, which will be useful in the calculations
below.

λA(t) = ξA(t, t)
η(t)P (t)

u1
c1(t)

u2
c2(t, t) . (2.98)

In a next step we summaries the explicit solutions for the costate ODEs and PDEs.
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ξZ - dynamics
From equation (2.75) together with the terminal condition ξZ(T, s) = 0 it directly follows that

ξZ(t, s) =
T

t

e−ρ(τ−t)S2(τ, s)u2(τ, s)dτ.

ξS - dynamics
From equation (2.72) together with the terminal condition ξS(T, s) = 0 it directly follows that

ξS(t, s) =
T

t

e
− τ

t
[ρ+µ2+µ2

S2 S2]dτ
Z2(τ, s)u2(τ, s)dτ

=
T

t

e−ρ(τ−t)Z1(s)η(s)P (s)u2(τ, s) e
− τ

t
µ2dτ

S2(τ,s)
S2(t,s)

e
− τ

t
µ2

S2 S2(τ ,s)dτ
dτ

= Z1(s)η(s)P (s)
S2(t, s)

T

t

e−ρ(τ−t)S2(τ, s)u2(τ, s) e
− τ

t
µ2

S2 S2(τ ,s)dτ

≥1

dτ

≥ Z1(s)η(s)P (s)
S2(t, s) ξZ(t, s).

ξA - dynamics
As there is no terminal condition for ξA we can only derive the following equation from equation (2.74)
which will still be crucial further down below.

ξA(t, s) = ξA(s, s) · e
t

s
(ρ−r−µ̄)ds = ξA(T, s) · e

− T

t
(ρ−r−µ̄)ds

ξE - dynamics
The dynamics for ξE(t, s) described in equation (2.77) together with the terminal condition ξE(T, s) = 0
yield

ξE(t, s) =
T

t

e
− τ

t
[ρ−fE(τ ,s)]dτ

w2
E(τ, s)ξA(τ, s) + Z2(τ, s)S2(τ, s)u2

E(τ, s) − µ2
E(τ, s)S2(τ, s)ξS(τ, s) dτ

λZ - dynamics
Similar to the ξZ dynamics from equation (2.70) together with the terminal condition λZ(T ) = 0 it
directly follows that

λZ(t) =
T

t

e
− τ

t
(ρ+η)ds

η(τ)P (τ)ξZ(τ, τ) + S1(τ)u1(τ) dτ

λA - dynamics
For our calculation of the λA-dynamics we first use equation (2.98) to modify the λ̇A-equation what
results in

λ̇A = (ρ − r − µ̄)λA − ξA(t, t),

λ̇A = (ρ − r − µ̄)λA − η(t)P (t)
u2

c2(t, t)
u1

c1(t) λA(t),

λ̇A = ρ − r − µ̄ − η(t)P (t)
u2

c2(t, t)
u1

c1(t) λA(t).
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Now similar to the ξA-dynamics, without a terminal condition, we can still derive the equation below:

λA(s) = exp
s

t

ρ − r − µ̄(s ) − η(s )P (s )
u2

c2(s , s )
u1

c1(s ) ds λA(t).

λS - dynamics
Finally from equation (2.67) together with the terminal condition λS(T ) = 0 we can derive the following
representation of λS(t).

λS(t) =
T

t

e
− τ

t
(ρ+µ1(τ )+µ1

S1 S1)dτ
Z1u1 + ξE(τ, τ)BS1 + ξS(τ, τ)−

− Z1ηS1 [λZ(τ) − P (τ)ξZ(τ, τ)] + ηPS1(τ)Z1(τ)ξZ(τ, τ) dτ

Coming back to the different valuation of health, we are going to start with the simpler ones of the
second stage and proceed to the more involved ones of the first stage.

Value of health in the second stage ψ2
H(t, s)

ψ2
H(t, s) = S2(t, s)ξS(t, s)

ξA(t, s) =
S2(t, s) Z2(t,s)

S2(t,s)
T

t
e−ρ(τ−t)S2(τ, s)u2(τ, s)e− τ

t
µ2

S2 S2(τ ,s)dτ
dτ

ξA(t, s)

=
T

t

e−ρ(τ−t)Z2(τ, s)S2(τ, s)u2(τ, s)e− τ

t
µ2

S2 S2(τ ,s)dτ 1
ξA(τ, s)e

τ

t
ρ−r−µ̄dτ

dτ

=
T

t

e
− τ

t
r+µ̄+µ2

S2 S2(τ ,s)dτ Z2(τ, s)S2(τ, s)u2(c2(τ, s), E(τ, s))
Z2(τ, s)S2(τ, s)u2

c2(c2(τ, s), E(τ, s)) dτ

=
T

t

e
− τ

t
r+µ̄+µ2

S2 S2(τ ,s)dτ u2(c2(τ, s), E(τ, s))
u2

c2(c2(τ, s), E(τ, s)) dτ

Value of morbidity ψM (t, s)

ψM (t, s) = −ξE(t, s)
ξA(t, s) =

T

t
e

− τ

t
ρ−fEdτ −w2

E(τ, s)ξA(τ, s) − Z2(τ, s)u2
E(τ, s) + µ2

E(τ, s)S2(τ, s)ξS(τ, s) dτ

ξA(t, s)

=
T

t

e
− τ

t
ρ−fEdτ −w2

E(τ, s) − Z2(τ, s)S2(τ, s)u2
E(τ, s)

ξA(τ, s) + µ2
E(τ, s)S2(τ, s)ξS(τ, s)

ξA(τ, s) e
τ

t
ρ−r−µ̄dτ

dτ

=
T

t

e
− τ

t
r+µ̄−fEdτ −w2

E(τ, s) − u2
E(τ, s)

u2
c2(τ, s) + µ2

E(τ, s)ψ2
H dτ

Value of acute survival ψAS(t)

ψAS(t) = Z1(t)η(t)ξZ(t, t)
ξA(t, t) =

Z1(t)η(t) T

t
e

− τ

t
ρdτ

S2(τ, t)u2(τ, t)dτ

ξA(t, t)

= Z1(t)η(t)
T

t

e
− τ

t
ρdτ

e
τ

t
ρ−r−µ̄dτ S2(τ, t)u2(τ, t)

ξA(τ, t) dτ

= Z1(t)η(t)
T

t

e
− τ

t
(r+µ̄)dτ S2(τ, t)u2(τ, t)

Z2(τ, t)S2(τ, t)u2
c2(τ, t)dτ
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= Z1(t)η(t)
T

t

e
− τ

t
(r+µ̄)dτ u2(τ, t)

Z1(t)η(t)P (t)u2
c2(τ, t)dτ

= 1
P (t)

T

t

e
− τ

t
(r+µ̄)dτ u2(c2(τ, t), E(τ, t))

u2
c2(c2(τ, t), E(τ, t)) dτ

=: 1
P (t)ψ2

life(t, t)

Value of prevention ψP

ψP (t) = Z1(t)(λZ(t) − PξZ(t, t))
λA(t) = Z1(t)λZ(t)

λA(t) − Z1(t)PξZ(t, t)
λA(t) = Π1 − Π2

Π1 = Z1(t)λZ(t)
λA(t)

= 1
λA(t)

T

t

e
− τ

t
ρds

Z1(τ)η(τ)P (τ)ξZ(τ, τ) + S1(τ)Z1(τ)u1(τ) dτ

=
T

t

e
− τ

t
ρds

e

τ

t
ρ−r−µ̄−ηP

u2
c2

u1
c1

ds Z1(τ)η(τ)P (τ)ξZ(τ, τ)
λA(τ) + S1(τ)Z1(τ)u1(τ)

λA(τ) dτ

=
T

t

e
− τ

t
r+µ̄+ηP

u2
c2

u1
c1

ds

Z1(τ)η(τ)P (τ)ξZ(τ, τ)
ξA(τ,τ)

η(τ)P (τ)
u1

c1 (τ)
u2

c2 (τ,τ)

+ S1(τ)Z1(τ)u1(τ)
S1(τ)Z1(τ)u1

c1(τ)

 dτ

=
T

t

e
− τ

t
r+µ̄+ηP

u2
c2

u1
c1

ds u1(τ)
u1

c1(τ) + η(τ)P (τ)
u2

c2(τ, τ)
u1

c1(τ) P (τ)Z1(τ)η(τ)ξZ(τ, τ)
ξA(τ, τ) dτ

=
T

t

e
− τ

t
r+µ̄+ηP

u2
c2

u1
c1

ds u1(τ)
u1

c1(τ) + η(τ)P (τ)
u2

c2(τ, τ)
u1

c1(τ) ψ2
life(τ, τ) dτ

Π2 = Z1(t)P (t)ξZ(t, t)
λA(t) = Z1(t)P (t)ξZ(t, t)

ξA(t,t)
η(t)P (t)

u1
c1 (t)

u2
c2 (t,t)

=
u2

c2(t, t)
u1

c1(t) P (t)Z1(t)η(t)ξZ(t, t)
ξA(t, t) P (t) =

u2
c2(t, t)
u1

c1(t) P (t)ψ2
life(t, t)

ψP (t) =
T

t

e
− τ

t
r+µ̄+ηP

u2
c2

u1
c1

ds u1(τ)
u1

c1(τ) + η(τ)P (τ)
u2

c2(τ, τ)
u1

c1(τ) ψ2
life(τ, τ) dτ − u2

c2(t, t)
u1

c1(t) P (t)ψ2
life(t, t)

Value of health in the first stage ψ1
H(t)

ψ1
H(t) = S1(t)λS(t)

λA(t) = S1(t)
λA(t)

T

t

e
− τ

t
(ρ+µ1(τ )+µ1

S1 S1)dτ
Z1u1 − Z1ηS1 [λZ(τ) − P (τ)ξZ(τ, τ)] +

+ ξE(τ, τ)BS1 + ξS(τ, τ) + ηPS1(τ)Z1(τ)ξZ(τ, τ) dτ

=
T

t

e
− τ

t
(ρ+µ1+µ1

S1 S1)dτ
e

τ

t
µ1dτ

e

τ

t
ρ−r−µ̄−ηP

u2
c2

u1
c1

dτ S1(τ)
λA(τ)Z1u1−
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− S1(τ)
λA(τ)ηS1Z1 [λZ(τ) − P (τ)ξZ(τ, τ)] + S1(τ)

λA(τ)ξE(τ, τ)BS1 + S1(τ)
λA(τ)ξS(τ, τ) + S1(τ)

λA(τ)ηPS1(τ)Z1(τ)ξZ(τ, τ) dτ

=
T

t

e
− τ

t
r+µ̄+µ1

S1 S1+ηP
u2

c2
u1

c1
dτ u1(τ)

u1
c1(τ) − ηS1S1

Z1 [λZ(τ) − P (τ)ξZ(τ, τ)]
λA(τ) +

+ ηP
u2

c2

u1
c1

BS1S1(τ)ξE(τ, τ)
ξA(τ, τ) + S2(τ, τ)ξS(τ, τ)

ξA(τ, τ) + PS1(τ)S1(τ)Z1(τ)η(τ)ξZ(τ, τ)
ξA(τ, τ) dτ

=
T

t

e
− τ

t
r+µ̄+µ1

S1 S1+ηP
u2

c2
u1

c1
dτ u1(τ)

u1
c1(τ) − ηS1S1ψP (τ)+

+ ηP
u2

c2

u1
c1

(−BS1)S1(τ)ψM (τ, τ) + ψ2
H + PS1(τ)S1(τ)ψAS(τ) dτ

=
T

t

e
− τ

t
r+µ̄+µ1

S1 S1+ηP
u2

c2
u1

c1
dτ u1(τ)

u1
c1(τ) + (−ηS1)S1ψP (τ)+

+ ηP
u2

c2

u1
c1

ψ2
H + PS1(τ)S1(τ)

P (τ) ψ2
life + (−BS1)S1(τ)ψM (τ, τ) dτ

2.7.4 Proof of proposition 2 on the first order optimality conditions

Under the assumption of interior solutions the FOCs (2.79), (2.81), (2.83), (2.85), (2.87), (2.89) and (2.91)
all have to hold in strict form. Simple rearrangements of these equations and substituting the different
valuations of health in equations (2.93)-(2.97) result in the equations presented in proposition 2.

2.7.5 Derivation of the Euler equations

In this section we present the derivation of all the Euler equations presented in the numerical analysis.

c1 - Dynamics

λA(t) = Z1(t)S1(t)u1
c1(c1(t))

λ̇A(t)
λA(t) = Ż1(t)

Z1(t) + Ṡ1(t)
S1(t) +

d
dt u1

c1(c1(t))
u1

c1(c1(t))

ρ − r − µ̄ − ηP
u2

c2

u1
c1

= −η − µ1 +
u1

c1c1c1

u1
c1

ċ1
c1

ċ1
c1

=
u1

c1

−u1
c1c1c1

r − ρ + µ̄ − µ1 − η + ηP
u2

c2

u1
c1

c2 - Dynamics

ξA(t, s) = Z2(t, s)S2(t, s)u2
c2(c2(t, s), E(t, s))

˙ξA(t, s)
ξA(t, s) = Ż2(t, s)

Z2(t, s) + Ṡ2(t, s)
S2(t, s) +

d
dt u2

c2(c2(t, s), E(t, s))
u2

c2(c2(t, s), E(t, s))
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ρ − r − µ̄ = 0 − µ2 +
u2

c2c2c2

u2
c2

ċ2
c2

+
u2

c2E

u2
c2

f

ċ2
c2

=
u2

c2

−u2
c2c2c2

r − ρ + µ̄ − µ2 +
u2

c2E

u2
c2

f

b2 - Dynamics

pb(t) = −µ2
b2(t) · ψ2

H(t)

ṗb(t)
pb(t) =

d
dt −µ2

b2
(t)

−µ2
b2

(t) +
˙ψ2
H(t)

ψ2
H(t)

ṗb

pb
=

µ2
b2b2

b2

µ2
b2

ḃ2
b2

+
µ2

b2S2
Ṡ2

µ2
b2

+
µ2

b2t

µ2
b2

+
˙ψ2
H(t)

ψ2
H(t)

ḃ2
b2

=
−µ2

b2

µ2
b2b2

b2

˙ψ2
H(t)

ψ2
H(t) − ṗb

pb
− µ1

b2S2

µ2
b2

µ2S2 +
µ2

b2t

µ2
b2

˙ψ2
H = r + µ̄ + µ2

S2S2 ψ2
H − u2

u2
c2

ḃ2
b2

=
−µ2

b2

µ2
b2b2

b2
r + µ̄ + µ2

S2S2 − u2/u2
c2

ψ2
H

− ṗb

pb
− µ2

b2S2

µ2
b2

µ2S2 +
µ2

b2t

µ2
b2

b1 - Dynamics

pb(t) = −µ1
b1(t) · ψ1

H(t)

ṗb(t)
pb(t) =

d
dt −µ1

b1
(t)

−µ1
b1

(t) +
˙ψ1
H(t)

ψ1
H(t)

ṗb

pb
=

µ1
b1b1

b1

µ1
b1

ḃ1
b1

+
µ1

b1S1
Ṡ1

µ1
b1

+
µ1

b1t

µ1
b1

+
˙ψ1
H(t)

ψ1
H(t)

ḃ1
b1

=
−µ1

b1

µ1
b1b1

b1

˙ψ1
H(t)

ψ1
H(t) − ṗb

pb
− µ1

b1S1

µ1
b1

µ1S1 +
µ1

b1t

µ1
b1

˙ψ1
H = r + µ̄ + µ1

S1S1 + ηP
u2

c2

u1
c1

ψ1
H − u1

u1
c1

+ ηS1S1ψP − ηP
u2

c2

u1
c1

ψ2
H + PS1S1

P
ψ2

life + (−BS1)S1ψM

˙ψ1
H

ψ1
H

= r + µ̄ + µ1
S1S1 − u1/u1

c1

ψ1
H

+ ηS1S1
ψP

ψ1
H

− ηP
u2

c2

u1
c1

(ψ2
H − ψ1

H)
ψ1

H

+ PS1S1
P

ψ2
life

ψ1
H

+ (−BS1)S1
ψM

ψ1
H

ḃ1
b1

=
−µ1

b1

µ1
b1b1

b1
r + µ̄ + µ1

S1S1 − u1/u1
c1

ψ1
H

+ ηS1S1
ψP

ψ1
H

−
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− ηP
u2

c2

u1
c1

(ψ2
H − ψ1

H)
ψ1

H

+ PS1S1
P

ψ2
life

ψ1
H

+ (−BS1)S1
ψM

ψ1
H

− ṗb

pb
− µ1

b1S1

µ1
b1

µ1S1 +
µ1

b1t

µ1
b1

h2 - Dynamics

p2(t) = [−fh2(t, s)] · ψM (t, s)

ṗ2(t)
p2(t) =

d
dt [−fh2(t, s)]
[−fh2(t, s)] +

˙ψM (t, s)
ψM (t, s)

ṗ2

p2 = fh2h2h2
fh2

ḣ2
h2

+ fh2t

fh2

+ fh2EĖ

fh2

+
˙ψM (t, s)

ψM (t, s)

ḣ2
h2

= −fh2

fh2h2h2

˙ψM (t, s)
ψM (t, s) + fh2t

fh2

+ fh2Ef

fh2

− ṗ2

p2

˙ψM = (r + µ̄ − fE) ψM + w2
E + u2

E

u2
c2

− µ2
Eψ2

H

ḣ2
h2

= −fh2

fh2h2h2
r + µ̄ − fE + w2

E

ψM
+

u2
E/u2

c2

ψM
− µ2

E

ψ2
H

ψM
+ fh2t

fh2

+ fh2Ef

fh2

− ṗ2

p2

h1 - Dynamics

p1(t) = [−ηh1(t)] · ψP (t)

ṗ1(t)
p1(t) =

d
dt [−ηh1(t)]
[−ηh1(t)] + ψ̇P (t)

ψP (t)

ṗ1

p1 = ηh1h1h1
ηh1

ḣ1
h1

+ ηh1S1 Ṡ1
ηh1

+ ηh1t

ηh1

+ ψ̇P

ψP

ḣ1
h1

= −ηh1

ηh1h1h1

ψ̇P

ψP
− ηh1S1µ1S1

ηh1

+ ηh1t

ηh1

− ṗ1

p1

ψP (t) =
T

t

e
− τ

t
r+µ̄+ηP

u2
c2

u1
c1

ds u1(τ)
u1

c1(τ) + η(τ)P (τ)
u2

c2(τ, τ)
u1

c1(τ) ψ2
life(τ, τ) dτ − Z1(t)P (t)ξZ(t, t)

λA(t)

= Π1 − Π2

Π̇1 = r + µ̄ + ηP
u2

c2

u1
c1

Π1 − u1

u1
c1

− ηP
u2

c2

u1
c1

ψ2
life

Π̇2 = Ż1
Z1

+ Ṗ

P
+

d
dt ξZ(t, t)

ξZ
− λ̇A

λA
Π2
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= −η + Ṗ

P
+

˙ξZ

ξZ
+

∂
∂s ξZ

ξZ
− ρ − r − µ̄ − ηP

u2
c2

u1
c1

Π2

˙ξZ

ξZ
= ρξZ − S2u2

ξZ
= ρ − S2u2

ξZ
= ρ − S2u2 Z1η

ξAψAS
= ρ − Z1ηS2u2

Z2S2u2
c2ψAS

= ρ − Z1ηS2u2

Z1ηPS2u2
c2ψAS

= ρ − u2

u2
c2ψ2

life

Π̇2 = r + µ̄ − η + ηP
u2

c2

u1
c1

+ Ṗ

P
+

∂
∂s ξZ

ξZ
Π2 − u2

u2
c2ψ2

life

Π2

= r + µ̄ − η + ηP
u2

c2

u1
c1

+ Ṗ

P
+

∂
∂s ξZ

ξZ
Π2 − u2

u1
c1

P

ψ̇P (t) = Π̇1 − Π̇2 = r + µ̄ + ηP
u2

c2

u1
c1

Π1 − u1

u1
c1

− ηP
u2

c2

u1
c1

ψ2
life−

− r + µ̄ − η + ηP
u2

c2

u1
c1

+ Ṗ

P
+

∂
∂s ξZ

ξZ
Π2 − u2

u1
c1

P

= r + µ̄ + ηP
u2

c2

u1
c1

ψP − (u1 − Pu2)
u1

c1

− Ṗ

P
+

∂
∂s ξZ

ξZ

u2
c2

u1
c1

Pψ2
life

Since it also holds that

ξZ(t, t) = V ∗(t, S1(t), A1(t), Z1(t)) =: V ∗(t)

we can alternatively derive

ψ̇P (t) = r + µ̄ + ηP
u2

c2

u1
c1

ψP − u1

u1
c1

+ ρ − Ṗ

P
−

d
dt V ∗(t)
V ∗(t)

u2
c2

u1
c1

Pψ2
life

ψ̇P

ψP
= r + µ̄ + ηP

u2
c2

u1
c1

− (u1 − Pu2)/u1
c1

ψP
− Ṗ

P
+

∂
∂s ξZ

ξZ

u2
c2

u1
c1

Pψ2
life

ψP

= r + µ̄ + ηP
u2

c2

u1
c1

− u1/u1
c1

ψP
+ ρ − Ṗ

P
−

d
dt V ∗(t)
V ∗(t)

u2
c2

u1
c1

Pψ2
life

ψP

ḣ1
h1

= −ηh1

ηh1h1h1
r + µ̄ + ηP

u2
c2

u1
c1

− (u1 − Pu2)/u1
c1

ψP
− Ṗ

P
+

∂
∂s ξZ

ξZ

u2
c2

u1
c1

Pψ2
life

ψP
+ ηh1S1 Ṡ1

ηh1

+ ηh1t

ηh1

− ṗ1

p1

= −ηh1

ηh1h1h1
r + µ̄ + ηP

u2
c2

u1
c1

− u1/u1
c1

ψP
+ ρ − Ṗ

P
−

d
dt V ∗(t)
V ∗(t)

u2
c2

u1
c1

Pψ2
life

ψP
+ ηh1S1 Ṡ1

ηh1

+ ηh1t

ηh1

− ṗ1

p1

2.7.6 Estimation and calibration strategies
Estimation of cancer incidence rate η(S1)
For the estimation of the cancer incidence rate we adjust the total age-specific mortality rate obtained
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from the human mortality database (University of California, Berkeley (USA) and Max Planck Institute
for Demographic Research (Germany) (2020)) for the average age-specific cancer mortality provided in
the SEER-database (Surveillance Research Program, National Cancer Institute (2020)). Using this
adjusted mortality profile, we can derive the empirical equivalent of the S1-profile in our model. Using
the age-specific cancer incidence rate (again from the SEER database), the functional form

η(t, S) = β0

1 + β1( 1−S1
S1

)β2

turns out to provide an appropriate fit. Consequently we use a general least square fitting function for
non-linear functions to obtain estimates for β0, β1, and β2.

Estimation of cancer specific mortality rate µm(s, E)
The estimation procedure the parameters of the cancer specific mortality rate is more involved. Using
the duration dependent cancer specific survival data for different ages at diagnosis (4 broad age groups),
we first derive the corresponding empirical information about the cancer mortality rate. The remaining
procedure is less straight forward. Compared to the estimation of the cancer incidence rate, we do not
have an empirical counterpart for the development of the cancer stock E. First note, that we can derive
the empirical duration specific mortality only between full years. However especially within the first
two years after a diagnosis, there can be significant differences in cancer mortality risk and expenditure
between the beginning and the end of the first year. Hence the derived empirical mortality rates are in
a continuous time setting more appropriate estimates for mortality at 6 months, 1.5 years, 2.5 years,
etc. Furthermore our specified cancer mortality function

µm(t, s, E) = ψ0 · E · exp ψ1 · s

T

ψ2

and the normalisation of the initial cancer stock E(s, s) = 1.0 imply that we can potentially estimate
the impact of age at diagnosis using mortality data right at the point of diagnosis. Hence we use the
cancer specific mortality data for 6 months, 1.5 years, 2.5 years to estimate a non-linear function

M j(t − s) = exp −a1 + a2 · e−a3(t−s)

for each age-group j ∈ {1, 2, 3, 4} separately (which provides excellent fit) and use it to derive extrapo-
lated estimations for the mortality rates right after the diagnosis, i.e. M j(0).

However the data shows that the impact of the age at diagnosis can change for increasing duration
of cancer. Therefore estimating ψ1 and ψ2 only from data M j(0), might lead to skewed results, which
are not able to replicate the mortality risk of cancer also in the long-run. Hence we evaluated M j(t)
at t = 0, 1, . . . , 10 to obtain a relevant data-set M. While we still do not know the development of E

ex-ante, we can estimate ψ0, ψ1, and ψ2 as follows:

(i) We assume a highly general mortality function (with d = t − s describing the duration of the
diagnosed cancer disease) in the form of

µm(d, s) = νd · exp ζ1 · s

T

ζ2

(ii) Now we can use the dataset M to estimate the 13 parameters ν0,ν1 . . . ν10, ζ1, and ζ2 using a
generalised least-square fit. However to obtain the corresponding mortality rates for the four
age-groups, we need to calculate the averaged values within each age-group. Thereby we need to
account for the varying incidence of cancer depending on age and use the empirical equivalents to
S1, Z1, and Z2, which we can all derive from the estimates of the cancer incidence rate.
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(iii) Finally we can use the estimates for ζ1 and ζ2 as estimates for ψ1 and ψ1 in µm and the estimated
value for ν0 provides an approximation for ψ0.

Calibration of the base mortality function µb(t, b)
We use a very general form of the mortality function, so we are able to match the health expenditure
profile and the survival profile at the same time, i.e. we assume the functional form presented in
Section 2.4.

µb(t, S1, b1) = µb(t, b1) = g(t)bε(t)
1 g(t) = exp γ0 + γ1t + γ2t2 + γ3t3

ε(t) = α0 + α1 · t (< 0)

As the data delivers better information about the health expenditure rather than the health invest-
ments/measures we will directly connect the mortality rate to the health expenditures and as a result
also set the price for health investments pb = 1. To find fitting values for γi and αi we use an iterative
procedure:

(i) We start with a reasonable estimate for the value of health profile in the first stage.

(ii) Now consider the first-order optimality condition

(−µ1
b1(t, b1(t)))ψ1

H(t) = pb(= 1)

and the fact, that for our functional specification it holds that

µ1
b1(t, b1(t)) = ε(t)µ1(t, b1(t))

b1(t)

(iii) Consequently we can rewrite the optimality condition as:

ε(t) = b1(t)
−µ1(t, b1(t))ψ1

H(t)

Inserting the general expenditure data bData
1 (t) obtained from the NTA database, the calculated

value of health profile and the non-cancer mortality rates from the data, we get an estimated
profile for ε(t), which can then be used to estimate the parameters α1 and α2.

(iv) Having found the parameters for ε(t), we can then simply use the definition of the mortality
function to find the parameters γi, i ∈ {1, 2, 3, 4} by using

ln(g(t)) = ln µ1(t)
b(t)ε(t)

and inserting the mortality and health expenditure data together with the estimate for ε(t) on the
right side of the equation.

