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We derive and analyze a fully computable discrete scheme for fractional partial differential equations
posed on the full spaceRd . Based on a reformulation using the well-known Caffarelli–Silvestre extension,
we study a modified variational formulation to obtain well-posedness. Our scheme is obtained by
combining a diagonalization procedure with a reformulation using boundary integral equations and a
coupling of finite elements and boundary elements. For our discrete method we present a-priori estimates
as well as numerical examples.

1. Introduction

In this work, we study stationary fractional partial differential equations posed on the full space Rd with
d = 2, 3 of the form

Lβu + su = f in Rd, Lu := −div
(
A∇u

)
(1.1)

with s ≥ 0, and β ∈ (0, 1). Fractional PDEs of this type are oftentimes used to model nonlocal effects
in physics, finance or image processing, Bucur & Valdinoci (2016); Sun et al. (2018).

Regarding the formal definition of noninteger powers Lβ of differential operators, there are various
different descriptions in literature such as Fourier transformation, semigroup approaches, singular
integrals or spectral calculus, see Lischke et al. (2020). A distinct advantage of full-space formulations
as in (1.1) is that all of these definitions are equivalent, Kwaśnicki (2017), while there are significant
differences in the definitions, if one restricts the problem to a bounded domain.

Nonetheless, there are usually no closed form solutions to these problems available and therefore
numerical approximations are used. In order to derive a computable approximation, most numerical
methods employ formulations on bounded domains, for which there is a fairly well developed literature.
We mention the surveys (Bonito et al., 2018; Lischke et al., 2020) as well as finite element methods
for the integral definition of the fractional Laplacian (Acosta & Borthagaray, 2017; Acosta et al.,
2019; Faustmann et al., 2022a), for the spectral definition (Nochetto et al., 2015, 2016) and semigroup
approaches (Bonito & Pasciak, 2015; Bonito et al., 2019). We especially mention the very influential
reformulation using the extension approach by Caffarelli & Silvestre (2007) (see also Stinga & Torrea,
2010, for a more general setting), which allows to use PDE techniques in the analysis. This approach
paired with an hp-FEM approach in the extended direction has proven to be an effective strategy both
for elliptic (Meidner et al., 2018; Banjai et al., 2019, 2023; Faustmann et al., 2022b, 2023) as well as
parabolic (Nochetto et al., 2016; Melenk & Rieder, 2021) and hyperbolic problems (Banjai & Otárola,
2019).

Many numerical approaches for the full-space formulation, like Achleitner et al. (2021) for the
fractional Allen–Cahn equation, rely on truncation of the full-space problem to a bounded domain, which
induces an additional truncation error that needs to be investigated. A different approach that avoids
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2 M. FAUSTMANN AND A. RIEDER

any truncation errors is the use of a coupling of finite elements on a truncated domain and boundary
elements appearing from a reformulation of the unbounded exterior part as a boundary integral equation.
We refer to the classical works (Johnson & Nédélec, 1980; Costabel, 1988; Han, 1990) for the one-
equation/Johnson–Nédélec coupling and the symmetric coupling for elliptic transmission problems.
For the standard Laplacian these methods are well-posed and thoroughly analyzed, see Sayas (2009);
Steinbach (2011); Aurada et al. (2013).

In this work, we introduce a method for elliptic full-space fractional operators that combines
the mentioned Caffarelli–Silvestre extension approach with FEM-BEM coupling techniques. More
precisely, inspired by Laliena & Sayas (2009); Sayas (2009), we reformulate the extension problem
as a variational problem, where the solution on a bounded domain and an exterior solution in an exotic
Hilbert space are sought. Using suitable Poincaré inequalities, we showwell-posedness of the continuous
formulation. In order to obtain a computable approximation, we then use the diagonalization procedure
of Banjai et al. (2019), which leads to a sequence of Helmholtz-type transmission problems. For those,
we employ a standard coupling of FEM and BEM of symmetric type, as proposed by Costabel (1988);
Han (1990). Finally, we present an a priori analysis for a discretization with hp-FEM in the extended
variable. To our knowledge, this work is the first paper that considers a FEM-BEM discretization for
fractional PDEs posed on the full-space.

We note that our previous and recent work (Faustmann & Rieder, 2023) considers the same
continuous model problem and provides some essential analytical results for the full-space Caffarelli–
Silvestre extension problem, such as well-posedness in an appropriate weighted Sobolev space as well
as decay estimates and regularity results for the analytical solution. While the understanding of these
properties of the full-space solutions are crucial, Faustmann & Rieder (2023) does not provide any
discretization schemes or FEM-BEM formulations. Apart from well-posedness, the derivation of the
FEM-BEM formulation in the present paper does not need any results from Faustmann & Rieder (2023),
regularity and decay estimates, however, are essential to derive error estimates between the analytical
and discrete solutions.

1.1 Layout

The present paper is structured as follows: In the remainder of Section 1, we introduce our model
problem as well as necessary notation and most notably, the Caffarelli–Silvestre extension problem. In
Section 2, we formulate our main results: well-posedness of our formulation, the fully-discrete scheme
using the diagonalization procedure together with the symmetric FEM-BEM coupling, and, finally, a
best-approximation result. Section 3 provides the proofs for the well-posedness and the diagonalization
procedure and, most notably, a Poincaré type estimate. Section 4 contains the proofs for the a-priori
analysis of the fully discrete formulation using hp-finite elements in the extended variable, which builds
upon the regularity and decay properties of Faustmann &Rieder (2023). Finally, Section 5 presents some
numerical examples that validate the proposed method.

1.2 Notations

Throughout the text we use the symbol a � b meaning that a ≤ Cb with a generic constant C > 0
that is independent of any crucial quantities in the analysis. Moreover, we write � to indicate that both
estimates � and � hold.

We employ classical integer order Sobolev spaces Hk(Ω) on (bounded) Lipschitz domains Ω and
the fractional Sobolev spaces Ht(Rd) for t ∈ R defined, e.g., via Fourier transformation. We also need
Sobolev spaces on the boundary Γ := ∂Ω of a bounded Lipschitz domain Ω ⊂ R

d, denoted by Ht(Γ )
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 3

with t ∈ [−1, 1]. One way to properly define them is by using local charts, see Sauter & Schwab (2011)
for details.

1.3 Assumptions on the model problem

Let d = 2, 3 and β ∈ (0, 1). We consider the fractional PDE

Lβu + su = f in Rd, Lu := −div
(
A∇u

)
.

For the data in the model problem, we assume:

1. A ∈ L∞(Rd,Rd×d) is pointwise symmetric and positive definite in the sense that there exists
A0 > 0 such that

(A(x)y, y)2 ≥ A0 ‖y‖22 ∀y ∈ R
d.

2. s ≥ 0 and additionally s ≥ σ0 > 0 for the case d = 2 to avoid several technical difficulties due
to decay conditions at infinity, most notably, the lack of the Poincaré-type estimate of Lemma 3.2
below.

3. f ∈ L2(Rd).

4. f is supported in a bounded domain and A is constant outside of a bounded domain. We formulate
these two requirements as follows: there exists a bounded Lipschitz domain Ω ⊆ R

d such that

a. supp f ⊆ Ω ,

b. A ≡ I in Rd \ Ω .

We note that the last requirement is necessary in order to be able to apply boundary element
techniques to the full space problem, as a reformulation of a PDE as a boundary integral equation requires
the existence of a fundamental solution, which is only guaranteed in the constant coefficient case.

There are multiple ways to define the fractional power Lβ , which on the full space Rd turn out to
be equivalent, Kwaśnicki (2017). A convenient definition, Lischke et al. (2020), for sufficiently smooth
u ∈ L2(Rd), by using spectral calculus reads as

Lβu :=
∫

σ(L)

zβ dE u,

where E is the spectral measure of L and σ(L) is the spectrum of L. Using standard techniques this
definition can be extended to tempered distributions. We note that the spectrum of the self-adjoint
operator L may be continuous on the full-space.

In the following, we will never use the explicit definition of Lβ , but only employ a reformulation of
our model problem specified in the following subsection.

We note that, compared to the integral fractional Laplacian defined on bounded domains, we do not
impose an homogeneous exterior Dirichlet boundary condition as we are considering a true full-space
formulation.

1.4 Degenerate elliptic extension

We use a reformulation of the fractional PDE as the Dirichlet-to-Neumann mapping for a degenerate
elliptic PDE in a half space in Rd+1, the so-called Caffarelli–Silvestre extension, Caffarelli & Silvestre
(2007); Stinga & Torrea (2010).
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4 M. FAUSTMANN AND A. RIEDER

We specify the function space used for the extension problem in the following. For any bounded open
subset D ⊂ R

d ×R
+, we define L2(yα ,D) as the space of square integrable functions with respect to the

weight yα and the Sobolev space H1(yα ,D) ⊂ L2(yα ,D) of functions with finite norm

‖U‖2H1(yα ,D)
:=
∫ ∫

D
yα
(∣∣∇U(x, y)

∣∣2 + ∣∣U(x, y)
∣∣2) dx dy.

We also employ the spaces L2(yα , (0,Y)) and H1(yα , (0,Y)) for Y ∈ (0,∞] defined in an analogous
way by omitting the x-integration.

For unbounded sets D, we additionally use the weight

ρ(x, y) := (1 + |x|2 + |y|2)1/2 (x, y) ∈ R
d × R

+

to take care of the behaviour at infinity, see also Remark 2.1 below. In this case, we define the space
H1

ρ(yα ,D) as the space of all square integrable functions U (with respect to the weight function yαρ−2)
such that the norm

‖U‖2H1
ρ(yα ,D)

:=
∫ ∫

D
yα
(∣∣∇U(x, y)

∣∣2 + ρ(x, y)−2
∣∣U(x, y)

∣∣2) dx dy (1.2)

is finite. Commonly used cases areD = R
d×R

+ (full space),D = R
d×(0,Y) forY > 0 (corresponding

to truncation in y-direction), or D = ω × (0,Y) for ω ⊂ R
d and Y > 0.

Moreover, we also employ spaces acting only in x. Using the weight

ρx(x) := ρ(x, 0),

we introduce L2ρx
(Rd) and H1

ρx
(Rd) as in (1.2) by omitting the y-integration.

