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A B S T R A C T

We consider the discretization of the 1𝑑-integral Dirichlet fractional Laplacian by ℎ𝑝-finite elements. We present quadrature schemes to set up the 
stiffness matrix and load vector that preserve the exponential convergence of ℎ𝑝-FEM on geometric meshes. The schemes are based on Gauss-Jacobi 
and Gauss-Legendre rules. We show that taking a number of quadrature points slightly exceeding the polynomial degree is enough to preserve 
root exponential convergence. The total number of algebraic operations to set up the system is (𝑁5∕2), where 𝑁 is the problem size. Numerical 
examples illustrate the analysis. We also extend our analysis to the fractional Laplacian in higher dimensions for ℎ𝑝-finite element spaces based on 
shape regular meshes.

1. Introduction

Fractional differential equations have become an important modelling tool, which sparked significant research in analysis and 
design and analysis of numerical methods, see, e.g., [8] and, for numerical methods, [4,6,25,14,20,21,36] and references therein.

We consider the fractional differential equation

(−Δ)𝑠𝑢 = 𝑓 in Ω ∶= (−1,1) ⊂ℝ, (1.1a)

𝑢 = 0 in Ω𝑐 ∶=ℝ ⧵Ω, (1.1b)

where 𝑠 ∈ (0, 1), and 𝑓 is analytic in Ω. Here, the operator (−Δ)𝑠 is the Dirichlet integral fractional Laplacian, defined in (2.1)

below. Among the discretization techniques, methods like the ℎ𝑝-finite element method (FEM) stand out as they achieve exponential 
convergence, [5,17], so that significantly fewer degrees of freedom are required to achieve the same accuracy compared to fixed 
order methods such as the classical ℎ-FEM. This is particularly interesting for non-local problems such as fractional PDEs since there 
the stiffness matrices are fully populated with corresponding high memory requirements and high complexity to set up the matrices. 
In fact, [5] considers ℎ𝑝-FEM approximations on suitably designed geometric meshes in one space dimension and shows, for the 
ℎ𝑝-FEM approximation 𝑢𝑁 to the solution 𝑢 of (1.1), the energy-norm error estimate

‖𝑢− 𝑢𝑁‖�̃�𝑠(Ω) ≤ 𝐶 exp(−𝑏
√
𝑁), (1.2)

where 𝑏, 𝐶 > 0 are constants independent of the problem size 𝑁 . Such exponential convergence results generalize to higher dimen-

sions, e.g., in two space dimensions [17] asserts a similar convergence estimate where the square root in the exponent is replaced by 
𝑁1∕4.

The exponential convergence in [5,17] is asserted ignoring variational crimes, in particular, it is shown under the assumption that 
𝑢𝑁 is the exact ℎ𝑝-finite element Galerkin approximation to 𝑢. However, a practical realization of the Galerkin method (2.2) requires 
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the evaluation of singular integrals by numerical quadrature. In the present work we develop and analyze quadrature schemes that 
preserve the exponential convergence (1.2). The quadratures are based on Gauss-Legendre and Gauss-Jacobi rules, and the analysis is 
performed in the framework of the First Strang Lemma. The key observation is that the hyper-singular integrand can be transformed 
such that singularities are aligned with coordinate axes, which allows for efficient treatment with Gauss-Jacobi rules.

The issue of evaluating singular integrals has already appeared in the context of boundary element methods (BEMs), [32]. For the 
kernels of BEM-operators arising from second order elliptic boundary value problems, regularizing transformations for the singular 
integrals have been devised that fully remove the singularity so that standard quadrature techniques can be brought to bear and a 
full quadrature error analysis is available, [32, Chap. 5]. For meshes with certain structure it is even possible to evaluate the stiffness 
matrices of ℎ𝑝-BEM explicitly, [27,19].

Generalizing the quadrature techniques described in [32, Chap. 5] the works [12,10,9,13] present and analyze regularizing 
transformations for a class of integrands that includes products of analytic/Gevrey-regular functions and singular functions; com-

putationally, an essential point of these transformations is that they lead to the use of products of Gauss-Legendre and ℎ𝑝-quadrature 
or Gauss-Jacobi quadrature. Using similar transformations (in 1𝑑) and building on these works (for 𝑑 > 1), our analysis considers the 
specific case of ℎ𝑝-FEM for the fractional Laplacian, explicitly works out the dependence on the polynomial degree 𝑝 of the ansatz 
space, and asserts exponential convergence of the fully discrete method. The work to set up the stiffness matrix is algebraic in the 
problem size.

Implementations of the spectral fractional Laplacian have been proposed in the literature. Low order (for 𝑑 ≥ 1) Galerkin methods 
include [2,3,16] and typically exploit that a specific choice of basis is made in contrast to the present quadrature-based approach. 
Especially for 1𝑑 fractional differential equations, spectral and spectral element methods are available in the literature, see, e.g., 
[21,26,33,35,36,25,30,11] and references therein. The 1𝑑 quadrature techniques employed in the present work on shape regular 
meshes are closely related to those presented independently in [30]. Compared to these works, an important novel aspect of the 
present work is the full quadrature error analysis that rigorously establishes that taking 𝑛 ≥ 𝑝 + 1 quadrature points (𝑝 > 0 denoting 
the employed polynomial degree) is sufficient to retain the exponential convergence of ℎ𝑝-FEM.

In the present article, we consider the 1𝑑 case in great detail to make key concepts appear clearly. Extensions to 𝑑 > 1 are possible, 
but come with additional (technical) difficulties. We present an analysis for 𝑑 > 1 for shape regular meshes based on the regularizing 
transformations of [10] in Section 6. We hasten to add that exponential convergence (both in terms of error versus number of degrees 
of freedom and error versus computational work) of ℎ𝑝-FEM in 𝑑 ≥ 2 requires anisotropic elements with large aspect ratio, [17]. A 
quadrature error analysis for meshes including anisotropic elements is the topic of a forthcoming work.

The present article is structured as follows: In Section 2, we introduce our model problem and formulate the main result, exponen-

tial convergence of ℎ𝑝-FEM in the presence of quadrature, in Theorem 2.4. Section 3 specifies the Gaussian quadrature rules and the 
resulting approximation of the bilinear and linear forms in the weak formulation of the model problem. Section 3.1 shows stability of 
the method under quadrature. Section 4 provides the proofs of our main results using the First Strang Lemma, while the consistency 
analysis is postponed to Section 5. Section 6 extends the 1𝑑-analysis to higher dimensions for shape regular meshes based on the 
quadrature techniques developed in [12,10].

Finally, Section 7 provides numerical examples illustrating the performance of the quadrature scheme.

2. Main results

For 𝑠 ∈ (0, 1), we consider the integral fractional Laplacian defined for univariate functions 𝑢 pointwise as the principal value 
singular integral

(−Δ)𝑠𝑢(𝑥) ∶= 𝐶(𝑠) P.V.∫
ℝ

𝑢(𝑥) − 𝑢(𝑦)|𝑥− 𝑦|1+2𝑠 𝑑𝑦 with 𝐶(𝑠) ∶= −22𝑠
Γ(𝑠+ 1∕2)
𝜋1∕2Γ(−𝑠)

, (2.1)

where Γ(⋅) denotes the Gamma function.

Appropriate function spaces for fractional differential equations are fractional Sobolev spaces, defined for 𝑡 ∈ (0, 1) and any open 
set 𝜔 ⊂ℝ𝑑 by means of the Aronstein-Slobodeckij seminorm

|𝑣|2
𝐻𝑡(𝜔) = ∫

𝜔
∫
𝜔

|𝑣(𝑥) − 𝑣(𝑦)|2|𝑥− 𝑦|𝑑+2𝑡 𝑑𝑦𝑑𝑥, ‖𝑣‖2
𝐻𝑡(𝜔) = ‖𝑣‖2

𝐿2(𝜔) + |𝑣|2
𝐻𝑡(𝜔).

In order to incorporate the exterior Dirichlet condition, we define 𝑟(𝑥) ∶= dist(𝑥, 𝜕Ω) and introduce the space �̃�𝑡(Ω) ∶={
𝑢 ∈𝐻𝑡(ℝ𝑑 ) ∶ 𝑢 ≡ 0 on ℝ𝑑∖Ω

}
with norm

‖𝑣‖2
�̃�𝑡(Ω)

∶= ‖𝑣‖2
𝐻𝑡(Ω) + ‖𝑣∕𝑟𝑡‖2

𝐿2(Ω).

With the exception of Section 6 the domain Ω = (−1, 1) always denotes the bounded open interval from our model problem (1.1); in 
Section 6, we will consider polyhedral Ω ⊂ℝ𝑑 . We will use the fact that the norm ‖ ⋅‖�̃�𝑠(Ω) and the seminorm | ⋅ |𝐻𝑠(ℝ) are equivalent 
on �̃�𝑠(Ω), [28]. The weak form of the fractional PDE (1.1) reads: find 𝑢 ∈ �̃�𝑠(Ω) such that

𝑎(𝑢, 𝑣) ∶= 𝐶(𝑠)
2 ∫

ℝ
∫
ℝ

(𝑢(𝑥) − 𝑢(𝑦))(𝑣(𝑥) − 𝑣(𝑦))|𝑥− 𝑦|1+2𝑠 𝑑𝑦𝑑𝑥 = ⟨𝑓, 𝑣⟩𝐿2(Ω) =∶ 𝑙(𝑣) ∀𝑣 ∈ �̃�𝑠(Ω). (2.2)
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Since 𝑎(⋅, ⋅) ∶ �̃�𝑠(Ω) × �̃�𝑠(Ω) →ℝ is continuous and coercive on �̃�𝑠(Ω), (2.2) is uniquely solvable by the Lax-Milgram Lemma, see 
[1, Sec. 2.1].

For the discretization of the weak formulation, we employ piecewise polynomials on shape regular meshes.

Definition 2.1 (Shape regular meshes and spline spaces). For an interval  ⊂ℝ, we denote its length by ℎ ∶= diam(). For a bounded 
interval Ω = (𝑥0, 𝑥𝑀 ), let the points 𝑥0 < 𝑥1 <⋯ < 𝑥𝑀 determine the mesh 𝛾 = {𝑇𝑖 ∶= (𝑥𝑖−1, 𝑥𝑖)∶ 𝑖 = 1, … , 𝑀}. The mesh 𝛾 is said 
to be 𝛾 -shape regular, if

𝛾 ℎ𝑇𝑖 ≤ ℎ𝑇𝑗 for all 𝑇𝑖, 𝑇𝑗 ∈ 𝛾 with 𝑇𝑖 ∩ 𝑇𝑗 ≠ ∅. (2.3)

Based on 𝛾 , we define finite dimensional spline spaces by

𝑆𝑝,1(𝛾 ) ∶= {𝑢 ∈𝐻1(Ω) ∶ 𝑢|𝑇 ∈ 𝑝(𝑇 ) for all 𝑇 ∈ 𝛾},
𝑆𝑝,10 (𝛾 ) ∶= 𝑆𝑝,1(𝛾 ) ∩𝐻1

0 (Ω).

Here, 𝑝(𝑇 ) denotes the space of all polynomials of degree at most 𝑝 ∈ ℕ on 𝑇 . The standard basis for 𝑆𝑝,10 (𝛾 ) is given by

 =𝑙𝑖𝑛 ∪𝐿𝑒𝑔, (2.4)

where 𝑙𝑖𝑛 ∶= {𝜑𝑖 ∶ 𝑖 = 1, … , 𝑀 −1} are the hat functions associated with the interior nodes 𝑥𝑖, 𝑖 = 1, … , 𝑀 −1, and the higher order 
modes are collected in 𝐿𝑒𝑔 ∶= ∪𝑇∈𝛾𝑇 with element bubble functions from 𝑇 ∶= {𝜑𝑇 ,𝑖 ∶ 𝑖 = 2, … , 𝑝}. For an element 𝑇 = (𝑥𝓁 , 𝑥𝑟)
of length ℎ𝑇 = 𝑥𝑟 − 𝑥𝓁 , the element bubble functions are given by

𝜑𝑇 ,𝑖(𝑥) =

{∫ −1+2(𝑥−𝑥𝓁 )∕ℎ𝑇
−1 𝑃𝑖−1(𝑡) 𝑑𝑡 𝑥 ∈ 𝑇 ,
0 𝑥 ∈Ω ⧵ 𝑇 ,

(2.5)

where 𝑃𝑖 is the 𝑖-th Legendre polynomial.

The ℎ𝑝-FEM approximation 𝑢𝑁 is given by Galerkin discretization of (2.2): Find 𝑢𝑁 ∈ 𝑆𝑝,10 (𝛾 ) such that

𝑎(𝑢𝑁 , 𝑣𝑁 ) = 𝑙(𝑣𝑁 ) for all 𝑣𝑁 ∈ 𝑆𝑝,10 (𝛾 ). (2.6)

For a given basis  ∶= {𝜑1, … , 𝜑𝑁} of 𝑆𝑝,10 (𝛾 ), finding the solution 𝑢𝑁 ∶=
∑𝑁
𝑖=1 𝑥𝑖𝜑𝑖 is equivalent to solving the linear system

𝐴𝑥 = 𝑏, (2.7)

where 𝐴 ∈ℝ𝑁×𝑁 with 𝐴𝑖𝑗 = 𝑎(𝜑𝑗, 𝜑𝑖) and 𝑏 ∈ℝ𝑁 with 𝑏𝑖 ∶= ⟨𝑓,𝜑𝑖⟩𝐿2(Ω). Setting up the linear system requires evaluating the bilinear 
form 𝑎(⋅, ⋅) for all pairs of basis functions, which means calculating (singular) double integrals. Computing the linear form 𝑙(⋅) for all 
basis functions leads to a routine problem of calculating integrals involving 𝑓 .

Our main convergence results are formulated for a specific kind of shape regular meshes, so-called geometric meshes, defined in 
the following Definition 2.2. However, we emphasize that the analysis of the consistency errors of the bilinear and linear forms in 
Chapter 5 hold for arbitrary shape regular meshes.

Definition 2.2 (Geometric mesh  𝐿
𝑔𝑒𝑜,𝜎 and basis 𝑔𝑒𝑜 of the spline space 𝑆𝑝,10 ( 𝐿

𝑔𝑒𝑜,𝜎)). Given a grading factor 𝜎 ∈ (0, 1) and a number 
𝐿 ∈ℕ of layers, the geometric mesh  𝐿

𝑔𝑒𝑜,𝜎 = {𝑇𝑖 ∶ 𝑖 = 1, ..., 2𝐿 + 2} with 2𝐿 + 2 elements 𝑇𝑖 = (𝑥𝑔𝑒𝑜
𝑖−1, 𝑥

𝑔𝑒𝑜
𝑖 ) is defined by the nodes

𝑥𝑔𝑒𝑜0 ∶= −1, 𝑥𝑔𝑒𝑜𝑖 = −1 + 𝜎𝐿−𝑖+1 for 𝑖 = 1,… ,𝐿,

𝑥𝑔𝑒𝑜
𝑖+1 = 1 − 𝜎𝑖−𝐿 for 𝑖 =𝐿,… ,2𝐿, 𝑥𝑔𝑒𝑜2𝐿+2 ∶= 1.

We note that 𝑁 ∶= dim𝑆𝑝,10 ( 𝐿
𝑔𝑒𝑜,𝜎) ∼ 𝑝𝐿 and that  𝐿

𝑔𝑒𝑜,𝜎 is shape regular with 𝛾 = 𝜎. The basis 𝑔𝑒𝑜 for 𝑆𝑝,10 ( 𝐿
𝑔𝑒𝑜,𝜎) is taken as the 

basis of Definition 2.1 for the mesh  𝐿
𝑔𝑒𝑜,𝜎 .

In [5] the following exponential convergence result for the difference in the energy norm between the solution 𝑢 in (2.2) and its 
ℎ𝑝-FEM approximation 𝑢𝑁 from (2.6) on geometric meshes 𝛾 =  𝐿

𝑔𝑒𝑜,𝜎 is shown:

Proposition 2.3 ([5]). Let  𝐿
𝑔𝑒𝑜,𝜎 be a geometric mesh on the interval Ω = (−1, 1) with grading factor 𝜎 ∈ (0, 1) and 𝐿 layers of refinement 

towards the boundary points. Let the data 𝑓 be analytic in Ω. Let 𝑢𝑁 ∈ 𝑆𝑝,10 ( 𝐿
𝑔𝑒𝑜,𝜎) solve (2.6) with 𝛾 =  𝐿

𝑔𝑒𝑜,𝜎 and 𝑢 solve (2.2). Then, 
there are 𝑏, 𝐶 > 0 and for all 𝜀 > 0 there is 𝐶𝜀 > 0 such that for all 𝑝 and 𝐿 there holds

‖𝑢− 𝑢𝑁‖�̃�𝑠(Ω) ≤ 𝐶𝑒−𝑏𝑝 +𝐶𝜀𝜎(1∕2−𝜀)𝐿. (2.8)
326



B. Bahr, M. Faustmann and J.M. Melenk Computers and Mathematics with Applications 176 (2024) 324–348
The choice 𝐿 ∼ 𝑝 leads to convergence ‖𝑢 −𝑢𝑁‖�̃�𝑠(Ω) ≤ 𝐶 exp(−𝑏′
√
𝑁), where 𝑁 is the dimension of 𝑆𝑝,10 ( 𝐿

𝑔𝑒𝑜,𝜎) and 𝐶, 𝑏′ are constants 
independent of 𝑁 .

In practice, it is not possible to set up the linear system of equations corresponding to (2.6) exactly due to the presence of the kernel 
function |𝑥 −𝑦|−1−2𝑠. To implement the ℎ𝑝-FEM method, we therefore have to work with computable numerical approximations ̃𝑎𝑛(⋅, ⋅)
and ̃𝑙𝑛(⋅) of the bilinear form 𝑎(⋅, ⋅) and the right-hand side 𝑙(⋅), respectively. The fully discrete problem then reads: Find ̃𝑢𝑁,𝑛 ∈ 𝑆

𝑝,1
0 (𝛾 )

such that

𝑎𝑛(�̃�𝑁,𝑛, 𝑣𝑁 ) = �̃�𝑛(𝑣𝑁 ) for all 𝑣𝑁 ∈ 𝑆𝑝,10 (𝛾 ). (2.9)

In Section 3 below, we specify the approximations 𝑎𝑛(⋅, ⋅) and ̃𝑙𝑛(⋅) based on (weighted) Gaussian quadrature rules with 𝑛 points. Our 
main result formulated in the following states that the exponential convergence rate of �̃�𝑁 to the solution 𝑢 is preserved.

Theorem 2.4 (Exponential convergence under quadrature). Let  𝐿
𝑔𝑒𝑜,𝜎 be a geometric mesh on the interval Ω ∶= (−1, 1) with grading factor 

𝜎 ∈ (0, 1) and 𝐿 layers of refinement towards the boundary points. Let 𝑓 be analytic in Ω, denote by 𝑢 ∈ �̃�𝑠(Ω) the solution to (2.2) and by 
�̃�𝑁,𝑛 ∈ 𝑆

𝑝,1
0 ( 𝐿

𝑔𝑒𝑜,𝜎) the solution to (2.9) with 𝛾 =  𝐿
𝑔𝑒𝑜,𝜎 , where 𝑎𝑛(⋅, ⋅) and ̃𝑙𝑛(⋅) are defined in (3.11) and (3.3), respectively. The index 𝑛

indicates the number of quadrature points that are used per integral and element.

There are constants 𝐶 , 𝑏 > 0 and, for each 𝜀 > 0, a constant 𝐶𝜀 (depending on 𝑓 , 𝑠, and 𝜎) such that for any 𝑛 ≥ 𝑝 + 1, 𝑝, 𝐿 ∈ ℕ and 
𝑟 ∈ {1, … , 𝑝}, there holds

‖𝑢− �̃�𝑁,𝑛‖�̃�𝑠(Ω) ≤ 𝐶𝑒−𝑏𝑟 +𝐶𝜀𝜎(1∕2−𝜀)𝐿 +𝐶𝐿2𝑟3𝑝3𝜌1+𝑝+𝑟−2𝑛. (2.10)

For 𝐿 ∼ 𝑝 and 𝑛 ≥ 𝑝 + 1 there holds in terms of the problem size 𝑁 ∶= dim𝑆𝑝,10 ( 𝐿
𝑔𝑒𝑜,𝜎) for some 𝐶, 𝑏′ > 0 independent of 𝑁 and 𝑛

‖𝑢− �̃�𝑁,𝑛‖�̃�𝑠(Ω) ≤ 𝐶 exp(−𝑏′
√
𝑁). (2.11)

For 𝐿 ∼ 𝑝 ∼ 𝑛 and the basis 𝑔𝑒𝑜 from Definition 2.2, the number of algebraic operations to set up the linear system (2.7) is (𝐿5) =(𝑁5∕2).