(v) As a next step we undertake several steps in our general optimisation algorithm to get closer to
the optimal solution.

(vi) After a certain number of steps we stop and calculate the a-priori value of health (average value
of health in the first and second stage) for the current solution of controls, states and costates and
return to step (ii).

As the optimal solution converges during the process, also the calibration for the parameters γi and αi

should converge for proper guesses for the initial choices.



Chapter 3

Allocating tests and lockdowns to
contain pandemic spread and
medical overload within a network

This chapter in its entirety directly corresponds to the paper Freiberger, Grass, Kuhn, Seidl and Wrzaczek
(2022a) , which is currently under final revision for publication in the Journal of Public Economic
Theory.

Abstract
During the COVID-19 pandemic countries invested significant amounts of resources into its containment.
In early stages of the pandemic most of the (non-pharmaceutical) interventions can be classified into two
groups: (i) testing and identification of infected individuals, (ii) social distancing measures to reduce
the transmission probabilities. Furthermore, both groups of measures may, in principle, be targeted at
certain sub-groups of a networked population. To study such a problem, we propose an extension of
the SIR model with additional compartments for quarantine and different courses of the disease across
several network nodes. We develop the structure of the optimal allocation and study a numerical example
of three symmetric regions that are subject to an asymmetric progression of the disease (starting from
an initial hotspot). Key findings include that (i) for our calibrations policies are chosen in a ”flattening-
the-curve”, avoiding hospital congestion; (ii) policies shift from containing spillovers from the hotspot
initially to establishing a symmetric pattern of the disease; and (iii) testing that can be effectively
targeted allows to reduce substantially the duration of the disease, hospital congestion and the total
cost, both in terms of lives lost and economic costs.

3.1 Introduction
Since the beginning of 2020 the virus SARS-CoV-2 has been spreading around the world at an incredible
pace; and by August 2021 COVID-19 (the disease induced by the virus) has cost more than 5.17 million
lives.1 Before an effective and safe vaccination became available in sufficient quantities, which in case of
COVID-19 took about a year, mainly two instruments were available to governments: social distancing
and testing.2

1https://covid19.who.int/, last access December 1, 2021.
2Note that while our analysis is motivated by the ongoing COVID-19 pandemic (including the calibration of the numerical

analysis), our model and the epidemic, economic and demographic structures described as well as the policy mechanisms
generalize to many other forms of present-day epidemics. Thus while some of the insights on optimal testing and
lockdown policies may come too late in the fight against COVID-19, the insights are worth consideration for future
pandemic events.
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Social distancing is aimed at reducing the spread of the virus, and for the purpose of our paper,
comprises - in a broad sense - measures such as locking down non-essential parts of the economy, travel
restrictions, wearing masks in public, requiring distance between people in public spaces, etc. Many
of these measures have been used for decades to fight against infectious diseases (e.g., like the plague,
leprosy, or the Spanish flu) and can be implemented quickly at potentially high costs to the economy
and the individual (including disutility).

Testing and contract tracing, on the other hand, is essential in order to be able to identify and
isolate infected people and break infection chains. It is not surprising that many countries invested
significantly into the development and deployment of such measures. While these relatively modern
instruments are very useful for identifying and quarantining infected individuals and, thereby, allowing
to gain control over the epidemic without locking down large parts of the population, tests and effective
means of contact tracing have been in short supply, especially during early parts of the epidemic and
under circumstances of overwhelming infection rates.

The implementation of these measures varies substantially across countries. While social distancing
and lockdown measures are commonly used with different intensity and focus and duration, testing
tracing strategies are used very differently. South Korea, e.g., concentrates on testing with a very
efficient tracing strategy to detect infected people before they develop symptoms and are spreading
around (testing with efficient tracing). Other countries, like Austria, try to test large parts of the
population regularly and are implementing tests as a precondition for public entities like restaurants,
events, cinemas, etc (unfocused testing). As a third strategy a couple of countries are testing only
people that develop symptoms. Regular testing of people without having symptoms is not intended (no
testing).

While there is a growing literature that evaluates social distance and lockdown measures (see the
literature review later in this section), the question how testing and tracing is implemented optimally
and how it interacts with distance and lockdown measures has not been addressed so far. Another
aspect that has attracted only little attention is the question whether these instruments should be
applied uniformly across the population or should be varied according to the specific circumstances
(in terms of localized infection rates and specific characteristics) of subgroups. This is in contrast to
the controversial and shifting public and political debate, which keeps coming back to whether or not
targeted travel restrictions are appropriate, and whether social distancing should be focused in a way
that shields only vulnerable groups but allows free interaction amongst others. This is paralleled by
a debate on whether testing capacities should be focused on particular regional hotspots or on certain
subgroups of the population (accompanied by sophisticated tracing strategies), at least as long as test-
kits are in limited supply.

What matters in such debates is heterogeneity across the population in two dimensions: (i) The
state of disease progression, which typically varies across regions - and sometimes across population
subgroups. (ii) The characteristics of sub-groups of the population, where some are more vulnerable in
a medical sense, i.e., more prone to get infected and/or suffer from a severe course of the disease; and
some may be more vulnerable economically, as captured by them facing higher costs of social distancing.
In the following we discuss the general properties of these two dimensions of heterogeneity.

Different regions: As a pandemic, COVID-19 has turned into a problem at global scale. This notwith-
standing, countries and even regions differ in the starting date of the epidemic as well as in the
pattern of epidemic progression. The advent of several waves of COVID-19 for many countries
also speaks evidence to the fact of cyclical patterns, where countries who had acquired control over
the disease, lost it again due to spill-overs from other countries. Another crucial issue concerning
regionality are differences in the availability of intensive care capacities, with large variation even
for countries that are close to each other.3 Similarly, intensive care units (ICU) may be regionally
centralized, especially in small countries. For all of these reasons, policy measures may need to be
regionally differentiated in their start and length, as well as in their intensity.

3E.g., Germany: 33.9, Italy: 8.6 intensive care beds per 100,000 people (year 2020). See de.statista.com for details.
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Heterogeneous population: Scientists agree that COVID-19 is a highly contagious disease that can
take widely different courses. While it is mostly harmless for young and healthy people (although
a number of long-term effects are already recorded4), it can get very critical and even lead to death
for old people or people with pre-existing illnesses. Moreover, the social behaviour of people of
different age-groups, different professions (people working in the health care sector, or as blue or
white collar workers) is heterogeneous (social and working contacts are very different for children,
blue and white collared workers, retired people). Hence, the population has to be subdivided
in (disjoint) heterogeneous groups with respect to their infection risk, their probability to infect
others and their susceptibility to experience a heavy course of the disease.

These arguments underline the importance of extending the existing epidemiological models in two
dimensions: (a) to allow for the interaction of heterogeneous sub-groups and for the targeting of policy-
instruments to certain groups; and (b) to allow for a more thorough analysis of the role of testing
within a setting of optimal policy-making. While some attempts have been made in both directions,
we will demonstrate in our literature review that these are to some extent patchy and focusing on
specific contexts (e.g., analysis of exogenous variations in (non-optimal) policies within decentralized
economies). Thus, we believe to make headway with a coherent analysis of optimal policy-making from
a social planner perspective.

We propose an extension of the SIR model with additional compartments for quarantine and different
courses of the disease (light, heavy and detected). We consider the population to be distributed across
a network (representing different regions or social groups, respectively) and model the diffusion of the
virus between its nodes. We allow for heterogeneity across the network: Regions can be heterogeneous
with respect to size and population density (implying different patterns of population interaction); social
groups may differ with respect to parameters such as mortality and the number of interactions with other
groups. Policy measures (testing and social distance/contact reduction) are allowed to be targeted in a
way that minimizes the social cost of the pandemic. Tests are provided subject to a capacity constraint,
and we consider variation in the effectiveness of testing (depending e.g., on whether or not tests can
be targeted in the presence of contact tracing), which allows us to study the interaction of test efficacy
with the level of contact reduction.

After providing and interpreting the first-order conditions that govern optimal policy-making and
deriving properties of the optimal solution, we turn to numerical analysis. Here, we study the optimal
control of a Covid-like disease5 spreading across three different regions. The regions are assumed to be
symmetric and only differ in the starting conditions (i.e., the disease spreads from an initial hot-spot)
such that the effects from the network structure are not dominated by regional asymmetries. We compare
the optimal allocation and outcomes across four regimes: a regime of uncontrolled disease progression, a
regime with lockdowns without any testing, and for two regimes with lockdown and testing, allowing for
targeted testing in one case. While the social cost (in terms of economic loss, medical treatment costs
and value of lives lost) is reduced significantly by a relatively rigorous lockdown, the introduction of
testing only yields significant cost reductions if tests can be targeted. Moreover, targeted testing changes
the testing and lockdown strategy substantially. Whereas tests are allocated in a cyclical sequence across
different regions/sub-groups of the population, following high infection rates; targeted tests follow this
pattern only initially but are shared equally across the sub-groups in the following. Policies are aimed
at preventing spillover of the disease from the hotspot, but are then geared to the harmonization of the
disease course across groups. For our parametrization, they are of a ”flattening-of-the-curve” type.

The remainder of the paper is organized as follows. Before introducing our model in greater detail we
provide a brief overview of the recent literature on epidemiological models concerning the COVID-19
pandemic in Section 3.2. Section 3.3 presents an extended SIR-type model over a network. Section 3.4

4E.g., higher risk for a heart attack or a stroke, reduced lung capacity, taste disorder.
5We chose the epidemiological parameters of the disease such as transmission, hospitalisation, mortality and recovery

rates to reflect those of Covid-19 found in the literature (see Section 3.5.1 for information on the calibration). However
we do not seek to replicate all aspects of what continues to be an emerging condition, but give insight for optimal
epidemiological strategies for potential new infectious diseases in the future, which pose similar risks to Covid-19.
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continues with optimality conditions and properties of the optimal solution. A numerical scenario in
which the disease spreads across three symmetric regions but starting from an asymmetric distribution of
initial infections, is developed and analyzed in Section 3.5. Section 3.6 concludes. In the supplementary
material, we present a second numerical scenario, involving a network composed of three population
subgroups (blue-collar workers facing high costs of lockdown, white-collar workers facing low costs of
lockdown, vulnerable individuals, e.g., the elderly, with poorer health outlook upon infection).

3.2 Literature review
Within this literature review, we restrict ourselves to a selection of papers that consider optimal policy
making in a dynamic framework (i.e., in particular compartment models6 considered with optimal
control theory) involving some heterogeneity across the population.

When dealing with the outbreak of an infectious disease, it is important to understand the impact of
different policy measures. Optimal control theory provides tools to determine the optimal application of
control instruments over the course of an epidemic to keep the direct and indirect harms of the disease
as low as possible. While several papers consider only health related objectives (see e.g., Hansen and
Day (2011) or Bliman et al. (2021)), there is also a growing literature that takes economic consequences of
policy measures into account too. The optimal timing of a lockdown is studied in Caulkins et al. (2020),
who found that the optimal duration of a lockdown decreases in its starting time. They analyze the
trade off between economic damage and lost lives and identify conditions under which no lockdown, an
intermediate and a permanent lockdown is optimal. Caulkins et al. (2021) extend this research by not
only allowing the length of the lockdown to be optimally determined but also its intensity. Furthermore,
they incorporate the impact of lockdown fatigue, i.e., a declining adherence to policy measures related
to their duration, on the optimal strategy. They find that the optimal solution is history-dependent
and that under certain conditions multiple lockdowns can be optimal. Caulkins et al. (2022) adjust the
models of Caulkins et al. (2020) and Caulkins et al. (2021) for more contagious virus mutations. Alvarez
et al. (2021) analyze how the effectiveness of a lockdown, the fatality rate and the value of a statistical
life affects the optimal lockdown policy. Not surpisingly, a low fatality rate or a low valued statistical
life lead to a shorter, less intense lockdown, however, a more effective lockdown increases the duration
of the lockdown instead of decreasing it. The optimal lockdown policy is also studied in Federico and
Ferrari (2021). They use an SIR framework where they assume the transmission rate to evolve according
to a stochastic differential equation. They characterize three distinct phases in a pandemic: in the first
phase, there should be no lockdown, while in the second it should be vigorous. In the third phase
of the pandemic the lockdown should be moderate. The optimal containment measures to reduce the
spreading of the disease taking economic damage into account have also been subject to investigation
by Aspri et al. (2021). Among other things, they emphasize the importance of testing by which they
find it is possibly to almost eliminate mortality at low economic costs in a one-region/group model.
Ouardighi et al. (2020) take account of social fatigue and popular discontent when determining the
optimal application of non-pharmaceutical interventions (mobility restrictions, isolation and securing
social interactions) over time.

Acemoglu et al. (2020) emphasize the importance of distinguishing between different risk groups
when deciding about policy measures. Their results suggests a strict and long lockdown for the most
vulnerable population group and a less strict lockdown for the other groups. Richard et al. (2021) focus
on non-pharmaceutical interventions in an age-structured optimal control framework. To minimize
deaths and control costs, they recommend a strategy where control measures vary throughout the
pandemic and are more intense for the older population. Bonnans and Gianatti (2020) consider an age-
structured population and analyze the optimal confinement strategy. The optimal vaccination strategy

6SIR models have been used to study infection dynamics for now almost 100 years starting with the seminal paper by
Kermark and Mckendrick (1927). The enormous impact of the COVID-19 pandemic has lead to a large number of
recent papers using this type of models to analyze different aspects of the crisis. For a general and broad literature
review we refer to Bloom et al. (2020).
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for different population groups is considered by Grundel et al. (2021). In their optimal control problem
they minimize the amount of social distancing subject to the constraints that the number of people
requiring ICU care remains beyond a certain threshold and the availability of vaccines is limited. In
principle, they recommend vaccinating people with high contact rates first, however, they also find
situations in which vaccinating high risk groups is preferable. Angelov et al. (2021) use a distributed
optimal control epidemiological model to study the impact of prioritization of age groups with respect to
vaccination. They find that a random distribution of vaccines is efficient in reducing the overall number
of infections, however, a lower mortality is obtained through prioritization of elderly and of those groups
with the highest contact rates. Fabbri et al. (2021) also take account of age-structure within an SIR
framework in a more theoretically oriented paper that provides sufficient optimality conditions.

To analyze whether policies should or should not vary between different regions in Italy, Carli et
al. (2020) extend their SIR-based framework to a multi-region model. They focus on non-pharmaceutical
interventions such as lockdowns and mobility restrictions between different regions. They propose a
model predictive control approach to handle potential deviations of the predictive model from the actual
development of a pandemic. They compare the impact of interventions that are uniformly applied to
different Italian regions and interventions that are applied in a differentiated manner. The considered
objective is to minimize economic and health-related costs. They find that the model predictive control
approach leads to substantially lower total costs than different benchmark control strategies and propose
it as a suitable tool to mitigate future Covid waves. To determine the optimal vaccine distribution among
different priority groups, Gamchi et al. (2021) embed a multi-region SIR model with multiple priority
groups into a vehicle routing problem. By means of the weighted augmented epsilon constraint method,
they study the trade off between the social costs and the costs of vaccinations and the fixed costs
of vehicles. The main focus of the paper is on the solution approach that combines the combinatorial
VRP with an optimal control problem in a multi-objective framework. Numerical illustrations, however,
confirm the importance of paying attention to high-risk groups.

Different risk-groups, testing and the impact of social distancing measures are also considered in
Gollier (2020). In this paper, confinement strategies are compared where the degree of confinement
is either constant over time or can assume depending on the number of infected two different levels.
Our paper extends this research by optimally determining the degree of testing and contact reducing
measures.

Gori et al. (2021) focus on the economic impact of the Covid pandemic and analyse the impact of
testing to avoid costly lockdowns in a framework that does not differentiate between different regions
or population groups, but they explicitly consider the dynamics of capital. The duration of a lockdown
is determined by a feedback rule, which depends, in particular, on the prevalence. The lockdown and
testing intensity are determined optimally, however, they are assumed to be constant over time. In our
paper, we allow the intensity of social distancing measures and testing to vary over time.

3.3 SIR-type Model
For the epidemic dynamics we extend the well-known SIR model (see Kermark and Mckendrick (1927))
over a network denoted by Ω. The network consists of |Ω| (denoting the cardinality of Ω) network
nodes representing different population groups or a distribution according to space (i.e., geographical
location).7 At every node j ∈ Ω we consider the following seven compartments: susceptible individuals
Sj(t), infected individuals without or with light symptoms Lj(t), infected individuals without or with
light symptoms that are detected Dj(t) (by a positive test), infected individuals with heavy symptoms
Hj(t), recovered individuals having never been detected RL

j (t), recovered individuals having been de-
tected RD

j (t), and deceased individuals Mj(t).8 Table 1 summarizes the seven compartments of our
7To shorten the notation we will often use the expression (network) node j ∈ Ω for referring to a specific group our

region.
8As we are considering testing effort as a control variable, it is necessary to distinguish recovered individuals according to

whether or not their infection was detected. Recovered that were detected (through testing or through a heavy course





3.3 SIR-type Model 79

three potential paths for the individuals: (i) a light case can recover at rate αL, (ii) a light case can
develop more severe symptoms and escalated to a heavy case, which requires hospital treatment, (iii) a
light case can be detected and diagnosed by being tested. In case (i) the individual becomes part of the
undiagnosed recovered compartment, which are subsequently assumed to be immunized9. A heavy case
in (ii) is automatically isolated in the hospital and does not contribute to the spread of the infection any
more. Over time the individual has a chance to recover at rate αH , but also faces a mortality risk at
rate µH . In the case of fatality they and up the compartment of total deaths, while after recovery they
become a diagnosed recovered individual. The diagnosed light cases in (iii) also do not contribute to the
infection dynamics as they are isolated (e.g., in home isolation). Being isolated they can either recover
or escalate to a heavy case analogously to the undetected light cases. However, their recovery and
escalation rates can differ since the diagnosis allows for potential treatment and escalation prevention
for these specific cases.

The controls are denoted in the grey ellipses and consist of contact reduction measures and testing
efforts. While contact reduction measures impact the flow from susceptibles to light case, testing efforts
affect the flow from light cases to diagnosed light cases. Both of these impacts channels are indicated
with dashed arrows in Figure 3.1.

The network structure of our framework allows us to model a population, which is heterogeneous
with respect to its spatial distribution and its epidemiologically relevant characteristics like profession,
infection and mortality risk, system relevance (amongst others). Furthermore these subgroups interact
according to their ”interconnections” along the arcs10 (individuals move between the compartments of
the same node, i.e., abstracting from flows between nodes, but the size of the flows depends also on the
interactions with other nodes), which enables us to describe complex infection dynamics across different
subpopulations. For simplicity (and due to a relatively short time horizon of the pandemic being active)
we abstract from modelling population inflow (i.e., births or migration) and natural outflow (i.e., non-
COVID-19 mortality). Following from the network structure of Ω and the state variables presented in
Figure 3.1 at each node, our framework consists of 7 × |Ω| state variables in total.

In the following sections we will present the dynamics of each state variable, the policy maker’s
objective and cost functions, and we conclude by presenting the complete problem formulation.

3.3.1 Dynamical system

For the presentation of the state dynamics we follow the flows between the states as in Figure 3.1.
Susceptibles at node j ∈ Ω are assumed to be in contact with other susceptibles, light cases or

recovered individuals (diagnosed cases are isolated at home and heavy cases are isolated in a hospital)
of any node k ∈ Ω (i.e., along an undirected arc connecting nodes j and k). Thus susceptibles can
only be infected by a contact with an undetected light case (from any node). The probability that a
random contact with an individual from node k is infectious corresponds to the share of light cases in
the non-isolated population, i.e., Lk

Sk+Lk+RL
k

+RD
k

. Note that Dk and Hk do not appear neither in the
nominator nor in the denominator of this probability, since diagnosed and heavy cases are isolated. The
combination of contact rate of susceptibles in node j with individuals of node k and the rate, at which
susceptibles of node j get infected by light cases of node k (in case of contact), at any point in time t

is denoted by uk,j(t). From now on we will refer to it as transmission rate from k to j. Consequently,

9The ongoing development of the Covid-19 pandemic has shown that loss of immunity (obtained through infection
or vaccination) over time significantly contributes to the infection dynamics and is a highly relevant for effective
management of a pandemic. As this loss of immunity can have multiple reasons like diminishing efficacy of vaccinations
or the emergence of new mutations of the virus, significant modelling effort is required to adequately reflect this aspect
of the Covid-19 pandemic and is the goal of the authors in upcoming work. In this paper we want to focus on the
network effects within our framework and thereby rely on the more standard SIR base model without possibilities for
reinfection.

10Note that in general we can assume Ω to be a continuous space. The formulation of the dynamics and the derivation
of the optimality conditions are quite similar. Then the resulting model is a distributed parameter optimal control
model.
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the dynamics for the number of susceptibles at any node j can be described by equation (3.1).

Ṡj = −Sj ·
k∈Ω

uk,j · Lk

Sk + Lk + RL
k + RD

k

, Sj(0) = Sj0. (3.1)

Within our framework we propose that the (non-negative) transmission rate uk,j(t) is a control variable
of the decision maker, which has to always remain below the natural transmission rate denoted by βk,j .
Specifically uk,j(t) can be directly chosen as a ”target transmission rate” (linearly) in the dynamics, but
with non-linear control costs in the objective function (which is discussed after the dynamical system).11

While this is equivalent to the (perhaps more common) modelling of the decision-maker choosing an
effort (at diminishing returns) to control transmission, the direct choice of a transmission rate is more
directly aligned with policy-makers setting targets in terms of reducing the effective reproduction number
(which depends on the transmission rate) below a certain threshold.12

The number of light cases in node j ∈ Ω increases with the inflow of newly infected susceptibles
(outflow of (3.1)) and decreases at the (exogenous) rate θLH(j) at which light cases turn into heavy
cases, at the (exogenous) rate αL(j) at which light cases recover without treatment, and at the rate
at which light cases are detected and quarantined. The detection rate vj

Lj+κ(Sj+RL
j

) sets the number of
performed tests vj(t) (from now on referred to as testing effort at node j ∈ Ω) in relation to the number
of individuals which are potentially infected and still undetected Lj + κ(Sj + RL

j ). Although the social
planer knows/estimates the number of light cases, he cannot identify who is infected without testing.
The parameter κ ∈ [0, 1], which is assumed to be an exogenous parameter, corresponds to different
testing capabilities/efficacies. For κ close to zero, the decision maker is able to almost perfectly identify
the light cases a priori, i.e., already before testing. This scenario corresponds to the assumption of all
infected showing specific symptoms such that testing can be restricted to these individuals. For κ close
to one, the decision maker lacks such information and most infections develop asymptomatic. Without
any form of contact tracing, the planer can only test close to randomly across the relevant population,
which consists of light cases Lj , of susceptibles Sj , and of recovered individuals RL

j , who were not
diagnosed in the past.13 However even in case of high rates of asymptomatic infections, implementing
efficient contact tracing of positive cases makes the identification of potential infections possible and
enables better targeting of tests.14 In our framework this corresponds to smaller values of κ. Interior
values of κ ∈ (0, 1) then reflect scenarios of imperfect testing. The dynamics for the number of light
cases then read

L̇j = Sj ·
k∈Ω

uk,j · Lk

Sk + Lk + RL
k + RD

k

− θLH(j)Lj−

− αL(j)Lj − vj

Lj + κ(Sj + RL
j )

Lj ,

Lj(0) = Lj0. (3.2)

Diagnosed light cases at node j ∈ Ω are placed in isolation and do not further contribute to
the spread of the disease. These individuals can either recover at (exogenous) rate αD(j) or turn

11We are not specifying whether a given target for the transmission rate is achieved through changes in the contact or
infection rate, however we assume, that the more cost-effective measures are applied first, what also motivates the
non-linear costs.

12This is reflected in many policies being justified by curbing the reproductive number to a value below one, and/or being
conditioned on levels of new infections.

13Note that the other groups at each node Dj , Hj , RD
j , Mj were isolated and diagnosed at some point during their

infection and are hence not part of the population relevant for testing.
14Note that vj(t) must be bounded, as otherwise the state Lj(t) could turn negative. We assure that this is ruled out by

assuming a constraint on the total number of performed tests (see (3.9)), reflecting that test kits including protective
gear and, especially, laboratory capacity have been a scarce resource in particular at the beginning of the pandemic.
This is also in line with the fact that in all countries the number of performed tests per day are below a maximum
number of 5% of the total population (see de.statista.com).
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into heavy cases at an (exogenous) rate θDH(j). We allow these rates to (possibly) differ from the
corresponding transition rates for undetected light cases, reflecting the effects of possible treatment and
better monitoring of diagnosed cases. The number of diagnosed cases increases at the rate at which tests
are identifying light cases (as explained above). Putting things together, the dynamics of the diagnosed
cases at node j ∈ Ω read

Ḋj = vj

Lj + κ(Sj + RL
j )

Lj − αD(j)Dj − θDH(j)Dj , Dj(0) = Dj0. (3.3)

Heavy cases are assumed to be diagnosed and treated in a hospital. Therefore, they do not contribute
to the spread of the virus any more. Individuals suffering a heavy course enter through the escalation of
light infections (detected or undetected) and leave the hospital either through death at rate µH(Hj , j)
or recovering at rate αH(Hj , j). As we will explain further on below, both rates may depend on hospital
congestion, as measured by Hj (see equation (3.5)) at node j ∈ Ω. The dynamics for heavy cases are
then given by

Ḣj = θLH(j)Lj + θDH(j)Dj − αH(Hj , j)Hj − µH(Hj , j)Hj ,

Hj(0) = Hj0. (3.4)

To account for potential congestion effects in the medical sector at node j ∈ Ω the recovery rate
αH(Hj , j) and the mortality rate µH(Hj , j) are assumed to depend on the aggregated variable Hj , as
defined by

Hj =
k∈Ω

HkfH(j, k). (3.5)

Here, the function fH(j, k) relates heavy cases from node k to hospital (or, indeed, intensive care)
utilization at node j. If, for instance, the network describes social strata of a population all of which are
treated within the same hospital, then we have fH(j, k) = 1 for j, k ∈ Ω and thus Hj = H = k∈Ω Hk

for j ∈ Ω. If, in contrast, the network describes different regions with segregated hospitals, then
fH(j, k) = 1 for k = j, and zero otherwise, implying that Hj = Hj . Of course, other forms of fH(j, k)
can be assumed, reflecting situations in which (some) patients from one region may be treated in another
region.