For functions U in H1
ρ(yα ,Rd ×R

+), one can give meaning to their trace at y = 0, which we denote
by tr0 U . In fact, by general theory for interpolation of trace spaces, see (Bergh & Löfström, 1976, Sec.
6.6), or in particular (Karkulik &Melenk, 2019, Lemma 3.8) and (Faustmann & Rieder, 2023, Lem. 3.1),
we have the trace estimates ∣∣tr0U ∣∣Hβ(Rd)

� ‖∇U‖L2(yα ,Rd×R+)∥∥∥(1+ |x|2)−β/2tr0U
∥∥∥

L2(Rd)
� ‖∇U‖L2(yα ,Rd×R+) if d = 3.

(1.3)

Here, |·|Hβ(Rd) denotes the Aronstein–Slobodeckij seminorm for β ∈ (0, 1).
Then, the extension problem reads as: find U ∈ H1

ρ(yα ,Rd × R
+) such that

−div
(
yαAx∇U

) = 0 in Rd × R
+, (1.4a)

d−1
β ∂ναU + str0U = f in Rd, (1.4b)

where dβ := 21−2βΓ (1−β)/Γ (β), α := 1−2β ∈ (−1, 1), ∂ναU(x) := − limy→0 yα∂yU(x, y) andAx =(
A 0
0 1

)
∈ R

(d+1)×(d+1). By Stinga & Torrea (2010), the solution to (1.1) is then given by u = tr0 U .
We note that the bounded domain Ω only enters the problem (1.4) via the coefficients Ax and f , i.e.,

we know that Ax ≡ I ∈ R
(d+1)×(d+1) on Ωc × R

+ and the boundary condition (1.4b) is homogeneous
outside of Ω .
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 5

For the domain Ω with boundary Γ := ∂Ω , we also introduce the usual trace operators γ −
Γ

(denoting the trace coming from the interior of Ω) and γ +
Γ (denoting the trace coming from R

d\Ω)
and correspondingly the normal derivative operators ∂±

ν,Γ (see Sauter & Schwab, 2011, for details). The
normal vector ν is always assumed to face out of Ω . With theses operators, the jumps across Γ are
defined as

[[γ u]] = γ +
Γ u − γ −

Γ u, [[∂νu]] = ∂+
ν,Γ u − ∂−

ν,Γ u. (1.5)

We will apply these operators for functions in H1
ρ(yα ,Rd \Γ ×R

+), where they are to be understood
pointwise with respect to y. This is equivalent to taking the trace and normal derivative along the lateral
boundary Γ × R

+.

2. Main results

Our main results are formulated for weak solutions of the degenerate PDE (1.4) under the assumptions
of Section 1.3. Taking traces in the extended variable using (1.3) directly gives the corresponding results
for solutions to the fractional PDE in the full-space.

2.1 Variational formulation

The weak formulation of (1.4) in H1
ρ(yα ,Rd × R

+) reads as finding U ∈ H1
ρ(yα ,Rd × R

+) such that

A(U ,V) :=
∫ ∞

0
yα

∫
Rd

Ax(x)∇U · ∇V dx dy + sdβ

∫
Rd

tr0U tr0V dx = dβ(f , tr0V)L2(Rd) (2.1)

for all V ∈ H1
ρ(yα ,Rd × R

+).

Remark 2.1 Using the weight ρ in the space H1
ρ(yα ,Rd ×R

+) in (2.1) is essential for well-posedness.
Solutions U to (2.1) are in L2loc(R

d × R
+); however, they are not necessarily in L2(yα ,Rd × R

+), thus
solvability inH1(yα ,Rd ×R

+) is not expected to hold (compare Amrouche et al., 1994, for the full-space
Laplacian).

Unique solvability of the continuous formulation in spaces involving the weight ρ follows from
Faustmann & Rieder (2023, Prop 2.3). We also mention that, on bounded domains D ⊂ R

d × R, the
spaces H1

ρ(yα ,D) and H1(yα ,D) coincide.

In order to obtain a computable formulation, we will be cutting the problem from the infinite cylinder
R

d×R
+ to a finite cylinder in the y-directionRd×(0,Y)with a fixed parameterY > 0 to be chosen later.

Since wewant to include our discretization scheme for both (2.1) and the truncated problem, we work
in a slightly expanded variational form, inspired by Laliena & Sayas (2009); Sayas (2009). In short, one
can formulate an equivalent problem for the solution inside Ω and a function U� on R

d defined in a
modified Hilbert space. Both functions are matched on the interface Γ by appropriate jump conditions.

Definition 2.2 Fix Y ∈ (0,∞]. We consider the space

HY :=
{
(UΩ ,U�) ∈ H1(yα ,Ω × (0,Y)) × H1

ρ(yα ,Rd \ Γ × (0,Y)) :

[[γU�]] = γ −
Γ UΩ , γ −

Γ U� = 0, s tr0U� ∈ L2(Rd)
}
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6 M. FAUSTMANN AND A. RIEDER

equipped with the norm

‖U‖2
HY := ‖(UΩ ,U�)‖2HY

:= ‖UΩ‖2H1(yα ,Ω×(0,Y))
+ ‖U�‖2H1

ρ(yα ,Rd\Γ ×(0,Y))
+ s‖tr0UΩ‖2L2(Ω)

+ s‖tr0U�‖2L2(Rd)
.

We note that, by definition, the additional condition of tr0U� being in L2(Rd) is only needed for s �= 0
as in this case the norm inHY contains said L2-term, which has to be finite. The conditions on the traces
of U� and UΩ also imply γ +

Γ U� = γ −
Γ UΩ .

WithU = (UΩ ,U�) ∈ H∞ andV = (VΩ ,V�) ∈ H∞, we define the bilinear formB : H∞×H∞ → R

as

B(U ,V) :=
∫ ∞

0

∫
Ω

yαAx(x)∇UΩ · ∇VΩ dx dy +
∫ ∞

0

∫
Rd

yα∇U� · ∇V� dx dy

+ sdβ

∫
Ω

tr0UΩ tr0VΩ dx + s dβ

∫
Rd

tr0U�tr0V� dx. (2.2)

For f ∈ L2(Ω), the weak formulation is given as the problem of finding U ∈ H∞ such that

B(U ,V) = dβ

∫
Ω

f tr0VΩ dx ∀ V = (VΩ ,V�) ∈ H∞. (2.3)

Problems (1.4) and (2.3) are connected as follows: if U∞ = (UΩ ,U�) ∈ H∞ solves (2.3), then the

function U :=
{
UΩ , in Ω

U�, in Rd\Ω solves (2.1). We note that by unique solvability of the Caffarelli–

Silvestre extension problem on bounded domains, we obtain that U� = 0 in Ω × R
+, as it solves the

homogeneous extension problem with homogeneous (Dirichlet on Γ ×R
+ and Neumann on Rd × {0})

boundary conditions.
Now, cutting the integration in y at Y > 0, we introduce the truncated bilinear forms

AY
Ω(U ,V) :=

∫ Y

0
yα

∫
Ω

Ax(x)∇U · ∇V dx dy + sdβ

∫
Ω

tr0U tr0V dx,

AY
Rd\Γ (U ,V) :=

∫ Y

0
yα

∫
Rd\Γ

∇U · ∇V dx dy + sdβ

∫
Rd\Γ

tr0U tr0V dx.

The ‘big’ bilinear form is then given by

BY((UΩ ,U�), (VΩ ,V�)
)
:= AY

Ω(UΩ ,VΩ) + AY
Rd\Γ (U�,V�),

and the cutoff problem reads as: find UY = (UY
Ω ,UY

� ) ∈ HY such that

BY(UY ,VY) = dβ

(
f , tr0VY

Ω

)
L2(Rd)

for all VY = (VY
Ω ,VY

� ) ∈ HY . (2.4)

By the following theorem, we obtain well-posedness of the weak formulation of both variational
formulations.

Theorem 2.3 Assume either d = 3 or s > 0. Then, problem (2.3) has a unique solution U ∈ H∞,
satisfying

‖U‖
H∞ ≤ C min(1, s−1) ‖f ‖L2(Ω).
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 7

Fix Y ∈ (0,∞). Then, the truncated problem (2.4) has a unique solution UY ∈ HY , for which the
estimate ∥∥∥UY

∥∥∥
HY

≤ C

(
1 + 1

Y

)
min(1, s−1) ‖f ‖L2(Ω)

holds. Additionally, the bilinear forms in (2.3) and (2.4) are coercive.

The proof of the theorem is given in Section 3 and essentially reduces to the application of suitable
Poincaré inequalities.

Note that the assumption s > 0 for d = 2 is necessary to avoid a critical exponent in a Hardy inequal-
ity or in other words, the employed weights are not sufficient to capture the correct behavior at infinity,
compare Sayas (2009), where an additional logarithmic weight for the case of the Laplacian was needed.

2.2 The discrete scheme

In this section, we describe our discrete scheme to approximate solutions to the truncated variational
formulation (2.4). The main idea is to employ a tensor product structure for the approximation by using
the diagonalization procedure described in Banjai et al. (2019), which leads to a sequence of modified
Helmholtz problems. As these are still posed on the full-space, boundary integral formulations are used.

Let Vy
h be an arbitrary finite dimensional subspace of L2(yα , (0,Y)) of dimension Ny + 1. Following

the ideas of Banjai et al. (2019), we chose an orthonormal basis (ϕj)
Ny
j=0 of V

y
h in L2(yα , (0,Y)) and

generalized eigenvalues μj ≥ 0, satisfying∫ Y

0
yαϕ′

iϕ
′
j dy + sϕi(0)ϕj(0) = μj

∫ Y

0
yαϕiϕj dy = μjδij ∀ 0 ≤ i, j ≤ Ny. (2.5)

It is easy to see that, for s = 0, the constant function is an eigenfunction corresponding to the eigenvalue
μ = 0. Moreover, the assumption s > 0 for d = 2 guarantees that there is not a zero eigenvalue. If zero
is an eigenvalue (for d = 3), we assume that the eigenvalues are ordered such that μ0 = 0.

We now give a formal definition of the (semi-)discrete space used for the discrete formulation, which
has tensor product structure with respect to the variables x, y.

Definition 2.4 Let Vx
h ⊂ H1(Ω) and V

λ
h ⊂ H−1/2(Γ ) be finite dimensional spaces and Y ∈ (0,∞).

