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Abstract

The time-harmonic Maxwell equations at high wavenumber k in domains with an ana-
lytic boundary and impedance boundary conditions are considered. A wavenumber-
explicit stability and regularity theory is developed that decomposes the solution into
a part with finite Sobolev regularity that is controlled uniformly in k& and an analytic
part. Using this regularity, quasi-optimality of the Galerkin discretization based on
Nédélec elements of order p on a mesh with mesh size /4 is shown under the k-explicit
scale resolution condition that (a) k& / p is sufficient small and (b) p/In k is bounded
from below.

Keywords Maxwell’s equations - Time-harmonic - High-frequency - Wavenumber
explicit - hp-FEM - Quasi-optimality

Mathematics Subject Classification 35J05 - 65N12 - 65N30

1 Introduction

The time-harmonic Maxwell equations at high wavenumber k are a fundamental com-
ponent of high-frequency computational electromagnetics. Computationally, these
equations are challenging for several reasons. The solutions are highly oscillatory
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so that fine discretizations are necessary and correspondingly large computational
resources are required. While conditions to resolve the oscillatory nature of the solu-
tion appear unavoidable, even more stringent conditions on the discretizations have
to be imposed for stability reasons: In many numerical methods based on the varia-
tional formulation of Maxwell’s equations, the gap between the actual error and the
best approximation error widens as the wavenumber k& becomes large. This “pollution
effect” is a manifestation of a lack of coercivity of the problem, as is typical in time-
harmonic wave propagation problems. Mathematically understanding this “pollution
effect” in terms of the wavenumber k and the discretization parameters for the model
problem (1.1) is the purpose of the present work.

The “pollution effect”, i.e., the fact that discretizations of time-harmonic wave
propagation problems are prone to dispersion errors, is probably best studied for
the Helmholtz equation at large wavenumbers. The beneficial effect of using high
order methods was numerically observed very early and substantiated for translation-
invariant meshes [1, 2]; a rigorous mathematical analysis for unstructured meshes was
developed in the last decade only in [17, 37, 38]. These works analyze high order FEM
(hp-FEM) for the Helmholtz equation in a Garding setting using duality techniques.
This technique, often called “Schatz argument”, crucially hinges on the regularity of
the dual problem, which is again a Helmholtz problem. The key new insight of the line
of work [17, 37, 38] is a refined wavenumber-explicit regularity theory for Helmholtz
problems that takes the following form (“regularity by decomposition”): given data,
the solution u is written as u ;2 + u_4 where u ;2 has the regularity expected of elliptic
problems and is controlled in terms of the data with constants independent of k. The
part u 4 is a (piecewise) analytic function whose regularity is described explicitly in
terms of k. Employing “regularity by decomposition” for the analysis of discretizations
has been successfully applied to other Helmholtz problems and discretizations such
DG methods [31], BEM [27], FEM-BEM coupling [29], and heterogeneous Helmholtz
problems [4, 9, 25, 26].

In this paper, we consider the following time-harmonic Maxwell equations with
impedance boundary conditions as our model problem:

curlcurlE — k’E =f in £2, (1.1a)
(curlE) x n —ikEr = gr ondf2 (1.1b)

on a bounded Lipschitz domain £ C R? with simply connected boundary 3£2. We
study an H(curl)-conforming Galerkin method with elements of degree p on a mesh of
size h and show quasi-optimality of the method under the scale resolution condition

22 <o and p>elnlkl, (1.2)

where cp > Ois arbitrary and ¢ > 0 is sufficiently small (Theorem 9.7). The resolution
condition |k| h/p < c; is a natural condition to resolve the oscillatory behavior of the
solution, and the side constraint p > ¢; In |k| is arather weak condition that suppresses
the “pollution effect”.
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Compared to the scalar Helmholtz case, where the compact embedding H'! ¢ L?
underlies the success of the duality argument, the convergence analysis of discretiza-
tions of Maxwell’s equations is hampered by the fact that the embedding H(curl) ¢ L?
is not compact so that a duality argument is not immediately applicable. This issue
arises even in the context of convergence analyses that are not explicit in the wavenum-
ber k. An analysis can be based on the observation that H(curl) N H(div) endowed
with appropriate boundary conditions is compactly embedded in L2, This approach,
which is structurally described in [39, Sec. 1.2], involves as a first ingredient the ability
to decompose discrete functions into gradient parts and (discrete) solenoidal parts in
two ways, namely, on the continuous level and the discrete level. The solenoidal part
of the decomposition on the continuous level is in H(curl) N H(div) and admits a
duality argument. Galerkin orthogonalities are invoked to then reduce the analysis to
that of the difference between the solenoidal parts of the continuous and the discrete
level. For the analysis of this difference, a second ingredient is vital, namely, special
interpolation operators with a commuting diagram property. These two ingredients
underlie many duality arguments for Maxwell problems in the literature, see, e.g.,
[41, Sec. 7.2], [8, 10, 16, 56] and references therein. The present work follows [41,
Sec. 7.2] and the path outlined in [39, Sec. 1.1-1.3].

At the heart of the k-explicit convergence analysis for (1.1) is a k-explicit regu-
larity theory for the above mentioned dual problem. Similarly to the Helmholtz case
discussed above, it takes the form of a “regularity by decomposition” (Theorem 7.3).
Such a regularity theory was developed for Maxwell’s equations in full space in the
recent paper [39], where the decomposition is directly accessible in terms of the New-
ton potential and layer potentials. For the present bounded domain case, however, an
explicit construction of the decomposition is not available, and the iterative construc-
tion as in the Helmholtz case of [38] has to be brought to bear. For this, a significant
complication in the Maxwell case compared to the Helmholtz case arises from the
requirement that the frequency filters used in the construction be such that they pro-
duce solenoidal fields if the argument is solenoidal.

While our wavenumber-explicit regularity result Theorem 7.3 underlies our proof
of quasioptimal convergence of the high order Galerkin method (cf. Theorem 9.7),
it also proves useful for wavenumber-explicit interpolation error estimates as worked
out in Corollary 9.8.

The present paper analyzes an H(curl)-conforming discretization based on high
order Nédélec elements. Various other high order methods for Maxwell’s equations
that are explicit in the wavenumber can be found in the literature. Closest to our work
are [11, 45]. The work [45] studies the same problem (1.1) but uses an H'-based
instead of an H(curl)-based variational formulation involving both the electric and
the magnetic field. The proof of quasi-optimality in [45] is based on a “regularity
by decomposition” technique similar to the present one. [44] studies the same H'-
based variational formulation and Hl—conforming discretizations for (1.1) on certain
polyhedral domains and obtains k-explicit conditions on the discretization for quasi-
optimality. Key to this is a description of the solution regularity in [44] in terms
of corner and edge singularities. The work [11] studies fixed (but arbitrary) order
H(curl)-conforming discretizations of heterogeneous Maxwell problems and shows
a similar quasi-optimality result by generalizing the corresponding Helmholtz result
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[9]; the restriction to finite order methods compared to the present work appears to be
due to the difference in which the decomposition of solutions of Maxwell problems
is obtained. High order Discontinuous Galerkin (DG) and Hybridizable DG (HDG)
methods for (1.1) have been presented in [ 18] and [28] together with a stability analysis
that is explicit in &, k, and p. A dispersion analysis of high order methods on tensor-
product meshes is given in [2].

The outline of the paper is as follows. Section 2 introduces the notation and tools such
as regular decompositions (see Sect.2.4) that are indispensable for the analysis of
Maxwell problems. Section 3 (Theorem 3.7) shows that the solution of (1.1) depends
only polynomially on the wavenumber k. This stability result is obtained using layer
potential techniques in the spirit of earlier work [17, Thm. 2.4] for the analogous
Helmbholtz equation. While earlier stability estimates for (1.1) in [18, 23, 55], and
[44, Thm. 5.2 ] are obtained by judicious choices of test functions and rely on star-
shapedness of the geometry, Theorem 3.7 does not require star-shapedness. It is worth
mentioning that at least in the analogous case of the Helmholtz equation, alternatives
to the use of suitable test functions or layer potential exist, which can lead to better
k-dependencies; we refer to [51] for results and a discussion. Section4 analyzes a
“sign definite” Maxwell problem and presents k-explicit regularity assertions for it
(Theorem 4.3). The motivation for studying this particular boundary value problem is
that, since the principal parts of our sign-definite Maxwell operator and that of (1.1)
coincide, a contraction argument can be brought to bear in the proof of Theorem 7.3.
A similar technique has recently been used for heterogeneous Helmholtz problems
in [4]. Section5 collects k-explicit regularity assertions for (1.1) (Lemma 5.1 for
finite regularity data and Theorem 5.2 for analytic data). The contraction argument in
the proof of Theorem 7.3 relies on certain frequency splitting operators (both in the
volume and on the boundary), which are provided in Sect. 6. Section7 presents the
main analytical result, Theorem 7.3, where the solution of (1.1) with finite regularity
data f, g is decomposed into a part with finite regularity but k-uniform bounds, a
gradient field, and an analytic part. Section 8 presents the discretization of (1.1) based
on high order Nédélec elements and presents s p-approximation operators that map into
Nédélec spaces. These operators are the same ones as used in [39] but we work out their
approximation properties on the skeleton of the mesh since stronger approximation
properties on the boundary 92 are required in the present case of impedance boundary
conditions. Section 9 shows quasi-optimality (Theorem 9.7) under the scale resolution
condition (1.2). Section 10 concludes the paper with numerical results.

2 Setting
2.1 Geometric Setting and Sobolev Spaces on Lipschitz Domains

Let 2 C R3 be a bounded Lipschitz domain which we assume throughout the paper to
have a simply connected and sufficiently smooth boundary I" := 942; if less regularity
is required, we will specify this. We flag already at this point that the main quasi-
optimal convergence result, Theorem 9.7 will require analyticity of I". The outward
unit normal vector field is denoted by n : I — S,.
FoC'T
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The Maxwell problem in the frequency domain involves the wavenumber (denoted
by k) and we assume that'

k € R\ (—ko, ko) forkg = 1. 2.1)

Let L*(£2) denote the usual Lebesgue space on §2 with scalar product (-, -) L2(92)
1/2
and norm |||l 2o = (, ')L/2((z)

the second argument in (-, -) ;2. If the domain £2 is clear from the context we write
short (-, ), ||l for (-, ) 12(@), I L2(2y- If necessary, (-, -) ;2o (or (-, -)) is understood
as the extended L?(£2) inner product, i.e., a duality pairing with pivot space L?(£2).
For Sobolev spaces, we follow the notation of [30]. For s > 0 we denote by H 5(82)
the usual Sobolev spaces of index s with norm ||| gs () and by H (£2) = HA (R?)

. Recall that the complex conjugation is applied to

the space of Sobolev functions on R? with support in 2. For s > 0, H % (£2) denotes
the dual of H* (£2). The space H* (§2) of vector-valued functions is characterized by
componentwise membership in H*(£2). We write (-, -) also for the vectorial L?(£2)
inner product given by (f, g) = [ o(f, 8). Here, we introduce for vectors a, b € c3

witha = (aj)f.:l, b =(bj)3:l the bilinear form (-, -) by (a, b) := Z;zl ajb;. For
m € Ny, we introduce the seminorms

1/2

!
Iflgm () = > 'Z—! (3*F, 3°f) (2.2)

aeNg: la|=m

and the full norms ||f||%1m(_@) = ZT:O |f|%l,,(9). For the Maxwell problem the space
H(curl) is the key to describe the energy of the electric field. For m € Ny we set

H"” (curl, 2) := {u € H"(2) | curlu € H"(£2)} and (2.3a)
X := H(curl, 2) := H(curl, 2). (2.3b)

The space H" (div, £2) is given for m € Ny by
H" (div, ) := {u e H"(£2) | divu € H”’(.Q)} 2.4

with H(div, £2) := HO(div, £2). We introduce
H(divo, £2) := {u € H(div, £2) | divu = 0} . (2.5)

For p € R\ {0} and m, £ € Ny we define the indexed norms and seminorms by

1/2
Vlaey,p =10l ey and  [IVlign )., = (Z|v|Hz(mp> (2.6)

1 We exclude here a neighborhood of 0 since we are interested in the high-frequency behavior — to simplify
notation we have fixed kg = 1 while any other positive choice kg € (0, 1) leads to qualitatively the same
results while constants then depend continuously on ky € (0, 1) and, possibly, deteriorate as ko — 0.
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and corresponding dual norms

IVl (2),p == o™ IVIE-—"m(0) - 2.7

We define for D € {curl, div}

12
—2i 2 2 2
”f”Hm(D,Q),p = (10 " |Df|Hm(Q) +p ”fllﬂm(g),p)

m 172
= (p‘z’" IDflipn ) + )07 |f|§z(m>
£=0

and introduce the shorthands:

IfllanD,2) = Ifllam D 0),1 >
2, 2 en2)/?
IfllamD,2)., = IflgoD,02),, = <||Df|| + o |If]l ) , (2.8)
Ifllam,2) = Ifllgom, ) - (2.9

We close this section with the introduction of the spaces of analytic functions:

Definition 2.1 For an open set w C R3, constants Cj, y1 > 0, and wavenumber
k| > 1, we set

AC1.y1. ) = fu e (€@ | il = Cry max (n+ 1, k)" ¥n € No} .

2.2 Sobolev Spaces on a Sufficiently Smooth Surface I'

The Sobolev spaces on the boundary I are denoted by H*(I") for scalar-valued
functions and by H*(I") for vector-valued functions with norms ||| sy, II-llgs )
(see, e.g., [30, p. 98]). Note that the range of s for which H*(I") is defined may be
limited, depending on the global smoothness of the surface I"; for Lipschitz surfaces,
s can be chosen in the range [0, 1]. For s < 0, the space H¥(I") is the dual of H~5(I").
Differential operators on I are defined as described in [4, Sec. 2.5.6] using exten-
sions to a three-dimensional neighborhood U/ of I': For a sufficiently smooth scalar
field u on I', the constant extension along the normal direction is denoted u*. For
a sufficiently smooth tangential field v the extension to ¢/ is formally given in [4,
2.5.188] and denoted v*. One key feature of the extension v* is that it is tangential
to surfaces parallel to I". The surface gradient V, the tangential curl cuTr, and the
surface divergence div are defined by (cf., e.g., [6, 43])
cuT;u ==Vruxn, and divev= (divv*)| on I .

Viu = (Vu*)

I r

The scalar counterpart of the tangential curl is the surface curl

curlp v := ((curl v¥) ]F ,n) onl.
Elol:;ﬂ
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The composition of the surface divergence and surface gradient leads to the scalar
Laplace-Beltrami operator (see [43, (2.5.191)])

) —
Aru =divyp Vru = —curlp curljfu.
From [43, (2.5.197)] it follows that
divp (v xn) =curlpv.
Next, we introduce Hilbert spaces of tangential fields on the compact and simply
connected manifold I and corresponding norms and refer for their definitions and

properties to [43, Sec. 5.4.1]. We start with the definition of the space L%(I’) of
tangential vector fields given by

L2(I) == {v e L2(I") | (n,v) =0 on F] . (2.10)

Any tangential field vy on I” then can be represented in terms of the Hodge decom-
position*as

\ V¥ + VCTurl with V¥ =VrVY and VCTUlrl = cuT;chrl (2.11)
for some scalar potentials
vV e H(I) and Ve ¢ H(curly, I') = {¢ € LX(I') | curly¢ € L2T(F)} :
In particular, this decomposition is LZT—orthogonalz

Vv curl _ V T3 vscurl _ _JV curl .
(VT,VT >L2(F) = (VFV ,curlpV )L2(F) =0 Vvr =vy +vy asin(2.11).

Hence, the splitting (2.11) is stable:

2 2 1/2
L2<F>> ’

< vrlliLery -

—
+ chrlr yeur

v =(|vrvY
vz L2y (H A

i

curl
< Ivrlly2ry and |curlpV

HV[‘V

L2(I) L2(I)

Higher order spaces are defined for s > 0 by
(1) = {VT e L2(I) | Ivrllge(ry < oo} 2.12)

and for negative s by duality.

2 Throughout the paper we use the convention that if v, v¥

they are related by (2.11).

s V%“rl, yV, yeul appear in the same context

FolCT
H_ A
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The H*(I")-norm of curly (-) and divy (-) can be expressed by using the Hodge
decomposition:

llcurlr vo |l sy = chrlr V‘}”rl‘ ()= chrlr cuT)pVCurl H“(I"): HAr V“"l‘ HS(T)
A Hdivr V¥ ”HS(I") - ”divr VFVV”HS(F) - H VVH HS(I')
We define
12
Ivr la=1/2(curl 1. 1) <”curlr vCurl P + ||VT||%{—1/2(F)>
12
(\ v ||vT||%{_1/2m) . (13
12
IV 12y = <Hdwf Vi T ||vT||§I_1/z(F))
= (Hmvvuz + v I3 )1/2. (2.13b)
HA12() H-12(r)

The corresponding spaces H. 1/ 2(curl r, ") and H;l/ 2(div r, I') are characterized
by

vr € Hy(divp, ') <= vy has form (2.11) and vz llg-1/2giy,..1y < 004
VT € H;l/z(curlp, I') <= vr has form (2.11) and [|[v7 lg-1/2cur .y < 0©-
(2.14)

We also introduce indexed norms for functions in Sobolev spaces on the boundary:
for v € R with 2v € Ny, we formally set

2 1/2
”gT”H"(F),k = (Z |k|1_Z ”gT”%Il/Z(r)) and (2158.)
=0
gz vy o= k1" gz -y - (2.15b)

For D € {curly, divy}, we introduce?