Recovered light and diagnosed cases, as well as the deceased at node j collect the outflows
from the corresponding compartments. Thus, the dynamics read

ṘL
j = αL(j)Lj , RL

j (0) = RL
j0 (3.6)

ṘD
j = αD(j)Dj + αH(Hj , j)Hj , RD

j (0) = RD
j0 (3.7)

Ṁj = µH(Hj , j)Hj , Mj(0) = Mj0. (3.8)

3.3.2 Costs and objective function

The decision maker has two control variables: the transmission rate uk,j(t) between light cases at node
k ∈ Ω and susceptibles at node j ∈ Ω (equation (3.1)) and the testing effort vj(t) at node j ∈ Ω
(equation (3.2)). Both controls aim at containing the epidemic and lowering the number of COVID-19
deaths (summed in Mj at node j ∈ Ω). Testing and tracing is a scarce resource. In spring 2020, testing
kits (protective gear) and laboratory capacities were scarcely available and had to be rationed. To
account for limited availability of testing, we include a constraint on the corresponding control, i.e.,

j∈Ω
vj(t) ≤ V (t), (3.9)
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where V (t) is the maximum number of available tests for the entire network. The dependency on time
t reflects that supply may grow over time.15

Let CU (uk,j(t), t, k, j) denote the costs of curtailing the transmission rate uk,j(t) from node k to j (at
t) to a level below its unrestricted (natural) level βk,j . Thus, we assume CU (uk,j(t), t, k, j) to be convex
decreasing (i.e., higher costs for a lower transmission rate) for all 0 ≤ uk,j(t) ≤ βk,j . Without any
intervention, i.e., for uk,j(t) = βk,j there are zero costs. The costs for testing efforts at node j ∈ Ω are
denoted by CV (vj(t), t, j) and are convex increasing. Again, we assume that vj = 0 generates no costs.
We can then summarize the properties of the cost functions related to the control variables (j, k ∈ Ω)
as follows:

∂CU (·)
∂uk,j

< 0,
∂2CU (·)

∂u2
k,j

≥ 0, CU (βk,j , t, k, j) = 0 (3.10a)

∂CV (·)
∂vj

> 0,
∂2CV (·)

∂v2
j

≥ 0, CV (0, t, j) = 0. (3.10b)

The occurrence of heavy cases (subsumed in the Hj compartment, j ∈ Ω) leads to two types of
(monetary) costs. First, (by definition) all heavy cases have to be treated in a hospital, some of them
even in an ICU, implying medical treatment costs CM (Hj(t), t, j) associated with type j patients at
time t. Again we assume these costs to be convex increasing in Hj(t). Second, some of the heavy cases
do not survive. The lost lives from group j are weighted by the statistical value of life Ψ, which we
assume to be equal across all nodes.

The policy-maker aims at minimizing total costs, composed of the costs for controlling the transmission
rates, the costs for testing, the treatment costs and the value of lost lives, over the course of the pandemic
from its onset at t = 0 to its end at t = T which for the purpose of fixing ideas we identify with the point
in time at which an effective and safe vaccine is universally available.16 Thus the objective function can
be formulated as

min
vj(t)≥0

0≤uk,j(t)≤βk,j

T

0
e−ρt

j∈Ω
CM (Hj(t), t, j) + µH(Hj(t), j)Hj(t) · Ψ+

+ CV (vj(t), t, j) +
(k,j)∈Ω2

CU (uk,j(t), t, k, j) dt+ (3.11)

+ e−ρT S(X (T ), T ), (3.12)

where ρ ≥ 0 is the discount rate and where the salvage value function S(X (T ), T ) contains all follow-
up costs of the pandemic. Here X (T ) is used as an abbreviation and denotes a vector of all seven
compartments across the network. For the salvage value we assume the same costs as for the planning
horizon, but since the pandemic is over after T , there is no need for further controls (implying zero control
costs). Moreover, our assumption of unlimited availability of an effective and safe vaccine implies that
susceptibles cannot get infected any more.17,18 Hence, the relevant compartments can be reduced to
15The control constraints can be altered to account for different properties of the network. If, for instance, the network

describes different regions, then each region may face an individual constraint, i.e., vj(t) ≤ Vj(t) for j ∈ Ω.
16Note that a-priori this terminal time is typically unknown to the policy-maker. However, there is no loss in generality as

T can always be chosen large enough for the policy-maker being certain beyond a margin of reasonable doubt that the
pandemic would have ended through the availability of a vaccine or otherwise. In the case of COVID-19 for instance,
which in most industrialized economies emerged from March 2020 onwards, policy-makers were expecting as early as
spring 2020 that vaccines would be available by spring 2021.

17We assume that all susceptibles in the network are vaccinated within a very short spell of time. The real situation (at
beginning of 2021), however, teaches us that vaccination is not an easy task and that its rollout may take considerable
time. This lies outside of the scope and focus of our model and is investigated in, e.g., Buratto et al. (2021). See also
footnote 9.

18We assume for our purposes, that the vaccination delivers sterile immunity for all individuals, i.e., the remaining
undetected light cases cannot infect anybody after the vaccine becomes available. Without further information this
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the light, the diagnosed and the heavy cases, as only these individuals cause costs until there are no
infected left. The salvage value function can then be written as

S(X (T ), T ) :=
∞

T

e−ρ(t−T )


j∈Ω

CM (Hj(t), t, j) + µH(Hj(t), j)Hj(t) · Ψ

 dt, (3.13)

where the states evolve (without further control) according to (j ∈ Ω)

L̇j = −(θLH(j) + αL(j))Lj (3.14a)

Ḋj = −(θDH(j) + αD(j))Dj (3.14b)

Ḣj = θLH(j)Lj + θDH(j)Dj − (αH(Hj , j) + µH(Hj , j))Hj (3.14c)

Hj =
k∈Ω

HkfH(j, k). (3.14d)

3.3.3 Complete problem

Putting things together the policy-maker faces the following finite time optimal control problem:

min
vj(t)≥0

0≤uk,j(t)≤βk,j

T

0
e−ρt

j∈Ω
CM (Hj , t, j) + µH(Hj , j)Hj(t) · Ψ + CV (vj , t, j)

+
(k,j)∈Ω2

CU (uk,j , t, k, j) dt + e−ρT S(X (T ), T ) (3.15a)

Ṡj = −Sj ·
k∈Ω

uk,j · Lk

Sk + Lk + RL
k + RD

k

(3.15b)

L̇j = Sj ·
k∈Ω

uk,j · Lk

Sk + Lk + RL
k + RD

k

− θLH(j)Lj−

− αL(j)Lj − vj

Lj + κ(Sj + RL
j )

Lj (3.15c)

Ḋj = vj

Lj + κ(Sj + RL
j )

Lj − αD(j)Dj − θDH(j)Dj (3.15d)

Ḣj = θLH(j)Lj + θDH(j)Dj − αH(Hj , j)Hj − µH(Hj , j)Hj (3.15e)

ṘL
j = αL(j)Lj (3.15f)

ṘD
j = αD(j)Dj + αH(Hj , j)Hj (3.15g)

Ṁj = µH(Hj , j)Hj (3.15h)

is also the best educated guess the social planer can make at the beginning of the time horizon, when his decisions
are determined. The Covid-19 pandemic has shown, that vaccinations are not always able to eliminate the risk of
infection completely, while they are still very effective in reducing the number of hospital cases and case mortality.
As we will see later in the numerical results, the treatment costs for infected individuals are miniscule compared to
the costs for lockdowns and lives lost. Hence our assumption sterile immunity does not significantly effect the salvage
function, since the significantly reduced numbers of hospitalisations are highly unlikely to threaten the ICU-capacities
and reduced mortality implies very low values in lives lost after the vaccine becomes available.
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j∈Ω
vj(t) ≤ V (t), Hj =

k∈Ω
HkfH(j, k), (3.15i)

where S(X (T ), T ) is defined by (defined by (3.13) and (3.14)), and where X (0) = X0.

3.4 Properties of the optimal solution
Within this section we first formulate the first order conditions for the control variables (i.e., target
transmission rates and number of performed tests) and provide an intuitive understanding (Subsec-
tion 3.4.1). Second, we are deriving general properties that help to understand the optimal solution
(Subsection 3.4.2).

3.4.1 Optimal allocation
From the Maximum Principle we can formulate the Hamiltonian and derive first order optimality con-
ditions and adjoint equations for the costate variables (see Grass et al. (2008)). The whole set of
derivations is relegated to Appendix 3.7.1. Within this section we provide some economic intuition by
discussing the first order conditions and some theoretical results that enhance the understanding of the
optimal solution. A thorough discussion of the shadow prices relating to the different state variables,
which are frequently part of the FOCs, can be found in Appendix 3.7.2.

The first order conditions for the control variables (in the interior of their respective feasible region)
can be formulated as follows (j, k ∈ Ω)

∂CU (uk,j , t, k, j)
∂uk,j

= λLj
− λSj

Sj · Lk

Sk + Lk + RL
k + RD

k

(3.16a)

∂CV (vj , t, j)
∂vj

= λDj − λLj · Lj

Lj + κ(Sj + RL
j )

+ Λ, (3.16b)

where λx denotes the shadow price of state variable x; and where Λ denotes the Lagrangian multiplier
relating to the constraint on testing capacity (3.9). The first set of equations (3.16a) determines the
optimal target transmission rates (for infections from node k to node j), the second set (3.16b) refers
to optimal testing efforts at node j.19

Equation (3.16a) equates the cost of a marginal reduction in the target transition rate with the benefit
of lowering the probability of an additional infection at node j.20 The latter consists of the product of
(i) the value of avoiding an infection at node j, as measured by the difference between λLj

and λSj
; (ii)

the number of susceptibles at node j; and (iii) the probability that the contact of a susceptible of node
j at node k is infectious (i.e., Lk

Sk+Lk+RL
k

+RD
k

).
Analogously, equation (3.16b) equates the cost of a marginal increase in testing effort with the

marginal benefit of raising the probability of identifying and isolating a light case at node j. The
latter consists of the product of (i) the value of identifying a light case at node j, as given by the
difference between λDj and λLj ; and (ii) the probability that a light case is detected by the test (i.e.,

Lj

Lj+κ(Sj+RL
j

) ). The Lagrangian multiplier Λ is zero as long as the testing capacity is not exhausted (see
complementary slackness condition as formulated in Appendix 3.7.1). In case the testing capacity is in
full usage, the multiplier turns negative, implying that the marginal benefit exceeds the marginal cost of
testing at all nodes. Under such a situation of rationing, tests are allocated such that the gap between
marginal benefits and costs is equilibrated across nodes. This implies, in particular, that all else equal
more tests tend to be allocated to those nodes that either exhibit a larger number of light cases Lj , as

19The presented optimality conditions hold for interior solutions. We omit the explicit presentation of boundary solutions,
which is straightforward. The general formulation including boundary controls can be found in Appendix 3.7.1.

20Recall that an increase in the target transition rate lowers costs, i.e., that ∂CU (uk,j (t),t,k,j)
∂uk,j (t) < 0.
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this raises the probability of detecting a light case and, thus, the efficacy of testing; or exhibit a higher
value of detection, as is true, e.g., for nodes at which infections are very harmful.

Sufficiency conditions are difficult to deal with in our model. The Mangasarian and Arrow suffi-
ciency conditions (see Grass et al. (2008)) are not promising for our model due to non-convexities
in the constraints; a feature which is well-known for models with SIR dynamics (see Gersovitz and
Hammer (2004)). Another possibility is presented in Goenka et al. (2021) (see also the discussion in
Boucekkine et al. (2021)), who prove local optimility by adopting the Leitmann-Stalford sufficiency
conditions (see Leitmann and Stalford (1971)). However, the additional compartments as well as the
network structure of our model imply considerable complications so that the proposed method is not
applicable.

For the numerical solution we adopted a gradient-based optimisation method developed by Ve-
liov (2003) for age-structured optimal control problems. Following gradual improvements along the
direction of the (negative) gradient assures that the numerical solution does not correspond to a max-
imum of the objective function, which can be the case for techniques using the first order conditions
directly. We are aware that this approach still poses the risk of termination of the algorithm in a local
optimum. However, we checked our numerical solution for a variety of initial guesses of the control
profiles to combat this problem.

3.4.2 Properties

The first order conditions (3.16a) and (3.16b) define the values of the control variables, target trans-
mission rates and testing effort, in the optimal solution in each node j. However, it is not directly clear
how they are related. The following Proposition investigates how the optimal target transmission rates
are connected to each other and highlights the network aspect of our framework.

Proposition 3

Consider the full finite time optimal control model (3.15) and assume that an optimal solution exists.
If the transmission rate from any two nodes k1 and k2 to nodes j1 and j2 respectively does not lie
on the boundary, the relation of the marginal costs of the transmission rates is independent of any
shadow price and depends only on the share of infectious people among the non-isolated population in
the corresponding node, i.e.,

∂CU (uk1,j1 ,t,k1,j1)
∂uk1,j1

∂CU (uk2,j1 ,t,k2,j1)
∂uk2,j1

=
∂CU (uk1,j2 ,t,k1,j2)

∂uk1,j2
∂CU (uk2,j2 ,t,k2,j2)

∂uk2,j2

=
Lk1

Sk1 +Lk1 +RL
k1

+RD
k1

Lk2
Sk2 +Lk2 +RL

k2
+RD

k2

, ∀ k1, k2, j1, j2 ∈ Ω. (3.17)

Proof. Since the transmission rates do not lie on the boundary the corresponding first order conditions
for uk1,j1(t), uk2,j1(t), uk1,j2(t) and uk2,j2(t) are defined by (3.16a). Dividing one by the other (for fixed
j1, j2 respectively) proves the above assertion.

Therefore, the relation of the marginal costs of the target transmission rates does not depend on
the shadow prices, but only on the share of infectious people among the non-isolated population at
the different nodes. Interestingly, this means that the optimal target transmission rate at every node
(in relation to the other nodes) is set only upon their current status of the pandemic course without
considering the dynamics. Consequently, it is enough to set only one target transmission rate optimally
with respect to the dynamic effects included in the adjoint variables (according to (3.16a)). Any other
target transmission rate being responsible for infections in the same node can be set without considering
the dynamic effects.

Especially the relation of marginal costs of the optimal transmission rates from two different node k1
and k2 to a common neighbouring node j does not depend on the epidemic situation at node j. On the
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other hand a small transformation of equation (3.17), i.e.,

∂CU (uk1,j1 ,t,k1,j1)
∂uk1,j1

∂CU (uk1,j2 ,t,k1,j2)
∂uk1,j2

=
∂CU (uk2,j1 ,t,k2,j1)

∂uk2,j1
∂CU (uk2,j2 ,t,k2,j2)

∂uk2,j2

,

shows that the relation of marginal costs of the optimal transmission rates from any given node k to
some (fixed) neighbouring nodes j1 and j2 is identical for all possible origin nodes k. Thus the marginal
rate of transformation (in terms of the lockdown measures for infection protection of groups j1 and j2)
is equalised across all nodes of infection origin k.

For an analytical relationship between the optimal testing strategy and the optimal target transmission
rates, we will assume an interior solution for testing, where additionally the testing capacity constraint
is not binding. We can derive the following equation for testing in node j and the optimal target
transmission rate within node j by dividing equations (3.16a) and (3.16b).

∂CU (uj,j ,t,j,j)
∂uj,j

/Sj

∂CV (vj ,t,j)
∂vj

=
(λLj

− λSj
)

(λDj − λLj ) · Lj + κ(Sj + RL
j )

Lj + Sj + RL
j + RD

j

(3.18)

On the left hand side we obtain the ratio of the marginal costs of a change in the transmission rate per
susceptible, i.e., the population which is directly affected by the transmission, and the marginal costs
of additional tests. On the right side we first have the ratio of the shadow price of a susceptible getting
infected and the shadow price of a light case getting detected via testing. This ratio is multiplied with
the share of the potential testing pool with respect to the active (non-isolated) population. Note that
the number of infections Lj does not appear as an isolated term in equation (3.18), but only as part of
the active population (denominator) and the testing pool (nominator).

This ratio of testing pool and active population plays a crucial rule for the relative allocation of
resources towards lockdown measures or testing, but also varies over time. However, for Covid-like
diseases (see the numerical solution in Section 3.5) the variations of nominator and denominator are
relatively small. The active population at each point in time is equal to the total population without
the total number of fatalities Mj and isolated cases (Dj + Hj). The latter two terms are orders of
magnitude smaller than the total population and as a result the active population is not subject to large
variations over time. A similar argumentation also holds for the testing pool, but we have to account for
the number of recovered diagnosed cases. In case of high numbers of detections of light cases (through
testing efficiency or large testing volumes) we would expect the size of the testing pool to potentially
decrease over time. Nevertheless, a more substantial impact on the ratio Lj+κ(Sj+RL

j )
Lj+Sj+RL

j
+RD

j

results from the
testing efficiency κ. For highly effective testing (i.e., κ ≈ 0) this ratio would be close to zero (again the
number of light cases is at least one order of magnitude smaller then the active population for Covid-like
diseases) and consequently imply more tests and less lockdown measures (in case of a convex costs for
both measures). For ineffective testing (κ ≈ 1), the ratio is close to one and (with the ratio of shadow
price differences becoming the sole defining factor for allocations of tests and lockdowns) conversely
suggests higher lockdown measures and less testing efforts.

3.5 Numerical Analysis
In this section we apply the model to study the disease dynamics and the impact of optimal policy-
making within a network composed of three heterogeneous groups. We propose a model of three different
regions (i.e., a geographic network) that interact with one another and share resources with respect to
tests and hospital capacities with an initial infection hot spot in one of them. In the online supplementary
material we present an alternative application of our framework, where we assess the potential benefits
of targeting social distancing, lockdown and testing measures at specific subgroups of a population
distinguished by their economic and demographic make-up.
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We assume that the pandemic is terminated by a vaccine that becomes available after one year (i.e.,
T = 360 days) and that no transmission takes place afterwards. We present the dynamic development
until day 400, as this fully covers the dynamics underlying the salvage value function in equations (3.13)
and (3.14). As we try to focus on the identification of network effects in our model, we assume the three
regions to be identical regarding their characteristics and their interactions to be symmetric. Introducing
specific heterogeneity in some aspects could obscure effects resulting purely from the network structure.
Using this approach we can attribute all heterogeneous measures and developments to the different
initial conditions of the different regions. Specifically, we impose:

(G1) The regions are identical in population size. With the total population being normalized to 1,
we then have Ni(t) = 1/3 for all t and i ∈ Ω.

(G2) Epidemiological and cost parameters are equal for all regions (i.e., regeneration, escalation and
mortality rates; costs for treatment, testing, implementing the target transmission rate, and lost
lives), see Table 3.2.21

(G3) Hospital capacities are shared between the regions, which means that heavy cases can in general
be admitted to hospitals in other regions if the local capacities are exhausted, i.e., fH(j, k) ≡ 1.

(G4) Testing capacities are shared between the regions.

We do not allow for migration between the nodes of the network, and individuals remain assigned
to their initial region at all times. Transmissions across regions occur through temporary travel (and
consequent interactions) of some individuals between regions. However, we wish to stress that individuals
continue to be assigned to their initial (home) region, as this assignation is crucial for the definition and
description of the target transmission rates.

3.5.1 Calibration
We assume, that within and across regions, there is an uncontrolled (baseline) transmission rate of
βi,j . Reducing the transmission rate through social distancing and lockdown measures is assumed to
imply quadratic costs. The planer has the possibility to choose target values for the all transmission
channels ui,j separately. This means that not only can the transmission targets be chosen differently
for interactions within and across different regions, but we explicitly allow for a distinction between the
target rates uj,k and uk,j . This enables us to model heterogeneous policy schemes, as were enacted by
many countries during the pandemic. Notably, mandatory quarantine policies for incoming travellers
have been frequently and repeatedly enacted by many countries over the course of the pandemic as
a measure to curb the import of infections from other regions. While such measures have often been
implemented to varying degrees, applying, e.g., only to high-infection regions, they have also been
asymmetric in the following sense: Implementing preventive quarantine in region j (to return to our
framework) for people from region k (and also people returning to j from k) reduces the transmission of
infections of region k on region j. However, region k does not necessarily need to implement the mirror
strategy, i.e., to quarantine individuals travelling from j to k. Hence, the two transmission rates uj,k

and uk,j can actually be targeted distinctly.
Trying to reduce transmission rates to zero would lead to a complete halt of all economic behaviour,

and the cost would then amount to the full GDP produced over this time period. The quadratic loss
function then describes the increasing difficulty of transferring economic activity into contexts (e.g.,
home office) with lower risks of disease transmission and of closing down traffic across regions.

CU (u, t, i, j) = 1 − u

βi,j

2
· Ci,j

u (3.19)

21World Bank data shows that income within western and northern Europe mostly lies within 40000-65000$ per capita.
The statistical value of life is chosen to be 20 times the GDP per capita (per year) as in Alvarez et al. (2021).
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The parameter Ci,j
u measures the GDP corresponding to activities that generate transmission of the

virus from region i to region j. The GDP of all regions is normalized in units per day and person.
Again we normalize the total GDP per day and person, which is the sum over all three regions, to 1,
i.e., i,j Ci,j

u = 1. Each region is assumed to produce one third of the total GDP (corresponding to
its population size, see assumption (G1)), where 50% of each regional share results from interactions
within the home region and 25% from interactions with each of the two other regions, i.e.,

Ci,j
u =

Ni(0) · 0.5 for i = j

Ni(0) · 0.25 for i = j.
(3.20)

The region-specific uncontrolled transmission rate is defined as

βi,j =
0.5 · I0 · αL if i = j

0.25 · I0 · αL if i = j.
(3.21)

Assuming that each light case (that does not escalate to a heavy case )infects an average number I0
of people, we can define the uncontrolled transmission rates by dividing through by the average time
in the infectious stage 1/αL. Furthermore, transmissions have to be assigned to contacts with different
groups. As we do for the economic costs, we assume that 50% of contacts take place within each region
and 25% across the boundary with each of the two neighbouring regions.22 A complete lockdown and
elimination of all interaction is not plausible due to necessary activity, e.g., in the medical sector or in
the provision of essential goods and services. Thus, we assume that all transmission rates have a lower
bound ui,j which we set to 10% of the uncontrolled rates in our illustrations, i.e., ui,j = 0.1 · βi,j .

The average time spent with light or no symptoms while being infectious is assumed to be 15 days
for both undetected and detected cases, such that αL = αD = 1/15. We can infer the probability of
escalation of a light case, i.e., the risk of hospitalisation, from the general infection fatality rate (IFR)
and the mortality risk of patients in hospital treatment. Assuming an IFR of 0.0065 and a mortality
risk of 15% for hospitalized cases, we obtain an escalation probability of 0.0065/0.15 = 0.043. Spreading
this probability over the average dwell time in the light case state, we obtain a per-diem escalation rate
of θLH = 1 − (1 − 0.043)αL = 0.002948 (and an analogous definition for θDH).23

Finally we need to specify the cost functions for hospital treatments and for tests, respectively, which
we assume both to be linear and identical for all regions,

CM (Hj , t, j) = Cj
M · Hj

CV (vj , t, j) = Cj
V · vj .

Since we normalised the total population to 1, the cost parameters Cj
M and Ci

V correspond to the
treatment costs per day and person, as measured in units of per capita GDP per day. Heavy cases in
our framework are not only ICU-patients, but also patients admitted to the hospital with less intense
treatment needs. Recent studies have found a wide range of costs per patient per day receiving ICU
and general treatment. For our analysis we take the values from Edoka et al. (2021) who found costs of
190$ (general ward) and 1330$ (ICU) per patient day. According to the US Center for Disease Control
(CDC), about one third of hospitalized cases require intensive care. Consequently, we take the expected
costs for a heavy case to be 443$ per patient day. The costs of testing vary strongly with the type of

22We are aware that we are using an heuristic parameter I0 for the calibration of the uncontrolled transmission rates
instead of the basic reproduction number R0. We chose this strategy for two reasons. First, the derivation of R0 in
a multigroup extended SIR-framework is quite involved (see Van den Driessche and Watmough (2002) for details).
Second, actual estimates of R0 for Covid-19 cover a relatively broad range, so the R0 in our model resulting from the
heuristic definition of the transmission rates is likely to be within this range. At the same time, the calibration of βj,k

is significantly easier.
23We adopted these parameter values from Caulkins et al. (2020) and Caulkins et al. (2021).
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Figure 3.2: Original and final smoothed version of the mortality function describing congestion in the
health sector.

test. However, generally the price is relatively low compared to all other costs (we set it to 5$). It is
thus capacity that acts as a potentially limiting factor.

ICU capacity is assumed to be fixed at 30 beds per 100.000 individuals.24 Testing capacity is very low
at the beginning of a pandemic, but increases over time. In our case, we assume that testing capacity
increases from 10 up to 1000 tests per 100.000 individuals per day.

V (t) = N · 0.0001 + 0.01 · t

T

The mortality and regeneration rates of hospitalized individuals are assumed to depend on the number
of heavy cases. We assume that the sum of the two rates is constant and describes an average hospitali-
sation time of 12 days. For an ICU with spare capacity the share of hospitalised people dying is assumed
to be 45%. Translated to the total number of hospitalised patients, the base mortality is 15%, and thus
related to the average time spent in the hospital according to µH,j = 0.15/12 and αH,j = 0.85/12. As
soon as the ICU-capacity is exhausted (the expected number of ICU patients is H/3), we assume that
any further patient with intensive care needs has a 100% mortality risk. Following the calculations of
Caulkins et al. (2020), this implies that the average mortality for all heavy cases is increasing concave
with the number of heavy cases approaching 1/12 in the limit. For computational reasons we propose
the following functional forms, which smooth the non-differentiable point of µH(H, t, j), where H/3
reaches the ICU cap. Smoothing ranges from this point up to a 10% overload of the ICU capacities:

µH(H, t, j) =




µH,j if H
3 < ICU

µH,j + αH,j · 1 − ICU

H/3 · f(H) if ICU ≤ H
3 ≤ 1.1 · ICU

µH,j + αH,j · 1 − ICU

H/3 if 1.1 · ICU ≤ H
3

αH(H, t, j) = µH,j + αH,j − µH(H, t, j).

The function f(·) is a sigmoid function of the form f(x) = x3

x3+(1−x)3 which is sufficient for a smooth
final function. Figure 3.2 shows the general form of µH and highlights the marginal differences between
the original function (following Caulkins et al. (2020)) and our smoothed version.

Finally, we assume that the three regions differ (only) in the number of initial infections, reflecting
the realistic setting in which the pandemic breaks out and spreads within a single region of origin before
spreading into other regions. We thus propose that the pandemic has already progressed within the
first region (group), where 10% of the population are already infected at the starting time of the model.
24Countries that are equipped approximately with that amount of ICU capacity are Germany 33.9 (year 2017), Austria

28.9 (year 2018) and US 25.8 (year 2018). See de.statista.com for details.
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For the second group, we assume an initial prevalence of infections at 1% of the population, while the
third region enters with a zero prevalence at the beginning of the time horizon.

