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Abstract
The time-harmonicMaxwell equations at high wavenumber k in domains with an ana-
lytic boundary and impedance boundary conditions are considered. A wavenumber-
explicit stability and regularity theory is developed that decomposes the solution into
a part with finite Sobolev regularity that is controlled uniformly in k and an analytic
part. Using this regularity, quasi-optimality of the Galerkin discretization based on
Nédélec elements of order p on a mesh with mesh size h is shown under the k-explicit
scale resolution condition that (a) kh/p is sufficient small and (b) p/ ln k is bounded
from below.

Keywords Maxwell’s equations · Time-harmonic · High-frequency ·Wavenumber
explicit · hp-FEM · Quasi-optimality

Mathematics Subject Classification 35J05 · 65N12 · 65N30

1 Introduction

The time-harmonic Maxwell equations at high wavenumber k are a fundamental com-
ponent of high-frequency computational electromagnetics. Computationally, these
equations are challenging for several reasons. The solutions are highly oscillatory
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so that fine discretizations are necessary and correspondingly large computational
resources are required. While conditions to resolve the oscillatory nature of the solu-
tion appear unavoidable, even more stringent conditions on the discretizations have
to be imposed for stability reasons: In many numerical methods based on the varia-
tional formulation of Maxwell’s equations, the gap between the actual error and the
best approximation error widens as the wavenumber k becomes large. This “pollution
effect” is a manifestation of a lack of coercivity of the problem, as is typical in time-
harmonic wave propagation problems. Mathematically understanding this “pollution
effect” in terms of the wavenumber k and the discretization parameters for the model
problem (1.1) is the purpose of the present work.

The “pollution effect”, i.e., the fact that discretizations of time-harmonic wave
propagation problems are prone to dispersion errors, is probably best studied for
the Helmholtz equation at large wavenumbers. The beneficial effect of using high
order methods was numerically observed very early and substantiated for translation-
invariant meshes [1, 2]; a rigorous mathematical analysis for unstructured meshes was
developed in the last decade only in [17, 37, 38]. These works analyze high order FEM
(hp-FEM) for the Helmholtz equation in a Gårding setting using duality techniques.
This technique, often called “Schatz argument”, crucially hinges on the regularity of
the dual problem, which is again a Helmholtz problem. The key new insight of the line
of work [17, 37, 38] is a refined wavenumber-explicit regularity theory for Helmholtz
problems that takes the following form (“regularity by decomposition”): given data,
the solution u is written as uH2 +uA where uH2 has the regularity expected of elliptic
problems and is controlled in terms of the data with constants independent of k. The
part uA is a (piecewise) analytic function whose regularity is described explicitly in
terms of k. Employing “regularity by decomposition” for the analysis of discretizations
has been successfully applied to other Helmholtz problems and discretizations such
DGmethods [31], BEM [27], FEM-BEMcoupling [29], and heterogeneousHelmholtz
problems [4, 9, 25, 26].

In this paper, we consider the following time-harmonic Maxwell equations with
impedance boundary conditions as our model problem:

curl curlE− k2E = f in Ω, (1.1a)

(curlE)× n − i kET = gT on ∂Ω (1.1b)

on a bounded Lipschitz domain Ω ⊂ R
3 with simply connected boundary ∂Ω . We

study anH(curl)-conformingGalerkinmethodwith elements of degree p on amesh of
size h and show quasi-optimality of the method under the scale resolution condition

|k| h
p

≤ c1 and p ≥ c2 ln |k| , (1.2)

where c2 > 0 is arbitrary and c1 > 0 is sufficiently small (Theorem 9.7). The resolution
condition |k| h/p ≤ c1 is a natural condition to resolve the oscillatory behavior of the
solution, and the side constraint p ≥ c2 ln |k| is a rather weak condition that suppresses
the “pollution effect”.
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Compared to the scalar Helmholtz case, where the compact embedding H1 ⊂ L2

underlies the success of the duality argument, the convergence analysis of discretiza-
tions ofMaxwell’s equations is hampered by the fact that the embeddingH(curl) ⊂ L2

is not compact so that a duality argument is not immediately applicable. This issue
arises even in the context of convergence analyses that are not explicit in the wavenum-
ber k. An analysis can be based on the observation that H(curl) ∩ H(div) endowed
with appropriate boundary conditions is compactly embedded in L2. This approach,
which is structurally described in [39, Sec. 1.2], involves as a first ingredient the ability
to decompose discrete functions into gradient parts and (discrete) solenoidal parts in
two ways, namely, on the continuous level and the discrete level. The solenoidal part
of the decomposition on the continuous level is in H(curl) ∩ H(div) and admits a
duality argument. Galerkin orthogonalities are invoked to then reduce the analysis to
that of the difference between the solenoidal parts of the continuous and the discrete
level. For the analysis of this difference, a second ingredient is vital, namely, special
interpolation operators with a commuting diagram property. These two ingredients
underlie many duality arguments for Maxwell problems in the literature, see, e.g.,
[41, Sec. 7.2], [8, 10, 16, 56] and references therein. The present work follows [41,
Sec. 7.2] and the path outlined in [39, Sec. 1.1–1.3].

At the heart of the k-explicit convergence analysis for (1.1) is a k-explicit regu-
larity theory for the above mentioned dual problem. Similarly to the Helmholtz case
discussed above, it takes the form of a “regularity by decomposition” (Theorem 7.3).
Such a regularity theory was developed for Maxwell’s equations in full space in the
recent paper [39], where the decomposition is directly accessible in terms of the New-
ton potential and layer potentials. For the present bounded domain case, however, an
explicit construction of the decomposition is not available, and the iterative construc-
tion as in the Helmholtz case of [38] has to be brought to bear. For this, a significant
complication in the Maxwell case compared to the Helmholtz case arises from the
requirement that the frequency filters used in the construction be such that they pro-
duce solenoidal fields if the argument is solenoidal.

While our wavenumber-explicit regularity result Theorem 7.3 underlies our proof
of quasioptimal convergence of the high order Galerkin method (cf. Theorem 9.7),
it also proves useful for wavenumber-explicit interpolation error estimates as worked
out in Corollary 9.8.

The present paper analyzes an H(curl)-conforming discretization based on high
order Nédélec elements. Various other high order methods for Maxwell’s equations
that are explicit in the wavenumber can be found in the literature. Closest to our work
are [11, 45]. The work [45] studies the same problem (1.1) but uses an H1-based
instead of an H(curl)-based variational formulation involving both the electric and
the magnetic field. The proof of quasi-optimality in [45] is based on a “regularity
by decomposition” technique similar to the present one. [44] studies the same H1-
based variational formulation and H1-conforming discretizations for (1.1) on certain
polyhedral domains and obtains k-explicit conditions on the discretization for quasi-
optimality. Key to this is a description of the solution regularity in [44] in terms
of corner and edge singularities. The work [11] studies fixed (but arbitrary) order
H(curl)-conforming discretizations of heterogeneous Maxwell problems and shows
a similar quasi-optimality result by generalizing the corresponding Helmholtz result
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[9]; the restriction to finite order methods compared to the present work appears to be
due to the difference in which the decomposition of solutions of Maxwell problems
is obtained. High order Discontinuous Galerkin (DG) and Hybridizable DG (HDG)
methods for (1.1) have been presented in [18] and [28] togetherwith a stability analysis
that is explicit in h, k, and p. A dispersion analysis of high order methods on tensor-
product meshes is given in [2].
The outline of the paper is as follows. Section2 introduces the notation and tools such
as regular decompositions (see Sect. 2.4) that are indispensable for the analysis of
Maxwell problems. Section3 (Theorem 3.7) shows that the solution of (1.1) depends
only polynomially on the wavenumber k. This stability result is obtained using layer
potential techniques in the spirit of earlier work [17, Thm. 2.4] for the analogous
Helmholtz equation. While earlier stability estimates for (1.1) in [18, 23, 55], and
[44, Thm. 5.2 ] are obtained by judicious choices of test functions and rely on star-
shapedness of the geometry, Theorem 3.7 does not require star-shapedness. It is worth
mentioning that at least in the analogous case of the Helmholtz equation, alternatives
to the use of suitable test functions or layer potential exist, which can lead to better
k-dependencies; we refer to [51] for results and a discussion. Section4 analyzes a
“sign definite” Maxwell problem and presents k-explicit regularity assertions for it
(Theorem 4.3). The motivation for studying this particular boundary value problem is
that, since the principal parts of our sign-definite Maxwell operator and that of (1.1)
coincide, a contraction argument can be brought to bear in the proof of Theorem 7.3.
A similar technique has recently been used for heterogeneous Helmholtz problems
in [4]. Section5 collects k-explicit regularity assertions for (1.1) (Lemma 5.1 for
finite regularity data and Theorem 5.2 for analytic data). The contraction argument in
the proof of Theorem 7.3 relies on certain frequency splitting operators (both in the
volume and on the boundary), which are provided in Sect. 6. Section7 presents the
main analytical result, Theorem 7.3, where the solution of (1.1) with finite regularity
data f , g is decomposed into a part with finite regularity but k-uniform bounds, a
gradient field, and an analytic part. Section8 presents the discretization of (1.1) based
onhigh orderNédélec elements and presents hp-approximation operators thatmap into
Nédélec spaces. These operators are the same ones as used in [39] butwework out their
approximation properties on the skeleton of the mesh since stronger approximation
properties on the boundary ∂Ω are required in the present case of impedance boundary
conditions. Section9 shows quasi-optimality (Theorem 9.7) under the scale resolution
condition (1.2). Section10 concludes the paper with numerical results.

2 Setting

2.1 Geometric Setting and Sobolev Spaces on Lipschitz Domains

LetΩ ⊂ R
3 be a bounded Lipschitz domain which we assume throughout the paper to

have a simply connected and sufficiently smooth boundaryΓ := ∂Ω; if less regularity
is required, we will specify this. We flag already at this point that the main quasi-
optimal convergence result, Theorem 9.7 will require analyticity of Γ . The outward
unit normal vector field is denoted by n : Γ → S2.

123



Foundations of Computational Mathematics (2024) 24:1871–1939 1875

The Maxwell problem in the frequency domain involves the wavenumber (denoted
by k) and we assume that1

k ∈ R\ (−k0, k0) for k0 = 1. (2.1)

Let L2(Ω) denote the usual Lebesgue space on Ω with scalar product (·, ·)L2(Ω)

and norm ‖·‖L2(Ω) := (·, ·)1/2
L2(Ω)

. Recall that the complex conjugation is applied to
the second argument in (·, ·)L2(Ω). If the domain Ω is clear from the context we write
short (·, ·), ‖·‖ for (·, ·)L2(Ω), ‖·‖L2(Ω). If necessary, (·, ·)L2(Ω) (or (·, ·)) is understood
as the extended L2(Ω) inner product, i.e., a duality pairing with pivot space L2(Ω).
For Sobolev spaces, we follow the notation of [30]. For s ≥ 0 we denote by Hs(Ω)

the usual Sobolev spaces of index s with norm ‖·‖Hs (Ω) and by ˜Hs(Ω) = Hs
Ω

(R3)

the space of Sobolev functions on R3 with support in Ω . For s ≥ 0, H−s(Ω) denotes
the dual of ˜Hs(Ω). The space Hs(Ω) of vector-valued functions is characterized by
componentwise membership in Hs(Ω). We write (·, ·) also for the vectorial L2(Ω)

inner product given by (f, g) = ∫
Ω
〈f, g〉. Here, we introduce for vectors a,b ∈ C

3

with a = (a j )
3
j=1, b =(b j )

3
j=1 the bilinear form 〈·, ·〉 by 〈a,b〉 := ∑3

j=1 a jb j . For
m ∈ N0, we introduce the seminorms

|f |Hm (Ω) :=
⎛

⎜

⎝

∑

α∈N3
0 : |α|=m

|α|!
α!
(

∂αf, ∂αf
)

⎞

⎟

⎠

1/2

(2.2)

and the full norms ‖f‖2Hm (Ω) :=
∑m

n=0 |f |2Hn(Ω). For the Maxwell problem the space
H(curl) is the key to describe the energy of the electric field. For m ∈ N0 we set

Hm (curl,Ω) := {u ∈ Hm(Ω) | curl u ∈ Hm(Ω)
}

and (2.3a)

X := H(curl,Ω) := H0(curl,Ω). (2.3b)

The space Hm(div,Ω) is given for m ∈ N0 by

Hm(div,Ω) := {u ∈ Hm(Ω) | div u ∈ Hm(Ω)
}

(2.4)

with H(div,Ω) := H0(div,Ω). We introduce

H(div0,Ω) := {u ∈ H(div,Ω) | div u = 0} . (2.5)

For ρ ∈ R \ {0} and m, � ∈ N0 we define the indexed norms and seminorms by

|v|H�(Ω),ρ := |ρ|−� |v|H�(Ω) and ‖v‖Hm(Ω),ρ :=
(

m
∑

�=0
|v|2H�(Ω),ρ

)1/2

(2.6)

1 We exclude here a neighborhood of 0 since we are interested in the high-frequency behavior – to simplify
notation we have fixed k0 = 1 while any other positive choice k0 ∈ (0, 1) leads to qualitatively the same
results while constants then depend continuously on k0 ∈ (0, 1) and, possibly, deteriorate as k0 → 0.
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and corresponding dual norms

‖v‖H−m (Ω),ρ := |ρ|m ‖v‖H−m (Ω) . (2.7)

We define for D ∈ {curl, div}

‖f‖Hm (D,Ω),ρ :=
(

ρ−2m |D f |2Hm (Ω) + ρ2 ‖f‖2Hm (Ω),ρ

)1/2

=
(

ρ−2m |D f |2Hm (Ω) +
m
∑

�=0
ρ2−2� |f |2H�(Ω)

)1/2

and introduce the shorthands:

‖f‖Hm (D,Ω) := ‖f‖Hm(D,Ω),1 ,

‖f‖H(D,Ω),ρ := ‖f‖H0(D,Ω),ρ =
(

‖D f‖2 + ρ2 ‖f‖2
)1/2

, (2.8)

‖f‖H(D,Ω) := ‖f‖H0(D,Ω) . (2.9)

We close this section with the introduction of the spaces of analytic functions:

Definition 2.1 For an open set ω ⊂ R
3, constants C1, γ1 > 0, and wavenumber

|k| ≥ 1, we set

A(C1, γ1, ω) :=
{

u ∈ (C∞(ω))3 | |u|Hn(ω) ≤ C1γ
n
1 max {n + 1, |k|}n ∀n ∈ N0

}

.

2.2 Sobolev Spaces on a Sufficiently Smooth Surface 0

The Sobolev spaces on the boundary Γ are denoted by Hs(Γ ) for scalar-valued
functions and by Hs(Γ ) for vector-valued functions with norms ‖·‖Hs (Γ ), ‖·‖Hs (Γ )

(see, e.g., [30, p. 98]). Note that the range of s for which Hs(Γ ) is defined may be
limited, depending on the global smoothness of the surface Γ ; for Lipschitz surfaces,
s can be chosen in the range [0, 1]. For s < 0, the space Hs(Γ ) is the dual of H−s(Γ ).

Differential operators on Γ are defined as described in [4, Sec. 2.5.6] using exten-
sions to a three-dimensional neighborhood U of Γ : For a sufficiently smooth scalar
field u on Γ , the constant extension along the normal direction is denoted u∗. For
a sufficiently smooth tangential field v the extension to U is formally given in [4,
2.5.188] and denoted v∗. One key feature of the extension v∗ is that it is tangential
to surfaces parallel to Γ . The surface gradient ∇Γ , the tangential curl

−−−→
curlΓ , and the

surface divergence divΓ are defined by (cf., e.g., [6, 43])

∇Γ u :=
(∇u


)∣

∣

Γ
,
−−−→
curlΓ u := ∇Γ u × n, and divΓ v = (

div v∗
)∣

∣

Γ
on Γ .

The scalar counterpart of the tangential curl is the surface curl

curlΓ v := 〈 (curl v∗)∣∣
Γ

,n
〉

on Γ .
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The composition of the surface divergence and surface gradient leads to the scalar
Laplace-Beltrami operator (see [43, (2.5.191)])

ΔΓ u = divΓ ∇Γ u = − curlΓ
−−−→
curlΓ u.

From [43, (2.5.197)] it follows that

divΓ (v × n) = curlΓ v.

Next, we introduce Hilbert spaces of tangential fields on the compact and simply
connected manifold Γ and corresponding norms and refer for their definitions and
properties to [43, Sec. 5.4.1]. We start with the definition of the space L2

T (Γ ) of
tangential vector fields given by

L2
T (Γ ) :=

{

v ∈ L2(Γ ) | 〈n, v〉 = 0 on Γ
}

. (2.10)

Any tangential field vT on Γ then can be represented in terms of the Hodge decom-
position2as

vT = v∇T + vcurlT with v∇T := ∇Γ V∇ and vcurlT := −−−→
curlΓ V curl (2.11)

for some scalar potentials

V∇ ∈ H1(Γ ) and V curl ∈ H(
−−−→
curlΓ , Γ ) :=

{

φ ∈ L2(Γ ) | −−−→curlΓ φ ∈ L2
T (Γ )

}

.

In particular, this decomposition is L2
T -orthogonal:

(

v∇T , vcurlT

)

L2(Γ )
=
(

∇Γ V∇ ,
−−−→
curlΓ V curl

)

L2(Γ )
= 0 ∀ vT = v∇T + vcurlT as in (2.11).

Hence, the splitting (2.11) is stable:

‖vT ‖L2(Γ ) =
(

∥

∥

∥∇Γ V∇
∥

∥

∥

2

L2(Γ )
+
∥

∥

∥

−−−→
curlΓ V curl

∥

∥

∥

2

L2(Γ )

)1/2

,

∥

∥

∥∇Γ V∇
∥

∥

∥

L2(Γ )
≤ ‖vT ‖L2(Γ ) and

∥

∥

∥

−−−→
curlΓ V curl

∥

∥

∥

L2(Γ )
≤ ‖vT ‖L2(Γ ) .

Higher order spaces are defined for s > 0 by

Hs
T (Γ ) :=

{

vT ∈ L2
T (Γ ) | ‖vT ‖Hs (Γ ) < ∞

}

(2.12)

and for negative s by duality.

2 Throughout the paper we use the convention that if vT , v∇T , vcurlT , V∇ , V curl appear in the same context
they are related by (2.11).

123



1878 Foundations of Computational Mathematics (2024) 24:1871–1939

The Hs(Γ )-norm of curlΓ (·) and divΓ (·) can be expressed by using the Hodge
decomposition:

‖curlΓ vT ‖Hs (Γ ) =
∥

∥curlΓ vcurlT

∥

∥

Hs (Γ )
=
∥

∥

∥curlΓ
−−−→
curlΓ V curl

∥

∥

∥

Hs (Γ )
=∥∥ΔΓ V curl

∥

∥

Hs (Γ )
,

‖divΓ vT ‖Hs (Γ ) =
∥

∥

∥divΓ v∇T
∥

∥

∥

Hs (Γ )
=
∥

∥

∥divΓ ∇Γ V∇
∥

∥

∥

Hs (Γ )
=
∥

∥

∥ΔΓ V∇
∥

∥

∥

Hs (Γ )
.

We define

‖vT ‖H−1/2(curlΓ ,Γ ) :=
(

∥

∥

∥curlΓ vcurlT

∥

∥

∥

2

H−1/2(Γ )
+ ‖vT ‖2H−1/2(Γ )

)1/2

=
(

∥

∥

∥ΔΓ V curl
∥

∥

∥

2

H−1/2(Γ )
+ ‖vT ‖2H−1/2(Γ )

)1/2

, (2.13a)

‖vT ‖H−1/2(divΓ ,Γ ) :=
(

∥

∥

∥divΓ v∇T
∥

∥

∥

2

H−1/2(Γ )
+ ‖vT ‖2H−1/2(Γ )

)1/2

=
(

∥

∥

∥ΔΓ V∇
∥

∥

∥

2

H−1/2(Γ )
+ ‖vT ‖2H−1/2(Γ )

)1/2

. (2.13b)

The corresponding spacesH−1/2T (curlΓ , Γ ) andH−1/2T (divΓ , Γ ) are characterized
by

vT ∈ H−1/2T (divΓ , Γ ) ⇐⇒ vT has form (2.11) and ‖vT ‖H−1/2(divΓ ,Γ ) < ∞,

vT ∈ H−1/2T (curlΓ , Γ ) ⇐⇒ vT has form (2.11) and ‖vT ‖H−1/2(curlΓ ,Γ ) < ∞.

(2.14)

We also introduce indexed norms for functions in Sobolev spaces on the boundary:
for ν ∈ R with 2ν ∈ N0, we formally set

‖gT ‖Hν (Γ ),k :=
(

2ν
∑

�=0
|k|1−� ‖gT ‖2H�/2(Γ )

)1/2

and (2.15a)

‖gT ‖H−ν (Γ ),k := |k|ν+1/2 ‖gT ‖H−ν (Γ ) . (2.15b)

For DΓ ∈ {curlΓ , divΓ }, we introduce3

‖gT ‖Hν (DΓ ,Γ ),k :=
(

‖DΓ gT ‖2Hν (Γ ),k + |k|2 ‖gT ‖2Hν (Γ ),k

)1/2
. (2.16)

In particular, we have

‖gT ‖H0(Γ ),k = |k|1/2 ‖gT ‖L2(Γ ) and ‖gT ‖Hν (Γ ) ≤ C |k|−1/2+ν ‖gT ‖Hν (Γ ),k .

3 We always write |k| in the estimates also if the exponent is even for the sake of clarity.
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We remark that the special dual norms ‖ · ‖H−1/2(divΓ ,Γ ),k and ‖ · ‖X′imp(Γ ),k on the

boundary will be defined later in (4.4) and in (4.5). By using standard interpolation
inequalities for Sobolev spaces we obtain the following lemma.

Lemma 2.2 For m ∈ N0, there holds

‖gT ‖Hm+1/2(Γ ),k ≤ C

(

|k| ‖gT ‖2L2(Γ )
+

m+1
∑

r=1
|k|2−2r ‖gT ‖2Hr−1/2(Γ )

)1/2

≤ C

(

m+1
∑

r=0
|k|2−2r ‖gT ‖2Hr−1/2(Γ )

)1/2

,

‖gT ‖Hm+1/2(Γ ),k ≤ C
(

|k| ‖gT ‖2L2(Γ )
+ |k|−2m ‖gT ‖2Hm+1/2(Γ )

)1/2

≤ C
(

|k|2 ‖gT ‖2H−1/2(Γ )
+ |k|−2m ‖gT ‖2Hm+1/2(Γ )

)1/2
. (2.17)

2.3 Trace Operators and Energy Spaces for Maxwell’s Equations

We introduce tangential trace operators ΠT and γT , which map sufficiently smooth
functions u in Ω to tangential fields on Γ , by

ΠT : u �→ n× (u|Γ × n) , γT : u �→ u|Γ × n. (2.18)

The following theorem shows that H−1/2T (divΓ , Γ ) and H−1/2T (curlΓ , Γ ) are the
correct spaces for the continuous extension of the tangential trace operators to Hilbert
spaces.

