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Abstract: In Engineering Geodesy, most coordinate frames are aligned with the local vertical.
For many measurement tasks, it is therefore necessary to manually (or arithmetically) align sensors
or equipment with the local vertical, which is a common source of errors and it is very time
consuming. Alternatively, accelerometer triads as part of inertial measurement units (IMUs) are
used in several applications for horizon leveling. In this contribution we analyze and develop
a method to use accelerometer triads for pole tilt compensation with total stations. Several triad
sensor models are investigated and applied in a calibration routine using an industrial robot arm.
Furthermore a calibration routine to determine the orientation of the IMU mounted on the pole
is proposed. Using variance based sensitivity analysis we investigate the influence of different
model parameters on leveling and pole tilt compensation. Based on this inference the developed
calibration routines are adjusted. The final evaluation experiment shows an RMS of 2.4 mm for the
tilt compensated measured ground point with tilts up to 50 gon.

Keywords: MEMS; IMU; accelerometer; leveling; tilt compensation; calibration; sensitivity analysis

1. Introduction

An IMU (Inertial Measurement Unit) consists of tri-axial accelerometers, tri-axial gyroscopes and
sometimes tri-axial magnetometers. A lot of research has been done about IMUs in fields of aerospace,
navigation and robotics for several years. This is because of some unique and beneficial characteristics
(compare, e.g., Reference [1] or Reference [2])—high temporal resolution, orientation estimation,
high short term accuracy and unlimited availability independent from exterior environment.

In the early beginnings of IMU technology it was both rather expensive and unhandy in size [3].
Size, cost and power consumption have been dramatically reduced due to recent developments of
MEMS (Microelectromechanical systems) [4]. This led to an even broader scope of applications and
accelerated research [3].

Initially mainly used in navigation tasks, IMUs are now used in several applications for
example, Augmented Reality, Indoor- and Smartphone navigation, Robotics and Mobile Mapping
Systems. MEMS IMUs in particular are nowadays not only used for mobile mapping and navigation
tasks by the geodetic community. Due to its unlimited measuring range compared to conventional
inclination sensors, accelerometer horizon leveling attracted interest. Accelerometer horizon leveling
means computation of two angles roll φnb and pitch θnb making use of accelerometer triads sensing
the local gravity vector. In the following we use the term leveling instead of horizon leveling
for the purpose of readability—not to be confused with leveling as a method for determination
of height differences. Lately, accelerometer leveling has been used for deformation monitoring [5,6]
and frequency analysis of vibrations, for example, References [7,8].
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Another usecase of leveling with MEMS IMUs is tilt compensation of GNSS (Global Navigation
Satellite System) poles, see Reference [9] or Reference [10]. Generally leveling is used in navigation and
pose estimation during unaccelerated phases to stabilize attitude and to compensate gyroscope drifts.
These direct measurements of the two tilt angles φnb and θnb are fed into IMU strapdown computation
or a Kalman Filter for sensor fusion.

In Engineering Geodesy it is very often required to manually align instruments, sensors or
measurement equipment with the local vertical defined by gravity. For 3D-point-measurements using
a total station and a pole mounted prism, both need to be leveled using a circular level accurate to
6 arc minutes (see e.g., Reference [11]). Six arc minutes correspond to 2.6 mm horizontal position
error at a height of 1.5 m. Modern total stations use liquid based tilt compensators to correct residual
tilts. These sensors have inert measurement properties and a very limited measuring range [12].
For a prism pole no residual tilt correction sensor is available and errors up to 3 mm are easily
introduced. Furthermore the leveling of a pole is the most time consuming part of measuring
3D-point-coordinates. The novel idea in this contribution is to bring the concept of IMU based
leveling to the prism pole (see Figure 1), similar to what Reference [9] did for a GNSS pole. Advanced
requirements on the accuracy of pole tilt compensation arise with the increased accuracy of a total
station compared to GNSS. In this contribution we show how a calibration for such a system can be
performed and we analyze which parameters are important. The accelerometer triad sensor models
have to cope with the advanced accuracy demands. Extensive research has been carried out in the
scientific community concerning IMU sensor models. The choice of the inertial instrument error
model depends on the application/use-case and on the effect on the derived quantities [13] (p. 574f).
Two basic categories of calibration approaches are distinguished: online and pre-calibration. In the
first approach, parameters of the IMU error model (see Section 2.1) are estimated in real time using
sensor fusion (e.g., Kalman Filter) with external observations, for example, GNSS-IMU integration.
The deterministic observability of such state parameters depends on the user dynamics [13] (p. 574f)
and is not applicable in static applications. In addition, pre-calibration should be preferred, due to the
higher noise level of MEMS sensors, since

1. the possibilities to reduce noise in static environment through time-averaging, and
2. the danger of vibrations overlaying systematics in kinematic applications.

ground point
of interest

IMU

measured prism
point

local vertical

Figure 1. Illustration of pole tilt compensation for total stations. The ground point of interest w.r.t. the
local geodetic frame is computed from the measured prism point using the estimated tilt from a pole
mounted inertial measurement unit (IMU).
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Nevertheless, at least sensor biases should always be estimated online, since these parameters
highly depend on temperature and might change significantly over time [14,15].

Two groups of pre-calibration methods referring to calibration setup can be found in literature.
The first depends on additional equipment like a reference sensor (e.g., aviation grade IMU,
rate tables [16–19], or optical 6DoF-tracking [20]) and is supposed to be executed in the laboratory.
Such high precision equipment is expensive or might not be available [21] and is not economical for
low-cost MEMS sensors [22]. We summarize these approaches as equipment-aided calibrations.

The other group of approaches targets suitable methods for in-field calibration. These methods
mostly rely on gravity and should be feasible for end users. Reference [23] first introduced the
accelerometer calibration using the property—the magnitude of the static acceleration measured must
equal that of the gravity. This group is referred to as gravity-based approaches. Methods based on this
property have in common, that gravity (g) is measured in multiple quasi-static positions (attitudes).
Extensive research has been carried out, differing in number of positions and the underlying estimated
error models. A summary can be found in Table 1.