Additionally, assume that 1 ∈ V
λ
h . We introduce the closed subspace Hh,Y ⊂ H1(yα ,Ω × (0,Y)) ×

H1
ρ(yα ,Rd \ Γ × (0,Y)) as

Hh,Y := cls

⎧⎨⎩Uh = (UΩ ,U�) : UΩ(x, y) =
Ny∑
j=0

uj,Ω(x)ϕj(y) with uj,Ω ∈ V
x
h,

U�(x, y) =
Ny∑
j=0

uj,�(x)ϕj(y) with uj,� ∈ H1
ρx

(Rd \ Γ ), (2.6)

[[γ uj,�]] = γ −
Γ uj, γ −

Γ uj,� ∈ (Vλ
h

)◦
, s uj,� ∈ L2(Rd)

⎫⎬⎭.
Remark 2.5 We note that the spacesHY andHh,Y for the continuous and semidiscrete problem are not
nested, as, in contrast to the definition of the space HY , the boundary condition γ −

Γ uj,� ∈ (Vλ
h)◦ appears
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8 M. FAUSTMANN AND A. RIEDER

only in a weak sense inHh,Y . This is identical to the case of the integer order Laplacian, Laliena & Sayas
(2009), and induces consistency error terms in the a-priori analysis, see Lemma 4.7 below.

The semidiscrete problem now reads as: find UY
h = (UY

Ω ,UY
� ) ∈ Hh,Y such that

BY
(
UY

h ,VY
h

)
= dβ

(
f , tr0VY

Ω

)
L2(Rd)

for all VY
h =

(
VY

Ω ,VY
�

)
∈ Hh,Y . (2.7)

Using the orthogonal basis for the y-direction, we can actually diagonalize some of the bilinear forms
and obtain an equivalent sequence of scalar problems. In fact, functions (UΩ ,U�) ∈ Hh,Y solve (2.7), if
and only if they can be written as

UΩ(x, y) =
Ny∑
j=0

uj,Ω(x)ϕj(y), U�(x, y) =
Ny∑
j=0

uj,�(x)ϕj(y), (2.8)

with uj,Ω ∈ V
x
h, uj,� ∈ H1

ρx
(Rd \ Γ ), where the functions uj,Ω , uj,� solve(

A∇uj,Ω ,∇v
)

L2(Ω)
+μj

(
uj,Ω , v

)
L2(Ω)

− 〈∂−
ν,Γ uj,�, γ

−
Γ v
〉
L2(Γ )

= dβϕj(0)(f , v)L2(Ω) ∀v ∈ V
x
h, (2.9a)

and

−Δuj,� + μjuj,� = 0 in Rd \ Γ (2.9b)

[[γ uj,�]] = γ −
Γ uj, γ −

Γ uj,� ∈ (Vλ
h

)◦
. (2.9c)

We refer to Lemma 3.3 for a proof of this statement.
The equation for uj,� is still posed on an unbounded domain. We will replace this with boundary

integral equations. Therefore, given μ ∈ C with Re(μ) ≥ 0, we introduce the fundamental solutions

G(z;μ) :=
{

i
4H(1)

0 (iμ |z|) , for d = 2,
e−μ|z|
4π |z| , for d = 3,

for μ �= 0 and G(z; 0) :=
{−1
2π ln(|z|), for d = 2,
1

4π |z| , for d = 3,

where H(1)
0 denotes the first kind Hankel function of order 0. The corresponding single-layer potential

Ṽ(μ) : H−1/2(Γ ) → H1
loc(R

d) and double-layer potential K̃(μ) : H1/2(Γ ) → H1
loc(R

d\Γ ) are then
defined as

(
Ṽ(μ)ϕ

)
(x) :=

∫
Γ

G(x − z;μ)ϕ(z) dz,
(
K̃(μ)ψ

)
(x) :=

∫
Γ

∂−
ν,Γ G(x − z;μ)ψ(z) dz.

Taking traces at Γ produces the boundary integral operators

V(μ) := γ ±
Γ Ṽ(μ), K(μ) := 1

2

(
γ +
Γ K̃(μ) + γ −

Γ K̃(μ)
)
, (2.10)

K′(μ) := 1

2

(
∂+
ν.Γ Ṽ(μ) + ∂−

ν,Γ Ṽ(μ)
)
, W(μ) := −∂±

ν,Γ K̃(μ). (2.11)
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 9

Making the ansatz uj,�(x) := K̃(μj)γ
−
Γ uj,Ω(x) − Ṽ(μj)λj(x) for the exterior solution leads to a

symmetric FEM-BEM formulation, similarly to Costabel (1988); Han (1990). Thus, we have derived
a computable approximation of (1.1) that only relies on well-known operators.

Theorem 2.6 Let ϕj,μj be the generalized eigenfunctions and eigenvalues from (2.5). For all j =
0, . . . ,Ny, let (uj, λj) ∈ V

x
h × V

λ
h solve(

A∇uj,∇vh

)
L2(Ω)

+ μj

(
uj, vh

)
L2(Ω)

+ 〈W(μj)γ
−
Γ uj + (−1/2 + K′(μj))λj, γ

−
Γ vh

〉
L2(Γ )

= dβϕj(0)
(
f , vh

)
L2(Ω)

, (2.12a)〈
(1/2 − K(μj))γ

−
Γ uj, ξh

〉
L2(Γ )

+ 〈V(μj)λj, ξh

〉
L2(Γ )

= 0 (2.12b)

for all vh ∈ V
x
h and ξh ∈ V

λ
h . Then,

UΩ(x, y) :=
Ny∑
j=0

uj(x)ϕj(y), U�(x, y) :=
Ny∑
j=0

(
Ṽ(μj)λj(x) − K̃(μj)γ

−
Γ uj(x)

)
ϕj(y)

solves (2.7). We thus have a computable representation of our discrete approximation.

The problems (2.12) are standard FEM-BEM coupling problems for what is often called the modified
Helmholtz or Yukawa equation. As such, existence and uniqueness of solutions (uj, λj) ∈ V

x
h × V

λ
h is

well-known, see Laliena & Sayas (2009, Sect. 7). Consequently, we also obtain well-posedness of the
semidiscrete formulation (2.7) as we have constructed a solution in Hh,Y . Uniqueness follows from
coercivity of the bilinear form.

Corollary 2.7 Fix Y ∈ (0,∞). Let Vx
h ⊆ H1(Ω), Vλ

h ⊆ H−1/2(Γ ), Vy
h ⊆ H1(yα , (0,Y)) be finite

dimensional subspaces. Assume that 1 ∈ V
λ
h , i.e., the space V

λ
h contains the constant functions, and

either d = 3 or s > 0. Then, the truncated problem (2.7) has a unique solution UY
h ∈ Hh,Y .

Remark 2.8 Due to the construction in Theorem 2.6, we mention that our discrete approximation
can very easily be computed with the use of existing FEM/BEM libraries. We refer to Section 5 for
a description of the implementation used in the numerical examples therein.

2.3 A-priori convergence estimates

In the extended variable y, we employ a hp-FEM discretization and choose the truncation parameter Y
accordingly to obtain an algebraically convergent method with reasonable computational effort.

Let Y > 0 and Ty be a geometric grid on (0,Y) with mesh grading factor σ , L-refinement layers
towards 0 and M = �ln(Y)/ ln(σ )� levels of growth towards Y . More precisely, we define the grid
points as

x0 := 0, x� := σ L−� for � = 0, . . . ,L + M, xL+M+1 := Y . (2.13)

By

Sp,1(Ty) :=
{

u ∈ C(0,Y) : u|(x�,x�+1)
∈ Pp ∀� = 0, . . . ,L + M

}
we denote the space of continuous, piecewise polynomials of degree up to p.
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10 M. FAUSTMANN AND A. RIEDER

The following proposition provides a best-approximation estimate for the hp-semidiscretization in y
including the cut-off error at Y .

Theorem 2.9 (Best-Approximation). LetY ∈ (0,∞) and p ∈ N. Let U solve (2.3) and UY = (UY
Ω ,UY

� )

solve the cutoff problem (2.4). Set λ := ∂+
ν UY

� . Let Ty be a geometric grid on (0,Y) with L = p. Let UY
h

solve (2.7) with arbitrary finite dimensional subspaces Vx
h ⊆ H1(Ω), Vλ

h ⊆ H−1/2(Γ ) and the choice
V

y
h := Sp,1(Ty). Let πΩ : L2(Ω) → V

x
h be an arbitrary linear operator that is stable in L2(Ω) and

H1(Ω). Then, for any λh : R+ → V
λ
h , there exist ε > 0, κ > 0 such that there holds

∥∥∥U − UY
h

∥∥∥2
HY

�
∫ Y

0
yα

(∥∥∥(I − πΩ)UY
Ω (y)

∥∥∥2
H1(Ω)

+ ‖λ(y) − λh(y)‖2H−1/2(Γ )

)
dy

+ Y2εe−2κp + Y−μ ‖f ‖2L2(Rd)

with μ :=
{
1 + |α| for s > 0

1 + α for s = 0
and all constants independent of Y , p.

Remark 2.10 A possible choice for the spatial discretization is V
x
h := S1,1(Tx), i.e., continuous,

piecewise linear polynomials on some (quasi-uniform) mesh Tx of Ω . For the operator πΩ one could
take the Scott–Zhang projection mapping onto S1,1(Tx), see Scott & Zhang (1990). In addition to the
required L2(Ω)- and H1(Ω)-stabilities, the operator has first order approximation properties in H1(Ω),
provided the input function is sufficiently regular.

Using first-order approximation properties of the Scott–Zhang projection together with best-
approximation of the BEM part (which converges of order h3/2 assuming sufficient regularity, see
Sauter & Schwab, 2011) and correct choice of the cut-off parameterY and polynomial degree p, the best-
approximation estimate for the semidiscretization in Theorem 2.9 directly gives first order convergence
in h.

Corollary 2.11 Let the assumptions of Theorem 2.9 hold. AssumeA ∈ C1(Rd,Rd×d) and f ∈ H1(Ω)

and assume Ω has piecewise smooth boundary. Choose Vx
h := S1,1(Tx) with a quasi-uniform mesh Tx

of Ω of maximal mesh-width h and take πΩ to be the Scott–Zhang projection. Let Vλ
h := S0,0(TΓ ) be

the space of piecewise constants on the trace mesh TΓ of Tx. Moreover, choose p = −cκ ,μ,ε ln h with a
sufficiently large constant cκ ,μ,ε depending only on κ ,μ and ε, and Y ∼ h−2/μ. Then,

‖U − UY
h ‖

HY ≤ Ch.