Proposition 2.3 ([7], [43, Thm. 5.4.2])The tracemappingsΠT and γT in (2.18) extend
to continuous and surjective operators

ΠT : X→ H−1/2T (curlΓ , Γ ), γT : X→ H−1/2T (divΓ , Γ ).

Moreover, for theses trace spaces there exist continuous divergence-free liftings EΓ
curl :

H−1/2T (curlΓ , Γ ) → X and EΓ
div : H−1/2T (divΓ , Γ ) → X.

For a vector field u ∈ X, we will employ frequently the notation

uT := ΠTu.

From [43, (2.5.161), (2.5.208)] and the relation ΠT∇u= n× (∇u|Γ × n) = ∇u|Γ −
(∂nu)n we conclude

ΠT∇u = ∇Γ (u|Γ ), (2.19)

γT∇u = (ΠT∇u)× n = ∇Γ (u|Γ )× n. (2.20)
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Remark 2.4 For gradient fields ∇ϕ we have (∇ϕ)curlT = 0 and (∇ϕ)∇T = ∇Γ ϕ. ��

Definition 2.5 Let Ω ⊂ R
3 be a bounded domain with sufficiently smooth Lipschitz

boundary Γ as described in Sect. 2.1. The energy space for Maxwell’s equations with
impedance boundary conditions on Γ and real wavenumber k ∈ R\ (−k0, k0) is

Ximp :=
{

u ∈ X : ΠTu ∈ L2
T (Γ )

}

(2.21)

with corresponding norm

‖u‖imp,k :=
[

‖curl u‖2 + ‖u‖2k,+
]1/2

with ‖u‖k,+ :=
[

k2 ‖u‖2 + |k| ‖uT ‖2L2(Γ )

]1/2
.

Its companion space of scalar potentials is

H1
imp(Ω) :=

{

ϕ ∈ H1(Ω) | ϕ|Γ ∈ H1(Γ )
}

. (2.22)

2.4 Regular Decompositions

We will rely on various decompositions of functions into regular parts and gradient
parts. The decompositions may not be orthogonal but must be stable. We refer to
[20, §4.4] and the bibliographic notes therein for some early contributions. Many
variants have been introduced since then, and the results in this section are essentially
taken from the literature: Lemma 2.6 is a consequence of [15, Thm. 4.6]; Lemma 2.7
relies on [41, Thm. 3.38] and Lemma 2.6; Lemma 2.8 is based on [13] while closely
related results can be found in [3]. Finally, Lemma 2.9 is a consequence of [50,
Thm. 4.2(2)] and [13]. For newer overview articles, we refer to, e.g., [21, 24]. The
following Lemma 2.6 collects a key result from the seminal paper [15]. The operator
R2, which is essentially a right inverse of the curl operator, will frequently be employed
in the present paper.

Lemma 2.6 LetΩ be a boundedLipschitz domain. There exist pseudodifferential oper-
ators R1,R2 of order−1 andK,K2 of order−∞ onR3 with the following properties:
For each m ∈ Z they have the mapping properties R1 : H−m(Ω) → H1−m(Ω),
R2 : H−m(Ω) → H1−m(Ω), and K, K2 : Hm(Ω) → (C∞(Ω))3, and for any
u ∈ Hm(curl,Ω) there holds

u = ∇R1(u− R2(curl u))+ R2(curl u)+Ku. (2.23)

For u with div u = 0 on Ω there holds

curlR2u = u−K2u. (2.24)
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Proof In [15, Thm. 4.6], operators R1, R2, R3, K1, K2 with the mapping properties

R1 : H−m(Ω) → H1−m (Ω) ,

R2 : H−m(Ω) → H1−m (Ω) ,

R3 : H−m(Ω) → H1−m (Ω) ,

K� : Hm (Ω) → (C∞(Ω))3, � = 1, 2,

(2.25)

are constructed with

∇R1v + R2(curl v) = v −K1v, (2.26a)

curlR2v + R3 (div v) = v −K2v. (2.26b)

We note that (2.26) implies (2.24). It is worth stressing that the mapping properties
given in (2.25) express a locality of the operators, which are pseudodifferential oper-
ators on R3: on Ω , the operators depend only on the argument restricted to Ω and not
on the values on R

3 \Ω .
Selecting v = u− R2(curl u) in (2.26a) we obtain

∇R1(u− R2(curl u))+ R2(curl(u− R2(curl u)))

= u− R2(curl u)−K1(u− R2(curl u)).
(2.27)

Since curl u is divergence free, we obtain from (2.26b)

R2(curl(u− R2 (curl u))) = R2 (curl u)− R2(curl u−K2 curl u)

= R2(K2(curl u)) =: K3u,

where, again,K3 is a smoothing operator of order−∞. Inserting this into (2.27) leads
to

∇R1 (u− R2 (curl u))+ R2 (curl u) = u−K1 (u− R2 (curl u))−K3u.

By choosing Ku := K1 (u− R2 curl u)+K3u the representation (2.23) is proved. ��
Lemma 2.7 Let Ω be a bounded, connected Lipschitz domain.

(i) There is C > 0 such that for every u ∈ X there is a decomposition u = ∇ϕ + z
with

div z = 0, ‖z‖H1(Ω) ≤ C ‖curl u‖ , ‖ϕ‖H1(Ω) ≤ C ‖u‖H(curl,Ω) .

(2.28)

(ii) Let m ∈ Z. For each u ∈ Hm(curl,Ω) there is a splitting independent of m of
the form u = ∇ϕ + z with ϕ ∈ Hm+1(Ω), z ∈ Hm+1(Ω) satisfying

‖z‖Hm+1(Ω) ≤ C ‖u‖Hm (curl,Ω) and (2.29a)

‖z‖Hm (Ω) + ‖ϕ‖Hm+1(Ω) ≤ C ‖u‖Hm (Ω) . (2.29b)
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(iii) There is C > 0 depending only on Ω such that each u ∈ Ximp can be written as
u = ∇ϕ + z with ϕ ∈ H1

imp(Ω), z ∈ H1(Ω) and

‖∇ϕ‖imp,k + ‖z‖H1(Ω) + |k|‖z‖L2(Ω) + |k|1/2‖z‖L2(Γ ) ≤ C‖u‖imp,k . (2.30)

Proof Proof of (i): Let u ∈ X. The point is to choose z in the splitting u = ∇ϕ + z
such that it can be controlled by curl u. To this end, we set v = curl u ∈ L2(Ω) and
observe that div v = 0 and therefore (1, 〈n, v〉)L2(Γ ) = 0. By [41, Thm. 3.38], this
allows us to conclude the existence of z ∈ H1(Ω) with div z = 0, v = curl z and

‖z‖H1(Ω) ≤ C ‖v‖ .

Since curl(u−z) = 0, we have u−z = ∇ϕ for a ϕ ∈ H1(Ω), which trivially satisfies

(∇ϕ,∇ψ) = (u− z,∇ψ) ∀ψ ∈ H1(Ω).

By fixing ϕ such that
∫

Ω
ϕ = 0, the estimate of ϕ follows by a Poincaré inequality.

Proof of (ii): With the operators of Lemma 2.6, we define

z := R2(curl u)+Ku, ∇ϕ := ∇R1(u− R2(curl u)).

Lemma 2.6 implies u = z+∇ϕ as well as the bounds by the mapping properties given
in Lemma 2.6.

Proof of (iii): Multiplying estimate (2.29b) for the decomposition of (ii) and
m = 0 by |k| leads to |k| ‖z‖L2(Ω) + |k| ‖∇ϕ‖L2(Ω) ≤ C |k| ‖u‖L2(Ω). (2.29a) gives
‖z‖H1(Ω) ≤ C‖u‖H(curl,Ω). The multiplicative trace inequality gives |k|‖z‖2L2(Γ )

≤
C |k| ‖z‖L2(Ω)‖z‖H1(Ω) ≤ C |k|2 ‖z‖2L2(Ω)

+ C‖z‖2H1(Ω)
. Hence follows ‖z‖imp,k ≤

C‖u‖H(curl,Ω),k ≤ C‖u‖imp,k . The triangle inequality then provides the bound
‖∇ϕ‖imp,k ≤ ‖u‖imp,k + ‖z‖imp,k ≤ C‖u‖imp,k . ��

The following result relates the spaceH(curl,Ω)∩H(div,Ω) to classical Sobolev
spaces. The statement (2.32) is from [13]; closely related results can be found in [3].

Lemma 2.8 Let ∂Ω be smooth and simply connected. Then there is C > 0 such that
for every u ∈ H (curl,Ω) ∩H (div,Ω) there holds

‖u‖ ≤ C
(‖curl u‖ + ‖div u‖ + ‖〈u,n〉‖H−1/2(Γ )

)

, (2.31a)

‖u‖ ≤ C
(‖curl u‖ + ‖div u‖ + ‖γTu‖H−1/2(Γ )

)

. (2.31b)

Under the assumption4 that 〈u,n〉 ∈ L2(Γ ) or γTu ∈ L2
T (Γ ), there holds

‖u‖H1/2(Ω) ≤ C
(‖curl u‖ + ‖div u‖ + ‖〈u,n〉‖L2(Γ )

)

, (2.32a)

‖u‖H1/2(Ω) ≤ C
(‖curl u‖ + ‖div u‖ + ‖γTu‖L2(Γ )

)

. (2.32b)

4 In [13, Thm. 2], it is shown that these conditions are equivalent for u with u ∈ H(Ω, curl)∩ H(Ω, div).
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Proof We use the regular decomposition u = ∇ϕ + z, of Lemma 2.7 (i) where
z ∈ H1(Ω) satisfies

‖z‖H1(Ω) ≤ C ‖curl u‖ . (2.33)

Since div z = 0 we have Δϕ = div u. Concerning the boundary conditions for ϕ, we
consider two cases corresponding to (2.31a), (2.32a) and (2.31b), (2.32b) separately
as Case 1 and Case 2.

Case 1: The function ϕ satisfies the Neumann problem

Δϕ = div u, ∂nϕ = 〈n,∇ϕ〉 = 〈n,u − z〉 ,

and we note that the condition div z = 0 implies that the solvability condition for this
Neumann problem is satisfied. We estimate

‖〈n,u − z〉‖H−1/2(Γ ) ≤ ‖ 〈n,u〉 ‖H−1/2(Γ ) + ‖〈n, z〉‖H−1/2(Γ )

≤ ‖ 〈n,u〉 ‖H−1/2(Γ ) + C ‖z‖H1(Ω) .

An energy estimate for ϕ provides ‖∇ϕ‖ ≤ C(‖div u‖ + ‖∂nϕ‖H−1/2(Γ )). The com-
bination of these estimates lead to (2.31a). We also note that if 〈u,n〉 ∈ L2(Γ ),
then we get by the smoothness of Γ that ϕ ∈ H3/2(Ω) with ‖ϕ‖H3/2(Ω) ≤
C(‖ div u‖ + ‖∂nϕ‖L2(Γ )), which shows (2.32a).

Case 2: We obtain regularity assertions for ϕ by using that ϕ satisfies Δϕ = div u
and determine the boundary regularity ϕ|Γ . We observe

−−−→
curlΓ ϕ = γT∇ϕ = γT (u− z)

and therefore

ΔΓ ϕ = − curlΓ
−−−→
curlΓ ϕ = − curlΓ (γT (u− z)) .

Hence, by smoothness of ∂Ω (and the fact that ∂Ω is connected) we get

‖ϕ‖H1/2(Γ ) ≤ C ‖ΔΓ ϕ‖H−3/2(Γ ) = C ‖curlΓ (γT (u− z))‖H−3/2(Γ )

≤ C ‖γT (u− z)‖H−1/2(Γ ) ≤ C
(‖γTu‖H−1/2(Γ ) + ‖z‖H1(Ω)

)

.

Since ‖ϕ‖H1(Ω) ≤ C(‖ div u‖ + ‖ϕ‖H1/2(Γ )) we get (2.31b). By similar reasoning,
γTu ∈ L2(Γ ) implies ϕ|Γ ∈ H1(Γ ) with ‖ϕ‖H1(Γ ) ≤ C(‖γTu‖L2(Γ ) + ‖z‖H1(Ω))

so that ϕ ∈ H3/2(Ω) and thus (2.32b). ��
The following lemma introduces some variants of Helmholtz decompositions.

Lemma 2.9 Let Ω be a bounded sufficiently smooth Lipschitz domain with simply
connected boundary. For anyu ∈ Ximp∩H(div,Ω), there existϕ ∈ H1

0 (Ω)∩H3/2(Ω)
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and z ∈ H1(Ω) with div z = 0 such that u = ∇ϕ + curl z. The function u belongs to
H1/2(Ω), and we have the estimates

‖∇ϕ‖H1/2(Ω) ≤ C ‖u‖H1/2(Ω) , (2.34a)

‖curl z‖H1/2(Ω) ≤ C
(‖curl u‖ + ‖γTu‖L2(Γ )

)

. (2.34b)

If u admits a decomposition of the form u = r + curlψ with r ∈ H1/2(Ω), then the
decomposition u = ∇ϕ + curl z satisfies

‖∇ϕ‖H1/2(Ω) ≤ C ‖r‖H1/2(Ω) . (2.34c)

Proof The Helmholtz decomposition was considered in [50, Thm. 4.2(2)], [49,
Thm. 28(i)]. Since div curl = 0 and we require ϕ ∈ H1

0 (Ω), we have

Δϕ = div u and ϕ|∂Ω = 0. (2.35)

Lemma 2.8 implies for u ∈ Ximp ∩ H(div,Ω) that u ∈ H1/2(Ω). A standard shift
theorem for the Poisson equation leads to

‖ϕ‖H3/2(Ω) ≤ C ‖div u‖H−1/2(Ω) ≤ C ‖u‖H1/2(Ω) . (2.36)

Next, we estimate z. Note that ϕ ∈ H1
0 (Ω) implies ∇Γ ϕ = 0 so that also γT∇ϕ = 0

on Γ . Lemma 2.8 then implies

‖ curl z‖H1/2(Ω) ≤ C
(‖curl curl z‖ + ‖γT curl z‖L2(Γ )

)

≤ C
(‖curl u‖ + ‖γTu‖L2(Γ ) + ‖γT∇ϕ‖L2(Γ )

)

γT∇ϕ=0= C
(‖curl u‖ + ‖γTu‖L2(Γ )

)

.

The estimate (2.34c) follows from (2.36) via div u = div r. This finishes the proof of
(2.34). ��

2.5 Maxwell’s Equations with Impedance Boundary Conditions

We have introduced all basic ingredients to formulate the electric Maxwell equations
for constant wavenumber k ∈ R\ (−k0, k0) with impedance boundary conditions on
Γ . We define the sesquilinear form Ak : Ximp × Ximp → C by

Ak(u, v) := (curl u, curl v)− k2 (u, v)− i k (uT , vT )L2(Γ ) . (2.37)

The variational formulation is: Given an electric current density j and boundary data
gT with

j ∈ L2(Ω), gT ∈ H−1/2T (divΓ , Γ ) ∩ L2
T (Γ ) (2.38)
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find E ∈ Ximp such that

Ak(E, v) = (j, v)+ (gT , vT )L2(Γ ) ∀v ∈ Ximp. (2.39)

Note that the assumptions (2.38) on the data are not the most general ones (see (4.1),
(4.2) and (4.17) below) but they reduce technicalities in some places. By integration
by parts it is easy to see that the classical strong form of this equation is given by

LΩ,kE = j in Ω,

BΓ ,kE = gT on Γ
(2.40)

with the volume and boundary differential operators LΩ,k and BΩ,k , defined by

LΩ,kv := curl curl v − k2v in Ω and BΓ ,kv := γT curl v − i kΠT v on Γ .

We denote by

SMW
Ω,k : X′imp → Ximp (2.41)

the solution operator that maps the linear functionalXimp � v �→ (j, v)+(gT , v)L2(Γ )

to the solution E of (2.40) and whose existence follows from Proposition 3.1 below.
In our analysis, the sesquilinear form

((u, v))k := k2 (u, v)+ i k (uT , vT )L2(Γ ) (2.42)

will play an important role. We note

Ak(u, v) = (curl u, curl v)− ((u, v))k, (2.43)

Ak(u,∇ϕ) = −((u,∇ϕ))k ∀u ∈ Ximp, ∀ϕ ∈ H1
imp(Ω), (2.44)

((u, v))k = ((v,u))k . (2.45)

3 Stability Analysis of the ContinuousMaxwell Problem

In this section we show that the model problem (2.39) is well-posed and that the norm
of the solution operator is O(|k|θ ) for suitable choices of norms and some θ ≥ 0.

3.1 Well-Posedness

The continuity of the sesquilinear form Ak(·, ·) is obvious: it holds

|Ak(u, v)| ≤ Ccont ‖u‖imp,k ‖v‖imp,k with Ccont := 1.

Well-posedness of the Maxwell problem with impedance condition is proved in
[41, Thm. 4.17]. Here we recall the statement and give a sketch of the proof.
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Proposition 3.1 Let Ω ⊂ R
3 be a bounded Lipschitz domain with simply connected

and sufficiently smooth boundary. Then there exists γk > 0 such that

γk ≤ inf
u∈Ximp\{0}

sup
v∈Ximp\{0}

|Ak(u, v)|
‖u‖imp,k ‖v‖imp,k

.

Proof Step 1: We show uniqueness. If Ak(u, v) = 0 for all v ∈ Ximp then

0 = Im Ak(u,u) = −k ‖uT ‖2L2(Γ )
.

Hence, uT = 0 on Γ and the extension of u by zero outside of Ω (denoted ũ) is
in H(curl, ˜Ω) for any bounded domain ˜Ω ⊂ R

3. This zero extension ũ solves the
homogeneous Maxwell equations on R

3. An application of the operator “div” shows
that div ũ = 0 and thus ũ ∈ H1(R3). Using curl curl = −Δ + ∇ div we see that
each component of ũ solves the homogeneous Helmholtz equation. Since ũ vanishes
outside Ω , the unique continuation principle asserts ũ = 0.

Step 2: From [19, Thm. 4.8] or the technique developed in [5] it follows that the
operator induced by Ak is a compact perturbation of an isomorphism and the Fredholm
alternative shows well-posedness of the problem. ��

3.2 Wavenumber-Explicit Stability Estimates

Proposition 3.1 does not give any insight how the (positive) inf-sup constant γk depends
on the wavenumber k. In this section, we introduce the stability constant Cstab(k) and
estimate its dependence on k under certain assumptions.

Definition 3.2 (stability constant Cstab(k)) Let Ω ⊂ R
3 be a bounded Lipschitz

domain with simply connected and sufficiently smooth boundary. The stability con-
stant Cstab(k) is any constant such that for each j ∈ L2(Ω) and gT ∈ L2

T (Γ ) the
solution E = SMW

Ω,k (j, gT ) of (2.39) satisfies

‖E‖imp,k ≤ Cstab (k)
(‖j‖L2(Ω) + ‖gT ‖L2(Γ )

)

. (3.1)

The behavior of the constant Cstab (k) with respect to the wavenumber typically
depends on the geometry of the domain Ω . Our stability and convergence theory
for conforming Galerkin finite element discretization as presented in Sect. 9 requires
that this constant grow at most algebraically in k, i.e.,

∃θ ≥ 0,Cstab > 0 such that Cstab (k) ≤ Cstab|k|θ ∀k ∈ R\ (−k0, k0) . (3.2)

Remark 3.3 For the hp-FEM application below, the term |k|θ will be mitigated by an
exponentially converging approximation term so that any finite value θ ≥ 0 leads to
an exponential convergence of the discretization. ��
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Next we present an example5 which shows that in general the exponent θ in (3.2)
cannot be negative.

Example 3.4 LetΩ = (−2, 2)3,ω := (−1, 1)2.Define the cutoff functionχ : Ω → C

by

χ (x) :=
{

(

1− x21
)2 (

1− x22
)2 (

1− x23
)2

if x = (x j
)3
j=1 ∈ ω,

0 otherwise.

Note that χ ∈ H2
0 (Ω). With e j ∈ R

3, 1 ≤ j ≤ 3, denoting the j-th canonical unit
vector we define

j := ei kx1 (− (Δχ + i k∂1χ) e2 + ∇∂2χ + i k curl (χe3)) .

Then, E : = χ ei kx1 e2 is the unique weak solution of

LΩ,kE = j in Ω, BΓ ,kE = 0 on Γ .

Using the symbolic computer algebra program MATHEMATICA we obtain

‖j‖2L2(Ω)
= 16777216

(

5k2 + 33
)

10418625
,

‖E‖2H(curl,Ω),k = 2
16777216

(

k2 + 3
)

31255875
, ‖ET ‖2L2(Γ )

= 0,

which shows that in general θ ≥ 0 in (3.1). ��
Remark 3.5 Let Ω ⊂ R

3 be a bounded Lipschitz domain with simply connected and
sufficiently smooth boundary. The sesquilinear form Ak satisfies the inf-sup condition

inf
u∈Ximp\{0}

sup
v∈Ximp\{0}

|Ak(u, v)|
‖u‖imp,k‖v‖imp,k

≥ 1

1+ |k|Cstab (k)
. (3.3)

This result is shown in the sameway as in the Helmholtz case, see, e.g., [17, Thm. 2.5],
[32, Prop. 8.2.7]. If assumption (3.2) holds, then

inf
u∈Ximp\{0}

sup
v∈Ximp\{0}

|Ak(u, v)|
‖u‖imp,k‖v‖imp,k

≥ 1

1+ Cstab|k|θ+1 .

��
In the remaining part of this section, we prove estimate (3.2) for certain classes of

domains. The following result removes the assumption in [23] for the right-hand side
to be solenoidal.

5 We thank an anonymous referee for suggesting this example.
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Proposition 3.6 LetΩ ⊂ R
3 be a bounded C2 domain that is star-shaped with respect

to a ball. Then, Assumption (3.2) holds with θ = 0.

Proof Let ϕ ∈ H1
0 (Ω) satisfy

−Δϕ = div j in Ω .

Then,

‖k−2∇ϕ‖imp,k = |k|−1‖∇ϕ‖L2(Ω) ≤ C |k|−1‖ div j‖H−1(Ω) ≤ C |k|−1‖j‖L2(Ω),

‖j+∇ϕ‖L2(Ω) ≤ ‖j‖L2(Ω) + C‖ div j‖H−1(Ω) ≤ C‖j‖L2(Ω).