Table 1. Related research of accelerometer triad error models, sorted by ascending date of
first publication.

Authors Model Parameters Positions

[23] Bias and Scale 6
[16,17,24,25] Bias, Scale and Non-orthogonalities 18
[22] Bias, Scale, Non-orthogonalities and Cross-axis sensitivities 18 and 24
[19] Bias, Scale and Non-orthogonalities 9
[26] Bias, Scale, Nonlinear Scale and Non-orthogonalities 24
[27,28] Bias, Scale and Non-orthogonalities 36–50
[21] Bias, Scale, Non-orthogonalities and Misalignment 30

In this contribution we investigate different accelerometer triad error models utilizing a 6-joints
industrial robot. In order to compensate the pole tilt, additional mounting parameters of the triad w.r.t.
the pole need to be estimated.

The remainder of this paper is organized as follows. In Section 2 we describe the various
models of accelerometer triads, gravity-based leveling and pole tilt compensation. In the following
Section 3, we show how the triad model parameters are calibrated and how the mounting parameters
are estimated. In Section 4 we investigate calibration and mounting parameters concerning their
contribution to the uncertainty of the final tilt compensation. Here variance based sensitivity analysis
is used to identify and improve important parameters. The results of the calibration and a final
evaluation experiment are presented in Section 5, whereas Section 6 concludes this contribution.

2. Methodology

To reduce the measured prism to the ground point for a tilted pole, it is necessary to know
the orientation of the pole. This involves several coordinate frames (compare Figures 1 and 2)
accumulating in the transformation from pole frame p to the local geodetic frame t (the frame of total
station measurements). First we define the coordinate system of the pole (pole frame denoted by p) so
that the origin is placed at the prism, zp points downwards to the tip, xp lies in the plane defined by
the IMU axis xb and zb; yp completes the right-handed coordinate system. The sensitive axes of the
3 accelerometers form the sensor frame denoted by s. The calibrated forces of the accelerometer triad
refer to the body frame (b) of the IMU. The process of leveling determines the rotation of the body frame
w.r.t. the local navigation frame (aligned with local vertical) denoted by n.

Making use of these frames, pole tilt compensation involves three main computation steps:

1. Application of an appropriate tri-axis accelerometers sensor model to derive calibrated specific
force measurements, which is in fact transformatoion from s-frame to b-frame. (Section 2.1)
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2. In unaccelerated motion the sensed earth gravity can be used to compute roll φnb and pitch θnb
attitudes w.r.t. the n-frame.

3. In combination with an externally estimated yaw ψnb angle, the pole length lp and the mounting
parameters, the components of the askew pole w.r.t. the t-frame is computed.

Figure 2. (left) The IMU body frame (b) and the pole frame (p) related by the mounting parameters φpb
and θpb. (right) Visualization of the tilted pole and the components of the pole vector in the t-frame.
Including the horizontal displacement η due to tilting in blue, compare Figure 1.

2.1. Sensor Models

Several sensor models can be found in literature. They differ mainly in the modeled error
parameters. The basic model for the measured accelerometer outputs (measured forces) denoted by

fs =
[

fx,s fy,s fz,s

]T
proposed by Reference [23] is:

fs = S f f a + b f + v f , (1)

where f a =
[

f a
x f a

y f a
z

]T
is the calibrated force vector, b f =

[
bx by bz

]T
is the offset or biases

vector and

S f =

1 + sx 0 0
0 1 + sy 0
0 0 1 + sz

 (2)

is the scale factor diagonal matrix and v f is the accelerometer random noise.
The calibrated forces f a refer to the three accelerometer sensitivity axes, thus denoted by a.

Ideally these axes should be orthogonal, but due to imprecise manufacturing this is most likely not
the case. Therefore, Reference [16] extended their model to account for this non-orthogonality of the
sensor sensitivity axis by introducing

f b = Tb
a f a , with Tb

a =

 1 −αyz αzy

αxz 1 −αzx

−αxy αyx 1

 , (3)
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which transforms the sensitivity axes to the orthogonal body or IMU-frame (denoted by b) by use of
6 parameters. Here these parameters can be interpreted as small angles, where αij is the rotation of
the i-th axis around the j-th body axis, compare Figure 3. If both rotations about one axis are equal,
for example, αxz = αyz for all rotation axes, Equation (3) becomes a skew-symmetric matrix, which
corresponds to the well known small angle approximation rotation matrix.

Figure 3. The non-orthogonal sensitivity axes a can be transformed to the orthogonal body frame b by
6 small angles (after Reference [16]).

Defining the body frame so that x-axes coincide and yb-axis lies in the plane spanned by xa and
ya Equation (3) reduces to (compare Figure 3):

f b = Tb
a f a , with Tb

a =

1 −αyz αzy

0 1 −αzx

0 0 1


and Tb

a
−1

= Ta
b =

1 αyz αzx αyz − αzy

0 1 αzx

0 0 1

 .

(4)

This gives a 9-parameter model by extending Equation (1) with Equation (4) comprising three

additional non-orthogonality parameters α f =
[
αzx αzy αyz

]T
:

fs = S f Ta
b f b + b f + v f . (5)

2.2. Leveling

Following equations are used for accelerometer leveling [13], which describe the orientation of
the IMU body frame b with respect to the local navigation frame denoted by n. Euler angles are used
to describe the attitude using roll φnb, pitch θnb and yaw ψnb rotations.