2 2 2 172
ler I wr.rx = (IDr &7l + kP lgrlfee) - 216)
In particular, we have

lgrllgocryx = k1" llgrllzry and gzl < C 1KY lgr gy -

3 We always write |k| in the estimates also if the exponent is even for the sake of clarity.
Fo C 'ﬂ
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We remark that the special dual norms || - [lg-1/2(giy,-.ry ., @and || - Ix; () on the
’ ’ imp ’

boundary will be defined later in (4.4) and in (4.5). By using standard interpolation
inequalities for Sobolev spaces we obtain the following lemma.

Lemma 2.2 For m € Ny, there holds

el 1/2
lgr lgm+1/2¢my 4 < C <|k| lgrlfagr + D K> ||gr||il,_1/zm>

r=1
1/2

m+1
< C <Z |k|2_2r ”gT”%.Irl/Z([')) s

r=0

2 —2m 2 1/2
lgr lgm+12(ryx = C <|k| ”gT”LZ([‘) + k| ||gT||Hm+l/2([‘))

B 1/2
= C (KPR Ner vy + K72 Igr Bguarngry) - @17)

2.3 Trace Operators and Energy Spaces for Maxwell’s Equations

We introduce tangential trace operators I1r and yr, which map sufficiently smooth
functions u in 2 to tangential fields on I, by

IIr :ut—nx (U xn), yr:urujr xn. (2.18)

The following theorem shows that Hy '/*(div, I") and Hy /> (curl, I') are the
correct spaces for the continuous extension of the tangential trace operators to Hilbert
spaces.

Proposition 2.3 ([7], [43, Thm. 5.4.2]) The trace mappings It and yr in(2.18) extend
to continuous and surjective operators

My :X — H;Pcurlp, 1), yr: X — H;P(divp, T).

Moreover, for theses trace spaces there exist continuous divergence-free liftings S(f;rl :
—1/2 —-1/2, 4.
H;'*(curlp, I') — X and EL - H; ' (divy, T) - X.

For a vector field u € X, we will employ frequently the notation
ur ;= I1ru.

From [43, (2.5.161), (2.5.208)] and the relation [T Vu=nx (Vu|r x n) = Vu|p —
(0nu) n we conclude

MrVu=Vrlr), (2.19)
)/Tvu = (HTVL{) Xn= V]“(uh*) X 1. (220)
FolCT
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Remark 2.4 For gradient fields V¢ we have (V(p)CT“” = 0and (V(p)¥ = Vro. O

Definition 2.5 Let £2 C R? be a bounded domain with sufficiently smooth Lipschitz
boundary I" as described in Sect. 2.1. The energy space for Maxwell’s equations with
impedance boundary conditions on I" and real wavenumber k € R\ (—ko, ko) is

Ximp 1= {u e X: Mru e L%(r)} 2.21)

with corresponding norm

2 ) V2 5 12 ) 1/2
0l i = [lleurlul® + Jul? o | with fully = [€2 ull? + K] oz s
Its companion space of scalar potentials is
Hip(@) = {0 € H' (@) L ol € H' (D). (2.22)

2.4 Regular Decompositions

We will rely on various decompositions of functions into regular parts and gradient
parts. The decompositions may not be orthogonal but must be stable. We refer to
[20, §4.4] and the bibliographic notes therein for some early contributions. Many
variants have been introduced since then, and the results in this section are essentially
taken from the literature: Lemma 2.6 is a consequence of [15, Thm. 4.6]; Lemma 2.7
relies on [41, Thm. 3.38] and Lemma 2.6; Lemma 2.8 is based on [13] while closely
related results can be found in [3]. Finally, Lemma 2.9 is a consequence of [50,
Thm. 4.2(2)] and [13]. For newer overview articles, we refer to, e.g., [21, 24]. The
following Lemma 2.6 collects a key result from the seminal paper [15]. The operator
R, which s essentially a right inverse of the curl operator, will frequently be employed
in the present paper.

Lemma 2.6 Let S2 be a bounded Lipschitz domain. There exist pseudodifferential oper-
ators Ry, Ry of order —1 and K, Ky of order —oo on R with the following properties:
For each m € 7. they have the mapping properties Ry : H™™(2) — H'™"™(Q),
R, : H"™(2) — H'"(2), and K, K, : H"(£2) — (C>®(2))3, and for any
u € H" (curl, §2) there holds

u = VR;(u— Ry(curlu)) + Ry (curlu) + Ku. (2.23)
Foru with diva = 0 on $2 there holds

curl Ryu = u — Kpu. (2.24)

FoC'T
e,
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Proof In [15, Thm. 4.6], operators Ry, Ry, R3, Kj, K; with the mapping properties

R :H ™) —> H'"™™ (),
R, :H ™ (£2) > HI"™ (),

R;: H"(2) —» H'"" (), (2.23)
K¢ :H" (2) — (C®(2))°, t=1,2,
are constructed with
VRiv+ Ro(curlv) = v —-Kv, (2.26a)
curl R;v + R3 (divv) = v — Kpv. (2.26b)

We note that (2.26) implies (2.24). It is worth stressing that the mapping properties
given in (2.25) express a locality of the operators, which are pseudodifferential oper-
ators on R3: on £2, the operators depend only on the argument restricted to £2 and not
on the values on R? \ 2.

Selecting v =u — Ry (curl u) in (2.26a) we obtain

VRi(u — Ry (curlu)) + Ry (curl(u — Ry (curlu)))

(2.27)
=u — Ry(curlu) — K;(u — Ry(curlu)).

Since curl u is divergence free, we obtain from (2.26b)

Ry (curl(u — Ry (curlu))) = Ry (curlu) — Ry (curlu — K; curl u)
= Ry(Kj(curlu)) =: Ksu,

where, again, K3 is a smoothing operator of order —oo. Inserting this into (2.27) leads
to

VR (u — Rj (curlu)) + Ry (curlu) = u — Ky (u — Ry (curlu)) — Ksu.

By choosing Ku := K (u — R; curlu) + Kjzu the representation (2.23) is proved. O

Lemma 2.7 Let §2 be a bounded, connected Lipschitz domain.
(i) There is C > 0 such that for every u € X there is a decompositionu = Vo + 7
with

divz=0, |zllgi o) < Cllcurlull, l¢llgie) < Clulgeu, ) -
(2.28)

(ii) Let m € Z. For each w € H" (curl, §2) there is a splitting independent of m of
the formu = Vo + z with ¢ € H"T1(2), z € H"1(Q) satisfying

Izllgn+1 2y = C lullgmcur,2) and (2.29a)

Izllgn (2) + el gm+i2) < C llallgn(g) - (2.29b)
FolCT

u o
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(iii) Thereis C > 0 depending only on §2 such that each u € Ximp can be written as
u=Vy+zwithg € H' (), z<cH (£2) and

imp

172

IVollimp.k + 1zla1 ) + klIZll2 @) + k177 MZl2ry < Cllullimpk. (2.30)

Proof Proof of (i): Let u € X. The point is to choose z in the splittingu = Vo + z
such that it can be controlled by curl u. To this end, we set v = curlu € L2(£2) and
observe that divv = 0 and therefore (1, (n, v));2¢py = 0. By [41, Thm. 3.38], this

allows us to conclude the existence of z € H! (£2) with divz = 0, v = curl z and
Izllgt (@) = ClIvIl.
Since curl(u—z) = 0, wehaveu—z = Vy forag € H'(£2), which trivially satisfies
(Vo,Vy)=(u—2z,Vy) V¢ e H (2).

By fixing ¢ such that |, o ¢ = 0, the estimate of ¢ follows by a Poincaré inequality.
Proof of (ii): With the operators of Lemma 2.6, we define

z := Ry (curlu) + Ku, V¢ := VR (u — Ry(curlw)).

Lemma 2.6 implies u = z+ Vg as well as the bounds by the mapping properties given
in Lemma 2.6.

Proof of (iii): Multiplying estimate (2.29b) for the decomposition of (ii) and
m = 0 by |k| leads to |k| |zl 2(2) + [kl [VellL2(2) = C Ikl lullp2(g). (2.292) gives
1zlg (2) < CllullHur.2)- The multiplicative trace inequality gives |k|||z||i2(1_) <
C Ikl 12l 2 17l ) < C k1P 1zI2, ) + ClizI3 - Hence follows [|zlfimpx <
Cllullgeut, ),k < Cllullimp,k. The triangle inequality then provides the bound

IVollimpk < lallimp.k + 1Zllimp.k < Cllallimp,k- ]

The following result relates the space H(curl, £2) N"H(div, £2) to classical Sobolev
spaces. The statement (2.32) is from [13]; closely related results can be found in [3].

Lemma 2.8 Let 52 be smooth and simply connected. Then there is C > 0 such that
for everyu € H (curl, £2) N H (div, §2) there holds

lull < € (llcurlull + [|div all + [[(w, 0l y-1/2f)) (2.31a)
lull < € (llcurlull + [|divull + [lyrullg-12) - (2.31b)

Under the assumpti0n4 that (u,n) € L2(I") or yru € LZT ('), there holds

lallgi2g) < € (leurlull + [ldivall + (@, n) | ,2)) , (2.32a)
lullg2e) < € (leurlull + [divull + lyrull2 ) - (2.32b)

4 In [13, Thm. 2], it is shown that these conditions are equivalent for u with u € H($2, curl) N H(£2, div).
FolCT
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Proof We use the regular decomposition u = V¢ + z, of Lemma 2.7 (i) where
z € H' () satisfies

Izl (@) < C llcurlul . (2.33)

Since divz = 0 we have A¢ = divu. Concerning the boundary conditions for ¢, we
consider two cases corresponding to (2.31a), (2.32a) and (2.31b), (2.32b) separately
as Case 1 and Case 2.

Case I: The function ¢ satisfies the Neumann problem

Ap =divu, o = (n, V) = (n,u—1z),

and we note that the condition divz = 0 implies that the solvability condition for this
Neumann problem is satisfied. We estimate

[{n, u— Z>||H71/2(1“) < (n, u) ”H”/Z(F) + [l{m, Z)”Hfl/z(r)

S ” <na u) ”H*l/z(]“) + C ”Z”Hl(g) .

An energy estimate for ¢ provides V| < C(lldivull + 8,9l g-1/2(1)). The com-
bination of these estimates lead to (2.31a). We also note that if (u,n) € L%(I),
then we get by the smoothness of I" that ¢ € H3/2(2) with lel gz =<
C(ldivul + [|9,¢ll z2(f)), which shows (2.32a).

Case 2: We obtain regularity assertions for ¢ by using that ¢ satisfies Ap = divu
and determine the boundary regularity ¢|r-. We observe

—
curlrg = yrVo = yr (u—1z)
and therefore
—_
Areo = —curlp curlpgp = —curlp (yr (u —12z)).
Hence, by smoothness of 952 (and the fact that 952 is connected) we get

||¢||H1/2(1“) <C ||AF(P||H73/2(1*) = C |lcurlf (y7 (u — Z))”H%/Z(r)
=Cllyr @=2)llg-12r)y = C (||VT“||H—1/2(F) + ||Z||Hl(9)) .

Since (@l 1oy < Cldivall + [l@llg1/2¢r)) we get (2.31b). By similar reasoning,
yru € L2(I") implies | € H'(I") with [|@l 51y < CUlyrull 2y + lZllg o)
so that ¢ € H3/2(£2) and thus (2.32b). o

The following lemma introduces some variants of Helmholtz decompositions.

Lemma 2.9 Let §2 be a bounded sufficiently smooth Lipschitz domain with simply
connected boundary. For anyu € XinpNH(div, £2), there exist ¢ € HOl (.Q)ﬂH3/2(.Q)
FoL g

@Springer Lﬁjog



1884 Foundations of Computational Mathematics (2024) 24:1871-1939

and z € H' (£2) with divz = 0 such that uw = V¢ + curl z. The function u belongs to
H'!/2(2), and we have the estimates

IVellaz@) = Cllullgizg) (2.342)
llcurl zllgi2 () < C (llcurlull + llyrully2r)) - (2.34b)

If u admits a decomposition of the form u = r + curl ¥ with v € H'/?(82), then the
decomposition u = V¢ + curl z satisfies

IVellazoy < Clitlgzg) - (2.34¢)

Proof The Helmholtz decomposition was considered in [50, Thm. 4.2(2)], [49,
Thm. 28(i)]. Since div curl = 0 and we require ¢ € HO1 (£2), we have

Ap =divu and ¢l =0. (2.35)

Lemma 2.8 implies for u € Xjmp N H(div, £2) that u € H'/2(£2). A standard shift
theorem for the Poisson equation leads to

lellm3r@) = Clldivullg-12() = Cllullgizg) - (2.36)

Next, we estimate z. Note that ¢ € HO1 (£2) implies V¢ = 0 so that also y7Ve =0
on I". Lemma 2.8 then implies

[I curlzI|H1/z(_Q) <C (Ilcurl curl z| + ||yr curlz||Lz(F))

< C (llcurlull + llyrullzry + lyr Vel gry)
V=0
TETC (leurlull + llyrullpary) -

The estimate (2.34c) follows from (2.36) via divu = div r. This finishes the proof of
(2.34). O

2.5 Maxwell’s Equations with Impedance Boundary Conditions

We have introduced all basic ingredients to formulate the electric Maxwell equations
for constant wavenumber k € R\ (—ko, ko) with impedance boundary conditions on
I". We define the sesquilinear form Ay : Xjyp X Xjmp — C by

Ar(u, v) := (curlu, curl v) — K> (w,v) —ik (ur, vo)r2ry - (2.37)

The variational formulation is: Given an electric current density j and boundary data
er with

jelX (@), greH;"*divp, M) NLA(T) (2.38)
FolCTM
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find E € Xjmp such that

Ak(E,v) = (j, V) + (1, vD)r2ry  VV € Ximp- (2.39)
Note that the assumptions (2.38) on the data are not the most general ones (see (4.1),
(4.2) and (4.17) below) but they reduce technicalities in some places. By integration

by parts it is easy to see that the classical strong form of this equation is given by

LoxE=] in$2,
BriE=gronl’

(2.40)
with the volume and boundary differential operators L x and Bg, , defined by
Lo xv = curlcurlv — k*vin 2 and Br v :=yrcurlv—ikllrvon I.
We denote by
SE Xy = Ximp (2.41)
the solution operator that maps the linear functional Ximp > v — (j, V) + (&7, V)2
to the solution E of (2.40) and whose existence follows from Proposition 3.1 below.
In our analysis, the sesquilinear form

(W, V) = k2w, v) + ik (ur, Vo) (2.42)

will play an important role. We note

Ai(u,v) = (curlu, curl v) — ((u, v)), (2.43)
Ar(n, Vo) = —(u, V),  Yu € Ximp, Vo € Hi}np(.Q), (2.44)
(@, V) = (v, W)y (2.45)

3 Stability Analysis of the Continuous Maxwell Problem

In this section we show that the model problem (2.39) is well-posed and that the norm
of the solution operator is O (|k|?) for suitable choices of norms and some 6 > 0.

3.1 Well-Posedness
The continuity of the sesquilinear form Ag(-, -) is obvious: it holds
|Ak(, V)| < Ceont lllimp.x IVlimpx ~ With  Ceont := 1.
Well-posedness of the Maxwell problem with impedance condition is proved in
[41, Thm. 4.17]. Here we recall the statement and give a sketch of the proof.

FolCT
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Proposition 3.1 Let 2 C R3 be a bounded Lipschitz domain with simply connected
and sufficiently smooth boundary. Then there exists yr > 0 such that

Ar(u, v
‘yk S lnf u #
u€Ximp\ (0} yeXip\ 10} 1 Wllimp, & 11V 1limp.

Proof Step 1: We show uniqueness. If Ay (u, v) = 0 for all v € Xy then
0 = Im Ag(u, w) = & [lurl|fz ) -

Hence, uy = 0 on I' and the extension of u by zero outside of §2 (denoted ) is
in H(curl, SNZ) for any bounded domain 2 C R3. This zero extension U solves the
homogeneous Maxwell equations on R3. An application of the operator “div”” shows
that divii = 0 and thus & € H'(R?). Using curlcurl = —A + V div we see that
each component of 1 solves the homogeneous Helmholtz equation. Since U vanishes
outside §2, the unique continuation principle asserts u = 0.

Step 2: From [19, Thm. 4.8] or the technique developed in [5] it follows that the
operator induced by Ay, is a compact perturbation of an isomorphism and the Fredholm
alternative shows well-posedness of the problem. O

3.2 Wavenumber-Explicit Stability Estimates

Proposition 3.1 does not give any insight how the (positive) inf-sup constant y; depends
on the wavenumber k. In this section, we introduce the stability constant Cg,p, (k) and
estimate its dependence on k under certain assumptions.

Definition 3.2 (stability constant Cgp(k)) Let 2 C R? be a bounded Lipschitz
domain with simply connected and sufficiently smooth boundary. The stability con-
stant Cgap(k) is any constant such that for each j € LZ(.Q) and g7 € L2T (I') the
solution E = SYY (j, gr) of (2.39) satisfies

IEllimpx < Cstab ) (lill2(e) + lgrlizim) - 3.D

The behavior of the constant Cgyp, (k) with respect to the wavenumber typically
depends on the geometry of the domain £2. Our stability and convergence theory
for conforming Galerkin finite element discretization as presented in Sect.9 requires
that this constant grow at most algebraically in k, i.e.,

30 > 0, Cgap > 0 such that Cap (k) < Caplk]”  Vk € R\ (—ko, ko) . (3.2)

Remark 3.3 For the hp-FEM application below, the term |k|? will be mitigated by an

exponentially converging approximation term so that any finite value 6 > 0 leads to

an exponential convergence of the discretization. O
Elol:;ﬂ
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Next we present an example® which shows that in general the exponent 6 in (3.2)
cannot be negative.