Noting that ϕ vanishes on Γ , the difference SMW
Ω,k (j, gT )− |k|−2 ∇ϕ satisfies

LΩ,k

(

SMW
Ω,k (j, gT )− |k|−2 ∇ϕ

)

= j+∇ϕ, BΓ ,k

(

SMW
Ω,k (j, gT )− |k|−2 ∇ϕ

)

= gT ,

and div(j+ ∇ϕ) = 0. [23, Thm. 3.1] implies

‖SMW
Ω,k (j, gT )− |k|−2 ∇ϕ‖imp,k ≤ C

(‖j+∇ϕ‖L2(Ω) + ‖gT ‖L2(Γ )

)

≤ C
(‖j‖L2(Γ ) + ‖gT ‖L2(Γ )

)

.

The estimate for SMW
Ω,k (j, gT ) follows from a triangle inequality. ��

For the more general situation of domains that are not necessarily star-shaped we
require some preliminaries. A bounded domainΩ with smooth boundary admits, e.g.,
by [22, Cor. 4.1] a continuous extension operator Ediv : Hm(div,Ω) → Hm(div,R3)

for any m ∈ N0. In particular this extension can be chosen such that for a ball BR of
radius R with Ω ⊂ BR there holds

supp (Edivh) ⊂ BR ∀h ∈ H(div,Ω). (3.4)

Since the right-hand side j in (2.40), in general, does not belong to H(div,Ω) we
subtract an appropriate gradient field: Letψ ∈ H1

0 (Ω) be theweak solution of−Δψ =
div j. As in the proof of Proposition 3.6,wewriteSMW

Ω,k (j, gT ) = SMW
Ω,k (˜j, gT )−k−2∇ψ

with

˜j := j+∇ψ ∈ H(div,Ω). (3.5)

TheoperatorEdiv allowsus to extend˜j to a compactly supported functionJ := Ediv(˜j) ∈
H(div,R3). Next we introduce the solution operator for the full space problem

curl curlZ− k2Z = J in R3,

|∂rZ (x)− i kZ (x)| ≤ c/r2 as r = ‖x‖ → ∞,
(3.6)
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via the Maxwell potential

Z = NMW,k (J) := N∇
MW,k (J)+N curl

MW,k (J) , (3.7a)

where6

N curl
MW,k (J) :=

∫

R3
gk (‖· − y‖) J (y) dy

N∇
MW,k (J) := k−2∇N curl

MW,k (div J)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

in R3 (3.7b)

with the fundamental solution of the Helmholtz equation in R
3

gk (r) := ei kr

4πr
. (3.7c)

Note that the adjoint full space problem is given by replacing k in (3.6) by −k with
solution operator NMW,−k (J).

The layer operators S∇MW,k , Scurl
MW,k map densities defined on the boundary Γ to

functions defined in Ω by

Scurl
MW,k (μ) :=

∫

Γ

gk (‖· − y‖)μ (y) dΓy

S∇MW,k (μ) := k−2∇Scurl
MW,k (divΓ μ)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

in R3\Γ . (3.8)

We set SMW
R3,k

:= S∇MW,k + Scurl
MW,k .

Theorem 3.7 Let Ω ⊂ R
3 be a bounded Lipschitz domain with simply connected,

analytic boundary. Then, there is C > 0 depending only on Ω such that

Cstab (k) ≤ C |k|7/2√1+ ln |k|.

Remark 3.8 The analyticity requirement of ∂Ω can be relaxed. It is due to our citing
[34], which assumes analyticity. ��
Proof We estimate SMW

Ω,k (j, gT ) (see (2.41)) for given (j, gT ) ∈ L2(Ω)× L2
T (Γ ).

Step 1 (reduction to solenoidal right-hand side): Let ψ ,˜j be as in (3.5) so that
SMW

Ω,k (j, gT ) = SMW
Ω,k (˜j, gT )−k−2∇ψ and div˜j = 0.As in the proof of Proposition 3.6,

we have

‖k−2∇ψ‖imp,k ≤ C |k|−1 ‖j‖L2(Ω), ‖˜j‖L2(Ω) ≤ C‖j‖L2(Ω), div˜j = 0.

(3.9)

6 With a slight abuse of notationwewriteN curl
MW,k (v) := ∫

R3 gk (‖· − y‖) v (y) dy also for scalar functions
v. This is the classical acoustic Newton potential.
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In particular,

‖˜j‖H(div,Ω) ≤ C‖j‖L2(Ω).

Step 2 (reduction to homogeneous volume right-hand side): We set

g̃T := gT − BΓ ,kuj with uj :=
(

NMW,kEdiv j̃
)∣

∣

∣

Ω
(3.10)

so thatSMW
Ω,k (˜j, g̃T ) = u0+uj with u0 being the solution of the homogeneous problem

curl curl u0 − k2u0 = 0 in Ω,

γT (curl u0)− i k (u0)T = g̃T on Γ .
(3.11)

To estimate uj, we rely on the following estimate from [37, Lem. 3.5]

|k|‖N curl
MW,k( f )‖L2(Ω) + ‖N curl

MW,k( f )‖H1(Ω)

+|k|−1‖N curl
MW,k( f )‖H2(Ω) ≤ C‖ f ‖L2(R3) (3.12)

for all f ∈ L2(R3). AbbreviateNcurl := N curl
MW,k(Ediv˜j) and N∇ := N curl

MW,k(div Ediv˜j).
Estimates (3.12) and (3.9) imply

|k|‖Ncurl‖L2(Ω) + ‖Ncurl‖H1(Ω) + |k|−1‖Ncurl‖H2(Ω) ≤ C‖j‖L2(Ω),

|k|‖N∇‖L2(Ω) + ‖N∇‖H1(Ω) + |k|−1‖N∇‖H2(Ω)

≤ C‖ div Ediv j̃‖L2(R3) ≤ C‖j‖L2(Ω).

For uj = Ncurl + k−2∇N∇ we get by a multiplicative trace inequality:

‖uj‖imp,k ≤ C
(|k|‖Ncurl‖L2(Ω) + ‖Ncurl‖H1(Ω) + |k|1/2‖Ncurl‖1/2L2(Ω)

‖Ncurl‖1/2H1(Ω)

+ |k|−1‖N∇‖H1(Ω) + |k|−3/2‖∇Γ N∇‖L2(Γ )

)

≤ C
(

‖j‖L2(Ω) + |k|−1‖j‖L2(Ω) + |k|−3/2‖N∇‖1/2H1(Ω)
‖N∇‖1/2

H2(Ω)

)

≤ C‖j‖L2(Ω). (3.13)

Arguing similarly, we get for g̃T = gT − BΓ ,kuj

‖̃gT ‖L2(Γ ) ≤ ‖gT ‖L2(Γ ) + ‖BΓ ,kuj‖L2(Γ )

≤ C
(

‖gT ‖L2(Γ ) + |k|1/2‖j‖L2(Ω)

)

. (3.14)

Step 3 (Estimate of γT curl u0, γTu0): To estimate the function u0, we employ the
Stratton-Chu formula (see, e.g., [12, Thm. 6.2], [43, (5.5.3)–(5.5.6)])

u0 = curlScurl
MW,k (γTu0)+ SMW

R3,k (γT curl u0) in Ω.
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The weak formulation (2.39) implies

‖curl u0‖2 − k2 ‖u0‖2 − i k ‖(u0)T ‖2L2(Γ )
= (g̃T , (u0)T )L2(Γ )

from which we obtain by considering the imaginary part

|k| ‖(u0)T ‖L2(Γ ) ≤ ‖g̃T ‖L2(Γ ) . (3.15)

From the real part, we then obtain by a Cauchy-Schwarz inequality

∣

∣

∣‖ curl u0‖2 − |k|2 ‖u0‖2
∣

∣

∣ ≤ C |k|−1 ‖g̃T ‖2L2(Γ )
. (3.16)

Next, we estimate the traces γT curl u0 and γTu0. Since ΠTu0 ∈ L2
T (Γ ) we may

employ γTu0 = (ΠTu0)× n and (3.15) to obtain

‖γTu0‖L2(Γ ) = ‖ΠTu0‖L2(Γ ) ≤
1

|k| ‖g̃T ‖L2(Γ ). (3.17)

The boundary conditions (second equation in (3.11)) lead to

‖γT curl u0‖L2(Γ ) ≤ ‖g̃T ‖L2(Γ ) + |k| ‖(u0)T ‖L2(Γ ) ≤ 2 ‖g̃T ‖L2(Γ ) . (3.18)

The estimate (3.18) also implies

‖divΓ γT curl u0‖H−1(Γ ) ≤ ‖γT curl u0‖L2(Γ ) ≤ 2 ‖g̃T ‖L2(Γ ) . (3.19)

Step 4 (Mapping properties of Maxwell Layer Potentials):
The mapping properties of curlScurl

MW,k , Scurl
MW,k , and S∇MW,k are well understood

due to their relation with the acoustic single layer potential. We conclude from [34,
Lem. 3.4, Thm. 5.3]:

∥

∥

∥Scurl
MW,kμ

∥

∥

∥

Hs (Ω)
≤ Cs |k|s+1 ‖μ‖Hs−3/2(Γ ) for s ≥ 0.

‖u0‖H−1/2(Ω) ≤
∥

∥

∥curlScurl
MW,k(γTu0)

∥

∥

∥

H−1/2(Ω)

+
∥

∥

∥Scurl
MW,k(γT curl u0)

∥

∥

∥

H−1/2(Ω)
+
∥

∥

∥S∇MW,k(γT curl u0)
∥

∥

∥

H−1/2(Ω)

≤
∥

∥

∥Scurl
MW,k(γTu0)

∥

∥

∥

H1/2(Ω)
+
∥

∥

∥Scurl
MW,k(γT curl u0)

∥

∥

∥

+ |k|−2
∥

∥

∥Scurl
MW,k(divΓ γT curl u0)

∥

∥

∥

H1/2(Ω)

≤ C
(

|k|3/2 ‖γTu0‖L2(Γ ) + C |k| ‖γT curl u0‖H−3/2(Γ )

+ |k|−1/2 ‖divΓ γT curl u0‖H−1(Γ )

)

. (3.20)
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Inserting (3.17), (3.18), (3.19) in (3.20), we get

‖u0‖H−1/2(Ω) ≤ C |k| ‖g̃T ‖L2(Γ ) . (3.21)

Step 5: Let R2 and K2 be as in Lemma 2.6 and consider

ũ := r0 − curl u0 for r0 := R2(curl curl u0). (3.22)

Since u0 ∈ Ximp, we have u0 ∈ L2(Ω), and the relation curl curl u0 − k2u0 = 0
implies curl curl u0 ∈ L2(Ω). Hence, r0 ∈ H1(Ω) together with the k-explicit bound

‖r0‖H1/2(Ω) = k2 ‖R2(u0)‖H1/2(Ω) ≤ C |k|2 ‖u0‖H−1/2(Ω)

(3.21)≤ C |k|3 ‖g̃T ‖L2(Γ ) . (3.23)

By the same reasoning and the mapping properties of R2, we obtain

‖r0‖H1(Ω) ≤ C |k|2 ‖u0‖ . (3.24)

Furthermore, we compute with Lemma 2.6

curl ũ
(3.22)= curlR2(curl curl u0)− curl curl u0

Lem. 2.6= − curlK2 curl u0.

(3.25)

We employ the Helmholtz decomposition of ũ in the form ũ = ∇ϕ + curl z given
in Lemma 2.9 with ϕ ∈ H1

0 (Ω) ∩ H3/2(Ω), z ∈ H1(Ω), and div z = 0. Since
div ũ = div r0 the function ϕ does not depend on curl u0 (see (2.35)), and we obtain
from (2.34a)

‖ϕ‖H3/2(Ω)

(2.34c)≤ C ‖r0‖H1/2(Ω)

(3.23)≤ C |k|3 ‖g̃T ‖L2(Γ ) . (3.26)

Next, we estimate z. The definition of r0 in (3.22) gives

γT ũ = γT r0 − γT curl u0 = γT r0 − g̃T + i k(u0)T ∈ L2
T (Γ ). (3.27)

Lemma 2.9 then implies

‖ curl z‖H1/2(Ω) ≤ C
(‖curl ũ‖ + ‖γT ũ‖L2(Γ )

)

(3.25)= C
(‖curlK2 (curl u0)‖ + ‖γT ũ‖L2(Γ )

)

(3.27),Lem. 2.6≤ C
(‖u0‖H−1/2(Ω) + ‖γT r0‖L2(Γ ) + |k| ‖(u0)T ‖L2(Γ ) + ‖g̃T ‖L2(Γ )

)

(3.21),(3.15)≤ C
(|k| ‖g̃T ‖L2(Γ ) + ‖γT r0‖L2(Γ ) + ‖g̃T ‖L2(Γ )

)

. (3.28)

123



Foundations of Computational Mathematics (2024) 24:1871–1939 1893

Step 6: The combination of Step 5 with a trace inequality leads to

‖̃u‖H1/2(Ω) ≤ ‖∇ϕ‖H1/2(Ω) + ‖curl z‖H1/2(Ω)

(3.26),(3.28)≤ C
(

|k|3 ‖g̃T ‖L2(Γ ) + ‖γT r0‖L2(Γ )

)

. (3.29)

Let B1/2
2,1 (Ω) denote the Besov space as defined, e.g., in [54]. Then the trace map

γT : B1/2
2,1 (Ω) → L2

T (Γ ) is a continuous mapping (see [54, Thm. 2.9.3]), and we
obtain from (3.29)

‖̃u‖H1/2(Ω) ≤ C

(

|k|3 ‖g̃T ‖L2(Γ ) + ‖r0‖B1/2
2,1 (Ω)

)

. (3.30)

This allows us to estimate

‖curl u0‖H1/2(Ω)

(3.22)≤ C
(‖r0‖H1/2(Ω) + ‖̃u‖H1/2(Ω)

)

(3.23),(3.30)≤ C

(

|k|3 ‖g̃T ‖L2(Γ ) + ‖r0‖B1/2
2,1 (Ω)

)

. (3.31)

To estimate ‖r0‖B1/2
2,1 (Ω)

we use the fact (see [54]) that the Besov space is an inter-

polation space B1/2
2,1 (Ω) = (

L2(Ω), H1(Ω)
)

1/2,1 (via the so-called real method of

interpolation). For t ∈ (0, 1] select (r0)t ∈ H1(Ω) as given byLemma3.9 and estimate
with the interpolation inequality (by using the notation as in Lemma 3.9)

‖r0‖B1/2
2,1 (Ω)

≤ ∥∥r0 − (r0)t
∥

∥

B1/2
2,1 (Ω)

+ ∥∥(r0)t
∥

∥

B1/2
2,1 (Ω)

≤ C

(

∥

∥r0 − (r0)t
∥

∥

1/2 ∥
∥r0 − (r0)t

∥

∥

1/2
H1(Ω)

+ ∥∥(r0)t
∥

∥

B1/2
2,1 (Ω)

)

Lem. 3.9≤ C

(

t1/4 ‖r0‖1/2H1/2(Ω)

(

‖r0‖1/2H1(Ω)
+ t−1/4 ‖r0‖1/2H1/2(Ω)

)

+ ∥∥(r0)t
∥

∥

B1/2
2,1 (Ω)

)

(3.34),(3.35)≤ C
(

‖r0‖H1/2(Ω) + t1/2‖r0‖H1(Ω) +
√

1+ | ln t |‖r0‖H1/2(Ω)

)

≤ C
(

t1/2 ‖r0‖H1(Ω) +
√

1+ |ln t | ‖r0‖H1/2(Ω)

)

(3.23),(3.24)≤ C
(

t1/2 |k|2 ‖u0‖ +
√

1+ |ln t | |k|2 ‖u0‖H−1/2(Ω)

)

.

Using (3.16) we get

|k| ‖u0‖ ≤ C
(

‖curl u0‖2 +
∣

∣

∣(|k| ‖u0‖)2 − ‖curl u0‖2
∣

∣

∣

)1/2

≤ C
(

|k|−1/2 ‖g̃T ‖L2(Γ ) + ‖curl u0‖
) (3.31)≤ C

(

|k|3 ‖g̃T ‖L2(Γ ) + ‖r0‖B1/2
2,1 (Ω)

)
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≤ C
(

|k|3 ‖g̃T ‖L2(Γ ) + t1/2 |k|2 ‖u0‖ +
√

1+ |ln t | |k|2 ‖u0‖H−1/2(Ω)

)

(3.21)≤ C
(
√

1+ |ln t | |k|3 ‖g̃T ‖L2(Γ ) + t1/2 |k|2 ‖u0‖
)

.

Selecting t ∼ 1/ |k|2 sufficiently small implies

|k| ‖u0‖ ≤ C |k|3√1+ ln |k| ‖g̃T ‖L2(Γ ) .

We conclude from this and (3.31)

‖curl u0‖H1/2(Ω) + |k| ‖u0‖ ≤ C |k|3√1+ ln |k| ‖g̃T ‖L2(Γ ) . (3.32)

Combining (3.32) and (3.15) yields

‖u0‖imp,k ≤ C |k|3√1+ ln |k| ‖g̃T ‖L2(Γ )

(3.14)≤ C |k|3√1+ ln |k|
(

‖gT ‖L2(Γ ) + |k|1/2‖j‖L2(Ω)

)

. (3.33)

Step 7: Combining (3.9), (3.13), and (3.33), we have arrived at

∥

∥

∥SMW
Ω,k (j, gT )

∥

∥

∥

imp,k
≤ ‖k−2∇ψ‖imp,k + ‖uj‖imp,k + ‖u0‖imp,k

≤ C |k|3√1+ ln |k|
(

‖gT ‖L2(Γ ) + |k|1/2‖j‖L2(Ω)

)

,

which is the claimed estimate. ��

Lemma 3.9 ([35, Prop. 4.14]) LetΩ ⊂ R
3 be a bounded Lipschitz domain. Then there

is C > 0 such that for every w ∈ H1/2(Ω) and every t ∈ (0, 1] there exists some
wt ∈ H1(Ω) such that

‖w − wt‖ + t ‖wt‖H1(Ω) ≤ Ct1/2 ‖w‖H1/2(Ω) , (3.34)

‖wt‖B1/2
2,1 (Ω)

≤ C
√

1+ |ln t | ‖w‖H1/2(Ω) . (3.35)

4 Maxwell’s Equations with the “Good” Sign

4.1 Norms

We consider Maxwell’s equations with the “good” sign and first describe the spaces
for the given data. Since the sesquilinear form Ak (·, ·) is considered in the spaceXimp,
the natural space for the right-hand side is its dual X′imp. In our setting, the right-hand
side is given inΩ via the volume data j and on Γ via the boundary data gT . In order to
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view j and gT as elements ofX′imp, we introduce the spacesX
′
imp(Ω) andX′imp(Γ ). By

using the usual notation V ′ for the dual space of a normed vector space V we define

Ximp,0 :=
{

w ∈ Ximp : curlw = 0
} = {∇ϕ |ϕ ∈ H1

imp(Ω)},
X′imp(Ω) :=

(

H1(Ω)
)′ ∩ X′imp,0, (4.1)

H−1T (divΓ , Γ ) :=
{

w ∈ H−1T (Γ ) | divΓ w ∈ H−1T (Γ )
}

,

X′imp(Γ ) := H−1/2T (Γ ) ∩H−1T (divΓ , Γ ) . (4.2)

and equip the spacesX′imp(Ω) andX′imp(Γ )with the norms (cf. also Lemma4.1 below)

‖f‖X′imp(Ω),k := sup
v∈Ximp\{0}

|(f, v)|
‖v‖imp,k

, (4.3)

‖gT ‖X′imp(Γ ),k := sup
v∈Ximp\{0}

|(gT , vT )L2(Γ )|
‖v‖imp,k

. (4.4)

We also introduce for gT ∈ H−1/2T (divΓ , Γ ) (cf. (2.14))

‖gT ‖H−1/2(divΓ ,Γ ),k := |k|‖ divΓ gT ‖H−1/2(Γ ) + |k|2 ‖gT ‖X′imp(Γ ),k . (4.5)

An equivalent norm that is more naturally associated with the intersection spaces
X′imp(Ω) and X′imp(Γ ) is given in the following lemma.

Lemma 4.1 The spaces X′imp(Ω) and X′imp(Γ ) can be viewed in a canonical way as
subspaces of X′imp, and there holds the norm equivalences

‖f‖X′imp(Ω),k ∼ sup
ϕ∈H1

imp(Ω):∇ϕ �=0

|(f,∇ϕ)|
‖∇ϕ‖imp,k

+ sup
z∈H1(Ω)\{0}

|(f, z)|
|k| ‖z‖H1(Ω),k

, (4.6)

‖gT ‖X′imp(Γ ),k ∼ sup
ϕ∈H1

imp(Ω):∇ϕ �=0

|(gT ,∇Γ ϕ)L2(Γ )|
‖∇ϕ‖imp,k

+ sup
z∈H1(Ω)\{0}

|(gT , zT )L2(Γ )|
|k| ‖z‖H1(Ω),k

(4.7)

with constants implied in ∼ that are independent of |k| ≥ k0.

Proof Proof of (4.6): Since ∇ϕ ∈ Ximp for ϕ ∈ H1
imp(Ω) and H1(Ω) ⊂ Ximp, the

right-hand side of (4.6) is easily bounded by the left-hand side. For the reverse estimate,
we decompose any element v ∈ Ximp with the aid of Lemma 2.7 as v = ∇ϕ + z with
‖∇ϕ‖L2(Ω) + ‖z‖L2(Ω) ≤ C‖v‖L2(Ω) and ‖z‖H1(Ω) ≤ C‖v‖H(curl,Ω). Hence,

‖∇ϕ‖imp,k + |k|‖z‖H1(Ω),k ≤ C
(

|k|1/2(‖vT ‖L2(Γ ) + ‖zT ‖L2(Γ ))+ ‖v‖imp,k

)

≤ C‖v‖imp,k, (4.8)
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where, in the last step we used the multiplicative trace estimate ‖zT ‖2L2(Γ )
≤

C‖z‖L2(Ω)‖z‖H1(Ω). This implies that the left-hand side of (4.6) can be bounded
by the right-hand side.

Proof of (4.7): The proof is analogous to that of (4.6). ��
Note that L2(Ω) ⊂ X′imp(Ω) and L2

T (Γ ) ⊂ X′imp(Γ )with continuous embeddings

as can be seen from the following reasoning. For m ∈ N0 and f ∈ L2(Ω) or f ∈
Hm(Ω) or f ∈ Hm(div,Ω) and for gT ∈ L2

T (Γ ) or gT ∈ Hm+1/2
T (Γ ) or gT ∈

Hm+1/2
T (divΓ , Γ ), we have by direct estimations

‖f‖X′imp(Ω),k ≤ C |k|−1‖f‖L2(Ω)≤C |k|−1‖f‖Hm (Ω),k≤C |k|−2‖f‖Hm (div,Ω),k,

(4.9)

‖gT ‖X′imp(Γ ),k ≤ C |k|−1/2‖gT ‖L2(Γ ) ≤ C |k|−1‖gT ‖Hm+1/2(Γ ),k

≤ C |k|−2 ‖gT ‖Hm+1/2(divΓ ,Γ ),k, (4.10)

‖gT ‖H−1/2(divΓ ,Γ ),k ≤ C |k|‖gT ‖H1/2(Γ ),k . (4.11)

We also have the following result for ‖gT ‖H−1/2(divΓ ,Γ ),k :

Lemma 4.2 There is C > 0 depending only on Ω such that

‖gT ‖H−1/2(divΓ ,Γ ),k ≤ C‖ divΓ gT ‖H−1/2(Γ ),k + |k|‖gT ‖H−1/2(Γ ),k .