3. Quadrature approximations

Throughout this section, we consider 𝛾 -shape regular meshes 𝛾 . We start with some general definitions and notations. 𝑇 ∶= (0, 1)
denotes the reference element and, for each element 𝑇 ∶= (𝑥𝓁 , 𝑥𝑟) ∈ 𝛾 , we define the affine element map by

𝐹𝑇 ∶ 𝑇 → 𝑇 , 𝑥↦ 𝑥𝓁 + 𝑥ℎ𝑇 . (3.1)

With a slight abuse of notation, we will naturally extend 𝐹𝑇 to an affine function ℂ → ℂ when needed. For a function 𝑣 defined on 
𝑇 , we write �̂�𝑇 for its pullback to the reference element

�̂�𝑇 ∶= 𝑣◦𝐹𝑇 . (3.2)

Our approximations to 𝑎(⋅, ⋅) and 𝑙(⋅) are based on the following (weighted) Gaussian quadrature rules. Let 𝜔 ∶ (0, 1) →ℝ be a positive, 
integrable weight function. Then, we approximate

𝐼(Φ) ∶=

1

∫
0

Φ(𝑥)𝜔(𝑥) 𝑑𝑥 ≈
𝑛∑
𝑖=1

𝜔𝑖Φ(𝜉𝑖) =∶𝐺𝑛(Φ),

where 𝜉𝑖 are the Gaussian quadrature nodes (zeros of orthogonal polynomials w.r.t. the 𝜔-weighted 𝐿2-inner product) and 
𝜔𝑖 = ∫ 1

0 𝜔(𝑥)𝐿𝑖(𝑥)𝑑𝑥 with the 𝑖-th Lagrange interpolation polynomials 𝐿𝑖(𝑥) =
∏𝑛

𝑗=1,𝑗≠𝑖
𝑥−𝜉𝑗
𝜉𝑖−𝜉𝑗

associated with the quadrature nodes 
𝜉1, … , 𝜉𝑛.

For 𝜔 ≡ 1, we write 𝐺𝐿𝑛(Φ) (Gauss-Legendre quadrature) for the quadrature rule. For integrands with singularities at the bound-

aries, we take 𝜔(𝑥) = (1 − 𝑥)𝛼𝑥𝛽 , 𝛼, 𝛽 > −1 and write 𝐺𝐽𝛼,𝛽𝑛 (Φ) (Gauss-Jacobi quadrature). For multivariate functions Φ(𝑥, 𝑦), we 
will indicate by the subscript 𝑥, 𝑦 the variable to which the quadrature rule is applied.

We start by deriving an approximation to the right-hand side 𝑙(𝑣) ∶= ⟨𝑓, 𝑣⟩𝐿2(Ω) in (2.6). Dividing the integration domain Ω into 
the elements 𝑇 ∈ 𝛾 , transforming them to the reference element 𝑇 , and using Gauss-Legendre quadrature for each integral defines 
the linear form ̃𝑙𝑛(𝑣𝑁 ) for 𝑣𝑁 ∈ 𝑆𝑝,10 (𝛾 ) by

𝑙(𝑣𝑁 ) = ∫
Ω

𝑣𝑁 (𝑥)𝑓 (𝑥) 𝑑𝑥 =
∑
𝑇∈𝛾

ℎ𝑇 ∫̂
𝑇

�̂�𝑁,𝑇 (𝑥)𝑓𝑇 (𝑥) 𝑑𝑥 ≈
∑
𝑇∈𝛾

ℎ𝑇 𝐺𝐿𝑛(�̂�𝑁,𝑇 (𝑥)𝑓𝑇 (𝑥)) =∶ �̃�𝑛(𝑣𝑁 ). (3.3)
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The approximation of the bilinear form 𝑎(⋅, ⋅) is more involved since we have to deal with hyper-singular double integrals. Using 
symmetry and dividing the integration domain ℝ ×ℝ into the elements 𝑇 ∈ 𝛾 and the complementary set Ω𝑐 leads to

𝑎(𝑣𝑁 ,𝑤𝑁 ) = 𝐶(𝑠)
2

( ∑
𝑇∈𝛾

∑
𝑇 ′∈𝛾

𝐼𝑇 ,𝑇 ′ (𝑣𝑁 ,𝑤𝑁 ) + 2
∑
𝑇∈𝛾

𝐼𝑇 ,Ω𝑐 (𝑣𝑁 ,𝑤𝑁 )
)
,

where, for arbitrary sets 𝐴, 𝐵 ⊂ℝ, the symbol 𝐼𝐴,𝐵(𝑣𝑁 , 𝑤𝑁 ) denotes

𝐼𝐴,𝐵(𝑣𝑁 ,𝑤𝑁 ) ∶= ∫
𝐴

∫
𝐵

(𝑣𝑁 (𝑥) − 𝑣𝑁 (𝑦))(𝑤𝑁 (𝑥) −𝑤𝑁 (𝑦))|𝑥− 𝑦|1+2𝑠 𝑑𝑦𝑑𝑥. (3.4)

The integral over Ω𝑐 can be integrated explicitly. All other integrals have to be transformed to a reference square and then approxi-

mated by a suitable quadrature rule, which leads to four cases.

Identical elements (𝑇 = 𝑇 ′):
We transform the double integral 𝐼𝑇 ,𝑇 (𝑢, 𝑣) to the reference square 𝑇 × 𝑇 and divide this integration domain into the triangles 

𝐴1 ∶= {(𝑥, 𝑦) | 0 < 𝑥 < 1, 0 < 𝑦 < 𝑥} and 𝐴2 ∶= {(𝑥, 𝑦) | 0 < 𝑦 < 1, 0 < 𝑥 < 𝑦}. As the integrand is invariant under the transformation 
(𝑥, 𝑦) ↦ (𝑦, 𝑥), we notice that both integrals are the same. Employing the Duffy transformation, i.e., (𝑥, 𝑦) ↦ (𝑥, 𝑥𝑦), leads to

𝐼𝑇 ,𝑇 (𝑣𝑁 ,𝑤𝑁 ) = 2ℎ1−2𝑠𝑇 ∫̂
𝑇

∫̂
𝑇

(�̂�𝑁,𝑇 (𝑥) − �̂�𝑁,𝑇 (𝑥𝑦))(�̂�𝑁,𝑇 (𝑥) − �̂�𝑁,𝑇 (𝑥𝑦))|𝑥− 𝑥𝑦|2 𝑥2−2𝑠(1 − 𝑦)1−2𝑠𝑑𝑦𝑑𝑥

≈ 2ℎ1−2𝑠𝑇 𝐺𝐽 0,2−2𝑠
𝑛,𝑥 ◦𝐺𝐽 1−2𝑠,0

𝑛,𝑦

( (�̂�𝑁,𝑇 (𝑥) − �̂�𝑁,𝑇 (𝑥𝑦))(�̂�𝑁,𝑇 (𝑥) − �̂�𝑁,𝑇 (𝑥𝑦))|𝑥− 𝑥𝑦|2
)

=∶𝑄𝑛
𝑇 ,𝑇 (𝑣𝑁 ,𝑤𝑁 ). (3.5)

We note that after the separation of the weight function, the integrand in (3.5) is a polynomial since only removable singularities are 
left.

Remark 3.1. Our choice of the Gauss-Jacobi weight function is not the only possible option, as, e.g., one could cancel one additional 
power of 𝑥 in the first equality in (3.5). However, our choice is optimal in the sense that it decreases the polynomial degree of the 
integrand as much as possible. ■

Adjacent elements (𝑇 ≠ 𝑇 ′ with 𝑇 ∩ 𝑇 ′ ≠ ∅):

Without loss of generality, we may assume that 𝑇 is the left neighbor of 𝑇 ′, otherwise 𝑇 and 𝑇 ′ change their roles. Then, the 
element maps transform the singularity at 𝑇 ∩ 𝑇 ′ to the point (1, 0) in the reference square. With an additional transformation 
(𝑥, 𝑦) ↦ (1 − 𝑥, 𝑦) we are now in a similar setting as in the previous case. The integral can be split into integrals over 𝐴1 and 𝐴2 and 
employing the Duffy transformation on 𝐴1 (for 𝐴2 we take (𝑥, 𝑦) ↦ (𝑥𝑦, 𝑦)) leads to

𝐼𝑇 ,𝑇 ′ (𝑣𝑁 ,𝑤𝑁 ) = ℎ𝑇 ℎ𝑇 ′

(
∫̂
𝑇

∫̂
𝑇

(�̂�𝑁,𝑇 (1 − 𝑥) − �̂�𝑁,𝑇 ′ (𝑥𝑦))(�̂�𝑁,𝑇 (1 − 𝑥) − �̂�𝑁,𝑇 ′ (𝑥𝑦))|ℎ𝑇 + 𝑦ℎ𝑇 ′ |1+2𝑠 𝑥2 𝑥2−2𝑠 𝑑𝑦𝑑𝑥

+ ∫̂
𝑇

∫̂
𝑇

(�̂�𝑁,𝑇 (1 − 𝑥𝑦) − �̂�𝑁,𝑇 ′ (𝑦))(�̂�𝑁,𝑇 (1 − 𝑥𝑦) − �̂�𝑁,𝑇 ′ (𝑦))|𝑥ℎ𝑇 + ℎ𝑇 ′ |1+2𝑠 𝑦2 𝑦2−2𝑠 𝑑𝑦𝑑𝑥

)
. (3.6)

The singularities appear only in one variable in each integral, for which we employ Gauss-Jacobi quadrature, while in the other 
variable Gauss-Legendre quadrature is sufficient. This gives the approximation

𝑄𝑛
𝑇 ,𝑇 ′ (𝑣𝑁 ,𝑤𝑁 ) ∶= ℎ𝑇 ℎ𝑇 ′

(
𝐺𝐽 0,2−2𝑠

𝑛,𝑥 ◦𝐺𝐿𝑛,𝑦

( (�̂�𝑁,𝑇 (1 − 𝑥) − �̂�𝑁,𝑇 ′ (𝑥𝑦))(�̂�𝑁,𝑇 (1 − 𝑥) − �̂�𝑁,𝑇 ′ (𝑥𝑦))|ℎ𝑇 + 𝑦ℎ𝑇 ′ |1+2𝑠 𝑥2
)

+𝐺𝐿𝑛,𝑥◦𝐺𝐽 0,2−2𝑠
𝑛,𝑦

( (�̂�𝑁,𝑇 (1 − 𝑥𝑦) − �̂�𝑁,𝑇 ′ (𝑦))(�̂�𝑁,𝑇 (1 − 𝑥𝑦) − �̂�𝑁,𝑇 ′ (𝑦))|𝑥ℎ𝑇 + ℎ𝑇 ′ |1+2𝑠 𝑦2
))

. (3.7)

Separated elements (𝑇 ∩ 𝑇 ′ = ∅):

This time, the integrand is not singular. Therefore, one can directly transform the double integral to the reference square and 
employ tensor product Gauss-Legendre quadrature, which produces as the approximation of 𝐼𝑇 ,𝑇 ′ (𝑣𝑁 , 𝑤𝑁 ) the expression

𝑄𝑛
𝑇 ,𝑇 ′ (𝑣𝑁 ,𝑤𝑁 ) ∶= ℎ𝑇 ℎ𝑇 ′ 𝐺𝐿𝑛,𝑥◦𝐺𝐿𝑛,𝑦

(
(�̂�𝑁,𝑇 (𝑥) − �̂�𝑁,𝑇 ′ (𝑦))(�̂�𝑁,𝑇 (𝑥) − �̂�𝑁,𝑇 ′ (𝑦))|(1 − 𝑥)ℎ𝑇 + dist𝑇 ,𝑇 ′ +𝑦ℎ𝑇 ′ |1+2𝑠

)
,

where dist𝑇 ,𝑇 ′ denotes the Euclidean distance between the elements 𝑇 and 𝑇 ′.
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Complement part (𝐼𝑇 ,Ω𝑐 ):
The inner integral over Ω𝑐 can be calculated explicitly exploiting that the functions 𝑣𝑁 , 𝑤𝑁 ∈ 𝑆𝑝,10 (𝛾 ) vanish outside of Ω =

(−1, 1). The outer integral can be transformed to the reference element 𝑇 , which gives

𝐼𝑇 ,Ω𝑐 (𝑣𝑁 ,𝑤𝑁 ) ∶=
ℎ𝑇
2𝑠 ∫̂

𝑇

�̂�𝑁,𝑇 (𝑥)�̂�𝑁,𝑇 (𝑥)|dist𝑇 ,{−1} +𝑥ℎ𝑇 |2𝑠 +
�̂�𝑁,𝑇 (𝑥)�̂�𝑁,𝑇 (𝑥)|dist𝑇 ,{1} +(1 − 𝑥)ℎ𝑇 |2𝑠 𝑑𝑥. (3.8)

If 𝑇 is an interior element, i.e., 𝑇 ∩ 𝜕Ω = ∅, we employ Gauss-Legendre quadrature

𝑄𝑛
𝑇 ,Ω𝑐 (𝑣𝑁 ,𝑤𝑁 ) ∶=

ℎ𝑇
2𝑠

(
𝐺𝐿𝑛

(
�̂�𝑁,𝑇 (𝑥)�̂�𝑁,𝑇 (𝑥)|dist𝑇 ,{−1} +𝑥ℎ𝑇 |2𝑠

)
+𝐺𝐿𝑛

(
�̂�𝑁,𝑇 (𝑥)�̂�𝑁,𝑇 (𝑥)|dist𝑇 ,{1} +(1 − 𝑥)ℎ𝑇 |2𝑠

))
.

For 𝑇 ∩ 𝜕Ω = {−1}, we set

𝑄𝑛
𝑇 ,Ω𝑐 (𝑣𝑁 ,𝑤𝑁 ) ∶=

ℎ𝑇
2𝑠

(
𝐺𝐽 0,2−2𝑠

𝑛

(
�̂�𝑁,𝑇 (𝑥)�̂�𝑁,𝑇 (𝑥)

𝑥2ℎ2𝑠
𝑇

)
+𝐺𝐿𝑛

(
�̂�𝑁,𝑇 (𝑥)�̂�𝑁,𝑇 (𝑥)|dist𝑇 ,{1} +(1 − 𝑥)ℎ𝑇 |2𝑠

))
, (3.9)

and for 𝑇 ∩ 𝜕Ω = {1}

𝑄𝑛
𝑇 ,Ω𝑐 (𝑣𝑁 ,𝑤𝑁 ) ∶=

ℎ𝑇
2𝑠

(
𝐺𝐿𝑛

(
�̂�𝑁,𝑇 (𝑥)�̂�𝑁,𝑇 (𝑥)|dist𝑇 ,{−1} +𝑥ℎ𝑇 |2𝑠

)
+𝐺𝐽 2−2𝑠,0

𝑛

(
�̂�𝑁,𝑇 (𝑥)�̂�𝑁,𝑇 (𝑥)

(1 − 𝑥)2ℎ2𝑠
𝑇

))
. (3.10)

Now, having defined 𝑄𝑛
𝐴,𝐵

(𝑣𝑁 , 𝑤𝑁 ) for all cases of integrals 𝐼𝐴,𝐵 (𝑣𝑁 , 𝑤𝑁 ), we obtain the approximated bilinear form as

𝑎𝑛(𝑣𝑁 ,𝑤𝑁 ) ∶= 𝐶(𝑠)
2

( ∑
𝑇∈𝛾

∑
𝑇 ′∈𝛾

𝑄𝑛
𝑇 ,𝑇 ′ (𝑣𝑁 ,𝑤𝑁 ) + 2

∑
𝑇∈𝛾

𝑄𝑛
𝑇 ,Ω𝑐 (𝑣𝑁 ,𝑤𝑁 )

)
. (3.11)

3.1. Stability of the quadrature rule

Positivity of the kernel function (𝑥, 𝑦) ↦ |𝑥 − 𝑦|−1−2𝑠 and the Gauss-Legendre/Gauss-Jacobi weights as well as exactness of the 
Gauss-Legendre/Gauss-Jacobi quadrature allow us to prove the following stability result:

Lemma 3.2. Let 𝛾 be a 𝛾 -shape regular mesh, 𝑢 ∈ 𝑆𝑝,1(𝛾 ). Then, the following holds:

(i) For all 𝑛 ≥ 1 and all 𝑇 , 𝑇 ′ ∈ 𝛾 ∪ {Ω𝑐}, we have 𝑄𝑛
𝑇 ,𝑇 ′ (𝑢, 𝑢) ≥ 0.

(ii) Let 𝑛 ≥ 𝑝 and 𝑢 ∈ 𝑆𝑝,10 (𝛾 ). Then 𝑎𝑛(𝑢, 𝑢) = 0 implies 𝑢 = 0. In particular, the stiffness matrix 𝐴 in (2.7) is symmetric positive definite.

Furthermore, there is 𝐶𝑐𝑜𝑒𝑟 > 0 depending only on 𝛾 and 𝑠 such that for all 𝑢 ∈ 𝑆𝑝,10 (𝛾 ) the following assertions hold:

(iii) (Identical elements) For 𝑛 ≥ 𝑝 and 𝑇 ∈ 𝛾 : 𝑄𝑛
𝑇 ,𝑇

(𝑢, 𝑢) = 𝐼𝑇 ,𝑇 (𝑢, 𝑢).
(iv) (Adjacent elements) For 𝑛 ≥ 𝑝 + 1 and (𝑇 , 𝑇 ′) ∈ 𝛾 × (𝛾 ∪ {Ω𝑐}) with 𝑇 ≠ 𝑇 ′ and 𝑇 ∩ 𝑇 ′ ≠ ∅: 𝑄𝑛

𝑇 ,𝑇 ′ (𝑢, 𝑢) ≥ 𝐶𝑐𝑜𝑒𝑟𝐼𝑇 ,𝑇 ′ (𝑢, 𝑢) ≥ 0.

(v) (Separated elements) For 𝑛 ≥ 𝑝 + 1 and (𝑇 , 𝑇 ′) ∈ 𝛾 × (𝛾 ∪ {Ω𝑐}) with 𝑇 ∩ 𝑇 ′ = ∅: 𝑄𝑛
𝑇 ,𝑇 ′ (𝑢, 𝑢) ≥ 𝐶𝑐𝑜𝑒𝑟𝐼𝑇 ,𝑇 ′ (𝑢, 𝑢) ≥ 0.

Proof. Proof of (i): This follows from the positivity of the kernel and the Gauss-Legendre/Gauss-Jacobi weights.

Proof of (ii): From (i), we get for 𝑢 ∈ 𝑆𝑝,10 (𝛾 ) with 𝑎𝑛(𝑢, 𝑢) = 0

0 = 2
𝐶(𝑠)

𝑎𝑛(𝑢, 𝑢) =
∑

𝑇∈𝛾∪{Ω𝑐}
∑

𝑇 ′∈𝛾∪{Ω𝑐}
𝑄𝑛
𝑇 ,𝑇 ′ (𝑢, 𝑢)

(𝑖)≥ ∑
𝑇∈𝛾

𝑄𝑛
𝑇 ,𝑇 (𝑢, 𝑢)

(𝑖𝑖𝑖)
=

∑
𝑇∈𝛾

𝐼𝑇 ,𝑇 (𝑢, 𝑢) ≥ 0.

Hence, |𝑢|𝐻𝑠(𝑇 ) = 0 for each 𝑇 ∈ 𝛾 so that 𝑢 is constant on each element. By continuity of 𝑢, it is constant on Ω, and the boundary 
conditions then imply 𝑢 = 0.

Proof of (iii): For 𝑛 ≥ 𝑝, the univariate Gauss-Jacobi quadrature in (3.5) is exact for polynomials of degree 2𝑝 − 1. Inspection of 
(3.5) shows that the argument is the square of a polynomial of degree 𝑝 − 1 in each variable.

Proof of (iv): For 𝑛 ≥ 𝑝 + 1, the univariate Gauss-Jacobi quadratures in (3.7) are exact for polynomials of degree 2𝑝 + 1. We study 
the cases (𝑇 , 𝑇 ′) ∈ 𝛾 × 𝛾 and (𝑇 , 𝑇 ′) ∈ 𝛾 ×{Ω𝑐} separately, starting with (𝑇 , 𝑇 ′) ∈ 𝛾 × 𝛾 . We only consider the first term in (3.7), 
the other one being handled analogously. Let 𝑢 ∈ 𝑆𝑝,10 (𝛾 ). For the pull-backs �̂�𝑇 , �̂�𝑇 ′ to the reference element 𝑇 of the functions 𝑢|𝑇 , 
𝑢|𝑇 ′ , we get by continuity of 𝑢 at 𝑇 ∩ 𝑇 ′ that �̂�𝑇 (1) = �̂�𝑇 ′ (0). Hence,

𝑈 (𝑥, 𝑦) ∶=
�̂�𝑇 (1 − 𝑥) − �̂�𝑇 ′ (𝑥𝑦)

𝑥

is a polynomial of degree 𝑝 − 1 in 𝑥 and of degree 𝑝 in 𝑦. Using the positivity of the quadrature weights and the exactness of the 
quadrature rules (𝑈2 is a polynomial of degree 2𝑝 ≤ 2𝑝 + 1 in each variable)
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ℎ𝑇 ℎ𝑇 ′𝐺𝐽 0,2−2𝑠
𝑛,𝑥 ◦𝐺𝐿𝑛,𝑦

(
(�̂�𝑇 (1 − 𝑥) − �̂�𝑇 ′ (𝑥𝑦))2

𝑥2(ℎ𝑇 + 𝑦ℎ𝑇 ′ )1+2𝑠

)
= ℎ𝑇 ℎ𝑇 ′𝐺𝐽 0,2−2𝑠

𝑛,𝑥 ◦𝐺𝐿𝑛,𝑦
(
𝑈2(𝑥, 𝑦)(ℎ𝑇 + 𝑦ℎ𝑇 ′ )−(1+2𝑠)

)
≥ ℎ𝑇 ℎ𝑇 ′𝐺𝐽 0,2−2𝑠

𝑛,𝑥 ◦𝐺𝐿𝑛,𝑦
(
𝑈2(𝑥, 𝑦)(ℎ𝑇 + ℎ𝑇 ′ )−(1+2𝑠)

)
= ℎ𝑇 ℎ𝑇 ′ ∫

𝑥∈𝑇
∫
𝑦∈𝑇

𝑈2(𝑥, 𝑦)(ℎ𝑇 + ℎ𝑇 ′ )−(1+2𝑠)𝑥2−2𝑠 𝑑𝑦𝑑𝑥

≥ (1 + ℎ𝑇 ′ ∕ℎ𝑇 )−(1+2𝑠)ℎ𝑇 ℎ𝑇 ′ ∫
𝑥∈𝑇

∫
𝑦∈𝑇

𝑈2(𝑥, 𝑦)(ℎ𝑇 + 𝑦ℎ𝑇 ′ )−(1+2𝑠)𝑥2−2𝑠 𝑑𝑦𝑑𝑥,

where we used in the last inequality that ℎ−(1+2𝑠)
𝑇

≥ (ℎ𝑇 + 𝑦ℎ𝑇 ′ )−(1+2𝑠). We conclude in view of (3.6)

𝑄𝑛
𝑇 ,𝑇 ′ (𝑢, 𝑢) ≥ 𝐶𝑐𝑜𝑒𝑟 𝐼𝑇 ,𝑇 ′ (𝑢, 𝑢),

where 𝐶𝑐𝑜𝑒𝑟 ∶= inf{(1 + ℎ𝑇 ′ ∕ℎ𝑇 )−(1+2𝑠) | 𝑇 ∈ 𝛾 , 𝑇 ′ adjacent to 𝑇 } depends only the shape regularity constant 𝛾 and 𝑠. The case 
(𝑇 , 𝑇 ′) ∈ 𝛾 × {Ω𝑐} leads to two terms of the form (3.9) or (3.10). One term can always be analyzed in similar fashion as above and 
the other one can be treated as in the following case (v).