φnb = atan2

(
− f b

y ,− f b
z

)
θnb = atan

 f b
x√

f b
y

2
+ f b

z
2

. (6)

Note that arctan2() must be used for roll computation, but if limiting tilting to the upper half
sphere it can be replaced by arctan().
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The accuracy of this leveling process depends on the model parameters for accelerations and
accelerations noise. For example, a 1 mrad roll and pitch accuracy is obtained from accelerometers
accurate to 10−3 g. However, disturbing motions such as vibrations or human activity influences
the leveling process. In case this motion averages out over time, its effects may be reduced simply
by time-averaging [13]. This is applied in all experiments in the remainder of this contribution,
since human shaking during pole handling is relevant for the application regarded in this case.
Furthermore one has to consider present auto-correlation and cross-correlation in the specific force
measurement data.

2.3. Pole Tilt Compensation

For coherent pole tilt compensation it is necessary to know the exact relation between the IMU
b-frame and the poles p-frame. The IMU is placed somewhere on the pole rotated by the Euler angles
ψpb which define the rotation from b-frame to p-frame (see Figure 2). These angles can be converted to
a rotation matrix or coordinate transformation matrix Cp

b :

ψpb =

[
φpb
θpb

]
→ Cp

b = Cp
b (φpb, θpb) , (7)

where the definition of rotation axes and rotation sequence is shown in Appendix A. The pole length
lp is the distance from prism center to the pole tip and can be expressed in pole coordinates as:

lp =

 0
0
lp

 . (8)

With the rotation of the pole frame to the local horizontal navigation frame (n) defined by ψnp

or Cn
p , the tilted pole can be converted to horizontal n-frame by (see also Figure 2):

ln = Cn
p lp = Cn

b Cb
plp = Cn

b Cp
b

T
lp =

= C3(ψnb)
T Cn

b (φnb, θnb)Cp
b (φpb, θpb)

T lp ,
(9)

where C3(ψnb) must be determined from heading estimation, Cn
b (φnb, θnb) is computed by

accelerometer leveling and Cp
b (φpb, θpb) describes the mounting and needs to be calibrated. For the

notation using parentheses, please refer to Appendix A. The resulting ln then describes the coordinate
components of the tilted pole w.r.t. the n-frame.

Finally the coordinates of the pole tip rt
pt (= the ground point) are computed from the measured

prism point rt
i :

rt
pt = rt

i + Rt
n ln , with Rt

n =

0 1 0
1 0 0
0 0 −1

 , (10)

where Rt
n takes care of converting the n-frame to the local geodetic frame (t). The frames p, b, n are

designed as NED-system, while the t-frame (= the total station system) is usually an ENU-system.

3. Calibration Procedure

The proposed calibration procedure here consists of two parts.

1. The first part involves a 6-joints industrial robot arm, holding the IMU under consideration to
perform the tri-axial accelerometer calibration, referring to the sensor models in Section 2.1.

2. In the second part a total station is used to estimate the mounting parameters ψpb introduced
in Equation (7), Section 2.3. We call this sub-procedure mounting estimation.
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For the first, the method is described in Section 3.1 to estimate the parameters of various sensor
models introduced in Section 2.1. We investigate different subsets of parameters in Equation (5) giving
the following models (denoted by Ii) listed below:

1. Bias only model ( fs = f a + b f + v f ) denoted by I0

2. Bias and Scale 6 parameter model Equation (1) denoted by I1

3. Full 9 parameter model Equation (5) denoted by I2

These are estimated using the 24 position scheme proposed by Reference [26], see Section 3.1.
For the mounting estimation, the IMU is mounted on a prism pole and the prism is tracked by a total
station. By tilting the pole in different directions over a known ground point the mounting parameters
are determined. The method is described in Section 3.2.

3.1. Accelerometers Calibration

The gravity-based approach uses the fact, that the norm of measured gravity must be independent
from attitude of the IMU under quasi-static conditions [23]. As long as the position displacement does
not exceed a certain limit the length of gn is constant. Apart from local gravity variation a change in
longitude has no effect, a change in latitude means about 1 mm s−2 per 55 km. Theoretically the norm
of the measured specific force must equal the norm of the gravity:∥∥∥ f b

∥∥∥ = ‖gn‖ . (11)

The disadvantage of these approaches is, that gn must be known. Generally, no exact measurement
of gn is available, but values from theoretical models can be computed. Anyhow for applications
exclusively concerned about leveling the length of gn does not matter, hence a length of 1 could have
been used [29].

ϕ(l + v, x) =
√

f b
x

2
+ f b

y
2
+ f b

z
2 − gn = 0

=
∥∥∥ f b

∥∥∥− ‖gn‖ =
∥∥∥Tb

a S−1
f

(
fs − b f

)∥∥∥− ‖gn‖ = 0 .
(12)

Model (12) can be used as the functional part of a Gauss-Helmert-Adjustment (GH) to estimate
the different model parameters of the tri-axial accelerometers of Equation (5) by replacing f b with the
corresponding model by inverting Equation (5). The scale matrix S f is easily invertible, since it is a
diagonal matrix. For the application of Equation (5) it is also necessary, that Tb

a is invertible, which is
given by the fact, that triangular matrices are invertible if all diagonal elements are non-zero, which is
the case for Tb

a . This is then solved using the well-known iterative nonlinear least squares algorithm, cf.
Reference [30]. Since 9 parameters are to be estimated in Equation (5), at least 9 positions (=9 condition
equations like (5)) are required [17]. However, a more sophisticated calibration scheme is necessary
for reliable estimates of the parameters. Reference [26] proposed a 24-position scheme consisting of
eight 50 gon rotations per accelerometer axis. This scheme distributes the measured gn-vector evenly
over the unit-sphere. The stochastic model is then made up of a block diagonal matrix Σll , consisting
of n (=number of positions) 3 × 3 matrices Σ f empirically determined. This is done by estimating
the variance covariance matrix (VCM) using approx. 250 measurements during each stable position.
Afterwards the variance of the mean is computed, since the epochs have been proven uncorrelated
during auto-correlation investigations.