Proof We use the minimum norm lifting EΔ
Ω from (6.13) with the property that

‖∇ϕ‖L2(Ω) ≥ ‖∇EΔ
Ω(ϕ|Γ )‖L2(Ω) for arbitrary ϕ ∈ H1

imp(Ω). By continuity of the

tracemapping, we get infc∈R ‖ϕ−c‖H1/2(Γ ) ≤ C‖∇EΔ
Ω(ϕ|Γ )‖L2(Ω) ≤ C‖∇ϕ‖L2(Ω).

An integration by parts shows for arbitrary ϕ ∈ H1
imp(Ω) and arbitrary c ∈ R

|(gT ,∇Γ ϕ)L2(Γ )| = |(divΓ gT , ϕ − c)L2(Γ )| ≤ ‖ divΓ gT ‖H−1/2(Γ )‖ϕ − c‖H1/2(Γ ).

Taking the infimum over all c ∈ R yields, for arbitrary ϕ ∈ H1
imp(Ω),

|(gT ,∇Γ ϕ)L2(Γ )| ≤ C‖ divΓ gT ‖H−1/2(Γ )‖∇ϕ‖L2(Ω),

and we conclude

sup
ϕ∈H1

imp(Ω):∇Γ ϕ �=0

|(gT ,∇Γ ϕ)L2(Γ )|
|k|1/2‖∇Γ ϕ‖L2(Γ ) + |k|‖∇ϕ‖L2(Ω)

≤ C |k|−1‖ divΓ gT ‖H−1/2(Γ ).

Similarly, for z ∈ H1(Ω) we estimate |(gT , zT )L2(Γ )| ≤ C‖gT ‖H−1/2(Γ )‖z‖H1(Ω).
Hence,

‖gT ‖X′imp(Γ ),k ≤ C
(

|k|−1 ‖ divΓ gT ‖H−1/2(Γ ) + ‖gT ‖H−1/2(Γ )

)

. (4.12)

The result follows. ��
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4.2 TheMaxwell Problemwith the Good Sign

The Maxwell problem with the good sign reads: Given f ∈ X′imp(Ω) and gT ∈
X′imp(Γ ), find v ∈ Ximp such that

LΩ,i kv = f in Ω and BΓ ,kv = gT on Γ . (4.13)

The weak formulation is:

find z ∈ Ximp s.t. A+k (z, v) = (f, v)+ (gT , vT )L2(Γ ) ∀v ∈ Ximp, (4.14)

where the sesquilinear form A+k is given by

A+k (u, v) := (curl u, curl v)+ k2 (u, v)− i k (uT , vT )L2(Γ ) . (4.15)

The solution operator is denoted (f, gT ) �→ S+Ω,k(f, gT ). In this section, we develop
the regularity theory for problem (4.13). Indeed, as the following Theorem 4.3 shows,
(4.14) is uniquely solvable.

Theorem 4.3 Let Ω be a bounded Lipschitz domain with simply connected boundary.
Then there is C > 0 independent of k such that the following holds:

(i) The sesquilinear form A+k satisfies Re A+k (v, σv) = 2−1/2‖v‖2imp,k for all v ∈
Ximp, where σ = exp

(

π i
4 sign k

)

.
(ii) The sesquilinear form is continuous: |A+k (u, v)| ≤ ‖u‖imp,k‖v‖imp,k for all u,

v ∈ Ximp.
(iii) The solution u ∈ Ximp of (4.13) satisfies

‖u‖imp,k ≤ C
(

|k|−1 ‖f‖L2(Ω) + |k|−1/2 ‖gT ‖L2(Γ )

)

, (4.16)

‖u‖imp,k ≤ C
(

‖f‖X′imp(Ω),k + ‖gT ‖X′imp(Γ ),k

)

, (4.17)

provided (f, gT ) ∈ L2(Ω)×L2
T (Γ ) for (4.16) and (f, gT ) ∈ X′imp(Ω)×X′imp(Γ )

for (4.17).
(iv) Let m ∈ N0. If Γ is sufficiently smooth and f ∈ Hm(div,Ω), gT ∈ Hm+1/2

T (Γ ),
then

‖u‖Hm+1(Ω),k ≤ C |k|−3 (‖f‖Hm (div,Ω),k + ‖gT ‖Hm−1/2(divΓ ,Γ ),k

)

, (4.18a)

‖u‖Hm+1(curl,Ω),k ≤ C |k|−2 (‖f‖Hm (div,Ω),k + |k| ‖gT ‖Hm+1/2(Γ ),k

)

. (4.18b)

Proof Proof of (i), (ii): For (i) we compute

Re
(

A+k (v, σv)
) = Re

(

σ̄ ‖v‖2H(curl,Ω),k + i σ̄k ‖vT ‖2L2(Γ )

)

=
√
2

2
‖v‖2imp,k .
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The continuity assertion (ii) follows by the Cauchy-Schwarz inequality.
Proof of (iii): The estimate (iii) follows directly from a variant of the Lax-Milgram

lemma: We choose v = σu in the weak form (4.14) and estimate

√
2

2
‖u‖2imp,k = Re A+(u, σu) = Re

(

(f, σu)+ (gT , σuT )L2(Γ )

)

≤
(

‖f‖X′imp(Ω),k + ‖gT ‖X′imp(Γ ),k

)

‖u‖imp,k (4.19)

from which (4.17) follows. Estimate (4.16) is then obtained from (4.17) and (4.9),
(4.10).

Proof of (iv): From now on, we assume that Γ is sufficiently smooth. We proceed
by induction on m ∈ N0 and show that if the solution u ∈ Hm(curl,Ω), then u ∈
Hm+1(curl,Ω). Specifically, after the preparatory Step 1, wewill show u ∈ Hm+1(Ω)

in Step 2 and curl u ∈ Hm+1(Ω) in Step 3. Step 4 shows the induction hypothesis for
m = 0 including the norm bounds. Step 5 completes the induction argument for the
norm bounds.

Step 1: Taking the surface divergence of the boundary conditions we get by using
the differential equation

− i k divΓ uT = divΓ gT − divΓ (γT curl u)
[43, (2.5.197)]= divΓ gT + curlΓ curl u

= divΓ gT + 〈curl curl u,n〉 = divΓ gT + 〈f − k2u,n〉. (4.20)

We note that div(f − k2u) = 0 so that

‖〈f − k2u,n〉‖Hm−1/2(Γ ) ≤ C‖f − k2u‖Hm (Ω). (4.21)

Inserting this in (4.20) yields

‖divΓ uT ‖Hm−1/2(Γ ) ≤ C |k|−1 [‖divΓ gT ‖Hm−1/2(Γ )

+‖f‖Hm (Ω) + |k|2 ‖u‖Hm(Ω)

]

. (4.22)

It will be convenient to abbreviate

Rm := |k|−1
[

‖divΓ gT ‖Hm−1/2(Γ ) + ‖f‖Hm (Ω) + |k|−1 ‖f‖Hm (div,Ω)

+ |k|2 ‖u‖Hm (Ω) + |k| ‖u‖Hm (curl,Ω)

]

.
(4.23)

Step 2 (Hm+1(Ω)-estimate): With the aid of Lemma 2.7 (ii), we write u = ∇ϕ+ z
with ϕ ∈ Hm+1(Ω) and z ∈ Hm+1(Ω) and

‖ϕ‖Hm+1(Ω) + ‖z‖Hm (Ω) ≤ C‖u‖Hm (Ω)

(4.23)≤ C |k|−1Rm, (4.24)

‖z‖Hm+1(Ω) ≤ C‖u‖Hm (curl,Ω)

(4.23)≤ CRm . (4.25)
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Step 2a: We bound

‖divΓ zT ‖Hm−1/2(Γ ) ≤ C‖zT ‖Hm+1/2(Γ ) ≤ C‖z‖Hm+1(Ω)

(4.25)≤ CRm . (4.26)

Step 2b: Applying divΓ ΠT to the decomposition of u leads to

ΔΓ ϕ|Γ = divΓ ∇Γ ϕ = divΓ uT − divΓ zT (4.27)

with

‖divΓ uT − divΓ zT ‖Hm−1/2(Γ )

(4.22),(4.26),(4.23)≤ CRm . (4.28)

Together with (4.27), we inferϕ|Γ ∈ Hm+3/2(Γ ). SinceΓ is connected, ϕ|Γ is unique
up to a constant.We select this constant such thatϕ|Γ has zeromean. Elliptic regularity
implies

‖ϕ‖H3/2+m (Γ ) ≤ C ‖divΓ uT − divΓ zT ‖H−1/2+m (Γ )

(4.28)≤ CRm .

The function ϕ satisfies the following Dirichlet problem:

Δϕ = div u− div z = k−2 div f − div z ∈ Hm(Ω), ϕ|Γ ∈ H3/2+m(Γ ),

from which we get by elliptic regularity

‖ϕ‖H2+m (Ω) ≤ C
(

‖ϕ‖H3/2+m (Γ ) + |k|−2 ‖ div f‖Hm (Ω) + ‖div z‖Hm (Ω)

)

≤ CRm .

We conclude

‖u‖Hm+1(Ω) ≤ CRm . (4.29)

Step 3 (Hm+1(curl,Ω)-estimate): We set w := curl u. Since u ∈ Hm+1(Ω) (cf.
(4.29)) we know that w ∈ Hm(Ω). As in Step 2 we write w = ∇ϕ̃ + z̃ and obtain

‖ϕ̃‖Hm+1(Ω) + ‖z̃‖Hm (Ω) ≤ C‖w‖Hm (Ω) ≤ C‖u‖Hm+1(Ω)

(4.29)≤ CRm,

‖z̃‖Hm+1(Ω) ≤ C‖w‖Hm (curl,Ω) ≤ C
(‖ curlw‖Hm (Ω) + ‖w‖Hm (Ω)

)

≤ C
(‖ curl curl u‖Hm (Ω) + ‖u‖Hm+1(Ω)

)

≤ C
(

‖f − k2u‖Hm (Ω) + Rm

)

.

To estimate the norm of ϕ̃, we employ the boundary condition satisfied by u, i.e.,

∇Γ ϕ̃ = n × γT∇ϕ̃ = n × (γTw − γT z̃) = n × (gT + i kuT − γT z̃) .
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In view of gT ∈ Hm+1/2
T (Γ ), this implies ϕ̃|Γ ∈ Hm+3/2 (Γ ) with

‖∇Γ ϕ̃‖Hm+1/2(Γ ) ≤ C
(‖gT ‖Hm+1/2(Γ ) + |k| ‖uT ‖Hm+1/2(Γ ) + ‖γT z̃‖Hm+1/2(Γ )

)

≤ C
(‖gT ‖Hm+1/2(Γ ) + |k|‖u‖Hm+1(Ω) + ‖z̃‖Hm+1(Ω)

)

≤ C
(‖gT ‖Hm+1/2(Γ ) + |k|Rm

)

.

The function ϕ̃ solves the Dirichlet problem

Δϕ̃ = div(w − z̃) = − div z̃ in Ω, ϕ̃|Γ ∈ Hm+3/2 (Γ ) . (4.30)

Since ϕ̃|Γ is determined up to a constant, we may assume that ϕ̃|Γ has vanishing
mean. Elliptic regularity theory for (4.30) tells us that

‖∇ϕ̃‖Hm+1(Ω) ≤ C
(

‖∇Γ ϕ̃‖2Hm+1/2(Γ )
+ ‖div z̃‖2Hm (Ω)

)1/2

≤ C
(‖gT ‖Hm+1/2(Γ ) + |k|Rm

)

.

We obtain w ∈ Hm+1(Ω) with

|curl u|Hm+1(Ω) = |w|Hm+1(Ω) ≤ C
(|∇ϕ̃|Hm+1(Ω) + |∇ z̃|Hm (Ω)

)

≤ C
(‖gT ‖Hm+1/2(Γ ) + |k|Rm

)

. (4.31)

Step 4: We ascertain the bounds (4.18a), (4.18b) for m = 0. We have

‖u‖imp,k
(4.17),(4.9),(4.5)≤ C |k|−2 (‖f‖H(div,Ω),k + ‖gT ‖H−1/2(divΓ ,Γ ),k

)

,

‖ divΓ gT ‖H−1/2(Γ )

(4.5)≤ |k|−1‖gT ‖H−1/2(divΓ ,Γ ),k .

This implies for R0 from (4.23)

R0 ≤ C |k|−2 (‖f‖H(div,Ω),k + ‖gT ‖H−1/2(divΓ ,Γ ),k

)

(4.32)

and in turn from (4.29)

‖u‖H1(Ω),k ≤ C
(

‖u‖L2(Ω) + |k|−1‖u‖H1(Ω)

) (4.29),(4.23)≤ C |k|−1R0

≤ C |k|−3 (‖f‖H(div,Ω),k + ‖gT ‖H−1/2(divΓ ,Γ ),k

)

,

which is formula (4.18a) for m = 0. Next,

‖u‖H1(curl,Ω),k ≤ C
(

|k|−1‖ curl u‖H1(Ω) + |k|‖u‖H1(Ω),k

)

(4.31)≤ C
(

|k|−1‖gT ‖H1/2(Γ ) + R0

)
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(4.32),(4.11)≤ C
(

|k|−1‖gT ‖H1/2(Γ ),k + |k|−2 ‖f‖H(div,Ω),k

)

,

which is formula (4.18b) for m = 0.
We now assume that the estimates (4.18a), (4.18b) holds up to m and show that

they hold for m + 1. Introduce the abbreviations

T1(m) := ‖f‖Hm (div,Ω),k + ‖gT ‖Hm−1/2(divΓ ,Γ ),k,

T2(m) := ‖f‖Hm (div,Ω),k + |k| ‖gT ‖Hm+1/2(Γ ),k .

It is easy to verify that (using (4.11) for the case m = 0)

T1 (m) ≤ CT2 (m) ≤ CT1 (m + 1) . (4.33)

By the induction hypothesis, we have

|k|‖u‖Hm+1(Ω) + ‖u‖Hm+1(curl,Ω) ≤ C |k|m+1‖u‖Hm+1(curl,Ω),k

Ind. hyp.≤ C |k|m−1T2(m)
(4.33)≤ C |k|m−1T1(m + 1). (4.34)

Hence,

|k|−(m+2)Rm+1 = |k|−(m+2) (|k|−1‖ divΓ gT ‖Hm+1/2(Γ ) + |k|−1‖f‖Hm+1(Ω)

+|k|−2‖f‖Hm+1(div,Ω) + |k|‖u‖Hm+1(Ω) + ‖u‖Hm+1(curl,Ω)

)

(4.34)≤ C |k|−3 (‖ divΓ gT ‖Hm+1/2(Γ ),k + ‖f‖Hm+1(div,Ω),k + T1(m + 1)
)

≤ C |k|−3T1(m + 1) (4.35)

and therefore by the induction hypothesis and (4.29)

‖u‖Hm+2(Ω),k ≤ C
(

‖u‖Hm+1(Ω),k + |k|−(m+2)|u|Hm+2(Ω)

)

ind. hyp., (4.29)≤ C
(

|k|−3T1(m)+ |k|−(m+2)Rm+1
)

(4.35)≤ C |k|−3T1(m + 1), (4.36)

which completes the induction step for formula (4.18a).
Again from the definition of Rm+1, the induction hypothesis, and (4.33), we have

|k|−(m+2)Rm+1 ≤ C
[

|k|−2‖gT ‖Hm+3/2(Γ ),k + |k|−3‖f‖Hm+1(div,Ω),k + |k|−3T2(m)
]

≤ C |k|−3T2(m + 1).

The combination of this with (4.36) and (4.33) leads to

‖u‖Hm+2(curl,Ω),k ≤ C
(

|k| ‖u‖Hm+2(Ω),k + |k|−(m+2)| curl u|Hm+2(Ω)

)
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(4.36),(4.31)≤ C
(

|k|−2 T2(m + 1)+ |k|−(m+2) (‖gT ‖Hm+3/2(Γ ) + |k|Rm+1
)

)

≤ C
(

|k|−2 T2(m + 1)+ |k|−1‖gT ‖Hm+3/2(Γ ),k + |k|−2 T2(m + 1)
)

≤ C |k|−2 T2(m + 1),

which completes the induction argument for (4.18b). ��

5 Regularity Theory for Maxwell’s Equations

In this section, we collect regularity assertions for the Maxwell model problem (2.40).
In particular, the case of analytic data studied in Sect. 5.2 will be a building block for
the regularity by decomposition studied in Sect. 7.

5.1 Finite Regularity Theory

The difference between Maxwell’s equations with the “good” sign and the time-
harmonic Maxwell equations lies in a lower order term. Therefore, higher regularity
statements for the solution of Maxwell’s equations can be inferred from those for with
the “good” sign, i.e., from Theorem 4.3. The following result makes this precise.

Lemma 5.1 Let Ω be a bounded Lipschitz domain with simply connected, sufficiently
smooth boundary Γ . Let m ∈ N0. Then there is C > 0 (depending only on m and Ω)
such that for f ∈ Hm(div,Ω), gT ∈ Hm+1/2

T (Γ ) the solution u of (2.40) (for j := f)
satisfies u ∈ Hm+1(curl,Ω) and

‖u‖Hm+1(Ω),k ≤ C
[

|k|−3 (‖f‖Hm (div,Ω),k + ‖gT ‖Hm−1/2(divΓ ,Γ ),k

)+ ‖u‖L2(Ω)

]

,

(5.1)

‖u‖Hm+1(curl,Ω),k ≤C
[

|k|−2 (‖f‖Hm (div,Ω),k + |k|‖gT ‖Hm+1/2(Γ ),k

)+ |k| ‖u‖L2(Ω)

]

.

(5.2)

If Assumption (3.2) holds, then ‖u‖L2(Ω) ≤ Cstab|k|θ−1
(

‖f‖L2(Ω) + ‖gT ‖L2(Γ )

)

. In

particular,

‖u‖H1(curl,Ω),k ≤ C |k|−2
{

‖ div f‖L2(Ω) + (1+ Cstab)|k|θ+2‖f‖L2(Ω)

+ (1+ Cstab)|k|‖gT ‖H1/2(Γ ) + (1+ Cstab)|k|θ+2‖gT ‖L2(Γ )

}

.

(5.3)

Proof The weak solution u of (2.40) exists by Proposition 3.1 and depends continu-
ously on the data. In particular, u ∈ L2(Ω). From the equation LΩ,ku = f , we have
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−k2 div u = div f so that u ∈ H(div,Ω). The function u solves

LΩ,i ku = f + 2k2u, BΓ ,ku = gT . (5.4)

It is easy to see that Theorem 4.3 is inductively applicable. We get

‖u‖Hm+1(Ω),k ≤ C
(

|k|−3‖f + 2k2u‖Hm (div,Ω),k + |k|−3‖gT ‖Hm−1/2(divΓ ,Γ ),k

)

≤ C
(

|k|−3‖f‖Hm (div,Ω),k + |k|−3‖gT ‖Hm−1/2(divΓ ,Γ ),k + ‖u‖Hm (Ω),k

)

. (5.5)

We may successively insert (5.5) into itself to arrive at (5.1). The statement (5.2)
follows from (5.1) and Theorem 4.3 and the observation ‖gT ‖Hm−1/2(divΓ ,Γ ),k ≤
C |k|‖gT ‖Hm+1/2(Γ ),k . ��

5.2 Analytic Regularity Theory

In this section, we consider the Maxwell problem (2.40), i.e.,

LΩ,kE = f in Ω, BΓ ,kE = gT on Γ (5.6)

with analytic data f and gT and analytic boundary Γ . We show in Theorem 5.2 that
the solution is analytic, making the dependence on k explicit. In [40, Appendix A] we
generalize the theory in [45, 53] to the case of inhomogeneous boundary data. The key
idea there is to reformulate the problem (5.6) as an elliptic system and then to apply
the regularity theory for elliptic systems with analytic data to this problem (see [14]).
Here, we summarize the main results.

Problem (5.6) can be formulated as an elliptic system for U = (E,H), where E is
the electric and H := − i

k curlE the magnetic field:

L (U) :=
(

curl curlE−∇ divE
curl curlH−∇ divH

)

= F+ k2U in Ω,

T (U) := H× n − ET = − i
k gT on Γ ,

B (U) :=
⎛

⎝

divE
divH

γT curlH+ (curlE)T

⎞

⎠ = kGU+GΓ on Γ

(5.7)

for

F :=
(

f + 1
k2
∇ div f

− i
k curl f

)

, GU :=
⎛

⎝

0
0

i (HT − γTE)

⎞

⎠ , GΓ :=
⎛

⎝

− 1
k2

(div f)|Γ
0

− i
k γT f

⎞

⎠ .

In [40, Appendix A] we show that this system is elliptic in the sense of [14]. For
the special case GΓ = 0 and gT = 0, the analytic regularity theory for this problem
has been developed in [45, 53]. The following Theorem 5.2 generalizes their result to
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the case of inhomogeneous boundary data gT , GΓ . To describe the analyticity of gT
and GΓ , we assume that these functions are restrictions of analytic functions g∗ and
G∗ on an open neighborhood UΓ of Γ and satisfy gT = γ g∗ and GΓ = γG∗ for the
standard trace operator γ , i.e., the restriction to Γ . We write gT ∈ A(Cg, λg,UΓ ∩Ω)

if g∗ ∈ A(Cg, λg,UΓ ∩Ω).

Theorem 5.2 Let Ω ⊂ R
3 be a bounded Lipschitz domain with a simply connected,

analytic boundary. Let UΓ be an open neighborhood of Γ . Let f ∈ A(Cf , λf ,Ω) and
gT ∈ A(Cg, λg,UΓ ∩Ω). Then there are constants B, C > 0 (depending only on Ω ,
UΓ , and λf , λg) such that the solution E of (5.6) satisfies

E ∈ A(CCE, B,Ω), (5.8)

where CE = Cf |k|−2+Cg |k|−1+ 1
|k| ‖E‖H1(curl,Ω),k . If Assumption (3.2) holds, then

CE ≤ C(1+ Cstab)
(

Cf |k|θ−1 + Cg|k|θ−1/2
)

. (5.9)

Proof The statement of the theorem follows from [40,Cor.A.2] andmore details can be
found there. The existence u ∈ Ximp is implied by Proposition 3.1, and finite regularity
assertions for E are provided in Lemma 5.1. In particular, E ∈ H2(Ω). In turn,
U = (E,H) ∈ H1(curl,Ω) solves the elliptic system (5.7). Thismakes [40, Thm.A.1]
applicable, which shows the corresponding result for U by a boot-strapping argument
and an explicit tracking of the wavenumber k to arrive at the result of [40, Cor. A.2]

|E|Hp(Ω) ≤ CCEB
p max(p, |k|)p ∀p ∈ N≥2 (5.10)

with CE as given in the statement. A direct calculation shows ‖E‖H1(Ω) ≤ CE|k| and
‖E‖L2(Ω) ≤ CE so that (5.10) also holds for p = 0 and p = 1. This shows (5.8).