Proof of (v): This is handled similarly to the case of adjacent elements in (iv). We consider only the case (𝑇 , 𝑇 ′) ∈ 𝛾 × 𝛾 , the case 
(𝑇 , 𝑇 ′) ∈ 𝛾 × {Ω𝑐} is handled similarly.

With �̂�𝑇 , �̂�𝑇 ′ as above and using that polynomials of degree 2𝑝 + 1 are integrated exactly for 𝑛 ≥ 𝑝 + 1 we estimate

𝑄𝑛
𝑇 ,𝑇 ′ (𝑢, 𝑢) = ℎ𝑇 ℎ𝑇 ′𝐺𝐿𝑛,𝑥◦𝐺𝐿𝑛,𝑦

(
(�̂�𝑇 (𝑥) − �̂�𝑇 ′ (𝑦))2((1 − 𝑥)ℎ𝑇 + dist𝑇 ,𝑇 ′ +𝑦ℎ𝑇 ′ )−(1+2𝑠)

)
≥ ℎ𝑇 ℎ𝑇 ′𝐺𝐿𝑛,𝑥◦𝐺𝐿𝑛,𝑦

(
(�̂�𝑇 (𝑥) − �̂�𝑇 ′ (𝑦))2(ℎ𝑇 + dist𝑇 ,𝑇 ′ +ℎ𝑇 ′ )−(1+2𝑠)

)
= ℎ𝑇 ℎ𝑇 ′ ∫

𝑥∈𝑇
∫
𝑦∈𝑇

(�̂�𝑇 (𝑥) − �̂�𝑇 ′ (𝑦))2(ℎ𝑇 + dist𝑇 ,𝑇 ′ +ℎ𝑇 ′ )−(1+2𝑠) 𝑑𝑦𝑑𝑥

≥
( dist𝑇 ,𝑇 ′

ℎ𝑇 + dist𝑇 ,𝑇 ′ +ℎ𝑇 ′

)1+2𝑠
ℎ𝑇 ℎ𝑇 ′ ∫

𝑥∈𝑇
∫
𝑦∈𝑇

(�̂�𝑇 (𝑥) − �̂�𝑇 ′ (𝑦))2

((1 − 𝑥)ℎ𝑇 + dist𝑇 ,𝑇 ′ +𝑦ℎ𝑇 ′ )1+2𝑠
𝑑𝑦𝑑𝑥

≥ 𝐶𝑐𝑜𝑒𝑟𝐼𝑇 ,𝑇 ′ (𝑢, 𝑢),

for a 𝐶𝑐𝑜𝑒𝑟 > 0 that depends solely on the shape regularity constant 𝛾 and 𝑠. □

Remark 3.3. The proof shows that the condition 𝑛 ≥ 𝑝 +1 for the case of adjacent elements could be weakened in that 𝑝 points suffice 
in one variable whereas 𝑝 + 1 point should be used in the other one. ■

Corollary 3.4. Let 𝛾 be a 𝛾 -shape regular mesh. There is 𝑐𝑐𝑜𝑒𝑟 > 0 depending only on 𝛾 and 𝑠 such that for 𝑛 ≥ 𝑝 + 1

𝑎𝑛(𝑢, 𝑢) ≥ 𝑐𝑐𝑜𝑒𝑟‖𝑢‖2�̃�𝑠(Ω)
∀𝑢 ∈ 𝑆𝑝,10 (𝛾 ). (3.12)

Proof. We write

𝑎𝑛(𝑢, 𝑢) =
𝐶(𝑠)
2

∑
𝑇∈𝛾∪{Ω𝑐}

∑
𝑇 ′∈𝛾∪{Ω𝑐}

𝑄𝑛
𝑇 ,𝑇 ′ (𝑢, 𝑢)

and use Lemma 3.2 to bound 𝑄𝑛
𝑇 ,𝑇 ′ (𝑢, 𝑢) ≥ 𝐶𝑐𝑜𝑒𝑟𝐼𝑛𝑇 ,𝑇 ′ (𝑢, 𝑢) for a 𝐶𝑐𝑜𝑒𝑟 > 0 depending only on 𝛾 and 𝑠. □

Remark 3.5. (i) Lemma 3.2 shows that it suffices to use 𝑛 ≥ 𝑝 quadrature points for the quadrature 𝑄𝑛
𝑇 ,𝑇

to ensure solvability of 
the linear system (2.7). The condition 𝑛 ≥ 𝑝 + 1 stipulated in Corollary 3.4 leads to uniform (in 𝑝 and 𝛾 ) coercivity. (ii) Remark 3.3

shows that for adjacent elements a “mixed” quadrature order could be employed to slightly reduce the number of quadrature points. 
(iii) The stability result Corollary 3.4 exploits positivity of the kernel and weights as well as a certain exactness property of the 
Gauss-Legendre/Gauss-Jacobi quadratures. One can avoid exploiting these properties and rely on a perturbation argument that uses 
consistency error estimates for the quadratures and the coercivity of the continuous bilinear form 𝑎(⋅, ⋅). This approach, which results 
in the stronger requirement 𝑛 ≥ 𝑝 +𝑂(log((𝑝 + 1)(#𝛾 + 1))) is discussed in Lemma 4.4 below. ■

4. Proof of Theorem 2.4

The proof is based on the classical Strang Lemma, see, e.g., [7, Chap. 3]. In the present setting, it takes the following form:

Lemma 4.1 (First Strang Lemma). Let  be a mesh on Ω and let 𝛼𝑛 > 0 be such that 𝑎𝑛 satisfies

𝛼𝑛‖𝑣𝑁‖2
𝑠

≤ 𝑎𝑛(𝑣𝑁 , 𝑣𝑁 ) for all 𝑣𝑁 ∈ 𝑆𝑝,1( ). (4.1)

�̃� (Ω) 0
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Then, with the continuity constant 𝐶𝑎 of the bilinear form 𝑎, the difference 𝑢 − �̃�𝑁,𝑛 between the solutions 𝑢 ∈ �̃�𝑠(Ω) of (2.2) and �̃�𝑁,𝑛 ∈
𝑆𝑝,10 ( ) of (2.9) satisfies

‖𝑢− �̃�𝑁,𝑛‖�̃�𝑠(Ω) ≤
(
1 +

𝐶𝑎
𝛼𝑛

)(
inf

𝑣∈𝑆𝑝,10 ( )

(‖𝑢− 𝑣‖�̃�𝑠(Ω) + sup
𝑤∈𝑆𝑝,10 ( )

|𝑎(𝑣,𝑤) − 𝑎𝑛(𝑣,𝑤)|‖𝑤‖�̃�𝑠(Ω)

)
+ sup
𝑤∈𝑆𝑝,10 ( )

|𝑙(𝑤) − �̃�𝑛(𝑤)|‖𝑤‖�̃�𝑠(Ω)

)
.

Lemma 4.1 indicates that we have to show lower bounds for the coercivity of 𝑎𝑛(⋅, ⋅) as well as derive bounds for the consistency 
errors |𝑙(𝑤) − �̃�𝑛(𝑤)| and |𝑎(𝑣, 𝑤) −𝑎𝑛(𝑣, 𝑤)|. This is the subject of the following two lemmas, whose proofs are postponed to Section 5.

Lemma 4.2 (Consistency error for 𝑙). Let 𝑓 be analytic in Ω, and let 𝛾 be a 𝛾 -shape regular mesh. Let 𝑙(𝑣) = ⟨𝑓, 𝑣⟩𝐿2(Ω) and let its 
approximation ̃𝑙𝑛(⋅) be defined by (3.3). Then, there exists a constant 𝜌 > 1 depending only on 𝑓 such that

|𝑙(𝑣) − �̃�𝑛(𝑣)| ≤ 𝐶𝑠,𝑓 𝜌𝑝−2𝑛+1𝑝‖𝑣‖�̃�𝑠(Ω) for all 𝑣 ∈ 𝑆𝑝,10 (𝛾 ), (4.2)

where 𝐶𝑠,𝑓 > 0 is a constant that depends only on 𝑠 and 𝑓 .

Lemma 4.3 (Consistency error for 𝑎). Let 𝛾 be a 𝛾 -shape regular mesh, 𝑎(⋅, ⋅) be the bilinear form of (2.2) and 𝑎𝑛(⋅, ⋅) be its approximation 
(3.11). Then, there exists a constant 𝜌 > 1 that depends only on the shape regularity constant 𝛾 such that for all 𝑢 ∈ 𝑆𝑟,10 (𝛾 ) and 𝑣 ∈ 𝑆𝑝,10 (𝛾 )
there holds

|𝑎(𝑢, 𝑣) − 𝑎𝑛(𝑢, 𝑣)| ≤ 𝐶𝑠,𝛾 (#𝛾 )2𝜌𝑟+𝑝−2𝑛+1𝑟3𝑝3‖𝑢‖�̃�𝑠(Ω)‖𝑣‖�̃�𝑠(Ω), (4.3)

where 𝐶𝑠,𝛾 is a constant that depends only on 𝛾 and 𝑠.

As pointed out in Remark 3.5, the consistency error 𝑎 − 𝑎𝑛 allows one to infer uniform coercivity by a perturbation argument:

Lemma 4.4 (Uniform coercivity). Let the assumptions of Lemma 4.3 hold. Then, there are constants 𝛼, 𝜆1, 𝜆2 > 0 depending only on the 
shape regularity constant 𝛾 and 𝑠 such that for 𝑛 ≥ 𝑝 + 𝜆1 ln(𝑝 + 1) + 𝜆2 ln(#𝛾 + 1) there holds

𝛼‖𝑣𝑁‖2
�̃�𝑠(Ω)

≤ 𝑎𝑛(𝑣𝑁 , 𝑣𝑁 ) for all 𝑣𝑁 ∈ 𝑆𝑝,10 (𝛾 ). (4.4)

Proof. The coercivity of 𝑎(⋅, ⋅), the triangle inequality and Lemma 4.3 applied with 𝑟 = 𝑝 give

𝛼‖𝑣𝑁‖2
�̃�𝑠(Ω)

≤ 𝑎(𝑣𝑁 , 𝑣𝑁 ) ≤ 𝑎𝑛(𝑣𝑁 , 𝑣𝑁 ) + |𝑎(𝑣𝑁 , 𝑣𝑁 ) − 𝑎𝑛(𝑣𝑁 , 𝑣𝑁 )| ≤ 𝑎𝑛(𝑣𝑁 , 𝑣𝑁 ) +𝐶𝑠,𝛾 (#𝛾 )2𝜌2𝑝−2𝑛+1𝑝6‖𝑣𝑁‖2
�̃�𝑠(Ω)

.

As the second term on the right-hand side tends to zero for 𝑛 →∞, we may ensure for 𝑛 ≥ 𝑝 + 𝜆1 ln(𝑝 + 1) + 𝜆2 ln(#𝛾 + 1) with large 
enough constants 𝜆1, 𝜆2 that

𝐶𝑠,𝛾 (#𝛾 )2𝑝6𝜌1−2𝜆1 ln(𝑝+1)−2𝜆2 ln(#𝛾+1) ≤ 𝛼
2

(4.5)

so that coercivity of 𝑎𝑛 follows with coercivity constant 𝛼 ∶= 𝛼∕2. To give more details: we note that 𝜆1, 𝜆2 can be chosen to be 
independent of 𝑝 and #𝛾 as

• 𝜆1 ≥ 3
ln(𝜌)

⟹ (𝑝 + 1)6−2𝜆1 ln(𝜌) ≤ 1,

• 𝜆2 ≥ 2
ln(𝜌)

⟹ (#𝛾 + 1)2−𝜆2 ln(𝜌) ≤ 1,

• 𝜆2 ≥max
( ln(2𝜌 𝐶𝑠,𝛾 ) − ln(𝛼)

ln(𝜌) ln(2)
,0
)

⟹ 𝐶𝑠,𝛾 𝜌 (#𝛾 + 1)−𝜆2 ln(𝜌) ≤ 𝛼
2

,

which directly gives (4.5). □

Proof of Theorem 2.4. Proof of (2.10): Under the assumptions made, we can apply the stability result Corollary 3.4 with 𝛾 =  𝐿
𝑔𝑒𝑜,𝜎

noting that # 𝐿
𝑔𝑒𝑜,𝜎 = 2𝐿 + 2. Hence, for 𝑟 ∈ {1, … , 𝑝}, we can use the First Strang Lemma to estimate

‖𝑢− �̃�𝑁,𝑛‖�̃�𝑠(Ω) ≤ 𝐶

(
inf

𝑢𝑟∈𝑆
𝑟,1
0 ( 𝐿𝑔𝑒𝑜,𝜎 )

(‖𝑢− 𝑢𝑟‖�̃�𝑠(Ω) + sup
𝑤∈𝑆𝑝,10 ( 𝐿𝑔𝑒𝑜,𝜎 )

|𝑎(𝑢𝑟,𝑤) − 𝑎𝑛(𝑢𝑟,𝑤)|‖𝑤‖�̃�𝑠(Ω)

)
+ sup
𝑤∈𝑆𝑝,10 ( 𝐿𝑔𝑒𝑜,𝜎 )

|𝑙(𝑤) − �̃�𝑛(𝑤)|‖𝑤‖�̃�𝑠(Ω)

)
.

Taking 𝑢𝑟 ∈ 𝑆
𝑟,1
0 ( 𝐿

𝑔𝑒𝑜,𝜎) as the ℎ𝑝-FEM approximation of (2.6) for the space 𝑆𝑟,10 ( 𝐿
𝑔𝑒𝑜,𝜎), we get from Proposition 2.3 for the first term

‖𝑢− 𝑢𝑟‖�̃�𝑠(Ω) ≤ 𝐶𝑒−𝑏𝑟 +𝐶𝜀𝜎(1∕2−𝜀)𝐿. (4.6)
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Lemma 4.3 and the a priori estimate ‖𝑢𝑟‖�̃�𝑠(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω) lead to

sup
𝑤∈𝑆𝑝,10 ( 𝐿𝑔𝑒𝑜,𝜎 )

|𝑎(𝑢𝑟,𝑤) − 𝑎𝑛(𝑢𝑟,𝑤)|‖𝑤‖�̃�𝑠(Ω)
≤ 𝐶𝑠,𝜎,𝑓 𝐿2𝜌𝑟+𝑝−2𝑛+1𝑟3𝑝3. (4.7)

Finally, Lemma 4.2 provides

sup
𝑤∈𝑆𝑝,10 ( 𝐿𝑔𝑒𝑜,𝜎 )

|𝑙(𝑤) − �̃�𝑛(𝑤)|‖𝑤‖�̃�𝑠(Ω)
≤ 𝐶𝑓 𝜌𝑝−2𝑛+1𝑝. (4.8)

This proves the convergence result (2.10).

Proof of (2.11): Follows from (2.10) by taking 𝑟 = 𝑝∕2.

Proof of the complexity estimate: We are left to show that, for 𝐿 ∼ 𝑝 ∼ 𝑛 and the basis 𝑔𝑒𝑜 = 𝑙𝑖𝑛 ∪𝐿𝑒𝑔 from Definition 2.2, the 
number of algebraic operations to set up the linear system 𝐴𝑥 = 𝑏 is (𝐿5), where 𝐴 ∈ℝ𝑁×𝑁 with 𝐴𝑖𝑗 = 𝑎(𝜑𝑗, 𝜑𝑖) and 𝑏 ∈ℝ𝑁 with 
𝑏𝑖 ∶= ⟨𝑓,𝜑𝑖⟩𝐿2(Ω). The key to this improved complexity estimate is that the evaluation of the 𝑝 +1 shape functions at the 𝑛 quadrature 
points always happens on the reference element 𝑇 and can therefore be precomputed. This precomputation can be realized in (𝑛𝑝)
operations using three-term recurrence relations by noting that the integrated Legendre polynomials are orthogonal polynomials (see, 
e.g., [24, (A.3), (A.9)]).

We recall that the support of the basis functions consists of two mesh elements for 𝑙𝑖𝑛 and one for 𝐿𝑒𝑔 . If the supports of 𝜑𝑖 and 
𝜑𝑗 are separated then in the definition of the approximated bilinear form

𝑎𝑛(𝜑𝑖,𝜑𝑗 ) =
𝐶(𝑠)
2

( ∑
𝑇∈ 𝐿𝑔𝑒𝑜,𝜎

∑
𝑇 ′∈ 𝐿𝑔𝑒𝑜,𝜎

𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖,𝜑𝑗 ) + 2

∑
𝑇∈ 𝐿𝑔𝑒𝑜,𝜎

𝑄𝑛
𝑇 ,Ω𝑐 (𝜑𝑖,𝜑𝑗 )

)
,

most of the summands are zero; in fact, only (1) terms have to be calculated. If the supports of 𝜑𝑖 and 𝜑𝑗 have non-trivial intersection, 
we have to calculate (𝐿) summands. Before we derive the stated complexity bound, we show that a direct implementation is 
insufficient to achieve complexity (𝐿5).

Direct implementation: In terms of computational effort, the evaluation of the stiffness matrix 𝐴𝑖𝑗 dominates the computation of the 
load vector 𝑏𝑖 (which is of order (𝐿𝑝𝑛) by the same reasoning as below). For the stiffness matrix, a straight-forward implementation 
contains several nested loops:

• 2 loops over the (𝑝 𝐿) basis functions 𝑔𝑒𝑜 to calculate each of the (𝑝2𝐿2) entries 𝑎𝑛(𝜑𝑖, 𝜑𝑗 ):

– (𝑝2𝐿) of these pairs (𝜑𝑖, 𝜑𝑗 ) of basis functions are pairs whose supports intersect non-trivially, which leads to (𝐿)
evaluations of the type 𝑄𝑛

𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 ) or 𝑄𝑛
𝑇 ,Ω𝑐 (𝜑𝑖, 𝜑𝑗 );

– the remainder of the (𝑝2𝐿2) entries of the stiffness matrix result from pairs of basis functions with separated supports, 
which leads to (1) evaluations of the type 𝑄𝑛

𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 );

• evaluation of each 𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 ) and 𝑄𝑛

𝑇 ,Ω𝑐 (𝜑𝑖, 𝜑𝑗 ): 2 loops over the quadrature points with complexity (𝑛2).
In total this leads to a complexity of (𝑝2𝐿2𝑛2) =(𝐿6), since 𝐿 ∼ 𝑝 ∼ 𝑛. We now show that the complexity of setting up the stiffness 
matrix and therefore the overall complexity, can actually be reduced from (𝐿6) to (𝐿5).

The reduction in complexity comes from precomputing the terms 𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 ) and 𝑄𝑛

𝑇 ,Ω𝑐 (𝜑𝑖, 𝜑𝑗 ) before the stiffness matrix is 
assembled by looping over all basis functions.

We start by noting that 𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 ) = 0, if neither 𝑇 nor 𝑇 ′ is in the support of one of the basis functions 𝜑𝑖 or 𝜑𝑗 .

Step 1 (precomputation of 𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 )): Let 𝑇 , 𝑇 ′ ∈  𝐿

𝑔𝑒𝑜,𝜎 be a pair of elements. We distinguish two cases: the (𝐿) coinciding or 
adjacent pairs 𝑇 ′, 𝑇 , and the (𝐿2) well-separated pairs.

For the first case of adjacent pairs or identical pairs, one has to consider (𝑝2) pairs of basis functions from 𝑔𝑒𝑜 with the property 
that 𝑄𝑛

𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 ) is non-zero. This leads to a total complexity of (𝐿 𝑝2𝑛2) =(𝐿5) to precompute all 𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 ) of this type.