We note that the algebraic convergence of the cut-off error induces the condition Y ∼ h−2/μ.
This is in fact the reason, why a hp-semidiscretization in y is employed. As hp-FEM converges
exponentially with algebraic computational cost, we can recuperate any algebraic convergence rates of
the discretization in x without destroying the overall complexity of the discrete scheme.

Remark 2.12 The FEM-BEM coupling formulation (2.12) leads to a block system matrix(
A + W KT − 1

2MT

1
2M − K V

)
, where A denotes the FEM-block, W the discretization of the hyper-singular

operator, V the discretization of the single-layer operator and M a mass matrix. In the setting of
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 11

Corollary 2.11, the computation of the sparse matrices A and M take O(h−d) operations. The dense
matrices V and W would require computational effort of O(h−2(d−1)), which can be significantly
reduced by employing compression techniques such as the fast multipole method, Greengard & Rokhlin
(1997), or hierarchical matrices, Hackbusch (2015), to O(h1−d(log h)2).

For the discretization in y-direction, the space Sp,1(Ty) hasNy+1 = O((L+M)p) degrees of freedom

with L ∼ p and M ∼ logY . With the assumptions of Corollary 2.11 this gives Ny = O((log h)2). Thus,

the computation of UΩ and U� in Theorem 2.6 takes a total effort of O(h−d(log h)2), provided matrix
compression techniques are employed.

Remark 2.13 We note that our main results are valid for more general fractional PDEs as well. Using
the same techniques, one obtains the statements also for:

1. s ∈ C with Re(s) ≥ 0;

2. operators containing lower order terms, i.e.,

Lu := −div
(
A∇u

)+ cu,

where c : Rd → R with c ≥ 0 is smooth and satisfies c ≡ c0 ∈ R in Rd \ Ω .

3. Well-posedness and FEM-BEM formulation

In this section, we provide the proofs of Theorem 2.3 and Theorem 2.6.

3.1 Poincaré inequalities

We now show the well-posedness of our variational formulations. The main ingredient is a Poincaré type
estimate, which uses the following compactness result.

Lemma 3.1 Let D ⊆ R
d × R

+ be a bounded Lipschitz domain. Assume un ⇀ 0 weakly in H1(yα ,D)

and
∥∥∇un

∥∥
L2(yα ,D)

→ 0. Then, un → 0 in L2(yα ,D).

Proof. We can cover the Lipschitz domain D by a finite number of Lipschitz domains D1, . . . ,Dm
that are starshaped with respect to a ball, see for example Maz’ya (2011, Sect. 1.1.9, Lemma 1). Thus,
without loss of generality we may assume that D is starshaped with respect to a ball. With cn := ∫

D un
we compute ∥∥un

∥∥2
L2(yα ,D)

= ∥∥un − cn

∥∥2
L2(yα ,D)

+ 2(un, cn)L2(yα ,D) − ∥∥cn

∥∥2
L2(yα ,D)

�
∥∥∇un

∥∥2
L2(yα ,D)

+ 2
∣∣∣(un, cn)L2(yα ,D)

∣∣∣
≤ ∥∥∇un

∥∥2
L2(yα ,D)

+ 2
∣∣cn

∣∣ ∣∣∣(un, 1)L2(yα ,D)

∣∣∣ → 0,

where we used the Poincaré estimate of Nochetto et al. (2015, Corollary 4.4) and the assumed weak
convergence. �

Using a jump condition in a weak sense to fix constants, the following weighted Poincaré type
estimate in the full space holds. Note that including (powers of) the weight ρ is essential here.
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12 M. FAUSTMANN AND A. RIEDER

Lemma 3.2 Fix Y ∈ (0,∞]. Let U ∈ H1
ρ(yα ,Rd \ Γ × (0,Y)) with

∫
Γ
[[γU ]] dsx = 0 for almost every

y ∈ (0,Y).

1. Let 0 ≤ μ ≤ 2 and Y = ∞. There holds∫ ∞

0

∫
Rd

yαρμ−2|U |2 dx dy ≤ C
∫ ∞

0

∫
Rd\Γ

yαρμ|∇U |2 dx dy (3.1)

provided the right-hand side is finite.

2. Let Y ∈ (0,∞). There exists μ0 > 0 such that for all μ ∈ [0,μ0) there holds∫ Y

0

∫
Rd

yαρμ−2|U |2 dx dy ≤ C

(∫ Y

0

∫
Rd\Γ

yαρμ|∇U |2 dx dy + |3− d|‖tr0U‖2L2(Rd)

)
(3.2)

provided the right-hand side is finite.

Proof. The estimates follow from techniques employed in Amrouche et al. (1994, Theorem 3.3) using a
proof by contradiction. In the first step, we show (3.1) (which essentially is covered by Amrouche et al.,
1994, Theorem 3.3, we only account for the additional weight yα) and (3.2) for functions vanishing inside
a ball containing the origin. Finally, using a compactness argument, this assumption is removed in the
second step.

Step 1: First, assume that U ≡ 0 on a sufficiently large (half) ball BR(0) ⊂ R
d+1 and has compact

support.
We employ spherical coordinates inRd×R

+, chosen such that y = r cos(ϕ) and collect the remaining
d − 1 angles into ϕ̂. Using ρμ−2 = (1+ |x|2 + y2)−(μ−2)/2 < rμ−2 for μ ≤ 2, we calculate∫ ∞

0
yα

∫
Rd

ρμ−2|U(x, y)|2 dx dy �
∫

ϕ̂

∫ π/2

ϕ=−π/2

∫ ∞

R
rd+α+μ−2 cos(ϕ)α|U(x, y)|2|J(ϕ, ϕ̂)| dr dϕdϕ̂,

where we denoted by J(ϕ, ϕ̂) the angular components of the Jacobian in the transformation theorem.
Integration by parts in r and using the assumed support properties of U gives

∫
ϕ̂

∫ π/2

−π/2

∫ ∞

R
rd+α+μ−2 cos(ϕ)α|U(x, y)|2|J(ϕ, ϕ̂)| dr dϕ dϕ̂

�
∫

ϕ̂

∫ π/2

−π/2

∫ ∞

R
rd+α+μ−1 cos(ϕ)α|U(x, y)||∇U(x, y)||J(ϕ, ϕ̂)| dr dϕ dϕ̂

�
(∫

ϕ̂

∫ π/2

−π/2

∫ ∞

R
rd+α+μ−2 cos(ϕ)αU(x, y)2|J(ϕ, ϕ̂)| dr dϕ dϕ̂

)1/2

×
(∫

ϕ̂

∫ π/2

−π/2

∫ ∞

R
rd+α+μ cos(ϕ)α |∇U(x, y)|2 |J(ϕ, ϕ̂)| dr dϕ dϕ̂

)1/2
.

Transforming back to (x, y)-variables and using rμ ≤ ρμ for μ ≥ 0 this gives the desired bound. By
density, we can remove the requirement of compact support of U .
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 13

Step 2: In order to get rid of the requirement that U vanishes on the ball BR(0), we use a compactness
argument. To keep the notation succinct we set μ = 0 in the following, the general case μ > 0 can
be done with the exact same arguments. Assume that (3.1) does not hold, i.e., there exists a sequence
Un ∈ H1

ρ(yα ,Rd \ Γ × (0,∞)) such that

∥∥Un

∥∥
H1

ρ(yα ,Rd\Γ ×(0,∞))
= 1,

∫ ∞

0
yα‖∇Un(y)‖2L2(Rd\Γ )

dy ≤ 1

n
.

Since Un is a bounded sequence in the Hilbert space H1
ρ(yα ,Rd \ Γ × (0,∞)), there exists a weakly

convergent subsequence (also denoted by Un) and we denote the weak limit by U .
Because the seminorm is weakly lower semicontinuous, we get |U |H1

ρ(yα ,Rd\Γ ×(0,∞)) = 0. A simple
calculation (using polar coordinates, similar to the estimate above) shows that—as we are in a half-space
in R

d+1 with d + 1 > 2 and
∫
Γ
[[γU ]] dsx = 0—the space H1

ρ(yα ,Rd \ Γ × (0,Y)) does not contain
piecewise constant functions except for 0, which means that U = 0.

We now show strong convergence of the sequence to U = 0. To that end, fix a ball BR := BR(0) ⊂
R

d+1 with sufficiently large R such that Ω × {0} ⊂ BR and consider a smooth cutoff function ψ :
R

d+1 → R such that ψ ≡ 1 on BR and ψ ≡ 0 on B2R. We thus decompose Un as

Un = ψUn + (1 − ψ)Un =: U1
n + U2

n .

From the compactness result of Lemma 3.1 applied to (Ω ×R
+)∩BR̃ and BR̃ \ (Ω ×R

+) separately,
we deduce that Un → U in L2(yα ,BR̃) and thus U1

n → ψU = 0 in L2(yα ,BR̃) on all bounded half balls
BR̃ with sufficiently large R̃.

Since U2
n vanishes on BR, we can apply step 1 of the proof to determine:∥∥∥U2

n

∥∥∥
H1

ρ(yα ,Rd\Γ ×(0,∞))
�
∣∣∣U2

n

∣∣∣
H1

ρ(yα ,Rd\Γ ×(0,∞))

�
∣∣(1− ψ)Un

∣∣
H1

ρ(yα ,B2R(0)\Γ ×(0,∞))
+ ∣∣Un

∣∣
H1

ρ(yα ,B2R(0)c\Γ ×(0,∞))

�
∥∥Un

∥∥
L2(yα ,B2R(0)) + ∣∣Un

∣∣
H1

ρ(yα ,Rd\Γ ×(0,∞))
→ 0.

Overall, we get that Un → 0 in H1
ρ(yα ,Rd \ Γ × (0,∞)), which is a contradiction to the assumption∥∥Un

∥∥
H1

ρ(yα ,Rd\Γ ×(0,∞))
= 1 for all n ∈ N.