The estimate (5.9) follows from (5.3) of Lemma 5.1 and the definition of the
analyticity classes together with the trace estimates ‖gT ‖H1/2(Γ ) ≤ CCg|k| and
‖gT ‖L2(Γ ) ≤ CCg|k|1/2. ��

6 Frequency Splittings

As in [17, 31, 34, 37–39] we analyze the regularity of Maxwell’s equations (2.40) via
a decomposition of the right-hand side into high and low frequency parts.

6.1 Frequency Splittings inÄ: HR3 , LR3 , HÄ, LÄ, H0
Ä, L

0
Ä

In order to construct the splitting, we start by recalling the definition of the Fourier
transform for sufficiently smooth functions with compact support

û(ξ) = F(u)(ξ) = (2π)−3/2
∫

R3
e− i〈ξ ,x〉 u(x)dx ∀ξ ∈ R

3 (6.1)
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and the inversion formula

u(x) = F−1(u)(x) = (2π)−3/2
∫

R3
ei〈x,ξ〉 û(ξ)dξ ∀x ∈ R

3.

These formulas extend to tempered distributions and in particular to functions in
L2(R3). Next, we introduce a frequency splitting for functions in R

3 that depends
on k and a parameter λ > 1 by using the Fourier transformation. The low and high
frequency part is given by

LR3u := F−1 (χλ|k|F(u)
)

and HR3u := F−1 ((1− χλ|k|
)

F(u)
)

, (6.2)

where χδ is the characteristic function of the open ball with radius δ > 0 centered
at the origin. We note the splitting HR3 + LR3 = I . By using Stein’s extension
operator EStein, [52, Chap. VI] this splitting induces a frequency splitting for functions
in Sobolev spaces in Ω via

LΩ f := (

LR3ESteinf
)∣

∣

Ω
and HΩ f := (

HR3ESteinf
)∣

∣

Ω
, (6.3)

where, again, LΩ f + HΩ f = f in Ω .
In general, the condition div f = 0 neither implies div LΩ f = 0 nor div HΩ f = 0.

We therefore introduce another lifting (instead of EStein) for functions in Sobolev
spaces on Ω that passes on the divergence-free property to the lifting to the full space
and allows for alternative frequency splittings L0

Ω , H0
Ω at the expense that L0

Ω + H0
Ω

is not the identity but the identity plus a smoothing operator. With the operator R2 of
Lemma 2.6, which has been constructed in [15], we set

H0
Ω f := curl HR3ESteinR2f and L0

Ω f := curl LR3ESteinR2f (6.4)

and define the operator S by

Sf : = f −
(

H0
Ω f + L0

Ω f
)∣

∣

∣

Ω
. (6.5)

In view of (2.24), we have for f with div f = 0 that Sf = K2f |Ω so that in particular
for all s, s′

‖Sf‖Hs (Ω) ≤ Cs,s′ ‖f‖Hs′ (Ω)
∀f ∈ Hs′(Ω) : div f = 0. (6.6)

6.2 Frequency Splittings on 0

For the definition of theHodge decompositions and frequency splittings of this section,
we recall that Ω has a simply connected, analytic boundary.

Remark 6.1 The Laplace–Beltrami operator ΔΓ is self-adjoint with respect to the
L2(Γ ) scalar product (·, ·)L2(Γ ) and positive semidefinite. It admits a countable
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sequence of eigenfunctions in L2(Γ ) denoted by Ym
� such that

−ΔΓ Y
m
� = λ�Y

m
� for � = 0, 1, . . . and m ∈ ι�. (6.7)

Here, ι� is a finite index set whose cardinality equals the multiplicity of the eigenvalue
λ�, andwe always assume that the eigenvalues λ� are distinct and ordered increasingly.
We have λ0 = 0 and for � ≥ 1, they are real and positive and accumulate at infinity.
Since we assumed that Γ is simply connected we know that λ0 = 0 is a simple
eigenvalue. ��

According to [43, Sec. 5.4.1], any tangential field hT ∈ L2
T (Γ ) on the bounded,

simply connected manifold Γ admits an expansion

hT =
∞
∑

�=1

∑

m∈ι�

αm
� ∇Γ Y

m
� + βm

�

(−−−→
curlΓ Y

m
�

)

. (6.8)

The functions
{

∇Γ Ym
� ,
−−−→
curlΓ Ym

� : � ∈ N≥1, m ∈ ι�

}

constitute an orthogonal basis

of L2
T (Γ ) and hence the coefficients αm

� , βm
� are uniquely determined via (6.8). We

set

L∇imphT :=
∞
∑

�=1

∑

m∈ι�

αm
� Y

m
� , Lcurl

imphT :=
∞
∑

�=1

∑

m∈ι�

βm
� Ym

� ,

Π∇
imp := ∇Γ L∇imp, Πcurl

imp := I −Π∇
imp =

−−−→
curlΓ Lcurl

imp,

(6.9)

where I denotes the identity operator.

Remark 6.2 L∇imphT and Lcurl
imphT are characterized by

(

∇Γ L∇imphT ,∇Γ ψ
)

L2(Γ )
= (hT ,∇Γ ψ)L2(Γ ) ∀ψ ∈ C∞(Γ ), (6.10)

(−−−→
curlΓ Lcurl

imphT ,
−−−→
curlΓ ψ

)

L2(Γ )
=
(

hT ,
−−−→
curlΓ ψ

)

L2(Γ )
∀ψ ∈ C∞(Γ ), (6.11)

and the conditions (L∇imphT , 1)L2(Γ ) = 0 and (Lcurl
imphT , 1)L2(Γ ) = 0. In strong form,

we have in viewof curlΓ
−−−→
curlΓ = −ΔΓ thatΔΓ L∇imphT = divΓ hT andΔΓ Lcurl

imphT =− curlΓ hT . ��
In summary, we have introduced a Hodge decomposition:

hT = Π∇
imphT +Πcurl

imphT = ∇Γ ϕ +−−−→curlΓ ψ

for ϕ = L∇imphT and ψ = Lcurl
imphT (6.12)

(for further details see [43, Sec. 5.4.1]).
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Next, we introduce the harmonic extension EΔ
Ω : H1/2 (Γ ) → H1 (Ω) of Dirichlet

boundary data defined by

Δ
(

EΔ
Ωϕ
) = 0 in Ω, EΔ

Ωϕ
∣

∣

Γ
= ϕ. (6.13)

(Later, we will use that EΔ
Ω extends to a continuous operator Hs(Γ ) → H1/2+s(Ω)

for s ≥ 0.) This allows us to define boundary frequency filters LΓ and HΓ based on
this Dirichlet lifting by

LΓ ϕ := (

LΩEΔ
Ωϕ
)∣

∣

Γ
and HΓ ϕ := (

HΩEΔ
Ωϕ
)∣

∣

Γ
. (6.14)

The vector-valued versions for tangential fields on the surface are used to define

H∇Γ (hT ) := ∇Γ

(

HΓ L∇imphT
)

, L∇Γ (hT ) := ∇Γ

(

LΓ L∇imphT
)

,

Hcurl
Γ (hT ) := −−−→

curlΓ
(

HΓ Lcurl
imphT

)

, Lcurl
Γ (hT ) := −−−→

curlΓ
(

LΓ Lcurl
imphT

)

,
(6.15)

and we set

HΓ := H∇Γ +Hcurl
Γ and LΓ := L∇Γ + Lcurl

Γ . (6.16)

6.3 Estimates for the Frequency Splittings

Lemma 6.3 Let Ω be a bounded Lipschitz domain with simply connected, analytic
boundary. The operators L∇imp andLcurl

imp can be extended (uniquely) to bounded linear

operators Hs
T (Γ ) → Hs+1(Γ ) for any s ∈ R and

‖L∇imphT ‖Hs+1(Γ ) ≤ Cs‖ divΓ hT ‖Hs−1(Γ ), (6.17a)

‖Lcurl
imphT ‖Hs+1(Γ ) ≤ Cs‖ curlΓ hT ‖Hs−1(Γ ). (6.17b)

For every s > −1, there is Cs > 0 independent of λ > 1 (appearing in (6.2)) such
that for any hT ∈ Hs

T (Γ ) there holds HΓ hT = H∇Γ hT +Hcurl
Γ hT together with

∥

∥

∥H∇Γ hT
∥

∥

∥

Hs (Γ )
+
∥

∥

∥Hcurl
Γ hT

∥

∥

∥

Hs (Γ )
≤ Cs ‖hT ‖Hs (Γ ) .

Proof The mapping properties for L∇imp, Lcurl
imp, follow directly from elliptic regularity

theory on smooth manifolds in view of Remark 6.2. For the stability of the operators
H∇Γ , Hcurl

Γ we use the stability of the operator HΩ : Hs′(Ω) → Hs′(Ω) for s′ ≥ 0
and the stability of the trace operator γ : H1/2+s′(Ω) → Hs′(Γ ) for s′ > 0 as in
[38, Lem. 4.2] to get that hT �→ γ HΩEΔ

ΩL∇imphT maps continuously H−1+ε(Γ ) →
H ε(Γ ) for any ε > 0 with continuity constant independent of λ > 1. Since ∇Γ :
H ε(Γ ) → H−1+ε

T (Γ ), the result follows. The case ofHcurl
Γ is handled analogously. ��

We recall some properties of the high frequency splittings that are proved in [38,
Lem. 4.2].
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Proposition 6.4 Let λ > 1 be the parameter appearing in the definition of HR3 in
(6.2). Let HΩ , H0

Ω , and HΓ be the operators of (6.3), (6.4), and (6.16). There are
constants Cs′,s independent of λ > 1 such that the following holds.

(i) The frequency splitting (6.2) satisfies for all 0 ≤ s′ ≤ s the estimates

∥

∥HR3 f
∥

∥

Hs′ (R3)
≤ Cs′,s (λ |k|)s′−s ‖ f ‖Hs (R3) ∀ f ∈ Hs(R3), (6.18)

‖HΩ f ‖Hs′ (Ω)
≤ Cs′,s (λ |k|)s′−s ‖ f ‖Hs (Ω) ∀ f ∈ Hs(Ω), (6.19)

∥

∥

∥H0
Ω f
∥

∥

∥

Hs′ (Ω)
≤ Cs′,s (λ |k|)s′−s ‖f‖Hs (Ω) ∀f ∈ Hs(Ω). (6.20)

These estimates hold also for Lipschitz domains.
(ii) Let 0 ≤ s′ < s or 0 < s′ ≤ s. Then the operator HΓ satisfies

‖HΓ g‖Hs′ (Γ )
≤ Cs′,s (λ |k|)s′−s ‖g‖Hs (Γ ). (6.21)

(iii) Let−1 ≤ s′ < s or−1 < s′ ≤ s. Then the operatorHΓ satisfies for gT ∈ Hs
T (Γ )

‖HΓ gT ‖Hs′ (Γ )
≤ Cs′,s (λ |k|)s′−s ‖gT ‖Hs (Γ ), (6.22a)

‖divΓ HΓ gT ‖Hs′−1(Γ )
≤ Cs′,s (λ |k|)s′−s ‖ divΓ gT ‖Hs−1(Γ ), (6.22b)

‖curlΓ HΓ gT ‖Hs′−1(Γ )
≤ Cs′,s (λ |k|)s′−s ‖ curlΓ gT ‖Hs−1(Γ ). (6.22c)

Proof Proof of (i): Estimates (6.18) and (6.19) are shown in [38, Lem. 4.2]. To see
(6.20), we bound H0

Ω as follows

∥

∥

∥H0
Ω f
∥

∥

∥

Hs′ (Ω)
= ∥∥curl HR3ESteinR2f

∥

∥

Hs′ (Ω)
≤ ∥∥HR3 curl ESteinR2f

∥

∥

Hs′ (R3)

(6.18)≤ Cs′,s (λ |k|)s′−s ‖curl ESteinR2f‖Hs (R3)

≤ Cs′,s (λ |k|)s′−s ‖ESteinR2f‖Hs+1(R3)

≤ Cs′,s (λ |k|)s′−s ‖R2f‖Hs+1(Ω) ≤ Cs′,s (λ |k|)s′−s ‖f‖Hs (Ω) .

Proof of (ii): For s′ > 0 the definition of HΓ in (6.14) implies

‖HΓ g‖Hs′ (Γ )
= ∥∥HΩEΔ

Ωg
∥

∥

Hs′ (Γ )
≤ C

∥

∥HΩEΔ
Ωg
∥

∥

Hs′+1/2(Ω)

(6.19)≤ C̃s′,s (λ |k|)s′−s ∥∥EΔ
Ωg
∥

∥

Hs+1/2(Ω)
.

The regularity theory for the Laplace problem (6.13) leads to (6.21). For the case
s′ = 0, we have s > 0, and the multiplicative trace inequality,

‖HΓ g‖L2(Γ ) ≤ C‖HΩEΔ
Ωg‖1−1/(2s+1)

L2(Ω)
‖HΩEΔ

Ωg‖1/(2s+1)
Hs+1/2(Ω)

,

together with the properties of HΩ lead to the result.
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Proof of (iii): We haveHΓ gT = ∇Γ (HΓ L∇impgT )+−−−→curlΓ (HΓ Lcurl
impgT ). A triangle

inequality leads to

‖HΓ gT ‖Hs′ (Γ )
≤
∥

∥

∥HΓ L∇impgT
∥

∥

∥

Hs′+1(Γ )
+
∥

∥

∥HΓ Lcurl
impgT

∥

∥

∥

Hs′+1(Γ )

(6.21)≤ Cs′,s (λ |k|)s′−s
(

∥

∥

∥L∇impgT
∥

∥

∥

Hs+1(Γ )
+
∥

∥

∥Lcurl
impgT

∥

∥

∥

Hs+1(Γ )

)

(6.17)≤ Cs′,s (λ |k|)s′−s ‖gT ‖Hs (Γ ) ,

which shows (6.22a). For (6.22b) we start from

divΓ HΓ gT = divΓ

(

∇Γ (HΓ L∇impgT )+−−−→curlΓ (HΓ Lcurl
impgT )

)

= ΔΓ (HΓ L∇impgT ).

We apply the previous estimate (6.21) to get

‖divΓ HΓ gT ‖Hs′−1(Γ )
=
∥

∥

∥ΔΓ (HΓ L∇impgT )

∥

∥

∥

Hs′−1(Γ )
≤ C

∥

∥

∥HΓ L∇impgT
∥

∥

∥

Hs′+1(Γ )

≤ Cs′,s (λ |k|)s′−s
∥

∥

∥L∇impgT
∥

∥

∥

Hs+1(Γ )
.

Since
∥

∥

∥L∇impgT
∥

∥

∥

Hs+1(Γ )
≤ C

∥

∥

∥ΔΓ L∇impgT
∥

∥

∥

Hs−1(Γ )
and from (6.10) we obtain

ΔΓ L∇impgT = divΓ gT so that

‖divΓ HΓ gT ‖Hs′−1(Γ )
≤ C̃s′,s (λ |k|)s′−s

∥

∥

∥ΔΓ L∇impgT
∥

∥

∥

Hs−1(Γ )

= C̃s′,s (λ |k|)s′−s ‖divΓ gT ‖Hs−1(Γ ) .

This shows (6.22b). The proof of (6.22c) follows along the same lines by using
curlΓ

−−−→
curlΓ = −ΔΓ and curlΓ ∇Γ = 0. ��

The following lemma concerns the parameter-explicit bounds for the low frequency
operators.

Lemma 6.5 Let λ > 1 be fixed in the Definition (6.2) of LR3 . There exists a constant
C > 0 independent of λ such that for all p ∈ N0, v ∈ L2(R3), w ∈ L2(Ω), there
holds

∣

∣LR3v
∣

∣

Hp(R3)
≤ C (λ|k|)p ‖v‖L2(R3) , (6.23a)

∣

∣LΩw
∣

∣

Hp(Ω)
+ ∣∣L0

Ωw
∣

∣

Hp(Ω)
≤ C (λ|k|)p ‖w‖ . (6.23b)

For the boundary frequency filter we have, due to the analyticity of Γ , the existence
of C > 0 and a neighborhood UΓ ⊂ R

3 of Γ (depending only on Ω) and some
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γ > 0 (depending additionally on λ) such that for each zT ∈ H−1/2T (Γ ) there exists
a function

Z ∈ A
(

C ‖zT ‖H−1/2(Γ ) , γ,UΓ

)

such that Z|Γ = LΓ zT .

Proof From [37, (3.32b)] for the full space and from [38, Lem. 4.3] for bounded
domains the estimates (6.23a) and the first one in (6.23b) follow. For the operator L0

Ω ,
recall the lifting operator R2 of (2.6). Then, for any w ∈ L2(Ω) and p ∈ N0, the
second estimate in (6.23b) follows from

∣

∣L0
Ωw
∣

∣

Hp(Ω)
≤ ∣∣L0

Ωw
∣

∣

Hp(R3)
= ∣∣curl LR3ESteinR2w

∣

∣

Hp(R3)

= ∣∣LR3 curl ESteinR2w
∣

∣

Hp(R3)

(6.23a)≤ C(λ|k|)p ‖curl ESteinR2w‖ ≤ C(λ|k|)p ‖w‖ .

Finally, we consider the boundary low frequency operator. For zT ∈ H−1/2(Γ ), we
define functions in the volume Ω via

Φ := LΩEΔ
ΩL∇impzT , Ψ := LΩEΔ

ΩLcurl
impzT

so that, for φ := ∇Φ and ψ := ∇Ψ ,

LΓ zT = ΠT∇Φ +ΠT∇Ψ × n = n× (φ|Γ × n
)+ ψ |Γ × n.

Let n∗ denote an analytic extension of the normal vector field into the domain Ω; due
to the analyticity of the domain we may assume that there are constants Cn, γn > 0
and a tubular neighborhood UΓ ⊂ Ω with Γ ⊂ UΓ such that n∗ ∈ A∞ (Cn, γn,UΓ ).
Let

N∗ :=
⎡

⎣

0 n∗3 −n∗2−n∗3 0 n∗1
n∗2 −n∗1 0

⎤

⎦ .

Then,

ψ |Γ × n = (N∗ψ)Γ and n × (φ|Γ × n
) = −

(

N2∗φ
)

Γ
,

i.e.,

LΓ zT = Gz|Γ for Gz := N∗ (ψ − N∗φ) . (6.24)

We further have for p ∈ N0

|φ|Hp(UΓ ) =
∣

∣∇LΩEΔ
ΩL∇impzT

∣

∣

Hp(UΓ )
= ∣∣LR3∇ESteinEΔ

ΩL∇impzT
∣

∣

Hp(UΓ )
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≤ C(λ|k|)p∥∥∇ESteinEΔ
ΩL∇impzT

∥

∥

L2(R3)
≤ C(λ|k|)p∥∥EΔ

ΩL∇impzT
∥

∥

H1(Ω)

≤ C (λ|k|)p ∥∥L∇impzT
∥

∥

H1/2(Γ )
≤ C1 (λ|k|)p ∥∥zT

∥

∥

H−1/2(Γ )
.

The proof of the estimate

|ψ |Hp(UΓ ) ≤ C2 (λ |k|)p ‖zT ‖H−1/2(Γ )

follows along the same lines. Next we use [33, Lem. 4.3.1] (an inspection of the
proof shows that this lemma also holds for d = 3) to deduce that N∗ψ , −N2∗φ ∈
A
(

C ‖zT ‖H−1/2(Γ ) , γ,UΓ

)

, whereC depends only onC1,C2,Cn, γn, while γ depends
additionally on λ. ��

7 k-Explicit Regularity by Decomposition

In this section, we always assume that the bounded Lipschitz domain Ω ⊂ R
3 has

a simply connected, analytic boundary Γ = ∂Ω . We consider the Maxwell problem
(2.40) with data f , gT with finite regularity.

For the regularity analysis of the operator SMW
Ω,k it is key to understand that the solu-

tions for high frequency right-hand sides have low order regularity but well-behaved
stability constant (with respect to the wavenumber) while solutions corresponding to
low-frequency right-hand sides are analytic but with possibly growing stability con-
stant. This different behavior is reflected in the regularity theory, which decomposes
the solution z = SMW

Ω,k (f, gT ) into a part with finite regularity that can be controlled
uniformly in k and an analytic part that can be controlled explicitly in k. This is achieved
in Theorem 7.3. The main idea of the proof is to exploit that the operators LΩ,k and
LΩ,i k have the same leading order differential operator. With the filter operators of
the preceding Sect. 6 and recalling I = H0

Ω + L0
Ω + S = H0

Ω + L0
Ω + HΩS+ LΩS

as well as I = HΓ + LΓ one can write

SMW
Ω,k (f, gT ) = S+Ω,k(H

0
Ω f + HΩSf,HΓ gT )+ SMW

Ω,k (L0
Ω f + LΩSf,LΓ gT )+ z′

for a remainder z′. One then makes the following observations:

1. If div f = 0 (which may be achieved by subtracting a suitable gradient field), then
the operator S is smoothing by (6.6).

2. The term S+Ω,k(H
0
Ω f + HΩSf,HΓ gT ) has finite regularity properties given by

Theorem 4.3. The effect of the high frequency filters H0
Ω and HΓ is that they

improve the k-dependence of lower-order terms in the indexed norms such as
‖ · ‖Hm (Ω),k (see Lemma 7.1 below).

3. SMW
Ω,k (L0

Ω f + LΩSf,LΓ gT ) is an analytic function and can be estimated with the
aid of Theorem 5.2.

4. The function z′ satisfies

LMW
Ω,k z

′ = r, BΓ ,k = 0,
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where, by suitably choosing the cut-off parameters λ in the frequency operators,
the residual r satisfies ‖r‖∗ ≤ q‖f‖∗ for some q ∈ (0, 1) and a suitable norm ‖·‖∗.
Hence, the arguments can be repeated for z′ and the decomposition can be obtained
by a geometric series argument.

7.1 The Concatenation ofS+
Ä,k with High Frequency Filters

The following lemma analyzes the mapping properties of the concatenation of the
solution operator S+Ω,k with the high frequency filter operators H0

Ω and HΓ .