Economic Parameters Epidemiological Parameters

n 3

ρ 0.0

N i Ni(0) = 1.0

GDP 50000[$/c]/365[d] = 137.0[$/c/d]

Ψ 106[$]/GDP = 7300[GDP ]

ICU - Cap N · 0.0003

Ci
M

(2/3 · 190$ + 1/3 · 1330$)/GDP

= 4.161[GDP ]

Ci
V 5$/GDP = 0.0365[GDP ]

I0 2.5

αL 1/15

αD 1/15

θLH

1 − (1 − 0.0065/0.15)αL

= 0.002948

θDH

1 − (1 − 0.0065/0.15)αD

= 0.002948

µH,j 0.15/12 = 0.0125

αH,j 0.85/12 = 0.07083

Table 3.2: Parameters for all numerical scenarios.

3.5.2 Results
In following subsections we study four cases, which represent a sequence of increasing capabilities of the
social planer: (i) ”Uncontrolled”, i.e., the development of the epidemiological states if no intervening
measures are taken. (ii) ”No Testing”, where the social planer is (only) able to introduce lockdown
measures and social distancing orders. (iii) ”Ineffective testing”, where the social planer also allocates
tests (subject to the capacity constraint) for the identification of light cases, but where in the absence
of effective contact tracing, tests have to be allocated randomly across the non-diagnosed population,
i.e., where κ = 1. (iv) ”Perfect testing”, as the optimal solution for a scenario where effective contact
tracing allows tests to be (almost) perfectly targeted at light cases, i.e., where κ = 0.1. Table 3.3 shortly
summarises the set-up for the different scenarios analysed.

Case Transmissions Testing κ

Uncontrolled uncontrolled none -

No Testing optimally controlled none -

Ineffective Testing optimally controlled optimal 1

Perfect Testing optimally controlled optimal 0.1

Table 3.3: Qualitative comparison of the four different cases analysed

Figures 3.4, 3.5, 3.6 and 3.7 will allow us to compare the development of the pandemic, the optimal
target transmission rates, the testing allocations and the composition of the costs across the "no testing",
"ineffective testing" and "perfect testing" scenarios. Before, we discuss the uncontrolled development of
the pandemic as a benchmark.

Uncontrolled development

Figure 3.3 presents the most important epidemiological states, as described by equations (3.1)–(3.4) for
an uncontrolled pandemic: susceptibles, light cases, and heavy cases. The blue solid line denotes the
corresponding state for region 1, the red one that for region 2 and the yellow one that for region 3. The
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dashed black line denotes the total number of light and heavy cases, respectively. In the absence of any
controls the different initial conditions across the regions make hardly any difference for the course and
outcome of the pandemic. The spike in light and heavy cases is only delayed by a few days for the second
and third region. Furthermore, an equilibrium is reached after 150 days where there are practically no
susceptibles nor light cases left which could trigger new infections (recall that diagnosed and heavy cases
are assumed to be isolated). Hence, the pandemic is short but severe, as follows from the fact that ICU
capacity, denoted by the dotted green line in the panel is exceeded by the total number of heavy cases
(dashed black line) over almost the full course of the pandemic. This causes a high number of deaths,
which, as we will see, could have been prevented by measures aimed at controlling the disease.

Figure 3.3: Pandemic development for the ”Uncontrolled” case.

Table 3.4 includes a summary of the terminal outcomes of the pandemic after 400 days for each region
as well as for all regions in total (as percentages of each group resp. the total initial population size).25

The first four columns show the percentage of people, who have not been infected (S), recovered from
the disease (RL and RD), and died (stage M), respectively. The final four columns show (from the left)
the cumulated costs of the pandemic up until day 100, 200, 300 and 400 (i.e., end time), respectively.26

As we know from Figure 3.3 the pandemic is raging mainly over the first 100 days, and has ”burnt out”
by day 200. Thus, costs do not change afterwards. The Table also mirrors that there is little difference
across regions. Without any control measures the disease can quickly spill over from region 1 to region
2 and 3 and take the same course afterwards.

Interestingly, in region 1 slightly fewer people die as compared to regions 2 and 3, which is partly
due to a first-mover advantage in the ICU. The fact that the early-coming heavy cases from region 1
are hospitalized in a situation without congestion yet gives them the advantage that all (or many) of
them get the required critical care. A short time later, the ICU is congested and the available capacity
is divided across the three regions, leaving many unserved in all regions.27

Turning to infections, we see that in each region only slightly more than 10% of the population remain
susceptible and more than 85% are either recovered light or heavy cases. Nearly 3% of the population
have died during the pandemic, predominantly as a result of an overwhelmed health sector (recall the
right panel in figure 3.3).

25An extended version of this table can be found in Appendix 3.7.3.
26A decomposition of the costs with respect to medical costs, lost lives can be found in Appendix 3.7.3.
27We have verified the first-mover advantage by an additional numerical run without ICU capacity, where it turns out

that the number of deaths is highest in region 1.
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Uncontr. Epidemiological states at t = 400 Costs until t (in GDPPCPD)

Case S RL RD M t=100 t=200 t=300 t=400

Region 1 10.29% 85.91% 0.87% 2.93% 70.23 71.91 71.92 71.92

Region 2 11.39% 84.86% 0.81% 2.94% 70.31 72.23 72.24 72.24

Region 3 11.51% 84.74% 0.8% 2.95% 70.32 72.27 72.28 72.28

Total 11.06% 85.17% 0.83% 2.94% 210.86 216.41 216.44 216.44

No Epidemiological states at t = 400 Costs until t (in GDPPCPD)

Testing S RL RD M t=100 t=200 t=300 t=400

Region 1 27.58% 69.29% 2.6% 0.46% 19.92 27.22 30.26 31.52

Region 2 40.03% 57.34% 2.14% 0.38% 7.18 15.74 20.6 22.58

Region 3 41.5% 55.93% 2.09% 0.37% 5.34 13.69 18.76 20.83

Total 36.37% 60.85% 2.28% 0.41% 32.45 56.65 69.63 74.93

Ineffect. Epidemiological states at t = 400 Costs until t (in GDPPCPD)

Testing S RL RD M t=100 t=200 t=300 t=400

Region 1 31.31% 63.99% 4.22% 0.44% 19.25 25.39 28.17 29.12

Region 2 44.14% 48.92% 6.53% 0.36% 7.06 14.92 18.93 20.3

Region 3 45.57% 47.36% 6.66% 0.35% 5.35 13.17 17.32 18.74

Total 40.34% 53.42% 5.80% 0.38% 31.66 53.49 64.42 68.16

Perfect Epidemiological states at t = 400 Costs until t (in GDPPCPD)

Testing S RL RD M t=100 t=200 t=300 t=400

Region 1 54.02% 35.62% 10.07% 0.29% 15.07 18.25 18.8 18.82

Region 2 68.06% 21.8% 9.94% 0.2% 6.18 10.12 10.81 10.84

Region 3 69.24% 20.98% 9.59% 0.2% 5.31 9.32 10.02 10.05

Total 63.77% 26.13% 9.86% 0.23% 26.56 37.69 39.63 39.7

Table 3.4: Summary and comparison of the endstates of the pandemic and the costs of the pandemic
across the three different regions for the four scenarios analysed. Endstates are given in percentage of
the initial population size of each region, resp. the total population. Costs are given in units of GDP
per capita per day (GDPPCPD).
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Controlled development

In this section we compare the development across a sequence of three scenarios in which the social plan-
ner is assumed to have increasing capabilities of controlling the disease. Figure 3.4 allows for comparison
of the epidemiological development of the pandemic over time between the no-testing, ineffective-testing
and perfect-testing case.28 The first column illustrates the development for each of the regions (colored
lines) and in total (black dashed line) when tests are not available. The following three conclusions are
evident. Compared to the uncontrolled development, first, the duration of the pandemic is much longer
and basically stretches until a vaccine becomes universally available at the end of the time horizon.
Second, the main initial focus of the measures lies on pushing down infections in region 1 to a level at
which the number of light cases is as low as in the other regions. After that (i.e., after ≈ 130 days)
infections in region 1 start to lie below those in the other regions, which is due to the smaller number of
susceptibles, following the initial period. As one would expect, heavy cases follow the course of the light
cases with a delay. Third, the ICU capacity constraint is surpassed only slightly29, but again for a long
time (between days 20 − 270). These features correspond to ”classical” curve-flattening as an optimal
policy to contain the number of deaths by avoiding excessive ICU congestion while at the same time
containing the costs of shutting down the economy. Such a policy remains in place up until either herd
immunity is reached (which lies well beyond the time horizon for the COVID-19 like disease underlying
our calibration) or up until the vaccine is universally available. The second part of Table 3.4 summa-
rizes the outcomes for this scenario after 400 days. It can be seen that the impact of the pandemic
on fatalities is significantly reduced. The death rate drops from nearly 3% of the population to values
between 0.37% and 0.46%. Furthermore, we see that the direct lockdown measures lead to a decrease
in the number of infected individuals in the first region, while in the second and third one the spreading
of the disease is significantly slowed down. After the end of the pandemic, around 36% of the total
population across all regions have not been infected.

By slowing down transmissions and thereby reducing the number of light cases, the lockdown measures
bring down the number of heavy cases from around 3.8% of the population to around 2.7%.30 As it
turns out, this is tantamount to containing the number of heavy cases to a level below or slightly above
the capacity limit. This confirms that the optimal strategy for lockdown measures is to keep the number
of heavy cases at a level, that does not overburden the ICU facilities, but at the same time contains the
(economic) costs of lockdown.

We can now use the second column of Figure 3.4 to identify the impact of the availability of tests,
which are subject to a capacity constraint. For this scenario we assume there is no infrastructure for
contact tracing and the disease hardly shows any specific symptoms for light developments of the infec-
tion. Therefore the social planer is not able to target tests and consequently tests need to be allocated
randomly across all members of the population without a diagnosis. The main epidemiological devel-
opment in the case without testing looks qualitatively very similar. However the number of light cases
continuously decreases between days 20 and 250 instead of reaching a plateau over a long time. While
this mostly corresponds to the number of diagnosed cases turning positive, the number of never-infected
individuals (i.e., the susceptibles at t = 400) is also slightly higher in all three regions. Furthermore the
ICU capacities are used to the full extent about 20 days less as the total number of heavy cases drops
slightly earlier.

Finally, we present the optimally controlled epidemiological development when testing is ”nearly”
perfect in the sense of being targeted mainly at the group of light cases, a setting that is broadly
consistent with highly effective contact tracing. In this scenario we obtain significant differences to the
28To keep the scales for each state variable the same for all scenarios, we decided to present the uncontrolled development

of the pandemic separately, since the peak number of light and heavy cases are tenfold the number when any controls
are available.

29The fact that ICU capacity is surpassed at all might come as a surprise, however recalling the smoothed mortality
function in Figure 3.2, it becomes apparent, that the first few cases that surpass the ICU capacity are subject to only
a marginal increase in their mortality risk.

30To obtain these figures add the (total) shares of RD and M from Table 3.4, while noting that all heavy cases and only
heavy cases are either diagnosed survivors or deceased.
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Figure 3.4: Comparison of the pandemic development for the ”No testing”, ”Ineffective Testing” and
”Perfect testing” case.

two previous cases of ”no testing” and ”ineffective testing”, with the availability of testing now showing
noticeable impacts.

In the third column in Figure 3.4 we observe that the pandemic ends after approximately 250 days
and, thus, before the arrival of universal vaccination after 360 days. This is indicated by the number
of light cases being close to zero and the number of susceptibles showing no significant change any
more. During the first 60 days the development appears to not significantly differ from the development
with ineffective testing31. Subsequently, however, we observe a steeper decline in the number of light
cases in region 1. And although the light cases reach a similar peak in regions 2 and 3 regardless of
the effectiveness of testing, in the case of perfect testing the numbers immediately drop from day 60
onwards, while they stay on a plateau for roughly 150 days if testing is ineffective.

The decreasing number of light cases in case of perfect testing also corresponds to the strongly
increasing number of detected cases. The peak is earlier and nearly threefold the peak under ineffective
testing. Note that the number of diagnosed individuals is higher throughout in the case of perfect testing
even though the number of light cases is significantly lower. Hence the increased effectiveness clearly
overcompensates the smaller pool of undetected light cases. The ICU capacities are also in full usage
in case of perfect testing. However, as the infection dynamics have been slowed down, the number of
heavy cases drop below this threshold significantly earlier compared to all other controlled cases.

Finally, note that after the apparent end of the pandemic after 250 days, with no further new infections,
31It appears that the low testing capacity is dominating the positive impact from higher testing effectiveness and the

epidemiological development is only marginally different.
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there are still active cases in the population. However they are mostly either heavy cases or diagnosed
light cases who are isolated and cannot infect any remaining susceptible individuals. After all, the
effective containment of the pandemic within the original hotspot allows to compress its overall duration
(at much lower levels of infections) to only 250 days.

Comparing the end results of the epidemiological development after 400 days as shown in the second
half of Table 3.4 we see that the impacts of testing strongly vary with respect to its effectiveness. For
ineffective testing an additional 4% of the total population were protected from getting infected during
the pandemic (increase from 36.37% to 40.34%). However the total number of deaths only dropped from
0.41% to 0.38%. In the case of nearly perfect testing, however, only slightly more than a third of the
population got infected until a vaccine became available. Also the number of deaths was reduced to only
0.23% of the population and, thus, almost halved in comparison to the scenario without testing. This
is largely owed to ICUs operating at capacity limit over a much shortened time span between roughly
days 20 and 150.

Optimal transmission rates and tests

In this section we discuss in more detail the optimal strategies of the social planer for transmission rates
and tests, which stand behind the previously discussed epidemiological development. In Figure 3.5 we
present the optimal target transmission rates for the different scenarios. The upper boundary (black
dashed line) corresponds to the transmission rates in the case of an uncontrolled pandemic. The red
solid lines describe the optimal transmission rates if tests are not available, the blue dash-dotted lines
for the case of ineffective testing and the green dotted lines for perfect testing. We first focus on the
target transmission rates when testing is not an option for the social planer.

Let us begin with the within-region measures, corresponding to the panels along the diagonal from
top-left to bottom right. Within region 1, the relatively high initial level of infections is curbed by the
introduction of an initial short lockdown (a type of wave breaker). After some relaxation, measures are
tightened again in order to control infections that now tend to be imported from regions 2 and 3. From
day 100 onwards restrictions are gradually lifted until vaccination is available after 360 days. For region
2, the pattern of internal lockdown is qualitatively similar. Here, the initial tightening of the lockdown
is in line with transmissions from imported cases. Notably, while the lockdown is softer than the one
in region 1 initially, this reverses from day 50 onwards, where restrictions within region 2 are relaxed
more cautiously and tend to remain in place over a longer period. The pattern of the internal lockdown
within region 3 is similar to region 2 with the only difference being its more gradual introduction at
the beginning of the planning horizon, following from the absence of internal infections at the starting
point. Overall, the pattern suggests that the planner has an incentive (i) to equalize the pattern of
the pandemic and its control across the three regions (which follows from the minimization of convex
control costs), and (ii) to smooth out the lockdown over time, following its initial introduction. While
this is relatively successful within the ”follower” regions 2 and 3, the initial presence of the disease in
region 1 makes this objective more difficult to achieve within this region.

Turning to cross-region measures, an initial observation is that for all regions the restrictions are
considerably stronger than the internal measures. This suggests that the planner is much more ready
to impose travel bans, which is particular true in respect to region 1, where transmissions into the other
two regions are initially reduced to their lowest possible level, implying the strongest feasible measures.
Similar yet more modest restrictions are implemented to avoid the spillover of transmissions from region
2 into region 3, which initially features no infections.

Conversely, and assuming the possibility of asymmetric restrictions, measures taken at constraining
transmissions from regions 2 and 3 into region 1 and from region 3 into region 2, respectively, are
more modest and implemented only gradually in line with the scope for ”reimporting” infections. This
asymmetric behaviour corresponds with the implementation of a mandatory quarantine (or similar
measures to ensure non infectiousness) for individuals of region 1 trying to travel to regions 2 or 3, while
travel in the reverse direction can be done ”without” precautionary measures. The same implementation
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all t) at almost all times, since testing is relatively cheap, especially compared to all other measures and
potential costs. Second, Figure 3.6 shows that a certain pattern regarding the allocation between the
two regions is actually present for both levels of testing effectiveness. Testing starts exclusively in region
1 for a little more than 20 days (about a week for perfect testing, respectively), which is intuitive, as it
is this region which is the hot spot of the pandemic initially. The focus subsequently shifts to region 2,
followed by a mixed allocation across regions 2 and 3, before between days 75 and 100 (respectively days
60 and 80 for perfect testing) testing effort is again concentrated on region 1. This circular pattern is
also visible in the pattern of diagnosed cases (see Figure 3.4) and broken only from day 100 (respectively
day 80 for perfect testing) onward, where the number of infected cases has about equalised across the
three regions. Despite the qualitative similarities, highly effective testing results in the shortening of
the time span of each part of the pattern.

Subsequently, the patterns start to differ between ineffective and perfect testing. In the ineffective
case testing is gradually shifted away from region 1 and shared between regions 2 and 3 which feature a
higher number of light cases (due to the later epidemiological peak in these regions). Between days 180
and 340 tests are shared to roughly equal amounts between regions 2 and 3, while there is a small spike
in tests in region 1 shortly before a vaccine becomes available at the end of the time horizon. If testing is
highly effective, after the brief period of focused region 1 testing, there is an immediate switch towards
an equal distribution of tests between all three regions over the remaining duration of the pandemic
(compared to the gradual shift in the ineffective case). Especially interesting, however, is the complete
lack of testing after day 340, i.e., 20 days before a vaccine becomes available. This elimination of any
testing effort happens abruptly and despite the comparatively very low costs. Hence we can deduce,
that effective testing and optimal lockdown measures allow the social planer to reduce the infections to
such a high degree, that neither testing nor significant reductions in transmission rates are necessary to
keep the pandemic under control for the last 3 weeks leading up to the availability of a vaccine.32. Lastly
recall, that in the case of perfect testing after day 250 the infection numbers (especially the number of
undetected light cases) remain on very low level. Hence the positive testing efforts between days 250
and 340 reflect a strategy where highly effective tests, if available at relatively low cost, are used in
a precautionary way even after the apparent end of the pandemic in order to suppress any potential
resurgence.

Cost composition

In a last step we assess impacts of the different scenarios on the objective function, i.e., the aggregated
social costs of the pandemic. First we highlight, that the costs arising under the uncontrolled develop-
ment of the pandemic are significantly higher than in any of the controlled scenarios. The right part
of Table 3.4 summarises the costs arising up to different points in time (100, 200, 300 and 400 days
respectively) and how the costs are distributed across the different regions. In the uncontrolled case the
costs are nearly equally distributed between the three regions, but they almost completely arise during
the first 100 days of the pandemic. This corresponds to the time frame with the number of heavy cases
drastically overburdening the ICU capacities leading to a high number of fatalities. As there are no
lockdown measures or testing efforts, all costs results from either hospital treatment expenditures or
value of lives lost. Thereby the treatment costs play only a marginal role at less than 1% of total costs.33

To contextualize the total costs of 216 units of GDP per capita per day, recall that the population size
is normalized to one. Hence letting the pandemic spread uncontrolled through the population implies
the value of lives lost during the first 100 days equals roughly two thirds of the total yearly GDP of the
economy.
32This certainly is an anticipatory effect of the finite time horizon. Without reaching the herd immunity level of the

disease (the optimal outcome of our controlled regimes for the relatively short time horizon), a resurgence of infections
is inevitable, if the target transmissions rates return to their uncontrolled levels. However just comparing the outcomes
of the two testing regime shows, that perfect testing allows for improved management of the pandemic to a degree,
where infection numbers are so low, that even highly effective testing at a low price is not worth applying for the last
20 days.

33For details see Table 3.6.
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and even beyond day 360, where universal vaccination eliminates new infections but where a significant
number of the infected still develop a heavy course and die.

Summary comparisons

We conclude the analysis by comparing the four (main) scenarios on the basis of a number of key
outcomes, as summarized in Table 3.5.

Uncontrolled No Testing Testing
Ineffective

Testing
Perfect

(t=400)
Endstates

S 11.06% 36.37% 40.34% 63.77%

RL 85.17% 60.85% 53.42% 26.13%

RD 0.83% 2.28% 5.80% 9.86%

M 2.94% 0.41% 0.38% 0.23%

(t=400)
in GDPPCPD
Agg. Costs Total 216.44 74.93 68.16 39.7

VOL lost 214.56 29.6 27.79 16.85

Lockdown 0.0 44.0 39.04 22.03

End of spread (days) 161.0 360.0 360.0 286.0

End of full ICU-usage (days) 113.0 274.0 250.0 132.0

End of lockdown measures (days) 0.0 360.0 360.0 249.0

Table 3.5: Comparison of the 4 (main) scenarios.

The first part of the table allows for an immediate comparison across the pandemic endstates in terms
of the (remaining) susceptible population, the diagnosed and undiagnosed recovered cases, as well as
the deceased at time t = 400. The second part summarizes the total costs after t = 400 and the value
of lost lives and lockdown costs as the two main contributing factors (aggregated over all regions). We
leave these entries for ease of comparison but without further comment.

The last three rows record a number of important dates in the progress of the pandemic. ”End
of Spread” defines the point in time at which the total number of susceptibles changes by less than
1 in 10,000, which is tantamount to a standstill of the pandemic. Thereby, we recall that in the
”Uncontrolled” case the pandemic is over very quickly after 161 days but at enormous costs in terms of
lost lives. Meanwhile, both for the ”No testing” and ”Ineffective testing” cases, the end of the spread
does not occur before a vaccine is available. In contrast, ”perfect testing” combined with an optimal
lockdown policy allows to shorten the pandemic by 74 days.

The second row shows the first day at which the ICU is no longer at (or beyond) its capacity limit.
Again in the uncontrolled case this happens early on, as the disease rages heavily within the first 3
months. This hides, of course, the number of heavy cases not receiving treatment and dying due to
overload. More notably, we see that testing, regardless of its effectiveness, allows for an earlier relief
of the strain on the ICU. In the limit, ”perfect testing” more than halves the time span of congestion,
whereas in case of ”ineffective testing” the reduction is more minor.

The last row shows the date at which all lockdown measures have been lifted, as defined by the time
at which all target transmission rates are within 1% of the uncontrolled rates. Again ”perfect testing”
is highly effective in bringing down to 249 the number of days over which lockdown measures of some
intensity are implemented. ”Ineffective testing” leads to no reduction in the duration of the lockdown
(of some intensity) below the full 360 days up until the availability of universal vaccination.
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3.6 Conclusions
This paper considers an extended SIR model across a network. It combines several important new
features that are relevant especially for the COVID-19 pandemic but generalize to other infectious
diseases that involve severe patterns of illness. The model distinguishes light and heavy courses of the
disease, where the latter are characterized by the need for hospital or ICU treatment. Whereas a heavy
course is per definition known and excluded from infectious contacts, light cases need to be detected
by testing efforts. We allow for parametric variations in the extent to which tests can be targeted
effectively, e.g., due to high capacity of contact tracing. This influences the success rate of detecting
people with a light course by testing efforts. Detected people suffering a light course are quarantined
and also do not contribute further to new infections. We consider that ICU capacity is constrained. If
the capacity constraint is exceeded people with a heavy course cannot be treated in the ICU and die.

We consider this model on a network, where the population at each node is subdivided in the relevant
compartments. The network structure of the model can represent different geographical regions, an
example we consider in the main body of the article, or different subgroups of the population, or,
indeed, both. Disease transmission occurs both within and across network nodes. By the optimal choice
of a set of target transmission rates (within certain bounds) the decision maker can reduce the spread
of the disease. Depending on the model interpretation it is possible that the ICU capacity corresponds
to a single node or is shared between (some of the) nodes.

In general we were able to derive, that for the optimal strategy the ratio of marginal costs of the target
transmission rates from two different nodes/regions onto another one only depends on the current shares
of infectious individuals in the two origin regions/nodes. Furthermore we found that the relative size of
the testing pool (which then again is strongly affected by the testing effectiveness) is one decisive factor
for the relative allocations of testing and lockdown measures.

From a numerical example in which the pandemic spreads from one region into two otherwise identical
regions, we can summarize the following key messages.

1. The analysis demonstrates that lockdown is effective in terms of saving lives and reducing total
costs. While this depends, of course, on our assumptions about the value of a life saved, the cost
reduction is so large as to make our finding robust.

2. For our calibration, the optimal lockdown policy is geared towards ”flattening-the-curve” and
thereby containing the number of heavy cases to a level that ICU capacities are (just) able to cope
without significant congestion.

3. Lockdown within regions is typically weaker than measures undertaken to contain the transmission
of the pandemic across regions. Initially, strong measures are taken to contain the disease within
the region of the initial outbreak but these are adjusted over time to establish a course of the disease
that is symmetric across the three regions. The common practice followed by many countries
during the pandemic of imposing travel bans provoked by spikes in infections in foreign countries
finds some support in our model.

4. Testing, on which countries have relied to very different extent during the COVID-19 pandemic,
proves to be effective by relaxing the trade-off between saving lives and containing economic
costs. However, the extent to which this is true hinges on (i) the effectiveness of contact tracing
as a necessary requirement for tests that are targeted at (likely) light infections; and (ii) on
limits to the testing capacity. If tests are in limited supply (especially during the early stages
of the pandemic) only well targeted testing has the potential to speed up the termination of the
disease and, thereby, to cut the time over which lockdown measures are required. In policy terms,
this requires the availability of effective tracing capacities. The massive cost reductions over the
pandemic afforded by the introduction of effective (rather than ineffective) testing indicates that
policy makers should be willing to invest significantly into improvements in testing efficacy.



102 CHAPTER 3 Allocating tests and lockdowns within a network

5. Both lockdown and testing are initially concentrated on the hot spot(s) with high numbers of
current infections with the twin aim of flattening-the-curve and containing spill-over effects into
other regions. Policies are subsequently adjusted in a way that they become more similar over
time.

6. When the policy objective is the minimization of the total cost of the pandemic across all regions
alike, then both lockdown and testing policies are chosen in a way that aims at equalizing the
pandemic across regions. While this leads to the assimilation of policies across regions, such an
endeavour is the more successful the more targeted testing can be used.

Our model features a number of limitations, most notably that it is set out from a social planer
perspective. This provides a characterization of the first-best allocation as a yardstick and - in its regional
interpretation - reflects the policy that should be implemented by a strong centralized government. But
it does not yet capture well the policy outcomes in a decentralized setting where (i) local decision-makers
at each node of the network - in the regional context best thought of as regional authorities - optimize
a local (regional) objective but not social welfare; and/or (ii) where individuals are taking voluntary
decision in respect to self-protection. While the modelling in (ii) is difficult to integrate with the planer
model, one natural extension to the present model would be the consideration of a game between local
decision-makers. Comparison against the first-best allocation would allow to identify inefficiency related
to externalities across network nodes (regions) as well as possible coordinating measures on the part
of the central government aimed at improving the allocation. Finally, we believe our framework to be
flexible enough to be applied to a broad range of pandemic, population and economic settings, including
consideration of social rather than regional networks and a variety of of settings that involve asymmetric
networks. We relegate these issues to future work.