For well-separated pairs 𝑇 ∩ 𝑇 ′ = ∅, we differentiate between two possibilities for non-zero contributions 𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 ):

• 𝑇 ⊆ supp(𝜑𝑖) ∩ supp(𝜑𝑗 ) (or 𝑇 ′ ⊆ supp(𝜑𝑖) ∩ supp(𝜑𝑗 ), which is handled analogously):

𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖,𝜑𝑗 )

ℎ𝑇 ℎ𝑇 ′
=𝐺𝐿𝑛,𝑥◦𝐺𝐿𝑛,𝑦

(
�̂�𝑖(𝑥)�̂�𝑗 (𝑥)|(1 − 𝑥)ℎ𝑇 + dist𝑇 ,𝑇 ′ +𝑦ℎ𝑇 ′ |1+2𝑠

)
; (4.9)

• 𝑇 ⊆ supp(𝜑𝑖) and 𝑇 ′ ⊆ supp(𝜑𝑗 ) (interchanging the roles of 𝜑𝑖, 𝜑𝑗 leads to the same case):

𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖,𝜑𝑗 )

ℎ𝑇 ℎ𝑇 ′
=𝐺𝐿𝑛,𝑥◦𝐺𝐿𝑛,𝑦

(
�̂�𝑖(𝑥)�̂�𝑗 (𝑦)|(1 − 𝑥)ℎ + dist ′ +𝑦ℎ ′ |1+2𝑠

)
. (4.10)
𝑇 𝑇 ,𝑇 𝑇
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For (4.9) the term 𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 ) is calculated by

𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖,𝜑𝑗 )

ℎ𝑇 ℎ𝑇 ′
= (𝜔𝑘 �̂�𝑖(𝑥𝑘) �̂�𝑗 (𝑥𝑘))⊤𝑘=1,…,𝑛 ⋅ (𝑘𝑇 ,𝑇 ′ (𝑥𝑘, 𝑦𝑙))𝑘,𝑙=1,…,𝑛 ⋅ (𝜔𝑙)𝑙=1,…,𝑛, (4.11)

where 𝑘𝑇 ,𝑇 ′ (𝑥, 𝑦) ∶= (|(1 − 𝑥)ℎ𝑇 + dist𝑇 ,𝑇 ′ +𝑦ℎ𝑇 ′ |1+2𝑠)−1. As mentioned in the beginning, the vectors (�̂�𝑖(𝑥𝑘))𝑘=1,…,𝑛 can be pre-

computed in (𝑛𝑝). Remember that 𝜑𝑖, ̂𝜑𝑗 are independent of 𝑇 since the evaluation happens on the reference element 𝑇 . 
Thus, with additional (𝑝2𝑛) operations we can precompute the vectors (𝜔𝑘 �̂�𝑖(𝑥𝑘) ̂𝜑𝑗 (𝑥𝑘))⊤𝑘=1,…,𝑛

. The precomputation of 𝑉 ∶=
(𝑘𝑇 ,𝑇 ′ (𝑥𝑘, 𝑦𝑙))𝑘,𝑙=1,…,𝑛 ⋅ (𝜔𝑙)𝑙=1,…,𝑛 for all 𝑇 , 𝑇 ′ takes (𝐿2𝑛2) operations. Therefore, we can compute the products in (4.11) as: Mul-

tiply each of the (𝑝2) possible vectors (𝜔𝑘 �̂�𝑖(𝑥𝑘) ̂𝜑𝑗 (𝑥𝑘))⊤𝑘=1,…,𝑛
with each of the (𝐿2) suitable vectors 𝑉 in (𝑛) operations. For 

all 𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 ) of the form (4.11), this leads to a total complexity of (𝑝2𝐿2 𝑛) =(𝐿5).

For (4.10) the term 𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 ) is calculated by

𝑄𝑛
𝑇 ,𝑇 ′ (𝜑𝑖,𝜑𝑗 )

ℎ𝑇 ℎ𝑇 ′
= (𝜔𝑘 �̂�𝑖(𝑥𝑘))⊤𝑘=1,…,𝑛 ⋅ (𝑘𝑇 ,𝑇 ′ (𝑥𝑘, 𝑦𝑙))𝑘,𝑙=1,…,𝑛 ⋅ (𝜔𝑙 �̂�𝑗 (𝑦𝑙))𝑙=1,…,𝑛, (4.12)

where 𝑘𝑇 ,𝑇 ′ (𝑥, 𝑦) ∶= (|(1 −𝑥)ℎ𝑇 +dist𝑇 ,𝑇 ′ +𝑦ℎ𝑇 ′ |1+2𝑠)−1. All three terms in the product (4.12) can be precomputed similarly to the case 
(4.11). Thus, we can compute the products in (4.12) as: For all pairs of separated elements 𝑇 , 𝑇 ′ and all 𝜑𝑖 ∈𝑔𝑒𝑜 with 𝑇 ⊆ supp(𝜑𝑖), 
compute the vectors

• 𝑀 ∶= (𝜔𝑘 �̂�𝑖(𝑥𝑘))⊤𝑘=1,…,𝑛
⋅ (𝑘𝑇 ,𝑇 ′ (𝑥𝑘, 𝑦𝑙))𝑘,𝑙=1,…,𝑛 in (𝑛2);

• then, loop over all basis functions 𝜑𝑗 ∈𝑔𝑒𝑜 with 𝑇 ′ ⊆ supp(𝜑𝑗 ) and compute the scalar product 𝑀 ⋅ (𝜔𝑙 �̂�𝑗 (𝑦𝑙))𝑙=1,…,𝑛 in (𝑛).
This leads to a total complexity of (𝐿2 𝑝 (𝑛2 + 𝑝 𝑛)) =(𝐿5).

Step 2 (precomputation of 𝑄𝑛
𝑇 ,Ω𝑐 (𝜑𝑖, 𝜑𝑗 )): There are (𝐿 𝑝2) constellations such that 𝑄𝑛

𝑇 ,Ω𝑐 (𝜑𝑖, 𝜑𝑗 ) is non-zero with (𝑛) operations 
to calculate so that the total complexity for this step is (𝐿 𝑝2𝑛) =(𝐿4).

Step 3 (assembling the stiffness matrix): To calculate the (𝐿2𝑝2) matrix entries 𝑎𝑛(𝜑𝑖, 𝜑𝑗 ), we have to sum for each entry over (𝐿)
non-zero, precomputed terms 𝑄𝑛

𝑇 ,𝑇 ′ (𝜑𝑖, 𝜑𝑗 ) and 𝑄𝑛
𝑇 ,Ω𝑐 (𝜑𝑖, 𝜑𝑗 ). This proves the total complexity of (𝐿2𝑝2𝐿) =(𝐿5). □

5. Consistency errors

In this chapter, we present the proofs for the consistency error estimates in Lemmas 4.2 and 4.3.

We start with a well-known basic error estimate for Gaussian quadrature. Recall that

𝐼(Φ) ∶= ∫̂
𝑇

Φ(𝑥)𝜔(𝑥) 𝑑𝑥 ≈
𝑛∑
𝑖=1

𝜔𝑖Φ(𝑥𝑖) =∶𝐺𝑛(Φ),

with 
∑
𝑖 𝜔𝑖 = 𝐶𝜔 ∶= ∫𝑇 𝜔𝑑𝑥 and that the numerical integration is exact for Π ∈ 2𝑛−1(𝑇 ). Thus, for an arbitrary polynomial Π ∈

2𝑛−1(𝑇 ) we get (using also the positivity of the weights 𝜔𝑖)

𝐸𝑛 ∶= |𝐼(Φ) −𝐺𝑛(Φ)| = |𝐼(Φ −Π) −𝐺𝑛(Φ −Π)| ≤ 𝐶𝜔‖Φ−Π‖𝐿∞(𝑇 ) +
𝑛∑
𝑖=1

𝜔𝑖 ‖Φ−Π‖𝐿∞(𝑇 ) ≤ 2𝐶𝜔‖Φ−Π‖𝐿∞(𝑇 ),

which gives the best approximation estimate

𝐸𝑛 ≤ 2𝐶𝜔 inf
Π∈2𝑛−1(𝑇 )

‖Φ−Π‖𝐿∞(𝑇 ). (5.1)

By tensorization, this result for univariate Gaussian quadrature can be extended to the 2𝑑-case. For the special case 𝜔 ≡ 1 and

𝐼2𝐷(Φ) ∶= ∫̂
𝑇

∫̂
𝑇

Φ(𝑥, 𝑦)𝑑𝑦𝑑𝑥 ≈𝐺2𝐷
𝑛 (Φ) ∶=𝐺𝑛,𝑥◦𝐺𝑛,𝑦(Φ) =𝐺𝑛,𝑦◦𝐺𝑛,𝑥(Φ) =

𝑛∑
𝑖,𝑗=1

𝜔𝑖𝜔𝑗Φ(𝑥𝑖, 𝑦𝑗 )

we estimate the quadrature error using 𝐶𝜔 = 1 for 𝜔 ≡ 1:

𝐸2𝐷
𝑛 ∶= |𝐼2𝐷(Φ) −𝐺2𝐷

𝑛 (Φ)| = |||||||∫̂𝑇 ∫̂
𝑇

Φ(𝑥, 𝑦)𝑑𝑦−𝐺𝑛,𝑦(Φ(𝑥, ⋅))𝑑𝑥
|||||||+

|||||||∫̂𝑇 𝐺𝑛,𝑦(Φ(𝑥, ⋅))𝑑𝑥−𝐺𝑛,𝑦◦𝐺𝑛,𝑥(Φ)
||||||| (5.2)

≤ sup
𝑥∈𝑇

|𝐼(Φ(𝑥, ⋅)) −𝐺𝑛,𝑦(Φ(𝑥, ⋅))|+ ||||||𝐺𝑛,𝑦
(
∫ Φ(𝑥, ⋅)𝑑𝑥−𝐺𝑛,𝑥(Φ)

)||||||
| 𝑇 |
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≤ sup
𝑥∈𝑇

|𝐼(Φ(𝑥, ⋅)) −𝐺𝑛,𝑦(Φ(𝑥, ⋅))|+ 𝑛∑
𝑖=1

𝜔𝑖

|||||||∫̂𝑇 Φ(𝑥, 𝑦𝑖)𝑑𝑥−𝐺𝑛,𝑥(Φ(⋅, 𝑦𝑖))
|||||||∑

𝑖 𝜔𝑖=1≤ sup
𝑥∈𝑇

|𝐼(Φ(𝑥, ⋅)) −𝐺𝑛,𝑦(Φ(𝑥, ⋅))|+ sup
𝑦∈𝑇

||𝐼(Φ(⋅, 𝑦)) −𝐺𝑛,𝑥(Φ(⋅, 𝑦))|| .
In view of (5.1), these two univariate integration errors are estimated by best approximation errors. For analytic integrands, the 

best approximation errors will be quantified in Proposition 5.2.

Definition 5.1 (Bernstein ellipse). For 𝜌 > 1, we define the Bernstein ellipse 𝜌 and its scaled version ̂𝜌 by

𝜌 ∶= {𝑧 ∈ℂ ∶ |𝑧− 1|+ |𝑧+ 1| < 𝜌+ 𝜌−1}, (5.3)

̂𝜌 ∶= 𝐹−1
(−1,1)(𝜌), (5.4)

where 𝐹(−1,1) ∶ℂ →ℂ, 𝑥 ↦ 2𝑥 − 1 is the affine map transforming (−1, 1) to (0, 1). We note that the focal points of ̂𝜌 are 0 and 1.

Proposition 5.2. Let Φ be holomorphic on ̂𝜌, 𝜌 > 1. Then, for every 1 < 𝜌 < 𝜌, we have

inf
𝑣∈𝑛 ‖Φ− 𝑣‖𝐿∞(0,1) ≤ 2

𝜌− 1
𝜌−𝑛‖Φ‖𝐿∞(̂𝜌). (5.5)

Proof. This proposition is just a transformed version of [15, Chap. 7, Thm. 8.1]. □

With this estimate for the best approximation error, we obtain exponential convergence for the quadrature errors.

Lemma 5.3. Let 𝜌 > 1.

(i) Let Φ ∶ ̂𝜌 →ℂ be holomorphic. Then, for every 1 < 𝜌 < 𝜌, the quadrature error can be estimated by

|𝐼(Φ) −𝐺𝑛(Φ)| ≤ 𝐶𝜌−2𝑛+1‖Φ‖𝐿∞(̂𝜌), (5.6)

where the constant 𝐶 is independent of 𝑛 and Φ.

(ii) Let Φ ∶ ̂𝜌 × ̂𝜌 → ℂ be such that for each 𝑦 ∈ (0, 1) the function Φ(⋅, 𝑦) is holomorphic on ̂𝜌 and such that for each 𝑥 ∈ (0, 1), the 
function Φ(𝑥, ⋅) is holomorphic on ̂𝜌. Then, for every 1 < 𝜌 < 𝜌, the quadrature error can be estimated by

|𝐼2𝐷(Φ) −𝐺2𝐷
𝑛 (Φ)| ≤ 𝐶𝜌−2𝑛+1( sup

𝑦∈(0,1)
‖Φ(⋅, 𝑦)‖𝐿∞(̂𝜌) + sup

𝑥∈(0,1)
‖Φ(𝑥, ⋅)‖𝐿∞(̂𝜌)

)
, (5.7)

where the constant 𝐶 is independent of 𝑛 and Φ.

The norms in the previous estimates do not involve the ‖ ⋅ ‖�̃�𝑠(Ω) norm required in the Strang Lemma. This is achieved with an 
inverse estimate or a Poincaré type estimate.

Lemma 5.4. Let  = (𝑥𝓁 , 𝑥𝓁 + ℎ ) ⊂ℝ be an interval with diameter ℎ ∶= diam() <∞.

(i) There is a constant independent of  such that for every 𝜌 > 1 and 𝑝 ∈ℕ there holds for all polynomials 𝑣 ∈ 𝑝() and their pullbacks 
�̂� ∶= 𝑣◦𝐹‖‖‖‖ 𝑑

𝑑𝑥
�̂�
‖‖‖‖𝐿∞(̂𝜌)

≤ 𝐶𝜌𝑝𝑝3ℎ𝑠−1∕2 |𝑣|𝐻𝑠(), (5.8)

‖�̂�‖𝐿∞(̂𝜌) ≤ 𝐶𝜌𝑝𝑝 ℎ−1∕2 ‖𝑣‖𝐻𝑠(). (5.9)

(ii) Denote 𝑠𝑦𝑚 = (𝑥𝓁 − ℎ , 𝑥𝓁 + ℎ ) and let 𝑣 ∈𝐻𝑠(𝑠𝑦𝑚) with 𝑣|(𝑥𝓁−ℎ ,𝑥𝓁 ) = 0. Then, there is 𝐶 > 0 depending only on 𝑠 such that

‖𝑣‖𝐿2() ≤ 𝐶 ℎ𝑠 |𝑣|𝐻𝑠(𝑠𝑦𝑚). (5.10)

The same estimate holds for 𝑠𝑦𝑚 = (𝑥𝓁 , 𝑥𝓁 + 2ℎ ) and 𝑣 ∈𝐻𝑠(𝑠𝑦𝑚) with 𝑣|(𝑥𝓁+ℎ ,𝑥𝓁+2ℎ ) = 0.

Proof. With the Bernstein inequality [15, Chap. 4, Thm. 2.2]

‖𝑞‖𝐿∞(̂𝜌) ≤ 𝜌𝑝‖𝑞‖𝐿∞(0,1) for all 𝑞 ∈ 𝑝(0,1)
and inserting the mean �̂� ∶= ∫ 1

�̂�(𝑥) 𝑑𝑥, we obtain
0
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‖‖‖‖ 𝑑
𝑑𝑥
�̂�
‖‖‖‖𝐿∞(̂𝜌)

≤ 𝐶𝜌𝑝 ‖‖‖‖ 𝑑
𝑑𝑥
�̂�
‖‖‖‖𝐿∞(0,1)

= 𝐶𝜌𝑝
‖‖‖‖ 𝑑
𝑑𝑥

(�̂�− �̂�)
‖‖‖‖𝐿∞(0,1)

.

Employing inverse inequalities of Markov type, see [31, Thm 3.91, Thm. 3.92] together with a fractional Poincaré inequality, see 
[18], and a scaling argument, we arrive at‖‖‖‖ 𝑑

𝑑𝑥
(�̂�− �̂�)

‖‖‖‖𝐿∞(0,1)
≤ 𝐶𝑝2 ‖‖‖�̂�− �̂�‖‖‖𝐿∞(0,1)

≤ 𝐶𝑝3 ‖‖‖�̂�− �̂�‖‖‖𝐿2(0,1)
≤ 𝐶𝑝3|�̂�|𝐻𝑠(0,1) ≤ 𝐶𝑝3ℎ𝑠−1∕2 |𝑣|𝐻𝑠(). (5.11)

This shows (5.8). Inequality (5.9) follows with the same arguments.

The fractional Poincaré inequality (5.10) can be shown by a scaling argument and the compact embedding 𝐻𝑠 ⊂ 𝐿2; the fact that 
the seminorm appears on the right-hand side of (5.10) is a consequence of the fact that 𝑣 is assumed to vanish on parts of 𝑠𝑦𝑚. See 
also [1] for the proof of a closely related result. □

The following lemma provides the key technical estimates for the quadrature errors appearing in the approximated bilinear and 
linear forms.

Lemma 5.5. Let co(𝑇 , 𝑇 ′) denote the convex hull of two sets 𝑇 and 𝑇 ′. Let 𝛾 be a 𝛾 -shape regular mesh on Ω. There exists a constant 𝜌 > 1
that depends only on 𝛾 and 𝑠 such that for all 𝑣 ∈ 𝑆𝑟,10 (𝛾 ), 𝑤 ∈ 𝑆𝑝,10 (𝛾 ) and 𝑇 , 𝑇 ′ ∈ 𝛾 there holds|||𝐼𝑇 ,𝑇 ′ (𝑣,𝑤) −𝑄𝑛

𝑇 ,𝑇 ′ (𝑣,𝑤)
||| ≤ 𝐶𝑠,𝜌,𝛾 𝑟3𝑝3𝜌𝑟+𝑝−2𝑛+1|𝑣|𝐻𝑠(co(𝑇 ,𝑇 ′))|𝑤|𝐻𝑠(co(𝑇 ,𝑇 ′)), (5.12)|||𝐼𝑇 ,Ω𝑐 (𝑣,𝑤) −𝑄𝑛

𝑇 ,Ω𝑐 (𝑣,𝑤)
||| ≤ 𝐶𝑠,𝜌,𝛾 𝑟3𝑝3𝜌𝑟+𝑝−2𝑛+1|𝑣|�̃�𝑠(Ω)|𝑤|�̃�𝑠(Ω). (5.13)

Proof. We distinguish the cases of pairs of adjacent elements, identical pairs, well-separated pairs, and combinations of elements 𝑇
with Ω𝑐 .

Case of adjacent elements: We start with the case for adjacent elements 𝑇 ≠ 𝑇 ′ with 𝑇 ∩𝑇 ′ ≠ ∅. Due to Lemma 5.3 it is sufficient to 
estimate the 𝐿∞-norms of the integrands in (3.6). As both integrands can be treated in the same way, we only consider the first one

𝑔1(𝑥, 𝑦) ∶= ℎ−1−2𝑠𝑇

(�̂�𝑇 (1 − 𝑥) − �̂�𝑇 ′ (𝑥𝑦))
𝑥

⋅
(�̂�𝑇 (1 − 𝑥) − �̂�𝑇 ′ (𝑥𝑦))

𝑥
⋅

1|1 + 𝑦ℎ𝑇 ′ ∕ℎ𝑇 |1+2𝑠 .
Note that the first two fractions of the product on the right-hand side have removable singularities and are therefore holomorphic on ℂ
in each variable. The function 𝑦 ↦ |1 +𝑦ℎ𝑇 ′ ∕ℎ𝑇 | =√

(1 + 𝑦ℎ𝑇 ′ ∕ℎ𝑇 )2 > 0 on the closed interval [0, 1] and therefore has a holomorphic 
extension to an ellipse ̂𝜌 for some 𝜌 > 1 that solely depends on 𝛾 since ℎ𝑇 ′ ∕ℎ𝑇 ≤ 1∕𝛾 by shape regularity. We conclude that 𝑔1(⋅, 𝑦) is 
holomorphic on ℂ for fixed 𝑦 ∈ [0, 1] and 𝑔1(𝑥, ⋅) is holomorphic on ̂𝜌 for fixed 𝑥 ∈ [0, 1]. Using that �̂�𝑇 (1) = �̂�𝑇 ′ (0), the fundamental 
theorem of calculus implies for (𝑥, 𝑦) ∈ [0, 1] × ̂𝜌 and for (𝑥, 𝑦) ∈ ̂𝜌 × [0, 1]

|||| 1𝑥 (�̂�𝑇 (1 − 𝑥) − �̂�𝑇 ′ (𝑥𝑦))
|||| =

||||||
1
𝑥

( 𝑥

∫
0

𝑑
𝑑𝑧
�̂�𝑇 (1 − 𝑧)𝑑𝑧−

𝑥𝑦

∫
0

𝑑
𝑑𝑧
�̂�𝑇 ′ (𝑧)𝑑𝑧

)|||||| ≤ 2diam(̂𝜌)max

(‖‖‖‖ 𝑑𝑑𝑧 �̂�𝑇 ‖‖‖‖𝐿∞(̂𝜌)
,
‖‖‖‖ 𝑑𝑑𝑧 �̂�𝑇 ′

‖‖‖‖𝐿∞(̂𝜌)

)
.

Analogously, the same can be shown for the function �̂�. With Lemma 5.4, this implies

sup
𝑦∈(0,1)

‖𝑔1(⋅, 𝑦)‖𝐿∞(̂𝜌) + sup
𝑥∈(0,1)

‖𝑔1(𝑥, ⋅)‖𝐿∞(̂𝜌) ≤ 𝐶𝑠,𝜌,𝛾 𝑟3𝑝3𝜌𝑟+𝑝max(|𝑣|𝐻𝑠(𝑇 ), |𝑣|𝐻𝑠(𝑇 ′))max(|𝑤|𝐻𝑠(𝑇 ), |𝑤|𝐻𝑠(𝑇 ′)).