Step 3: Estimate (3.2) for the case d = 3 follows directly from multiplying a full-space Poincaré-
inequality (see for example Amrouche et al., 1994, Theorem 3.3 for μ = 0 and a similar calculation to
step 1 for 0 < μ ≤ 2 with polar coordinates only in x) applied only in x with yα and integrating over
(0,Y).

Step 4: It remains to show (3.2) for d = 2, which is (Faustmann & Rieder, 2023, Lem. 3.2), but for sake
of completeness we repeat the proof here. We write U(x, y) = U(x, 0) + ∫ y

0 ∂τU(x, τ) dτ , which gives

∫ Y

0

∫
Rd

yαρμ−2|U |2 dx dy �
∫ Y

0

∫
Rd

yαρμ−2|U(x, 0)|2 + yαρμ−2
( ∫ y

0
∂τU(x, τ) dτ

)2
dx dy.
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14 M. FAUSTMANN AND A. RIEDER

Since
∫ Y
0 yαρμ−2dy � 1 for sufficiently small μ < μ0 with μ0 depending only on α, the first term

on the left-hand side can be bounded by C
∥∥tr0U∥∥2L2(Rd)

. For the second term, we employ a weighted
Hardy-inequality, see e.g., Muckenhoupt (1972), to obtain

∫ Y

0

∫
Rd

yαρμ−2
( ∫ y

0
∂τU(x, τ) dτ

)2
dx dy �

∫
Rd

∫ Y

0
yαρμ|∂yU |2 dy dx,

which shows the claimed inequality. �
We can now look at the well-posedness of the reformulation of the Caffarelli–Silvestre extension in

the modified Hilbert space HY .

Proof of Theorem 2.3. Let Y ∈ (0,∞] and (UY
Ω ,UY

� ) ∈ HY . On the interior domain Ω , we integrate
a standard Poincaré-like estimate using the boundary condition γ −

Γ UY
� = 0 in the definition of HY , to

obtain ∫ Y

0
yα

∫
Ω

ρ−2
∣∣∣UY

�

∣∣∣2 dx dy ≤
∫ Y

0
yα

∫
Ω

∣∣∣UY
�

∣∣∣2 dx dy �
∫ Y

0
yα

∫
Ω

∣∣∣∇xUY
�

∣∣∣2 dx dy. (3.3)

By the condition γ +
Γ UY

� = γ −
Γ UY

Ω , we observe that the function UY :=
{
UY

Ω , in Ω

UY
� , in Rd\Ω has a

vanishing jump across ∂Ω . Applying Lemma 3.2 to UY , we get with (3.3) that

BY
(
UY

h ,UY
h

)
�
∫ Y

0

∫
Ω

yα
∣∣∣∇UY

Ω

∣∣∣2 dx dy +
∫ Y

0

∫
Rd\Γ

yα
∣∣∣∇UY

�

∣∣∣2 dx dy

+ s
∥∥∥tr0UY

Ω

∥∥∥2
L2(Ω)

+ s
∥∥∥tr0UY

�

∥∥∥2
L2(Rd)

=
∫ Y

0

∫
Rd\Γ

yα
∣∣∣∇UY

∣∣∣2 dx dy +
∫ Y

0

∫
Ω

yα
∣∣∣∇UY

�

∣∣∣2 dx dy

+ s
∥∥∥tr0UY

Ω

∥∥∥2
L2(Ω)

+ s
∥∥∥tr0UY

�

∥∥∥2
L2(Rd)

�
∥∥∥UY

∥∥∥2
H1

ρ(yα ,Rd\Γ ×(0,Y))
+
∥∥∥UY

�

∥∥∥2
H1

ρ(yα ,Ω×(0,Y))
+ s

∥∥∥tr0UY
Ω

∥∥∥2
L2(Ω)

+ s
∥∥∥tr0UY

�

∥∥∥2
L2(Rd)

=
∥∥∥(UY

Ω ,UY
�

)∥∥∥2
HY

,

which shows coercivity.
In order to bound the right-hand side in (2.4), we distinguish three cases.
Case s > 0: We directly use the definition of the HY -norm together with supp f ⊂ Ω , to obtain∫

Rd
f tr0VY

Ω dx ≤ s−1 ‖f ‖L2(Ω) s
∥∥∥tr0VY

Ω

∥∥∥
L2(Ω)

≤ s−1 ‖f ‖L2(Ω)

∥∥∥VY
∥∥∥
HY

.
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 15

Case s = 0, Y = ∞: By assumption, this means d = 3, and the trace estimate (1.3) gives∫
Rd

f tr0VΩ dx ≤ ‖ρ(x, 0)β f‖L2(Ω)

∥∥ρ(x, 0)−β tr0VΩ

∥∥
L2(Rd)

� ‖f ‖L2(Ω)

∥∥∇VΩ

∥∥
L2(yα ,Rd×R+)

≤ ‖f ‖L2(Ω) ‖V‖
H∞ .

Case s = 0, Y < ∞: We use a cut-off function χ satisfying χ ≡ 1 on (0,Y/2), supp χ ⊂ (0,Y) and
‖∇χ‖L∞(R+) � Y−1. As Ω is bounded, this gives with the trace estimate (Karkulik & Melenk, 2019,
Lem. 3.7)∫

Rd
f tr0VY

Ω dx ≤ ‖f ‖L2(Ω)

∥∥∥tr0(χVY
Ω

)∥∥∥
L2(Ω)

� ‖f ‖L2(Ω)

(∥∥∥χVY
Ω

∥∥∥
L2(yα ,Ω×(0,Y))

+
∥∥∥∇ (χVY

Ω

)∥∥∥
L2(yα ,Ω×(0,Y))

)
� ‖f ‖L2(Ω)

((
1+ 1

Y
) ∥∥∥VY

Ω

∥∥∥
L2(yα ,Ω×(0,Y))

+
∥∥∥∇VY

Ω

∥∥∥
L2(yα ,Ω×(0,Y))

)
≤ C

(
1 + 1

Y

)
‖f ‖L2(Ω)

∥∥∥VY
∥∥∥
HY

,

which finishes the proof. �

3.2 Diagonalization

We now apply the diagonalization procedure of Banjai et al. (2019) to show that solutions of (2.7) can
be written as in (2.8), where the coefficient functions uj,Ω and uj,� satisfy certain equations. We recall

that (ϕj)
Ny
j=0 is the orthonormal basis of eigenfunctions from (2.5) with corresponding eigenvalues μj.

Lemma 3.3 Functions (UY
Ω ,UY

� ) ∈ Hh,Y solve (2.7), if and only if they can be written as

UY• (x, y) =
Ny∑
j=0

uj,•(x)ϕj(y),

where • ∈ {Ω , �} and
uj,Ω ∈ V

x
h, uj,� ∈ H1

ρx
(Rd \ Γ ) ∀j ≥ 0

solve for all v ∈ V
x
h(

A∇uj,Ω ,∇v
)

L2(Ω)
+ μj

(
uj,Ω , v

)
L2(Ω)

− 〈∂−
ν,Γ uj,�, γ

−
Γ v
〉
L2(Γ )

= dβϕj(0)(f , v)L2(Ω) (3.4a)

−Δuj,� + μjuj,� = 0 in Rd \ Γ , (3.4b)

[[γ uj,�]] = γ −
Γ uj, γ −

Γ uj,� ∈ (Vλ
h

)◦
. (3.4c)
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16 M. FAUSTMANN AND A. RIEDER

Proof. At first, we show unique solvability of (3.4). For that, we consider the weak formulation of (3.4)
given by(

A∇uj,Ω ,∇vj,Ω

)
L2(Ω)

+ μj(uj,Ω , vj,Ω)L2(Ω) +
(
∇uj,�,∇vj,�

)
L2(Rd\Γ )

+ μj

(
uj,�, vj,�

)
L2(Rd)

= dβϕj(0)(f , vj,Ω)L2(Rd). (3.5)

The equivalence between the weak form and the strong form follows from standard arguments, and we
refer to Laliena & Sayas (2009, Sect.7). Coercivity of the weak formulation in H1(Ω) × H1(Rd\Γ ) is
clear for μj > 0 as A is positive definite. For μj = 0, one can employ Poincaré estimates on Ω and

R
d (with weights) to obtain coercivity in H1(Ω) × H1

ρx
(Rd\Γ ). Therefore, for each j, a unique solution

(uj,Ω , uj,�) ∈ V
x
h × H1

ρx
(Rd\Γ ) ⊂ H1(Ω) × H1

ρx
(Rd\Γ ) exists.

We now show that, if the uj,• solve (3.4), then UY
h := (UY

Ω ,UY
� )with UY• := ∑Ny

j=0 uj,•ϕj solves (2.7).

By construction, we have UY
h ∈ Hh,Y . We next look at the weak formulation of (2.7). First, we focus on

the �-contribution. Taking VY
� = vj,�(x)ϕj(y) with arbitrary vj,� ∈ V

x
h as test function, we compute

AY
Rd\Γ

(
UY

� ,VY
�

)
=

Ny∑
�=0

∫
Rd

u�,�(x)vj,�(x) dx
∫ Y

0
yαϕ′

�(y)ϕ
′
j(y) dy

+
∫
Rd\Γ

∇u�,�(x)∇vj,�(x) dx
∫ Y

0
yαϕ�(y)ϕj(y) dy

+
∫
Rd

u�,�(x)vj,�(x) dx · sϕ�(0)ϕj(0)

= μj

∫
Rd

uj,�(x)vj,�(x) dx +
∫
Rd\Γ

∇uj,�(x)∇vj,�(x) dx.

For the interior contribution, the same diagonalization procedure gives for VY
Ω := vj,Ω(x)ϕj(y)

AY
Ω

(
UY

Ω ,VY
Ω

)
=
(
A∇uj,Ω ,∇vj,Ω

)
L2(Ω)

+ μj(uj,Ω , vj,Ω)L2(Ω).

Summing up, and using the weak form (5), we get that

BY
(
UY

h ,VY
h

)
= dβ

(
f , tr0VY

Ω

)
L2(Rd)

for all VY
h =

(
VY

Ω ,VY
�

)
=
⎛⎝ Ny∑

j=0

vj,Ωϕj,

Ny∑
j=0

vj,�ϕj

⎞⎠.
By density, we can extend this equality to all test functions VY

h in the spaceHh,Y and get (2.7). Since the
bilinear form BY (·, ·) is coercive, we get that the constructed function UY is the only solution to (2.7),
which establishes the stated equivalence. �

Proof of Theorem 2.6. The statement follows from Lemma 3.3 and (Laliena & Sayas, 2009, Section
7), as defining uj,�(x) := K̃(μj)γ

−
Γ uj,Ω(x) − Ṽ(μj)λj(x) and plugging that into (3.4) gives the stated

equations using classical properties of the layer potentials, such as definition of the boundary integral
operators (2.10) and jump conditions of the potentials.