3.7 Appendix

3.7.1 Optimality conditions
(3.15) is a finite time optimal control model, for which the standard form of the Maximum Principle
can be applied (see e.g., Grass et al. (2008)). First we formulate the Hamiltonian, which is

H(·) = −
j∈Ω

CM (Hj , t, j) + µH(Hj , j)Hj · Ψ + CV (vj , t, j) −

−
(k,j)∈Ω2

CU (uk,j , t, k, j) +
j∈Ω

λSj
−Sj ·

k∈Ω

uk,j · Lk

Sk + Lk + RL
k

+ RD
k

+

+
j∈Ω

λLj
Sj ·

k∈Ω

uk,j · Lk

Sk + Lk + RL
k

+ RD
k

− θLH(j)Lj − αL(j)Lj−

− vj

Lj + κ(Sj + RL
j )

Lj +

+
j∈Ω

λDj

vj

Lj + κ(Sj + RL
j )

Lj − αD(j)Dj − θDH(j)Dj +

+
j∈Ω

λHj
θLH(j)Lj + θDH(j)Dj − αH(Hj , j)Hj − µH(Hj , j)Hj +

+
j∈Ω

λRL
j

· αL(j)Lj + λRD
j

· αD(j)Dj + αH(Hj , j)Hj + λMj
· µH(Hj , j)Hj +
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+
j∈Ω

λ
Hj

k∈Ω

HkfH(j, k) + Λ
j∈Ω

vj − V +

+
(k,j)∈Ω2

ξk,j(uk,j − βk,j) + ξk,j(uk,j − uk,j) +
j∈Ω

νj(vj − vj) + νj(vj − vj) . (3.23)

λxj denotes the adjoint variable of state variable xj ∈ {Sj , Lj , Dj , Hj , RL
j , RD

j , Mj} (j ∈ Ω) and Λ
denotes the Lagrangian multiplier of the control constraint (3.9). ξk,j , ξk,j , νj , νj (j, k ∈ Ω) are the
Lagrange multipliers for the upper and lower boundaries of the controls. The lower bound of the
transmission rates denoted by uk,j equals zero in the full model (3.15).

The first order conditions for the controls read (j, k ∈ Ω)

∂H(·)
∂uk,j

= −CU (k, j) +
λLj − λSj SjLk

Sk + Lk + RL
k + RD

k

+ ξk,j − ξk,j = 0 (3.24a)

∂H(·)
∂vj

= −CV (j) − λLj
− λDj

Lj

Lj + κ(Sj + RL
j )

+ Λ + νj − νj = 0, (3.24b)

with complementary slackness conditions

Λ


j∈Ω

vj − V

 = 0 (3.25a)

ξk,j (uk,j − uk,j) = 0 , (k, j) ∈ Ω2 (3.25b)

ξk,j (uk,j − uk,j) = 0 , (k, j) ∈ Ω2 (3.25c)

νj (vj − vj) = 0 , j ∈ Ω (3.25d)

νj vj − vj = 0 , j ∈ Ω. (3.25e)

From the Hamiltonian the adjoint equations can straightforwardly be obtained (j ∈ Ω)

λ̇Sj
= ρλSj

+ λSj
− λLj

k∈Ω
uk,j

Lk

Sk + Lk + RL
k + RD

k

−

−
k∈Ω

(λSk
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) Skuj,kLj
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and
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with the following transversality conditions

λSj (T ) = 0 (3.28a)

λLj
(T ) = ∂S(X (T ), T )

∂Lj(T ) (3.28b)

λDj (T ) = ∂S(X (T ), T )
∂Dj(T ) (3.28c)

λHj
(T ) = ∂S(X (T ), T )

∂Hj(T ) (3.28d)

λRL
j

(T ) = 0 (3.28e)

λRD
j

(T ) = 0 (3.28f)

λMj
(T ) = 0. (3.28g)

3.7.2 Interpretation of shadow prices
Solving for the shadow prices (i.e., the adjoint variables) allows us to identify the interconnected channels
that determine the ”values” (from an epidemiological perspective) of individuals within the different
compartments. The shadow price of a susceptible at node j reads

λSj (t) =
T

t

e−ρ(s−t) λLj − λSj

k∈Ω
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−
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)Lj
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dt. (3.29)

The value of a susceptible, as given by λS , aggregates the discounted value of three effects. (i) captures
the expected loss of an additional (marginal) susceptible at node j becoming infected and turning into
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a light case. The expected loss consist of the vale of a susceptible getting infected and turning into
a light case, λLj

− λSj
< 0,34 weighted with the (aggregate) probability of getting infected through a

contact from any node in the network. The other two effects capture second-order effects. Specifically,
(ii) describes the expected value of a marginal susceptible in lowering the share of light cases in the
population at node j and, thus, the aggregate risk of a light case at j infected a susceptible at any other
node k. (iii) measures that an additional susceptible at node j makes it harder to identify a light case
via testing. The change in probability of finding a light case in the relevant population via testing is
then weighted by the value of a light case being detected, λDj − λLj > 0.35

The shadow price of light cases at node j is structured similarly and reads

λLj (t) =
T

t

e−ρ(s−t) λHj − λLj θLH(j) + λRL
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− λLj αL(j)+

+
Sj + RL

j + RD
j

(Sj + Lj + RL
j + RD

j )2
k∈Ω

(λLk
− λSk

) Skuj,k+

+
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j )
(Lj + κ(Sj + RL

j ))2 λDj
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dt + e−ρ(T −t) ∂S(X (T ), T )
∂Lj(T ) . (3.30)

The first two terms in the integral are direct effects. They contain the value of a light case escalating to
a heavy case (moving to the Hj compartment) and the value of a light case recovering from the infection
(moving to the RL

j compartment). Both terms are multiplied by their respective rate of occurrence.
The third term captures the effect of light cases at node j on overall infections within node j and into
other nodes. The fourth term captures the effect on the detection of light cases. The term outside the
integral is the discounted effect of light cases on the costs that arise after the planning horizon.

Moving on to the shadow price of detected cases at node j, we can derive the following expression:

λDj
(t) =

T

t

e−ρ(s−t) λHj
− λDj

θDH(j) + λRD
j

− λDj
αD(j) dt+

+ e−ρ(T −t) ∂S(X (T ), T )
∂Dj(T ) . (3.31)

The two terms within the integral capture once again the values of a detected individual developing
heavy symptoms or recovering from the disease (in this case moving to the RD

j compartment, however).
Again, the values of the two transitions are multiplied by their respective arrival rates. Note that
for detected cases these may differ from the respective rates in case of light cases. Specifically, the
scope for monitoring and early on treatment in case of detection will lead to a higher (lower) rate of
recovery (disease escalation), implying in turn a higher value of a detected case. As detected cases are
quarantined, there are no knock-on effects on the process of infection, nor on the success of testing. The
term outside the integral again corresponds to the discounted effect on costs after the planning horizon.

The shadow price of heavy cases at node j reads

λHj (t) =
T

t

e−ρ(s−t) −CM (j) − µH · Ψ
=(i)

+ λRD
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∂Hj(T ) . (3.32)

34The negative sign is readily verfied for an interior optimum from the FOC (3.16a).
35The positive sign is readily verfied for an interior optimum from the FOC (3.16b).
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The integral aggregates the discounted value of three effects: (i) counts the costs of an additional heavy
case at node j, consisting of medical treatment costs and the value of a lost life (weighted by the death
rate). (ii) values the the transitions to recovery (in this case into the λRD

j
compartment) and death.

Note that while (i) values mortality by the value of a lost life, (ii) focuses on the value change due to
a heavy case moving to the Mj compartment. Note that these two effects typically differ in their sign.
(iii) assigns a value to heavy cases at node j based on their utilisation of hospital that is no longer
available at other nodes. The term outside the integral captures the discounted effect on the costs after
the planning horizon.

The shadow prices of recovered cases (light or diagnosed) at node j

λRL
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T

t
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j )2
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) Skuj,k ds (3.34)

consist of indirect effects, similar to the ones for susceptibles. Recovered cases at node j lower the
probability of infection from j to any other node. Light recovered cases also tend to lower the probability
of detection at this node, an effect that is absent for recovered detected cases, implying they tend to be
of a higher value.

Finally, the shadow price of the aggregated variable Hj can be derived as

λHj
(t) = −∂µH

∂Hj

Hj(t) · Ψ + λRD
j

− λHj

∂αH

∂Hj

Hj + λMj − λHj

∂µH

∂Hj

Hj . (3.35)

The first part counts the value of additional lives lost due to the increase in mortality within congested
hospitals; the second term values the decline in the recovery rate for heavy cases within congested hospi-
tals; and the third term values the increase in the mortality rate from perspective of the epidemiological
system (and disregarding the value of lives lost.

3.7.3 Summary tables for numerical results

S RL RD M Agg. Costs t=100 t=200 t=300 t=400
Region 1 0.03429 0.28638 0.0029 0.00977 Total 70.23 71.91 71.92 71.92

(10.29%) (85.91%) (0.87%) (2.93%) VOL lost 69.64 71.28 71.29 71.29
Medical 0.59 0.63 0.63 0.63

Region 2 0.03796 0.28286 0.0027 0.00981 Total 70.31 72.23 72.24 72.24
(11.39%) (84.86%) (0.81%) (2.94%) VOL lost 69.74 71.61 71.62 71.62

Medical 0.57 0.62 0.62 0.62
Region 3 0.03837 0.28247 0.00268 0.00982 Total 70.32 72.27 72.28 72.28

(11.51%) (84.74%) (0.8%) (2.95%) VOL lost 69.74 71.64 71.65 71.65
Medical 0.57 0.62 0.62 0.62

Total 0.11062 0.85171 0.00828 0.0294 Total 210.86 216.41 216.44 216.44
VOL lost 209.13 214.53 214.56 214.56
Medical 1.73 1.88 1.88 1.88

Table 3.6: Terminal states at T = 400 of the population (susceptibles S, recovered light RL cases,
diagnosed/heavy cases RD, and deceased M) and cumulative costs in units of GDP per capita per day
at days 100, 200, 300 and 400 in the ”Uncontrolled” case.
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S RL RD M Agg. Costs t=100 t=200 t=300 t=400
Region 1 0.09195 0.23097 0.00865 0.00154 Total 19.92 27.22 30.26 31.52

(27.58%) (69.29%) (2.6%) (0.46%) VOL lost 5.07 7.94 10.12 11.27
Medical 0.23 0.36 0.46 0.51

Lockdown 14.63 18.92 19.69 19.74
Region 2 0.13344 0.19112 0.00715 0.00127 Total 7.18 15.74 20.6 22.58

(40.03%) (57.34%) (2.14%) (0.38%) VOL lost 1.62 4.5 7.51 9.28
Medical 0.07 0.2 0.34 0.42

Lockdown 5.49 11.04 12.75 12.88
Region 3 0.13833 0.18643 0.00697 0.00124 Total 5.34 13.69 18.76 20.83

(41.5%) (55.93%) (2.09%) (0.37%) VOL lost 1.32 4.11 7.2 9.05
Medical 0.06 0.19 0.33 0.41

Lockdown 3.96 9.4 11.23 11.37
Total 0.36372 0.60852 0.02277 0.00405 Total 32.45 56.65 69.63 74.93

VOL lost 8.01 16.55 24.83 29.6
Medical 0.36 0.75 1.12 1.34

Lockdown 24.07 39.36 43.67 44.0

Table 3.7: Terminal states of the population (susceptibles S, recovered light RL cases, diagnosed/heavy
cases RD, and deceased M) and cumulative costs in units of GDP per capita per day at days 100, 200,
300 and 400 in the ”No testing” case.

S RL RD M Agg. Costs t=100 t=200 t=300 t=400
Region 1 0.10436 0.21329 0.01407 0.00147 Total 19.25 25.39 28.17 29.12

(31.31%) (63.99%) (4.22%) (0.44%) VOL lost 5.02 7.76 9.83 10.7
Medical 0.23 0.35 0.44 0.48

Lockdown 14.0 17.28 17.89 17.93
Testing 0.0 0.01 0.01 0.01

Region 2 0.14713 0.16305 0.02176 0.00119 Total 7.06 14.92 18.93 20.3
(44.14%) (48.92%) (6.53%) (0.36%) VOL lost 1.63 4.55 7.41 8.66

Medical 0.07 0.21 0.34 0.39
Lockdown 5.36 10.15 11.17 11.22

Testing 0.0 0.01 0.02 0.03
Region 3 0.15189 0.15788 0.02219 0.00116 Total 5.35 13.17 17.32 18.74

(45.57%) (47.36%) (6.66%) (0.35%) VOL lost 1.34 4.21 7.14 8.43
Medical 0.06 0.19 0.32 0.38

Lockdown 3.95 8.77 9.83 9.89
Testing 0.0 0.01 0.02 0.03

Total 0.40338 0.53422 0.05802 0.00382 Total 31.66 53.49 64.42 68.16
VOL lost 7.98 16.52 24.38 27.79
Medical 0.36 0.74 1.1 1.26

Lockdown 23.31 36.21 38.89 39.04
Testing 0.01 0.02 0.05 0.07

Table 3.8: Terminal states of the population (susceptibles S, recovered light RL cases, diagnosed/heavy
cases RD, and deceased M) and cumulative costs in units of GDP per capita per day at days 100, 200,
300 and 400 in the ”Ineffective testing” case.
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S RL RD M Agg. Costs t=100 t=200 t=300 t=400
Region 1 0.18006 0.11874 0.03356 0.00098 Total 15.07 18.25 18.8 18.82

(54.02%) (35.62%) (10.07%) (0.29%) VOL lost 4.49 6.62 7.12 7.14
Medical 0.2 0.3 0.32 0.32

Lockdown 10.37 11.33 11.34 11.34
Testing 0.0 0.01 0.01 0.02

Region 2 0.22686 0.07266 0.03313 0.00068 Total 6.18 10.12 10.81 10.84
(68.06%) (21.8%) (9.94%) (0.2%) VOL lost 1.78 4.29 4.93 4.95

Medical 0.08 0.2 0.22 0.23
Lockdown 4.32 5.62 5.64 5.64

Testing 0.0 0.01 0.02 0.02
Region 3 0.23081 0.06992 0.03195 0.00065 Total 5.31 9.32 10.02 10.05

(69.24%) (20.98%) (9.59%) (0.2%) VOL lost 1.55 4.1 4.74 4.77
Medical 0.07 0.19 0.22 0.22

Lockdown 3.68 5.03 5.04 5.04
Testing 0.0 0.01 0.02 0.02

Total 0.63773 0.26132 0.09864 0.00231 Total 26.56 37.69 39.63 39.7
VOL lost 7.83 15.01 16.79 16.85
Medical 0.36 0.68 0.76 0.77

Lockdown 18.38 21.98 22.03 22.03
Testing 0.01 0.02 0.05 0.06

Table 3.9: Terminal states of the population (susceptibles S, recovered light RL cases, diagnosed/heavy
cases RD, and deceased M) and cumulative costs in units of GDP per capita per day at days 100, 200,
300 and 400 in the ”Perfect testing” case.



Chapter 4

Modelling Disaster Risks: A
Dynamic Household Model

This chapter in its entirety directly corresponds to the paper Freiberger, Hoffmann and Prskawetz (2022c)
in final preparation for submission. This work received financial support from the Vienna Doctoral
Programme on Water Resource Systems (DK-plus W1219-N22) based at the TU Wien.

Abstract
In the last decades, many parts of the world faced an increase in the number of extreme weather events
and worsening climatic conditions with negative impacts for local populations and their livelihoods.
While various empirical studies have identified key factors of disaster preparedness and vulnerability,
we still lack a conceptual understanding of how these forces interact and how they impact household
decision making. This study develops a dynamic household model, in which households face stochastic
environmental hazards, which can lead to a loss of their wealth. To respond to the risk, households can
either relocate to a safer area or undertake preventive measures to protect their physical assets. Both
actions require material and immaterial resources, which constrain the household’s decision. Households
are assumed to be heterogeneous with respect to key empirically identified factors for individual disaster
risk: education, income, risk awareness, time preference and their access to preventive measures.

Theoretical insights on the optimal household strategies are derived from the FOCs and the HJB-
equations. Furthermore a numerical solution for the optimal policy functions is presented calibrated
to data from Thailand and Vietnam. Using Monte-Carlo-Simulations the corresponding stationary
distributions are derived and compared to their empirical counterparts and the impacts of different
household characteristics with a special focus on education are systematically assessed.

4.1 Introduction
Disaster risks are increasing on a global scale. Since the 1980s, the number of persons affected by
weather- and climate-related hazards has increased by 43%. In 2021 alone, more than 100 million people
were directly affected by disasters that were causing damages of $230 billion (Centre for Research on the
Epidemiology of Disasters (CRED), 2022). Climate change will lead to a further increase in the frequency
and intensity of events, while at the same time undermining communities’ capabilities to adequately
prepare against hazards and cope with their consequences, leading to an increase in vulnerability in
many regions (IPCC, 2022; Hoffmann and Muttarak, 2017; Black et al., 2011).

Although the human component has long been recognized as central for disaster risk management and
planning (Aerts et al., 2018), hazard models often do not fully account for the influence of the social
environment and behavioral drivers (Kuhlicke et al., 2020; Lechowska, 2018). Especially, the behavior
of households can play an important role in mitigating disaster risks (Hoffmann and Blecha, 2020; Kohn
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et al., 2012). For example, undertaking precautionary measures, such as stockpiling of food, enhancing
structures, buying an insurance policy, or having savings, can be critical (Wisner et al., 2014). Also, the
relocation from hazardous areas can represent an effective strategy to reduce risks, if the circumstances
allow and if households are able and willing to move (Siders et al., 2019).

Households in low- and middle-income countries are particularly vulnerable as they often lack resources
and capacities to adapt to and cope with environmental hazards and shocks. In line with recent efforts
of the international community to reduce disaster risks and vulnerabilities, our aim is to analyze the
role of human capital, specifically formal education, in influencing household vulnerability, which refers
to the household’s ability to adequately prepare against, respond to and cope with hazardous events.
While various studies both from high as well as low and middle-income countries have reported a
positive effect of education on individual aspects of disaster preparedness and vulnerability (Muttarak
and Pothisiri, 2013; Meyer, 2015; Muttarak and Lutz, 2014; Hoffmann and Muttarak, 2017; Adger et
al., 2005), we still lack an holistic understanding of the mechanisms through which education affects
household decision making with respect to natural hazards and how these different channels interact
with each other.

To this end, we develop a dynamic household model populated by households that differ in their human
capital/education. Households face environmental risks and hazards, which can lead to a potentially
existential loss of their wealth. To respond to the risk, households can either relocate to a safer area
or undertake preventive measures to protect their physical assets. Both actions require material and
immaterial resources, which constrain the household’s decision.

Based on empirical findings we model four different channels through which education can influence
the vulnerability of households: (i) education is positively correlated with income levels and hence finan-
cial resources rendering costly precautionary measures possible; (ii) education can provide households
with access to cost-efficient prevention measures, for example through social capital/networks; (iii) in-
formation, knowledge and awareness of disaster risks are positively correlated with education; and (iv)
education is related to time preferences fostering far-sighted decisions (Paton and Johnston, 2001; Drabo
and Mbaye, 2015; Nawrotzki et al., 2015; Lutz et al., 2014).

Data from the Thailand and Vietnam Socio-Economic Panel (TVSEP)1, that cover a broad range
of disaster risk behaviour of households, is used to parameterize the model and assess the models
predictive quality. With their diverse socio-economic background and high exposure to disaster risks,
the two emerging lower-middle income countries represent well-suited empirical testing grounds for our
proposed model.

Solving the dynamic household model leads to a set of optimal policy functions, which contain a
prediction on household behaviour across different settings of wealth and exposure (among others).
We use these policy functions to employ Monte-Carlo-Simulations for the simulation of the long-run
behaviour and outcomes of a synthetic population. This synthetic population thereby reflects the
compositions of the population found in the TVSEP with respect to four key household characteristics
(education, prevention access, awareness and income).

The policy functions together with the simulated synthetic population allow us to gain insights on the
qualitative and quantitative effects of different household characteristics on behaviour in face of natural
hazards. While the policy functions allow us to identify impacts in the short-term behaviour across
varying settings, the simulated households are able to illustrate the long-term effects of the different
channels of influence of education. Furthermore, we can identify types of households most prone to
disaster risk and establish whether households are persistently trapped in disadvantageous situation or
are just temporarily in an unfortunate position along their transition paths.

By allowing evaluation of short and long term impacts of different policy interventions our framework
is capable of informing public policy and resilience building efforts. We expect the predictions to be
unbiased, since they are not founded on empirical correlations (which could change in the face of policy
interventions), but on the behavioural decisions by households based on their intrinsic motivation to

1See www.tvsep.de
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maximize welfare.
Our model also provides interesting insights in related fields of the literature, such as on environmental

migration (Hunter et al., 2015; Obokata et al., 2014; Abel et al., 2019), environmentally induced poverty
traps (Sachs et al., 2004; Ikefuji and Horii, 2007; Dasgupta, 1998), and environmental management (Selin
and Chevez, 1995).

The remainder of the paper is structured as follows. Section 4.2 provides an overview of the literature
on education and disaster vulnerability and risks. Section 4.3 presents the conceptual framework on
which the mathematical model introduced in Section 4.4 is based on. Section 4.4 includes analytical
insights on the decision making process of the household. Section 4.4.5 gives a quick overview of the
numerical solution strategy and Section 4.5 introduces the TVSEP as the main data source for the
calibration in the numerical analysis, which is also used for the assessment of the predictive quality of
the model. Finally Section 4.6 presents the numerous results of the numerical calibration exercise and
compares them to the empirical evidence from the TVSEP. Section 4.7 concludes.

4.2 Education and Disaster Risk Reduction: The Empirical
Evidence

There is a growing empirical literature on the relationship between education and disaster risks and
vulnerability. Commonly, households with a lower socio-economic status and an on average lower
education level are found to be more likely to reside in areas with higher disaster risk, which makes
them more exposed to natural disasters in the first place (Adger et al., 2005; Fothergill and Peek, 2004).
Given an elevated risk level, preparing against disasters and the undertaking of preventive measures
is crucial. Numerous studies report that education, be it formal or informal, increases preparedness
at the individual and household level, including preparedness for earthquakes (Russell et al., 1995),
hurricanes (Baker et al., 2011; Norris et al., 1999; Reininger et al., 2013), floods (Lave and Lave, 1991;
Thieken et al., 2007), tsunami (Muttarak and Pothisiri, 2013), as well as general emergency preparedness
(Al-Rousan et al., 2014; Smith and Notaro, 2009).

Similar findings are reported not only at the individual and household level but also at the aggre-
gate level in country comparisons (Pichler and Striessnig, 2013). At the same time, better educated
households are found to respond faster and more effectively, once a disaster strikes, e.g. by taking
warnings more seriously and by evacuating faster (Sharma et al., 2013; Wamsler et al., 2012; Muttarak
and Lutz, 2014). Also in the aftermath of a disaster, education has been shown to positively influence
the ability to cope with and adapt to shock. Case studies include among others Indonesia (Frankenberg
et al., 2013; Irmansyah et al., 2010) and Thailand (Garbero and Muttarak, 2013).

While there is convincing evidence that education positively affects preparedness, prevention, and the
ability to cope with hazards, the exact mechanisms explaining its positive effects on disaster vulnerability
are not fully understood. Education effects can be distinguished in direct and indirect effects. Direct
effects concern any immediate effects education has on an individual, such as improving her knowledge,
awareness and beliefs about natural hazards. Indirect effects, on the other hand, refer to positive
influences on (material, informational, and social) individual and household resources, which allow a
better preparation against and adaptation to natural hazards and harmful environmental conditions.
Our theoretical model takes both direct and indirect channels into consideration, which play a role in
explaining education effects on disaster vulnerability.

With regard to direct channels of influence, studies show that education equips one with knowledge,
cognitive abilities, and skills that are useful when it comes to preparing for the possibility of a disaster
(Blair et al., 2005; Ceci, 1991; Lee, 2010; Eslinger et al., 2009; Quartz and Sejnowski, 1997). These can
be particularly helpful with understanding disaster warnings and making informed decisions about how
to react. At the same time, education has been found to raise the level of awareness, helping the better
educated to assess risks related to disaster threats and to find adequate responses (Bruine de Bruin et
al., 2007; Peters et al., 2006). Time preferences are another channel through which education could affect
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disaster preparedness, which has received less attention in the literature. Recent evidence suggests that
education can change time preferences as well as the capacity to plan for the future, allowing the more
educated to act more goal-oriented and to better allocate resources and make investments in financial,
health or education for their future (Chew et al., 2010; Oreopoulos and Salvanes, 2011; Grossman, 2006).
This could influence the adoption of such precautionary measures which require long term investments
as purchasing disaster insurance.

Indirectly, education can provide households with access to different forms of resources, which enable
them to better prepare against or avoid natural hazards. On average, individuals with higher formal
education earn higher incomes resulting in higher wealth levels, which enables them to invest in more
costly preparedness actions or the relocation from risk areas (Card, 1999; Heckman et al., 2018). Thanks
to their educational background, they often also have better possibilities to diversify their income sources
and have more money at their disposal to buffer negative shocks. Moreover, there is evidence showing
that education improves access to informational and social resources, which can reduce vulnerability by
providing households access to cost-efficient means of disaster prevention and adaptation. For example,
studies have shown that education improves access to information and communication technologies (Xiao
and McCright, 2007). At the same time, it was found that better educated households can build on
broader and more resourceful social networks that can support them in the preparation and aftermath
of disasters (Kirschenbaum, 2006; Solberg et al., 2010; Witvorapong et al., 2015).

4.3 Conceptual framework
The disaster risk for a household can be split into three components: hazard, exposure and vulnerability.
The hazard of a natural disaster captures the likelihood of a disaster occurring. While increasing hazards
of natural disasters shape the development of disaster risk all around the world due to changing climate
conditions, for the households this development seems to be unconnected to their individual decisions
and the hazard is treated as an exogenous parameter in our model. We therefore focus our analysis on
exposure and vulnerability and consider the role of household’s characteristics and decisions in shaping
these variables.

A households exposure captures the probability that a household is hit by a natural disaster once a
disaster occurs. The level of exposure is mainly determined by the location of the households settlement
as different areas (e.g. close to a river or in a region with higher seismic activity) exhibit varying
degrees of likelihood of being affected by a disaster (e.g. flood or earthquake). To assess the influence
of different household characteristics on exposure and thereby replicate the differential exposure levels
within countries we introduce the exposure level as a state variable of the household’s decision problem.
Vulnerability on the other hand captures the impact of a natural disaster on the households well-being
in a more holistic way. As a disaster affects several different aspects of a households life (lost assets, lost
income, need for restoring efforts, emotional, psychological and health impacts), assessing their resilience
against a disaster requires modelling these household characteristics and their underlying decisions.