Example 3.4 Let 2 = (=2,2)3,w := (—1, 1)%. Define the cutoff function x : 2 — C
by

2 2 2. 3
X% i= { (1= (1 =3 (1 =) i x= ()], < o
0 otherwise.

Note that x € Hg (£2). With e; € R3, 1 < j < 3, denoting the j-th canonical unit
vector we define

jr=e® (= (Ax +1kdix)er + Voax + ikcurl (xe3)).
Then, E : = x ¢!%*1 e, is the unique weak solution of
LoxE=jin £2, BriE=0onT".
Using the symbolic computer algebra program MATHEMATICA we obtain

16777216 (5k* + 33)

13l 200 = :
L*(s2) 10418625
16777216 (k* + 3)
2 _ 2 —
”E”H(curl,Q),k =2 31255875 ’ IIET”LZ(F) - 0’
which shows that in general 6 > 0 in (3.1). O

Remark 3.5 Let £2 C R3 be a bounded Lipschitz domain with simply connected and
sufficiently smooth boundary. The sesquilinear form Ay satisfies the inf-sup condition

. [Ag(u, v)| 1
inf su > .
uEXimp\ {0} yeXipmp\ {0} 1 Wllimp k[ Vllimp.k — 1+ [k|Ctan (k)

3.3)
This result is shown in the same way as in the Helmholtz case, see, e.g., [17, Thm. 2.5],
[32, Prop. 8.2.7]. If assumption (3.2) holds, then

. |[Ax(u, v)| 1
inf u > g
uEXimp \{0} veX;pp\ (0} [l llimp, & ¥ |limp, & 1 + Csap k|

O

In the remaining part of this section, we prove estimate (3.2) for certain classes of
domains. The following result removes the assumption in [23] for the right-hand side
to be solenoidal.

5 We thank an anonymous referee for suggesting this example.
FolCT
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Proposition 3.6 Let 2 C R3 be a bounded C* domain that is star-shaped with respect
to a ball. Then, Assumption (3.2) holds with 6 = 0.

Proof Let ¢ € Hol(.Q) satisfy
—Ap =divj in £2.
Then,

Ik 2V @llimpi = kI IV@ll22) < CIkIT iVl g-10) < CIKI il (o),
i+ Vellize) < lilltzge) + Clldivillg-1@) < Cllilli2go)-

Noting that ¢ vanishes on I, the difference S%W,Y(j, gr) — k| =2 Vg satisfies

Lou (SHYG.8r) — K2 V) =i+ Vo, Bru(SYG.en — k7 Vo) = gr.
and div(j + Vg) = 0. [23, Thm. 3.1] implies

ISYY G, g7) — k172 Vollimpx < C (Ili + Velizo) + llgrlrzam)
< C (il + lgrliaer) -

The estimate for Squ, gr) follows from a triangle inequality. O

For the more general situation of domains that are not necessarily star-shaped we
require some preliminaries. A bounded domain £2 with smooth boundary admits, e.g.,
by [22, Cor. 4.1] a continuous extension operator Egiy : H” (div, £2) — H™ (div, R3)
for any m € Ny. In particular this extension can be chosen such that for a ball Bg of
radius R with 2 C Bpg there holds

supp (Egivh) C Bg Vh € H(div, £2). 3.4)

Since the right-hand side j in (2.40), in general, does not belong to H(div, £2) we
subtract an appropriate gradient field: Let ¢y € HO1 (§2) be the weak solutionof —Ay =
div j. Asin the proof of Proposition 3.6, we write Sglvlg G.gr) = Sgl,\,’c‘/(,j, gr)—k 2V
with

j:=j+ Vv € H(div, 22). (3.5)

The operator Egjy allows us to extend}to acompactly supported functionJ := Egiy G) €
H(div, R3). Next we introduce the solution operator for the full space problem

curlcurlZ — k’Z =]  inR3,
|0,Z (x) —1kZ (x)| < c/r2 asr = ||x|| — oo,
FolCT
i
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via the Maxwell potential
Z=Nuwi @ = Nywi @D +MA D). (3.7a)

where®

N§iw e (D) = /38k (- =y I ay
R in R3 (3.7b)
Nyt i Q) := k2VNG (div])
with the fundamental solution of the Helmholtz equation in R?

ikr

gk (r) == (3.7¢)

4y’

Note that the adjoint full space problem is given by replacing k in (3.6) by —k with
solution operator Nyw,—« (J)-

The layer operators SI\YIW, o Sﬁ,}‘%  map densities defined on the boundary I" to
functions defined in £2 by

St () = /ng(ll—yll)u(y)dFy -
inR\T". (3.8)

Sttw i () 1= k2VSSR ¢ (divr )
We set Sﬁ/g\?,ﬁ = Sthw,k + Sﬁ/}]\rfb,k'

Theorem 3.7 Let 2 C R? be a bounded Lipschitz domain with simply connected,
analytic boundary. Then, there is C > 0 depending only on §2 such that

Cstab (k) < C k" /1 +1n |k].

Remark 3.8 The analyticity requirement of 952 can be relaxed. It is due to our citing
[34], which assumes analyticity. O

Proof We estimate Sg’\,’("(j, gr) (see (2.41)) for given (j, g7) € L2(2) x LZT(F).

Step 1 (reduction to solenoidal right—hang side): Let ¥, :ivbe as in (3.5) so that
Sgl\,y g, gr) = th;l}?}:/(i’ g7)—k 2V and div j = 0. As in the proof of Proposition 3.6,
we have

k=2 VY llimpk < C kI lill2 2y, il < Clillizgy,  divi = 0.
3.9)

6 Witha slight abuse of notation we write /\/'If,[“\‘;}, (V) = f]R3 gk (I- —yl) v (y) dy also for scalar functions
v. This is the classical acoustic Newton potential.

FolCT
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In particular,
lilla@iv.2) < Clijllz)-

Step 2 (reduction to homogeneous volume right-hand side): We set
8r ==¢gr — B[',kuj' with uj := (NMW,kgdivj)‘Q (3.10)

so that S}Z/Ivlg G , 87) = up+u; with ug being the solution of the homogeneous problem

curl curlug — k%ug = 0 in £2, 3.11)
yr (curlug) —ik (wp)7 = gr on I". ’
To estimate uj, we rely on the following estimate from [37, Lem. 3.5]
k1IN £ (D)l 222) + 1IN £ (D 1 2)
+k|™ l|| NERS wik (D a2y = Cllfllp2mws) (3.12)

forall f € L?(R3). Abbreviate Nt := Nt Curl Wk (Egiv)) and NV := A I\C,l“\;l, . (div Edivy)-
Estimates (3.12) and (3.9) imply

KN [ 2 0y + INT g ey + 16N g2 ) < Cllillez o),
KN [l 200y + INY g1 ) + KITHINY g2y
= Clldiv &aivill 23y = CllilliLz)-

For uj = Newrl 4 k=2V NV we get by a multiplicative trace inequality:

1/2 1/2
10 limp. e < C (IKTIN 12y A+ IN g1y + [N G2 Neut

L2(2) H'(2)
+ KITHINY gy + K20V NY ey

. —1ns — 1/2 1/2
< C (Nillzcy + K iz + 2N 1L INT IS o))
=< ClijllL2(e)- (3.13)

Arguing similarly, we get for 87 = g7 — Br xu;j
Igr 2oy < lgrlivzary + I1Breujllz
< € (llgrllaqr) + K1 lillag)) - (3.14)

Step 3 (Estimate of yr curlug, yrug): To estimate the function ug, we employ the
Stratton-Chu formula (see, e.g., [12, Thm. 6.2], [43, (5.5.3)-(5.5.6)])

ug = curl ﬁ,‘f{;}, « (yrug) + S 3 k WV (yrcurlug) in £2.

Fo C 'ﬂ
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The weak formulation (2.39) implies
lleurlug > — &> fluo1* — ik (o) 7 2 ) = @7 (W0))p2(r)
from which we obtain by considering the imaginary part
Ikl o) 72y < 87 2y - (3.15)
From the real part, we then obtain by a Cauchy-Schwarz inequality

I curluo? — kI o |I*| < C kI~ 17 2 . (3.16)

Next, we estimate the traces yr curlug and yrug. Since ITruy € LZT(F) we may
employ yrug = (I17ug) x n and (3.15) to obtain

1
lyraolly2ry = HIrwollp 2y < ] — g7 l2(r)- (3.17)
The boundary conditions (second equation in (3.11)) lead to

lyr curluolly2ry < g7y + 1kl o) 7ll2ry < 21187 llL2ry - (3.18)

The estimate (3.18) also implies

Idivr yr curluollg-1(ry < lyr curlollpary < 2087 liagry - (3.19)

Step 4 (Mapping properties of Maxwell Layer Potentials)

The mapping properties of curl SK};& i Sﬁl{{, «» and SMW . are well understood
due to their relation with the acoustic smgle layer potential. We conclude from [34,
Lem. 3.4, Thm. 5.3]:

‘ ﬁl\glv,kﬂHH D) < Co kI g ¢y fors > 0.
u _ < llcurl S curl H
lwollg-122) < H u o
curl \v4
+ ”S «(yr curlap) H @) + HSMW,k(VT curl ug) ”H—I/Z(Q)
curl curl
< H (VTUO)HHI/Z(Q) xr curluo)H
k|2 H Sewl - (di curl u H
+ k|77 | Spw k (divr yr curlug) .
<C (|k|3/ lyruolizz ry + C Ikl llyr curluglig—32 )
V2 divy yr curluOIIH_l(F)) . (3.20)
FoE"ﬂ
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Inserting (3.17), (3.18), (3.19) in (3.20), we get
luollg-12(0y < C Ik &7 llL2cr - (3.21)
Step 5: Let Ry and K be as in Lemma 2.6 and consider
U:=rg—curlug for ry:= Ry(curlcurlup). (3.22)

Since up € Xjmp, we have up € L2(.Q), and the relation curl curlug — k%uy = 0
implies curl curl ug € L2(£2). Hence, ro € H!(£2) together with the k-explicit bound

ol 2oy = K> IR2u0) lg1/2() < C [kI uollg-1120)

“2 c kP g 323
< ClkI’llgrlier - (3.23)

By the same reasoning and the mapping properties of Ry, we obtain
ol @) < C kI lluoll - (3.24)

Furthermore, we compute with Lemma 2.6

curlu ©:22) curl R (curl curl uy) — curl curl ug Lem-26 _ curl K5 curl ug.
(3.25)

We employ the Helmholtz decomposition of U in the form W = V¢ + curl z given
in Lemma 2.9 with ¢ € H} (£2) N H¥?(2), z e H'(£2), and divz = 0. Since
div = div rg the function ¢ does not depend on curl ug (see (2.35)), and we obtain
from (2.34a)

(2.34¢) (3.23) 3=
lelgsrey =< Clrollgegy < CIkIP I8l - (3.20)
Next, we estimate z. The definition of ry in (3.22) gives
yrii = yrro — yr curlug = yrro — 87 4+ ik(ug)r € L3(I). (3.27)
Lemma 2.9 then implies

Il curl zllg1/2 () < € (leurl Tl + lly7UllL2 )

(3.25 ~
2 € (leurl Ky (curl uo) | + [lyrilipa )

(3.27),Lem. 2.6 ~
< C (lluollg-12¢g) + llyrroliizcry + kL o) 7 2 ry + 187 2 r))

(3.21),(3.15) _ _
< C (kI lgr Iz + llyrrollzory + 187 llzr ) (3.28)
) ) D)

FoC'T
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Step 6: The combination of Step 5 with a trace inequality leads to

lUllgi2e) < VeIl g) + lcurl zllgiz o)

(3.26),(3.28) .
= (WP Mgrlegy + Irrrolizg ) - 329)

Let Bé/ 12 (£2) denote the Besov space as defined, e.g., in [54]. Then the trace map

yr - Bé’/lz(.Q) — L2T(F) is a continuous mapping (see [54, Thm. 2.9.3]), and we

obtain from (3.29)

~ 3~
lullgz) < C (Ikl lgr iz + IIFOIIB;(IZ(Q)> . (3.30)
This allows us to estimate

(3.22) ~
leurluollgizy < C (Ivollgizce) + 18lg120)

(3.23).(3.30) ~
C e (|k|3 187 2o + ||ro||B;/lz(_Q)) : (3.31)

(2) We use the fact (see [54]) that the Besov space is an inter-
1

polation space le’/lz(.Q) = (Lz(.Q), Hl(.Q))l/2 | (via the so-called real method of

interpolation). For¢ € (0, 1]select (rp); € H!(2)as given by Lemma 3.9 and estimate
with the interpolation inequality (by using the notation as in Lemma 3.9)

To estimate ||rg ||B1 2
2,

”rOHB;ﬂZ(m <|ro— (rO)tHB;/lZ(_Q) + | (ro), ”Bé{f(ﬂ)

<C <||I‘0 — (ro); ||1/2 |ro — (l‘o)z||il/12(9) + | (rO)’”Bi/.z(Q))

Lem. 3.9 1/2 1/2 - 1/2
< C (r”“ vz gy (ITolgiegy + 1 IRl ) + (ro)A!By;(m)
(3.34),(3.35)
= (o llnagey + 12 kol ) + /T Tl Il e))

< C (2 Irollgn ) + VT + Ml ol )
(3.23),(3.24)
< (PP ol 4+ /T Tl 1K o 122 ) -

Using (3.16) we get

1/2
k] llaoll = € ((leurl w12 + [(Ik1 uol® ~ fleurl wo|1>|)

12 15 (3D 35
SC<|k| ||gT||L2(r)+||Curluo||) < C|Ikl ||gT||L2(F)+”1‘0”]3;/12(9)
EOE';W
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< C (IKP Igrllary + 172 k12 luoll + /T + ] k12 uoll-12q) )

321) By
= (VU Tl K lEr e + 072 162 uoll)
Selecting ¢ ~ 1/ |k|? sufficiently small implies

Ik luoll < C IkP /T +In [kl 187 llr2r) -
We conclude from this and (3.31)
leurl wollggi2(@) + Ikl uoll < C kP VT + Wkl lgrlagry . (3:32)

Combining (3.32) and (3.15) yields

uollimp.x < C k1> /1 +1In [kl 187 lI2(ry
3.1

4) .
= CP YT+l (lgrley + 10 ilze) - 333)

Step 7: Combining (3.9), (3.13), and (3.33), we have arrived at

MW . -2
|G, < 1YY i+ gl 00l

< C P VT+In K (llgr o + 1kl ) -

which is the claimed estimate. O

Lemma 3.9 ([35,Prop. 4.14]) Let 2 C R? be a bounded Lipschitz domain. Then there
is C > 0 such that for every w € H'/*(2) and every t € (0, 1] there exists some
w; € H'(82) such that

lw — wll + £ lwill g1 2y < 2 wll g2y - (3.34)
llw: IIleflz(Q) = Cyl+ il llwlgizg)- (3.35)

4 Maxwell’s Equations with the “Good” Sign
4.1 Norms

We consider Maxwell’s equations with the “good” sign and first describe the spaces

for the given data. Since the sesquilinear form Ay (-, -) is considered in the space Ximp,

the natural space for the right-hand side is its dual X{mp. In our setting, the right-hand

side is given in £2 via the volume data j and on I" via the boundary data g7. In order to
Elol:;ﬂ
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view j and g7 as elements of X{mp, we introduce the spaces X{ (82 and X;mp (I').By

using the usual notation V’ for the dual space of a normed vector space V we define
Ximp,0 := {W € Ximp : curlw =0} = (Vg |p € lmp(.Q)}

Xiinp (£2) —( (9))/ﬂximp,0, .1)

H'(divy, I') = {w e H,'(I") | div w € Hj (r)}
1/2

X (1) 1= (M) NH;! (divp, 7). 4.2)
and equip the spaces lep (£2) and X[mp (I') with the norms (cf. also Lemma 4.1 below)

[(£, V)]
Ifllx; (@)= sup ——, 4.3)

P veXimp\ {0} 1V llimp. &

[(&r, VT2l
lgrllx (ryx = — = 4.4)
P VEXimp\(o) ”V”imp,k

We also introduce for g7 € H;l/z (divp, I') (cf. (2.14))

Iz llg-12aiv . ryx = kI divE g7l 12y + 1K lgrllx; k- (45

An equivalent norm that is more naturally associated with the intersection spaces
(£2) and X! (I') is given in the following lemma.

1mp imp

Lemma 4.1 The spaces X; | »(82) and X!

imp
subspaces of Xi/mp, and there holds the norm equivalences

(I'") can be viewed in a canonical way as

|(£, Vo)l |(F, z)|
Ifllx: (2)k ~ sup Vol t swp o —— (4.6)
P peH, (2):Vp#0 IVellimpk  zemt2)\(0) el 1zl (2,
(@7, Vro)eml (@7, 2112l
||gT||)qm e ™ sup Vo, u Tzl
P (pEHllmp(Q) Vo#0 I (p”lmp,k zeH! (2)\{0} | |||z”H1(.Q),k
4.7

with constants implied in ~ that are independent of |k| > ko.

Proof Proof of (4.6): Since Vo € Ximp for ¢ € Hi}np(fz) and H'(22) C Ximp, the
right-hand side of (4.6) is easily bounded by the left-hand side. For the reverse estimate,
we decompose any element v € Xy, with the aid of Lemma 2.7 as v = Vg + z with
IV9li22) + Izl2@) < ClIVili ) and |zl ) < ClIVilHeur, o). Hence,

196 .t + el 2l @y, < € (IKIY2A¥7 ey + 27 lligry) + 1V limp )

< C”V”imp,ka (4 8)
FoE'ﬂ
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where, in the last step we used the multiplicative trace estimate ||zT||i2 ) =
Clizlly2(o)llzllg1 (). This implies that the left-hand side of (4.6) can be bounded
by the right-hand side.