From a practical point of view, this calibration approach is also applicable in the field,
without additional equipment and data collection can be done by hand. Others have used
rotation tables or polyhedrons for IMU placement. In this contribution we use a 6-joints industrial
robot arm as IMU carrier. This has some advantages: unlimited spectrum of possible attitudes,
accurate reproducibility and time efficiency, since no human interaction is necessary.
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3.2. Mounting Calibration

To estimate the mounting of the IMU on the pole, that is the rotation ψbp between the pole system
(p-frame) and IMU system (b-frame) we tilt the pole with the tip fixed on a coordinatively known ground
point rt

pt. Starting from Equation (10) the following condition must hold:

rt
i + Rt

n ln − rt
pt = 0. (13)

Denoting rt
pt − rt

i by lt
′ describing pole components measured by the total station, and ln as pole

components measured by IMU, the condition can be rewritten as:

Rt
n

T lt
′ − ln =

n′
e′
d′


n

−

n
e
d


n

= 0. (14)

To get rid of the additional yaw parameter C3(ψnb) in Equation (9), we consider only horizontal
displacement η =

√
n2 + e2 of the prism. Then condition Equation (14) reduces to:√

n2
′ + e2

′ −
√

n2 + e2 = η′ − η = 0. (15)

This way the attitude of the IMU ψnb reduces to the leveling parameters φnb, θnb, while the
mounting parameters ψbp already only consist of φbp, θbp because of the frame definitions described
in Section 2. With Equation (15), the following condition equation can be defined for every prism
position:

ϕ(l + v, x) = η′ − η = ϕ(et
i , nt

i , et
pt, nt

pt, f b
x , f b

y , f b
z︸ ︷︷ ︸

l

,

x︷ ︸︸ ︷
φpb, θpb) = 0. (16)

The parameters in this model are the roll φpb and pitch θpb from p-frame to b-frame. The east
et

i and north nt
i coordinates of the prism, measured by the total station form the observation vector

together with the IMU accelerometer readings f b. We have also designed the ground point (et
pt, nt

pt) as
observations to account for the small gliding or moving of the pole tip while tilting the pole. The pole
length lp is considered a non-stochastic quantity in this model. The pole is held static for a period of
about 5 to 10 s using a three-legged clamp (see Section 5). A scheme of 40 positions with tilts of up to
50 gon is performed.

One can think of combining mounting estimation and accelerometer calibration into one single
adjustment by replacing f b in Equation (16) with the according sensor model, for example, Equation (5).
In theory, that would be the preferable approach. We have decided to split these two adjustments,
because from a practical point of view, it is only possible to tilt the pole over a known ground point
up to about 50 gon, whereas for the accelerometer calibration it is necessary to have rotations all over
the sphere.

4. Variance Based Sensitivity Analysis

Variance based sensitivity analysis (VBSA) can be used to analyze the relations between input
and output parameters of a model. The goals of sensitivity analysis are listed in References [31,32]:

1. model validation,
2. model optimization, and
3. identification of important parameters.

This concept was brought to the engineering geodesy context by References [32,33] and has been
used in many studies since then (e.g., References [34,35]). Please refer to these references for details of
the methodology and implementation. In this contribution VBSA is a powerful tool to analyze and
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optimize the calibration process under consideration of the target application. The basic idea is shown
in Figure 4.

Application
Model

Iterative 
Process

Sensitivity
Analysis

Calibration

Sensor
Model

Figure 4. The idea of application-centric calibration optimization.

The sensor model is already given in Section 2.1 (5):

f b = S(b f , s f , α f , fs) , (17)

which connects sensed specific forces fs to calibrated specific forces f b through the calibration
parameters b f , s f , α f (based on the model I2, Section 3). It is not clear from the first sight,
which calibration parameters are important for specific applications, in our case leveling or pole
tilt compensation. For this purpose we investigate the influence of the calibration parameters on the
outputs of the following application models:

φnb, θnb = A1( f b) = A1(S(b f , s f , α f , fs)) for leveling, and (18)

ln = A2(S(b f , s f , α f , fs), ψnb, φpb, θpb) for pole tilt compensation. (19)

The goal is to improve the calibration configuration in an efficient way to improve the output
parameters of the application model in a sense of reduced variance. Our approach first analyzes
the contribution of each input quantity on the output variance of the application model under
consideration, for example, roll and pitch of modelA1. This can be done utilizing VBSA, computing the
total effect Sj

T,i for the i-th input measure, for example, X =
[
bT

f sT
f αT

f f T
s

]
on the j-th element of

Y =
[
φnb θnb

]
by:

Sj
Ti
=

E
(

σ2
(Yj |X¬i)

)
σ2

Yj

. (20)

Here σ2
Yj

describes the variance of the output parameter and σ2
(Yj |X¬i)

describes the output variance

that one would end up with if all other quantities except Xi could be known or fixed. The total effect
terms are computed using a special sample scheme for the correct generation (=simulation) of the
conditional variances using the original nonlinear models. The simulation and analysis of correlated
input is not considered so far. Sensitivity analysis for leveling is shown in Section 4.1. The calibration
parameter with the highest effect is the one to be improved. A method to improve the calibration
configuration for a GH-estimation of the calibration parameters taking these aspects into account is
shown in Section 4.2. This is an iterative process, that can be repeated until the desired output variance
of the application model is reached. This section is concluded by the sensitivity analysis of the pole tilt
compensation (Section 4.3).

4.1. Leveling

The total effect terms of the IMU sensor model parameters on the leveling output
quantities Equation (18) A1 are shown in Figure 5. The computation is based on the results of
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the IMU Calibration I2 (see Section 5.1) and a σfs of 30 mm s−2 from empirical investigations of the
IMU in use. This corresponds to a root noise density S fs of 4.2 mg/

√
Hz. Time averaging of forces over

n = 50 uncorrelated epochs is also considered. The theoretical standard deviation of tilt angles ψnb, θnb
from variance-covariance propagation is about 160 mgon with variations of ±3 mgon. The analysis is
done for 5 classes, depending on the tilting and the resulting prism displacement. C1 represents the
approximately leveled case, C2 results from a tilt of about 20 gon (=40 cm prism displacement) from
vertical and C3 to C5 are tilted about 40 gon (=80 cm) in different directions. We have included only
displacements for one quadrant, since we know from previous studies, that the influences are perfectly
symmetric [36].