Figure 4.1 shows a conceptual flow diagram that depicts the framework of the household’s decision
model. First, the household faces three main dynamic constraints represented by the state variables
settlement location, financial assets and physical (non-financial) assets (i.e. their durable consumption
goods like housing, cars, appliances, etc.). Furthermore households can be distinguished by four key
characteristics: their income level, their awareness with regard to natural disasters, their time preference
rate and their access to disaster prevention measures. In each time period the household decides on
(i) the new settlement location, (ii) final good consumption, (iii) financial savings, (iv) investment
in physical assets and (v) prevention efforts.2 These decisions depend on the previous period’s state

2As described in Courbage et al. (2013) the term prevention generally describes two types of efforts in the literature of
risk behaviour: (i) actions to reduce the probability of conceding losses (loss prevention) and (ii) actions to reduce
the size of the losses (self-insurance or loss reduction). However since we consider preventive efforts of the first kind
explicitly through settlement location (resp. exposure level), we explicitly only consider loss reduction efforts, when we
refer to "prevention measures" or "prevention" within this paper.
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(ii) A natural disaster threatens the household to loose all its physical assets Wt+1.4 To prevent
such a damage, the household can undertake protective measures like investments in insurance or
physical disaster protection. These efforts will determine the share Pt+1 of physical assets that is
protected from a disaster while the remaining amount, (1−Pt+1)Wt+1, is assumed to be destroyed
in case of a disaster.

(iii) Alternatively households can build up a stock of financial assets St+1, which are in no danger
of being destroyed and furthermore generate interest at rate rt. These assets not only allow the
households to smooth the impact of uncertain labor income, but also enable them to reinvest into
physical assets W especially after losses during a natural disaster. As a result financial assets
enhance the households abilities to mitigate potential damages ex-post, i.e. after a disaster has
occurred. Despite (in contrast to physical assets W ) not contributing directly to the period utility,
savings are important to smooth consumption. Labor activity and hence labor income may be
reduced after a disaster when households have to invest time to deal with damages caused by
natural disasters. Hence we assume that the working income is reduced by a share Δy, if the
household was hit by a disaster in the previous time period.

These three mechanisms (how households are affected and react to a disaster) will shape the evolution
of the dynamic state constraints at the household level. The decision on the settlement relocation is
represented by an indicator variable It (It = 1 if the households relocates and respectively It = 0 if
the household remains at the same settlement location). The location decision determines the level of
exposure in the next period as represented by equation (4.1).

Et+1 = Et if It = 0
Et+1 ∈ [0, 1] if It = 1

⇐⇒ 0 = (Et+1 − Et) · (1 − It) (4.1)

Note, that in (4.1) we have applied the fact that the case distinction can also be written as a single
constraint on the two variables Et+1 and It.

Nevertheless, relocating to a new settlement location is costly by itself and not all physical assets
can be transferred to the new settlement location.5 We implement these losses by assuming that only
a share 1 − ΔW of the households physical assets remain in their possession in case of a settlement
relocation. Assets accumulate according to equation (4.2).

Wt+1 = (1 − δ)(1 − ΔW It)Wt + wt (4.2)

Additional to potential losses due to the moving decision, the household also has to account for depre-
ciation of physical assets obtained from the last period at rate δ. On the other hand, through sufficient
investments wt physical assets can be accumulated regardless of potential losses. We also allow wt to
be negative modeling the option for households to dissolve some of their physical into financial assets.
Thereby we account for costs of dissolving physical assets and potential sales at a lower value as can be
seen in equation (4.6).6 The physical assets Wt inherited from the last time period depend on whether
the household was affected by a natural disaster or not.

Wt =
Wt if Dt = 0
WtPt if Dt = 1

(4.3)

= Wt · (1 − (1 − Pt)Dt) (4.4)

a functional transformation Lt → Et and hence implies a simpler feasible domain for the relocation decision, since
Et ∈ [0, 1].

4Physical/Non-financial assets Wt+1 cover housing, cars, appliances and other durable consumption goods.
5Also social ties and emotional connections to locations can be seen as a part of the non-financial assets of a household.

When relocating they have to be broken up and cause immaterial losses to the household.
6This specification is not only intuitive but also generates a disincentive for the households to constantly buy and resell

physical assets, what would be a quite counter-intuitive behaviour.
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The dynamics of financial assets St are determined by the difference of total income and total expen-
ditures summarized in equation (4.5).

St+1 = yt · (1 − ΔyDt) + (1 + rt)St − ct − pw(wt) − pP (Et+1, Wt+1, Pt+1) − pE(Et+1) (4.5)

pw(wt) =
wt if wt ≥ 0
κwt if wt < 0

(4.6)

Total income is composed of labour income yt, which is diminished by the share Δy in case of a disaster,
and the gross interest generated by financial assets (1 + rt)St. Labour income is a stochastic process
itself, representing the idiosyncratic income risk, summarised in Y = {yt | t = 1, 2, . . .}. However the
stochastic properties (e.g. the range of income realisations and transition probabilities between them)
depend on the educational level of the household as we will also present in our numerical calibration.

Total expenditure can be split up into (i) consumption expenditure ct, (ii) investment in physical assets
pw(wt) (which could also be negative), (iii) expenditures on prevention effort pP (Et+1, Wt+1, Pt+1) and
(iv) living costs pE(Et+1) depending on the settlement location/exposure level.

The costs for prevention efforts depend on the amount of physical assets and the level of protection the
household aims for, but also on the exposure level of the settlement location.7 We assume living costs at
different locations to depend on the exposure level that characterizes each location. The functional form
pE(Et) should not only reflect, that safer/less exposed areas are often characterised by higher (induced)
rents, but might also imply higher opportunity costs.8

To determine the optimal level of expenditures, households maximize their expected utility U as
represented by the sum of all discounted (at rate ρ) expected future period utilities u(ct, Wt+1) that
depend on consumption ct and physical wealth9 Wt+1. We propose an additive separable dynastic utility
function.10 As indicated in equation (4.7) the expected value is built with regard to the stochastic
processes of the occurrence of a disaster N , the probability that the household is hit by the disaster D
and the stochastic process underlying the labour income Y.

U = EN ,D,Y
∞

t=1

1
1 + ρ

t

u(ct, Wt+1) (4.7)

We next discuss how the household characteristics affect their objectives and constraints.

4.4.1 Impact of household characteristics
As presented in Figure 4.1 four different household characteristics (which are all correlated to education)
have an impact on the decision making in the utility maximisation process. We indicate the dependence
of parameters and functions on education by a subscript or superscript h on parameters or alternatively
as a parameter to the relevant functional forms.

Income

As we will show, using the empirical data from the TVSEP, the level and variability of income are closely
correlated to education. We therefore assume that the level of education of the household determines
the:

7This dependency on the exposure level is in accordance to actuarially fair insurance premiums, which are based on the
expected costs for the insurer.

8Cities are often built along bodies of water. Settling in location which are less prone for flooding coincides with settling
further away from the city center, which in general offers the most economic opportunities. Consequently settling
further away makes either time investments for travelling to the city center necessary or implies opportunity costs of
missing out on economic possibilities.

9Which as already previously described captures durable consumption goods like housing, cars, appliances, etc.
10Households can still be characterised by the four characteristics presented in figure 4.1 as education is empirically shown

to be transferred to the next generation with a high probability. Hence, due to the correlation of education with the
other key characteristics, we can also assume, that they are likely to be passed on to the next generation.
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• mean/expected income level of a household.

• variance/standard deviation of income.

• persistence/correlation of income over time.

More specifically, we assume that the mean-adjusted log-income follows an AR(1)-process (with edu-
cation specific variation σ2

h and persistence ζh over time) and is proportional to the mean education
specific income yh:

yh
t = yh exp(yt) (4.8)

yt = ζhyt−1 + εt with εt ∼ N(0, σ2
h) (4.9)

A similar setting for the modelling of education specific income process can be found in Krueger and
Ludwig (2016).

Awareness

Although households decide about their exposure level by adjusting their settlement location, assessing
the true exposure level of a given settlement location is far from a trivial task at the individual level.
Frequent previous disaster experiences can lead to better judgements of future potential exposure, but
longer periods of remaining unharmed might decrease the awareness of the true risk again. As presented
in Section 4.2 empirical studies have also shown that awareness is positively correlated to the education
of households. Changes in the climatic conditions can increase the hazard of natural disasters (i.e.
P[Nt = 1] =: Ht) unexpectedly and pose another potential element of incomplete information for the
households.

To capture these various arguments how awareness is built up and develops over time we introduce an
awareness parameter at ∈ [0, 1] for each household, which captures levels between full awareness of the
risk of different settlement locations and natural hazards (at = 1), and being completely ignorant about
any disaster risk (at = 0). Note, that we ignore overestimation of disaster risk since underestimation of
disaster risk seems to constitute the more relevant situation concerning the identification of drivers of
high vulnerability and exposure. To indicate the impact of education on awareness, we add a superscript
h to the awareness parameter: ah

t .
The awareness affects the households utility maximisation problem through the expectation opera-

tor EN ,D,Y in the households aggregated utility presented in equation (4.7). While the true objective
probability that a household is affected by a natural disaster corresponds to the exposure level Et+1
of the location of its settlement times the probability Ht+1 of a natural disaster occurring, the house-
hold underestimates the risk by building its expectations based on the adjusted subjective probability
ah

t Et+1Ht+1.

Time preference

Another important factor that characterizes household risk behaviour is the time preference rate ρ,
i.e. how much weight households put on the impacts of their behaviour on their well-being in the
future compared to the present. Empirical evidence such as e.g. Viscusi and Moore (1989) and Jung
et al. (2021) indicates that higher educated individuals are more likely to be forward looking and put
relatively more weight on their future. We will indicate the education dependence of the time preference
rate by adding a subscript to the time preference rate, i.e. ρh.

Access to prevention

Multiple studies have empirically shown, that households or individuals with higher education levels can
access disaster prevention measures more easily either through their enhanced knowledge or their more
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pronounced social networks. To implement this aspect into our framework, we argue that better access
to prevention is equivalent to lower costs of protection. We propose, that the efforts needed to ensure
the same level of prevention Pt are significantly lower for households with better access to prevention
measures. We therefore adjust the prevention cost function for an educational specific parameter:
pP (E, W, P, h). The specific functional forms we apply for our numerical simulations are summarized in
Section 4.5.

4.4.2 Problem summary
The complete household optimisation problem is summarized in the following set of equations:

max
ct,wt,It,Et+1,Pt+1,

t∈{1,2,...}
EN ,D,Y

∞

t=1

1
1 + ρh

t

u(ct, Wt+1) (4.10)

St+1 = yh
t · (1 − ΔyDt) + (1 + rt)St − ct − pw(wt) − pP (Et+1, Wt+1, Pt+1, h) − pE(Et+1) (4.11)

Wt+1 = (1 − δ)(1 − ΔW It)(1 − (1 − Pt)Dt)Wt + wt (4.12)

(Et+1 − Et)(1 − It) = 0 (4.13)

N ∼
P[Nt = 1] = Ht

P[Nt = 0] = 1 − Ht

(4.14)

D ∼
P[Dt = 1] = ah

t−1EtHt

P[Dt = 0] = 1 − ah
t−1EtHt

(4.15)

Note that the optimisation in equation (4.10) is conducted with respect to the decision variables
(ct, wt, It, Et+1, Pt+1). St+1 and Wt+1 are omitted here, since the dynamic equations (4.11) and (4.12)
completely define those two values given the other five decision variables.11

4.4.3 Analytical results
We can use the Lagrange-approach for stochastic constrained optimisation problems to obtain insights
into the inter- and intratemporal trade-offs in the households decision making process.12

Proposition 4 (First order conditions (I))

Assume an optimal solution

(c∗
t , w∗

t , I∗
t , E∗

t+1, W ∗
t+1, S∗

t+1, P ∗
t+1)t=1,2,...

for problem (4.10)-(4.15) exists. For points in time t, where the solutions (c∗
t , W ∗

t+1, S∗
t+1, P ∗

t+1) are
in the interior of the feasible region, the optimal solution fulfils the following first order optimality
conditions. (To abbreviate, we will not list all variables within each functional form for the longer
equations, but indicate at which point in time their decision is made, e.g. uc(t) := uc(ct, Wt+1).)

uc(ct, Wt+1) = 1 + rt

1 + ρ
Et {uc(ct+1, Wt+2)} (4.16)

uc(t)pP
P (t + 1) = 1 − δ

1 + ρ
Et uc(t + 1)(pw) (wt+1)(1 − ΔW It+1)Wt+1Dt+1 (4.17)

11Alternatively, we could also omit ct and wt as decision variables instead and define their values through equations (4.11)
and (4.12) using the other decision variables. We will use this equivalence when solving the household problem
numerically.

12We will omit the sub-/superscript h explicitly indicating the impact of the education in the following to limit the
convolution of the notation. However we encourage the reader to keep the impacts of education in mind.
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uc(t) pP
W (t + 1) + (pw) (t) =

= uW (t) + 1 − δ

1 + ρ
Et uc(t + 1)(pw) (t + 1)(1 − ΔW It+1)(1 − (1 − Pt+1)Dt+1) (4.18)

uc(t) pP
W (t + 1) + (pw) (t) = uW (t)+

+ Et


∞

i=1

1 − δ

1 + ρ

i

uW (t + i) ·
i

j=1

(pw) (t + j)
(pw) (t + j) + pP

W (t + 1 + j)
(1 − ΔW It+j) (1 − (1 − Pt+j)Dt+j)


(4.19)

For the proof we refer to Appendix 4.8.1. In the following we provide the economic intuition behind
these equations.

Equation (4.16) builds the intertemporal Euler equation for consumption. The marginal utility gain
from consumption in the current period t has to be equal the expected marginal utility from consumption
in the next period t+1 adjusted for gains through interest rate on financial assets and the utility discount
rate.

Equation (4.17) illustrates the trade-off between prevention efforts and consumption. On the left
hand side the marginal costs of additional prevention are measured in units of marginal utility from
consumption. On the right hand side we have the expected benefits of prevention measured in discounted
marginal utility from consumption in the next time-period ( uc(t+1)

1+ρ ). The benefits of prevention mate-
rialize in form of additional units of physical assets being protected and preserved in case of a natural
disaster (Wt+1Dt+1). However, before the physical assets can be liquidized ((pw) (t)) into financial
assets and be used for consumption, we need to account for losses through depreciation (1 − δ) and po-
tential relocation of the household settlement in the next period (1 − ΔW It+1). Note that the benefits
of prevention are only present in case the household is affected by a natural disaster and there is no
positive impact of prevention otherwise. This affect will become more apparent in equation (4.48) later
on.

For the discussion of the trade-off between consumption and investments into physical assets we present
two different equations (4.18) and (4.19), which are equivalent, but allow for different interpretations.
Equation (4.18) takes a similar approach to the prevention/consumption-trade-off as in (4.17). The
additional costs of a marginal increase in wealth investment measured in units of marginal utility from
consumption constitutes the left hand side. These costs now consist of two parts: The first term covers
the additional expenditures for prevention whereas the second term contains the direct investment
costs. If the additional wealth investment implies an increase in already positive wealth investment,
(pw) (t) = 1 holds. On the other hand, if reduced liquidation is implied, (pw) (t) = κ holds. The
right hand side of (4.18) also consists of two separate effects. uW (t) captures the direct impact of
the additional wealth investment in terms of utility gained in the present. The latter part in (4.18)
allows for an analogue interpretation as Equation (4.17). The additional physical assets are changed to
(1 − (1 − Pt+1)Dt+1), while the other parts of the terms are identical. In case of a natural disaster the
additional physical assets equate to Pt+1 as only the protected share of the additional marginal physical
assets is transferred to the next period. Otherwise this term equals one and all assets are transferred.

Equation (4.19) illustrates the same trade-off, while avoiding the transformation back into units of
consumption on the right hand side. The left hand side and the first part of the right hand side are
identical to (4.18). The second part now contains the expected impact of the additional marginal
physical assets over the future infinite time-horizon. For each time-period the household has to adjust
the gains in marginal utility uW (t+i) for depreciation of physical assets and the discount factor of utility

1−δ
1+ρ

i

. Furthermore the gains have to be adjusted for (i) potential losses through disaster experience
((1 − (1 − Pt+j)Dt+j)), (ii) potential losses resulting from settlement relocation (1 − ΔW It+j), and (iii)
additional costs resulting from additional prevention costs (pw) (t+j)

(pw) (t+j)+pP
W

(t+1+j) .
In the next section we discuss the Bellman formulation of problem (4.10)-(4.15). In the analysis of



4.4 The household model 119

the current section, the effects of the exposure/settlement location decision of the household are only
indirectly covered through the expectation operator Et. The Bellman formulation on the other hand
allows us to consider these effects more explicitly.

4.4.4 Bellman formulation
The Bellman equation uses the value function V (E, S, W, Y, D) to describe the optimal objective value
depending on the initial value of the state variables and the stochastic processes.13 Due to the infinite
time horizon and the time invariance of the complete problem (4.10)-(4.15), the value function fulfils
the system of equations (4.20)-(4.23).

V (Et, St,Wt, yt, Dt) = max
Et+1,St+1,
Wt+1,Pt+1,

It,ct,wt

u(ct, Wt+1) + 1
1 + ρ

atEt+1Ht+1 · EYV (Et+1, St+1, Wt+1 · Pt+1, Y, Dt+1 = 1)+

+ (1 − atEt+1Ht+1) · EYV (Et+1, St+1, Wt+1, Y, Dt+1 = 0) (4.20)

St+1 = yt · (1 − ΔyDt) + (1 + rt)St − ct − pw(wt) − pP (Et+1, Wt+1, Pt+1) − pE(Et+1) (4.21)

Wt+1 = (1 − δ)(1 − ΔW It)Wt + wt (4.22)

0 = (Et+1 − Et) · (1 − It) (4.23)

The Bellman-Equation (4.20) illustrates that the optimized objective value in the present combination
of state variables (Et, St, Wt, yt, Dt) is equal to the optimal trade-off between utility derived from con-
sumption and physical assets in the current period u(ct, Wt+1) and the discounted expected value from
the value function in the next time period. The latter part by itself consists of two different terms. The
first part contains the scenario with the household being affected by a disaster, which consequently is
weighted with the probability ah

t Et+1Ht+1. In this case the households enter the next time period with
their physical assets being equal to Wt+1 · Pt+1 and this term enters the value function.14 The second
part covers the case of households not being hit by a natural disaster. The prevention measures have
no effect here and the household enters the next time period with the same level of physical assets they
ended up with in the current period, i.e. Wt+1.

Solving the original stochastic problem over an infinite time horizon (4.10)-(4.15) is equivalent to
finding a value function V (·), which solves the problem in Bellman formulation (4.20)-(4.23). Further-
more solving for the value function directly implies the optimal decision rules for the household for each
possible combination of (E, S, W, y, D). These decision rules at the same time maximize the expected
utility over the infinite time horizon presented in equation (4.10) and they are denoted as the policy
functions.

Calculating the FOCs for the optimisation problem in the right hand side of (4.20) leads to equations
allowing for similar interpretations regarding the optimal decisions with respect to financial assets,
physical assets and prevention. Due to their similarity to the results of Proposition 4, we relegate them
to Proposition 5 in the Appendix.

These necessary optimality conditions for consumption, financial and physical assets and prevention
hold regardless of the relocation and exposure decisions of the household. Considering the remaining
two parts of the overall optimal strategy gets slightly more complex. We cannot derive a first order
optimality condition for the moving decision, because it is by definition a boundary solution on [0, 1].
13Therefore it would hold that V (E0, S0, W0, y0, D0) = U .
14Note that we slightly adapted the dynamic equation of the physical assets accordingly to Wt+1 = (1−δ)(1−ΔW It)Wt +

wt. This adjustment allows us to omit the prevention level of the previous time period as an additional state variable
and formulate the value function depending on the 5 state variables exposure, financial and physical assets, income
and disaster experience.
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However distinguishing between the case of relocation or not enables us to gain some insights into the
decision process on the settlement location. Assuming an interior solution for the exposure level decision
we obtain the first-order-optimality condition (4.24).

uc(c, W ) · ∂pE

∂E
(E) + ∂pP

∂E
(E, W, P ) − λI(1 − I) = 1

1 + ρ
aEH · EY

∂V

∂E
(E, S, W · P, Y, 1)+

+(1 − aEH) · EY
∂V

∂E
(E, S, W, Y, 0) + aH · EY V (E, S, W · P, Y, 1) − V (E, S, W, Y, 0) (4.24)

The right hand of (4.24) contains the marginal changes in utility through the value function in the next
period (similarly to the conditions in Proposition 5). The first two terms contain the marginal changes
in the value function for marginal changes in E for the disaster and no-disaster scenario respectively.
Both are weighted with the probability at which they occur. However changes in the exposure level
not only affect the value function, but also the probabilities at which the disaster occurs or does not
occur. Hence, there is an additional term in (4.24), which contains the change in expected utility for
higher probability of disaster occurrence. Again this effect is weighted with the awareness a, so it has
an increasing impact on the decisions of households in case of higher awareness.

On the left hand side we find the marginal change in utility from consumption through changes in the
costs with respect to the exposure level. However, there is the additional term −λI(1 − I) and for its
analysis we need to distinguish two cases:

• In case it is optimal for the household to relocate (i.e. I = 1), the new exposure level for the
settlement location is chosen optimally and the marginal benefits and marginal costs (in terms of
consumption) have to be equal, since λI(1 − I) = 0 holds.

• In case it is optimal for the household to remain in the same location (i.e. I = 0), λI contains
the difference between marginal benefits and marginal costs related to the exposure level of the
current settlement location.

4.4.5 Numerical solution strategy

As the previous section has shown, the analytical insights into the solution of problem (4.10)-(4.15) (resp.
problem (4.20)-(4.23)) are limited. While the results of Proposition 4 depend on complex expected values
of future behaviour, the results of Proposition 5 (in the Appendix) require derivatives of the in general
unknown value function V (·). Both aspects are hard to overcome so we will focus on the numerical
solution of the model for the remainder of the paper. As finding a numerical approximation of the
unknown value function V (·) and the corresponding optimal policy functions is far from trivial itself and
requires significant computational efforts, we provide a description of our approach in Appendix 4.8.2.

4.5 Parametrisation and calibration

The Thailand-Vietnam-Socioeconomic-Panel (TVSEP) is a long term project collecting household panel
data already over multiple waves. Each survey consist of a sample size of almost 4400 households in
440 villages in rural areas of six provinces in Thailand and Vietnam. Since the questionnaire contains
multiple questions on the risk behaviour and perception of households, the TVSEP is an appropriate
database for the parametrisation and calibration of our model. In the next section we will discuss
the estimation of the parameters of our model and present the functional specification necessary. In
Section 4.5.2 we will present the strategy for the construction of distribution of state variables according
to our model.
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4.5.1 Parameter estimates

First we want to stress, that some parameters of our framework are rather abstract measurements and
therefore hard to quantify in the empirical data. Hence for certain parameters plausible guesses were
the only feasible strategy moving forward. At the end of this section we summarise all parameters and
functional forms in Table 4.1.

We assume one period of time within our model to be two years long, so all parameters are adjusted
accordingly. We assume the interest rate to be at moderate 4% per year, resulting in r = 0.0816. For
the depreciation of physical capital we assume a value of 2% per year, what leads to δ = 0.0396. The
shares of physical assets lost during relocation or in the transformation process into financial assets are
assumed to be 20% each, what corresponds to values of ΔW = 0.2 and κZ = 0.8 respectively.

For the share of income lost after suffering from a natural disaster, we can consult the TVSEP data, as
it contains specific information on the income households lost through natural disasters. Setting these
losses in relation to the household income, we obtain a mean value of Δy := 0.1499 as an estimate.

Utility function
For the period utility function we assume an additive separable function consisting of two CRRA-typ
terms in consumption and physical assets, i.e.

u(c, W ) = (c − c)1−γ − 1
1 − γ

+ θ
(W − W )1−β − 1

1 − β
. (4.25)

Utility from physical assets thereby is weighted with the parameter θ compared to utility derived from
consumption. We found the parameter choice of γ = 1.5, β = 2.0 and θ = 1.0 to be reasonable and in
line with other literature generally finding CRRA-parameters between 1.0 and 2.0.

Income process
As already presented Section 4.4.1 we assume, that the demeaned log-income follows an AR(1) process,
i.e.

yh
t = yh exp(yt) (4.26)

yt = ζhyt−1 + εt with εt ∼ N(0, σ2
h) (4.27)

Using the data from the TVSEP we can estimate the mean income for the different education groups
yh. Using two different waves furthermore allows us to derive estimates for the persistence of income
ζh and the variance of the idiosyncratic income shock σ2

h. Note that we normalised all income levels
with respect to the mean income of the lowest education group. Hence we will measure all costs and
expenditures in this calibration exercise in these Basic Income Units [BIU ].

For the numerical calculation and simulation we discretized the space of potential incomes using the
Tauchen algorithm (see Tauchen (1986)) into five different income realisations. The numerical education
specific values can be found in Table 4.1.

Living costs
The living costs are one of the rather abstract measurements within our framework. We decided to use
the value of land owned by the households as a measure for the living costs and calculate an imputed
rent. Using the average disaster experience within the same village as an approximation for the exposure
level of the households within their village allows us to derive an appropriate formulation of the living
costs in relation to the exposure level. Among several functional forms,

pE(E) = pE exp(φ(1 − E)2) − pE (4.28)
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has shown to provide an adequate fit to the data and exhibits intuitive qualitative characteristics. The
parameter pE provides the lower bound for the living costs in the most exposed locations and the
marginal costs for a reduction in the exposure level in these points are equal to zero. The estimated
parameters are rather similar for Thailand and Vietnam and we chose the average values for each
parameter between the countries for our calibration, i.e. pE = 0.482 and φ = 1.075.

For the numerical solution of the model we introduce the parameter pE , which adjusts the lower bound
of costs according to the minimum working income a household generates. This adjustment makes sure
that households are able to afford their basic needs of consumption c, physical assets W and housing in
the most exposed area, i.e. pE(1).