Proof of (4.7): The proof is analogous to that of (4.6). O

Note that L>(2) € X! (£2)and L2(I") C X!

imp imp
as can be seen from the following reasoning. For m € N and f € L?(2) or f €
H™(2) or f € H"(div, 2) and for g7 € L2(I") or gr € H}T/*(I) or gr €
Hm+1/2

(I'") with continuous embeddings

(divp, I'), we have by direct estimations

Iflx;, @)k < CIKIT Ifllz () < C kI IE @) h < CIKI 2 €l v, 2) k-

4.9)
lerllx;, .« < CIKI™2llgr iz < CIKI gzl «
< C kI llgr lm+12div 1) 4+ (4.10)
||gT||H—1/2(diVF,1"),k < C|k|||gT||H1/2([‘),k- 4.11)

We also have the following result for g7 lg-1/2(giv . ).k

Lemma 4.2 There is C > 0 depending only on §2 such that
g7 la-172(divy, ry ke < Cll Ve 8rllg-12¢ry k + KIIGT l-172(1) k-

Proof We use the minimum norm lifting EA from (6 13) with the property that
IVollLzey = ||V5A((p|[‘)||L2(Q) for arbltrary @ € lmp(.Q) By continuity of the

trace mapping, we getinfeer ¢ —cll gi/2(ry < C||V5A(§0|F)||L2(_Q) < ClVellL2(g)-

An integration by parts shows for arbitrary ¢ € lmp(.Q) and arbitrary c € R

I, Vro)emyl = 1divr gr, ¢ — Oyl = I dive grllg-12ryle — cllgz -
Taking the infimum over all ¢ € R yields, for arbitrary ¢ € 1mp(Q)
l@r, Vro)emyl < Clldive grllg-12m IVl o)

and we conclude

l@r, Vro)e )l
sup

< ClkI™ Y divr grll g-12r)-
vent @920 W 2IV gl + KVl ) "

Similarly, for z € H!(£2) we estimate @7, zr)r2my| < Cligrlla-12¢m)12lla1 (o)-
Hence,

lerlix,, i = € (K7 Idivr g7l + ler e ). @12)

The result follows. O
Fo C 'ﬂ
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4.2 The Maxwell Problem with the Good Sign

The Maxwell problem with the good sign reads: Given f € Xi’mp(.Q) and gr €
Xi/mp(F ), find v € Xjp, such that

Loixrv=Ffin22 and Briyv=gronl. (4.13)
The weak formulation is:
findz € Xjmp s.t. A,‘:(z, v) =& v)+@r,vrery VYV € Ximp,  (4.14)
where the sesquilinear form A,‘: is given by
Af(u,v) := (curlu, curl v) + &% (w, v) — ik (ur, vy - (4.15)

The solution operator is denoted (f, g7) — S_;; « (£, gr). In this section, we develop
the regularity theory for problem (4.13). Indeed, as the following Theorem 4.3 shows,
(4.14) is uniquely solvable.

Theorem 4.3 Let 2 be a bounded Lipschitz domain with simply connected boundary.
Then there is C > 0 independent of k such that the following holds:

(1) The sesquilinear form AZ‘ satisfies Re AZ‘(V, ov) = 27]/2||v”i2mp,k forallv e
Ximp, where o = exp (%! sign k).
(ii) The sesquilinear form is continuous: |AZ‘(u, V| = llimp,& I ¥llimp.x for all u,
\ALS Ximp-
(iii) The solution u € Xjnp of (4.13) satisfies

[ullimpx < C (|k|*1 Ifll () + k1712 ||gT||Lz(p)) : (4.16)
Wlimp s < € (IFlxg, (0.4 + g7l k) @.17)
provided (£, gr) € L*(2) x L.(I") for (4.16) and (£, gr) € X{,,,(£2) x X, (I")

for (4.17).
(iv) Let m € No. If T is sufficiently smooth and t € H"(div, 2), gr € Hy™'/(I),
then

”u”Hm'H(Q)’k <C |k|_3 (”f”H”’(div,.Q),k + ||gT||Hm—l/2(divr,r),k) , (4.18a)
il g+ eurt, )k < C k|2 (I1f [l div, 2.k + k1 11T lgm+12ry 1) - (4.18b)

Proof Proof of (i), (ii): For (i) we compute

Vo

EOE';W
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The continuity assertion (ii) follows by the Cauchy-Schwarz inequality.
Proof of (iii): The estimate (iii) follows directly from a variant of the Lax-Milgram
lemma: We choose v = ou in the weak form (4.14) and estimate

V2

- lullfyp s = Re AT (u, 0u) = Re ((f, ou) + (g7, our)r2(r))

< (Ilfllxgmp(.(z),k + ||gT||Xi’mp(1“),k) [l flimp.k (4.19)

from which (4.17) follows. Estimate (4.16) is then obtained from (4.17) and (4.9),
(4.10).

Proof of (iv): From now on, we assume that I" is sufficiently smooth. We proceed
by induction on m € Ny and show that if the solution u € H” (curl, £2), then u €
H"*!(curl, £2). Specifically, after the preparatory Step 1, we will show u € H”1(£2)
in Step 2 and curlu € H”1(£2) in Step 3. Step 4 shows the induction hypothesis for
m = 0 including the norm bounds. Step 5 completes the induction argument for the
norm bounds.

Step 1: Taking the surface divergence of the boundary conditions we get by using
the differential equation

[43,(2.5.197)

—ikdivrur = divy g7 — divy (yr curlu) Vdivr gr + curly curlu

= divy g7 + (curlcurlu, n) = divy g7 + (f — k%u, n). (4.20)
We note that div(f — k2u) = 0 so that
IF — K>, m) [gn-12ry < ClIE = Kl (). (4.21)
Inserting this in (4.20) yields

Idivr g llgn-120y < ClkI™ [IIdivr g7 llgn-1/2r)

+ If Il 2y + [kI? ||11||Hm(9)] . (4.22)
It will be convenient to abbreviate

R = 1K1~ [ 1V g7 172y + [Elln o) + 161 IE v, 2
(4.23)

1P Nl + 161 T, 2

Step 2 (H"+1(02)-estimate): With the aid of Lemma 2.7 (ii), we write u = Vo+1z
with ¢ € H"™*1(£2) and z € H"*1(£2) and

(4.23) _
lpllgn+i () + Izlan(2) < Cllulan@) < CIkI™" R, (4.24)

(4.23)
lzllgn+1 () < Cllullpmcurt,2) = CRm. (4.25)
Elol:;ﬂ
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Step 2a: We bound

. 25)
ldiv ZT||Hm—1/2(r) < Clizr lgm+12(ry < C||Z||Hm+1(_Q) < CR,. (4.26)
Step 2b: Applying div I17 to the decomposition of u leads to
Aro|lr =divp Vre =divpur — divp zr 4.27)

with

) ) (4.22),(4.26),(4.23)
[divpur —divp z7 ||Hm—l/2(1") < CR,,. (4.28)

Together with (4.27), we infer | € H™+3/2(I"). Since I is connected, ¢| - is unique
up to a constant. We select this constant such that ¢ | - has zero mean. Elliptic regularity
implies

. . (4.28
||§0||H3/2+m(1—~) <C ||leF ur — le]" T ||H71/2+m(1") <

)
CRy.
The function ¢ satisfies the following Dirichlet problem:
Ap =diva —divz =k 2divf —divz e H"(2), ¢|r € H/7" (),

from which we get by elliptic regularity

ol gr2em ) < C <||¢||H3/z+m(m k72 div ] ) + ||divz||Hm(_Q)) < CR,.
We conclude
llallgm+1 2y < CRm. (4.29)

Step 3 (H"*!(curl, £2)-estimate): We set w := curlu. Since u € H"1(£2) (cf.
(4.29)) we know that w € H” (§2). As in Step 2 we write w = V¢ + Z and obtain

- - .29)
121l 1@y + 1ZlIam (@) < Cllwlan(2) < Cllullgniioy < CRun,
IZllgn+1 @y < ClIIWlH cur,2) < C (Il curl Wllgm (@) + [IWlH (2))

<C (|| curl curl ullgn (@) + ||u||Hm+1(_Q))
= C (If = Fullwne) + Rn) -
To estimate the norm of ¢, we employ the boundary condition satisfied by u, i.e.,
Vrg=nxyrVo =n x (yrwW — yrz) =n x (gr +ikur — yrz).

FolCT
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In view of g7 € Hjy7'/> (I"), this implies ¢| € H™ /2 (I") with

IVr@llgmeinry < C (lgrllgnainry + KLz gz gy + 1y zlignezry)
S C (||gT||Hm+l/2(F) + |k|||u||Hm+1(_Q) + ||i||Hm+l(_Q))
< C(lgrlgm+12ry + |kIRm) -

The function ¢ solves the Dirichlet problem
A =diviw —Z) = —divz in82, @|pe H"?T). (4.30)

Since @|r is determined up to a constant, we may assume that ¢|r has vanishing
mean. Elliptic regularity theory for (4.30) tells us that

_ ) - /
1981 2) = € (197G i1z ry + 190V 2y
< C(lgrlhgn+12¢r) + 1kIRp) -

We obtain w € H"t1(£2) with

Icurlule+1(Q) = |W|Hm+1(_(2) <C (|V¢|Hm+l(9) + |Vi|Hm(Q))
< C(lgrlam+12ry + |kIRm) - (4.31)

Step 4: We ascertain the bounds (4.18a), (4.18b) for m = 0. We have

(4.17),(4.9),(4.5) _
Il flimp. =< C k17> (Iflrcaiv, 20,k + &7 la-12@ive. )

. 4.5) _
Idivrgrlg-12gy < k17 g la-12 @i k-

This implies for Rg from (4.23)
Ro < ClkI™? (IIf 1 rcaiv.2) & + 187 la-12(div . 1) 1) (4.32)

and in turn from (4.29)

. (4.29),(4.23) O
w2 = € (Il + K llmeg) = ClkI™'Ro

-3
< CIkI™ (If llaaiv. ).k + 187 la-1/2div .1y k) »

which is formula (4.18a) for m = 0. Next,

Il et 206 = € (117" curl g o) + k1l o) 1)

@31 o
= C (I Ner e + Ro)
Elol:;ﬂ
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4.32),(4.11) . 5 '
= C(IklI" llgrllaegyx + 1k I la@y,2),k ) -

which is formula (4.18b) for m = 0.
We now assume that the estimates (4.18a), (4.18b) holds up to m and show that
they hold for m + 1. Introduce the abbreviations

Ti(m) := |fllam div,2).k + 187 lem-1/2(div -, 1) ko

Ta(m) == |If|lam @iv.e).k + KL IET lgm+12(r) -
It is easy to verify that (using (4.11) for the case m = 0)
Ty(m) <CTh(m) <CTy(m+1). (4.33)
By the induction hypothesis, we have

1
|k|||ll||Hm+l(_Q) + ”u||H’”+](curl,Q) < C|k|m+ ||u||Hm+1(Curl‘Q)yk
Ind. hyp.

. (433) .
< Clk" "Th(m) < Clk|" "Ti(m+1). (4.34)

Hence,

|k|—(m+2) Rui1 = |k|_(m+2) (|k|_1 I divr g7 llgmri2ry + |k|_l Il g+ ()

+|k|72”f”HW+1(div,9) + [kllallgm+1 o) + ||“||Hm+l(cur1,(z))

“434) e
< CIkI™ (Il divr grllgm+i2ryx + Iflam+1 @iv. @) x + T10n + 1))
< Clk|3Ti(m + 1) (4.35)

and therefore by the induction hypothesis and (4.29)

lallgm2@)x = C <||11||Hm+1(9),k + |k|_(m+2)|u|Hm+2(.Q)>

ind. hyp., (4.29) B B
< (KTTIOm) + K Ry

(4.35) .,
< Clk|”°Ti(m+ 1), (4.36)

which completes the induction step for formula (4.18a).
Again from the definition of R, 1, the induction hypothesis, and (4.33), we have

k|~ DR, < C [|k|—2||gT||Hm+s/z(p),k + 1k B 1 aiv, 2 & + |k|_3T2(m)]
< Clk| 3 Ta(m + 1).

The combination of this with (4.36) and (4.33) leads to
Wl 2 eurt 20 = € (1Kl I0lgn2e i+ K742 | curl ulging))

FolCT
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(4.36),(4.31) B 3
= (K2 Ta0m + D)+ 74 (g lgnssnry + K1 Rns1) )

< C (K172 Ta0m + 1) + k1 g gy + k72 Ton + 1)
< Clk|>Tha(m + 1),

which completes the induction argument for (4.18b). O

5 Regularity Theory for Maxwell’s Equations

In this section, we collect regularity assertions for the Maxwell model problem (2.40).
In particular, the case of analytic data studied in Sect.5.2 will be a building block for
the regularity by decomposition studied in Sect. 7.

5.1 Finite Regularity Theory

The difference between Maxwell’s equations with the “good” sign and the time-
harmonic Maxwell equations lies in a lower order term. Therefore, higher regularity
statements for the solution of Maxwell’s equations can be inferred from those for with
the “good” sign, i.e., from Theorem 4.3. The following result makes this precise.

Lemma 5.1 Let §2 be a bounded Lipschitz domain with simply connected, sufficiently

smooth boundary I'. Let m € Ny. Then there is C > 0 (depending only on m and $2)

such that for f € H™(div, 22), gr € Hj™*(I") the solution u of (2.40) (for j := f)

satisfies w € H™ 1 (curl, 2) and

lullgn+i(yx = C [|k|_3 (I e aiv. ).k + 187 l|m—172div 1y k) + ||11||L2(9)] ;
(5.1)

lallgn+1 curt, 2y <C [Ikl_2 (I Nl div. 2).k + IKIIET lgm+1/20ry 1) + K] ||ll||L2(9)] :
5.2)

If Assumption (3.2) holds, then 2o < Cstap |k |~ (I[fIILz(_Q) + ||gT||Lz(F)). In
particular,

0l urt 21 = € k172 {1 divEllze) + (1 + Coan) kT2 IE 2

+ (1 + Coan) Kl ligr gy + (1 + Cua) K™ llgr iz |-
(5.3)

Proof The weak solution u of (2.40) exists by Proposition 3.1 and depends continu-

ously on the data. In particular, u € L2(£2). From the equation Lg ju = f, we have
Elol:;ﬂ
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—k*divu = divf so thatu € H(div, £2). The function u solves
Loiu=f+2kn, Brju=gr. (5.4)

It is easy to see that Theorem 4.3 is inductively applicable. We get

g1y = € (Wl 08 + 260l v,k + K7 g -2y k)

= € (K17 Il v .k + WL g i 2k + 0l )e) - (5:5)

We may successively insert (5.5) into itself to arrive at (5.1). The statement (5.2)
follows from (5.1) and Theorem 4.3 and the observation |7 lgm-12@iv, ryx =

Clklllgr llgm+172¢ry k- o

5.2 Analytic Regularity Theory
In this section, we consider the Maxwell problem (2.40), i.e.,
LoyE=fin 2, BryE=gronl (5.6)

with analytic data f and g7 and analytic boundary I". We show in Theorem 5.2 that
the solution is analytic, making the dependence on k explicit. In [40, Appendix A] we
generalize the theory in [45, 53] to the case of inhomogeneous boundary data. The key
idea there is to reformulate the problem (5.6) as an elliptic system and then to apply
the regularity theory for elliptic systems with analytic data to this problem (see [14]).
Here, we summarize the main results.

Problem (5.6) can be formulated as an elliptic system for U = (E, H), where E is

the electric and H := —% curl E the magnetic field:
. (culcurlE—~VdivE ) 2 .
L):= <curlcurlH—VdivH> =FHEU g
T U) := Hxn-—Ey = —18r on I,
divE 5.7
B (U) := divH =kGU+ G on I
yr curl H + (curl E) 7
for
1 .

1 . 0 _k_2 (lef)|r
F o= <f+liczv‘lthf>, GU = 0 . Gr = 0

edt i(Hr — yrE) —iyrf

In [40, Appendix A] we show that this system is elliptic in the sense of [14]. For
the special case G = 0 and gr = 0, the analytic regularity theory for this problem
has been developed in [45, 53]. The following Theorem 5.2 generalizes their result to

FoC
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the case of inhomogeneous boundary data g7, Gr. To describe the analyticity of gr
and G, we assume that these functions are restrictions of analytic functions g* and
G* on an open neighborhood U of I and satisfy gr = yg* and G = y G* for the
standard trace operator y, i.e., the restriction to I". We write g7 € A(Cg, Ag, UrN$2)
if g* € A(Cg, Ag, Ur N £2).