Together with (5.7) and max(|𝑣|𝐻𝑠(𝑇 ), |𝑣|𝐻𝑠(𝑇 ′)) ≤ |𝑣|𝐻𝑠(co(𝑇 ,𝑇 ′)), this finishes the proof for the case of adjacent elements 𝑇 , 𝑇 ′ .

Case of identical elements: The case 𝑇 = 𝑇 ′ follows with similar arguments. We note that in this case the integrand

𝑔2(𝑥, 𝑦) ∶=
(�̂�𝑇 (𝑥) − �̂�𝑇 (𝑥𝑦))(�̂�𝑇 (𝑥) − �̂�𝑇 (𝑥𝑦))|𝑥− 𝑥𝑦|2 ℎ−1−2𝑠𝑇 (5.14)

is a polynomial of degree ≤ 𝑟 + 𝑝 − 1 and thus is integrated exactly for 𝑛 ≥max(𝑟, 𝑝).

Case of well-separated elements: For separated elements 𝑇 ∩𝑇 ′ = ∅ the integrand is continuous. Thus, by [29, Lem. 4.6], the Gaussian 
quadrature error can be estimated by the best approximation error for the function 𝑔3(𝑥, 𝑦) ∶= | dist𝑇 ,𝑇 ′ +(1 − 𝑥)ℎ𝑇 + 𝑦ℎ𝑇 ′ |−1−2𝑠 in 
𝐿∞ using polynomials of maximal degree 𝑟𝑐 ∶= 2𝑛 − 𝑝 − 𝑟 − 1 and 𝐿2-norms of the polynomials �̂�𝑇 (𝑥) − �̂�𝑇 ′ (𝑦) and �̂�𝑇 (𝑥) − �̂�𝑇 ′ (𝑦):||||𝐼𝑇 ,𝑇 ′ (𝑣,𝑤) −𝑄𝑛

𝑇 ,𝑇 ′ (𝑣,𝑤)
|||| ≤ 𝐶𝑝2ℎ𝑇 ℎ𝑇 ′ inf

𝑞∈𝑟𝑐 ((0,1)2)
‖𝑔3 − 𝑞‖𝐿∞(𝑇×𝑇 )⋅(

∫̂
𝑇

∫̂
𝑇

(�̂�𝑇 (𝑥) − �̂�𝑇 ′ (𝑦))2 𝑑𝑦𝑑𝑥
)1∕2(

∫̂
𝑇

∫̂
𝑇

(�̂�𝑇 (𝑥) − �̂�𝑇 ′ (𝑦))2 𝑑𝑦𝑑𝑥
)1∕2

, (5.15)
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where 𝑟𝑐
((0, 1)2) denotes the tensor product space 𝑟𝑐 (0, 1) ⊗ 𝑟𝑐 (0, 1) = span{(𝑥, 𝑦) ↦ 𝑥𝑖𝑦𝑗 ∶ 0 ≤ 𝑖, 𝑗 ≤ 𝑟𝑐}. Similarly to the case of 

adjacent elements, the function 𝑔 admits a holomorphic extension to ̂𝜌 × ̂𝜌 for some 𝜌 > 1 since 𝑔3(𝑥, 𝑦) = ((dist𝑇 ,𝑇 ′ +(1 − 𝑥)ℎ𝑇 +
𝑦ℎ𝑇 ′ )2)−1∕2−𝑠 and the argument of (⋅)−1−2𝑠 is bounded away from 0 for (𝑥, 𝑦) ∈ [0, 1]2. In fact, we only require that for each fixed 
𝑥 ∈ [0, 1] the function 𝑔3(𝑥, ⋅) can be extended holomorphically to ̂𝜌 and for each fixed 𝑦 ∈ [0, 1] the function 𝑔3(⋅, 𝑦) can be extended 
holomorphically to ̂𝜌. As in the case of adjacent elements, we have by shape regularity ℎ𝑇 ∕ dist𝑇 ,𝑇 ′ ≤ 1∕𝛾 and ℎ𝑇 ′ ∕ dist𝑇 ,𝑇 ′ ≤ 1∕𝛾 .

We may employ Proposition 5.2 and a tensor product argument akin to that employed in (5.2) to get with inequality (5.2) the 
existence of 𝜌 > 1 such that

inf
𝑞∈𝑟𝑐 ((0,1)2)

‖𝑔3 − 𝑞‖𝐿∞(𝑇×𝑇 ) ≤ 𝐶𝑠,𝜌,𝛾𝜌−𝑟𝑐 dist−1−2𝑠𝑇 ,𝑇 ′ . (5.16)

For the remaining terms in (5.15), we transform back to the physical elements, insert the mean 𝑣co(𝑇 ,𝑇 ′) ∶= ∫co(𝑇 ,𝑇 ′) 𝑣(𝑥) 𝑑𝑥∕ℎco(𝑇 ,𝑇 ′)
over the convex hull 𝑐𝑜(𝑇 , 𝑇 ′) of 𝑇 and 𝑇 ′ and integrate in one variable to obtain

∫̂
𝑇

∫̂
𝑇

(�̂�𝑇 (𝑥) − �̂�𝑇 ′ (𝑦))2 𝑑𝑦𝑑𝑥 = ℎ−1𝑇 ℎ−1
𝑇 ′ ∫

𝑇
∫
𝑇 ′

(𝑣𝑇 (𝑥) − 𝑣𝑇 ′ (𝑦))2 𝑑𝑦𝑑𝑥 ≤ 2ℎ−1𝑇 ℎ−1
𝑇 ′ ∫

𝑇
∫
𝑇 ′

(𝑣(𝑥) − 𝑣co(𝑇 ,𝑇 ′))2 + (𝑣co(𝑇 ,𝑇 ′) − 𝑣(𝑦))2𝑑𝑦𝑑𝑥

= 2ℎ−1𝑇 ‖𝑣− 𝑣co(𝑇 ,𝑇 ′)‖2𝐿2(𝑇 ) + 2ℎ−1
𝑇 ′ ‖𝑣− 𝑣co(𝑇 ,𝑇 ′)‖2𝐿2(𝑇 ′). (5.17)

Both terms can be treated in the same way, we thus only focus on the first one. Increasing the domain of integration to the convex 
hull co(𝑇 , 𝑇 ′) and employing a Poincaré inequality, see [18, Prop. 2.2], gives

‖𝑣− 𝑣co(𝑇 ,𝑇 ′)‖2𝐿2(𝑇 ) ≤ ‖𝑣− 𝑣co(𝑇 ,𝑇 ′)‖2𝐿2(co(𝑇 ,𝑇 ′)) ≤ 𝐶𝑠ℎ2𝑠co(𝑇 ,𝑇 ′)|𝑣|2𝐻𝑠(co(𝑇 ,𝑇 ′)). (5.18)

Inserting everything into (5.15) gives|||𝐼𝑇 ,𝑇 ′ (𝑣,𝑤) −𝑄𝑛
𝑇 ,𝑇 ′ (𝑣,𝑤)

||| ≤ 𝐶𝑝2𝜌𝑟+𝑝−2𝑛+1 dist−1−2𝑠𝑇 ,𝑇 ′ (ℎ𝑇 + ℎ𝑇 ′ )ℎ2𝑠co(𝑇 ,𝑇 ′)|𝑣|𝐻𝑠(co(𝑇 ,𝑇 ′))|𝑤|𝐻𝑠(co(𝑇 ,𝑇 ′)). (5.19)

We note that, for shape regular meshes, we can estimate

ℎ𝑇 ≤ 𝛾−1 dist𝑇 ,𝑇 ′ , ℎ𝑇 ′ ≤ 𝛾−1 dist𝑇 ,𝑇 ′ , ℎco(𝑇 ,𝑇 ′) ≤ dist𝑇 ,𝑇 ′ +ℎ𝑇 + ℎ𝑇 ′ ≤ dist𝑇 ,𝑇 ′

(
1 + 2

𝛾

)
.

Thus, there holds dist−1−2𝑠
𝑇 ,𝑇 ′ (ℎ𝑇 ′ + ℎ𝑇 )ℎ2𝑠co(𝑇 ,𝑇 ′) ≤ (2∕𝛾)(1 + 2∕𝛾)2𝑠, which concludes the argument for the case of separated elements.

Case of combination of 𝑇 with Ω𝑐 : For the complementary part, see (3.8), we consider integrals of the form

ℎ𝑇 ∫̂
𝑇

�̂�𝑇 (𝑥)�̂�𝑇 (𝑥)|dist𝑇 ,{−1} +𝑥ℎ𝑇 |2𝑠 𝑑𝑥. (5.20)

We have to distinguish two cases. If 𝑇 is at the left boundary, −1 ∈ 𝑇 and therefore dist𝑇 ,{−1} = 0, we can treat the singular integral 
(5.20) as a one dimensional version of the adjacent case. If dist𝑇 ,{−1} > 0, the proof uses similar techniques as the separated case. The 
only difference is that, instead of the convex hull of two elements, the convex hull of the element and the boundary point −1 is used 
and [18, Prop. 2.2] is replaced with (5.10) to bound the 𝐿2-norms

‖𝑣‖𝐿2(𝑇 ) ≤ ‖𝑣‖𝐿2(co(𝑇 ,{−1})) ≤ 𝐶 ℎ𝑠co(𝑇 ,{−1})‖𝑣‖𝐻𝑠(Ω). □ (5.21)

The consistency errors follow from summation of the elementwise contributions.

Proof of Lemma 4.3. With the triangle inequality, basic integration and Lemma 5.5 we obtain

|𝑎(𝑣,𝑤) − 𝑎𝑛(𝑣,𝑤)| ≤ 𝐶(𝑠)
2

( ∑
𝑇∈𝛾

∑
𝑇 ′∈𝛾

|||𝐼𝑇 ,𝑇 ′ (𝑣,𝑤) −𝑄𝑛
𝑇 ,𝑇 ′ (𝑣,𝑤)

|||+ 2
∑
𝑇∈𝛾

|||𝐼𝑇 ,Ω𝑐 (𝑣,𝑤) −𝑄𝑛
𝑇 ,Ω𝑐 (𝑣,𝑤)

|||
)

≤ 𝐶𝑠,𝜌,𝛾 𝑟3𝑝3𝜌𝑟+𝑝−2𝑛+1
( ∑
𝑇∈𝛾

∑
𝑇 ′∈𝛾

|𝑣|𝐻𝑠(co(𝑇 ,𝑇 ′))|𝑤|𝐻𝑠(co(𝑇 ,𝑇 ′)) + 2
∑
𝑇∈𝛾

‖𝑣‖�̃�𝑠(Ω)‖𝑤‖�̃�𝑠(Ω)

)
≤ 𝐶𝑠,𝜌,𝛾 (#𝛾 )2𝑟3𝑝3𝜌𝑟+𝑝−2𝑛+1‖𝑣‖�̃�𝑠(Ω)‖𝑤‖�̃�𝑠(Ω), (5.22)

which finishes the proof. □

Proof of Lemma 4.2. As 𝑓 is analytic on [0, 1] there exists an analytic extension to a Bernstein ellipse ̂𝜌 for some 𝜌 > 1. Using (5.6)

of Lemma 5.3 gives for each element
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|||||||∫̂𝑇 𝑓𝑇 (𝑥)𝑣𝑇 (𝑥)𝑑𝑥−𝐺𝐿𝑛(𝑓𝑇 𝑣𝑇 )
||||||| ≤ 𝐶𝜌

−2𝑛+1‖𝑓𝑇 𝑣𝑇 ‖𝐿∞(̂𝜌) ≤ 𝐶𝜌,𝑓 𝜌−2𝑛+1‖𝑣𝑇 ‖𝐿∞(̂𝜌)
(5.9)≤ 𝐶𝑠,𝜌,𝑓 𝑝𝜌

𝑝−2𝑛+1ℎ
−1∕2
𝑇

‖𝑣‖𝐻𝑠(𝑇 ).

Summation over all elements 𝑇 ∈ 𝛾 together with the Cauchy-Schwarz inequality gives

|𝑙(𝑣) − �̃�𝑛(𝑣)| ≤ ∑
𝑇∈𝛾

ℎ𝑇

|||||||∫̂𝑇 𝑓𝑇 (𝑥)𝑣𝑇 (𝑥)𝑑𝑥−𝐺𝐿𝑛(𝑓𝑇 𝑣𝑇 )
||||||| ≤ 𝐶𝑠,𝜌,𝑓 𝑝𝜌

𝑝−2𝑛+1
∑
𝑇∈𝛾

ℎ
1∕2
𝑇

‖𝑣‖𝐻𝑠(𝑇 )

≤ 𝐶𝑠,𝜌,𝑓 𝑝𝜌𝑝−2𝑛+1
√|Ω|( ∑

𝑇∈𝛾
‖𝑣‖2𝐻𝑠(𝑇 )

)1∕2 ≤ 𝐶𝑠,𝜌,𝑓 𝑝𝜌𝑝−2𝑛+1‖𝑣‖𝐻𝑠(Ω). □

6. Outlook: the multidimensional case on shape regular meshes

In this section, we discuss how the preceding 1𝑑-analysis can be generalized to the multidimensional case 𝑑 > 1 for bounded 
polyhedral Lipschitz domains Ω ⊂ℝ𝑑 . In this case, the weak formulation is given by: Find 𝑢 ∈ �̃�𝑠(Ω) such that

𝑎(𝑢, 𝑣) ∶= 𝐶(𝑠, 𝑑)
2 ∫

ℝ𝑑
∫
ℝ𝑑

(𝑢(�⃗�) − 𝑢(𝑦))(𝑣(�⃗�) − 𝑣(𝑦))|�⃗�− 𝑦|𝑑+2𝑠 𝑑𝑦𝑑�⃗� = ⟨𝑓, 𝑣⟩𝐿2(Ω) =∶ 𝑙(𝑣) ∀𝑣 ∈ �̃�𝑠(Ω), (6.1)

where 𝐶(𝑠, 𝑑) ∶= 22𝑠𝑠Γ(𝑠 + 𝑑∕2)∕(𝜋𝑑∕2Γ(1 − 𝑠)) (see, e.g., [1]). Thus, we have to numerically compute integrals of the form

𝐼𝑆1 ,𝑆2 (𝑣,𝑤) ∶= ∫
𝑆1

∫
𝑆2

(𝑣(�⃗�) − 𝑣(𝑦))(𝑤(�⃗�) −𝑤(𝑦))|�⃗�− 𝑦|𝑑+2𝑠 𝑑𝑦𝑑�⃗�, (6.2)

𝐼𝑆1 ,Ω𝑐 (𝑣,𝑤) ∶= ∫
𝑆1

𝑣(�⃗�)𝑤(�⃗�)∫
Ω𝑐

1|�⃗�− 𝑦|𝑑+2𝑠 𝑑𝑦𝑑�⃗�, (6.3)

where 𝑆1 and 𝑆2 denote 𝑑-dimensional simplices.

In the following, we will consider regular, 𝛾 -shape regular triangulations 𝛾 of Ω, i.e., decompositions of Ω into simplices. As usual, 
𝛾 -shape regularity means that 𝛾 > 0 is independent of the number of elements in the mesh and there holds max𝑆∈𝓁 (ℎ𝑆∕|𝑆|1∕𝑑 ) ≤ 𝛾 <
∞, where ℎ𝑆 ∶= diam(𝑆) and |𝑆| denotes the 𝑑-dimensional Lebesgue volume. We set 𝑆𝑝,10 (𝛾 ) ∶= {𝑢 ∈𝐻1

0 (Ω) | 𝑢|𝑆 ∈ 𝑝(ℝ𝑑 ) ∀𝑆 ∈
𝛾}, where 𝑝(ℝ𝑑 ) denotes the space of 𝑑-variate polynomials of (total) degree 𝑝. We will also require the tensor-product space 
𝑝(ℝ𝑑 ) ∶= span{𝑥𝛼11 ⋯ 𝑥𝛼𝑑

𝑑
| 0 ≤ 𝛼1, … , 𝛼𝑑 ≤ 𝑝}.

6.1. Quadrature on pairs of simplices

In the present case of shape regular triangulations, techniques developed in [10] can be adapted to numerically integrate (6.2). 
Similarly to the case 𝑑 = 1 in the previous sections, singularities in the integrand can be transformed such that suitable combinations of 
Gauss-Legendre and Gauss-Jacobi quadrature can be employed. In the following we state the main result of [10] regarding numerical 
integration of certain singular integrals.

Proposition 6.1 ([10]). Let 𝛾 be a 𝛾 -shape regular mesh and 𝑆1, 𝑆2 ∈ 𝛾 be closed simplices in ℝ𝑑 with 𝑘 ∶= dim(𝑆1 ∩ 𝑆2) (setting 
𝑘 ∶= −1 if 𝑆1 ∩ 𝑆2 = ∅) and consider integrals of the form

𝐼 = ∫
𝑆1

∫
𝑆2

|�⃗�− 𝑦|𝛼𝐹 (�⃗�, 𝑦, �⃗�− 𝑦) 𝑑𝑦 𝑑�⃗�, (6.4)

where 𝛼 ∈ℝ and 𝐹 is a real analytic function, i.e., 𝐹 ∈ 𝐶𝜔(𝑆1 ×𝑆2 × (𝑆2 −𝑆1)).
Then, there exist 𝐾𝑘 ∈ ℕ depending only on 𝑘 and polynomial transformations Φ𝑗 , 𝑗 = 0, … , 𝐾𝑘 of degree 𝑞Φ ∶=max𝑗 deg(Φ𝑗 ), depending 

only on 𝑑, such that the integral 𝐼 takes the form

𝐼 =
𝐾𝑘∑
𝑗=0

∫
[0,1]2𝑑

𝐹◦Φ𝑗 ( �⃗�)𝑗 ( �⃗�) 𝐽𝑟𝑒𝑚Φ𝑗
( �⃗�) 𝑡𝛼+2𝑑−𝑘−11 𝑑 �⃗�, (6.5)

where 𝑗 ∈ 𝐶𝜔([0, 1]2𝑑 ) are real analytic functions given by

𝑗 ( �⃗�) ∶=
|(�⃗�− 𝑦)◦Φ𝑗 ( �⃗�)|𝛼

𝑡𝛼1
, (6.6)
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𝐽𝑟𝑒𝑚Φ𝑗
∶= 𝐽Φ𝑗∕𝑡

2𝑑−𝑘−1
1 are polynomials of degree at most 𝑑(𝑞Φ − 1), and 𝐽Φ𝑗 are the Jacobians of the transformations Φ𝑗 . In particular, the 

condition 𝛼 > 𝑘 − 2𝑑 ensures that (6.5) is integrable, and 𝑡𝛼+2𝑑−𝑘−11 can be used as a Gauss-Jacobi weight function.

Proof. See [10, Sec. 3] for the explicit construction of the transformations Φ𝑗 and the resulting polynomial degree 𝑞Φ. We also refer 
to [10, Thm. 4.1, Rem. 2], where a slightly different formulation is given, which even includes the more general case that 𝐹 is in a 
Gevrey class. In [10] the condition 𝛼 > 𝑘 − 2𝑑 is required, but it follows from inspection of the proof that it is only needed to ensure 
integrability of the integrand. □

Remark 6.2.

(i) The transformations Φ𝑗 are, similarly to the case 𝑑 = 1, combinations of affine transformations and Duffy-like transformations 
that transform simplices to hypercubes and thus are polynomials. The parameter 𝐾𝑘 ∈ℕ accounts for different cases that have 
to be treated with different transformations (as can be seen in the case 𝑑 = 1 as well, compare (3.5) and (3.6)). For 𝑑 > 1, this 
requires even more cases; however, structurally they are all similar, which allows for the compact notation.

(ii) An important observation of (6.5) is that the transformations (by employing relative coordinates) can be constructed such that 
the singularity of the function |�⃗� − 𝑦|−𝑑−2𝑠 appears after transformation and permutations of the variables only in a single 
variable labelled 𝑡1.

(iii) Since the term 𝑡𝛼+2𝑑−𝑘−11 with 𝛼 + 2𝑑 − 𝑘 − 1 > −1 can be handled as a weight function with Gauss-Jacobi quadrature, an 
approximation to (6.5) can be achieved by a tensor quadrature rule. ■

Unfortunately, the integrals in (6.2) do not fulfill the requirement of the final statement of Proposition 6.1 to be integrable since 
𝛼 = −𝑑 − 2𝑠 > 𝑘 − 2𝑑 does not hold for all 0 ≤ 𝑘 ≤ 𝑑 and 𝑠 ∈ (0, 1). Therefore, we have to modify the analysis of [10] to suit our 
integrand by showing that, after application of the transformations Φ𝑗 , the term (𝑣(�⃗�) −𝑣(𝑦))(𝑤(�⃗�) −𝑤(𝑦)) takes the form 𝑡21 𝑞(𝑡1, … , 𝑡2𝑑 )
where 𝑞 is a polynomial in 2𝑑 variables, i.e., 𝑞 ∈ 𝑘(ℝ2𝑑 ) for some 𝑘. Consequently, the singular term in the integral takes the form 
𝑡�̃�1 with �̃� ∶= 𝛼 + 2𝑑 − 𝑘 + 1 > −1. More precisely, we have the following Corollary 6.3, which can be seen as an extension of [10, 
Thm. 4.1] to the present specific case (6.2).