Lemma 7.1 Letm ∈ N0, � ∈ N0. Provided the right-hand sides are finite, the following
estimates hold with a constant C independent of λ, f , and gT :

|k|m‖H0
Ω f‖Hm (div,Ω),k ≤ C |k| ‖f‖Hm (Ω) , (7.1)

|k|m−1‖H0
Ω f‖Hm−1(div,Ω),k ≤ Cλ−1‖f‖Hm (Ω), m ≥ 1, (7.2)

|k|‖H0
Ω f‖X′imp(Ω),k ≤ Cλ−1/2‖f‖L2(Ω), (7.3)

|k|m+2‖S+Ω,k(H
0
Ω f, 0)‖Hm (Ω),k ≤ Cλ−1/2‖f‖Hm (Ω), (7.4)

as well as

|k|m−1‖HΓ gT ‖Hm−1/2(divΓ ,Γ ),k

≤ C(λ|k|)−�
(|k|‖gT ‖Hm−1/2+�(Γ ) + ‖ divΓ gT ‖Hm−1/2+�(Γ )

)

, (7.5)

|k|m+2‖S+Ω,k(0,HΓ gT )‖Hm (Ω),k

≤ C(λ|k|)−�

{

λ−1
(|k|‖gT ‖Hm−1/2+�(Γ ) + ‖ divΓ gT ‖Hm−1/2+�(Γ )

)

, m ≥ 1,
(|k|‖gT ‖Hm−1/2+�(Γ ) + ‖ divΓ gT ‖Hm−1/2+�(Γ )

)

, m = 0.

(7.6)

For f ∈ L2(Ω) with div f = 0 and the operator S of (6.5) we have for any n ∈ N0

|k|n‖HΩSf‖Hm (Ω),k ≤ Cnλ
−n‖f‖L2(Ω), (7.7)

|k|n‖S+Ω,k(HΩSf, 0)‖Hm+1(Ω),k ≤ Cnλ
−n‖f‖L2(Ω). (7.8)

Proof Proof of (7.1): (7.1) follows from the fact that div H0
Ω f = 0 and Proposition 6.4.

Proof of (7.2): For m ≥ 1, we estimate

‖H0
Ω f‖Hm−1(Ω),k ≤ C

(

‖H0
Ω f‖L2(Ω) + |k|−(m−1)|H0

Ω f |Hm−1(Ω)

)

Prop. 6.4≤ C
(

(λ|k|)−m + |k|−(m−1)(λ|k|)−1
)

‖f‖Hm (Ω) ≤ Cλ−1|k|−m‖f‖Hm (Ω).

Noting that div H0
Ω f = 0, the estimate (7.2) follows.
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Proof of (7.3): Recall the definition of ‖ · ‖X′imp(Ω),k in (4.3) and observe with the
multiplicative trace inequality,

‖γT HR3ESteinR2f‖L2(Γ ) ≤ C(λ|k|)−1/2‖ESteinR2f‖H1(R3) ≤ C(λ|k|)−1/2‖f‖L2(Ω).

(7.9)

Since H0
Ω f = curl HR3ESteinR2f , we get with an integration by parts ([41, Thm. 3.29])

for v ∈ Ximp

∣

∣

∣(H0
Ω f, v)

∣

∣

∣ = ∣∣(γT HR3ESteinR2f, vT )L2(Γ ) + (HR3ESteinR2f, curl v)
∣

∣

≤ C(λ|k|)−1/2‖f‖L2(Ω)‖vT ‖L2(Γ ) + (λ|k|)−1‖f‖L2(Ω)‖ curl v‖L2(Ω)

≤ Cλ−1/2|k|−1‖f‖L2(Ω)‖v‖imp,k .

We conclude |k|1 ‖H0
Ω f‖X′imp(Ω),k ≤ Cλ−1/2‖f‖L2(Ω) by the definition (4.3) of ‖ ·

‖X′imp(Ω),k , and the statement (7.3) is shown.

Proof of (7.4): Form ≥ 1, we obtain (7.4) from (7.2) and Theorem 4.3, (4.18a). For
m = 0, we observe that Theorem 4.3, (4.17) and (7.3) imply ‖S+Ω,k(H

0
Ω f, 0)‖L2(Ω) ≤

|k|−1‖S+Ω,k(H
0
Ω f, 0)‖imp,k ≤ C |k|−1‖H0

Ω f‖X′imp(Ω),k ≤ Cλ−1/2|k|−2‖f‖L2(Ω).

Proof of (7.5):We distinguish the casesm = 0 andm ≥ 1. Form ≥ 1, the statement
follows from the estimates of HΓ given in Proposition 6.4. For m = 0, in addition to
Proposition 6.4 one invokes Lemma 4.2.

Proof of (7.6): For m ≥ 1, the estimate (7.6) follows from combining Proposi-
tion 6.4 with (4.18a) and (7.5) (taking �+ 1 for � there) to get

‖S+Ω,k(0,HΓ gT )‖Hm (Ω),k ≤ C |k|−3‖HΓ gT ‖Hm−1−1/2(divΓ ,Γ ),k

(7.5)≤ C |k|−3−m+2(λ|k|)−1−�
(|k|‖gT ‖Hm−1/2+�(Γ ) + ‖ divΓ gT ‖Hm−1/2+�(Γ )

)

.

For m = 0, we use Theorem 4.3, (4.17) to get

‖S+Ω,k(0,HΓ gT )‖L2(Ω) ≤ C |k|−1‖S+Ω,k(0,HΓ gT )‖imp,k ≤ C |k|−1‖HΓ gT ‖X′imp(Γ ),k

(4.12)≤ C |k|−2 (|k|‖HΓ gT ‖H−1/2(Γ ) + ‖ divΓ HΓ gT ‖H−1/2(Γ )

)

Prop. 6.4≤ C |k|−2 (λ|k|)−�
(|k|‖gT ‖H−1/2+�(Γ ) + ‖ divΓ gT ‖H−1/2+�(Γ )

)

.

This completes the proof of (7.6).
Proof of (7.7), (7.8): For f with div f = 0 we have Sf ∈ C∞(Ω) by (6.6). Hence,

(7.7), (7.8) follow from Proposition 6.4 and (6.6) and again Theorem 4.3. ��
Lemma 7.2 Let m ∈ N0, div f ∈ Hm−1(Ω), divΓ gT ∈ Hm−3/2(Γ ). Then there exist
ϕf ∈ Hm+1(Ω) ∩ H1

0 (Ω) and ϕg ∈ Hm+1(Ω) such that for � = 0, . . . ,m

‖ϕf‖H�+1(Ω) ≤ C‖ div f‖H�−1(Ω), − div∇ϕf = div f, BΓ ,k∇ϕf = 0,
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‖ϕg‖H�+1(Ω) ≤ C‖ divΓ gT ‖H�−3/2(Γ ), div∇ϕg = 0, divΓ ∇Γ ϕg = divΓ gT .

Proof Define ϕf ∈ H1
0 (Ω) as the weak solution of

−Δϕf = div f .

By elliptic regularity, we have ϕf ∈ Hm+1(Ω) and the stated bounds. The function ϕg
is defined in two steps: First, let ϕ ∈ H1(Γ ) with

∫

Γ
ϕ = 0 denote the weak solution

of

ΔΓ ϕ = divΓ gT ,

which satisfies ‖ϕ‖Hm+1/2(Γ ) ≤ C‖ div gT ‖Hm−3/2(Γ ). Then, ϕg is defined on Ω as the
harmonic extension from Γ , i.e., ϕg ∈ Hm+1(Ω) solves

Δϕg = 0, ϕg|Γ = ϕ.

Again, the bounds follow from elliptic regularity theory. ��

7.2 Regularity by Decomposition: TheMain Result

Theorem 7.3 Let Ω ⊂ R
3 be a bounded Lipschitz domain with a simply connected,

analytic boundary Γ = ∂Ω . Let the stability Assumption (3.2) be satisfied. Then
there is a linear mapping L2(Ω) × H−1/2T (divΓ , Γ ) � (f, gT ) �→ (zH2 , zA, ϕf , ϕg)

such that the solution z := SMW
Ω,k (f, gT ) ∈ Ximp of (2.40) can be written as z =

zH2 + zA + k−2∇ϕf + i k−1∇ϕg.
The linear mapping has the following properties: For any m, m′ ∈ N0, there

are constants C, B > 0 (depending only on Ω and m, m′) such that for (f, gT ) ∈
Hm(Ω)×Hm−1/2

T (Γ )with (div f, divΓ gT ) ∈ Hm′−1(Ω)×Hm′−3/2(Γ ) the following
holds:

(i) The function zH2 satisfies

‖zH2‖Hm+1(Ω),k ≤ C |k|−m−2 (|k|‖gT ‖Hm−1/2(Γ ) + ‖f‖Hm (Ω)

)

. (7.10)

If gT ∈ Hm+1/2
T (Γ ), then

∥

∥zH2

∥

∥

Hm+1(curl,Ω),k ≤ C |k|−m−1 (‖gT ‖Hm+1/2(Γ ) + ‖f‖Hm (Ω)

)

(7.11)

and in (7.10) the term |k|‖gT ‖Hm−1/2(Γ ) can be replaced with ‖gT ‖Hm+1/2(Γ ).
(ii) The gradient fields ∇ϕf and ∇ϕg are given by Lemma 7.2 and satisfy, for � =

0, . . . ,m′:

‖ϕf‖H�+1(Ω) ≤ C ‖div f‖H�−1(Ω) , (7.12)
∥

∥ϕg
∥

∥

H�+1(Ω)
≤ C ‖divΓ gT ‖H�−3/2(Γ ) . (7.13)
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(iii) The analytic part zA satisfies

zA ∈ A(C(1+ Cstab)|k|θ−1{‖f‖ + |k|‖gT ‖H−1/2(Γ )}, B,Ω). (7.14)

Proof By linearity of the solution operator SMW
Ω,k , we consider the cases SMW

Ω,k (f, 0)
and SMW

Ω,k (0, gT ) separately. The fact that the right-hand sides in (7.10), (7.11), (7.14)
do not contain the divergence of f or gT is due to the fact that we suitably choose the
functions ϕf , ϕg in the course of the proof.

Step 1 (reduction to divergence-free data): Let the functions ϕf , ϕg be given by
Lemma 7.2. These functions have the regularity properties given in (ii). The function
z′ := z− k−2∇ϕf − i k−1∇ϕg satisfies

LΩ,kz′ = f +∇ϕf + i k∇ϕg =: f ′ in Ω,

BΓ ,kz′ = gT −∇Γ ϕg =: g′T on Γ .

By construction, div f ′ = 0 and divΓ g′T = 0. Furthermore, using ‖ div f‖Hm−1(Ω) ≤
C‖f‖Hm (Ω) and ‖ divΓ gT ‖Hm−3/2(Γ ) ≤ C‖gT ‖Hm−1/2(Γ ) we obtain

‖f ′‖Hm (Ω) ≤ C
(‖f‖Hm (Ω) + C |k|‖gT ‖Hm−1/2(Γ )

)

, (7.15)

‖g′T ‖Hm−1/2(Γ ) ≤ C‖gT ‖Hm−1/2(Γ ). (7.16)

Step 2 (Analysis of SMW
Ω,k (f ′, 0) with div f ′ = 0): We claim that

SMW
Ω,k (f ′, 0) = zH2,f + zA,f (7.17)

for some functions zH2,f and zA,f satisfying the estimates (7.11) (and therefore also
(7.10) since we focus on the case gT = 0) and (7.14). We have div f ′ = 0 and assume
gT = 0, which implies g′T = 0. Set f ′0 := ˜f0 := f ′ and define, with the mapping
f �→ ϕf of Lemma 7.2, recursively for n = 0, 1, . . . ,

zH2,n := S+Ω,k(H
0
Ω
˜fn, 0)+ S+Ω,k(HΩS˜fn, 0),

zA,n := SMW
Ω,k (L0

Ω
˜fn, 0)+ SMW

Ω,k (LΩS˜fn, 0),

f ′n+1 := 2k2zH2,n,

˜fn+1 := f ′n+1 + ∇ϕf ′n+1 . (7.18)

We note that div˜fn = 0 for all n. From Lemma 7.1, we get: if˜fn ∈ H�(Ω), then

|k|�+2‖S+Ω,k(H
0
Ω
˜fn, 0)‖H�(Ω),k ≤ Cλ−1/2‖˜fn‖H�(Ω). (7.19)

Next, we obtain from Lemma 7.2 and the above defined recurrence relation

‖∇ϕf ′n‖H�(Ω) ≤ C‖ div f ′n‖H�−1(Ω) ≤ C‖f ′n‖H�(Ω), � = 0, . . . ,m, (7.20)
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‖f ′n+1‖H�(Ω)

(7.19)≤ Cλ−1/2‖˜fn‖H�(Ω) ≤ Cλ−1/2‖f ′n‖H�(Ω), � = 0, . . . ,m, (7.21)

‖˜fn+1‖Hm (Ω) ≤ C‖f ′n+1‖Hm (Ω) ≤ Cλ−1/2‖˜fn‖Hm (Ω). (7.22)

From the equation that defines zH2,n and since div H0
Ω
˜fn = 0 we get

(2k2)−1 div f ′n+1 = div zH2,n = k−2 div HΩS˜fn . (7.23)

Since S is a smoothing operator, this implies that div f ′n+1 is smooth, and the first
estimate in (7.20) actually holds for any � ∈ N0. The bounds (7.21), (7.22) show that
the functions fn and˜fn decay in geometric progression as n increases if λ > 1 is
chosen such that Cλ−1/2 =: q < 1. Fixing such a λ > 1, a geometric series argument
implies for any μ ∈ {0, 1, . . . ,m}

∞
∑

n=0
‖˜fn‖Hμ(Ω) ≤ C‖f ′‖Hμ(Ω). (7.24)

We also get from Theorem 4.3 and Lemma 7.1 and the smoothing property of S (recall
that div˜fn = 0)

‖zH2,n‖Hm+1(curl,Ω),k
Theorem 4.3≤ C |k|−2

(

‖H0
Ω
˜fn‖Hm (div,Ω),k + ‖HΩS˜fn‖Hm (div,Ω),k

)

(7.1)≤ C |k|−(m+1)‖˜fn‖Hm (Ω). (7.25)

Lemma 6.5 shows that L0
Ω
˜fn , LΩS˜fn ∈ A(C1‖˜fn‖L2(Ω),C2λ|k|,Ω) for some C1, C2

depending only on Ω . From Theorem 5.2, we infer

|zA,n|Hp(Ω) ≤ Cz(1+ Cstab)|k|θ−1‖˜fn‖L2(Ω)γ
p max (p, |k|)p ∀p ∈ N0

(7.26)

for some Cz, γ independent of k and n; γ depends on λ, which has been fixed above.
Upon setting

zH2,f ′ :=
∞
∑

n=0
zH2,n, ∇ϕ :=

∞
∑

n=1
∇ϕf ′n , zA,f :=

∞
∑

n=0
zA,n,

we have by (7.25) and (7.24)

∥

∥zH2,f ′
∥

∥

Hm+1(curl,Ω),k ≤ C |k|−(m+1)‖f ′‖Hm (Ω) ≤ C |k|−(m+1)‖f‖Hm (Ω),

zA,f ∈ A(C(1+ Cstab)|k|θ−1‖f‖L2(Ω), γ,Ω).

For the term ∇ϕ, we get
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∥

∥

∥k−2∇ϕ

∥

∥

∥

Hm+1(curl,Ω),k
= |k|−1 ‖∇ϕ‖Hm+1(Ω),k ≤ C |k|−1

∞
∑

n=1

∥

∥div f ′n
∥

∥

Hm (Ω),k

(7.23)= C |k|−1
∞
∑

n=0
‖2 div HΩS˜fn‖Hm (Ω),k

≤ C
∞
∑

n=0
‖HΩS˜fn‖Hm+1(Ω),k ≤ C |k|−(m+1)

∞
∑

n=0
‖˜fn‖L2(Ω),

where we used (7.7) with n ← m + 1 for the last estimate. The combination with
(7.24) shows

‖k−2∇ϕ‖Hm+1(curl,Ω),k ≤ C |k|−(m+1) ‖f ′‖L2(Ω).

We set

zH2,f := zH2,f ′ + k−2∇ϕ.

That is, the terms zH2,f and zA,f satisfy the estimates (7.10), (7.11) given in the
statement of the theorem for the present case gT = 0. We compute

LΩ,k(zH2,f + zA,f ) =
∞
∑

n=0
f ′n − f ′n+1 = f ′0 = f ′, BΓ ,k(zH2,f + zA,f ) = 0.

By the uniqueness assertion of Proposition 3.1, we have identified zH2,f + zA,f =
SMW

Ω,k (f ′, 0).
Step 3 (Analysis of SMW

Ω,k (0, g′T ) with divΓ g′T = 0): We define

zH2,g := S+Ω,k(0,HΓ g′T ), zA,g := SMW
Ω,k (0,LΓ g′T ).

From Theorem 4.3 and the properties of HΓ given in Proposition 6.4 we get

‖zH2,g‖Hm+1(Ω),k ≤ C |k|−3‖HΓ g′T ‖Hm−1/2(divΓ ,Γ ),k

(7.5),divΓ g′T=0≤ C |k|−1−m‖gT ‖Hm−1/2(Γ ), (7.27)

‖zH2,g‖Hm+1(curl,Ω),k

Prop. 6.4≤ C |k|−(m+1)‖gT ‖Hm+1/2(Γ ). (7.28)

That is, zH2,g satisfies the estimates (7.10), (7.11) given in the statement of the theorem
for the present case f = 0. For zA,g we observe that Lemma 6.5 ensures7 LΓ g′T ∈
A(C‖g′T ‖H−1/2(Γ ), γ,Ω) for some C depending only on Ω and γ > 0 depending on

7 We write LΓ g′T instead of introducing a new symbol Z with Z|Γ = LΓ g′T
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Ω and λ. We note ‖g′T ‖H−1/2(Γ ) ≤ C‖gT ‖H−1/2(Γ ) by (7.16). From Theorem 5.2 we
obtain

zA,g ∈ A(C(1+ Cstab)|k|θ−1/2‖gT ‖H−1/2(Γ ), γ,Ω).

Since θ − 1/2 ≤ θ , the function zA,g satisfies the estimate stated in the theorem.
Finally, we observe that ẑ := SMW

Ω,k (0, g′T )− (zH2,g + zA,g) satisfies

LΩ,k ẑ = 2k2S+Ω,k(0,HΓ g′T ) =:̂f, BΓ ,k ẑ = 0.

From Lemma 7.1 we get using divΓ g′T = 0

‖̂f‖Hm (Ω) ≤ C |k|‖g′T ‖Hm−1/2(Γ ), ‖̂f‖Hm (Ω) ≤ C‖g′T ‖Hm+1/2(Γ ), (7.29a)

‖̂f‖L2(Ω) ≤ C |k|‖g′T ‖H−1/2(Γ ). (7.29b)

We note that div̂f = 0 and that Step 2 provides a decomposition of ẑ in the form
ẑ = zH2,̂f + zA,̂f . By Step 2, the term zH2,̂f can be controlled in terms of ‖̂f‖Hm (Ω)

and thus in the required form. For zA,̂f , we note that Step 2 yields

zA,̂f ∈A(C(1+Cstab)|k|θ−1‖̂f‖L2(Ω),γ,Ω)⊂A(C(1+Cstab)|k|θ‖gT ‖H−1/2(Γ ), γ,Ω),

which is an analytic function with the desired estimate. We summarize that zH2 , zA
in the statement of the theorem are given by

zH2 = zH2,f + zH2,g + zH2,̂f and zA = zA,f + zA,g + zA,̂f

and the summands have been estimated in Step 1-3.
Step 4: The proof is now complete with the exception of the statement in (i) that

|k|‖gT ‖Hm−1/2(Γ ) can be replaced with ‖gT ‖Hm+1/2(Γ ). However, this follows directly
from (7.11) via

|k| ∥∥zH2,g

∥

∥

Hm+1(Ω),k
≤ ∥∥zH2,g

∥

∥

Hm+1(curl,Ω),k

(7.28)≤ C |k|−m−1 ‖gT ‖Hm+1/2(Γ )

and for the control of ẑ in Step 3 via the bound ‖̂f‖Hm (Ω) � ‖g′T ‖Hm+1/2(Γ ) in (7.29).
��

8 Discretization

In this section, we describe the hp-FEM based on Nédélec elements and discuss
the approximation properties of various hp-approximation operators. These operators
made their appearance already in [39]. Here, we strengthen the results of [39, Sec. 8]
in that we additionally control the error on the boundary of the elements, which is
required due to the impedance boundary conditions considered here.
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8.1 Meshes and Nédélec Elements

The classical example of curl-conforming FE spaces are the Nédélec elements, [42].
We restrict our attention here to so-called “type I” elements (sometimes also referred
to as the Nédélec-Raviart-Thomas element) on tetrahedra. These spaces are based on
a conforming (no hanging nodes), shape-regular triangulation Th of Ω ⊂ R

3. That is,
Th satisfies:

(i) The (open) elements K ∈ Th cover Ω , i.e., Ω = ∪K∈Th K .
(ii) Associated with each element K is the element map, a C1-diffeomorphism FK :

̂K → K . The set ̂K is the reference tetrahedron.
(iii) Denoting hK = diam K , there holds, with some shape-regularity constant γT ,

h−1K ‖F ′K ‖L∞(̂K ) + hK ‖(F ′K )−1‖L∞(̂K ) ≤ γT . (8.1)

(iv) The intersection of two elements is only empty, a vertex, an edge, a face, or they
coincide (here, vertices, edges, and faces are the images of the corresponding
entities on the reference tetrahedron ̂K ). The parametrization of common edges
or faces are compatible. That is, if two elements K , K ′ share an edge (i.e.,
FK (e) = FK ′(e′) for edges e, e′ of ̂K ) or a face (i.e., FK ( f ) = FK ′( f ′) for faces
f , f ′ of ̂K ), then F−1K ◦ FK ′ : f ′ → f is an affine isomorphism.

The maximal mesh width is denoted by

h := max {hK : K ∈ Th} . (8.2)

The following assumption requires that the element map FK can be decomposed as a
composition of an affine scaling with an h-independent mapping. We adopt the setting
of [37, Sec. 5] and assume that the element maps FK of the conforming, γ -shape
regular triangulation Th satisfy the following additional requirements:

Assumption 8.1 (normalizable regular triangulation) Each element map FK can be
written as FK = RK ◦ AK , where AK is an affine map and the maps RK and AK

satisfy for constants Caffine, Cmetric, γ > 0 independent of K :

‖A′K ‖L∞(̂K ) ≤ CaffinehK , ‖(A′K )−1‖L∞(̂K ) ≤ Caffineh
−1
K ,

‖(R′K )−1‖L∞(˜K ) ≤ Cmetric, ‖∇n RK ‖L∞(˜K ) ≤ Cmetricγ
nn! ∀n ∈ N0.

Here, ˜K = AK (̂K ) and hK > 0 is the element diameter.

Remark 8.2 A prime example of meshes that satisfy Assumption 8.1 are those patch-
wise structured meshes as described, for example, in [37, Ex. 5.1] or [33, Sec. 3.3.2].
These meshes are obtained by first fixing a macro triangulation of Ω; the actual trian-
gulation is then obtained as images of affine triangulations of the reference element.