Theorem 5.2 Let 2 C R? be a bounded Lipschitz domain with a simply connected,
analytic boundary. Let Ul be an open neighborhood of I'. Let f € A(Cg, At, $2) and
gr € A(Cg, Ag, Ur N §2). Then there are constants B, C > 0 (depending only on £2,
Ur, and i, Ag) such that the solution E of (5.6) satisfies

E € A(CCg, B, 2), (5.8)

where Cg = Ct |k|_2 +Cy |k|_l + |11<_| ||E||H'(cur1,9),k~ If Assumption (3.2) holds, then

Ce = C(1+ Cun) (Crlkl" ™ + Cylll ™). (5.9)

Proof The statement of the theorem follows from [40, Cor. A.2] and more details can be
found there. The existence u € Xy is implied by Proposition 3.1, and finite regularity
assertions for E are provided in Lemma 5.1. In particular, E € H?(£2). In turn,
U = (E, H) € H' (curl, £2) solves the elliptic system (5.7). This makes [40, Thm. A.1]
applicable, which shows the corresponding result for U by a boot-strapping argument
and an explicit tracking of the wavenumber k to arrive at the result of [40, Cor. A.2]

|Elnr(@) < CCB” max(p, k)? Vp € N (5.10)

with Cg as given in the statement. A direct calculation shows [|E[lg1 (o) < Cglk| and

IEllL2(2) < Cg so that (5.10) also holds for p = 0 and p = 1. This shows (5.8).
The estimate (5.9) follows from (5.3) of Lemma 5.1 and the definition of the

analyticity classes together with the trace estimates ||gr|lgi/2(ry < CCglk| and

lgrlly2cry < CCglkl!2. o
6 Frequency Splittings

Asin [17, 31, 34, 37-39] we analyze the regularity of Maxwell’s equations (2.40) via
a decomposition of the right-hand side into high and low frequency parts.

6.1 Frequency Splittings in Q: Hps, Lys, Hg, Lo, Hp, LY

In order to construct the splitting, we start by recalling the definition of the Fourier
transform for sufficiently smooth functions with compact support

ﬁ(§)=f(u)(s)=(2n)*3/2/ e X y(x)dx V& e R? 6.1)
3

FoCT R
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and the inversion formula
ux) = F L (x) = (2n)—3/2/ ™8 hE)de  vx e R
]R3

These formulas extend to tempered distributions and in particular to functions in
L%(R%). Next, we introduce a frequency splitting for functions in R3 that depends
on k and a parameter A > 1 by using the Fourier transformation. The low and high
frequency part is given by

Lgsu = F ' (o F@) and Hgsu:=F ' ((1 = ou)) Fw),  (6.2)

where xs is the characteristic function of the open ball with radius § > 0 centered
at the origin. We note the splitting Hps + L3 = I. By using Stein’s extension
operator Esiein, [52, Chap. VI] this splitting induces a frequency splitting for functions
in Sobolev spaces in £2 via

(6.3)

Lof := (Lps&seinf)|, and Hef := (HgsEseinf)

2 ‘.Q’

where, again, Lof + Hof =fin £2.

In general, the condition div f = 0 neither implies div L of = 0 nor div Hof = 0.
We therefore introduce another lifting (instead of Eseein) for functions in Sobolev
spaces on £2 that passes on the divergence-free property to the lifting to the full space
and allows for alternative frequency splittings L%, Hg at the expense that L% + H_%
is not the identity but the identity plus a smoothing operator. With the operator R, of
Lemma 2.6, which has been constructed in [15], we set

H_gf := curl Hp3EseinRof  and L%f = curl L3 EsteinRof (6.4)

and define the operator S by
St - f HO f lO f ‘ ) 6.5
( £ £ ) 2 ( )

In view of (2.24), we have for f with divf = 0 that Sf = K,f|; so that in particular
for all s, s’

ISflc2) < Cow Iflge oy, VE € B (2): dive=0. (6.6)

6.2 Frequency Splittingson I

For the definition of the Hodge decompositions and frequency splittings of this section,
we recall that £2 has a simply connected, analytic boundary.

Remark 6.1 The Laplace-Beltrami operator A is self-adjoint with respect to the
L?(I") scalar product (-, -) r2(ry and positive semidefinite. It admits a countable
FoC
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sequence of eigenfunctions in L>(I") denoted by Y;" such that
— ArY) = rY) for¢ =0,1,...and m € (. 6.7)

Here, ¢, is a finite index set whose cardinality equals the multiplicity of the eigenvalue
¢, and we always assume that the eigenvalues A, are distinct and ordered increasingly.
We have 19 = 0 and for £ > 1, they are real and positive and accumulate at infinity.
Since we assumed that I” is simply connected we know that Ag = O is a simple
eigenvalue. O

According to [43, Sec. 5.4.1], any tangential field hy € LZT (I") on the bounded,
simply connected manifold /" admits an expansion

o0
by =) 3 o'y + gy (curlr ). 6.8)

(=1 mey

The functions [Vp Y, curlfY, Z” :£eNs, me lg} constitute an orthogonal basis

of LZT(F) and hence the coefficients a}”, ,BE" are uniquely determined via (6.8). We
set

00 00
\ . mym curl — mym
Ciphr =) ) Y, Loghr =) 3 BYp, 65
{=1mey {=1mey ( : )
vV o Y curl .__ 7 _ gV _ curl
Himp = Vpllimp, Himp =1 Himp = curlp/Jimp,

where / denotes the identity operator.

Remark 6.2 £Y_hy and £ hy are characterized by

imp imp
(Vrehohr Vrv) L = O Vevdegy Ve C¥D. (6.10)
(curlpcfgghf, cur1p¢)L2(m = (hT, curlplp)U(F) Vo e C®(r),  (6.11)

and the conditions (LY hr, D2y =0and (LS hy, D2y = 0. In strong form,

imp 1mp
: : \Y . curl
we have in view of curl - curl = — A that Apﬁimphr = divy hy and A["[,imphT =
—curly hy. O

In summary, we have introduced a Hodge decomposition:
\4 curl 1
hy = HimphT + HimphT = Vre +curlpy

for o = £ hy and ¥ = LShy (6.12)

imp imp
(for further details see [43, Sec. 5.4.1]).

FoC'T
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Next, we introduce the harmonic extension £5 : H'/? (I') — H' () of Dirichlet
boundary data defined by

A(Epe) =0 in2, EJ¢| =9 (6.13)

(Later, we will use that 53 extends to a continuous operator H*(I") — H'/ 2+5(2)

for s > 0.) This allows us to define boundary frequency filters L and Hr based on
this Dirichlet lifting by

Lro:= (Lo€4¢)|,. and Hre:= (HoEe)|, . (6.14)

The vector-valued versions for tangential fields on the surface are used to define

HY. (hy) = Vr (HrLYohr). LY () = Vr (Lrcy hr).

imp imp

(6.15)
3! (hy) = curl (Hr£5hr ), L (hr) = curl (L L5y )
and we set
Hr :=H} +H® and Lp:=L} + L& (6.16)

6.3 Estimates for the Frequency Splittings

Lemma 6.3 Let §2 be a bounded Lipschitz domain with simply connected, analytic

boundary. The operators Eian and Eicr‘:lg can be extended (uniquely) to bounded linear

operators H3, (I") — H*YW(T) for any s € R and

1L [l sy < Coll dive ey [l gs-i (), (6.17a)
IL5e8hr | o1y < Coll curlp by || sy (6.17b)

For every s > —1, there is C; > 0 independent of A > 1 (appearing in (6.2)) such
that for any hr € H3.(I") there holds Hrhr = Hlvth + H?l“lhr together with

R

H*(I") s(ry

Proof The mapping properties for KXH , EiCI‘r’lrl, follow directly from elliptic regularity
theory on smooth manifolds in view of Remark 6.2. For the stability of the operators
H,Y, H‘}”rl we use the stability of the operator Hy, : HY' (2) — H*(2) fors’ > 0
and the stability of the trace operator y : H'/2'(2) — H*¥(I') for s’ > 0 as in
[38, Lem. 4.2] to get that hy — yHgé’éEianhr maps continuously H () —
HE(I') for any ¢ > 0 with continuity constant independent of A > 1. Since V :
H*(I') - Hj 142 (M), the result follows. The case of Hfllrl is handled analogously. O

We recall some properties of the high frequency splittings that are proved in [38,
Lem. 4.2].

FoC
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Proposition 6.4 Let A > 1 be the parameter appearing in the definition of Hps in
(6.2). Let Hg, Hg, and Hp be the operators of (6.3), (6.4), and (6.16). There are
constants Cy ¢ independent of A > 1 such that the following holds.

(i) The frequency splitting (6.2) satisfies for all 0 < s’ < s the estimates

| Hzs £ o gsy < Cors QUKD ™ N fllgsesy ¥ € H'RY),  (6.18)

”H.Qf”Hs’(_Q) = Cs’,s ()‘« |k|)S/7S ”f”H‘(Q) Vf € HS(Q)s (619)
|88 ) = Cos G W) e H(@). (620)

These estimates hold also for Lipschitz domains.
(ii) Let0 < s’ < s or0 < s’ < s. Then the operator Hr satisfies

IHrgll ey < Cors (KD ™ ligllascr. (621)

(iii) Let —1 < s’ < sor—1 < s’ < s. Then the operator H satisfies for gr € H.(I)

IHrgrllge ) < Cos (kD™ llgr s, (6.22a)
)

Idivr Brgrll ooy < Cos G kD ™ Il divr grllgs-t(ry.  (6.22)
leurlr Hrgr ooy < Cos G kD™ llcurlr grllgstcry. (6220)

Proof Proof of (i): Estimates (6.18) and (6.19) are shown in [38, Lem. 4.2]. To see
(6.20), we bound HY, as follows

|21

’ Hps curl EggeinRof ’

‘@ = chl‘l HRSSSteinR2f|

Hs ' (2) = ’ HY' (R3)

6.18) -
< Cys (A IED" 7 [lcurl EsteinRof [l s (3)
< Cy s LKD" 7 [ EsteinRof [l gs+1 3y

< Cyrs LKD" ™ IR g1 () < Coris KD ™ If s () -
Proof of (ii): For s’ > 0 the definition of Hy in (6.14) implies

||HF8||HS/(1~) = H H.QgégH HS/(I") =< C ” Hﬂg_égH Hs’+]/2(_(2)
(6.19) ~ /
S CS/,S ()‘- |k|)Y - ”5_(A2gH Hx+l/2(_(2) .

The regularity theory for the Laplace problem (6.13) leads to (6.21). For the case
s’ = 0, we have s > 0, and the multiplicative trace inequality,

Ay 1=1/@2s+1) A 1/@s+1)
IHr g2y < ClHeERSl 2y IHRES 8l i sy
together with the properties of Hy; lead to the result.
Elol:;ﬂ
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Proof of (iii): We have Hrgr = V- (Hp Li},,gr) + curl e (Hr Liimgr). A triangle
inequality leads to

+ H Hrﬁﬁ%%gr ‘

v
IHrgr iy ) < |HrLhper] .

B+
6.21) .
= o Ok (Hﬁ&pgr}

(6.17) s'—s
< Cys WIkD" ™ llgrlmsry -

curl
+ | comer |

HSJFI(F))

H5+l(r)

which shows (6.22a). For (6.22b) we start from

. . —
divr Hrgr = divr (Vr(Hr £8r) + curly (Hr Cimgn) ) = Ar(HrLY,8r).
We apply the previous estimate (6.21) to get

Idivr Hrgrll g1y = HAF(HFEiangT)H <C H HFEiangT H

Hs’—l(r) Hs’+l(r)

< Cyy (M k)™

%
Limpgr ” HH(T)

: v
Since H Limp&T H <

V .
HsH1(I) C HAFLimpgT H H-(I) and from (6.10) we obtain

ArLygr = divr g so that

Idivr Hrgrll ey < Cog KD | Archer |

Hs=L(I")

= ~s’,s kD™ idive gT”Hs'fl(r) .

This shows (6.22b). The proof of (6.22c) follows along the same lines by using
—
curlpcurly = —Ap and curl Vi = 0. 0

The following lemma concerns the parameter-explicit bounds for the low frequency
operators.

Lemma 6.5 Let A > 1 be fixed in the Definition (6.2) of Ly3. There exists a constant
C > 0 independent of A such that for all p € Ny, v € L2(R3), w € L2(R), there
holds

|LesV] o sy < C GIKDP IVl @) (6.23a)
ILeWlgp o) + [L2W]gp o) = C QUKD W (6.23b)

For the boundary frequency filter we have, due to the analyticity of I, the existence
of C > 0 and a neighborhood Ur C R3 of I' (depending only on $2) and some
FoL g
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y > 0 (depending additionally on A) such that for each 727 € H;I/Z(I“) there exists
a function

Z € A(C llzrllg-12ry - - Ur)
such that Z|r = Lrzr.

Proof From [37, (3.32b)] for the full space and from [38, Lem. 4.3] for bounded
domains the estimates (6.23a) and the first one in (6.23b) follow. For the operator L% ,
recall the lifting operator R, of (2.6). Then, for any w € L2(£2) and p € Ny, the
second estimate in (6.23b) follows from

‘L(}ZW’HP(Q) = ’L%W‘HP(R3 |curl L3 EsieinRoW | )
= |LR3 curl 5SteinR2W|Hp(R3)

(6.23a)
< CkD? [lcur] EseinRowll < CAIKD” (Wl

Finally, we consider the boundary low frequency operator. For zr € H™/2(I"), we
define functions in the volume £2 via

W= LoEAL 2y

1mp

@ = LoEQLy o,
so that, for ¢ := V@ and ¢ := VU,
Lrzr =pV® + VY xn=nx (¢l xn) + ¥[F xn.

Let n* denote an analytic extension of the normal vector field into the domain £2; due
to the analyticity of the domain we may assume that there are constants Cy, yn > 0
and a tubular neighborhood U C 2 with I' C U such that n* € A% (Cy, yn, Ur).
Let

* *
0 n3y —nj
Niy:=| —n; 0 nj
* *
ny —nj 0

Then,
Ylrxn=MN)p and nx (¢l xn)=—(Nig)
ie.,
Lrzr = G4l for G, := N, (¥ —N.¢). (6.24)
We further have for p € Ny
1lar ) = |VL-QE.Q£1mpZT’HI’(Z/{ ) = |LR3V€StemgﬂﬁimpzT’H/’(ur)

Fo C 'ﬂ
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< COUKD? | VEstein€@ Limp2 |12 w3y < COKD? |EG Livpzr [ 1 @)

< C MKD? | Lzt iy < Ct GIKD? 27 |12y
The proof of the estimate

Wlar @) < C2 (1 k)P 7 llg-1/2(y

follows along the same lines. Next we use [33, Lem. 4.3.1] (an inspection of the
proof shows that this lemma also holds for d = 3) to deduce that N, ¢, —N£¢ €
A(C llzr lg-112¢ry » ¥, Ur ), where C depends only on C1, Ca, Cy, yn, While y depends
additionally on A. O

7 k-Explicit Regularity by Decomposition

In this section, we always assume that the bounded Lipschitz domain £2 C R3 has
a simply connected, analytic boundary I" = 9£2. We consider the Maxwell problem
(2.40) with data f, g7 with finite regularity.

For the regularity analysis of the operator S%“;c‘/ it is key to understand that the solu-
tions for high frequency right-hand sides have low order regularity but well-behaved
stability constant (with respect to the wavenumber) while solutions corresponding to
low-frequency right-hand sides are analytic but with possibly growing stability con-
stant. This different behavior is reflected in the regularity theory, which decomposes
the solution z = S%“;(V (f, gr) into a part with finite regularity that can be controlled
uniformly in k and an analytic part that can be controlled explicitly in k. This is achieved
in Theorem 7.3. The main idea of the proof is to exploit that the operators L  and
Lq ik have the same leading order differential operator. With the filter operators of
the preceding Sect.6 and recalling I = H) + LY, +S = HY + LY + HoS + LoS
as well as I = Hy + L one can write

SYV (. gr) = Sh (HYf + HoSt. Hrgr) + Sy ¥ (LY + LoSE, Lrgr) +7/

for a remainder z'. One then makes the following observations:

1. If divf = 0 (which may be achieved by subtracting a suitable gradient field), then
the operator S is smoothing by (6.6).

2. The term 8;5’ k(H_%f + HoSf,Hpgr) has finite regularity properties given by
Theorem 4.3. The effect of the high frequency filters Hg and H is that they
improve the k-dependence of lower-order terms in the indexed norms such as
| - lmm(2).x (see Lemma 7.1 below).

3. Sgw,:/ (L(}zf + LoSt, Lrgr) is an analytic function and can be estimated with the
aid of Theorem 5.2.

4. The function z’ satisfies

;C%IYZZ/ =T, BF,k = 0,
EOE';W
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where, by suitably choosing the cut-off parameters X in the frequency operators,
the residual r satisfies |[r]« < ¢||f||« for some g € (0, 1) and a suitable norm || - || .

Hence, the arguments can be repeated for z' and the decomposition can be obtained
by a geometric series argument.

7.1 The Concatenation of S, with High Frequency Filters

The following lemma analyzes the mapping properties of the concatenation of the
solution operator 83  With the high frequency filter operators H _g and Hy.