Corollary 6.3. Let 𝛾 be a 𝛾 -shape regular mesh and 𝑆1, 𝑆2 ∈ 𝛾 be closed simplices in ℝ𝑑 with 𝑘 ∶= dim(𝑆1 ∩ 𝑆2) (setting 𝑘 ∶= −1 if 
𝑆1 ∩𝑆2 = ∅) and, for 𝑣, 𝑤 ∈ 𝑆𝑝,10 (𝛾 ), consider the integral

𝐼𝑆1 ,𝑆2 (𝑣,𝑤) ∶= ∫
𝑆1

∫
𝑆2

(𝑣|𝑆1 (�⃗�) − 𝑣|𝑆2 (𝑦))(𝑤|𝑆1 (�⃗�) −𝑤|𝑆2 (𝑦))|�⃗�− 𝑦|𝑑+2𝑠 𝑑𝑦𝑑�⃗�. (6.7)

Then, employing, for 𝑘 ≥ 0, the polynomial transformations Φ𝑗 of Proposition 6.1 of degree (at most) 𝑞Φ the integral 𝐼𝑆1,𝑆2 (𝑣, 𝑤) takes the 
form

𝐼𝑆1 ,𝑆2 (𝑣,𝑤) = ∫
[0,1]2𝑑

𝐾𝑘∑
𝑗=0

𝑃𝑣,𝑗 ( �⃗�) 𝑃𝑤,𝑗 ( �⃗�)𝑗 ( �⃗�) 𝐽𝑟𝑒𝑚Φ𝑗
( �⃗�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

)

=∶𝐹𝑗

𝑡2−2𝑠+𝑑−𝑘−11 𝑑 �⃗�. (6.8)

Here, 𝐽𝑟𝑒𝑚Φ𝑗
∶= 𝐽Φ𝑗∕𝑡

2𝑑−𝑘−1
1 are polynomials of degree at most 𝑑(𝑞Φ − 1), the transformations Φ𝑗 have Jacobians 𝐽Φ𝑗 , and the 𝑅𝑗 ∈

𝐶𝜔([0, 1]2𝑑 ) are analytic functions given by

𝑗 ( �⃗�) ∶=
𝑡𝑑+2𝑠1|(�⃗�− 𝑦)◦Φ𝑗 ( �⃗�)|𝑑+2𝑠 , (6.9)

and 𝑃𝑣,𝑗 , 𝑃𝑤,𝑗 ∈ (ℝ2𝑑 ) are polynomials of degree (at most) ≤ 𝑝𝑞Φ − 1, defined by

𝑃𝑣,𝑗 ( �⃗�) ∶=
(𝑣|𝑆1 − 𝑣|𝑆2 )◦Φ𝑗 ( �⃗�)

𝑡1
and 𝑃𝑤,𝑗 ( �⃗�) ∶=

(𝑤|𝑆1 −𝑤|𝑆2 )◦Φ𝑗 ( �⃗�)
𝑡1

. (6.10)

For 𝑘 = −1, we get the form

𝐼𝑆1 ,𝑆2 (𝑣,𝑤) = ∫
[0,1]2𝑑

𝑃𝑣,−1( �⃗�) 𝑃𝑤,−1( �⃗�)−1( �⃗�) 𝐽Φ−1
( �⃗�)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐹−1

𝑑 �⃗�, (6.11)

with a polynomial transformation Φ−1 and its polynomial Jacobian 𝐽Φ−1
, −1( �⃗�) ∶= |(�⃗�−𝑦)◦Φ−1( �⃗�)|−𝑑−2𝑠 analytic and polynomials 𝑃𝑣,−1, 

𝑃𝑤,−1 ∈ 𝑝𝑞Φ−1(ℝ2𝑑 ) defined by

𝑃𝑣,−1( �⃗�) ∶= (𝑣|𝑆 − 𝑣|𝑆 )◦Φ−1( �⃗�) and 𝑃𝑤,−1( �⃗�) ∶= (𝑤|𝑆 −𝑤|𝑆 )◦Φ−1( �⃗�). (6.12)

1 2 1 2
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Proof. For 𝑘 ≥ 0, with Proposition 6.1 it is only left to show that 𝑃𝑣,𝑗 and 𝑃𝑤,𝑗 from (6.10) are polynomials. We only prove the 
statement for 𝑃𝑣,𝑗 .

Since 𝑣 ∈ 𝑆𝑝,10 (𝛾 ) is a piecewise continuous polynomial, the singularity points �⃗� = 𝑦 of |�⃗� − 𝑦|−𝑑−2𝑠 are a subset of the roots of 
the polynomial (𝑣|𝑆1 (�⃗�) − 𝑣|𝑆2 (𝑦)). Since Φ𝑗 is a polynomial, it follows that (𝑣|𝑆1 − 𝑣|𝑆2 )◦Φ𝑗 is also a polynomial (of degree bounded 
by 𝑝𝑞Φ) that vanishes at the singularities of |�⃗�− 𝑦|−𝑑−2𝑠◦Φ𝑗 . So the separated singularity 𝑡1 has to be a root of (𝑣|𝑆1 − 𝑣|𝑆2 )◦Φ𝑗 . The 
fundamental theorem of algebra finishes the proof.

For 𝑘 = −1 the proof follows immediately from Step 1 and 2 of the transformations of [10, Sec. 3]. □

[10, Thm. 5.4] also asserts exponential convergence of a suitable combination of Gauss-Jacobi and Gauss-Legendre quadrature 
employed to integrands covered by Proposition 6.1.

Proposition 6.4. Let  ∈ 𝐶𝜔([0, 1]𝑑′ ) and 𝛽1 > −1. Then, there exist 𝐶 , 𝑏 > 0 independent of 𝑑′ such that for all 𝑛 ∈ℕ there holds|||| ∫
[0,1]𝑑′

𝑡
𝛽1
1 ( �⃗�)𝑑 �⃗�−𝐺𝐽 0,𝛽1

𝑛,𝑡1
◦𝐺𝐿𝑛,𝑡2◦⋯◦𝐺𝐿𝑛,𝑡𝑑′ ()

|||| ≤ 𝐶 exp(−𝑏𝑁1∕𝑑′ ), (6.13)

where 𝑁 =(𝑛𝑑′ ) is the total number of quadrature points.

Propositions 6.1 and 6.4 are formulated for fairly general integrands. However, in order to obtain exponential convergence results 
for ℎ𝑝-FEM discretizations, as in the case 𝑑 = 1, an explicit dependence of the convergence rate on the employed polynomial degree 
has to be derived, which is not directly deducible from Proposition 6.4.

In the following we extend our 1𝑑-quadrature analysis, which was explicit in 𝑝, to higher dimension 𝑑 > 1 specifically for the 
easier case of 𝛾 -shape regular meshes 𝛾 with a finite number of patch configurations. We will make the following assumption on the 
structure of the underlying triangulation of Ω:

Assumption 6.5. The triangulation 𝛾 is 𝛾 -shape regular and there exists, up to dilations, rotations, and translations, a finite number 
(independent on the number of elements in the mesh) of different patches (i.e., unions of elements sharing a vertex). This is, for 
example, ensured for 𝑑 ∈ {2, 3}, if the mesh is generated from a coarse mesh by “newest vertex bisection”, [23,34].

Remark 6.6. For exponential convergence results in terms of “error vs. number of degrees of freedom” as in Proposition 2.3 or 
Theorem 2.4, special geometric meshes 𝑔𝑒𝑜 are required that include anisotropic elements, [17]. A quadrature analysis on such 
meshes requires a more careful analysis of elements with large aspect ratio and is postponed to a forthcoming work. ■

6.2. Consistency error analysis

We start with a standard quadrature rule on a simplex 𝑆 . To that end, we can also use the affine transformation [10, Sec. 3 (Step 
1)] to map a given simplex 𝑆 to the reference simplex 𝑆𝑑 ∶= {(𝑥1, … , 𝑥𝑑 ) | 𝑥𝑖 ≥ 0 ∀𝑖 = 1, … , 𝑑, 𝑥1 +⋯ +𝑥𝑑 ≤ 1} and afterwards with 
the Duffy type transformation [10, (2.12)] to [0, 1]𝑑 . This then allows one to use tensor product Gauss-Legendre rules to obtain

∫
𝑆

𝑓 (�⃗�)𝑑�⃗� = ∫
[0,1]𝑑

𝑓◦Φ𝑆 ( �⃗�)𝐽Φ𝑆 ( �⃗�)𝑑 �⃗� ≈𝐺𝐿𝑛,𝑡1◦⋯◦𝐺𝐿𝑛,𝑡𝑑 (𝑓◦Φ𝑆 𝐽Φ𝑆 ) =∶𝐺𝐿
𝑛
𝑆 (𝑓 ), (6.14)

where Φ𝑆 denotes the composed polynomial transformations [10, Sec. 3 (Step 1) with (2.12)] depending only on the simplex 𝑆
with its polynomial Jacobian 𝐽Φ𝑆 . Since Φ𝑆 is an affine transformation composed with a Duffy type transformation, it holds for 
polynomials 𝑢 ∈ 𝑝(𝑆) that 𝑢◦Φ𝑆 ∈𝑝(ℝ𝑑 ).

The approximation of the right-hand side 𝑙(𝑣) ∶= ⟨𝑓, 𝑣⟩𝐿2(Ω) follows immediately.

Definition 6.7 (Approximate linear form for 𝑑 > 1). For a piecewise polynomial 𝑣 ∈ 𝑆𝑝,10 (𝛾 ), define the approximate linear form by

𝑙(𝑣) ∶= ⟨𝑓, 𝑣⟩𝐿2(Ω) =
∑
𝑆∈𝛾 ∫𝑆

𝑓 (�⃗�)𝑣(�⃗�) 𝑑�⃗� ≈
∑
𝑆∈𝛾

𝐺𝐿𝑛𝑆
(
𝑓 𝑣

)
=∶ �̃�𝑛(𝑣), (6.15)

where 𝐺𝐿𝑛
𝑆

denotes the tensor product Gauss-Legendre rule (6.14).

Consistency error estimates for the linear form 𝑙 follow with the same arguments as for the one dimensional case in Lemma 4.2.

Lemma 6.8 (Consistency error for 𝑙). Let 𝑓 be analytic in Ω, and let 𝛾 be a 𝛾 -shape regular mesh on Ω ⊆ℝ𝑑 . Let 𝑙(𝑣) ∶= ⟨𝑓, 𝑣⟩𝐿2(Ω) and 
let its approximation ̃𝑙𝑛(⋅) be defined by (6.15). Then, there exist constants 𝜌 > 1 and 𝐶𝑓,𝛾,𝑠 > 0 depending only on 𝑓 , 𝛾 , 𝑠, and Ω such that

|𝑙(𝑣) − �̃�𝑛(𝑣)| ≤ 𝐶𝑓,𝛾,𝑠 𝑝 𝜌𝑝−2𝑛+1‖𝑣‖ ̃𝑠 for all 𝑣 ∈ 𝑆𝑝,1(𝛾 ). (6.16)
𝐻 (Ω) 0
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Next, we define the approximation to the bilinear form 𝑎(⋅, ⋅).

Definition 6.9 (Approximate bilinear form for 𝑑 > 1). Let 𝛾 be a 𝛾 -shape regular mesh and 𝑆1, 𝑆2 ∈ 𝛾 be closed simplices in ℝ𝑑

with 𝑘 ∶= dim(𝑆1 ∩ 𝑆2) (setting 𝑘 ∶= −1 if 𝑆1 ∩ 𝑆2 = ∅). For piecewise polynomials 𝑣 ∈ 𝑆𝑝,10 (𝛾 ), 𝑤 ∈ 𝑆𝑟,10 (𝛾 ), using the notations 
𝐹𝑗 , 𝑗 = −1, … , 𝐾𝑘 from Corollary 6.3, we define the following tensor product quadrature rules

𝑄𝑛
𝑆1 ,𝑆2

(𝑣,𝑤) ∶=𝐺𝐽 0,𝛽1
𝑛,𝑡1

◦𝐺𝐿𝑛,𝑡2◦⋯◦𝐺𝐿𝑛,𝑡𝑑
(∑𝐾𝑘

𝑗=0 𝐹𝑗
)

for 𝑘 ≥ 0, (6.17)

𝑄𝑛
𝑆1 ,𝑆2

(𝑣,𝑤) ∶=𝐺𝐿𝑛,𝑡1◦⋯◦𝐺𝐿𝑛,𝑡𝑑
(
𝐹−1

)
for 𝑘 = −1, (6.18)

where 𝛽1 ∶= 1 − 2𝑠 + 𝑑 − 𝑘.

The final approximation to the bilinear form 𝑎(⋅, ⋅) reads

𝑎𝑛(𝑣,𝑤) ∶=
𝐶(𝑠, 𝑑)

2
∑
𝑆1∈𝛾

∑
𝑆2∈𝛾

𝑄𝑛
𝑆1,𝑆2

(𝑣,𝑤) +𝐶(𝑠, 𝑑)
∑
𝑆1∈𝛾

𝑄𝑛
𝑆1 ,Ω𝑐

(𝑣,𝑤). (6.19)

Here 𝑄𝑛
𝑆1 ,Ω𝑐

(𝑣, 𝑤) denotes an approximation to 𝐼𝑆1 ,Ω𝑐 (𝑣, 𝑤) given by (6.39).

Next, we employ scaling arguments to work out the dependence on the element sizes and the polynomial degree when estimating |𝑎(⋅, ⋅) − 𝑎𝑛(⋅, ⋅)|.
Adjacent or identical simplices

We start with the case of two simplices 𝑆1 , 𝑆2 with 𝑘 ∶= dim(𝑆1 ∩ 𝑆2) ≥ 0. We define the reference simplex as 𝑆𝑑 ∶=
{(𝑥1, … , 𝑥𝑑 ) | 𝑥𝑖 ≥ 0 ∀𝑖 = 1, … , 𝑑, 𝑥1 + ⋯ + 𝑥𝑑 ≤ 1}. As the simplices 𝑆𝑖, 𝑖 = 1, 2, share, by assumption, 𝑘 + 1 vertices, we may 
label the vertices �⃗�(𝑖,𝓁) of 𝑆𝑖 such that �⃗�(1,𝓁) = �⃗�(2,𝓁) for all 0 ≤ 𝓁 ≤ 𝑘 and �⃗�(1,𝓁) ≠ �⃗�(2,𝓁) for all 𝑘 + 1 ≤ 𝓁 ≤ 𝑑. With the 𝑑 × 𝑑-matrices

𝐴(𝑖) ∶=
(
�⃗�(𝑖,1) − �⃗�(𝑖,0) ⋯ �⃗�(𝑖,𝑑) − �⃗�(𝑖,0)

)
, 𝑖 = 1,2, (6.20)

the pullback transformation 𝐹𝑆1×𝑆2 is given by

𝐹𝑆1×𝑆2 ∶ 𝑆𝑑 ×𝑆𝑑 → 𝑆1 ×𝑆2, (�⃗�, 𝑦)↦
(
𝐹𝑆1 (�⃗�), 𝐹𝑆2 (𝑦)

)
∶=

(
�⃗�(1,0) +𝐴(1)�⃗�, �⃗�(2,0) +𝐴(2)𝑦

)
(6.21)

with its Jacobian 𝐽𝐹𝑆1×𝑆2 = | det𝐴(1) det𝐴(2)|. Denoting by �̂�𝑆𝑖 ∶= 𝑣|𝑆𝑖◦𝐹𝑆𝑖 and �̂�𝑆𝑖
∶= 𝑤|𝑆𝑖◦𝐹𝑆𝑖 for 𝑖 = 1, 2, the pullbacks to the 

reference simplex 𝑆𝑑 , the map 𝐹𝑆1×𝑆2 transforms the integral (6.7) to

𝐼𝑆1 ,𝑆2 (𝑣,𝑤) = ∫̂
𝑆𝑑

∫̂
𝑆𝑑

(�̂�𝑆1 (�⃗�) − �̂�𝑆2 (𝑦)) (�̂�𝑆1
(�⃗�) − �̂�𝑆2

(𝑦))|𝐹𝑆1 (�⃗�) − 𝐹𝑆2 (𝑦)|𝑑+2𝑠 𝐽𝐹𝑆1×𝑆2
𝑑𝑦𝑑�⃗�. (6.22)

As, for all elements in a 𝛾 -shape regular mesh 𝛾 , the lengths of all edges | �⃗�(𝑗,𝑖) − �⃗�(𝑗,0)| are controlled by the element diameter ℎ𝑆𝑗 , 
we obtain 𝐽𝐹𝑆1×𝑆2 ≤ 𝐶𝛾,𝑑 ℎ𝑑𝑆1 ℎ𝑑𝑆2 with a constant 𝐶𝛾,𝑑 that depends only on 𝛾 and the dimension 𝑑.

To simplify the notation we introduce �̂�(�⃗�, ⃗𝑦) ∶= �̂�𝑆1 (�⃗�) − �̂�𝑆2 (𝑦) and �̂�(�⃗�, ⃗𝑦) ∶= �̂�𝑆1
(�⃗�) − �̂�𝑆2

(𝑦). Corollary 6.3 yields for (6.22)

𝐼𝑆1 ,𝑆2 (𝑣,𝑤) = 𝐽𝐹𝑆1×𝑆2∫
[0,1]2𝑑

𝐾𝑘∑
𝑗=0

�̂�◦Φ𝑗 ( �⃗�)
𝑡1

�̂�◦Φ𝑗 ( �⃗�)
𝑡1

𝑡𝑑+2𝑠1|(𝐴(1)�⃗�−𝐴(2)𝑦)◦Φ𝑗 ( �⃗�)|𝑑+2𝑠 𝐽 𝑟𝑒𝑚Φ𝑗
( �⃗�)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶( �⃗�)

𝑡1−2𝑠+𝑑−𝑘1 𝑑 �⃗�. (6.23)

The estimate of the consistency error is again based on Lemma 5.3, which directly generalizes to higher dimensions. Corollary 6.3

shows that  allows for a holomorphic extension to a Bernstein ellipse ̂𝜌 in each variable with fixed 𝜌𝐴(1) ,𝐴(2) > 1, ostensibly dependent 
on the transformation matrices 𝐴(1), 𝐴(2) but independent of 𝑣 ∈ 𝑆𝑝,10 (𝛾 ), 𝑤 ∈ 𝑆𝑟,10 (𝛾 ). By Assumption 6.5, there is only a finite 
number of patch configurations in 𝛾 , which leads, up to scaling, to a finite number of different matrices 𝐴(1), 𝐴(2). To remove the 
scaling dependence, we note that

𝐴(1)�⃗�−𝐴(2)𝑦 = ℎ𝑆1
(
ℎ−1𝑆1

𝐴(1)�⃗�− ℎ−1𝑆1 𝐴
(2)𝑦

)
. (6.24)

For 𝛾 -shape regular meshes we have ℎ𝑆1 ∼ ℎ𝑆2 and the diameter of each simplex is proportional to all edge lengths, which leads 
for 𝐴(𝑖) ∶= ℎ−1

𝑆1
𝐴(𝑖) to ‖𝐴(𝑖)‖1 = (1) for 𝑖 = 1, 2 and subsequently to a finite number of different values 𝜌𝐴(1) ,𝐴(2) > 1. Thus, we 

have a holomorphic extension of  to a Bernstein ellipse ̂𝜌 with a fixed 𝜌 ∶= min𝐴(1) ,𝐴(2) (𝜌𝐴(1) ,𝐴(2) ) > 1. To finish the estimate of 
the consistency error, it suffices to bound each of the three quotients in (6.23) in the norms ‖ ⋅ ‖𝐿∞(̂2𝑑⧵𝓁×̂𝓁𝜌 ), where ̂ ∶= (0, 1) and 

̂2𝑑⧵𝓁 × ̂𝓁 ∶= ̂ ×⋯ × ̂ × ̂𝜌 × ̂ ×⋯ × ̂ denotes the set where the 𝓁-th component of ̂2𝑑 is extended to the Bernstein ellipse ̂𝜌.
𝜌
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Using �̂�𝑆1 (0⃗) = �̂�𝑆2 (0⃗) for 𝑘 ≥ 0, the first term can be bounded as in Lemma 5.4 using the Bernstein and Markov inequalities by

‖‖‖�̂�◦Φ𝑗 𝑡
−1
1
‖‖‖𝐿∞(̂2𝑑⧵𝓁×̂𝓁𝜌 ) =

‖‖‖‖
𝑡1

∫
0

𝜕𝜏
(�̂�◦Φ𝑗 (𝜏, 𝑡2,… , 𝑡𝑑 )

)
𝑑𝜏 𝑡−11

‖‖‖‖𝐿∞(̂2𝑑⧵𝓁×̂𝓁𝜌 )
≤ ‖‖‖𝜕𝑡1(�̂�◦Φ𝑗 ( �⃗�)

)‖‖‖𝐿∞(̂2𝑑⧵𝓁×̂𝓁𝜌 )

≤ 𝜌𝑞Φ𝑝‖‖‖𝜕𝑡1(�̂�◦Φ𝑗 ( �⃗�)
)‖‖‖𝐿∞(̂2𝑑 ) ≲ (𝑞Φ𝑝)2𝜌𝑞Φ𝑝

‖‖‖�̂�◦Φ𝑗 ( �⃗�)
‖‖‖𝐿∞(̂2𝑑 ) = (𝑞Φ𝑝)2𝜌𝑞Φ𝑝

‖‖‖�̂�
‖‖‖𝐿∞(Φ𝑗 (̂2𝑑 )) ≤ (𝑞Φ𝑝)2𝜌𝑞Φ𝑝

‖‖‖�̂�
‖‖‖𝐿∞(𝑆𝑑×𝑆𝑑 )