0.0 0.5 1.0
yimu [m]

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

x i
m

u [
m

]

C1

C2

C3
C4

C5

Prism Displacement

Poletip

C1 C2 C3 C4 C5
Classes

0

20

40

60

80

100

54 52
62

53
43

5
11 235 5

6 5

40 34 30 26 21

Roll nb

C1 C2 C3 C4 C5
Classes

0

20

40

60

80

100

S T
i [

%
]

46 45 39 42 44

22 105 5 5

46 41

26
28

29

5 7
18

Pitch  nb

fx
fy
fz
bx

by

bz

sx

sy

sz

zx

zy

yz

Figure 5. Total effect terms STi ∗ 100 of IMU sensor model parameters on leveling for different pole tilts.
The classes are defined by regions of prism displacement up to 50 gon tilt shown in the left subplot.

The following conclusions can be derived:

• For this IMU specifications, the raw observations fs make up about half of the output tilt variances
with a small dependence on prism displacement.

• For smaller tilt angles < 30 [gon] z-accelerometer reading is inessential for both tilt angles,
whilst y-accelerometer is dominant for roll φnb and x-accelerometer is dominant for pitch θnb
computation. This makes sense, considering the corresponding rotation axes of the rotation angles
(x for φnb and y for θnb).

• Contribution of z-accelerometer readings increase with prism displacement (or tilt respectively)
(compare C1, C2 with C3, C4, C5)

• Concerning the calibration parameters, both bias and scale parameters have very low influence on
the resulting parameter variance, whereas αzx has a big share on the variance of φnb and αzy on θnb.
This is plausible, since for example, αzx nearly directly distort roll φnb, since both are rotations
about the x-axis, compare Figure 3.

Whilst we have no influence on the IMU specification from a methodogical point of view, except of
buying a better one, we can focus on the two non-orthogonality parameters αzx, αzy to improve leveling
performance, which cause up to almost 50% of the leveling uncertainty.

4.2. Improvement Strategy

With this conclusions from VBSA one can ask for an optimal or improved accelerometer calibration
configuration. But not with the goal to improve the overall result (by means of minimal variance of all
the parameters), instead search for a configuration to improve the most relevant parameters for the
specific application, namely the non-orthogonality parameters αzx, αzy identified before in Section 4.1.
Practically this means searching for calibration positions (in fact = pose), that maximize the sensitivity
of measurements on the identified parameters.

For this purpose we developed an Adjustment Sensitivity Algorithm inspired by VBSA.
Starting with the 24 position scheme proposed by Reference [26] (from now on denoted L0) the
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expected VCM of parameters can be computed [37] (for matrix notation and computation please refer
to Appendix B or Reference [37]):

Σx̂x̂ =

(
AT
(

B Σll BT
)−1

A
)−1

. (21)

This is defined as the initial or starting VCM Σ0. For every pose (i) from the improvement
candidate set Lc the resulting VCM Σi is computed again according to Equation (21). This is the
variance to be expected when adding position i to the 24 position scheme resulting in a 25 position
scheme. In our case the candidate set was chosen to consist of the initial set L0 and and extension
set L1 consisting of eight additional 25 gon rotations per axis, giving 24 additional positions. For the
positions of L0 the VCM Σi indicates the resulting VCM, when measuring the respective position twice.
For every position of Lc the improvement by means of variance reduction can be computed by:

Ik
i = 1− Σi(k, k)

Σ0(k, k)
= 1−

σ2
k,i

σ2
k,0

, (22)

which is the relative improvement of the i-th candidate on the k-th parameter variance. The results
for all improvement measures are shown in Figure 6. Now we can pick the positions with the biggest
improvement on the target parameter and might repeat the procedure until a certain exit criterion is
met. For a detailed description of this algorithm, please refer to Algorithm A1 in Appendix B.

The naming of the positions is defined as: J000 to J007 are rotations about horizontal y-axis
from 0 gon (x-axis vertical) to 350 gon in 50 gon steps. J010 to J017 are the corresponding 25 gon to
375 gon rotations about horizontal y-axis. The positions J020 to J027 and J030 to J037 follow the same
scheme about the x-axis and J040 to J047 and J050 to J057 about the z-axis. We can deduce from
Figure 6, that αij is best estimated if the rotation axis j is horizontal and the rotated axis i (see Figure 3)
forms a ±50 or ±150 gon angle with the gravity vector. These findings match the conclusions from
Reference [38], who did this investigations prior to their estimation process.
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Figure 6. Improvement terms Ik
i ∗ 100 of the positions in Lc on the resulting parameter variances of the

initial 24 position scheme (positions already contained in L0 are written in gray).

For this calibration we picked the eight positions contributing the most on αzx and αzy and
stopped, giving a resulting calibration scheme I3 of 32 positions. For comparison the final evaluation
investigations have also been done with a full calibration scheme I4 consisting of L0 and L1 giving
48 positions.