Lemma 7.1 Letm € Ny, £ € Ny. Provided the right-hand sides are finite, the following
estimates hold with a constant C independent of 1., f, and gr:

k™ | HQE e aiv.2).k < C 1kl IE () (7.1

K" IHGE s vk < O Iy, m= 1, (72)
|k|||H?2f||X{mp(9),k < C e 20y, (7.3)

K" 218G L (HOE, O) i)k < CA7 2l ), 7.4

as well as

k"~ P g7 lm-12(div e, 1 &

< COUD ™ (1Kl lIgr lgpn-1/2+¢py + 1 iV P &7 [l gpm-1/20¢ 1y ) - (7.5)
k" 2118 0. Hrgr)llam @)k
AV (kIgr lgn—1/2+ery + || dive g7 lgm-124e () . m > 1,

(Iklllgr lgm-1/2+ecry + 1| dive g7 lgm-12+¢ry) - m =0.
(7.6)

< C(AkD™ :

For £ € L2(2) with divf = 0 and the operator S of (6.5) we have for any n € Ny

k" | He St llam @)k < Cad " Il 2(0) (1.7
k" 1S5 1 (HoSE, 0) lgm+1(0y x < Car " Ifll2(2)- (7.8)

Proof Proofof (7.1):(7.1) follows from the fact that div H, gf = 0 and Proposition 6.4.
Proof of (7.2): For m > 1, we estimate

| ES o120 = € (1HE Iz + K"V HY o1 )

Prop. 6.4 —m —(m—=1) —1 £ —1ly7,—m f
< C(QkD™ + |k| KD ™) I lam (2) < CA kI I [ (2) -

Noting that div H, _%f = 0, the estimate (7.2) follows.
Elol:;ﬂ
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Proof of (7.3): Recall the definition of || - ||X_/mp(9)’ ¢ in (4.3) and observe with the
multiplicative trace inequality,

lyr His EsieinRof llp2ry < COKD ™21 EsteinRof g1 3y < CAUD ™2 1E L2 (2
(7.9)

Since H gf = curl Hp3EseinRof, we get with an integration by parts ([41, Thm. 3.29])
for v € Xjmp

‘(H_%f, V)‘ = |(yr Hg3EsteinRof . V)21 + (HpsEsieinRof , curl v)|

< COIRD 218 L2 IV 2y + D T HIf L2 I curl V2 o)
< CA 21k IRz o) IV llimp k-

We conclude |k|' ||Hgf||xgm @k = CA7V2|If]l 2 () by the definition (4.3) of || -
”XImp(Q% x> and the statementp(7.3) is shown.

Proofof (7.4): Form > 1, we obtain (7.4) from (7.2) and Theorem 4.3, (4.18a). For
m = 0, we observe that Theorem 4.3, (4.17) and (7.3) imply ||Sg!k(Hgf, 0) 22 <
K17 IS o (HGE. O)llimpa = CIKI™ I Hof I, 2k = CA~ 2K I l2)-

Proofof (7.5): We distinguish the casesm = Oandm > 1. Form > 1, the statement
follows from the estimates of H given in Proposition 6.4. For m = 0, in addition to
Proposition 6.4 one invokes Lemma 4.2.

Proof of (7.6): For m > 1, the estimate (7.6) follows from combining Proposi-
tion 6.4 with (4.18a) and (7.5) (taking £ + 1 for £ there) to get

||3§,k(0, Hrgr)llam@).x < C|k|_3||HFgT||Hm—1—1/2(divp,r),k

(7.5) A 1 .
< ClkI 2 kD™ (k gz lgn-1/2+ery + 1| diVE g7l gm-1/256 ) -

For m = 0, we use Theorem 4.3, (4.17) to get

1SS (0, Hrgr) 2@y < CIKITHISE (0, Hrgr) limpx < CIIT IHrgrllx: oy
) ) imp
(4.12) . .
< C kI (kIIErgr lg-120my + I dive Hrgrll g-12c0)

Prop. 6.4 2 ¢ .
< CIkI=> kD (Iklgrllg-1/2+¢cry + 11 dive g7 | g-1/2+¢ () -

This completes the proof of (7.6).
Proof of (71.7), (7.8): For f with divf = 0 we have Sf € C*>°(£2) by (6.6). Hence,
(7.7), (7.8) follow from Proposition 6.4 and (6.6) and again Theorem 4.3. O

Lemma7.2 Letm € Ny, divf € H™ (), divy gr € H"3/2(I"). Then there exist
or € H"T1(2) N H}(2) and 95 € H™ T (2) such that for € =0, ..., m

lpell previ @y < ClldivEllge-10). —div Vep = divf, BriVer =0,
FoCT
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logl ety < Clldivr g7 llge-32¢rys divVeg =0, divr Virgg =divr gr.
Proof Define ¢ € H(} (£2) as the weak solution of
—Agr = divf.

By elliptic regularity, we have gf € H"+!(£2) and the stated bounds. The function ¥g
is defined in two steps: First, let ¢ € H'(I") with /, % = 0 denote the weak solution
of

Argo =divr gr,

which satisfies | @|| gm+1/2(ry < Cll div g || gm-3/2(1)- Then, g is defined on £2 as the
harmonic extension from I', i.e., g € H m+1 (£2) solves

Apg =0,  @glr = 0.

Again, the bounds follow from elliptic regularity theory. O

7.2 Regularity by Decomposition: The Main Result

Theorem 7.3 Let 2 C R3 be a bounded Lipschitz domain with a simply connected,

analytic boundary I' = 0S52. Let the stability Assumption (3.2) be satisfied. Then
there is a linear mapping L2(S2) X H;l/z(divr, I'ys (£,8r) — (Zy2, 24, ¢t, Pg)
such that the solution z := S?Z/I}Z(f, gr) € Ximp of (2.40) can be written as z =

Zyr + 24 +k2Ver +ik V.
The linear mapping has the following properties: For any m, m' € Ny, there

are constants C, B > 0 (depending only on §2 and m, m') such that for (f,gr) €
H™(2) xH) () with (div £, div gr) € H™ =1 (2) x H™ =3/2(I") the following
holds:

(1) The function Zg> satisfies

122 g1 2y, < ClRIT" (IkllIgr llggn-12(ry + Il () - (7.10)

Ifgr e HVT"H/Z(I"), then

|22 g1 urt, 2y 4 < C 117" (lgr lgmr2ry + 1€l () (711

and in (7.10) the term |k|||&r |lggm-1/2(y can be replaced with || [lgm-+12(y.-
(ii) The gradient fields V¢ and Vg are given by Lemma 7.2 and satisfy, for £ =
0,...,m':

||§0f||HZ+l(_Q) < C ||d1Vf”H[—l(9) s (712)
l6e e o < € Idivr grllge-sagr - (7.13)
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(iii) The analytic part 7 4 satisfies
z4 € ACC(L+ Cyan) IKI” M {IENl + Iklllgr lg-1/2(y ) B, 2). (7.14)

Proof By linearity of the solution operator Sgl\;{v we consider the cases S%“Z/ f,0)

and 8?2/[_‘2'(0, gr) separately. The fact that the right-hand sides in (7.10), (7.11), (7.14)
do not contain the divergence of f or g7 is due to the fact that we suitably choose the
functions ¢f, ¢g in the course of the proof.

Step 1 (reduction to divergence-free data): Let the functions ¢f, g be given by

Lemma 7.2. These functions have the regularity properties given in (ii). The function
/

7 =12 — k>Vgr — ik~ Vg, satisfies

Loyt =f+ Ver +1kVpg =1 in 2,
BrizZ =gr —Vrgg=:1g;y onTl.

By construction, divf’ = 0 and div g} = 0. Furthermore, using || div flgn-1(o) <
Clfllam () and || divr g7 lgm-32ry < Cllgr llgm-1/2(;) We obtain

Il (2) < C (Iflam () + CIKIIT lgm-172r)) - (7.15)
gz lam-12¢ry < Cligr lgm—1/2(r)- (7.16)

Step 2 (Analysis of S_g\;f (f’, 0) with div f’ = 0): We claim that

SUNE.0) =225 +24¢ (7.17)

for some functions zy2 ¢ and z 4 ¢ satisfying the estimates (7.11) (and therefore also
(7.10) since we focus on the case g7 = 0) ani(7.14). We have div £’ = 0 and assume
gr = 0, which implies g/, = 0. Set f; := fo := f’ and define, with the mapping
f — ¢r of Lemma 7.2, recursively forn =0, 1, ...,
Zi2, = Sgh ((HYE,. 0) + 85 (He ST, 0),
Za0 =Sy (LSE,. 0) + SV (LoSE,. 0),
£, =22y,

fopr =1£,, + Yoy - (7.18)
We note that divfn = 0 for all n. From Lemma 7.1, we get: if f,, e H¢ (£2), then
K218 (HEE, Ol ok < CA P IE ey (7.19)
Next, we obtain from Lemma 7.2 and the above defined recurrence relation
IVer llue o) < ClldivE, lge1 o) < Clifylnee)y,  €=0,....m, (7.20)

FolCT
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(719 o~ _
I, il = CA7 VPRl < CA V218 gy, €=0,....m, (1.21)
o1l (2) < ClIEL L lam2) < CA™V2 16 Il @) (7.22)

From the equation that defines zy2 ,, and since div H _gfn = 0 we get
k)7l dive,, | = divzys , = k2 div HoSE,. (7.23)

Since S is a smoothing operator, this implies that div f/ 41 1s smooth, and the first

estimate in (7.20) actually holds for any ¢ € No. The bounds (7.21), (7.22) show that
the functions f,, and f,, decay in geometric progression as n increases if A > 1 is
chosen such that CA~!/2 =: ¢ < 1. Fixing sucha A > 1, a geometric series argument
implies for any u € {0, 1, ..., m}

0.¢]
D i) < CIE e ). (7.24)
n=0

We also get from Theorem 4.3 and Lemma 7.1 and the smoothing property of S (recall
that divf, = 0)

Theorem 4.3 9 0% ~
1Zg2 pllgm+t oy = Clkl (||H9fn||H’”(div,Q),k+||HQan||Hm(div,.Q),k>

(7.1) _ ~
<" ClI= "V NE, am ). (7.25)

Lemma 6.5 shows that LYF,, LoSE, € A(C1[fsll2(0). C2AlK|, £2) for some Ci, C2
depending only on £2. From Theorem 5.2, we infer

|Z_A,n|HP(Q) =< Cz(l Cstab)|k|9 1||fn||L2 )Y max (P, |k|) Vp € NO
(£2)
(7.26)

for some Cy, y independent of k and n; y depends on XA, which has been fixed above.
Upon setting

oo oo oo
Zy2 g = ZZHZW Vo = Z Vorr, ZAf = ZZA’n,
n=0 n=0

n=1

we have by (7.25) and (7.24)

s a2y < CIRIT VI Tan @) < CIKI™ D [l o),

zar € AC + Coan) kI fllL2 ). v, £2).

||ZH2,f/|

For the term Vg, we get

FoC'T
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o0
= 17 1Vl @y < C ™D |divE, [

n=1

=

H™+ (curl, 2),k

o0
7.23) _ . 4
T2 k7S 12div HoST i 2.4

n=0

o0 o0
< C Y I HoSElgni ) < C KT i),
n=0 n=0

where we used (7.7) with n <— m + 1 for the last estimate. The combination with
(7.24) shows

eVl e, 2k < C ™" I I 20).
We set
ZH2,f = ZHZ’f/ + k_2V(,0

That is, the terms 2y ¢ and z 4 ¢ satisfy the estimates (7.10), (7.11) given in the
statement of the theorem for the present case gr = 0. We compute

o
Loi@pgtzan) =y & —f, =f="Ff Bri@gs+zas) =0.
n=0

By the uniqueness assertion of Proposition 3.1, we have identified zy2 ¢ +2z4¢ =
SEV(E.0).
Step 3 (Analysis of SV (0, g7) with div- g = 0): We define

T2 g = S;g’k(O, Hrgr), z44:= Sg},t/(o, Lrgr).
From Theorem 4.3 and the properties of Hy given in Proposition 6.4 we get

-3
||ZH2,g||Hm+1(Q),k < Clk| ||H1"g,T||Hm—1/2(divrsr),k
(7.5),div g/T:O -
< Clkl™ " llgr llgm-12(r), (7.27)

Prop. 6.4 —(m+1)
1z glam+tcun, 2y = CIkl g7 lggm+1/2(1y- (7.28)

Thatis, 22 4 satisfies the estimates (7.10), (7.11) given in the statement of the theorem

for the present case f = 0. For z 4 4 we observe that Lemma 6.5 ensures’ L rgr €
A(Cligrlla-12¢ry» v» §2) for some C depending only on £2 and y > 0 depending on

7 We write L g instead of introducing a new symbol Z with Z| r = L g},
FoCT
H_ A
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£2 and 1. We note ||g/ la-12(ry < Cligrllg-1/2¢ry by (7.16). From Theorem 5.2 we
obtain

244 € AC+ Caa) kI 2ligrllg-12() . 7. 2).

Since 6 — 1/2 < 0, the function z, ¢ satisfies the estimate stated in the theorem.
Finally, we observe thatZ := S}\;\;{V 0, g7) — (zp2 g + 24 g) satisfies

LoiZ=2k8h (0.Hrgp) =T, Briz=0.
From Lemma 7.1 we get using divy- g7 = 0

IEllan2) < CIkIIgrllgn-1200y  [Elamce) < Clighlgnzgry,  (7.29)
IfllL2(2) < CIKIIgT lhg-172¢r)- (7.29b)

We note that divf = 0 and that Step 2 provides a decomposition of Z in the form
Z= Zy2 7+ 247 By Step 2, the term z> 3 can be controlled in terms of [|f][g ()
and thus in the required form. For z 4 3, we note that Step 2 yields

245 € AC 1+ Catap) K17 NEll2 (20,72 2 CAC L+ Coan) [k llgT =12y ¥ £2),

which is an analytic function with the desired estimate. We summarize that z;2, z 4
in the statement of the theorem are given by

gy =2yt I+t Zpg and ZA =ZAf+ZAg+ZAF

and the summands have been estimated in Step 1-3.

Step 4: The proof is now complete with the exception of the statement in (i) that
|k|llgr llggm-1/2(1y can be replaced with [|g7 || gm+1/2(f). However, this follows directly
from (7.11) via

7

28) i
k| |22 < C I g g2y

,g||Hm+'(9),k = HZHng“H'"‘*"(curl,.Q),k
and for the control of Z in Step 3 via the bound ||f||Hm(Q) < llgr lggm+172(py in (7.29).
O

8 Discretization

In this section, we describe the hp-FEM based on Nédélec elements and discuss
the approximation properties of various 2p-approximation operators. These operators
made their appearance already in [39]. Here, we strengthen the results of [39, Sec. §]
in that we additionally control the error on the boundary of the elements, which is
required due to the impedance boundary conditions considered here.

Elol:;ﬂ
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8.1 Meshes and Nédélec Elements

The classical example of curl-conforming FE spaces are the Nédélec elements, [42].
We restrict our attention here to so-called “type I’ elements (sometimes also referred
to as the Nédélec-Raviart-Thomas element) on tetrahedra. These spaces are based on
a conforming (no hanging nodes), shape-regular triangulation 7}, of £2 C R>. That is,
7}, satisfies:

(i) The (open) elements K € 7j, cover £2, i.e., 2 = Ugcr, K.
(ii) Associated with each element K’ is the element map, a C!-diffeomorphism Fx :
K — K. The set K is the reference tetrahedron.
(iii)) Denoting hx = diam K, there holds, with some shape-regularity constant y7,

h I Fill ooy + B INCFO o) < T (8.1)

(iv) The intersection of two elements is only empty, a vertex, an edge, a face, or they
coincide (here, vertices, edges, and faces are the images of the corresponding
entities on the reference tetrahedron K ). The parametrization of common edges
or faces are compatible. That is, if two elements K, K’ share an edge (i.e.,
Fx(e) = Fg:(¢') foredges e, ¢’ of K) ora face (i.e., Fx (f) = Fx/(f’) for faces
f, f of I?), then Flgl o Fgr: f/ — f is an affine isomorphism.

The maximal mesh width is denoted by
h:=max{hg : K € T;}. 8.2)

The following assumption requires that the element map Fx can be decomposed as a
composition of an affine scaling with an z-independent mapping. We adopt the setting
of [37, Sec. 5] and assume that the element maps Fx of the conforming, y-shape
regular triangulation 7}, satisfy the following additional requirements:

Assumption 8.1 (normalizable regular triangulation) Each element map Fx can be
written as Fx = Ry o Ak, where Ak is an affine map and the maps Rx and Ak
satisfy for constants Caffine, Cmetric, ¥ > 0 independent of K:

IA% ooy < Catinehk, (AR ™l ooy < Cattinehy'

”(R,K)_l ||LOC(E) =< Crnetric> ||VHRK||LOO([?) =< CmetricVn”! Vn € Np.

Here, K = A K (I? ) and hg > 0 is the element diameter.

Remark 8.2 A prime example of meshes that satisfy Assumption 8.1 are those patch-
wise structured meshes as described, for example, in [37, Ex. 5.1] or [33, Sec. 3.3.2].
These meshes are obtained by first fixing a macro triangulation of §2; the actual trian-
gulation is then obtained as images of affine triangulations of the reference element.

O
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On the reference tetrahedron K we introduce the classical Nédélec type I and
Raviart-Thomas elements of degree p > 0 (see, e.g., [41]):

P,(K) := span{x® | |a| < p}, (8.3)
RT,(K) = {p(x) +x¢(x) | p € (P,(K))*, q € P,(K)}, (8.4)
NLE) = (p() +x x () | p. q € (Py(K))*). (8.5)

The spaces S,11(75), RT, (7p), J\f; (7p) are then defined as in [41, (3.76)] by trans-
forming covariantly A ;(I/(\ ) and contravariantly RT ,,(I? ):

Sp+1(Th) = {u € H'(2) |ulg o Fx € Ppr1(K)}. (8.62)
RT, (7)) := {u € H(div, 2) | (det F)(F) 'ulx o Fx € RT,(K)},  (8.6b)
NY(Th) = {u € Heurl, 2) | (Fj) ulg o Fx € N,(K)}. (8.6¢)

We setd
X = N (Th) N Ximp, Sni=Sps1(Tp) N Hypyp (2)  (8.7)

and recall the well-known exact sequence property

Sy —5 X % curl X, (8.8)

The hp-FEM Galerkin discretization for the electric Maxwell problem (2.39) is
given by:

find E, € X, such that Ag(Ep, v) = (j, V) + (@7, V)p2ry Vv eEXu. (8.9)

8.2 hp-Approximation Operators

We will use polynomial approximation operators that are constructed elementwise,
i.e., for an operator I on the reference element K., a global operator I, is defined
by setting ([pu)|x = I (u o Fg)) o F_ If I maps into PP.H(K) then we say
I admits an element-by- element constmcnon 1f the operator I, defined in this way
maps into S,11(7;). Analogously, if I maps into ./\/ ! (K ), then we say that I admits
an element-by-element construction if the resulting operator /,, maps into N’ i, (Tn).