Prevention costs
For the prevention costs we start with the actuarially fair insurance premium of pP (E, W, P ) = (1 −
δ)EWP .15 However we assume, that for households with better access to prevention measures, the first
measures taken are cheaper and only for full protection the same total costs would arise. We decided
to reflect this convex cost structure by adding an exponent (1 + ϕP ) to the preventive effort.

pP (E, W, P ) = (1 − δ) · E · W · P 1+ϕP (4.29)

15Note that the households only pay for the depreciated value of the physical assets (1−δ)W . We assume that the disaster
occurs between two time periods and the physical assets from the last period get depreciated right at the beginning
of the next time period. This means, that each physical asset, that the household has insured against damage from a
natural disaster and gets replaced in case of occurrence also depreciates right afterwards. Hence the household actually
only gets the present value of the assets from the insurance and hence should also only pay a premium according to
the same value.
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Share of phys. assets lost during relocation ΔW 0.2

Value of phys. assets after liquidation κZ 0.8

Interest rate r (1 + 0.04)2 − 1 = 0.0816

Depreciation of phys. assets δ 1 − (1 − 0.02)2 = 0.0396

Share of income lost after disaster Δy 0.1499

u1(c) = (c−c)1−γ −1
1−γ + θ · (W −W )1−β−1

1−β

γ 1.5

β 2.0

θ 1.0

c 0.0001

W 0.0001

pE(E) = pE exp(φ(1 − E)2) − pE

pE 0.482

φ 1.075

pE 0.111

Education category H0 (1,2,3,4,5)

yh
t = yh exp(yt) yh (1.0, 1.148, 1.641, 2.409, 5.375)

yt = ζhyt−1 + εt with εt ∼ N(0, σ2
h)

ζh (0.322, 0.315, 0.430, 0.489, 0.486)

σh (0.775, 0.756, 0.742, 0.730, 0.638)

Awareness ah (0.7, 0.825, 0.95)

Time preference ρh (0.1306, 0.1534, 0.1763)

Access to prevention ϕh
P (0.2, 0.6, 1.0)

Table 4.1: Summary of functional specifications and parameters in the model.

4.5.2 Empirical distributions
For the construction and simulation of a synthetic population resembling the empirical data, we need
to pin down the distribution across the key household characteristics (i) education, (ii) awareness, (iii)
prevention access and (iv) time preference within the TVSEP data set.

(i) For the education grouping we classify households into 5 different groups according to the median
educational attainment within the household.

(ii) For the awareness categorisation we use the information on the number of shocks the household
is expecting to face in the next years and compare them with the number of shocks the household
actually suffered as stated in the consequent wave of the questionnaire. We assigned households
into three different categories according to the accuracy of their prediction of number of shocks
suffered.

(iii) For the access to prevention measures we use the access to financial support as a proxy. Taking
the number of days each household would need to acquire a given amount of money enables us
to assign each household an access score between zero and one, which we can consequently also
classify into three categories.

(iv) As information on time preference of households is not part of the TVSEP, we propose a negative
correlation of -0.3 between education level and time preference, which reflects the fact, that higher
educated households are likely to be more forward looking. Therefore we assign each household a
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random time preference category in a way that replicates the desired correlation over the whole
population. Consequently, we again grouped households into three categories with high, mid and
low time preference rates.

The respective parameters ah, ρh and ϕh
P presented in chosen to cover a reasonable range of values

(awareness between 0.7 and 0.95 resp. access to prevention between 0.2 and 1.0) and lead to realis-
tic outcomes of the model (time preference is deliberately chosen higher than the interest rate, since
otherwise households would have an unrealistically high incentive for financial savings.)

Figure 4.2 provides an overview of the distribution of households across education, awareness and
prevention access described above. The largest share of the population is classified as high awareness,
with low and mid awareness representing population groups of more similar size. According to these
empirical distributions households predominantly have high access to prevention measures (across all
education and awareness categories) and those households with mid or even low access are more likely
in a lower education level.

Low awareness Mid awareness High awareness

1 2 3 4 5 Missing 1 2 3 4 5 Missing 1 2 3 4 5 Missing

0

250

500

750

1000

Education category

Low prev. access

Mid prev. access

High prev. access

Missing

Distribution of households across key characteristics

Figure 4.2: Distribution of households across the key characteristics education, awareness and prevention
access.

4.6 Numerical results

For the discussion of the numerical results, we constructed and simulated a synthetic population of
households reflecting the compositional distribution of characteristics presented in Figure 4.2. In Sec-
tion 4.6.1, we first discuss the long-run equilibrium distribution of the population across the different
state variables and other factors of disaster risk. Furthermore we assess the impact of the household
characteristics with a specific focus on the effects of education on the equilibrium outcomes in Sec-
tion 4.6.2. We investigate the decision making of households in Section 4.6.3 with regard to the different
situations and scenarios households are facing. Again we will identify the impact of the key house-
hold characteristics in selected settings. Lastly, in Section 4.6.4 we present the impact of education,
awareness, time preference, prevention access and income on the households disaster risk level and its
components exposure and vulnerability.
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4.6.1 Equilibrium distributions
Before discussing the distributions in equilibrium along the different state and control variables, we break
down the correlations between some of the key variables of the model. Figure 4.3 shows the pairwise
correlations for consumption, income, disaster experience, physical and financial assets and exposure
both in the simulated data (left panel) and empirical data (right panel). Although Figure 4.3 shows
that we manage to replicate the empirical correlations qualitatively well with our model, differences in
quantitative values for some of the variables are apparent.
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Figure 4.3: Correlations between the state variables in equilibrium for the simulation results (left) and
the empirical data (right)

Comparing the two panels we see that the equilibrium outcomes of the model simulations have a
tendency to exhibit stronger correlations compared to the empirical data.16 In this regard, first note
that we match the positivity of the correlation between income and consumption, but overestimate it to
some degree (0.71 and 0.24 respectively). On the other hand the empirical correlation between income
and disaster experience of −0.08 is replicated closely in the model with −0.18. However, while the
model would predict a negative correlation of −0.36 between disaster experience and consumption, the
TVSEP data does not find any significant correlation between these two variables.

Concerning physical assets we are able to replicate the positive correlations with income and con-
sumption (with the correlation between physical assets and consumption being close to 1 and therefore
considerably stronger compared to the empirical data), whereas the rather small negative correlation
with disaster experience (−0.04) is predicted to be substantially more pronounced in the model (−0.5).

For the correlations with respect to financial assets in the fifth row in Figure 4.3 we do not find the
same sign in the model as in the data for two of them, however, the correlations are all comparatively
close to zero (between ±0.2), which we are able to fully replicate with our model (i.e. phys. assets,
disaster experience, income and consumption).

Finally we find the arguably largest differences in the correlations with respect to the exposure level.
Whereas the correlations with financial assets (0.01 resp. −0.12) and disaster experience (0.52 resp. 0.43)
are closely matched17, the model predicts strong negative correlations with physical assets, income and
16This indicates, that our framework is still a considerable simplification of reality. We abstract from e.g. other defining

attributes of the costs of the settlement location and hence do not account for a variety of potentially mitigating
factors. On the other hand also the empirical data for the corresponding variables of the model had to be constructed
from other available data. Therefore the data is not able to perfectly represent the specific model variables.

17The positive correlation of exposure and disaster experience is to some degree explained by construction in the data
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consumption, which we do not find in the TVSEP dataset.
These differences between model outcomes and empirical data can be explained through the absence

of physical modelling of disaster risk and exact geo-specific location data of each household not being
readily available in the survey. For the assignment of an exposure level to each household in the TVSEP
we used the information on the number of natural disasters each household was affected by during the
last two years. We use this information to construct the average probability within each village of a
household suffering from at least one disaster in the past and use that value as the estimate for the
exposure level of each household in the village.18 Hence the exposure indicator in the data should be
taken with a grain of salt. In future work, we aim to obtain proper disaster risk data for household
settlement locations, whereas the current definition should still be sufficient for the illustration of the
working of our model framework.

In a next step Figure 4.4 presents the equilibrium distributions of exposure, financial and physical
assets, consumption and prevention decision for the simulated data in comparison to the distribution
within the TVSEP.19 Note that all variables related to financial units (e.g. income, financial and physical
assets, consumption) are measured in terms of basic income units [BIU ], i.e. the mean period income
of the lowest education group (see also the specification for the income process in Table 4.1).

Exposure: In the simulated data as well as in the empirical data we find households allocated along all
different exposure levels. The most exposed locations are the least populated and a majority of the
population is situated in locations with intermediate exposure between 0.25 and 0.75. The most
significant difference between the empirical and the simulated data is in the share of households
living at locations with zero (or close to zero) exposure, which the model would predict to be
substantially higher. Otherwise the model is able to replicate the empirical distribution fairly
well.

Financial assets: The financial assets show the most significant discrepancy between simulation and
data. The data from the TVSEP exhibits a drastically lower range of financial savings. While
the empirical data shows mostly values of financial savings between ±2.5[BIU ], the simulated
data exhibits a significantly larger range from about -6 [BIU ] to +10 [BIU ] for the majority of
households. The small range in the data is rather surprising, as some households in the dataset
have a period income of more than 5 [BIU ]. For such high income levels we would intuitively
expect them to be able to accumulate higher levels of financial savings than can be found in
the data. Future work will investigate the phenomenon further and we will adjust the model
accordingly.

Physical assets: The distributions for physical assets overall coincide nicely for data and simulations.
Nevertheless we see slightly more households with physical assets in the range of 3.5 + [BIU ] in
the simulations.

Consumption: As for the physical assets the empirical consumption distribution is replicated quali-
tatively well through the model. Still the empirical distribution exhibits a heavier right tail and
therefore higher consumption levels are slightly underrepresented in the simulated data.

Prevention: For the prevention decision, we were not able to construct a corresponding variable in
the empirical dataset, so we only discuss the simulation results. In equilibrium the majority of
households decide to protect between 25% and 50% of their physical assets against disaster risk.
Overall the distribution is left-skewed with the mode of the distribution being close to 0.5 and a
steep decrease of the distribution for higher prevention levels.

resp. the definitions in the model. The fact that the two are relatively close quantitatively, however, can be seen as a
confirmation for the validity of the model.

18We take a cross-population average of disaster suffering instead of a longitudinal average across time for each household,
so we do not require information across multiple waves of the TVSEP or have to account for households changing their
settlement location.

19There is no appropriate comparison for the prevention decision in the TVSEP dataset, so we omitted plotting distribution
of prevention for the empirical data.
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Overall, we were able to reproduce all empirical distributions qualitatively (and for parts also quan-
titatively) quite well. The wider range of financial assets and underestimated number of higher con-
sumption levels would at first thought indicate, that the discount rate for the simulations were chosen
to low (higher time preference would in general give present consumption higher priority than savings).
However, as Table 4.2 will show, higher time preference actually implies lower financial savings and
lower consumption in the long-run equilibrium.

4.6.2 Impact of education and other household characteristics
In this section we want to assess the impact of education and other household characteristics on the
equilibrium distributions. Figure 4.5 illustrates the distributional effects of different levels of educational
attainments by households in the simulated and empirical data.

It is most apparent that within each educational group the distributions in the empirical data are
more widely and equally spread compared to the simulated data. Furthermore the different education
groups also cover more similar ranges of values in the empirical data. As a result, the impact of the
education level on the equilibrium distributions can be seen as less pronounced in reality compared to
the prediction of the model. However the qualitative impacts of education are replicated well by the
model and we will discuss potential sources and origins for discrepancies in quantitative terms.

Exposure: For most education groups (accept the highest educated) the model predicts an equilibrium
distribution covering a wide range of different exposure levels. For the lower educated groups the
distribution is progressively shifted towards the right, i.e. they exhibit higher exposure levels on
average. The empirical data is less consistent in this regards and except for the highest education
group, there is no distinct impact of different educational levels on the distributions.20

Financial assets: For increasing educational levels the distribution of financial assets becomes flatter
and covers a wider range of positive and negative values. This qualitative aspect is present in
both the simulation and empirical data, but the impact of education is more pronounced in the
simulations. Furthermore we see that the distributions are consistently centered around zero in the
empirical data. In contrast, the simulated distributions indicate that lower educated households
tend to hold slightly positive financial assets, whereas the mean value of assets decreases and
becomes negative for higher educated households.

Physical assets: Concerning physical assets the impact of education is qualitatively similar in the
empirical and simulated data. The variance of the distribution increases for higher educated
groups implying flatter distributions and the mean values are shifted to the right. However, as
discussed before regarding other variables the model also suggest a considerably stronger impact
of education than can be found in the data. Note that the model is still able to reproduce, that a
significant share of households in the second highest education group faces similarly low levels of
physical assets as average households on the lowest two educational levels.

Consumption: The effect of education on consumption is qualitatively analogous to the effect on
physical assets both in the simulation and empirical data. Hence we refrain from repeating the
conclusions of the previous bullet point here.

Prevention: For the simulated equilibrium distributions of the prevention decision we find that inter-
estingly the education level has no considerable effect for the first four education groups. Only the
households with the highest educational attainment show significantly higher preventive efforts on
average (in equilibrium).

20We refer to a previous discussion on the construction and applicability of the exposure indicator in the data.
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In Table 4.2 we assess the impact of the education level on the equilibrium distributions of the
simulated synthetic population using regression analyses. The first column for each variable of interest
shows the coefficients for an (appropriately chosen) OLS- or logit-regression with the education classes as
the independent variables. However, we also investigate the effect of the other household characteristics
as shown in the second column for each variable. For the regression analyses the household characteristics
are represented by categorical variables (except for income, which is treated as a continuous variable).
As presented in Table 4.1 we distinguish between five education groups and three different groups for
each awareness, time preference, and prevention access. Consequently, each estimated parameter covers
the effect of a certain category in comparison to a household (i) with the lowest education level, (ii) low
disaster risk awareness, (iii) low access to prevention and (iv) a low time preference rate. Comparing
the estimated coefficients of the same education level between the two scenario (i.e. the first and the
second column for each education group) allows us to identify how much of the total effect of education
can be attributed to other household characteristics and which share is a direct effect of education.

Since we simulate 500, 000 households, all estimated coefficients are highly statistically significance.
Therefore, the statistical significance of each coefficient should be considered carefully and not be used
to make specific conclusions.

Exposure
The first column in Table 4.2 shows the estimated parameters of a logit-regression for the exposure level
of the simulated households. The estimated effect coefficients for the different categorical variables are
quite intuitive:

• With each increasingly higher education level, the impact on the equilibrium exposure level is
progressively more pronounced in absolute value implying lower exposure levels on average (com-
pared to the base households). However, note that the parameter for the highest education class
is more than twofold the one of the second highest class. This reiterates the dramatically different
distribution of the highest education group shown in Figure 4.5.

• Higher awareness also leads to households being less exposed to natural hazards in equilibrium.

• Interestingly we also find, that better access to prevention actually results in households settling
in more exposed areas on average. This indicates, that prevention measures being more affordable
leads to households choosing less expensive, but more disaster prone settlement locations as it
becomes more cost-effective to protect the physical wealth against disasters, compared to paying
the premium for a settlement location in less exposed areas.

• The time discount rate also acts rather intuitive as households that discount the future to a higher
extent choose more exposed settlement location, since they are rather myopic. Furthermore, the
parameters for mid and high time discount rate are on very similar levels, suggesting diminishing
effects for increasingly high time discount rates.

• The negative parameter for income shows that within each education group, households being in
a better income situation reside in slightly less exposed areas.

• Considering the coefficients of the different education groups, accounting for the other household
characteristics only marginally affects their values. This is consistent with the correlation between
the other household characteristics and education and the sign of their respective effect coefficients.
High awareness, low time preference and high prevention access are all positively correlated with
higher education groups. Whereas the former two imply lower exposure levels for the households,
the contrary holds for the latter. Hence, when including the combined effect of the three char-
acteristics in the education effect (as shown in the first column) they partially cancel each other
out. As a results the effect coefficients for the educational level hardly change when we control for
other household characteristics.
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Financial assets
For the financial assets we use a standard OLS regression for the estimation of the impact of the different
categorical variables.

• As already indicated by Figure 4.5 higher educated households on average accrue higher financial
debts. Financial assets decreasing with the level of education of a household is a rather counter-
intuitive result at first. However, consider that financial assets do not contribute to period utility
directly (in contrast to physical assets) and serve as a way to transfer wealth into the future
without potential losses in case of a disaster. As discussed before, higher educated households
generally reside in less exposed areas and consequently have less incentive to keep risk-free but
period-utility neutral financial assets instead of physical assets. Furthermore the generally higher
income level and expectation of similar income levels in the future allows the households to invest
more in physical assets and consumption without keeping financial savings. They can afford to
hold fewer financial assets and go into debt (to finance physical assets), as they can always expect
to have sufficient labour income to account for the basic expenditures and pay the interest on the
debt in the future.

• Table 4.2 shows that this phenomenon becomes even more pronounced when accounting for the
other household characteristics, which turn out to have a mitigating effect on the effect coefficient
of education in the uncontrolled analysis.

• The impact of the higher discount rates intuitively implies less financial savings as households are
less future oriented.

• Higher income in general allows households to accumulate more financial assets. Hence within each
education group households save in times of higher income to look ahead for potential negative
income shocks in the future. Meanwhile (as discussed in the first bullet point) it still holds, that
the financial assets in general are lower for the higher educated households with higher average
income. This represents a rather interesting duality aspect of income: While higher income in
isolation implies higher levels of financial assets, the expectation of higher income in the future
(among other effects) disincentiveses holding financial assets.

• The positive impact of higher awareness levels on financial assets highlights that risk awareness
can have a capacity building aspect. Households with higher awareness for disaster risk keep more
financial assets to increase their capabilities to react and adapt to the impacts of a disaster after it
has occurred. As a result they are more resilient against natural disasters being able to maintain
their living standards without substantial adjustments.

• In similar fashion better access to prevention measures reduces the necessity for financial assets to
some degree. Better access makes it more cost efficient to protect physical assets ex-ante against
loss or damage compared to replacing them ex-post (with the usage of financial resources).

Physical assets
As for the financial assets we conduct a standard OLS regression for the estimation of the impact of the
different categorical variables.

• For the physical assets we obtain the converse results compared to the financial assets. Higher
education levels in general indicate higher levels of physical assets, with this effect being more
moderate when controlled for the other household characteristics.

• The effect coefficients of higher awareness are positive and qualitatively similar to the case of
financial assets, but on a substantially lower level (i.e. coefficients are half to one third the value in
absolute terms). On the other hand the long-run perspective plays a crucial role here. As can be
found in Table 4.4 in Appendix 4.8.2 higher awareness actually implies slightly lower investments
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in physical assets in the short-run. However, the positive impact of awareness on the other decision
and state variable (exposure reduction, higher prevention investment, . . .) leads to households with
higher awareness on average being less exposed and losing fewer assets in case they are hit by a
disaster. Consequently, this allows them to accumulate comparatively higher levels of physical
assets in the long-run.

• Better access to prevention leads to households accumulating higher levels of physical assets. Here
the impact is twofold: (i) Better access to prevention reduces the costs for protection of assets and
households can use parts of the savings in expenditure for further investment into physical assets.
(ii) Better prevention access implies higher levels of prevention (see last column in Table 4.4)
and hence fewer assets get destroyed in case of a disaster favoring asset accumulation in general.
However compared to the other effect coefficients, the magnitude of this effect is rather small.

• Although it can be seen in Table 4.4 that higher time discount rates in the short-run counter-
intuitively correlate positively with higher investments in physical assets, the correlation with the
long-run distribution is clearly negative. Again this indicates, that the influence of higher time
preference on other variables in the long-run can lead to an overcompensation of the direct negative
short-term effects.

• As for the financial assets, higher income in general correlates with higher levels of physical assets,
although the effect is substantially smaller for physical assets.

Consumption
The OLS-regressions for the consumption levels in equilibrium result in the following conclusions:

• As intuitively expected higher education also leads to higher consumption in equilibrium. However,
in comparison to the other directly utility generating factor, i.e. the physical assets, the coefficients
with respect to consumption are significantly smaller. This furthermore indicates that education
has a more pronounced effect on stock variables that accumulate over time compared to flow
variables like consumption.

• For the effect coefficient of the discount rate, we observe a similar result as already discussed for
the financial assets. While a higher discount rate intuitively would suggest a higher preference
for utility in the present and therefore could indicate higher consumption (as is confirmed in
Table 4.4), the long term effects lead to a reversal of the effect. Being more future oriented (i.e.
lower time discount rate) leads to households showing higher consumption levels in the long-run
equilibrium.

• The effects of awareness, prevention access and income are all positive. While the impact of income
on consumption is quantitatively comparable to the role of income on financial and physical assets,
the coefficients of the former two characteristics are rather small in size.

Prevention
To assess the impact of the household characteristics on the prevention decision we performed a logit-
regression analysis.

• Again we observe that higher educational levels lead to higher levels of prevention on average.
Compared to the impact of education on exposure, however, the coefficients are rather small.
This reflects the observation in the discussion of Figure 4.5. Furthermore, the coefficients of
education do not substantially change, if we control for other household characteristics.

• The effect coefficient of the time discount rate and income are positive, but the coefficients are
comparatively small in magnitude.21

21Again note that the statistical significance of the parameters results from the sample size of 500,000 simulated households
and the significance level should not be used as an argument for the importance of an effect coefficient .
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4.6.4 Exposure, Vulnerability and disaster risk
In this last section we want to return to the concept of disaster risk at the household level and how it is
related to the educational level of the household as presented in Figure 4.1. While the model exhibits
a variable directly representing the exposure of a household to natural disasters and the hazard is an
exogenous factor for the households, we need to define an indicator capturing the third argument of
disaster risk, i.e. vulnerability. This value should represent the extent to which a household is affected
by a natural disaster in case that a disaster happens. We decided to define vulnerability as the loss in
long-term expected utility in case of disaster experience relative to the utility in the no-disaster-scenario.
As expected long-term utility is captured by the value function in our framework, this definition can be
represented by equation (4.30). Thereby we adjust the value function by its minimum value over the
feasible region of state variables V to ensure a positive denominator in equation (4.30).23

V ul := EY [V (E, S, W, Y, D = 0)] − EY [V (E, S, W, Y, D = 1)]
EY [V (E, S, W, Y, D = 0)] − V

(4.30)

We find this definition to be appropriate as it incorporates several important aspects of vulnerability:

• It considers a long-term perspective compared to e.g. using the period utility function. A household
temporary reducing consumption and/or adjusting in other ways, while being able to properly
return to its previous living standard after 1-2 periods of time, intuitively should be marked as
less vulnerable compared to a household, which is put on a completely different trajectory by the
shock for longer periods of time.

• It provides a holistic point of view on the impact of disasters. The value function is the result
of all future decisions by the household and therefore includes multiple different impact channels
compared to alternatively focusing on consumption or physical assets in isolation.

• The same absolute losses in consumption, physical assets, etc. should in general have less impact on
wealthier households when discussing their vulnerability. Our definition accounts for this aspects
in two ways. (i) We scale the difference in expected utility with the expected value function for
the no disaster case. Hence, the same absolute difference in utility in the nominator results in
lower vulnerability for households being well off in the first place compared to households in more
precarious situations. (ii) The decreasing marginal utility of consumption and physical assets in
the period utility function implies that losses in those two factors have less impact on utility if
they are normally on a higher level already. Since the value function originates from the period
utility, the difference in the nominator directly accounts for this wealth aspect to some degree.

• We obtain an indicator which is normalised between 0 and 1 and is independent of the units or
scales used in the framework.

Applying this definition of vulnerability we define the disaster risk level R of a household as the product
of exposure and vulnerability.24

R = E × V ul (4.31)

Table 4.3 summarises the impact of education before and after controlling for the other household
characteristics on exposure, vulnerability and disaster risk. We apply a logistic regression for each of
the three dependent variables.

The columns for exposure are identical with the corresponding ones in Table 4.2 and whereas we
include them here for completeness, for a related discussion we refer to Section 4.6.2. Regarding the
impact of the different educational groups on vulnerability we again observe a strong negative gradient
23Note that adjusting the value function by this term in general would not change equation (4.30), as this term would

cancel out in the nominator.
24Again, we omit hazard as it is an exogenous variable and would only scale risk by a certain factor for all households.
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Equilibrium Values
Exposure Vulnerability Disaster Risk

(1) (2) (3) (4) (5) (6)
Edu. Class = 2 −0.201∗∗∗ −0.162∗∗∗ −0.140∗∗∗ −0.070∗∗∗ −0.221∗∗∗ −0.109∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.005) (0.004)
Edu. Class = 3 −0.806∗∗∗ −0.775∗∗∗ −0.478∗∗∗ −0.257∗∗∗ −0.820∗∗∗ −0.493∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.006) (0.005)
Edu. Class = 4 −1.965∗∗∗ −1.889∗∗∗ −0.778∗∗∗ −0.320∗∗∗ −1.783∗∗∗ −1.111∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.009) (0.008)
Edu. Class = 5 −4.557∗∗∗ −4.148∗∗∗ −1.624∗∗∗ −0.320∗∗∗ −5.261∗∗∗ −3.287∗∗∗

(0.030) (0.029) (0.017) (0.014) (0.159) (0.125)
Mid Awareness −0.258∗∗∗ −0.142∗∗∗ −0.258∗∗∗

(0.003) (0.003) (0.004)
High Awareness −0.455∗∗∗ −0.262∗∗∗ −0.471∗∗∗

(0.002) (0.002) (0.004)
Mid Prevention Access 0.088∗∗∗ −0.125∗∗∗ −0.084∗∗∗

(0.007) (0.006) (0.010)
High Prevention Access 0.182∗∗∗ −0.198∗∗∗ −0.117∗∗∗

(0.006) (0.006) (0.010)
Mid Time Discount Rate 0.176∗∗∗ 0.072∗∗∗ 0.157∗∗∗

(0.003) (0.003) (0.006)
High Time Discount Rate 0.255∗∗∗ 0.132∗∗∗ 0.251∗∗∗

(0.004) (0.004) (0.006)
Income −0.047∗∗∗ −0.308∗∗∗ −0.520∗∗∗

(0.001) (0.001) (0.002)
Constant 0.263∗∗∗ 0.285∗∗∗ −3.453∗∗∗ −2.849∗∗∗ −3.936∗∗∗ −3.146∗∗∗

(0.002) (0.008) (0.002) (0.007) (0.004) (0.012)
Observations 500,000 500,000 500,000 500,000 500,000 500,000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.3: Impact of education levels, disaster risk awareness, prevention access, time discount rate and
income on exposure, vulnerability and disaster risk.

with higher educated households showing substantially lower vulnerability. However, once we control
for the other household characteristics the gradient becomes substantially smaller and especially for the
education groups 3-5 we observe hardly any difference in their impact. In this regard, we find that higher
awareness and income both imply considerable reductions in vulnerability (as also shown for exposure).
The time discount rate also has a similar effect on vulnerability as it has for exposure. Households
with less future orientation exhibit higher vulnerability on average. Finally, whereas better access to
prevention leads to households residing in more exposed areas on average, it substantially reduces the
vulnerability of households at the same.

The column for disaster risk now illustrates the combined effect on disaster risk. As the majority
of impact factors had the same leading sign for coefficients in the exposure and vulnerability analysis,
the signs of these coefficients for the disaster risk estimate are consistent with the other analyses.
However, since better access to prevention measures had mixed impacts on vulnerability and exposure,
this analysis shows that better access ultimately reduces the disaster risk of households. Hence, the
positive effect reducing vulnerability actually overcompensates the negative effect on exposure.

4.7 Conclusions and discussion
In this paper we develop a framework for the modelling and analysis of household behaviour when
households are subject to the hazard of a natural disaster. The modelling efforts are motivated through
numerous empirical studies on the importance of education on different aspects of disaster risk. However,
a holistic conceptual framework, which systemically incorporates and interconnects these aspects in a
formal way, has been missing in the literature. The work presented in this paper aims to fill this gap.