��
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On the reference tetrahedron ̂K we introduce the classical Nédélec type I and
Raviart-Thomas elements of degree p ≥ 0 (see, e.g., [41]):

Pp(̂K ) := span{xα | |α| ≤ p}, (8.3)

RTp(̂K ) := {p(x)+ xq(x) |p ∈ (Pp(̂K ))3, q ∈ Pp(̂K )}, (8.4)

N I
p(
̂K ) := {p(x)+ x × q(x) |p,q ∈ (Pp(̂K ))3}. (8.5)

The spaces Sp+1(Th), RTp (Th),N I
p(Th) are then defined as in [41, (3.76)] by trans-

forming covariantly N I
p(
̂K ) and contravariantly RTp(̂K ):

Sp+1(Th) := {u ∈ H1(Ω) | u|K ◦ FK ∈ Pp+1(̂K )}, (8.6a)

RTp(Th) := {u ∈ H(div,Ω) | (det F ′K )(F ′K )−1u|K ◦ FK ∈ RTp(̂K )}, (8.6b)

N I
p(Th) := {u ∈ H(curl,Ω) | (F ′K )Tu|K ◦ FK ∈N I

p(
̂K )}. (8.6c)

We set8

Xh :=N I
p(Th) ∩ Ximp, Sh := Sp+1(Th) ∩ H1

imp (Ω) (8.7)

and recall the well-known exact sequence property

Sh
∇−→ Xh

curl−→ curlXh . (8.8)

The hp-FEM Galerkin discretization for the electric Maxwell problem (2.39) is
given by:

find Eh ∈ Xh such that Ak(Eh, v) = (j, v)+ (gT , v)L2(Γ ) ∀v ∈ Xh . (8.9)

8.2 hp-Approximation Operators

We will use polynomial approximation operators that are constructed elementwise,
i.e., for an operator ̂Ip on the reference element ̂K , a global operator Ip is defined
by setting (Ipu)|K := ̂Ip(u ◦ FK )) ◦ F−1K . If ̂Ip maps into Pp+1(̂K ), then we say
̂Ip admits an element-by-element construction, if the operator Ip defined in this way
maps into Sp+1(Th). Analogously, if̂Ip maps intoN I

p(
̂K ), then we say that̂Ip admits

an element-by-element construction if the resulting operator Ip maps intoN I
p(Th).

For scalar functions (or gradient fields), we have elemental approximation operators
with the optimal convergence in L2 and H1:

Lemma 8.3 Let ̂K ⊂ R
d , d ∈ {2, 3}, be the reference triangle or reference tetrahedron

and R � m ≥ (d + 1)/2. Then, for every p ∈ N0, there exists a linear operator

8 Note that Xh =N I
p(Th) and Sh = Sp+1(Th) since N I

p(Th) ⊂ Ximp and Sp+1(Th) ⊂ H1
imp(Ω).
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̂Πp : Hm(̂K ) → Pp+1 that permits an element-by-element construction such that if
p ≥ m − 2

‖u − ̂Πpu‖L2(̂K ) +
1

p + 1
‖u − ̂Πpu‖H1(̂K ) + (p + 1)−1/2‖u − ̂Πpu‖L2(∂ ̂K )

+ (p + 1)−3/2‖u − ̂Πpu‖H1(∂ ̂K ) ≤ C(p + 1)−m |u|Hm(̂K )

(8.10)

for a constant C > 0 that depends only on m, d, and the choice of reference trian-
gle/tetrahedron.

For the case d = 3, the condition on m can be relaxed to m > d/2.

Proof The operator ̂Πp may be taken as the operators ̂Πgrad,3d
p+1 for d = 3 or ̂Πgrad,2d

p+1
for d = 2 of [36]. The volume estimates follow from [36, Cor. 2.12] for the case d = 3
and [36, Thm. 2.13] for the case d = 2. For the estimates on ∂ ̂K , one notices that
the restriction of ̂Πgrad,3d

p+1 to a boundary face ̂f is the operator ̂Πgrad,2d
p+1 on that face

and that the restriction of ̂Πgrad,2d
p+1 to an edge of the reference triangle is the operator

̂Π
grad,1d
p+1 discussed in [36, Lem. 4.1].

For d = 3 an operator ̂Πp with the stated approximation properties is constructed in
[37, Thm. B.4] for the case m > d/2 = 3/2. The statement about the approximation
on ∂ ̂K follows by a more careful analysis of the proof of [37, Thm. B.4]. For the
reader’s convenience, the proof is reproduced in [40, Thm. B.5]. ��

The fact that ̂Πp in Lemma 8.3 has the element-by-element construction property
means that an elementwise definition of the operator Π

∇,s
p : Hm(Ω) → Sp+1(Th) by

(Π
∇,s
p ϕ)|K = (̂Πp(ϕ ◦ FK )) ◦ F−1K maps indeed into Sp+1(Th) ⊂ H1(Ω).
In the following we always assume for the spatial dimension d = 3. By scaling

arguments we get the following result:

Corollary 8.4 Let d = 3. For m ∈ N>3/2 and p ≥ m − 2 the operator Π
∇,s
p :

Hm(Ω) → Sp+1(Th) has following the approximation properties for all K ∈ Th:

‖ϕ −Π∇,s
p ϕ‖L2(K ) +

hK
p + 1

‖ϕ −Π∇,s
p ϕ‖H1(K ) ≤ C

(

hK
p + 1

)m

‖ϕ‖Hm (K ),

(8.11)

hK
p + 1

‖ϕ −Π∇,s
p ϕ‖H1(∂K ) ≤ C

(

hK
p + 1

)m−1/2
‖ϕ‖Hm (K ). (8.12)

In [39, Lem. 8.2] approximation operators ̂Πcurl,s
p : H1(curl, ̂K ) → N I

p(
̂K )

and ̂Πdiv,s
p : H1(div, ̂K ) → RTp(̂K ) on the reference tetrahedron ̂K are defined

with certain elementwise approximation properties. Global versions of these oper-
ators, Π

curl,s
p : H(curl,Ω) ∩ ∏K∈ThH

1(curl, K ) → N I
p(Th) and Π

div,s
p :

H (div,Ω)∩∏K∈ThH
1(K , div, ̂K ) → RTp (Th) , are characterized by lifting the
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operators on the reference element by (cf. [39, Def. 8.1])

(Πcurl,s
p u)|K ◦ FK := (F ′K )−T

̂Πcurl,s
p ((F ′K )�u ◦ FK ), (8.13)

(Πdiv,s
p u)|K := (det(F ′K ))−1F ′K (̂Πdiv,s

p (det F ′K )(F ′K )−1u ◦ FK )) ◦ F−1K . (8.14)

The approximation properties of Π
curl,s
p are inferred from those of ̂Πcurl,s

p given in
[39, Lem. 8.2]. We obtain:

Lemma 8.5 Let m ∈ N>3/2 and p ≥ m − 1. Let ˜C, B > 0. Then there are constants
C, σ > 0 depending only on ˜C, B, m, and the constants of Assumption 8.1 such that
the following holds for the operator Π

curl,s
p : Hm(Ω) →N I

p(Th) and all K ∈ Th:

(i) If u ∈ Hm(K ) then

‖u−Πcurl,s
p u‖L2(K ) +

hK
p + 1

‖u−Πcurl,s
p u‖H1(K ) ≤ C

(

hK
p + 1

)m

‖u‖Hm (K ),

(8.15)

‖u−Πcurl,s
p u‖L2(∂K ) ≤ C

(

hK
p + 1

)m−1/2
‖u‖Hm (K ). (8.16)

(ii) If u ∈ A(Cu(K ), B, K ) for some Cu(K ) > 0 and if

hK + |k|hK /p ≤ ˜C (8.17)

then

h1/2K ‖u−Πcurl,s
p u‖L2(∂K ) + ‖u−Πcurl,s

p u‖L2(K ) + hK ‖u−Πcurl,s
p u‖H1(K )

≤ CCu(K )

(

(

hK
hK + σ

)p+1
+
( |k|hK

σ p

)p+1)
. (8.18)

(iii) If u ∈ A(Cu, B,Ω) for some Cu > 0 and if (8.17) holds, then

‖u−Πcurl,s
p u‖imp,k ≤ Cu|k|

((

h

h + σ

)p

+
( |k|h

σ p

)p)

.

Proof The result follows from modifications of the procedure in [39, Sec. 8.3]. We
recall the structure FK = RK ◦ AK of the element maps by Assumption 8.1. For
K ∈ Th we define ˜K := AK (K ) and the transformed functions v̂ := (F ′K )�v ◦ FK on
̂K and ṽ := (R′K )�v ◦ RK on ˜K . We note that v̂ = (A′K )�ṽ ◦ AK . By Assumption 8.1
and the fact that AK is affine, we have

‖̃v‖H j (˜K ) ∼ ‖v‖H j (K ), ‖̃v‖L2(∂ ˜K ) ∼ ‖v‖L2(∂K ), (8.19)

|̂v|H j (̂K ) ∼ h1+ j−3/2
K |̃v|H j (˜K ), ‖̂v‖L2(∂ ̂K ) ∼ h1−1K ‖̃v‖L2(∂ ˜K ), (8.20)
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where the implied constant depends only on j and the constants of Assumption 8.1.
Proof of (i): From [39, Lem. 8.2], we have for

p‖̂u− ̂Πcurl,s
p û‖L2(̂K ) + ‖̂u− ̂Πcurl,s

p û‖H1(̂K ) ≤ Cp−(m−1)|u|Hm (̂K ). (8.21)

This approximation result and the scaling argument expressed in (8.19), (8.20) produce
(8.15). The multiplicative trace inequality ‖̂v‖2

L2(∂ ̂K )
≤ C ‖̂v‖L2(̂K )‖̂v‖H1(̂K ) applied

to (8.21) and similar scaling arguments produce (8.16).
Proof of (ii): By [39, Lem. 8.4], the pull-back û ∈ A(CCu(K )h1−3/2K , hK B ′, ̂K ) for

some B ′ depending only on B and the constants of Assumption 8.1. By [39, Lem. 8.2]
there are constants depending only on B and the constants of Assumption 8.1 such
that

‖̂u− ̂Πcurl,s
p û‖W 2,∞(̂K ) ≤ Ch1−3/2K Cu(K )

(

(

hK
hK + σ

)p+1
+
( |k|hK

σ p

)p+1)
.

With similar scaling arguments as in the proof of (i), we obtain the stated estimate.
Proof of (iii): For each K ∈ Th , we define

˜C2
u(K ) :=

∞
∑

n=0

|u|2Hn(K )

(2B)2n max(n + 1, |k|)2n

and note

u ∈ A(˜Cu(K ), 2B, K ) with
∑

K∈Th
˜C2
u(K ) ≤ 2C2

u.

We then sum the elementwise error estimates provided by (ii). ��

8.3 An Interpolating Projector onto the Finite Element Space

For the error analysis, the following subspace of H1(Ω) will play an important role:

Vk,0 :=
{

u ∈ Ximp | ((u,∇ϕ))k = 0 ∀ϕ ∈ H1
imp (Ω)

}

. (8.22)

Proposition 8.6 LetΩ be a bounded Lipschitz domain with simply connected, analytic
boundary. The space Vk,0 can alternatively be characterized by

Vk,0 =
{

u ∈ Ximp | div u = 0 ∧ i k 〈u,n〉 + divΓ uT = 0 on Γ
}

. (8.23)

The proof of this proposition is standard and uses the same arguments as, e.g., [39,
Lem. 4.10].
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Proposition 8.7 LetΩ be a bounded Lipschitz domain with simply connected analytic
boundary. It holds Vk,0 ⊂ H1(Ω), and there exists c > 0 independent of k such that

c |k| ‖v‖H1(Ω),k ≤ ‖v‖H(curl,Ω),k ≤ ‖v‖imp,k ∀v ∈ Vk,0.

Proof The estimate ‖v‖H(curl,Ω),k ≤ ‖v‖imp,k follows directly from the definition of
the norms. For the lower bound, we employ the Helmholtz decomposition of v ∈ Vk,0
as in Lemma 2.7 (i) and take into account div v = 0. That is, there exist w ∈ H1(Ω)

and ϕ ∈ H1(Ω) with

v = ∇ϕ + w, ‖w‖H1(Ω) ≤ C ‖curl v‖ . (8.24)

Since div v = 0 we conclude ‖v‖H(div,Ω) = ‖v‖ so that a trace theorem gives us

‖〈v,n〉‖H−1/2(Γ ) ≤ C‖v‖H(div,Ω) = C‖v‖.

It holds

ΔΓ (ϕ|Γ ) = divΓ (vT − wT )
Prop. 8.6= − i k〈v,n〉 − divΓ wT =: ṽ.

By the smoothness of the closed manifold Γ and the shift properties of the Laplace-
Beltrami operator we get

‖ϕ‖H3/2(Γ ) ≤ C‖ṽ‖H−1/2(Γ ) ≤ C
[‖ divΓ wT ‖H−1/2(Γ ) + |k| ‖〈v,n〉‖H−1/2(Γ )

]

≤ C
[‖wT ‖H1/2(Γ ) + |k|‖v‖

] ≤ C
(‖w‖H1(Ω) + |k| ‖v‖

)

(8.24)≤ C ‖v‖H(curl,Ω),k .

Since ϕ solves

−Δϕ = divw inΩ,

the shift theorem for the Laplace operator on smooth domains leads to

‖∇ϕ‖H1(Ω) ≤ C
(‖ divw‖ + ‖ϕ‖H3/2(Γ )

) ≤ C
(‖ curl v‖ + ‖v‖H(curl,Ω),k

)

.

(8.25)

The combination of (8.24) and (8.25) shows that v ∈ H1(Ω) and

‖v‖H1(Ω) ≤ C ‖v‖H(curl,Ω),k ≤ C ‖v‖imp,k .

Since we have trivially |k| ‖v‖ ≤ ‖v‖H(curl,Ω),k , the assertion follows. ��
We also need the following subspace of Vk,0 given by

Vk,0,h :=
{

v ∈ Vk,0 | curl v ∈ curlXh
}

. (8.26)

123



Foundations of Computational Mathematics (2024) 24:1871–1939 1925

The operator Π
curl,s
p in (8.13), (8.14) has (p-optimal) approximation properties

in ‖ · ‖curl,Ω,k as it has simultaneously p-optimal approximation properties in L2

and H1. However, it is not a projection and does not have the commuting diagram
property. Since this is needed for the estimate of the consistency term in Sect. 9.2 we
employ operators,Πcurl,c

p ,Πdiv,c
p , which enjoy these properties. Theywere constructed

in [36] in an element-by-element fashion and used in [39, Thm. 8.2]. The choice
Π E

h : Vk,0,h + Xh → Xh as Π
curl,c
p and the companion operator Π F

h : H(div,Ω) ∩
∏

K∈Th H
1(div, K ) → curlXh as Π

div,c
p allows us to derive quantitative convergence

estimates in Sect. 9.

Lemma 8.8 The operators Π E
h := Π

curl,c
p and Π F

h := Π
div,c
p of [39] satisfy

the following properties: Π E
h : Vk,0,h + Xh → Xh and Π F

h : H(div,Ω) ∩
∏

K∈Th H
1(div, K ) → curlXh are linear mappings with

(i) Π E
h is a projection, i.e., the restriction Π E

h

∣

∣

Xh
is the identity on Xh.

(ii) The operators Π E
h and Π F

h have the commuting property: curlΠ E
h = Π F

h curl.

Proof Since Π
curl,c
p is based on an element-by-element construction it is well defined

on H(curl,Ω) ∩∏K∈ThH
1(curl, K ). Since Vk,0,h + Xh is a subspace of this space,

the mapping properties follow. The projection property of Π E
h and the commuting

property of Π E
h and Π F

h are proved in [36, Thm. 2.10, Rem. 2.11]. ��

9 Stability and Convergence of the Galerkin Discretization

The wavenumber-explicit stability and convergence analysis for Maxwell’s equations
with transparent boundary conditions has been developed recently in [39] and gener-
alizes the theory in [41, Sec. 7.2]. A “roadmap” for the convergence proof of [39] is
given in [39, Sec. 1.1–1.3]. In the present analysis, we follow this “roadmap” taking
into account the change in boundary conditions from transparent boundary condi-
tions to impedance boundary conditions. A key role is played by the term ((u, v))k =
Ak(u, v)− (curl u, curl v) from (2.42), which includes the boundary conditions. This
sesquilinear form determines the spaceVk,0 (see (8.22)) and the regular decomposition
in Def. 9.2 ahead and its properties differentiate the present case of impedance bound-
ary conditions from the transparent boundary condition case. Compared to the case of
transparent boundary conditions, the present impedance boundary conditions case is
simpler in that fewer approximation quantities η

alg
j , η̃algj are required in the analysis.

In this section, we develop a stability and convergence theory for Maxwell’s equa-
tions with impedance boundary conditions, see Sect. 2.5. Recall the definition of the
sesquilinear form ((·, ·))k of (2.42) and of the norm ‖·‖k,+ in Definition 2.5.

We introduce the quantity δk : Ximp → R by δk (0) := 0 and forw ∈ Ximp\ {0} by

δk(w) := sup
vh∈Xh\{0}

(

2
|((w, vh))k |

‖w‖imp,k‖vh‖imp,k

)

, (9.1)

which will play the important role of a consistency term.
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Proposition 9.1 (quasi-optimality) Let E ∈ Ximp and Eh ∈ Xh satisfy

Ak(E− Eh, vh) = 0 ∀ vh ∈ Xh .

Assume that δk(eh) < 1 for eh := E − Eh. Then, eh satisfies, for all wh ∈ Xh, the
quasi-optimal error estimate

‖eh‖imp,k ≤ 1+ δk(eh)
1− δk(eh)

‖E− wh‖imp,k .

Proof The definitions of the sesquilinear forms Ak and ((·, ·))k imply

‖eh‖2imp,k
= ∣∣Ak(eh, eh)+ 2((eh, eh))k

∣

∣ . (9.2)

We employ Galerkin orthogonality for the first term in (9.2) to obtain for anywh ∈ Xh

‖eh‖2imp,k ≤
∣

∣Ak(eh,E− wh)+ 2((eh,E− wh))k
∣

∣

+δk (eh)
∥

∥eh
∥

∥

imp,k ‖Eh − wh‖imp,k
︸ ︷︷ ︸

≤‖eh‖imp,k+‖E−wh‖imp,k

.

We write Ak in the form (2.43) so that

(1− δk(eh)) ‖eh‖2imp,k ≤
∣

∣(curl eh, curl (E− wh))+ ((eh,E− wh))k
∣

∣

+ δk(eh) ‖eh‖imp,k ‖E− wh‖imp,k . (9.3)

The sesquilinear form ((·, ·))k is continuous, and we have

∣

∣((u, v))k
∣

∣ ≤ ‖u‖k,+ ‖v‖k,+ ∀u, v ∈ Ximp. (9.4)

Hence,

(1− δk(eh)) ‖eh‖2imp,k ≤ ‖eh‖imp,k ‖E− wh‖imp,k

+ δk(eh) ‖eh‖imp,k ‖E− wh‖imp,k ,

and the assertion follows. ��

9.1 Splitting of the Consistency Term

We introduce continuous and discrete Helmholtz decompositions that are adapted to
the problem under consideration.

Definition 9.2 On v ∈ Ximp the Helmholtz splittings

v = Πcurl
k v +Π∇

k v, (9.5a)
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v = Πcurl
k,h v +Π∇

k,hv (9.5b)

are given via operators Π∇
k , Πcurl

k and their discrete counterparts Π∇
k,h , Πcurl

k,h by

seeking Π∇
k v ∈ ∇H1

imp(Ω) and Π∇
k,hv ∈ ∇Sh such that

((

Π∇
k v,∇ψ

))

k
= ((v,∇ψ))k ∀ψ ∈ H1

imp(Ω), (9.6a)
((

Π∇
k,hv,∇ψ

))

k
= ((v,∇ψ))k ∀ψ ∈ Sh . (9.6b)

The operators Πcurl
k v, Πcurl

k,h v are then given via the relations (9.5).

It is easy to see (cf. (2.45)) that

((

∇ψ,Π∇−kv
))

k
= ((∇ψ, v))k ∀ψ ∈ H1

imp(Ω), (9.7a)
((

∇ψ,Π∇−k,hv
))

k
= ((∇ψ, v))k ∀ψ ∈ Sh . (9.7b)

Solvability of these equations follows trivially from the Lax-Milgram lemma as
can be seen from the following lemma.

Lemma 9.3 Problems (9.6) have unique solutions, which satisfy

∥

∥Π∇
k v
∥

∥

imp,k+
∥

∥Πcurl
k v

∥

∥

imp,k ≤ C
∥

∥v
∥

∥

imp,k,
∥

∥Π∇
k,hv

∥

∥

imp,k +
∥

∥Πcurl
k,h v

∥

∥

imp,k ≤ C
∥

∥v
∥

∥

imp,k .

Proof We first consider the continuous problem (9.6a). Taking σ = exp
(

(sign k) i π
4

)

we obtain coercivity as in the proof of Theorem 4.3 (i) via

Re ((∇ψ, σ∇ψ))k = 2−1/2
[

k2 (∇ψ,∇ψ)+ |k| (∇Γ ψ,∇Γ ψ)L2(Γ )

]

= 2−1/2‖∇ψ‖2imp,k .

The continuity follows from (9.4):

∣

∣((∇ϕ,∇ψ))k
∣

∣ ≤ ‖∇ϕ‖k,+ ‖∇ψ‖k,+ = ‖∇ϕ‖imp,k ‖∇ψ‖imp,k . (9.8)

This implies existence, uniqueness, and the a priori estimate

∥

∥Π∇
k v
∥

∥

imp,k ≤
√
2 ‖v‖imp,k .

The estimate ofΠcurl
k v follows by a triangle inequality. Since the coercivity and conti-

nuity estimates are inherited by the finite dimensional subspace ∇Sh , well-posedness
also follows on the discrete level. The estimates for the other operators followverbatim.

��
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The principal splitting of the consistency term δk in (9.1) is introduced next. We
write

((eh, vh))k

=
((

eh,
(

Πcurl−k,h −Πcurl−k
)

vh
))

k
︸ ︷︷ ︸

=:T1

+
((

eh,Πcurl−k vh
))

k
︸ ︷︷ ︸

=:T2

+
((

eh,Π∇−k,hvh
))

k
︸ ︷︷ ︸

=:T3

. (9.9)

Galerkin orthogonality implies
((

eh,Π∇−k,hvh
))

k
= 0, i.e., T3 = 0.