For scalar functions (or gradient fields), we have elemental approximation operators
with the optimal convergence in L? and H':

Lemma8.3 LetK C R4, d e {2, 3}, be the reference triangle or reference tetrahedron
and R > m > (d + 1)/2. Then, for every p € Ny, there exists a linear operator

8 Note that Xj, = NI (7p) and Sy, = Sp41(7;) since Nlp('ﬁ,) C Ximp and Sp4+1(7) C Hllnp(.Q)
Fol:rﬂ
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i p o H" (I/{\ ) = Ppy1 that permits an element-by-element construction such that if
p>m—2

1/2

1 —~ _ -~
lu = Tpull 2y + ——llu — Tpull gy + (p + D72 u = Tpull 257,

p+1
+(p+ D7 = Mpull g o2y < Cp+ D7 [ul gm g
(8.10)

for a constant C > 0 that depends only on m, d, and the choice of reference trian-
gle/tetrahedron.
For the case d = 3, the condition on m can be relaxed to m > d /2.

grad 3d grad 2d

Proof The operator 17 may be taken as the operators I7 + ford =3orI1 +
ford = 2 of [36]. The volume estimates follow from [36, Cor 2.12] forthe cased = 3
and [36, Thm. 2.13] for the case d = 2. For the estimates on K , one notices that
the restriction of [T ;ff(lmd to a boundary face fis the operator i ﬁrj_“ll’w on that face

- ~orad,2 . .
and that the restriction of I7 ﬁrjﬁl’ “ to an edge of the reference triangle is the operator

ﬁlg,rj_“li‘ld discussed in [36, Lem. 4.1].

For d = 3 an operator i p with the stated approximation properties is constructed in
[37, Thm. B.4] for the case m > d/2 = 3/2. The statement about the approximation
on 9K follows by a more careful analysis of the proof of [37, Thm. B.4]. For the
reader’s convenience, the proof is reproduced in [40, Thm. B.5]. O

The fact that 17 p in Lemma 8.3 has the element-by-element construction property
means that an elementwise definition of the operator /7 pv S H™M) = S p+1(7) by
(HZ"Y¢)|K = (ﬁp(go o Fg))o F,;l maps indeed into S, 1(7;) C H'(£2).

In the following we always assume for the spatial dimension d = 3. By scaling
arguments we get the following result:

Corollary 8.4 Let d = 3. For m € N.3pp and p > m — 2 the operator H[,V’S
H"™(82) = S,11(Ty) has following the approximation properties for all K € Tj:

hK hK m
lg — H,Y’S<P||L2(K) + m”ﬁﬂ - H,Y’SfpllHl(K) =C (ﬁ) el mm k),
(8.11)

m—1/2
K
oK) =C <m> ol am(k)- (8.12)

In [39, Lem. 8.2] approximation operators chrls H!(curl, k) —» N L(I/(\ )

and IT), %S . H'(div, K) — RT p(K ) on the reference tetrahedron K are defined
with certain elementwise approximation propertles Global versions of these _oper-
ators, 1™ : H(curl, 2) N [xer,H'(curl, K) — NV(T) and T

H (div, £2) ﬂ]_[KeﬂH (K, div, K) — RT, (7p), are characterlzed by lifting the
FoE'ﬂ
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operators on the reference element by (cf. [39, Def. 8.1])

(™ Wi o Fi o= (Fi) T ™ (R Two Fi), (8.13)
(T3 w) | = (det(Fg) ™' Fi (TTSY (det Fi) (i)~ 'wo Fg)) o Fig'. (8.14)

curl,s

LS are inferred from those of 75" given in

The approximation properties of 1,
[39, Lem. 8.2]. We obtain:

Lemma8.5 Letm € N.3)» arLd p>m—1. Let 5 B > 0. Then there are constants
C, 0 > 0depending only on C, B, m, and the constants of Assumption 8.1 such that
the following holds for the operator ch,url’s H™(2) > N}D (7p) and all K € Ty:

(i) Ifu € H"(K) then

hK hK "
lu— H,C,url’SUHLZ(K) + p—||u - H,C,url’sllHHl(K) =C (—) lullan k),

+1 p+1
(8.15)
1  \"12
— s <C|—— m . 8.16
lu p U||L2(3K) = (p-l— 1) llallmn (k) ( )
(i) Ifu € A(Cy(K), B, K) for some Cy(K) > 0 and if
hi + |klhg /p < C (8.17)

then

l 2
/ ”u chrl Su”Lz(aK) + ”u_ chrl Su”Lz(K) +hK||u _ chrl S“”HI(K)

p+1 p+1
sccu(K)<<hKhia> +<|];|ZK) ) (8.18)

(iii) Ifu € A(Cy, B, 2) for some Cy > 0 and if (8.17) holds, then

B\ (klh\”
1,
la — 17" ullimp k. < Culkl ((m) + <E> ) .

Proof The result follows from modifications of the procedure in [39, Sec. 8.3]. We
recall the structure Fx = Rk o Ak of the element maps by Assumptlon 8.1. For
K € T, we define K:=A K(K ) and the transformed functions V := (F, ) vo Fg on
K andV : (RK)TV oRg on K. We note that v = (AK)TV oAgk.By Assumptlon 8.1
and the fact that A is affine, we have

||W|]-[j(i() ~ ”V”Hj(]{)s ||V||L2(3E) ~ ||V||L2(3K)7 (8.19)
~ 1+j-3/2 |~ -~ 1—1,~
Ml ~he 2 lwdy Wizer ~ i I¥z07), (8.20)
Fol:rﬂ
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where the implied constant depends only on j and the constants of Assumption 8.1.
Proof of (i): From [39, Lem. 8.2], we have for

It — TS W 2 ) + 18 — T Wl ) < Cp~ " Plulgm(g).  (821)

This approximation result and the scaling argument expressed in (8.19), (8.20) produce
(8.15). The multiplicative trace inequality ||’\7||i2 0B = ClVli2) IVllg &) applied
to (8.21) and similar scaling arguments produce (8.16).

Proof of (ii): By [39, Lem. 8.4], the pull-back @ € A(CCu(K)h />, hg B', K) for
some B’ depending only on B and the constants of Assumption 8.1. By [39, Lem. 8.2]
there are constants depending only on B and the constants of Assumption 8.1 such

that

= . p+1 p+l1
i — freul. - 1-3/2 hg |k|hk
8 ;ur Su”WZOO(K) = Che ) ((fl[(— —i—o) + < op '

With similar scaling arguments as in the proof of (i), we obtain the stated estimate.
Proof of (iii): For each K € 7}, we define

YRR SR %
wes ~ (2B)?" max(n + 1, |k|)2"
and note
ue ACu(K).2B.K) with ) Ci(K) <2C;.
KeT,
We then sum the elementwise error estimates provided by (ii). O

8.3 An Interpolating Projector onto the Finite Element Space

For the error analysis, the following subspace of H! (£2) will play an important role:
Vio = {0 € Ximp | (@, Vo) =0 Vo € Hby (@) (8.22)

Proposition 8.6 Let §2 be a bounded Lipschitz domain with simply connected, analytic
boundary. The space Vi o can alternatively be characterized by

Vio= {u € Ximp | divu =0Aik{u,n)+divrur =0 on F}. (8.23)

The proof of this proposition is standard and uses the same arguments as, e.g., [39,
Lem. 4.10].

FoC
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Proposition 8.7 Let §2 be a bounded Lipschitz domain with simply connected analytic
boundary. It holds Vi o C H' (82), and there exists ¢ > 0 independent of k such that

c |k| ”V”HI(Q),k = ”V”H(curl,ﬂ),k =< ”V“imp,k Vv e Vk,O-

Proof The estimate ||V|H(curl,2).k < IVlimp,x follows directly from the definition of
the norms. For the lower bound, we employ the Helmholtz decomposition of v € Vy o
as in Lemma 2.7 (i) and take into account divv = 0. That is, there exist w € H' (£2)
and ¢ € H'(£2) with

v=Vp+w, Wikt (@) < C |[curl v| . (8.24)
Since div v = 0 we conclude ||v|lgiv,2) = I|V|l so that a trace theorem gives us
v, )l g-12(ry < ClIVIiE@iv.2) = ClIVII.
It holds

Prop.8.6 .

Ar(elr) = divp(vr — wr) ik(v,n) —divFr wp =: 0.

By the smoothness of the closed manifold I" and the shift properties of the Laplace-
Beltrami operator we get

el g3r2ery < Clollg-12¢ry < C [N dive W ll g-12¢ry + KLV, D) [ =172 ]
< Cllwrlgzgry + KNIV < C (Iwllgi ) + kL IVI
(8.24)
< ClIvlHcul, ).k -
Since ¢ solves
—Ap =divw in§2,

the shift theorem for the Laplace operator on smooth domains leads to

Vel @) = C(Idivwil + llgll g32(ry) < C(Ieurl Il + IVIlHEur, 2).4) -

(8.25)
The combination of (8.24) and (8.25) shows that v € H' (£2) and
IVl (@) = ClIVilacut2).k = C IVIimpk -
Since we have trivially |k| [V < [IV|lg(cur, 2),k» the assertion follows. O
We also need the following subspace of Vi ¢ given by
Vion = {v € Vo |curlv € curl X, } . (8.26)

FoC'T
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The operator H;url’s in (8.13), (8.14) has (p-optimal) approximation properties
in || - [lcur, 2.k as it has simultaneously p-optimal approximation properties in L?
and H'. However, it is not a projection and does not have the commuting diagram
property. Since this is needed for the estimate of the consistency term in Sect.9.2 we
employ operators, I7 gurl’c, Hglv’c, which enjoy these properties. They were constructed
in [36] in an element-by-element fashion and used in [39, Thm. 8.2]. The choice
e Vion +Xn — X as ch,uﬂ’c and the companion operator T/ : H(div, 2) N
[k T, H!(div, K) — curl X}, as ng’c allows us to derive quantitative convergence
estimates in Sect. 9.

Lemma 8.8 The operators H,f = H;url’c and H{ = Hgiv’c of [39] satisfy
the following properties: H,f : Vion + X — X, and H,f : H(div, 2) N
I—[KeTh H'(div, K) — curl X}, are linear mappings with

1) Hf is a projection, i.e., the restriction Hf X, is the identity on Xj,.
(ii) The operators IT ,f and I1 [ have the commuting property: curl ITF = IT { curl.

Proof Since IT f,url’” is based on an element-by-element construction it is well defined
on H(curl, £2) N HKeThHl (curl, K). Since Vi 0., + X, is a subspace of this space,
the mapping properties follow. The projection property of I7, f and the commuting
property of ITF and T} are proved in [36, Thm. 2.10, Rem. 2.11]. O

9 Stability and Convergence of the Galerkin Discretization

The wavenumber-explicit stability and convergence analysis for Maxwell’s equations
with transparent boundary conditions has been developed recently in [39] and gener-
alizes the theory in [41, Sec. 7.2]. A “roadmap” for the convergence proof of [39] is
given in [39, Sec. 1.1-1.3]. In the present analysis, we follow this “roadmap” taking
into account the change in boundary conditions from transparent boundary condi-
tions to impedance boundary conditions. A key role is played by the term ((u, v)); =
Ay (u, v) — (curlu, curl v) from (2.42), which includes the boundary conditions. This
sesquilinear form determines the space V o (see (8.22)) and the regular decomposition
in Def. 9.2 ahead and its properties differentiate the present case of impedance bound-
ary conditions from the transparent boundary condition case. Compared to the case of
transparent boundary conditions, the present impedance boundary conditions case is
. . . . . s alg -~alg . . .

simpler in that fewer approximation quantities 7 j o1 are required in the analysis.

In this section, we develop a stability and convergence theory for Maxwell’s equa-
tions with impedance boundary conditions, see Sect. 2.5. Recall the definition of the
sesquilinear form ((-, -)); of (2.42) and of the norm ||-||; ; in Definition 2.5.

We introduce the quantity 8x : Xjmp — R by 8¢ (0) := 0 and for w € X\ {0} by

Su(W) =  sup <2 LW, Vi)l ) ©.1)

vieX\ (0} \ W llimp.& 1V llimp, &

which will play the important role of a consistency term.
FolCT
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Proposition 9.1 (quasi-optimality) Let E € Ximp and Ej, € X, satisfy

Ar(E—-E;,vy)) =0 Vv, € Xp.

Assume that 5i(ep) < 1 for ey := E — Ej,. Then, e, satisfies, for all w, € Xy, the

quasi-optimal error estimate

1+ 6,(e
lenllmn e < T2 g i
ok = T 5 (en) imp.

Proof The definitions of the sesquilinear forms Ay and ((-, -)); imply

lenll2, . = [Ax(en, en) + 2(@n, en)y] -

9.2)

We employ Galerkin orthogonality for the first term in (9.2) to obtain for any wy, € X,

lenlfnpx < [AxCen, E—wi) +2(en, E — wa)y|
+8k (n) || € [y 1 1B = Wi llimp &
~——— e —

<llen limp,x+IE—=Wp llimp &

We write Ay in the form (2.43) so that

(1 — Sk (en)) llen II?mp,k < |(curl ey, curl (E — wp)) + (€, E — wp)y |

+ Sk (en) llenllimp.x IIE — Whllimp x -
The sesquilinear form (-, -)); is continuous, and we have
@ V] < Tulle s Vs Y,V € Ximp.
Hence,

2
(1 = 8(en)) lenllimp & = llenllimp.x IE — Whllimp

+ Sk (en) llenllimpx 1E — Whllimp.x »

and the assertion follows.

9.1 Splitting of the Consistency Term

9.3)

94)

We introduce continuous and discrete Helmholtz decompositions that are adapted to

the problem under consideration.
Definition 9.2 On v € Xy, the Helmholtz splittings
v =My 4 1Yy,

FoC'T
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v =18 + 1T, v (9.5b)

are given via operators IT H,fur] and their discrete counterparts HkV e H,S}’}fl by
seeking I1Yv € VH] () and IT)Y, v € VS, such that

imp
(A7v.vv) =@ von Vo € Hy(), 9.6a)
((H,Zhv, wf))k — (V. VY), Yy €Sy (9.6b)

The operators [T ,f“rlv, | ,f“}flv are then given via the relations (9.5).

It is easy to see (cf. (2.45)) that

(V. nka))k = (VU V) Y€ Hb (), (9.7a)
((vw, HYk,hV))k — (VY. V), V¥ €S (9.7b)

Solvability of these equations follows trivially from the Lax-Milgram lemma as
can be seen from the following lemma.

Lemma 9.3 Problems (9.6) have unique solutions, which satisfy

anvv||imp,k+”HISuer”imp,k = C”V“imp,k’

|75Vl T3 Y limp i = CIV limp -

imp,k + ”
Proof We first consider the continuous problem (9.6a). Taking o = exp ((sign k)i %)
we obtain coercivity as in the proof of Theorem 4.3 (i) via

Re (Vy, oV = 27 [k (V. Vo) + KL (Vv Vi |

=272V lpnps-

The continuity follows from (9.4):

Vo, V| < IV0le 1 IV¥ e+ = 1Y@ llimnp i 1V i 1 - 9.8)
This implies existence, uniqueness, and the a priori estimate

1] o < V2 1V limp k-

imp,k

The estimate of I1 ,f“rlv follows by a triangle inequality. Since the coercivity and conti-
nuity estimates are inherited by the finite dimensional subspace V Sj,, well-posedness
also follows on the discrete level. The estimates for the other operators follow verbatim.

O
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The principal splitting of the consistency term J; in (9.1) is introduced next. We
write

(en, Vi)

= o (), ¢ o), + ), 09

=T =T =T

Galerkin orthogonality implies ((eh, HYk’ hvh))k =0,ie., 73 =0.

9.2 Consistency Analysis: The Term T1 in (9.9)
The continuity of the sesquilinear form ((-, -)); (cf. (9.4)) implies
ITil < llewlls | (TS, — T a4 9.10)

The definition of the discrete and continuous Helmholtz decomposition applied to
a discrete function vy, leads to (cf. Def. 9.2, (9.7))

((vwh, (HC“ﬂ HE‘}?) vh))k —0 V€ S ©.11)
We use (9.5) to get curl [T = curl Hi‘}(r’lh = curl on X}, and thus

curl(IY C‘}(rlhv —IT f I i“rlvh)

Lem. 8.
em. 8.8(i) _ url (15, vi) — I curl(T€4v,) = curl vy, — ITf curl vy,

LC[IL_S.S(il) Lem._848(i)

curl v, — curl va curl (v, —vy) = 0. 9.12)

By the exact sequence property (8.8), the observation (9.12) implies that I7¢ Curl wVh —
II f Hi‘}(”vh = V4, for some ¥, € Sy and therefore

(5 = I = Vo + (T = DI v ©-13)

For the second factor in (9.10) we get by the Galerkin orthogonality (9.11) and
(9.13)

(et 5o
k,+

— Re ((( I)chrlvh (chrl Hiurl)vh))k
+ Gsign &) Im (( (7 = 1)1, (1190, = 1% )
<2|(rm = DA T = Tl

Fo C 'ﬂ
@ Springer u.. :‘0 E|



Foundations of Computational Mathematics (2024) 24:1871-1939 1929

so that
| (75 = Il - < 2][(17 = %], -
This leads to the estimate of T}

IT1] < 2llenllx 4 || (T — H}F)Hifl"h ”k,+‘

We set’
— ITFw|
alg alg E ”W h k,+
N =g (Xun, I ) = sup _— 9.14)
( ' weV_; 0\{0}: ||W||H1(_Q)
curl wecurl X,
and obtain
1 I,
IT1] < 2llenlli,+76 " [TV 1 ) = 2C Nenlle 76 [TV s
= 1
< Cllenlle+ 16" 1Vallimp. - (9.15)

9.2.1 hp-Analysis of T,

In [39, (4.72)] it was proved that for our choice ITf := Hf,url’c with H;url": as in [36],
[39, §8] (see Lem. 8.8), one has

k| |w — ITEw|| ~clkn

< (9.16)
wev_o\0y: Wik o) p
curl wecurl X,
For the boundary term in the norm || - ||+ we study the approximation properties

of the operator Hf,url’c of [36] on the boundary of the reference tetrahedron K more
carefully.