= (𝑞Φ𝑝)2𝜌𝑞Φ𝑝
‖‖‖�̂�𝑆1 − �̂�𝑆1 (0⃗) + �̂�𝑆2 (0⃗) − �̂�𝑆2‖‖‖𝐿∞(𝑆𝑑×𝑆𝑑 )

≤ (𝑞Φ𝑝)2𝜌𝑞Φ𝑝
(‖‖‖�̂�𝑆1 − �̂�𝑆1 (0⃗)‖‖‖𝐿∞(𝑆𝑑 )

+ ‖‖‖�̂�𝑆2 − �̂�𝑆2 (0⃗)‖‖‖𝐿∞(𝑆𝑑 )

)
, (6.25)

where, again, 𝑞Φ is the maximal degree of the polynomial transformations Φ𝑗 . On the reference simplex, there holds by Markov’s 
inequality and inductive application of the inverse inequality from [31, Thm. 3.92] that‖‖‖�̂�𝑆1 − �̂�𝑆1 (0⃗)‖‖‖𝐿∞(𝑆𝑑 )

≲
‖‖‖∇�̂�𝑆1‖‖‖𝐿∞(𝑆𝑑 )

= ‖‖‖∇(�̂�𝑆1 − �̂�𝑆1 )‖‖‖𝐿∞(𝑆𝑑 )
≲ (𝑞Φ𝑝)2

‖‖‖�̂�𝑆1 − �̂�𝑆1‖‖‖𝐿∞(𝑆𝑑 )

≲ (𝑞Φ𝑝)2+𝑑
‖‖‖�̂�𝑆1 − �̂�𝑆1‖‖‖𝐿2(𝑆𝑑 )

≲ (𝑞Φ𝑝)2+𝑑
|||�̂�𝑆1 |||𝐻𝑠(𝑆𝑑 )

≤ 𝐶𝛾,𝑑,𝑠(𝑞Φ𝑝)2+𝑑ℎ𝑠−𝑑∕2𝑆1

|||𝑣|𝑆1 |||𝐻𝑠(𝑆1)
, (6.26)

where 𝐶𝛾,𝑑,𝑠 is a constant that depends only on 𝛾 , 𝑑, 𝑠. This finishes the upper bound for the first quotient in (6.23)‖‖‖�̂�◦Φ𝑗 𝑡
−1
1
‖‖‖𝐿∞(̂2𝑑⧵𝓁×̂𝓁𝜌 ) ≤ 𝐶𝛾,𝑑,𝑠 𝜌

𝑞Φ𝑝 (𝑞Φ𝑝)4+𝑑 max
(
ℎ
𝑠−𝑑∕2
𝑆1

|||𝑣|𝑆1 |||𝐻𝑠(𝑆1)
, ℎ

𝑠−𝑑∕2
𝑆2

|||𝑣|𝑆2 |||𝐻𝑠(𝑆2)

)
≲ 𝐶𝛾,𝑑,𝑠 𝜌

𝑞Φ𝑝 (𝑞Φ𝑝)4+𝑑ℎ
𝑠−𝑑∕2
𝑆1

|𝑣|𝐻𝑠(𝑐𝑜(𝑆1 ,𝑆2)), (6.27)

where 𝑐𝑜(𝑆1, 𝑆2) denotes the convex hull of 𝑆1 and 𝑆2.

The second factor in the integrand in (6.23) can be treated in the same way. The estimate for the third factor in the integrand 
follows again, as discussed above, by Assumption 6.5 and (6.24)

‖‖‖‖‖
𝑡𝑑+2𝑠1|(𝐴(1)�⃗�−𝐴(2)𝑦)◦Φ𝑗 ( �⃗�)|𝑑+2𝑠

‖‖‖‖‖𝐿∞(̂2𝑑⧵𝓁×̂𝓁𝜌 )
= ℎ−𝑑−2𝑠𝑆1

‖‖‖‖‖‖
𝑡𝑑+2𝑠1|||(ℎ−1𝑆1𝐴(1)�⃗�− ℎ−1
𝑆1
𝐴(2)𝑦

)
◦Φ𝑗 ( �⃗�)

|||𝑑+2𝑠
‖‖‖‖‖‖𝐿∞(̂2𝑑⧵𝓁×̂𝓁𝜌 )

≤ 𝐶𝛾,𝑠,𝜌,𝑑 ℎ−𝑑−2𝑠𝑆1
,

where the last estimate follows from the observation that we only have a finite number of cases for the function inside the norm. 
Now, we have deduced the appropriate scaling in terms of the element sizes for each factor in (6.23) in the 𝐿∞-norm and inserting 
everything into the higher-dimensional analog of Lemma 5.3 yields

|𝐼𝑆1 ,𝑆2 (𝑣,𝑤) −𝑄𝑛
𝑆1 ,𝑆2

(𝑣,𝑤)| ≤ 𝐶𝑠,𝛾,𝜌,𝑑 (𝑞Φ𝑝)𝑑+4(𝑞Φ𝑟)𝑑+4𝜌𝑞Φ(𝑝+𝑟)−2𝑛+1|𝑣|𝐻𝑠(𝑐𝑜(𝑆1 ,𝑆2))|𝑤|𝐻𝑠(𝑐𝑜(𝑆1 ,𝑆2)) (6.28)

for adjacent or identical simplices 𝑆1, 𝑆2.

Separated simplices

For the case 𝑆1 ∩𝑆2 = ∅, i.e. 𝑘 = −1, we start with the same transformation as in (6.22), where we labelled the vertices such that 
there holds ‖ �⃗�(1,0) − �⃗�(2,0)‖2 = min𝑖,𝑗 ‖ �⃗�(1,𝑖) − �⃗�(2,𝑗)‖2 is the shortest Euclidean distance between vertices of 𝑆1 and 𝑆2. Corollary 6.3

yields for (6.22)

𝐼𝑆1 ,𝑆2 (𝑣,𝑤) = 𝐽𝐹𝑆1×𝑆2∫
[0,1]2𝑑

�̂�◦Φ−1( �⃗�)�̂�◦Φ−1( �⃗�) |(𝐹𝑆1 (�⃗�) − 𝐹𝑆2 (𝑦))◦Φ−1( �⃗�)|−𝑑−2𝑠 𝐽Φ−1
( 𝑡)𝑑 �⃗�. (6.29)

For simplices 𝑆1, 𝑆2 define 𝑑𝑆1 ,𝑆2 ∶= dist(𝑆1, 𝑆2) and pick a closed ball 𝐵𝑆1 ,𝑆2 with 𝑆1, 𝑆2 ⊆ 𝐵𝑆1 ,𝑆2 and diam𝐵𝑆1 ,𝑆2 ≤ ℎ𝑆1 + ℎ𝑆2 +
𝑑𝑆1 ,𝑆2 . The integrand can be estimated with a combination of arguments applied to the case 𝑘 ≥ 0 and the case 𝑑 = 1 in Lemma 5.5. 
Inserting the mean 𝑣𝐵𝑆1 ,𝑆2 ∶= ∫𝐵𝑆1 ,𝑆2 𝑣(𝑥)𝑑𝑥∕|𝐵𝑆1 ,𝑆2 | gives

‖‖‖�̂�◦Φ−1
‖‖‖𝐿∞(̂2𝑑⧵𝓁×̂𝓁𝜌 ) ≤ 𝜌

𝑞Φ𝑝
‖‖‖‖�̂�◦Φ−1

‖‖‖‖𝐿∞(̂2𝑑 )
≤ 𝐶𝜌𝑞Φ𝑝‖‖‖‖�̂�𝑆1 − �̂�𝑆2‖‖‖‖𝐿∞(𝑆𝑑×𝑆𝑑 )

≤ 𝐶𝜌𝑞Φ𝑝(‖‖‖�̂�𝑆1 − 𝑣𝐵𝑆1 ,𝑆2 ‖‖‖𝐿∞(𝑆𝑑 )
+ ‖‖‖�̂�𝑆2 − 𝑣𝐵𝑆1 ,𝑆2 ‖‖‖𝐿∞(𝑆𝑑 )

)
. (6.30)

With an 𝐿∞–𝐿2 inverse estimate on the reference simplex and a Poincaré type estimate for the ball 𝐵𝑆1 ,𝑆2 there holds‖‖‖�̂�𝑆1 − 𝑣𝐵𝑆1 ,𝑆2 ‖‖‖𝐿∞(𝑆𝑑 )
≤ 𝐶𝑑 (𝑞Φ𝑝)𝑑‖‖‖�̂�𝑆1 − 𝑣𝐵𝑆1 ,𝑆2 ‖‖‖𝐿2(𝑆𝑑 )

≤ 𝐶𝛾,𝑑,𝑠 ℎ−𝑑∕2𝑆1
(𝑞Φ𝑝)𝑑

‖‖‖𝑣− 𝑣𝐵𝑆1 ,𝑆2 ‖‖‖𝐿2(𝑆1)

≤ 𝐶𝛾,𝑑,𝑠 ℎ−𝑑∕2𝑆1
(ℎ𝑆1 + ℎ𝑆2 + 𝑑𝑆1 ,𝑆2 )

𝑠(𝑞Φ𝑝)𝑑 |𝑣|𝐻𝑠(𝐵𝑆1 ,𝑆2 )
, (6.31)

where 𝐶𝛾,𝑑,𝑠 is a constant that depends only on 𝛾 , 𝑑, 𝑠. For the third factor in the integrand in (6.29), we note

|(𝐹𝑆1 (�⃗�) − 𝐹𝑆2 (𝑦))◦Φ−1( �⃗�)|−𝑑−2𝑠 = |( �⃗�(1,0) − �⃗�(2,0) +𝐴(1)�⃗�−𝐴(2)𝑦)◦Φ−1( �⃗�)|−𝑑−2𝑠. (6.32)
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It follows that‖‖‖|(𝐹𝑆1 (�⃗�) − 𝐹𝑆2 (𝑦))◦Φ−1( �⃗�)|−𝑑−2𝑠‖‖‖𝐿∞(̂2𝑑⧵𝓁×̂𝓁𝜌 )
≤ 𝑑−𝑑−2𝑠𝑆1 ,𝑆2

‖‖‖|(𝑑−1𝑆1 ,𝑆2 ( �⃗�(1,0) − �⃗�(2,0)) + 𝑑−1𝑆1 ,𝑆2𝐴
(1)�⃗�− 𝑑−1𝑆1,𝑆2𝐴

(2)𝑦)◦Φ−1( �⃗�)|−𝑑−2𝑠‖‖‖𝐿∞(̂2𝑑⧵𝓁×̂𝓁𝜌 ). (6.33)

By Assumption 6.5, there is only a finite number of patch configurations in 𝛾 , which leads, up to scaling, to a finite number of 
different matrices 𝐴(1), 𝐴(2). The 𝛾 -shape regularity and choice of numbering of the vertices yield |( �⃗�(1,0) − �⃗�(2,0))| ∼ 𝑑𝑆1 ,𝑆2 and ‖𝑑−1

𝑆1 ,𝑆2
𝐴(1)‖1, ‖𝑑−1𝑆1 ,𝑆2𝐴(2)‖1 =(1). This leads to a finite number of holomorphic extensions. Hence, there is a 𝜌 > 1 depending only 

on 𝛾 and Ω for which, in each variable, a holomorphic extension to the Bernstein ellipse ̂𝜌 is possible, and this extension can be 
bounded by‖‖‖|(𝐹𝑆1 (�⃗�) − 𝐹𝑆2 (𝑦))◦Φ−1( �⃗�)|−𝑑−2𝑠‖‖‖𝐿∞(̂2𝑑⧵𝓁×̂𝓁𝜌 ) ≤ 𝐶𝛾,𝑠,𝑑 𝑑

−𝑑−2𝑠
𝑆1 ,𝑆2

. (6.34)

Inserting everything into the higher-dimensional analog of Lemma 5.3 yields for separated simplices 𝑆1, 𝑆2

|𝐼𝑆1 ,𝑆2 (𝑣,𝑤) −𝑄𝑛
𝑆1 ,𝑆2

(𝑣,𝑤)| ≤ 𝐶𝑠,𝛾,𝑑 (𝑞Φ𝑝)𝑑 (𝑞Φ𝑟)𝑑𝜌𝑞Φ(𝑝+𝑟)−2𝑛+1|𝑣|𝐻𝑠(𝐵𝑆1 ,𝑆2 )
|𝑤|𝐻𝑠(𝐵𝑆1 ,𝑆2 )

, (6.35)

where we used that for 𝛾 -shape regular meshes there holds 𝑑𝑆1 ,𝑆2 ≥ 𝐶max{ℎ𝑆1 , ℎ𝑆2} for some 𝐶 > 0 depending on 𝛾 so that the 
combined effect of the scaling parameters of all contributions in (6.29) can be uniformly bounded by

𝑑−𝑑−2𝑠𝑆1 ,𝑆2
ℎ𝑑𝑆1

ℎ𝑑𝑆2
(ℎ𝑆1 + ℎ𝑆2 + 𝑑𝑆1 ,𝑆2 )

2𝑠(ℎ−𝑑∕2
𝑆1

+ ℎ−𝑑∕2
𝑆2

)2 ≤ 𝐶𝛾,𝑠.
Combining the estimates for all cases with the simple observation 𝑐𝑜(𝑆1 , 𝑆2) ⊆ 𝐵𝑆1 ,𝑆2 yields the following lemma for the quadrature 

error.

Lemma 6.10. Let 𝛾 be a 𝛾 -shape regular mesh satisfying Assumption 6.5. Let 𝑆1, 𝑆2 ∈ 𝛾 be closed simplices in ℝ𝑑 and denote by 𝐵𝑆1,𝑆2
a closed ball with diam𝐵𝑆1 ,𝑆2 ≤ ℎ𝑆1 + ℎ𝑆2 + dist(𝑆1, 𝑆2) that contains the simplices 𝑆1, 𝑆2 ⊆ 𝐵𝑆1 ,𝑆2 . Then, for the integral 𝐼𝑆1,𝑆2 (𝑣, 𝑤)
from (6.7) and its approximation 𝑄𝑛

𝑆1,𝑆2
(𝑣, 𝑤) by quadrature, there exists a constant 𝜌 > 1 that depends only on 𝛾 and Ω such that for all 

𝑣 ∈ 𝑆𝑝,10 (𝛾 ), 𝑤 ∈ 𝑆𝑟,10 (𝛾 ) there holds

|𝐼𝑆1 ,𝑆2 (𝑣,𝑤) −𝑄𝑛
𝑆1 ,𝑆2

(𝑣,𝑤)| ≤ 𝐶𝑠,𝛾,𝑑 (𝑞Φ𝑝)𝑑+4(𝑞Φ𝑟)𝑑+4𝜌𝑞Φ(𝑝+𝑟)−2𝑛+1|𝑣|𝐻𝑠(𝐵𝑆1 ,𝑆2 )
|𝑤|𝐻𝑠(𝐵𝑆1 ,𝑆2 )

(6.36)

with the constant 𝐶𝑠,𝛾,𝑑 depending only on 𝑠, 𝛾 , 𝑑, and Ω; 𝑞Φ is given by Proposition 6.1.

6.3. Treatment of Ω𝑐

In this section, we discuss the issue that the evaluation of the bilinear form 𝑎(⋅, ⋅) requires the evaluation of 𝐼𝑆1 ,Ω𝑐 given by (6.3). 
This is addressed using two ingredients:

(i) we select an open set 𝐵𝑅 with Ω ⊂ 𝐵𝑅 (for convenience, this set will be taken to be a hypercube (−𝑅, 𝑅)𝑑 below) and extend 
the mesh 𝛾 to a triangulation  𝑅

𝛾 of 𝐵𝑅 satisfying Assumption 6.5. For this triangulation, we may employ the quadrature 
technique used above.

(ii) We develop a quadrature rule for integration over 𝐵𝑐
𝑅
∶=ℝ𝑑 ⧵𝐵𝑅 and exploit that dist(𝑆1, 𝐵𝑐𝑅) ≥ dist(Ω, 𝐵𝑐

𝑅
) > 0 together with 

analyticity of the integrand.

We focus on (ii). Let 𝐵𝑅 ∶= (−𝑅, 𝑅)𝑑 for a fixed 𝑅 > 0. Introduce the cones 1 ∶= {(𝑦1, 𝑦1𝑦′) | 𝑦1 > 𝑅, 𝑦′ ∈ [−1, 1]𝑑−1} as well 
as 𝑖, 𝑖 = 2, … , 2𝑑 obtained by rotating 1 so that the centerline of 𝑖 is aligned with one of the unit vectors (±1, 0, … , 0), 
(0, ±1, 0, … , 0), … , (0, … , 0, ±1) ∈ℝ𝑑 . An integral of the kernel function over 1 can be evaluated using the transformation 𝜂 = 1∕𝑦1
as follows:

𝐺1(�⃗�) ∶= ∫
𝑦∈1

|�⃗�− 𝑦|−(𝑑+2𝑠) 𝑑𝑦 = ∫
𝑦′∈[−1,1]𝑑−1

∞

∫
𝑦1=𝑅

|�⃗�− 𝑦1(1, 𝑦′)⊤|−(𝑑+2𝑠)𝑦𝑑−11 𝑑𝑦′ 𝑑𝑦1

= ∫
𝑦′∈[−1,1]𝑑−1

1∕𝑅

∫
𝜂=0

|𝜂�⃗�− (1, 𝑦′)⊤|−(𝑑+2𝑠)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶1(�⃗�,𝜂,𝑦′)
𝜂2𝑠−1 𝑑𝜂 𝑑𝑦′.

This suggests to use a tensor product quadrature with (product) Gauss-Legendre quadrature in the 𝑦′ -variables and a Gauss-Jacobi 
quadrature with weight 𝜂2𝑠−1 in the 𝜂-variable. Key to the performance of the quadrature rule is the analyticity of the function 1 :

Lemma 6.11. Let Ω ⊂ 𝐵𝑅 = (−𝑅, 𝑅)𝑑 . Then:

(i) The function 𝐺1 is analytic on Ω.
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(ii) The function 1 is analytic on Ω× [0, 1∕𝑅] × [−1, 1]𝑑−1.

(iii) The functions 𝐺1 and 1 are positive on Ω and Ω× [0, 1∕𝑅] × [−1, 1]𝑑−1, respectively.

Analyticity of a function 𝐺 on a closed set 𝐴 ⊂ℝ𝑛 means that there is a complex neighborhood 𝐴𝜀 ⊂ℂ𝑛 of 𝐴 and a function 𝐺𝜀 holomorphic 
on 𝐴𝜀 with 𝐺𝜀|𝐴 =𝐺.

Proof. Proof of (iii): Consider the function

𝐺(𝑥1,… , 𝑥𝑑 , 𝜂, 𝑦
′
2,… , 𝑦′𝑑 ) ∶= (𝜂𝑥1 − 1)2 +

𝑑∑
𝑖=2

(𝜂𝑥𝑖 − 𝑦′𝑖)
2 = 𝜂2|�⃗�− 𝜂−1(1, 𝑦′)⊤|2, (6.37)

which is an entire function on ℂ2𝑑 . We claim that 𝐺(�⃗�, 𝜂, 𝑦′) > 0 on 𝐾 ∶= Ω×[0, 1∕𝑅] ×[−1, 1]𝑑−1. Since �⃗� ∈Ω and 𝜂−1(1, 𝑦′)⊤ ∈ 1 ⊂
𝐵𝑐
𝑅

, we have 𝐺 ≥ (𝜂2 dist(Ω, 𝐵𝑐
𝑅
))2 > 0 for 𝜂 > 0. For 𝜂 = 0, we have 𝐺(�⃗�, 0, 𝑦′) = |(1, 𝑦′)|2 ≥ 1. Since 1 =𝐺−(𝑑+2𝑠)∕2 > 0, the integrand 

of 𝐺1 is positive. This finishes the proof of (iii).
Proof of (ii): By positivity of 𝐺 on the compact set 𝐾 and the smoothness of 𝐺, there is a complex neighborhood 𝐾𝜀 ∶= ∪𝑧∈𝐾𝐵𝜀(𝑧) ⊂

ℂ2𝑑 such that Re𝐺 > 0 on 𝐷𝜀. Hence, with the principal branch of the logarithm, the function exp(− 𝑑+2𝑠
2 log𝐺(𝑧)) is holomorphic 

on 𝐾𝜀 and coincides with 1 on 𝐾 .