9.2 Consistency Analysis: The Term T1 in (9.9)

The continuity of the sesquilinear form ((·, ·))k (cf. (9.4)) implies

|T1| ≤ ‖eh‖k,+
∥

∥

(

Πcurl−k,h −Πcurl−k
)

vh
∥

∥

k,+. (9.10)

The definition of the discrete and continuous Helmholtz decomposition applied to
a discrete function vh leads to (cf. Def. 9.2, (9.7))

((

∇ψh,
(

Πcurl−k,h −Πcurl−k
)

vh
))

k
= 0 ∀ψh ∈ Sh . (9.11)

We use (9.5) to get curlΠcurl−k = curlΠcurl−k,h = curl on Xh and thus

curl
(

Πcurl−k,hvh −Π E
h Πcurl−k vh

)

Lem. 8.8(ii)= curl
(

Πcurl−k,hvh
)−Π F

h curl
(

Πcurl−k vh
) = curl vh −Π F

h curl vh
Lem. 8.8(ii)= curl vh − curlΠ E

h vh
Lem. 8.8(i)= curl (vh − vh) = 0. (9.12)

By the exact sequence property (8.8), the observation (9.12) implies that Πcurl−k,hvh −
Π E

h Πcurl−k vh = ∇ψh for some ψh ∈ Sh and therefore

(

Πcurl−k,h −Πcurl−k
)

vh = ∇ψh +
(

(Π E
h − I )Πcurl−k

)

vh . (9.13)

For the second factor in (9.10) we get by the Galerkin orthogonality (9.11) and
(9.13)

∥

∥

∥

(

Πcurl−k,h −Πcurl−k
)

vh
∥

∥

∥

2

k,+
= Re

((

(

Π E
h − I )Πcurl−k vh, (Πcurl−k,h −Πcurl−k

)

vh
))

k

+ (sign k) Im
((

(

Π E
h − I

)

Πcurl−k vh,
(

Πcurl−k,h −Πcurl−k
)

vh
))

k

≤ 2
∥

∥

(

Π E
h − I

)

Πcurl−k vh
∥

∥

k,+
∥

∥

(

Πcurl−k,h −Πcurl−k
)

vh
∥

∥

k,+
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so that

∥

∥

(

Πcurl−k,h −Πcurl−k
)

vh
∥

∥

k,+ ≤ 2
∥

∥

(

Π E
h − I

)

Πcurl−k vh
∥

∥

k,+.

This leads to the estimate of T1

|T1| ≤ 2 ‖eh‖k,+
∥

∥

(

I −Π E
h

)

Πcurl−k vh
∥

∥

k,+.

We set9

η
alg
6 := η

alg
6

(

Xh,Π
E
h

) := sup
w∈V−k,0\{0} :
curlw∈curlXh

∥

∥w −Π E
h w
∥

∥

k,+
‖w‖H1(Ω)

(9.14)

and obtain

|T1| ≤ 2‖eh‖k,+η
alg
6

∥

∥Πcurl−k vh
∥

∥

H1(Ω)
≤ 2C ‖eh‖k,+ η

alg
6

∥

∥Πcurl−k vh
∥

∥

imp,k

≤ C̃ ‖eh‖k,+ η
alg
6 ‖vh‖imp,k . (9.15)

9.2.1 hp-Analysis of T1

In [39, (4.72)] it was proved that for our choice Π E
h := Π

curl,c
p with Π

curl,c
p as in [36],

[39, §8] (see Lem. 8.8), one has

sup
w∈V−k,0\{0} :
curlw∈curlXh

|k|∥∥w −Π E
h w
∥

∥

‖w‖H1(Ω)

≤ C
|k| h
p

. (9.16)

For the boundary term in the norm ‖ · ‖k,+ we study the approximation properties
of the operator Π

curl,c
p of [36] on the boundary of the reference tetrahedron ̂K more

carefully.

Lemma 9.4 Let ̂Πcurl,3d
p be the operator introduced in [36]. For all u ∈ H1(̂K ) with

curl u ∈ (Pp(̂K ))3, there holds with the tangential component operator ΠT ,∂ ̂K

∥

∥ΠT ,∂ ̂K

(

u− ̂Πcurl,3d
p u

)∥

∥

L2(∂ ̂K )
≤ Cp−1/2 ‖u‖H1(̂K ) .

Proof We follow the proof of [36, Lem. 6.15] and employ the notation used there.
From [36, proof of Lem. 6.15] and [36, (6.42)], we can decompose u = ∇ϕ+ v with

‖ϕ‖H2(̂K ) + ‖v‖H1(̂K ) ≤ C‖u‖H1(̂K ). (9.17)

9 Our choice of notation is motivated by the appearance of similar approximation quantities in the com-
panion paper [39] (for transparent boundary conditions), where various measures of approximability η

exp
j ,

j ∈ {1, 3, 4, 5, 7}, and η
alg
j , j ∈ {2, 6}, were introduced and used in the convergence analysis. Here, only

the quantities η
alg
6 in (9.14) and η̃

alg
2 in (9.24) are needed.
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Since curl u ∈ (Pp(̂K ))3 the decomposition is such that (cf. [36, Proof of Lemma
6.15]) we have v − ̂Πcurl,3d

p v = 0. We conclude

u− ̂Πcurl,3d
p u = v +∇ϕ − ̂Πcurl,3d

p (v +∇ϕ) = ∇(ϕ − ̂Πgrad,3d
p+1 ϕ)

with ̂Πgrad,3d
p+1 as in [36]. The construction of the projection-based interpolation opera-

tors ̂Πcurl,3d
p , ̂Πgrad,3d

p is such that facewise, they reduce to corresponding2Doperators.
That is, for each face f ⊂ ∂ ̂K we have

ΠT ,∂ ̂K

(

u− ̂Πcurl,3d
p u

)| f = ΠT ,∂ ̂K

(∇(ϕ − ̂Πgrad,3d
p+1 ϕ

))| f = ∇ f
(

I− ̂Πgrad,2d
p+1

)(

ϕ| f
)

.

We apply [36, Thm. 2.13] to obtain

∥

∥ΠT ,∂ ̂K

(

u− ̂Πcurl,3d
p u

)∥

∥

L2( f ) =
∥

∥∇ f
(

I− ̂Πgrad,2d
p+1

)

ϕ| f
)∥

∥

L2( f ) ≤ Cp−1/2‖ϕ‖H3/2( f )

≤ Cp−1/2‖ϕ‖H2(̂K )

(9.17)≤ Cp−1/2‖u‖H1(̂K ).

��
For the boundary part of ‖w‖imp,k of a w ∈ V−k,0 with curlw ∈ curlXh , we get,

by applying a scaling argument to Lemma 9.4:

|k|∥∥ΠT
(

w −Π E
h w
)∥

∥

2
L2(Γ )

= |k|
∑

K∈Th
∣

∣K∩Γ
∣

∣>0

∥

∥ΠT
(

w −Π E
h w
)∥

∥

2
L2(K∩Γ )

≤ C
|k|h
p

∑

K∈Th
∣

∣K∩Γ
∣

∣>0

‖w‖2H1(K )
≤ C

|k|h
p
‖w‖2H1(Ω)

.

(9.18)

The combination of (9.16) with (9.18) leads to

η
alg
6 ≤ C

( |k|h
p

)1/2
(

1+
( |k| h

p

)1/2
)

. (9.19)

9.3 Consistency Analysis: The Term T2 in (9.9)

Recall the definition of T2 = ((eh, v0))k with v0 := Πcurl−k vh = (I−Π∇−k)vh . The
function v0 belongs to Ximp and by combining (9.5a) and (9.6a) we find that v0
belongs to V−k,0. Proposition 8.7 implies v0 ∈ H1(Ω) and

‖v0‖H1(Ω) ≤ |k|‖v0‖H1(Ω),k ≤ C‖v0‖H(curl,Ω),k ≤ C‖v0‖imp,k . (9.20)
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The characterization (8.23) of V−k,0 implies

divΓ (v0)T = i k〈v0,n〉. (9.21)

To estimate the term T2, we consider the dual problem: Given v0 ∈ V−k,0, find
z ∈ Ximp such that

Ak(w, z) = ((w, v0))k ∀w ∈ Ximp.

The operatorN−k : V−k,0 → Ximp is defined byN−kv0 := z. The strong formulation
is given by

LΩ,−kz = k2v0 in Ω, BΓ ,−kz = − i k (v0)T on Γ . (9.22)

Hence, N−kv0 = SMW
Ω,−k

(

k2v0,− i k (v0)T
)

. By Galerkin orthogonality satisfied by
eh , we have for any wh ∈ Xh

∣

∣((eh, v0))k
∣

∣ = |Ak(eh,N−kv0 − wh)| ≤ ‖eh‖imp,k ‖N−kv0 − wh‖imp,k .

(9.23)

We set

η̃
alg
2 (Xh) := sup

v0∈V−k,0\{0}
inf

wh∈Xh

‖N−kv0 − wh‖imp,k

‖v0‖imp,k
(9.24)

so that

|T2| =
∣

∣((eh, v0))k
∣

∣ ≤ η̃
alg
2 (Xh) ‖eh‖imp,k‖v0‖imp,k . (9.25)

9.3.1 hp-Analysis of T2

Next, we gauge the approximation property η̃
alg
2 (Xh). We employ the splitting given

by Theorem 7.3, viz.,

N−kv0 = z = zH2 + zA + k−2∇ϕf − i k−1∇ϕg. (9.26)

Note that these five functions z, zH2 , zA, ϕf , ϕg depend on v0 but we suppress this in
the notation. From Theorem 7.3 with m = m′ = 1 we have

‖ϕf‖H2(Ω) ≤ C |k|2 ‖ div v0‖L2(Ω)
div v0=0= 0,

‖ϕg‖H2(Ω) ≤ C |k|‖ divΓ (v0)T ‖H−1/2(Γ ) ≤ C |k|‖(v0)T ‖H1/2(Γ )

(9.20)≤ C |k|‖v0‖imp,k,

‖zH2‖H2(Ω) ≤ |k|2 ‖zH2‖H2(Ω),k

(7.10)≤ C |k|−1
(

‖k2v0‖H1(Ω) + |k|‖k(v0)T ‖H1/2(Γ )

)

(9.20)≤ C |k|‖v0‖imp,k,
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zA ∈ A(CCz, B,Ω),

Cz = (1+ Cstab)|k|θ−1
(‖k2v0‖ + |k|‖k(v0)T ‖H−1/2(Γ )

)

i k(v0)T=divΓ v0,(9.20)≤ C |k|θ‖v0‖imp,k . (9.27)

We note that ϕf = 0. For the approximation of ∇ϕg, we use the elementwise defined
operator Π

∇,s
p of Corollary 8.4 with m = 2 there to get

∥

∥k−1
(∇ϕg − ∇Π∇,s

p ϕg
)∥

∥

imp,k ≤ C |k|−1
(

|k| h
p
+ |k|1/2

(

h

p

)1/2
)

‖ϕg‖H2(Ω)

≤ C

( |k|h
p

)1/2

‖v0‖imp,k . (9.28)

For the approximation of zH2 , we employ the elementwise defined operator Π
curl,s
p :

H2(Ω) → Xh as in Lemma 8.5. By summing over all elements the estimates of
Lemma 8.5 (i) we get

‖zH2 −Πcurl,s
p zH2‖2H(curl,Ω),k =

∑

K∈Th
‖zH2 −Πcurl,s

p zH2‖2H(curl,K ),k

≤ C
∑

K∈Th

h2K
p2

(

1+ |k|2 h2K
p2

)

‖zH2‖2H2(K )
≤ C

h2

p2

(

1+ |k|2 h2
p2

)

‖zH2‖2H2(Ω)

≤ C
|k|2 h2
p2

(

1+ |k|2 h2
p2

)

‖v0‖2imp,k . (9.29)

For the boundary part of the ‖·‖imp,k norm we proceed similarly using Lemma 8.5(i)
to arrive at

|k|1/2‖zH2 −Πcurl,s
p zH2‖L2(Γ ) ≤C |k|1/2

(

h

p

)3/2

‖zH2‖H2(Ω) ≤C

( |k|h
p

)3/2

‖v0‖imp,k .

In summary, we have proved

‖zH2 −Πcurl,s
p zH2‖imp,k ≤ C

|k|h
p

(

1+
(

h |k|
p

)1/2

+ h |k|
p

)

‖v0‖imp,k .

(9.30)

Next, for the analytic part zA we get from Lemma 8.5(iii) in view of (9.27) under the
(mild) resolution condition

h + |k| h
p

≤ ˜C (9.31)
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that

‖zA −Πcurl,s
p zA‖imp,k ≤ CCz |k|

((

h

h + σ

)p

+
( |k|h

σ p

)p)

≤ C ‖v0‖imp,k |k|θ+1
((

h

h + σ

)p

+
( |k|h

σ p

)p)

. (9.32)

This derivation is summarized in the following lemma.

Lemma 9.5 Assume hypothesis (3.2) and let Ω be a bounded Lipschitz domain with
simply connected, analytic boundary. Let the mesh satisfy Assumption 8.1. Let c2,
ε > 0 be given. Then there exists c1 > 0 (depending only on the constants of (3.2),
Ω , the parameters of Assumption 8.1, and c2, ε) such that for h, k, p satisfying the
resolution condition

|k| h
p

≤ c1 and p ≥ max {1, c2 ln |k|} (9.33)

there holds

η̃
alg
2 (Xh) ≤ ε. (9.34)

Proof We combine (9.28), (9.30), and (9.32) with the resolution condition to arrive at

η̃
alg
2 (Xh) ≤ C

(

(

h |k|
p

)1/2

+ |k|θ+1
[(

h

σ + h

)p

+
( |k| h

σ p

)p]
)

. (9.35)

Clearly, by selecting c1 sufficiently small, we may ensure that the first term in (9.35),
(|k|h/p)1/2, is smaller than ε/3. The second term in (9.35), |k|θ+1(h/(σ + h))p, can
be made smaller than ε/3 for sufficiently small c1 by appealing to [39, Lem. 8.7]. For
the last term in (9.35), we may assume that c1 < σ and then estimate

|k|θ+1
( |k|h

σ p

)p

≤ |k|θ+1(c1/σ)p ≤ |k|θ+1(c1/σ)max{1,c2 ln |k|}

= min{|k|θ+1(c1/σ), |k|θ+1+c2 ln(c1/σ)}.

This expression can be made smaller than ε/3 uniformly in |k| ∈ [1,∞) by selecting
c1 sufficiently small: the first term in the minimum tends to 0 as c1 → 0 uniformly in
|k| ∈ [1, 2] and the second term in the minimum tends to zero as c1 → 0 uniformly
in |k| ≥ 2. ��

9.4 h-p-k-Explicit Stability and Convergence Estimates for Maxwell’s Equations

We begin with the estimate of the consistency term δk .
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Lemma 9.6 Let the assumptions in Lemma 9.5 hold. Let ε, c2 > 0 be given. Then,
one can choose a constant c1 > 0 sufficiently small such that the resolution condition
(9.33) implies

δk(eh) ≤ ε.

Proof We combine estimates (9.8), (9.9), (9.15), (9.19), (9.25) for v0 := Πcurl−k vh ,
Lemma 9.3, and (9.34) in a straightforward way to obtain

∣

∣((eh, vh))k
∣

∣ ≤ C
(

c1/21 + c1 + ε
) ‖eh‖imp,k ‖vh‖imp,k

and thus δk(eh) ≤ 2C(c1/21 + c1 + ε). We may assume that
√
c1 ≤ ε ≤ 1 so that

δk(eh) ≤ 6Cε. Since the constant C > 0 does not depend on ε, the result follows by
adjusting constants. ��

This estimate allows us to formulate the quasi-optimality of the hp-FEM Galerkin
discretization and to show h-p-k-explicit convergence rates under suitable regularity
assumptions.

Theorem 9.7 Let Ω ⊂ R
3 be a bounded Lipschitz domain with a simply connected,

analytic boundary. Let the stability Assumption (3.2) be satisfied. Let the finite element
mesh with mesh size h satisfy Assumption 8.1, and let Xh be defined by as the space
of Nédélec-type-I elements of degree p (cf. (8.7)).

Then, for any j, gT satisfying (2.38), the variational form of Maxwell’s equations
(2.39) has a unique solution E.

For any fixed c2 > 0 and η ∈ (0, 1) one can select c1 > 0 (depending only on
Ω and the constants of (3.2) and Assumption 8.1) such that the resolution condition
(9.33) implies that the discrete problem (8.9) has a unique solution Eh, which satisfies
the quasi-optimal error estimate

‖E− Eh‖imp,k ≤ 1+ η

1− η
inf

wh∈Xh

‖E− wh‖imp,k . (9.36)

Proof Existence anduniqueness of the continuous variationalMaxwell problem follow
from Proposition 3.1. From Lemma 9.6 we know that c1 can be chosen sufficiently
small such that δ(eh) < η. As in the proof of Theorem [39, Thm. 4.15] (which goes
back to [27, Thm. 3.9]) existence, uniqueness, and quasi-optimality follows. ��

The quasi-optimality result (9.36) leads to quantitative, k-explicit error estimates
if a k-explicit regularity of the solution E is available. In the following corollary, we
draw on the regularity assertions of Theorem 7.3. We point out, however, that due
to our relying on the operator Π

curl,s
p and the regularity assertion Theorem 7.3, the

regularity requirements on the data j, gT are not the weakest possible ones.

Corollary 9.8 Let the hypotheses of Theorem 9.7 be valid. Given η ∈ (0, 1) and c2 > 0
let c1 be as in Theorem 9.7. Then, under the scale resolution condition (9.33) the
following holds: Let m, m′ ∈ N0 and (j, gT ) ∈ Hm(Ω) × Hm−1/2(Γ ) together with
(div j, divΓ gT ) ∈ Hm′(Ω)×Hm′−1/2(Γ ). If p ≥ max(m,m′), then
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‖E− Eh‖imp,k ≤ C
1+ η

1− η

{

Cj,g,m

(

h

p

)m

+ Cj,g,m′ |k|−3/2
(

h

p

)m′+1/2

+ |k|Cj,g,A

((

h

h + σ

)p

+
( |k|h

σ p

)p)}

, (9.37)

where

Cj,g,m := |k|−1‖j‖Hm (Ω) + ‖gT ‖Hm−1/2(Γ ), (9.38)

Cj,g,m′ := ‖ div j‖Hm′ (Ω)
+ |k|‖ divΓ gT ‖Hm′−1/2(Γ )

, (9.39)

Cj,g,A := |k|θ−1 (‖j‖L2(Ω) + |k|‖gT ‖H−1/2(Γ )

)

. (9.40)

Proof For the error estimate (9.37), we employ the solution decomposition provided
by Theorem 7.3:

E = EH2 + EA + k−2∇ϕj + i k−1∇ϕg

with

‖EH2‖Hm+1(Ω) ≤ CCj,g,m,

‖ϕj‖Hm′+2(Ω)
+ |k|‖ϕg‖Hm′+2(Ω)

≤ CCj,g,m′ ,

EA ∈ A(CCj,g,A, B,Ω)

for k-independent constantsC , B.With the operatorsΠ∇,p
p andΠ

curl,s
p ofCorollary 8.4

and Lemma 8.5 we get

‖EH2 −Πcurl,s
p EH2‖imp,k≤CCj,g,m

[

(

h

p

)m

+ |k|
(

h

p

)m+1
+ |k|1/2

(

h

p

)m+1/2]

≤ CCj,g,m

(

h

p

)m

,

|k|−2 ‖∇ϕj − ∇Π∇,s
p ϕj‖imp,k ≤CCj,g,m′ |k|−2

[

|k|
(

h

p

)m′+1
+ |k|1/2

(

h

p

)m′+1/2]

≤ CCj,g,m′ |k|−2 |k|1/2
(

h

p

)m′+1/2
,

|k|−1‖∇ϕg −∇Π∇,s
p ϕg‖imp,k ≤ CCj,g,m′ |k|−2 |k|1/2

(

h

p

)m′+1/2
,

‖EA −Πcurl,s
p EA‖imp,k ≤ C |k|Cj,g,A

((

h

h + σ

)p

+
( |k|h

σ p

)p)

.

��
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Fig. 1 Ω = (−1, 1)3, smooth solution; left to right: p ∈ {1, 2, 3}

Fig. 2 Ω = (−1, 1)3 \ [−1/2, 1/2]3, smooth solution; left to right: p ∈ {1, 2, 3}

10 Numerical Results

We illustrate the theoretical findings of Theorem 9.7 and Corollary 9.8 by two numer-
ical experiments. All computations are performed with NGSolve, [47, 48] using
Nédélec type II elements, i.e., full polynomial spaces.

Remark 10.1 While the analysis of the present paper is peformed in detail for Nédélec
type I elements, it can be extended to Nédélec type II elements. Key is the observation
that commuting diagram operators ̂Π grad,c

p+1 and ̂Πcurl,c
p analogous to the ones used in

Sects. 8 and 9 for type I elements also exist for type II elements. This is discussed in
[46, Sec. 4.8]. ��

Weshow inFigs. 1 and 2 the relative error in the norm ‖ curl ·‖L2(Ω)+|k| ‖·‖L2(Ω) ∼
‖ · ‖H(curl,Ω),|k| versus the number of degrees of freedom per wavelength

Nλ = 2π DOF1/3

|k||Ω|1/3 ,

where DOF stands for the dimension of the ansatz space.

Example 10.2 We consider Ω = (−1, 1)3 and impose the right-hand side and
the impedance boundary conditions in such a way that the exact solution is
E (x) = curl sin(kx1)(1, 1, 1)�. Figure 1 shows the performance for the choices
k ∈ {10, 20, 30, 40} and p ∈ {1, 2, 3} as the mesh is refined quasi-uniformly. The
final problem sizes were DOF = 18, 609, 324 for p = 1, DOF = 9, 017, 452 for
p = 2, and DOF = 23, 052, 940 for p = 3.

We observe the expected asymptotic O(h p) convergence. We also observe that the
onset of asymptotic quasi-optimal convergence is reached for smaller values of Nλ for
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higher order methods. This is expected in view of Theorem 9.7, although the present
setting of a piecewise analytic geometry is not covered by Theorem 9.7. ��

Example 10.3 We consider Ω = (−1, 1)3\[−1/2, 1/2]3 and Maxwell’s equations
with impedance boundary conditions on ∂(−1, 1)3 and perfectly conducting bound-
ary conditions on the inner boundary ∂(−1/2, 1/2)3. We prescribe an exact solution
E(x) = k cos(kx1)(x21 − 1/4)(x22 − 1/4)(x23 − 1/4)(0,−1, 1)�. Figure 2 shows the
performance for the choices k ∈ {20, 40, 80} and p ∈ {1, 2, 3} as the mesh is refined
quasi-uniformly. The final problem sizes were DOF = 43, 598, 374 for p = 1,
DOF = 168, 035, 046 for p = 2, and DOF = 54, 063, 558 for p = 3.

We observe the expected asymptotic O(h p) convergence. We also observe that the
onset of asymptotic quasi-optimal convergence is reached for smaller values of Nλ for
higher order methods. ��
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