We introduce a dynamic household model in discrete time, with households facing the hazard of
natural disasters. Households can utilize several different ex-ante and ex-post strategies to mitigate the
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negative impact of natural disasters on their expected utility. Potential strategies include relocating,
precautionary savings, and loss reduction efforts. We find that all households use a combination of those
strategies in their optimal decisions and using the first order optimality conditions and the Bellman-
equations we are able to derive equations describing the optimal trade-offs between different decisions
variables. However, since they either contain an intricate expectation operator or the unknown value
function of the household problem, we are not able to derive further analytical insights and focus on
the numerical solution.

We calibrate the parameters and functional forms of the model to empirical data from Thailand and
Vietnam. Using a synthetic population of simulated households following the optimal decision rules
proposed by our model, we are able to replicate the empirical distributions of various variables of our
model and the correlations between them qualitatively well, while just missing quantitative aspects for
some variables. While some part of the variations in outcomes and behaviour can be explained through
the stochasticity of the labour income, certain household characteristics have a significant impact in the
short and long-run. We find that they impact the decision making in the present due to the implied
differences in the preferences and expectations (i.e. time preference and awareness) and more or less
restrictive constraints (i.e. working income, financial and physical assets, prevention access). As the
characteristics are consistent over time, these short-term variations in decision making under similar
circumstances can lead to considerable differences in the long-run outcomes for households. Some of the
key results are:

1. Higher education significantly reduces the long-term disaster risk of households by reducing their
exposure as well as their vulnerability. However, while education remains the main driving factor
for exposure when controlled for other characteristics, the positive impact of education on vulner-
ability can be in large part explained through effects resulting from awareness, prevention access,
time preference and income.

2. Some of the observed short-run effects of household characteristics are overcompensated in the
long-run through developments across other household variables within our multi-faceted frame-
work. E.g. higher awareness correlates with lower investments in physical assets short-term,
whereas in the long-run households with higher awareness are able to accumulate higher levels
of physical assets.

3. For the long-term distributions of most variables the aggregated positive impact of education is
attenuated to different degrees when controlling for the other household properties (as they are
often positively correlated with education). For financial assets, on the other hand, the impact of
education becomes even more pronounced.

Overall we can attest higher education consistently and inherently positively affects both, the short-
term behaviour and long-run outcomes with respect to natural hazards. Although our model contains
a multitude of decision and state variables it is still limited in its ability to replicate some aspects of
reality due to some short-comings in the framework. First of all, the model still only represents a partial
equilibrium, as our framework features no production sector, which would allow us to endogenously
define wages and interest rates. In the same regard, we have no direct interaction between households
in the model. Furthermore we assume, that the infinitely livings households exhibit an exogenously
given education level. An alternative approach for a future adaptation of the model would contain
the introduction of a life-cycle model for households making endogenous education decisions over their
finite life-time. We also abstract from reality by using a rather simplified functional form describing
the relationship between exposure level and living costs. Similarly, the different levels of access to
prevention measures enter the prevention cost function in a rather stylistic way, which could warrant
further consideration.

On the other hand the model has substantial potential for extension and other future work. Since the
model considers endogenous decision making by households resulting from a desire for utility maximiza-
tion, it is significantly more capable of providing unbiased predictions and estimations in the evaluation
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process of policy interventions. Whereas empirical correlations can loose their validity under systemic
changes (e.g. introduction of new insurance schemes, construction of new community wide disaster pro-
tection measures), our proposed model is based on households subjectively maximizing their expected
utility and therefore endogenously adjusting to systemic changes. This not only makes predictions from
our model more convincing, but would also allow deeper analysis of the effects of different policy mea-
sures across different socio-economic groups and for different time horizons. Future work of the authors
intend investigate the effectiveness of different policy interventions for calibrated case studies.

4.8 Appendix

4.8.1 Analytical Results
In this section we present the proof for Proposition 4 and an additional Proposition 5.

Proof for Proposition 4

For the proof of Proposition 4 we first set up the Lagrange-function

L = Et=0

∞

t=1

1
1 + ρ

t

u(ct, Wt+1) + λS
t − St+1 + yt(1 − ΔyDt) + (1 + rt)St − ct − pw(wt)−

− pP (Et+1, Wt+1, Pt+1) − pE(Et+1) + λW
t −Wt+1 + (1 − δ)(1 − ΔW It)(1 − (1 − Pt)Dt)Wt + wt +

λI
t (Et+1 − Et)(1 − It) (4.32)

For the optimal decision made at the beginning of time period t, i.e. (ct, wt, St+1, Wt+1, Pt+1, Et+1, It),
the household has access to the full information on the state of all current state variables and previous
decisions made, i.e. (Et, St, Wt, Pt, Dt, yt).

Hence taking the derivative of the Lagrange-function with respect to the decisions variables leads to
the first-order optimality conditions.

∂L
∂ct

= Et
1

1 + ρ

t

uc(ct, Wt+1) − λS
t = 0 =⇒ uc(ct, Wt+1) 1

1 + ρ

t

= λS
t (4.33)

∂L
∂wt

= Et −λS
t

dpw

dw
(wt) + λW

t = 0 =⇒ λS
t

dpw

dw
(wt) = λW

t (4.34)

∂L
∂St+1

= Et (1 + rt)λS
t+1 − λS

t = 0 =⇒ λS
t = (1 + rt)Et λS

t+1 (4.35)

∂L
∂Wt+1

= Et
1

1 + ρ

t

uW (ct, Wt+1) − λS
t · pP

W (Et+1, Wt+1, Pt+1)−

− λW
t + λW

t+1(1 − δ)(1 − ΔW It+1)(1 − (1 − Pt+1)Dt+1) = 0 (4.36)

∂L
∂Pt+1

= Et − λS
t · pP

P (Et+1, Wt+1, Pt+1) + λW
t+1(1 − δ)(1 − ΔW It+1)Dt+1Wt+1 = 0 (4.37)

Combining equations (4.33) and (4.35) leads to

uc(ct, Wt+1) 1
1 + ρ

t

= (1 + rt)E uc(ct+1, Wt+2) 1
1 + ρ

t+1
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uc(ct, Wt+1) = 1 + rt

1 + ρ
E {uc(ct+1, Wt+2)}

and consequently proof the consumption Euler equation (4.16). Equation (4.34) provides a direct
relationship between the shadow-prices of physical and financial assets. Using this equality to substitute
λW

t+1 in equation (4.37) implies

λS
t · pP

P (Et+1, Wt+1, Pt+1) = Et λS
t+1

dpw

dw
(wt+1)(1 − δ)(1 − ΔW It+1)Dt+1Wt+1 .

Using again equation (4.33) we can reformulate the previous equation to

uc(ct, Wt+1)pP
P (Et+1, Wt+1, Pt+1) = 1 − δ

1 + ρ
Et uc(ct+1, Wt+2)dpw

dw
(wt+1)(1 − ΔW It+1)Wt+1Dt+1 .

This equation directly corresponds to equation (4.17) in Proposition 4. The derivations for the FOC (4.18)
follow analogously from combinations of equation (4.33), (4.34) and (4.36).

For the proof of FOC (4.19) we use (4.18) in the following simplified form.

uc(ct, Wt+1) = uW (ct, Wt+1)
g(t) + 1 − δ

1 + ρ

Et {uc(ct+1, Wt+2)f(t + 1)}
g(t) (4.38)

g(t) := pP
W (Et+1, Wt+1, Pt+1) + dpw

dw
(wt)

f(t) := dpw

dw
(wt)(1 − ΔW It)(1 − (1 − Pt)Dt)

We can now substitute the term uc(ct+1, Wt+2) on the right hand side of (4.38) by using (4.38) for the
time period t + 1. This results in

uc(ct, Wt+1) = uW (t)
g(t) + 1 − δ

1 + ρ
Et

uW (t + 1) + 1−δ
1+ρEt+1 {uc(t + 2)f(t + 2)}

g(t + 1)
f(t + 1)

g(t) (4.39)

As the information set at time t+1 is a subset of the information set at t, this equation can be simplified
to

uc(ct, Wt+1) = uW (t)
g(t) + 1 − δ

1 + ρ
Et

uW (t + 1) + 1−δ
1+ρEt+1 {uc(t + 2)f(t + 2)}

g(t + 1)
f(t + 1)

g(t) (4.40)

uc(ct, Wt+1) = uW (t)
g(t) + Et

1 − δ

1 + ρ

uW (t + 1)
g(t)

f(t + 1)
g(t + 1) + 1 − δ

1 + ρ

2
uc(t + 2)f(t + 1)

g(t + 1)
f(t + 2)

g(t)
(4.41)

Taking a next step and replacing uc(t + 2) in the last term makes the systematic structure finally even
more apparent.

uc(ct, Wt+1) = uW (t)
g(t) + Et

1 − δ

1 + ρ

uW (t + 1)
g(t)

f(t + 1)
g(t + 1) + (4.42)

+ 1 − δ

1 + ρ

2
uW (t + 2)
g(t + 2) + 1 − δ

1 + ρ

Et+2 {uc(t + 3)f(t + 3)}
g(t + 2)

f(t + 1)
g(t + 1)

f(t + 2)
g(t) (4.43)

uc(ct, Wt+1) = uW (t)
g(t) + Et

1 − δ

1 + ρ

uW (t + 1)
g(t)

f(t + 1)
g(t + 1) + (4.44)
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+ 1 − δ

1 + ρ

2
uW (t + 2)

g(t)
f(t + 1)
g(t + 1)

f(t + 2)
g(t + 2) + 1 − δ

1 + ρ

3
uc(t + 3)f(t + 3)

g(t)
f(t + 1)
g(t + 1)

f(t + 2)
g(t + 2) (4.45)

Using induction the validity of the FOC (4.19) in Proposition 4 can be easily shown.

First order conditions for Bellman formulation

Proposition 5 (First order conditions (II))

Assume that the value function V (E, S, W, Y, D) is continuous differentiable in S and W . Further
assume that the optimal solution (E∗, S∗, W ∗, P ∗, I∗, c∗, w∗) is an interior solution in S∗, W ∗, c∗ and
P ∗. Than the optimal solution has to fulfil the first order optimality conditions (4.46), (4.47), and (4.48).

uc(c, W ) = 1
1 + ρ

ED,Y
∂V

∂S

= 1
1 + ρ

aEH · EY
∂V

∂S
(E, S, W · P, Y, D = 1) + (1 − aEH) · EY

∂V

∂S
(E, S, W, Y, D = 0)

(4.46)

uc(c, W ) · ∂pw

∂w
(w) + ∂pP

∂W
(E, W, P ) = uW (c, W ) +

+ 1
1 + ρ

aEH · P · EY
∂V

∂W
(E, S, W · P, Y, 1) + (1 − aEH) · EY

∂V

∂W
(E, S, W, Y, 0)

= uW (c, W ) + 1
1 + ρ

ED,Y
∂V

∂W
− aEH(1 − P ) · EY

∂V

∂W
(E, S, W · P, Y, 1) (4.47)

uc(c, W ) · ∂pP

∂P
(E, W, P ) = 1

1 + ρ
aEH · W · EY

∂V

∂W
(E, S, W · P, Y, 1) (4.48)

For the proof we set up the Lagrange function L.

L = u(c, W ) + 1
1 + ρ

atEtHt · EY V (Et, St, Wt · Pt, Y, Dt = 1) + (1 − atEtHt) · EY V (Et, St, Wt, Y, Dt = 0) + (4.49)

+ λS
t −St + yt · (1 − ΔyDt−1) + (1 + rt)St−1 − ct − pw(wt) − pP (Et, Wt, Pt) − pE(Et) + (4.50)

+ λW
t −Wt + (1 − δ)(1 − ΔW It)Wt−1 + wt + λI

t (Et − Et−1)(1 − It) (4.51)

Taking the derivative of the Lagrange function with respect to the decision variables c, W

dL
dc

= uc − λS (4.52)

dL
dW

= uW + 1
1 + ρ

atEtHt · EY
dV

dW
(E, S, W · Pt, Y, 1) · Pt + (1 − atEtHt) · EY

dV

dW
(E, S, W, Y, 0) + (4.53)

+ λS −pP
W (E, W, P ) + λW · (−1) (4.54)

dL
dS

= 1
1 + ρ

atEtHt · EY
dV

dS
(Et, St, Wt · Pt, Y, 1) + (1 − atEtHt) · EY

dV

dS
(Et, St, Wt, Y, 0) + λS · (−1) (4.55)

dL
dw

= −λS · d

dw
[pw(w)] + λW (4.56)

Combining these equations to eliminate the shadow prices directly results in the equations presented in
the Proposition.

Equations (4.46), (4.47), and (4.48) nicely illustrate some of the trade-offs the households have to
consider in their decision making.
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(4.46) shows that for the optimal behaviour the marginal utility of consumption is equal to the expected
marginal benefits of a marginal unit of additional financial assets. These benefits consist of the
expected (with respect to stochastic income) marginal change in the value-function for the disaster
and no-disaster scenarios, which are in turn weighted by the subjective probabilities of occurrence.
Finally they are discounted at rate ρ as they only materialise in the next time period (compared
to consumption).

(4.47) illustrates the trade-offs between consumption and physical assets. The left hand side contains
the marginal utility gains if one marginal unit of physical assets is used for consumption instead
(the marginal utility of consumption multiplied with the marginal cost savings of less physical
assets. On the right hand side, we see that the benefits of physical assets are twofold in contrast
to the benefits of consumption and financial assets. While consumption only implies utility gains
through the period utility and financial assets only affect future utility through the value function,
physical assets contribute through both channels. However, since they can get destroyed in case
of a natural disaster (if not protected), the expected value of the derivative of the value function
is smaller (in the disaster case the marginal gains are scaled with the prevention level P ).

(4.48) similarly relates the marginal utility gains through consumption (resulting from decreased preven-
tive efforts) to the expected gains from higher prevention through the discounted value function
in the next period. Since prevention efforts only become relevant in case of disaster occurrence,
the benefits are limited to this case. Also as the marginal prevention costs, also the benefits are
more pronounced for higher levels of physical assets due to the multiplicative nature within the
value function.

4.8.2 Numerical solution
Model transformation

While the introduction of the indicator decision variable It allowed us to formulate the problem in
a very compact form for the numerical solution a different approach is more efficient. We formulate
the decision whether to relocate or not similar to an option value approach splitting the optimisation
problem (4.20)-(4.23) into two separate problems.

Solving the problem (4.20)-(4.23) at each point in time is equivalent to the household solving two
optimisation problems (P1) and (P2) at each point in time.

(P1) The first problem is to maximize the expected utility (4.57) conditional on the household deciding
to relocate. This only directly affects the wealth accumulation equation as can be seen in (4.59).

V 1(St−1, Wt−1, yt, Dt−1) = max
Et,St,Wt,
Pt,ct,wt

u(ct, Wt) + 1
1 + ρ

atEtHt×

× EYV (Et, St, Wt · Pt, Y, Dt = 1) + (1 − atEtHt) · EYV (Et, St, Wt, Y, Dt = 0) (4.57)

St = yt · (1 − ΔyDt−1) + (1 + rt)St−1 − ct − pw(wt) − pP (Et, Wt, Pt) − pE(Et) (4.58)

Wt = (1 − δ)(1 − ΔW )Wt−1 + wt (4.59)

It quickly becomes apparent, that the optimal decisions do not depend on the initial exposure level
Et−1 any more. However this optimisation still can be done for every combination of (S, W, y, D)
and the optimal objective values are captured in the function V1.

(P2) The second problem is to maximize the expected utility (4.60) conditional on the household staying
at the same settlement location. Again, this mainly affects the wealth accumulation equation
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(see (4.62)). There is no decision variable Et anymore in this case and Et gets replaced by Et−1
in all equation (4.60)-(4.62).

V2(Et−1, St−1, Wt−1, yt, Dt−1) = max
St,Wt,

Pt,ct,wt

u(ct, Wt) + 1
1 + ρ

atEt−1Ht×

× EYV (Et−1, St, Wt · Pt, Y, Dt = 1) + (1 − atEt−1Ht) · EYV (Et−1, St, Wt, Y, Dt = 0)

(4.60)

St = yt · (1 − ΔyDt−1) + (1 + rt)St−1 − ct − pw(wt) − pP (Et−1, Wt, Pt) − pE(Et−1) (4.61)

Wt = (1 − δ)Wt−1 + wt (4.62)

Similar to the first case we store the maximized objective value for each possible combination of
(E, S, W, y, D) in function V2.

After calculating the optimal objective value for both scenarios the households bases its relocation
decision on which scenario yields a higher expected utility. For the value function it consequently holds
that

V (E, S, W, y, D) = max V1(S, W, y, D), V2(E, S, W, y, D) .

This problem transformation allows us to use a value function iteration approach to find the unknown
value function V (·) and the optimal policy function for all decision variables.

Numerical methods

To derive an approximation for the unknown value function and optimal policy function, in a fist step
we discretize the state space. However, as our model consists of five state and seven decision variables,
we face the curse of dimensionality when applying a value function iteration strategy over the discrete
grid of state variables.25 To increase computational efficiency and reduce the overall computation time,
we use a combination of several strategies:

• When solving the maximization problem on the right hand side of (4.20) we use a coordinate
ascend method to reduce the number of functional evaluations compared to a full grid search over
all possible combination of decision variables. Since the restriction in search directions for the
coordinate ascend method, we check all surrounding neighbors of a fix point of the algorithm to
ensure local optimality.

Furthermore we conduct a complete search over a more extended neighborhood once the value
function has converged. This allows us to escape local optima and we continue the value-function-
iteration process until all policies cannot be improved within the extended neighborhood.

• Between iterations conducting an optimisation as described above, we apply Howards-Policy-
Iteration-Strategy to increase the speed of convergence and reduce computation times.

• After convergence of the value function over a discrete approximation of the control/state space,
we continue with iterations over the continuous control space until convergence26 using a linear
interpolation of the value function.

25Doubling the number of grid points for exposure, financial and physical assets would imply, that we not only have
to conduct 8-times the number of optimisation problems, but also that for a complete grid search the number of
combination of state combinations to check for optimality would increase eight fold. In total that would roughly
increase the computational efforts 64-fold .

26Due to numerical issues we kept the exposure level decision over a discrete control space.
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• Finally we make use of GPU-accelerated computation methods to conduct the steps described
above for thousands of combinations of state variables in parallel.

After having derived the optimal policy functions of the households, we use Monte-Carlo-Simulations
to obtain the equilibrium distributions of households across all state variables. Thereby we again use
GPU-accelerated methods to decrease computations times.

Impact of state variables and household characteristics on decision making
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Chapter 5

Conclusions

In this final chapter overall findings and conclusions of this thesis are presented. We recap on the key
findings of each model within the overarching context and with a discussion on future related work and
potential extensions of each framework.

5.1 Overall conclusion
This thesis explores the optimal behaviour at the individual or macro level with respect to risk in
various settings. New perspectives on already established model frameworks allow for additional and
deeper insights into the optimal strategies. In all investigated settings we find combinations of ex-ante
preventive and ex-post adaptation strategies aiming to lessen the impacts of risk.

In Chapter 2 we extend a standard life-cycle model of modelling health decisions by a stochastic health
shock, which can put the whole life-course on a different trajectory. Through this extension we were
able to substantially expand the theory on the value of life to more specific and differentiated health
aspects of an individuals life (general health and its preventive and survival effects, acute and long-run
effects of a specific disease). Our framework allows for distinction between the value of health, value of
prevention, value of acute survival and value of morbidity, which each describe the willingness to pay for
improvements in a part of general health. Furthermore we found that these valuations are the defining
factors for the timing and the trade-offs between different health investments.

By finding an analytic decomposition for each term, we identify the forces that determine preventive
behaviour before the health shock and adaptive strategies after a shock has occurred. Although the
different terms are hard to sort with respect to their magnitude in general, our numerical example allowed
us to pin down how strong general health investments are driven by the shock-preventing aspects of good
health. We find that until the age of 70 health expenditure is shifted towards younger ages through
this preventive effect, whereas the indirect incentive to have better health after the shock works in
the opposite direction, but is insignificant in magnitude. For consumption we find that a discrepancy
between the mortality rate and the returns to annuities incentives a postponement of consumption to
older ages for cancer-free individuals. The higher marginal utility of consumption in the cancer-free
state implies advancements of consumption and partially off-sets the first effect. Overall we obtain a
postponement of consumption over the life-cycle compared to a complete risk-free setting.

On the other hand adaptive behaviour after a cancer diagnosis is swift and pronounced. Extensive
funds are invested in chronic care in the first years to reduce the disease stock at a fast pace. This
implies that young individuals go significantly stronger into debt compared to their cancer-free coun-
terparts. Older individuals similarly dissolve their accumulated assets considerably earlier, if they are
diagnosed with cancer at later stages in life. Also the consumption path significantly adjusts after the
diagnosis while also being sensitive to the age at diagnosis. Whereas the increased mortality risk leads
to an advancement of consumption close to the time of diagnosis, the negative impact of the cancer
stock on utility incentivises deferring consumption to later stages after the impact of cancer has been
reduced. For diagnoses early in life we consequently find a U-shaped consumption-profile (always below
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the comparable cancer free level), meanwhile in older ages the mortality risk is the dominating effect
throughout and consumption at the time of diagnosis jumps upward.

In Chapter 3 the distinction between preventive and adaptive strategies is less clear-cut, as we do
not consider a regime changing shift explicitly. However, the network-structure still lets us identify
preventive and adaptive aspects of the optimal target transmission rates and testing strategy for the
containment of an infectious disease. On the one hand lockdown measures can be seen as a preventive
strategy to reduce new infections, on the other hand they can also be a reaction to a spike in infec-
tion numbers and therefore interpreted as an adaptive intervention. In a standard setting, these two
considerations are hard to disentangle. However, in our numerical example with an initial hotspot of
infections in one region, the immediate reduction in the target transmission within this region can intu-
itively be seen as a reaction to this initial shock of high infections. Then again, the complete cut-down
of transmission of group 1 on the other two to the lowest possible level intuitively resembles more the
preventive aspect of lockdowns. This measure is primarily geared to avoid infections in groups 2 and 3
as far as possible.

Testing also incorporates both aspects of risk behaviour. On the adaptive side testing can be a
reactive measure to reduce the number of infected individuals from the active population. Through
the preventive perspective testing at the same time reduces the probability of new infections within the
susceptible population. Furthermore in case of early treatment possibilities, testing can identify infected
people and allows them to be treated before they can potentially escalate to a heavy case (another
preventive aspect). In the numerical simulations we find that testing becoming available reduces the
lockdown measures, while still reducing the aggregate burden on society. This indicates that testing
and lockdowns not only both contain aspects of preventive and adaptive strategies, but can also be
substituted by each other.

In the third model presented in Chapter 4 we can again observe explicit preventive and adaptive
behaviour with respect to the risk of natural disasters. Even more explicitly we can make the distinction
between loss prevention and loss reduction strategies. The household changing the location of its
settlement effects the probability of being affected by a natural disaster (loss prevention), whereas
explicit investments in insurance or other disaster protection methods reduce the damages to physical
assets in case a disaster strikes (loss reduction). Considering adaptation, we also derive the optimal
reaction in case a household suffered losses from a natural disaster in form of physical assets or future
income. This reaction beside others contains adjustments to consumption and financial savings, but
also potentially different preventive decision in preparation for future shocks.

As the optimal decision rules do not allow for a thorough analytical investigation, we rely on numerical
simulations to determine the impact of education in comparison to other household characteristics.
Through our numerical calibration exercise we find that the effects of education (through its impact on
the stochastic income process) on outcomes and decisions of the household are generally most pronounced
among all household characteristics considered. Depending on the variable of interest the effects of
education on exposure, vulnerability or other decision and state variables can be either enhanced or
dampened by improvements along the other household characteristics. E.g. while higher awareness
increases the positive effect of education on exposure reduction, better access to prevention measures
implies the contrary. Among other results, this example is another indicator for the substitutability
between different prevention strategies.

In conclusion, this thesis illustrates that behaviour with respect to risk consists of preventive and
adaptive strategies. However, as the examples show, classifying an action strictly into one of the two
categories is often hard to justify. In each of the three models we introduce multiple control variables
to disentangle these effects as far as possible. The interconnectedness of different strategies and co-
existence of multiple risk factors (risk of large health shock in presence of general mortality risk, or
idiosyncratic income risk in addition to the risk of natural disasters) still adds substantial complexity
to this task. By using technical frameworks specifically chosen for each research question, we are still
able to identify some of the driving forces behind the optimal decision strategies either analytically
or numerically. We also find trade-offs between preventive and adaptive efforts in all models, however
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generally applicable conclusions on optimal strategies cannot be drawn. Risk behaviour and the forces,
which are driving it remain highly context specific and require explicit consideration.

5.2 Potential extensions and outlook
With our three different frameworks we not only managed to extend the existing literature, but also
paved the way for numerous further developments based on the work presented. For the first model in
Chapter 2 we can find several other types of health shocks (e.g. cardio-vascular disease, stroke, Alzheimer
disease) for numerical calibration and analysis. Consequently we can compare their respective outcomes
and find differences in their impacts. Furthermore a different annuity market and the introduction of
a health insurance market could be of interest for future research. This would allow to pin down how
varying market structures affect the optimal behaviour and health outcomes at the individual level.
Finally from a technical point of view, we would certainly expect interesting results from extending the
uncertainty elements even further. First we could allow health shock to not only be stochastic in its
timing, but also its immediate impact (e.g. stage of cancer at time of diagnosis can vary). Alternatively,
the introduction of multiple potential shocks over the life-course could substantially improve the realism
and relevance of the model (consider the reemergence of cancer or multiple heart attacks for the same
individual). However, the last extension described requires further progress in the theory of distributed
optimal control models before it can be applied.

Although the model of Chapter 3 might appear quite topical to the Covid-19 pandemic, research on
the optimal containment of infectious diseases should not stop due to the declining impact of the current
pandemic. The sub-optimal and inconsistent management strategies around the world especially in the
early phases of the pandemic showed how valuable scientific expertise from all relevant fields could be.
To be prepared for future outbreaks of highly contagious diseases, models analysing and incorporating
many different aspects of policy intervention should be continuously developed and can help mitigate
the financial and social burden for society. Furthermore the (as of April 2022 still looming) threat
of potential virus mutations with unknown changes in infectiousness and lethality should be incentive
enough for continued research. In this regard, extending the second paper with the disruptive shock of
an emerging mutation (using the framework of the first paper) could give considerable insight on how
a mutation should be handled after its emergence and which preventive actions should be taken.

For the dynamic household model in Chapter 4 we could first extend it from a partial to a general
equilibrium model. Adding a production sector to the economy (and potentially a housing market) can
close the system. This would not only justify the differences in wages for different educational groups,
but would also allow to examine the impacts of natural hazards on the production side of the economy
in the short- and long-run. This extension also makes the assessment of different policy experiments
with respect to their effectiveness in curbing the individual and societal risk with respect to natural
disasters possible.
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