By definition and decay of the layer potentials, we have that uj,� ∈ H1(Rd\Γ ) for all j ∈ N0 such that

μj �= 0, which gives uj,� ∈ H1
ρx

(Rd\Γ ) as well. If s > 0, no zero eigenvalue is possible. This matches
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 17

with the the requirement s tr0U� ∈ L2(Rd) in the definition of the space HY . The case s = 0 is only
allowed for d = 3. Here, tr0U� is not required to be in L2(Rd), which would not hold. However, in this
case the decay property of the layer potentials for the Poisson equation, see e.g., Sauter & Schwab (2011),
give uj,� ∈ H1

ρx
(Rd\Γ ). In short, we have that our constructed solution is in the semidiscrete spaceHh,Y .

Notably, (3.4) is just the ‘non-standard transmission problem’ corresponding to the standard sym-
metric FEM-BEM coupling given by Theorem 2.6. �

4. Error analysis

The key to the error analysis are the decay and regularity properties shown in Faustmann & Rieder
(2023). In order to make the present paper more accessible, we summarize the key results of Faustmann
& Rieder (2023) in the following.

4.1 Decay and regularity

The solution to the truncated problem is in fact a weak solution to a Neumann problem. Thus, in this
section, we consider solutions UY to the following truncated problem:

−div
(
yαAx∇UY) = 0 in Rd × (0,Y), (4.1a)

d−1
β ∂ναUY + str0UY = f on Rd × {0}, (4.1b)

∂yUY = 0 on Rd × {Y}. (4.1c)

Then, the truncation error can be controlled via the following proposition.

Proposition 4.1 (Decay in y, Faustmann & Rieder, 2023, Prop. 2.5). Fix Y > 0. Let U solve (1.4) and

UY solve (4.1). Let μ be given by μ :=
{
1 + |α| s > 0

1 + α s = 0
. Then, the following estimate holds:

‖UY − U‖2H1
ρ(yα ,Rd×(0,Y))

+ s
∥∥∥tr0(UY − U)

∥∥∥2
L2(Rd)

� Y−μ ‖f ‖2L2(Ω)
.

We note that in contrast to Banjai et al. (2019), which exploits a known closed form representation of
the solution for the problem on a bounded domain, we only obtain algebraic convergence of the truncated
solution rather than exponential convergence. For the full-space problem to our knowledge, no closed
form representation is available and as there is no spectral gap, exponential convergence does likely not
hold in this case. We also stress that the techniques employed in Faustmann & Rieder (2023) are purely
variational and thus can be applied more generally to other model problems without known closed form
representations.

The goal in the following is to employ hp-FEM in the extended variable y. Therefore, weighted
analytic regularity estimates are the key to the a-priori analysis.

Proposition 4.2 (Regularity in y, Faustmann & Rieder, 2023, Prop. 2.6). Fix Y ∈ (0,∞] and let � ∈ N.
Let U solve (4.1). Then, there exist constants C,K > 0 and ε ∈ (0, 1) such that the following estimate
holds: ∥∥y�−ε∇∂�

yU
∥∥

L2(yα ,Rd×(0,Y))
≤ CK��! ‖f ‖L2(Ω).

All constants are independent of �,Y and U .
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18 M. FAUSTMANN AND A. RIEDER

Denoting by L2(yα , (0,Y);X) the Bochner spaces of square integrable functions (with respect to the
weight yα) and values in the Banach space X, the regularity results of the previous Proposition can be
captured by the solution being in some countably normed space. For constants C,K > 0, we introduce

B1
ε,0(C,K,Y;X) :=

{
V ∈ C∞((0,Y);X) : ‖V‖L2(yα ,(0,Y);X) < C,∥∥∥y�+1−εV(�+1)

∥∥∥
L2(yα ,(0,Y);X)

< CK�+1(� + 1)! ∀� ∈ N0

}
.

Corollary 4.3 Fix Y ∈ (0,∞] and let UY solve (4.1). Then, there are constants C,K > 0 such that
there holds

∂yUY ∈ B1
ε,0(C,K,Y;L2(Rd)) and ∇xUY ∈ B1

ε,0(C,K,Y;L2(Rd)). (4.2)

4.2 Fully discrete analysis

In order to derive error bounds, we employ the reformulation in (2.2) together with the already established
decay bounds for the truncation in Y .

We will need two quasi-interpolation operators—one for the x-variables and one for the y-direction.
Their construction and properties are the subject of the next two lemmas.

Lemma 4.4 (Interpolation in x). Let Vx
h ⊂ H1(Ω) and V

λ
h ⊂ H−1/2(Γ ) be finite dimensional and

πΩ : L2(Ω) → V
x
h be a linear operator. Then, there exists a linear operator Πx : L2(Ω) × L2ρx

(Rd) →
V

x
h × L2ρx

(Rd) such that the following properties hold for (uh, uh
�) := Πx(u, u�) with u ∈ H1(Ω), u� ∈

H1
ρx

(Rd \ Γ ) satisfying u�|Ω = 0 and [[γ u�]] = γ −u:

i. γ −uh
� ∈ (Vλ

h)◦.

ii. [[γ uh
�]] = γ −uh.

iii. If πΩ is stable in the H1(Ω)-norm, then

‖uh‖2H1(Ω)
+
∥∥∥uh

�

∥∥∥2
H1

ρx (Rd\Γ )
� ‖u‖2H1(Ω)

+ ∥∥u�

∥∥2
H1

ρx (Rd\Γ )
.

If πΩ is stable in the L2(Ω)-norm, and u� ∈ L2(Rd) then

‖uh‖2L2(Ω)
+
∥∥∥uh

�

∥∥∥2
L2(Rd)

� ‖u‖2L2(Ω)
+ ∥∥u�

∥∥2
L2(Rd)

.

iv. There hold the approximation properties:

‖uh − u‖2L2(Ω)
+
∥∥∥uh

� − u�

∥∥∥2
L2ρx (Rd\Γ )

� ‖u − πΩu‖2L2(Ω)
,

‖uh − u‖2H1(Ω)
+
∥∥∥uh

� − u�

∥∥∥2
H1

ρx (Rd\Γ )
� ‖u − πΩu‖2H1(Ω)

.

Proof. We note that a very similar operator is introduced in Melenk & Rieder (2017, Lemma 4.3). We
define:

uh := πΩu, uh
� := u� + δ,
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 19

where δ = −u� in Ω and δ := −E(u − πΩu) in Rd\Ω , where E : L2(Ω) → L2(Rd) denotes the Stein
extension operator (Stein, 1970, Chapter VI.3) that is stable both in L2(Ω) and H1(Ω).

By construction, we have i., since uh
� = 0 in the interior. Since γ +Ev = γ −v due to the extension

property, we get (ii) by

[[γ uh
�]] = γ +u� − γ +E(u − πΩu) = γ −u − γ −u + γ −πΩu = γ −uh.

The stability estimates follow from the stability of the extension operator and the assumed stabilities of
πΩ as

‖uh‖2L2(Ω)
+ ‖uh

�‖2L2(Rd)
� ‖u‖2L2(Ω)

+ ∥∥u�

∥∥2
L2(Rd)

+ ∥∥E(u − πΩu)
∥∥2

L2(Rd)

� ‖u‖2L2(Ω)
+ ∥∥u�

∥∥2
L2(Rd)

+ ∥∥u − πΩu
∥∥2

L2(Ω)
� ‖u‖2L2(Ω)

+ ∥∥u�

∥∥2
L2(Rd)

.

The approximation property can be seen in a similar fashion using ρ−2
x < 1

‖uh − u‖2L2(Ω)
+ ‖uh

� − u�‖2L2ρx (Rd)
≤ ‖πΩu − u‖2L2(Ω)

+ ‖E(u − πΩu)‖2L2ρx (Rd)

≤ ‖πΩu − u‖2L2(Ω)
+ ‖E(u − πΩu)‖2L2(Rd)

� ‖πΩu − u‖2L2(Ω)
.

The H1-estimates follows analogously. �

Lemma 4.5 (Interpolation in y). Let Y ∈ (0,∞) and UY solve (4.1). Let Ty be a geometric grid on
(0,Y) with mesh grading factor σ , and L-refinement layers towards 0 as given by (2.13). Let ε > 0 be
given by Proposition 4.2. Then, choosing L = p, there exists an operator Πy : H1

ρ(yα ,Rd × (0,Y)) →
H1

ρ(yα ,Rd × (0,Y)) such that ΠyU(x, ·) ∈ Sp,1(Ty) for almost all x ∈ R
d, and such that the following

estimate holds: ∫ Y

0

∫
Rd

yα
∣∣∣∇ (UY − ΠyUY

)∣∣∣2 dx dy ≤ Ce−2κpY2ε.

The constants C, κ > 0 are independent of p,Y .

Proof. We use the hp-interpolation operator from Banjai et al. (2019, Sec. 5.5.1) forΠy. This operator is
constructed on a geometric mesh in an element-by-element way. On the first element a linear interpolant
in σ L/2 and σ L is used, while the remaining elements are mapped to the reference element, on which
a polynomial approximation operator that has exponential convergence properties (in the polynomial
degree) for analytic functions is used.

For the operator on the reference element, we take the Babus̆ka–Szabó polynomial approximation
operator Π̂p on (−1, 1), Szabó & Babuška (1991), defined as

Π̂pv(y) := v(−1) +
∫ y

−1
ΠL2

p−1v′(t) dt,
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20 M. FAUSTMANN AND A. RIEDER

where ΠL2
p−1 : L2(−1, 1) → Pp−1 denotes the L2-orthogonal projection, see e.g., Apel & Melenk (2015,

Exa. 3.17). By construction, this operator has the commutator property

(Π̂pv)′ = ΠL2
p−1v′.