Lemma 9.4 Le’t\ 153 pe the operator introduced in [36]. For allu € H! (I/(\) with
curlu € (P,(K))”, there holds with the tangential component operator Y e

1177 55 (u - ﬁ;url’3d“) HLZ(ak) <cp'? lall g1 (g) -

Proof We follow the proof of [36, Lem. 6.15] and employ the notation used there.
From [36, proof of Lem. 6.15] and [36, (6.42)], we can decompose u = V¢ + v with

||§0||H2(1?) + ||V||H1(1?) < C||ll||H1(k‘). O.17)

9 Our choice of notation is motivated by the appearance of similar approximation quantities in the com-

panion paper [39] (for transparent boundary conditions), where various measures of approximability n?p ,

j €{l1,3,4,5,7}, and n?lg, J € {2, 6}, were introduced and used in the convergence analysis. Here, only
the quantities nglg in (9.14) and ﬁglg in (9.24) are needed.
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Since curlu € (Pp(f ))? the decomposition is such that (cf. [36, Proof of Lemma
6.15]) we have v — ﬁf,url’3dv = 0. We conclude

u— ﬁlc,”rl’3du =v+Vp— ﬁ;“rl'Sd(V + Vo) =V(p — ﬁﬁffﬁd(p)

i ;‘frjcll’w as in [36]. The construction of the projection-based interpolation opera-

tors ﬁ,c,url’ o ,%rad’ 34 s such that facewise, they reduce to corresponding 2D operators.

That is, for each face f C 9K we have

with

My o (= T3 ) | = T2 (Ve = T 0)) 1 = V(U= T3 (0l )-

We apply [36, Thm. 2.13] to obtain

17775 (w = ﬁ;url'zd“) HLZ(f) =[Ve(I- ﬁﬁ(ljyzd)‘/”f) ”L2(f) = C'1’71/2”9"”H3/2(f)

B (CAV)
<Cp ol = Cp VPl g)-
O

For the boundary part of [|W|l;p,  of aw € V_j o with curlw € curl X;,, we get,
by applying a scaling argument to Lemma 9.4:

2 2
|kl | 177 (w — H;FW) ”LZ(F) = |K| Z | 27 (w — wa) ”LZ(Km‘)
KeTy,
|[Knr|>0

k| |k
<c— > ||w||%11(,0507||wuf{1(9).
KeT,
|Knr|>0

(9.18)

The combination of (9.16) with (9.18) leads to

e lklh\ '/ k| '/
N~ = C|— 1+ — . (9.19)
)4 )4

9.3 Consistency Analysis: The Term T in (9.9)

Recall the definition of 75 = ((ep, Vp);, With vo := Hﬁ‘}cﬂvh = (I —HYk)vh. The
function vo belongs to Xjyp and by combining (9.5a) and (9.6a) we find that vg
belongs to V_y . Proposition 8.7 implies vo € H'!(£2) and

Vol 2y < lkllvolla @)k < ClIVollHeur.2).k < CIlIVollimp k- (9.20)
Elol:;ﬂ
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The characterization (8.23) of V_; o implies
divr(vo)r = ik(vg, n). (9.21)

To estimate the term 7>, we consider the dual problem: Given vo € V_y o, find
Z € Ximp such that

Ar(W,2) = (W, Vo) YW € Ximp.

The operator N_g : V_.0 — Ximp is defined by N_ivo := z. The strong formulation
is given by

Lo _xz= k*vo in £2, Br._xz=—ik (vo)r onlI. (9.22)

Hence, N_vy = ngzk (kzvo, —ik (V())T). By Galerkin orthogonality satisfied by
e;,, we have for any w;, € X,

| (@n» voDi| = 1Ak (e, Noivo — Wil < llen limp i IN-4V0 — Wi lligmp 1 -

(9.23)
We set
ﬁ;lg Xp) = sup inf INV=kv0 — Wh llimp, k (9.24)
V0eV_t0\{0} Wn€Xn V0 limp, k
so that
ol = |, Vo] < 73 (Xn) l1enllimp.k V0 limp.k- (9.25)

9.3.1 hp-Analysis of T,

Next, we gauge the approximation property ﬁ;lg (X1). We employ the splitting given
by Theorem 7.3, viz.,

NowVo=2=120 +24+k *Vor —ik™'Voq. (9.26)
Note that these five functions z, zy2, Z 4, ¢, ¢ depend on v but we suppress this in
the notation. From Theorem 7.3 with m = m’ = 1 we have

. div vo=0
el 22y < C kP I divvoll 2y © = 0,

. (9.20)
logll 2y = Clkllldive (Vo) Tl g-12(ry < CIRINVOIT 120y = ClETIVOlimp,

(7.10) _
222 lec) =< P Iz lpcene = C™ (620l (@) + KKV 7l )

(9.20)
= Clkllvollimp.k
EOE';W
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24 € A(CC,, B, 2),

Cz = (14 Caan) k1P (K7 voll + 1K1k (VO) 7 lgr-1/2¢1))

ik(vo)r=divr vg,(9.20)
< C1k1?11¥0 llimp - (9.27)

We note that ¢¢ = 0. For the approximation of Vg, we use the elementwise defined
operator H[Y’S of Corollary 8.4 with m = 2 there to get

h h 1/2
|6 (Vg = VI 0g) 1o < CIKI™! <|k|; + k|12 (;> ) lpgll m2 @)

|k|h 1/2
<C <7) 1vo llimp, & - (9.28)

For the approximation of zg2, we employ the elementwise defined operator 17, curl.s

H?(£2) — X), as in Lemma 8.5. By summing over all elements the estimates of
Lemma 8.5 (i) we get

curl,s 2 _ curl,s 2
1Zg2 — 57 22 (fcur. @)k = Z 1Zg2 — 57 22 (g curt. k) &

KeTy,
<c PRLIRD <Ch2 X |k|2h2
2; = 12522 5 ) ol Koy 1212 50 ()
KeTy
|k|2h2 |k|2h2
=c—— 1+ =5 1V0 I i - 9.29)

For the boundary part of the |||/ x norm we proceed similarly using Lemma 8.5(i)
to arrive at

32 32
(V22,2 — FT6ULS <cw2( / <cf 1k 7o
H? P ZH2||L2(F) =Clk]| » ||Z1-12“H2(Q) = T’ 1vo llimp. k-

In summary, we have proved

|k|h RIKINYZ bkl
lzge — 5™ 2z llimpa < C—— 1+ (== ) +—) 10 limp.x -
)4 p p

(9.30)

Next, for the analytic part z 4 we get from Lemma 8.5(iii) in view of (9.27) under the
(mild) resolution condition

k| h

h+ —— <C 9.31)
p

Fo C 'ﬂ
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that

ho\? |k|h\?
lza — H,C;url'sZA”imp,k < CCy k| <<h+—o> + <E> )
ho A\’ |k|h\?
<C ||VO||imp,k |k|0+1 ((m) + (_Up > ) . (9.32)

This derivation is summarized in the following lemma.

Lemma 9.5 Assume hypothesis (3.2) and let §2 be a bounded Lipschitz domain with
simply connected, analytic boundary. Let the mesh satisfy Assumption 8.1. Let c»,
& > 0 be given. Then there exists ¢c; > 0 (depending only on the constants of (3.2),
§2, the parameters of Assumption 8.1, and c3, €) such that for h, k, p satisfying the
resolution condition

k| h
L§c1 and p > max{l, cyIn |k|} (9.33)
p

there holds

~al

it (Xp) <e. (9.34)

Proof We combine (9.28), (9.30), and (9.32) with the resolution condition to arrive at

12 P P
e (X)) = € (<M> Tt [(L> " (M) D 935)
p o+h op

Clearly, by selecting c; sufficiently small, we may ensure that the first term in (9.35),
(Ik|h/p)'/?, is smaller than & /3. The second term in (9.35), |k|?*1(h /(o + h))?, can
be made smaller than ¢/3 for sufficiently small ¢; by appealing to [39, Lem. 8.7]. For
the last term in (9.35), we may assume that ¢; < o and then estimate

p
|k|9+1 (@) < |k|0+l(cl/o_)]) < |k|9+l(cl/o_)max{l,czln|k|}
op

min{|k|9+1(cl/0), |k|9+1+C2 ln(cl/o)}.

This expression can be made smaller than ¢ /3 uniformly in |k| € [1, co) by selecting
c1 sufficiently small: the first term in the minimum tends to 0 as ¢; — 0 uniformly in
|k| € [1, 2] and the second term in the minimum tends to zero as ¢; — 0 uniformly
in k| > 2. O

9.4 h-p-k-Explicit Stability and Convergence Estimates for Maxwell’s Equations

We begin with the estimate of the consistency term §y.
FolCT
u o
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Lemma 9.6 Let the assumptions in Lemma 9.5 hold. Let €, ¢ > 0 be given. Then,
one can choose a constant ¢ > 0 sufficiently small such that the resolution condition
(9.33) implies

Si(ep) < e.

Proof We combine estimates (9.8), (9.9), (9.15), (9.19), (9.25) for v := Hﬁ‘;(rlvh,
Lemma 9.3, and (9.34) in a straightforward way to obtain

12
|(en, vi)i| < C(Cl/ + c1 +€) llenllimp.k VA limp,k

and thus 8¢ (ep) < 2C(ci/2 + c1 + ¢). We may assume that ,/c; < & < 1 so that
3r(ep) < 6Ce. Since the constant C > 0 does not depend on ¢, the result follows by
adjusting constants. O

This estimate allows us to formulate the quasi-optimality of the Ap-FEM Galerkin
discretization and to show /- p-k-explicit convergence rates under suitable regularity
assumptions.

Theorem 9.7 Let 2 C R be a bounded Lipschitz domain with a simply connected,
analytic boundary. Let the stability Assumption (3.2) be satisfied. Let the finite element
mesh with mesh size h satisfy Assumption 8.1, and let X, be defined by as the space
of Nédélec-type-I elements of degree p (cf. (8.7)).

Then, for any j, gr satisfying (2.38), the variational form of Maxwell’s equations
(2.39) has a unique solution E.

For any fixed co > 0 and n € (0, 1) one can select ¢c; > 0 (depending only on
$2 and the constants of (3.2) and Assumption 8.1) such that the resolution condition
(9.33) implies that the discrete problem (8.9) has a unique solution Ej,, which satisfies
the quasi-optimal error estimate

I+n .
I1E — Enllimpx < 1 inf [|[E — wpllimpk - (9.36)

— N wpeX;,

Proof Existence and uniqueness of the continuous variational Maxwell problem follow
from Proposition 3.1. From Lemma 9.6 we know that ¢ can be chosen sufficiently
small such that é(e;) < n. As in the proof of Theorem [39, Thm. 4.15] (which goes
back to [27, Thm. 3.9]) existence, uniqueness, and quasi-optimality follows. O

The quasi-optimality result (9.36) leads to quantitative, k-explicit error estimates
if a k-explicit regularity of the solution E is available. In the following corollary, we
draw on the regularity assertions of Theorem 7.3. We point out, however, that due
to our relying on the operator H[C,url’s and the regularity assertion Theorem 7.3, the

regularity requirements on the data j, gr are not the weakest possible ones.

Corollary 9.8 Let the hypotheses of Theorem 9.7 be valid. Givenn € (0, 1) andc; > 0
let c1 be as in Theorem 9.7. Then, under the scale resolution condition (9.33) the
following holds: Let m, m" € Ng and (j, gr) € H"(£2) x H"~V2(I") together with
(divj, divr g7) € H" (2) x H" ~V2(I"). If p > max(m, m’), then
FolCT
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’
2
1 + ’7 h m B ]’l m +l/
IE — Epllimpk < C——{Cigm | =) + Cigmlkl ™=
I—n p p

o, ho\? |k|h \?
k|Cj.g.4 o + o , 9.37)

where
Cigm = kI Ijllem ) + lgr lgn-172(r)- (9.38)
Cj,g,m/ = diVj”Hm’(Q) + |kl divp gT”Hm’—l/z(F), (9.39)
CigA = IkI""" (Iill2ce) + Iklllgrla-12cr)) - (9.40)

Proof For the error estimate (9.37), we employ the solution decomposition provided
by Theorem 7.3:

E=E;» +E4+k Vo +ik 'V,
with

||EH2||H171+1(_Q) E CCj,g,ma
”gaj”Hm’-%—Z(Q) + |k|”§0g”Hm’+2(_Q) = CCj,g,m’a
E4 € ACCjga. B.2)

for k-independent constants C, B. With the operators IT ,Y’p and H,C,url’s of Corollary 8.4
and Lemma 8.5 we get

IE TSE s || <CccC <h>m+ |k|<h)m+1+ |/c|1/2<h>wrl/2
2 — “Ep2llimpk =CCigm|| — - -
H p H2 llimp em|\ 5, P »
h m
SCC',, (_> )
J.8,m p

B B h m'+1 h m/+1/2
K172 1V g5 = VITY* Gillimp. < CCj g K] 2[|k| (;) Y <;>

oy
(

1,3 .
||E.A - H;ur YE.A”lmp,k = C|k|Cj,g,A ((h T U)

< CCjgm k172 1K|'?

N———"

m'+1/2

()

= |

k" Vg — VIT) ggllimpk < CCigm k172 [K|'/?

N———"

ESERS |

+

m}

FoE'ﬂ
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vel. error in | - [l + Kl - |
rel. error in || « [l + k[ - |

.. e
10 20 50 80 10
DOF per wavelength DOF per wavelength

20 50 50 80

10 20
DOF per wavelength

Fig.1 2 = (-1, 1)3, smooth solution; left to right: p € {1, 2, 3}

= 100 = =

+ | + +

PR = =

o ——k=20 = &

£ 10 | ka0 ;

B i k=80 3 g

T“: e O(h) E 4 E
1 10 20 50 1 10 20 50 10 20 50

DOF per wavelength DOF per wavelength DOF per wavelength

Fig.2 £ = (—1, 1)3\ [—1/2, 1/2]3, smooth solution; left to right: p € {1,2, 3}

10 Numerical Results

We illustrate the theoretical findings of Theorem 9.7 and Corollary 9.8 by two numer-
ical experiments. All computations are performed with NGSolve, [47, 48] using
Nédélec type II elements, i.e., full polynomial spaces.

Remark 10.1 While the analysis of the present paper is peformed in detail for Nédélec
type I elements, it can be extended to Nédélec type II elements. Key is the observation
that commuting diagram operators ﬁf:fld’c and ﬁlc,wl’c analogous to the ones used in

Sects. 8 and 9 for type I elements also exist for type II elements. This is discussed in
[46, Sec. 4.8]. O

We show in Figs. 1 and 2 the relative error in the norm || curl [y 2 () + k| |- 2(2) ~
Il - Il H(url,2). k| versus the number of degrees of freedom per wavelength

27 DOF!/3

BT kRl

where DOF stands for the dimension of the ansatz space.

Example 10.2 We consider 2 = (—1,1)> and impose the right-hand side and
the impedance boundary conditions in such a way that the exact solution is
E (x) = curlsin(kx;)(1,1,1)T. Figure 1 shows the performance for the choices
k € {10, 20, 30,40} and p € {1, 2, 3} as the mesh is refined quasi-uniformly. The
final problem sizes were DOF = 18, 609, 324 for p = 1, DOF = 9,017, 452 for
p =2, and DOF = 23, 052, 940 for p = 3.
We observe the expected asymptotic O (h?) convergence. We also observe that the
onset of asymptotic quasi-optimal convergence is reached for smaller values of N, for
Elol:;ﬂ
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higher order methods. This is expected in view of Theorem 9.7, although the present
setting of a piecewise analytic geometry is not covered by Theorem 9.7. O

Example 10.3 We consider 2 = (—1, 1)3\[—1/2, 1/2]* and Maxwell’s equations
with impedance boundary conditions on 8(—1, 1)* and perfectly conducting bound-
ary conditions on the inner boundary d(—1/2, 1/2)3. We prescribe an exact solution
E(x) = kcos(kx;)(x? — 1/4)(x3 — 1/4)(x3 — 1/4)(0, —1, 1) " Figure 2 shows the
performance for the choices k € {20, 40, 80} and p € {1, 2, 3} as the mesh is refined
quasi-uniformly. The final problem sizes were DOF = 43,598,374 for p = 1,
DOF = 168, 035, 046 for p = 2, and DOF = 54, 063, 558 for p = 3.

We observe the expected asymptotic O (h”) convergence. We also observe that the
onset of asymptotic quasi-optimal convergence is reached for smaller values of N, for
higher order methods. O
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