Sensors 2020, 20, 1481 12 of 20

4.3. Pole Tilt Compensation

The total effect terms STi on the pole components are shown in Figure 7. IMU specifications
and sensor model uncertainties are chosen similar to Section 4.1, including uncertainties of the
mounting parameters from calibration M2 (Section 5.2) and a standard deviation σψ of the yaw
ψnb of 0.4 gon. The theoretical standard deviations, again from variance-covariance propagation,
are 3.5 mm (horizontal components) and 0.08 mm (height) for C1 and for example, 2.5 mm (east and
height) and 6.6 mm (north) for C5. It can be deduced, that again the two important non-orthogonality
parameters αzx, αzy together make up almost 40% for near vertical pole tilts (C1). With increasing
horizontal displacement η the influence of the yaw estimation ψnb increases and has a share of up to
almost 75% of the total variance. The effect is similar for both e and n components, since we simulated
yaw values ψnb from a uniform distribution over the whole spectrum (−200 gon to +200 gon).
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Figure 7. Total effect terms STi ∗ 100 of IMU sensor model parameters, yaw ψnb and the
mounting parameters ψpb, θpb on pole components for different pole tilts. The classes are defined
similar to Figure 5.

It’s important to keep in mind, that VBSA analyzes the stochastic influence of parameters,
which does not necessarily agree with deterministic or functional influence. We will revisit this
distinction in Section 5.1.

5. Experiments and Results

To evaluate the proposed methodology a series of experiments were conducted. A consumer-grade
MEMS (Micro-Electro-Mechanical Systems) IMU of type MPU6050 of InvenSens TDK (see Figure 8)
was used in all the experiments. For the IMU calibration an industrial robot arm UR5 of Universal
Robots was used as a carrier, see Figure 8b. For the mounting estimation and evaluation experiment
a total station TS 16 from Leica Geosystems was used.

First the IMU calibration described in Section 3.1 was done for the different sensor models I0 to I2

(Section 3) and customized positions schemes I3 (32 positions) and I4 (48 positions) based on I2

(utilizing the same sensor model). During calibration every position was kept static for 5 s.
Secondly the mounting estimation introduced in Section 3.2 using the different sensor models Ii

giving the corresponding mounting models Mi. For this a 2.20 m pole was used with 40 evenly
distributed positions up to 50 gon tilts. The pole is held static for a period of about 5 to 10 s using
a three-legged clamp (see Figure 8d). The longest possible pole length has been chosen for this
calibration, since an error in a mounting parameter has a bigger effect with longer poles.

Finally a pole tilt compensation evaluation experiment was performed, see Section 5.3.
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(a)

(b) (c) (d)

Figure 8. (a) the IMU MPU6050 mounted on the robots end-effector. (b) the robot UR5 performing
the calibration routine. (c) the IMU mounted at the prism pole. (d) One of the authors performing the
mounting estimation.

5.1. IMU Calibration

The results of the different IMU calibrations are shown in Tables 2–4. For the first two models
I0 and I1 the global test of the adjustment (see for example, Reference [39]) indicates discrepancy
in the functional or stochastic model by test values of 765.8 > 1.6 and 8.4 > 1.6 respectively, see
Table 5. The null hypotheses states that the posterior variance-factor s2

0 (computed by weighted sum of

squared residuals divided by degree of freedom:
1

n− u
vT Q−1

ll v) is equal to the prior variance-factor

σ2
0 . The test quantity T =

s2
0

σ2
0

follows a Fisher distribution with parameters n− u (number of condition

equations minus number of parameters) and ∞. The corresponding thresholds can be found in Table 5.
For the 9 parameter models the test value was about 1.0 < 1.5 indicating no discrepancy. Since the
stochastic model is supposed to be correct for all models, the global test quantity can be treated as
indicator for deterministic discrepancies. Again the distinction between deterministic and stochastic
influence is important. While the non-orthogonality parameters show the biggest stochastic influence
(see sensitivity analysis in Section 4), the scale parameters show the biggest deterministic influence,
indicated by a heavy drop in the test quantity of the global test (765.8 for I0 against 8.4 for I1).

Table 2. Estimated biases of IMU calibration.

Model/Scheme bx [mm s−2] σbx [mm s−2] by [mm s−2] σby [mm s−2] bz [mm s−2] σbz [mm s−2]

Bias only 24 pos (I0) −329.62 40.49 −204.85 40.78 −262.85 38.98
Bias and Scale 24 pos (I1) −348.63 4.33 −198.72 4.25 −263.34 4.08

Full Model 24 pos (I2) −349.81 1.49 −199.30 1.47 −263.59 1.40
Full Model 32 pos (I3) −348.99 1.15 −199.03 1.15 −263.51 1.02
Full Model 48 pos (I4) −350.63 0.94 −198.96 0.92 −263.64 0.86

Table 3. Estimated scale factor of IMU calibration.

Model/Scheme sx [ppm] σsx [ppm] sy [ppm] σsy [ppm] sz [ppm] σsz [ppm]

Bias only 24 pos (I0) n.a. n.a. n.a. n.a. n.a. n.a.
Bias and Scale 24 pos (I1) 19,711 509 −13,059 498 −5539 475
Full Model 24 pos (I2) 19,683 175 −12,914 172 −5553 163
Full Model 32 pos (I3) 19,710 142 −12,860 140 −5504 129
Full Model 48 pos (I4) 19,087 112 −13,499 108 −6134 100
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Table 4. Estimated non-orthogonality parameters of IMU calibration.

Model/Scheme αzx [mgon] σαzx [mgon] αzy [mgon] σαzy [mgon] αyz [mgon] σαyz [mgon]

Bias only 24 pos (I0) n.a. n.a. n.a. n.a. n.a. n.a.
Bias and Scale 24 pos (I1) n.a. n.a. n.a. n.a. n.a. n.a.
Full Model 24 pos (I2) −10.8 28.0 −172.3 27.4 −310.4 29.2
Full Model 32 pos (I3) −11.2 17.2 −171.6 16.8 −309.1 25.3
Full Model 48 pos (I4) 5.4 16.8 −162.4 16.5 −329.3 18.3

Table 5. Global test of adjustment for different sensor models.