Regularity in countably normed spaces gives exponential error bounds for Πy. In fact, for functions

in B1
ε,0(C,K,Y;L2(Rd)), one obtains a bound in L2(yα ,Rd × (0,Y)). Consequently, we can employ

Proposition 4.2 to obtain ∇xUY ∈ B1
ε,0(C,K,Y;L2(Rd)) and together with Banjai et al. (2019, Lem.

11(i)) this gives the error estimate∫ Y

0
yα
∥∥∥∇xUY (·, y) − Πy∇xUY (·, y)

∥∥∥2
L2(Rd)

dy ≤ Ce−2κpY2ε

for a constant κ > 0. Interchanging Πy and ∇x gives the estimate for the x-derivatives.
For the y-derivatives the situation is a bit more involved, as the same argument cannot be made

as Πy and ∂y do not commute. Banjai et al. (2019, Lem. 11(ii)) gives an exponentially convergent

error bound for the y-derivative provided UY ∈ B2
ε,0(C,K,Y;L2(Rd)) (essentially meaning ∂yUY ∈

B1
ε,0(C,K,Y;L2(Rd)) and UY ∈ L2(yα ,Rd × (0,Y))). However, in our setting, the requirement

UY ∈ L2(yα ,Rd × (0,Y)) does not hold (see Remark 2.1). Nonetheless, we have Corollary 4.3 giving
∂yUY ∈ B1

ε,0(C,K,Y;L2(Rd)), which is enough to regain the exponential estimate as seen in the
following.

On the first element (0, σ L) ∈ Ty, the definition of the piecewise linear interpolation gives

∂yΠyv(y) = v(σ L) − v(σ L/2)

σ L/2
= 2

σ L

∫ σL

σL/2
∂τ v(τ ) dτ ,

which is nothing else than the L2-orthogonal projection of ∂yv on (σ L/2, σ L). By choice of the Babŭska–

Szabó operator and denoting by Π̃L2
p−1 the mapped L2-projection onto an element in Ty, we have due to

the commutator property and the preceding discussion

∂y

(
ΠyUY

) ∣∣∣Rd×Ki
= Π̃L2

p−1∂yUY
∣∣∣
Rd×Ki

∈ L2
(

yα ,Rd × Ki

)
∀Ki ∈ Ty

since ∂yU ∈ L2(yα ,Rd × Ki), which implies that ∂yΠyUY ∈ L2(yα ,Rd × (0,Y)). The error estimate for
the y-derivative follows from scaling arguments. More precisely, we decompose∥∥∥∂y

(
UY − ΠyUY

)∥∥∥2
L2(yα ,Rd×(0,Y))

=
∑

Ki∈Ty

∥∥∥∂y

(
UY − ΠyUY

)∥∥∥2
L2(yα ,Rd×Ki)

,

where Ki = (xi, xi+1). Using a Hardy inequality, one obtains a bound for the approximation error on the
first element using second derivatives only; see Banjai et al. (2019, Lem. 15). Together with a scaling
argument this leads to∥∥∥∂y

(
UY − ΠyUY

)∥∥∥2
L2(yα ,Rd×(0,σL))

� σεL
∥∥∥∂yyUY

∥∥∥2
L2(yα+2−2ε ,Rd×(0,σL))

.

By Corollary 4.3 we can bound the right-hand side. For the remaining elements, we employ a scaling
argument from Apel & Melenk (2015, Thm. 3.13). Denoting by hKi

the diameter of Ki, we infer y ∼ hKi
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 21

on Ki for i > 0. For any univariate function v satisfying
∥∥y�−εv(�+1)

∥∥
L2(yα ,(0,Y))

< CK��! for all � ∈ N0
there holds ∥∥∥̂v(�+1)

∥∥∥2
L2(−1,1)

= 2

hKi

h2(�+1)
Ki

∥∥∥v(�+1)
∥∥∥2

L2(Ki)
� h2ε−α+1

Ki

∥∥∥y�−εv(�+1)
∥∥∥2

L2(yα ,Ki)

� h2ε−α+1
Ki

K��! , (4.3)

where v̂ is the pull-back of v to the reference element. The exponential approximation properties of the
Babŭska–Szabó polynomial approximation operator then provides∥∥∥̂v − Π̂p̂v

∥∥∥2
H1(−1,1)

� h2ε−α+1
Ki

e−κp. (4.4)

Together with ∥∥∥(v − Πyv)′
∥∥∥2

L2(yα ,Ki)
� hα−1

Ki

∥∥∥(̂v − Π̂p̂v)′
∥∥∥2

L2(−1,1)
,

we can employ (4.4) for v(y) = U(·, y) and square integrate over Rd, noting that (4.3) holds due to
Corollary 4.3. Summing over i and using

∑
i h2εKi

� Y2ε shows the claimed estimate.

Finally, to show that the operator does indeed map to H1
ρ(yα ,Rd × (0,Y)), we note that by the

previous considerations we have ∂yΠyU ∈ L2(yα ,Rd × (0,Y)) as well asΠyU(·, y) = U(·, y) ∈ L2ρx
(Rd)

for certain values y ∈ (0,Y) where it is interpolatory. By the fundamental theorem of calculus, this is
sufficient to show that ΠyU ∈ L2ρ(yα ,Rd × (0,Y)). �

We can now define an interpolation operator acting on both x and y in a tensor product fashion. In
order to keep notation compact, we write ‖ · ‖L2 for the L2(Ω) × L2(Rd\Γ )-norm and ‖ · ‖H1

ρx
for the

H1(Ω) × H1
ρx

(Rd\Γ )-norm.

Lemma 4.6 (Tensor approximation). FixY ∈ (0,∞) and letU = (UΩ ,U�) ∈ HY . DefineΠ(UΩ ,U�) :=
Πx ⊗Πy(UΩ ,U�) ∈ Hh,Y with the operatorsΠx from Lemma 4.4 andΠy from Lemma 4.5. Assume that

the operator πΩ in the definition of Πx is both L2- and H1-stable. Then, the following approximation
estimate holds

‖U − ΠU‖2
HY �

∫ Y

0
yα
(∥∥∇(1− Πy)U(y)

∥∥2
L2 + ∥∥∇(1 − πΩ)UΩ(y)

∥∥2
L2(Ω)

)
dy.

Proof. By the Poincaré inequality (3.2) and the trace inequality (1.3), we only have to estimate the
gradient norms.We start with the x-derivatives. Employing theH1-stability and approximation properties
of Πx from Lemma 4.4 (3) and (4) gives

∫ Y

0
yα
∥∥∇x(U − ΠU)

∥∥2
L2 dy �

∫ Y

0
yα
∥∥∇xU − ∇x(Πx ⊗ I)U

∥∥2
L2 dy

+
∫ Y

0
yα
∥∥∇x(Πx ⊗ I)U − ∇x(Πx ⊗ Πy)U

∥∥2
L2 dy

�
∫ Y

0
yα
∥∥(I − πΩ)UΩ(y)

∥∥2
H1(Ω)

dy +
∫ Y

0
yα
∥∥(I − Πy)U(y)

∥∥2
H1

ρx
dy.
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22 M. FAUSTMANN AND A. RIEDER

Employing again Poincaré inequalities, we can reduce the right-hand side to norms of derivatives only.
For the y-derivative, we proceed similarly using the L2- stability and approximation properties of Πx∫ Y

0
yα
∥∥∂y(U − ΠU)

∥∥2
L2 dy �

∫ Y

0
yα
∥∥∂yU − ∂y(Πx ⊗ I)U

∥∥2
L2dy

+
∫ Y

0
yα
∥∥∂y(Πx ⊗ I)U − ∂y(Πx ⊗ Πy)U

∥∥2
L2 dy

�
∫ Y

0
yα
∥∥(1− πΩ)∂yUΩ(y)

∥∥2
L2(Ω)

+ yα
∥∥∂y(I − Πy)U(y)

∥∥2
L2 dy,

which finishes the proof. �
In order to obtain a best-approximation estimate for the semidiscretization, we observe that the

difference U − Uh satisfies some form of Galerkin orthogonality.

Lemma 4.7 (Galerkin orthogonality). Let Y > 0, UY = (UY
Ω ,UY

� ) ∈ HY be the solution of (2.4) and

UY
h ∈ Hh,Y solve (2.7). Then, for all VY

h = (VY
Ω ,VY

� ) ∈ Hh,Y and λh : R
+ → V

λ
h , there holds

BY
(
UY − UY

h ,VY
h

)
=
∫ Y

0
yα
〈
[[∂νUY

� ]]− λh, γ
−
Γ VY

�

〉
L2(Γ )

dy.

Proof. Compared to ‘standard’ Galerkin orthogonality, we observe that VY
h is not an admissible test

function in (2.4) due to the weak condition of γ −
Γ VY

� ∈ (Vλ
h)◦ compared to γ −

Γ VY
� ∈ (H−1/2(Γ ))◦ = {0}.

Also, if we work in theH1
ρ(yα ,Rd ×R

+)-setting (i.e., working with global functions instead of pairs), the

test function VY
ΩχΩ +VY

� χΩc is not continuous along Γ due to a possible jump of size γ −
Γ VY

� . However,
if we use the pointwise equation (4.1) and integrate back by parts, we get that

BY
(
UY − UY

h ,VY
h

)
=
∫ Y

0
yα
〈
[[∂νUY

� ]], γ −
Γ VY

�

〉
L2(Γ )

dy.

Since 〈λh, γ
−
Γ VY

� 〉L2(Γ ) vanishes due to the requirement in γ −
Γ VY

� ∈ (Vλ
h)◦, we can subtract such a term

from the right-hand side without changing the equality, which shows the stated Galerkin orthogonality.
�

Finally, we are in position to show our main result, Theorem 2.9, by combining the decay estimate
with the previous two lemmas.

Proof of Theorem 2.9. We start with the triangle inequality∥∥∥U − UY
h

∥∥∥
HY

≤ ‖U − UY‖
HY +

∥∥∥UY − UY
h

∥∥∥
HY

.