Model/Scheme Parameters Threshold [] T(H0) [] Acceptance

Bias only 24 pos (I0) b f 1.6 765.8 no
Bias and Scale 24 pos (I1) b f , s f 1.6 8.4 no
Full Model 24 pos (I2) b f , s f , α f 1.5 1.2 yes
Full Model 32 pos (I3) b f , s f , α f 1.5 1.0 yes
Full Model 48 pos (I4) b f , s f , α f 1.5 0.9 yes

The standard deviations of bias and scale drop using 9 parameter models I2, I3, I4, showing that
these models might better represent the actual IMU system. Generally the scale factors are quite big,
which might be a consequence of the low-cost IMU. The estimated values of models I2 and I3 do not
differ significantly from each other. Also the standard deviations of bias and scale are quite similar.
As expected from the investigations calibration improvement in Section 4.2, we are able to reduce
the standard deviations of the first two non-orthogonality parameters using the extended 32 position
scheme I3. Nevertheless, the values do not change. A further increase to 48 positions (I4) brings no
enhancement concerning variance of non-orthogonality parameters. For the relevant non-orthogonality
parameters αzx and αzy only αzy is significantly 6= 0.

5.2. Mounting Estimation

The results of the mounting estimation Equation (16) with the corresponding sensor model
applied (Mi is computed by applying Ii) are shown in Table 6. From the test quantity of 200 with the
bias only model (M0), we can see, that there is a clear model discrepancy. The bias and scale model M1

almost passes the test and for the full models M2 to M4 the null hypotheses can be accepted. The first
mounting parameter φpb does not differ significantly between M1 and all the full models M2 to M4.
The non-orthogonality parameter αzx and φpb have a similar effect on leveling and tilt compensation
and αzx is insignificant different from 0, hence no difference in the estimated parameter. For the pitch
mounting θpb we can see a difference of approximately αzy between M1 and M2 to M4. The accuracy
of mounting parameters is also nearly the same for all full model calibrations. A calibration parameter
error of 42 mgon (=three times the standard deviation) equals to an error in pole tip coordinates of
1.4 mm for 2.20 m pole length and 0.9 mm for 1.40 pole length.

Table 6. Mounting parameters with corresponding test quantity of adjustments global test.
Threshold for H0 acceptance is about 1.4.

Model/Scheme φpb [gon] σφpb [gon] θpb [gon] σθpb [gon] T(H0) []

Bias only (24) M0 1.4602 0.1610 −0.9557 0.1770 200.30
Bias and Scale (24) M1 1.2526 0.0143 −0.6824 0.0154 1.56
Full Model (24) M2 1.2465 0.0128 −0.8364 0.0138 1.25
Full Model (32) M3 1.2620 0.0130 −0.8243 0.0141 1.31
Full Model (48) M4 1.2639 0.0129 −0.8225 0.0139 1.28
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5.3. Evaluation

Finally the complete pole tilt compensation using the IMU calibration and the mounting estimation
is evaluated in an independent experiment. For this a pole length of 1.40 m (mostly used in surveying)
is used to measure a known ground point with arbitrary tilts up to 50 gon. Again a three-legged clamp
kept the pole static for about 2 to 5 s for each point. The total station is constantly tracking the prism
and the measurements are simply time-averaged for each static period. Overall the ground point is
measured 75 times.

After applying the mounting Cp
b (φpb, θpb)

T and leveling Cn
b (φnb, θnb) of Equation (9), the yaw

(C3(ψnb)
T) can be computed from total station measurements and the known ground point. In fact

we use ψ̃nb from ground truth (ln
′ , see below) to compute the final tilted pole vector ln. This way, we

are able to focus on the leveling parameters in our evaluation study. In addition the tilted pole vector
can be computed from total station measurements ln

′ , see Equation (14). This ln
′ would mean, that the

coordinates of the ground point are correctly measured and the pole tilt compensation perfectly yields
the tilted pole vector. Therefore we use ln

′ as ground truth and analyze the differences dln = ln
′ − ln.

The results per component are shown in Figure 9, the numerical results for Figure 9b are listed in
Table 7. Throughout the experiment, the x-axis of the IMU was pointing towards the e-axis of the total
station.
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Figure 9. Tilt Compensation Evaluation (n = 75) for different IMU sensor models I0 to I4. (a) Without
Mounting. (b) With the corresponding mounting Mi for Ii.

Noting the different scales between the subplots (a) (without any mounting applied) and (b),
it is obvious, that the application of mounting parameters is crucial for all sensor model Ii. With the
according mounting parameters (Figure 9b) a Bias only sensor model (I0) performs the worst in terms
of systematic bias in pole vector components and variability. The second model (I1) shows a bias
in east component, but the scattering already reduces significantly w.r.t. I0. The east component is
the one, where errors in the second mounting parameter θpb and the non-orthogonality parameter
αzy occur (see the differences in Tables 4 and 6 between M1/I1 and M2/I2). They are consecutive
rotations about the y-axis. There is no significant difference between the full models I2 to I4 of
different IMU calibration position schemes. We suppose this can have two reasons: first the estimated
values of the non-orthogonality parameters αzx, αzy are quite similar for these models, despite the
fact that aposteriori variances have improved. Secondly the mounting parameters can mask wrong
non-orthogonality parameters, see Table 6.
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The overall ground point (= pole tip) accuracy (σp =
√

σ2
e + σ2

n + σ2
h ), that can be achieved

using the low-cost IMU with our approach is about 2.4 mm. Compared to a bias only model
of accelerometer triad of 8.0 mm this is an accuracy gain of 69%, compared to a six parameter
model (3.0 mm) it corresponds to a gain of 20%. The height component is the most accurate one,
since it is the least sensitive one to tilt φnp, θnp, which is composed of leveling φnb, θnb and mounting
φpb, θpb parameters.

Table 7. Corresponding results (units of [mm]) in numbers for Figure 9b.

Mean(de) Mean(dn) Mean(dh) rms(de) rms(dn) rms(dh)

I0 0.8 −2.5 −1.8 5.6 4.8 3.1
I1 1.0 0.2 −0.2 1.7 2.2 1.0
I2 −0.6 0.5 −0.1 1.4 1.8 0.7
I3 −0.6 0.5 −0.1 1.4 1.8 0.7
I4 −0.6 0.5 −0.1 1.4 1.8 0.7

6. Conclusions

The idea of this paper is to analyze different sensor models of accelerometers triads with respect to
leveling applications. In particular for pole tilt compensation, which means computational correction
of a slanted position of a pole equipped with a prism. A first prototype with a consumer-grade MEMS
IMU and a Raspberry Pi on a simple standard pole from engineering geodesy has been developed.
The formalism for pole tilt compensation is successfully validated with this prototype. For that the
unknown parameter in this formalism must first be estimated with an appropriate calibration routine,
elaborated in this contribution.

The core part of this contribution is related to the question of important parameters in this model.
We utilize methods of variance based sensitivity analysis to identify main contributors to the final
theoretical uncertainty of the target quantities, for example, tilt angles or pole vector components.
We have shown, that the non-orthogonality parameters of the z-axis accelerometer αzy and αzx are the
most important both in terms of uncertainty contribution as well as deterministic error introduction.
Using this derived insights an iterative application oriented calibration design is proposed to improve
the estimated calibration parameters. This concept is formulated to be easily portable to any other
calibrations tasks to improve in terms of result accuracy, economics and time saving. Overall sensitivity
analysis is useful, both to identify important parameters and to examine how these can be improved.

First the proposed two-part calibration routine consisting of an accelerometer triad calibration
using an industrial robot and a mounting estimation with the involved total station is executed.
The final evaluation experiment proofs the validity of the proposed models and calibration procedures.
With an exact known third orientation angle ψnp we are able to achieve a ground point accuracy of
2.4 mm. The experiment also reveals the necessity of a 9 parameter model consisting of three biases b f ,
three scales s f and three non-orthogonality α f parameters. Finally three different position schemes
for IMU calibration are tested, but showed no performance improvement, it is therefore reasonable to
assume that the 24 position scheme from Reference [26] is sufficient.

Future plans are to repeat the experiments with an industrial grade MEMS IMU and compare
the findings between IMUs of different noise level. One can also think about reformulating the
compensation model using quaternion attitude representation to overcome singularities inherent in
Euler angles and allow the pole for a full-dome probing device. Also for real world application future
research has to focus on yaw (ψnp) estimation, since its uncertainty accounts for up to 75% of the pole
components uncertainty.
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Appendix A. Definition of Rotation Matrices

Throughout this contribution a Tait-Bryan Euler angles definition of sequence z-y-x with
mathematically positive rotation direction is used.

Cα
β = C1(φβα)C2(θβα)C3(ψβα) =

=

1 0 0
0 cos φβα sin φβα

0 − sin φβα cos φβα


cos θβα 0 − sin θβα

0 1 0
sin θβα 0 cos θβα


 cos ψβα sin ψβα 0
− sin ψβα cos ψβα 0

0 0 1

 (A1)

Since the euler angles ψβα describe the orientation of the object frame α with respect
to the reference frame β, the rotation from α to β is very often needed to convert between
attitude representations:

Cβ
α = Cα

β
T = C3(ψβα)

T C2(θβα)
T C1(φβα)

T =

=

cθβα cψβα −cφβα sψβα + sφβα sθβα cψβα sφβα sψβα + cφβα sθβαcψβα

cθβα sψβα cφβα cψβα + sφβα sθβα sψβα −sφβα cψβα + cφβα sθβα sψβα

−sθβα sφβα cθβα cφβα cθβα

 =

= Cβ
α (φβα, θβα, ψβα) ,

(A2)

where cγ is short for cos γ and sγ is short for sin γ. If we use the notation Cβ
α or Cβ

α (φβα, θβα, ψβα),

the full rotation matrix (A2) is meant. If for example, Cβ
α (φβα, θβα) is written, it is short for

Cβ
α (φβα, θβα, ψβα = 0), which is in fact:

Cβ
α (φβα, θβα) = C3(ψβα = 0)T C2(θβα)

T C1(φβα)
T =

= I
3×3

C2(θβα)
T C1(φβα)

T = C2(θβα)
T C1(φβα)

T (A3)

Appendix B. Adjustment Sensitivity Analysis Algorithm

Starting from a set of implicit equations (L0) and given approximate values of the parameters (x0)
the corresponding observations l0 can be computed using a simulation framework. Also define a set
of implicit candidate equations Lc.

The design matrix A contains the partial derivatives of the functional model ϕ w.r.t. the parameters
x and the observation matrix B hold the partial derivative w.r.t. the observations l. For details
refer to for example, Reference [37].
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Algorithm A1 Adjustment Sensitivity Algorithm

Initialize Σ0
ll , l0

Compute A0, B0 from l0, x0

Σ0
x̂x̂ ←

(
AT

0
(

B0 Σ0
ll BT

0
)−1 A0

)−1

Initialize I with dimensions len(Lc)× len(x)

for all (l, counter i) in Lc do

li ←
[

lT
0 lT

]T
, Σi

ll ←

Σ0
ll 0

0 Σll


Compute A, B from li, x0

Ai ←
[

AT
0 AT

]T
, Bi ←

B0 0

0 B


Σi

x̂x̂ ←
(

AT
i
(

Bi Σi
ll BT

i
)−1 Ai

)−1

I[i, :]← 1− diag(Σi
xx)

diag(Σ0
xx)

end for

Now I holds the relative improvement in parameter variances for each equation candidate
in Lc in the rows. Look at the corresponding column k for the parameter(s) to be improved and
choose the maximum:

equation to add Lc{i} ← arg max
i

I[:, k] , (A4)

and add it to the initial set L0.
Finally repeat the process until an exit criterion is met, for example, maximum number of condition

equations or minimal improvement achievable. Note that the current version of this algorithm does
not consider correlation (off-diagonal elements of Σx̂x̂).
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