For the first term, we use the decay properties of Proposition 4.1, to obtain

‖U − UY‖
HY �

∥∥∥UΩ − UY
Ω

∥∥∥
H1(yα ,Ω×(0,Y))

+
∥∥∥U� − UY

�

∥∥∥
H1

ρ(yα ,Rd\Γ ×(0,Y))
� Y−μ/2 ‖f ‖L2(Ω).
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 23

For the second term, we employ the coercivity of Theorem 2.3, the Galerkin orthogonality of Lemma 4.7,
UY

� |Ω = 0, and a trace inequality forΩ , which gives for arbitrary λh ∈ V
λ
h and V

Y
h = (VY

Ω ,VY
� ) ∈ Hh,Y

that

∥∥∥UY − UY
h

∥∥∥2
HY

� BY
(
UY − UY

h ,UY − UY
h

)

= BY
(
UY − UY

h ,UY − VY
h

)
+
∫ Y

0
yα
〈
[[∂νUY

� ]]− λh, γ
−
Γ

(
UY

h,� − VY
�

)〉
L2(Γ )

dy

� ε

∥∥∥UY − UY
h

∥∥∥2
HY

+ ε−1
∥∥∥UY − VY

h

∥∥∥2
HY

+
∫ Y

0
yα
∥∥∥[[∂νUY

� ]]− λh

∥∥∥
H−1/2(Γ )

∥∥∥γ −
Γ

(
UY

h,� − VY
�

)∥∥∥
H1/2(Γ )

dy

� ε

∥∥∥UY − UY
h

∥∥∥2
HY

+ ε−1
∥∥∥UY − VY

h

∥∥∥2
HY

+ ε−1
∫ Y

0
yα
∥∥∥[[∂νUY

� ]]− λh

∥∥∥2
H−1/2(Γ )

dy + ε

∥∥∥UY
h − VY

h

∥∥∥2
HY

� 2ε
∥∥∥UY − UY

h

∥∥∥2
HY

+ (ε + ε−1)
∥∥∥UY − VY

h

∥∥∥2
HY

+ ε−1
∫ Y

0
yα
∥∥∥[[∂νUY

� ]]− λh

∥∥∥2
H−1/2(Γ )

dy.

Taking ε sufficiently small and absorbing the first term in the left-hand side gives

∥∥∥UY − UY
h

∥∥∥2
HY

�
∥∥∥UY − VY

h

∥∥∥2
HY

+
∫ Y

0
yα
∥∥∥[[∂νUY

� ]]− λh

∥∥∥2
H−1/2(Γ )

dy.

As VY
h ∈ Hh,Y was arbitrary, we can take VY

h = Π(UY
Ω ,UY

� ) ∈ Hh,Y with the operator Π of Lemma

4.6. Then, Lemma 4.6 together with the approximation properties of the hp-interpolation in Y gives

‖UY − ΠUY‖2
HY �

∫ Y

0
yα
( ∥∥∥∇(1 − Πy)UY (y)

∥∥∥2
L2

+
∥∥∥∇(1 − πΩ)UY

Ω (y)
∥∥∥2

L2(Ω)

)
dy

� Y2εe−2κp +
∫ Y

0
yα
∥∥∥∇(1 − πΩ)UY

Ω (y)
∥∥∥2

L2(Ω)
dy.

Combining all estimates gives the stated result. �
Finally, we present the proof of Corollary 2.11 that gives first order convergence for a specific choice

of discrete spaces.

Proof of Corollary 2.11. Employing (Faustmann & Rieder, 2023, Pro. 2.8)—which with the same
techniques also holds for Y < ∞ and a constant independent of Y—together with the assumptions
on Ω ,A and f , we obtain control of second order x-derivatives of UY .
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24 M. FAUSTMANN AND A. RIEDER

As λ := ∂+
ν UY

� , it is piecewise smooth, depending on the regularity of UY
� . For m = 0, 1, denoting

by πL2 the L2-projection onto S0,0(TΓ ) and using a trace estimate, it holds that

‖λ(y) − λh(y)‖2H−1/2(Γ )

(Sauter & Schwab, 2011, Thm 4.1.33)
� h1/2‖λ(y) − πL2λ(y)‖2L2(Γ )

(Sauter & Schwab, 2011, Prop 4.1.31)
� h1/2hm

∑
K∈TΓ

‖λ(y)‖2Hm(K)

� h1/2hm
∥∥∥UY

� (y)
∥∥∥2

Hm+3/2(BR(0)\Γ )
.

Interpolating between m = 0 and m = 1 gives

‖λ(y) − λh(y)‖2H−1/2(Γ )
� h‖UY

� (y)‖2H2(BR(0)\Γ )
.

Multiplying with yα and integrating with respect to y then controls the second term on the right-hand side
of Theorem 2.9. For the first term, the approximation properties of the Scott–Zhang projection together
with control of the second order x-derivatives gives first order convergence in h. Finally, the last two
terms in Theorem 2.9 can also be bounded by Ch by choice of Y and p. �

5. Numerical examples

In this section, we present two numerical examples to underline the a priori estimates of Theorem
2.9 and Corollary 2.11 as well as one numerical example that illustrates the algebraic decay w.r.t. the
truncation parameter Y . As previously already mentioned, a nice feature of our numerical scheme is
that software packages developed for integer order differential operators can be employed directly. As
such, we implement our method based on a coupling of the libraries NGSolve (Schöberl, 2021, for the
FEM-part) and Bempp-cl (Betcke & Scroggs, 2021, for the BEM-part) libraries.

5.1 Convergence for the fractional Laplacian

In order to validate our numerical method, we consider the case s = 0 and the standard fractional
Laplacian, i.e., A = I. In this case a representation formula is available from Caffarelli & Silvestre
(2007). In fact, the fundamental solution for the fractional Laplacian is given by

Ψ (x) := Cd,β

|x|d−2β
x ∈ R

d\{0}, d �= 2β

with Cd,β := Γ (d/2−β)

22βπd/2Γ (β)
. Thus, for f ∈ C∞

0 (Ω) we can write

u(x) = Cd,β

∫
Rd

f (y)

|x − y|d−2β
dy.
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 25

Fig. 1. Convergence of our discrete approximation to the exact solution for different fractional powers β in different norms.

For our numerical example, we choose f (x) :=
{

exp(−0.1/(1 − |x|)) for|x| < 1

0 for|x| ≥ 0
. We then calculate

u(x) at random sampling points xj using spherical coordinates and Gauss–Jacobi numerical integration
to deal with the singularity at r = |x − xj| = 0, as well as standard Gauss-quadrature for the other
coordinate directions.

In order to compute the energy error, we compute the energy differences. For standard Galerkin
methods with bilinear form a(·, ·) and right-hand side f (·), it is well known that one can compute the
energy error by the identity ‖u−uh‖2E = a(u, u)−a(uh, uh) = f (u)− f (uh). Due to the more complicated
form of our method, most notably the presence of the cutoff error, such an identity does not hold exactly.
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26 M. FAUSTMANN AND A. RIEDER

Fig. 2. Convergence of our discrete approximation to the exact solution for different fractional powers β in different norms, the
nonconstant coefficient case.

Nevertheless, we expect the following identity to hold approximately∥∥∥U − UY
h

∥∥∥2
H1(yα ,Rd×(0,Y))

≈ (f , tr0U)L2(Ω) −
(

f , tr0UY
h

)
L2(Ω)

.

We now further replace the unknown value (f , tr0U)L2(Ω) by the extrapolation from (f , tr0UY
h )L2(Ω) for

different refinements using Aitken’sΔ2-method. This will be our approximation of the true energy error.
For the L2-error, we use the approximation UY

h on the finest grid as our stand-in for the exact solution
and compare it to the other approximations by computing the L2-difference of the traces at y = 0 using
Gauss quadrature.

For the geometry, we used the unit cubeΩ := [−1, 1]3. In the bounded domainΩ , we use piecewise
linear Lagrangian finite elements on a quasi-uniform mesh of maximal mesh width h.
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FEM-BEM COUPLING IN FRACTIONAL DIFFUSION 27

Fig. 3. Convergence of our discrete approximation to the exact solution for different fractional powers β in different norms.

In Fig. 1, we study the convergence of the proposed fully discrete method as we reduce the mesh

size. In order to reduce all the error contributions, we choose the cutoff point Y = h− 2
1+α , which gives

O(h) for the cutoff error in Proposition 4.1. Since the convergence with respect to the polynomial degree
is exponential (but with unknown explicit rate), we use p := round(2m log(m + 1)) where m is the
number of uniform h-refinements. This gives a decrease of the y-discretization error, which is faster than
O(h). Overall, we expect the energy error to behave like O(h) by Corollary 2.11. For the pointwise and
L2-errors we did not establish a rigorous theory in this work. Nonetheless, Fig. 1 shows convergence
rates for these error measures of roughly order O(h2).

5.2 Convergence for the nonconstant coefficient case

As a second numerical example, we consider as the domain Ω the unit sphere in R
3. Instead of using

the standard Laplacian with constant coefficients, we consider the following diffusion parameter and
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28 M. FAUSTMANN AND A. RIEDER

right-hand side:

A(x) :=
{
1+ |x|(1− |x|) for |x| < 1

1 for |x| ≥ 0
, and f (x) :=

{
|x|(1 − |x|) for |x| < 1

0 for |x| ≥ 0

(with the slight abuse of notation of making A(x) scalar valued). Since the coefficients are globally
continuous, and we are working with lowest order elements, by Corollary 2.11 we expect to obtain first
order convergence. Figure 2 supports the theoretical results. Since in this case the fundamental solution
is not available, we cannot compute the pointwise error, but looking at the extrapolated energy and L2-
errors, we get the optimal rates.

5.3 A study on the y-dependence

We return to the setting of Section 5.1, i.e., constant coefficients, Ω = [−1, 1]3 and the same right-hand
side f . However, here, we keep the discretization parameter h (and p as well as it depends by our choice
on h) fixed as the finest mesh size used in Section 5.1 and vary only the cutoff parameter Y . This should
give an indication of the decay as Y → ∞. Proposition 4.1 predicts at least decay of Y−μ/2, where

μ :=
{
1 + |α| s > 0

1 + α s = 0
and α = 1− 2β.

In Fig. 3, we plot the decay of the energy error versus the increasing cut-off parameter Y for different
cases of s and β.

We observe that in the case s = 0 the predicted energy decay closely matches the rate Y−μ/2 as
predicted in the theory. For the L2-error, we see roughly a doubling of the convergence rate. In the case
s = 1, our estimates are not sharp. Instead of the predicted convergence rate Y−0.7 (for both β = 0.3
and β = 0.7) we see much better convergence rates. A theoretical justification for these observations
remains to be done.
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