Proof of (i): This follows from (ii). □

In total, we have arrived at

𝐼𝑆1 ,Ω𝑐 (𝑣,𝑤) =
∑

𝑆2∈ 𝑅𝛾 ⧵𝛾
𝐼𝑆1 ,𝑆2 (𝑣,𝑤) +

2𝑑∑
𝑖=1

∫
�⃗�∈𝑆1

𝐺𝑖(�⃗�)𝑣(�⃗�)𝑤(�⃗�)𝑑�⃗�,

where the functions 𝐺𝑖, 𝑖 ≥ 2, are defined as 𝐺1 with 1 replaced with 𝑖. Analogous to Lemma 6.11, the functions 𝐺𝑖 and the 
corresponding integrands 𝑖 are analytic. For a fully discrete approximation of 𝐼𝑆1 ,Ω𝑐 (𝑣, 𝑤), we denote by 𝑄𝑛

𝑆1 ,1 (𝑣, 𝑤) the quadrature 
rule to evaluate

𝐼𝑆1 ,1 (𝑣,𝑤) ∶= ∫
�⃗�∈𝑆1

𝑣(�⃗�)𝑤(�⃗�) ∫
𝑦′∈[−1,1]𝑑−1

1∕𝑅

∫
𝜂=0

1(�⃗�, 𝜂, 𝑦′)𝜂2𝑠−1 𝑑𝜂 𝑑𝑦′𝑑�⃗�

with a tensor product Gauss-Legendre rule (with 𝑛 points for each variable) for the integration in 𝑦′, a Gauss-Jacobi rule (with 𝑛
points) for the integration in 𝜂, and the tensor product Gauss-Legendre rule (6.14) for the integration in �⃗� over the simplex 𝑆1, i.e.,

𝑄𝑛
𝑆1 ,1 (𝑣,𝑤) ∶=𝐺𝐿

𝑛
𝑆,�⃗�

(𝑣𝑤𝐺𝐽 0,2𝑠−1
𝑛,𝜂 ◦𝐺𝐿𝑛,𝑦′1

◦⋯◦𝐺𝐿𝑛,𝑦′
𝑑−1

(1◦𝐹𝜂,𝑦′ 𝐽𝐹𝜂,𝑦′ )), (6.38)

where the pullback transformation 𝐹𝜂,𝑦′ ∶ [0, 1∕𝑅] × [−1, 1]𝑑−1 → [0, 1]𝑑 is defined in a canonical way and 𝐽𝐹𝜂,𝑦′ denotes its Jacobian. 
Analogously, we define rules 𝑄𝑛

𝑆1 ,𝑖 , 𝑖 ≥ 2. The fully discrete approximation is then given by

𝐼𝑆1 ,Ω𝑐 (𝑣,𝑤) ≈𝑄
𝑛
𝑆1 ,Ω𝑐

(𝑣,𝑤) ∶=
∑

𝑆2∈ 𝑅𝛾 ⧵𝛾
𝑄𝑛
𝑆1,𝑆2

(𝑣,𝑤) +
2𝑑∑
𝑖=1

𝑄𝑛
𝑆1 ,𝑖 (𝑣,𝑤). (6.39)

Remark 6.12. The function �⃗�↦ ∫𝐵𝑐
𝑅
|�⃗�−𝑦|−(𝑑+2𝑠) 𝑑𝑦 is analytic on Ω. Hence, it could be approximated by a (piecewise) polynomial on 

a coarse mesh. A computational speed-up is then possible since the evaluation of the 𝑄𝑛
𝑆1 ,𝑖 (𝑣, 𝑤) can be replaced with the evaluation 

of ∫𝑆1 𝑣(�⃗�)𝑤(�⃗�)𝜋(�⃗�) 𝑑�⃗� for some polynomials 𝜋. Precomputing on the reference element is an option. ■

6.4. Exponential convergence under quadrature

Combining the approximation results for the integrals 𝐼𝑆1 ,𝑆2 (𝑣, 𝑤) and 𝐼𝑆1 ,Ω𝑐 (𝑣, 𝑤) from the previous subsections, we directly 
arrive at an error estimate for the consistency error for the bilinear form 𝑎(⋅, ⋅).

Lemma 6.13 (Consistency error for bilinear form 𝑎 for 𝑑 > 1). Let 𝛾 be a 𝛾 -shape regular triangulation of Ω ⊂ ℝ𝑑 , 𝑅 > 0 be such that 
Ω ⊂ (−𝑅, 𝑅)𝑑 and  𝑅

𝛾 be a 𝛾 -shape regular mesh that extends the mesh 𝛾 to (−𝑅, 𝑅)𝑑 . Assume  𝑅
𝛾 satisfies Assumption 6.5. Let 𝑎(⋅, ⋅) be 

the bilinear form of (6.1) and 𝑎𝑛(⋅, ⋅) be its approximation given by (6.19). Then, there exists a constant 𝜌 > 1 that depends only on the shape 
regularity constant 𝛾 and Ω such that for all 𝑣 ∈ 𝑆𝑝,10 (𝛾 ) and 𝑤 ∈ 𝑆𝑟,10 (𝛾 ) there holds

|𝑎(𝑣,𝑤) − 𝑎𝑛(𝑣,𝑤)| ≤ 𝐶𝑠,𝛾,𝑑 (# 𝑅
𝛾 )2𝑝𝑑+4𝑟𝑑+4𝜌𝑞Φ(𝑟+𝑝)−2𝑛+1‖𝑣‖�̃�𝑠(Ω)‖𝑤‖�̃�𝑠(Ω), (6.40)

with constants 𝐶𝑠,𝛾,𝑑 depending only on 𝑠, 𝛾 , 𝑑, and Ω; 𝑞Φ is given by Proposition 6.1.
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Proof. With the triangle inequality, (6.19) and (6.39), we obtain

|𝑎(𝑣,𝑤)−𝑎𝑛(𝑣,𝑤)| ≤ 𝐶(𝑠, 𝑑)
2

( ∑
𝑆1∈𝛾

∑
𝑆2∈𝛾

|𝐼𝑆1 ,𝑆2 (𝑣,𝑤) −𝑄𝑛
𝑆1 ,𝑆2

(𝑣,𝑤)|
+ 2

∑
𝑆1∈𝛾

∑
𝑆2∈ 𝑅𝛾 ⧵𝛾

|𝐼𝑆1 ,𝑆2 (𝑣,𝑤) −𝑄𝑛
𝑆1,𝑆2

(𝑣,𝑤)|+ 2
2𝑑∑
𝑖=1

|𝐼𝑆1 ,𝑖 (𝑣,𝑤) −𝑄𝑛
𝑆1 ,𝑖 (𝑣,𝑤)|

)
.

The terms |𝐼𝑆1 ,𝑆2 (𝑣, 𝑤) − 𝑄𝑛
𝑆1 ,𝑆2

(𝑣, 𝑤)| can be estimated with Lemma 6.10. The other contributions of the form |𝐼𝑆1 ,𝑖 (𝑣, 𝑤) −
𝑄𝑛
𝑆1 ,𝑖 (𝑣, 𝑤)| correspond to approximation of ∫𝑆1 𝑣(�⃗�)𝑤(�⃗�)𝐺𝑖(�⃗�) 𝑑�⃗� with analytic functions 𝐺𝑖 and thus take the same form as the 

integrals involved in the linear form 𝑙(⋅). Thus, a combination of Lemma 6.10 and Lemma 6.8 together with summation over all 
simplices gives the result. □

With the estimate for the consistency error, we directly obtain uniform coercivity as in the case 𝑑 = 1 by a perturbation argument 
as described in Lemma 4.4. Note that the integral transformations Φ𝑗 for 𝑑 > 1 induce an additional constant 𝑞Φ in the exponential 
term in the consistency error. In order to compensate for that the number of quadrature points now has to grow like 𝜆𝑝 for some 
𝜆 > 1.

Theorem 6.14 (Uniform coercivity, 𝑑 > 1). Let the assumptions of Lemma 6.13 hold. Then, there are constants 𝛼, 𝜆1, 𝜆2 > 0 depending 
only on 𝑠, the shape regularity constant 𝛾 , the dimension 𝑑, and Ω such that for 𝑛 ≥ 𝜆1𝑝 + 𝜆2 ln(# 𝑅

𝛾 + 1) there holds

𝛼‖𝑣‖2
�̃�𝑠(Ω)

≤ 𝑎𝑛(𝑣, 𝑣) for all 𝑣 ∈ 𝑆𝑝,10 (𝛾 ). (6.41)

Employing the Strang Lemma, we can derive a result similar to Theorem 2.4 for 𝑑 > 1 by the same arguments. The error of the 
fully discrete FEM approximation can be bounded by the exact FEM error and a consistency error that decays exponentially in the 
number of quadrature points.

Theorem 6.15 (Exponential convergence under quadrature, 𝑑 > 1). Let 𝛾 be a 𝛾 -shape regular triangulation of the bounded polyhedron 
Ω ⊂ ℝ𝑑 . Let 𝑅 > 0 be such that Ω ⊂ (−𝑅, 𝑅)𝑑 , and let  𝑅

𝛾 be a 𝛾 -shape regular mesh that extends the mesh 𝛾 to (−𝑅, 𝑅)𝑑 . Assume  𝑅
𝛾

satisfies Assumption 6.5. Let 𝑓 be analytic in Ω. Denote by 𝑢 ∈ �̃�𝑠(Ω) the solution to (6.1), by 𝑢𝑟 ∈ 𝑆
𝑟,1
0 (𝛾 ) the FEM solution for the exact 

variational formulation in the space 𝑆𝑟,10 (𝛾 ) ⊆ 𝑆𝑝,10 (𝛾 ), and by �̃�𝑁,𝑛 ∈ 𝑆
𝑝,1
0 (𝛾 ) the solution to

𝑎𝑛(�̃�𝑁,𝑛, 𝑣𝑁 ) = �̃�(𝑣𝑁 ) ∀𝑣𝑁 ∈ 𝑆𝑝,10 (𝛾 ),
where 𝑎𝑛(⋅, ⋅) and ̃𝑙𝑛(⋅) are defined in (6.19) and (6.15). The index 𝑛 indicates the number of quadrature points that is used per coordinate 
direction per integral and element.

Then, there exist constants 𝜌 > 1, 𝜆1, 𝜆2, 𝐶𝑠,𝛾,𝑑 > 0 (depending only on 𝑠, Ω, 𝑑, 𝛾), such that for all 𝑝, # 𝑅
𝛾 and 𝑛 with 𝑛 ≥ 𝜆1𝑝 +

𝜆2 ln(# 𝑅
𝛾 + 1)) and 𝑟 ∈ {1, … , 𝑝} there holds

‖𝑢− �̃�𝑁,𝑛‖�̃�𝑠(Ω) ≤ ‖𝑢− 𝑢𝑟‖�̃�𝑠(Ω) +𝐶𝑠,𝛾,𝑑 (# 𝑅
𝛾 )2𝑝𝑑+4𝑟𝑑+4𝜌𝑞Φ(𝑝+𝑟)−2𝑛+1; (6.42)

the constant 𝑞Φ is given by Proposition 6.1. The number of operations to compute the stiffness is ((𝑛𝑝)2𝑑(# 𝑅
𝛾 )2).

Remark 6.16. The treatment of the complementary part Ω𝑐 in the bilinear form induces the appearance of the term # 𝑅
𝛾 in the 

error estimate (6.42). In the context of shape-regular ℎ𝑝-FEM “boundary concentrated meshes” [22] both for 𝛾 and  𝑅
𝛾 are a natural 

choice. The total number of elements is then proportional to the number of elements touching the boundary 𝜕Ω and thus # 𝑅
𝛾 is 

proportional to #𝛾 . ■

7. Numerical experiments

In this section, we present some numerical examples that underline the theoretical estimates in our main results, Theorem 2.4. 
We consider

(−Δ)𝑠𝑢 = 1 in Ω ∶= (−1,1), 𝑢 = 0 on Ω𝑐 ,

with exact solution 𝑢(𝑥) = 2−2𝑠
√
𝜋(Γ(𝑠 + 1∕2)Γ(1 + 𝑠))−1(1 − 𝑥2)𝑠.

In the following, we will present three different approaches to estimate the energy norm error between the exact solution 𝑢 and 
the fully discrete ℎ𝑝-FEM approximation �̃�𝑁,𝑛
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Fig. 1. Three different methods (see Example 7.1) to calculate the energy norm error of ℎ𝑝-FEM with 𝑛 =(𝑝) quadrature points on a geometric mesh with grading 
factor 𝜎 = 0.172, polynomial degree 𝑝 =𝐿, 𝑠 = 3∕4.√

𝑎(𝑢− �̃�𝑁,𝑛, 𝑢− �̃�𝑁,𝑛) =
√
𝑎(𝑢, 𝑢) − 𝑎(�̃�𝑁,𝑛, �̃�𝑁,𝑛) − 2𝑎(𝑢− �̃�𝑁,𝑛, �̃�𝑁,𝑛).

If the quadrature error is ignored, i.e., if it is assumed that 𝑢𝑁 = �̃�𝑁,𝑛, then Galerkin orthogonality 𝑎(𝑢 − �̃�𝑁,𝑛, ̃𝑢𝑁,𝑛) = 0 holds and, 
assuming that 𝑎(𝑢, 𝑢) is known, the error can be computed in the standard way as the square root of the difference between the energies 
of the exact solution and the Galerkin approximation. The exact energy 𝑎(�̃�𝑁,𝑛, ̃𝑢𝑁,𝑛) of ̃𝑢𝑁,𝑛 can in general only be approximated by 
quadrature, leading to an error estimate of the form√

𝑎(𝑢− �̃�𝑁,𝑛, 𝑢− �̃�𝑁,𝑛) ≈
√
𝑎(𝑢, 𝑢) − 𝑎𝑚(�̃�𝑁,𝑛, �̃�𝑁,𝑛), (7.1)

where 𝑚 ≥ 𝑛 denotes a number of quadrature points used. However, as 𝑢 and �̃�𝑁,𝑛 solve different variational formulations, Galerkin 
orthogonality for �̃�𝑁,𝑛 holds only up to the consistency error

|𝑎(𝑢− �̃�𝑁,𝑛, �̃�𝑁,𝑛)| ≤ |𝑎𝑛(�̃�𝑁,𝑛, �̃�𝑁,𝑛) − 𝑎(�̃�𝑁,𝑛, �̃�𝑁,𝑛)|+ |𝑙(�̃�𝑁,𝑛) − �̃�𝑛(�̃�𝑁,𝑛)|.
For a high number of quadrature points 𝑛 the consistency error is small compared to the approximation error. However, for 𝑛 close to 
the polynomial degree 𝑝 we need a different approach. The idea is to calculate an additional reference solution ̃𝑢𝑁,𝑚 with an increased 
number of quadrature points 𝑚 ≫𝑛 and use the triangle inequality to estimate the energy norm error by√

𝑎(𝑢− �̃�𝑁,𝑛, 𝑢− �̃�𝑁,𝑛) ≤
√
𝑎(𝑢− �̃�𝑁,𝑚, 𝑢− �̃�𝑁,𝑚) +

√
𝑎(�̃�𝑁,𝑚 − �̃�𝑁,𝑛, �̃�𝑁,𝑚 − �̃�𝑁,𝑛). (7.2)

By choosing 𝑚 sufficiently large, the Galerkin orthogonality 𝑎(𝑢 − �̃�𝑁,𝑚, ̃𝑢𝑁,𝑚) = 0 holds with a negligible consistency error, and we 
can again use approximation (7.1) for the first term of the right hand-side. The second term can be approximated with the same small 
consistency error by replacing 𝑎 with 𝑎𝑚, which leads to an estimate for the energy norm error given by√

𝑎(𝑢, 𝑢) − 𝑎𝑚(�̃�𝑁,𝑚, �̃�𝑁,𝑚) +
√
𝑎𝑚(�̃�𝑁,𝑚 − �̃�𝑁,𝑛, �̃�𝑁,𝑚 − �̃�𝑁,𝑛). (7.3)

We can interpret the first term in (7.3) as a good approximation to the energy norm error 
√
𝑎(𝑢− 𝑢𝑁 , 𝑢− 𝑢𝑁 ) and therefore as the 

optimum that our implementation can achieve. The second term in (7.3) represents the implementation error due to the quadrature. 
The following example shows that the difference between the approximation methods (7.1) and (7.3) can be significant.

Example 7.1. We employ a geometric mesh  𝐿
𝑔𝑒𝑜,𝜎 with grading factor 𝜎 = 0.172 and take piecewise polynomials of degree 𝑝 = 𝐿. In 

Fig. 1, three different error measures are plotted versus the number of refinement layers 𝐿 for different numbers of quadrature points 
𝑛 =(𝑝) used to calculate the solution �̃�𝑁,𝑛:

• Method 1: Use approximation (7.1) with the same number of quadrature points 𝑚 for 𝑎𝑚(⋅, ⋅) as for the solution ̃𝑢𝑁,𝑛, i.e., 𝑚 = 𝑛.

• Method 2: Use approximation (7.1) and increase the number of quadrature points for the bilinear form 𝑎𝑚(⋅, ⋅) to 𝑚 = 6𝑝.
• Method 3: Use approximation (7.3) with 𝑚 = 6𝑝 quadrature points for the reference solution �̃�𝑁,𝑚 and the bilinear form 𝑎𝑚(⋅, ⋅).
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Fig. 2. Exponential convergence in the energy norm (approximation (7.3) with 𝑚 = 6𝑝) of ℎ𝑝-FEM on geometric mesh with grading factor 𝜎 = 0.25, polynomial degree 
𝑝 =𝐿, 𝑛 = ⌊1.2 𝑝⌋ quadrature points, and different fractional parameters 𝑠.

Fig. 3. Exponential convergence in the energy norm (approximation (7.3) with 𝑚 = 6𝑝) of ℎ𝑝-FEM with 𝑛 =(𝑝) quadrature points on geometric mesh, polynomial 
degree 𝑝 =𝐿, 𝑠 = 3∕4. Left: grading factor 𝜎 = 0.172. Right: grading factor 𝜎 = 0.5.

For the cases 𝑛 = ⌊1.9 𝑝⌋ and 𝑛 = 3 𝑝 all three methods produce nearly identical results, whereas for 𝑛 = 𝑝 and 𝑛 = ⌊1.3 𝑝⌋ the method 
of calculating the error significantly differs. We observe that Method 1 overestimates the energy norm error significantly and also 
increasing the number of quadrature points for the norm calculation (Method 2) does not help either. This is consistent with the fact 
that Method 2 does not decrease the consistency error that is made in the Galerkin orthogonality. We also note that for the cases 𝑛 = 𝑝
and 𝑛 = ⌊1.3𝑝⌋ the computed “energies” were larger than the exact energy so that no errors are reported for these cases in Fig. 1.

The next example is similar to an example in [5] that shows exponential convergence of ℎ𝑝-FEM, where the linear system was 
assembled using the quadrature approach (2.9) in this article.

Example 7.2. We employ a geometric mesh  𝐿
𝑔𝑒𝑜,𝜎 with grading factor 𝜎 = 0.25 and take piecewise polynomials of degree 𝑝 = 𝐿. In 

Fig. 2, the energy norm error (approximation (7.3) with 𝑚 = 6𝑝) is plotted versus the number of refinement layers 𝐿 for different 
fractional parameters 𝑠. For the number of quadrature points, we used 𝑛 ∶= ⌊1.2 𝑝⌋ and, as predicted by Theorem 2.4, we observe 
exponential convergence with respect to the number of layers 𝐿 noting that 𝑁 ∼𝐿2. In fact, the convergence behavior is (𝜎𝐿∕2𝐿−1)
and thus slightly faster than asserted by Theorem 2.4. An argument for this observation is given in [5, Sec. 4].

Next, we discuss the number of quadrature points used. Although Theorem 2.4 suggests that a choice of quadrature points 𝑛 ≥ 𝑝 +1
and in particular 𝑛 ∶= 𝑝 + 𝜆 𝑝 for any fixed 𝜆 > 0 suffices to obtain exponential convergence, the rate, or more precisely, the constant 
in the exponent, is impacted by the choice of 𝜆.

Example 7.3. Fig. 3 plots the energy norm error (approximation (7.3) with 𝑚 = 6𝑝) for different numbers of quadrature points 
𝑛 ∶= 𝑝 + 𝜆𝑝 versus the number of layers 𝐿 for two different choices of grading parameters, 𝜎 = 0.172 and 𝜎 = 0.5. Again, we choose 
𝑝 =𝐿 and fix the fractional parameter 𝑠 = 3∕4. We notice that the grading factor 𝜎 has a direct impact on the number of quadrature 
points needed to achieve the same accuracy. For the smaller 𝜎 = 0.172, the rate of the exponential convergence depends on the choice 
of 𝜆, while, for 𝜎 = 0.5, the convergence always appears to be (𝜎𝐿∕2𝐿−1). This can also be observed in the theoretical estimates in 
Theorem 2.4 as the term 𝐿2𝑝6𝜌1+2𝑝−2𝑛 may be dominant in the case of small 𝜎.

Finally, we consider the elementwise contributions in Lemma 5.5 and observe exponential convergence for two different config-

urations.
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Fig. 4. Exponential convergence of the elementwise contributions |𝐼𝑇 ,𝑇 ′ (𝑣, 𝑤) −𝑄𝑛
𝑇 ,𝑇 ′ (𝑣, 𝑤)| for the integrated Legendre polynomials (7.4) on geometric meshes  𝐿

𝑔𝑒𝑜,𝜎

with 𝐿 = 2 layers and different grading parameters 𝜎. Left: adjacent elements. Right: separated elements.

Example 7.4. Fig. 4 considers the case of adjacent elements 𝑇 ∶= (𝑥𝑔𝑒𝑜0 , 𝑥𝑔𝑒𝑜1 ), 𝑇 ′ ∶= (𝑥𝑔𝑒𝑜1 , 𝑥𝑔𝑒𝑜2 ) (left) and separated elements 
𝑇 ∶= (𝑥𝑔𝑒𝑜0 , 𝑥𝑔𝑒𝑜1 ), 𝑇 ′ ∶= (𝑥𝑔𝑒𝑜2 , 𝑥𝑔𝑒𝑜3 ) (right) in a geometric mesh  𝐿

𝑔𝑒𝑜,𝜎 with 𝐿 = 2 layers and different grading parameters 𝜎 (see 
Definition 2.2). We plot the absolute quadrature errors |𝐼𝑇 ,𝑇 ′ (𝑣, 𝑤) −𝑄𝑛

𝑇 ,𝑇 ′ (𝑣, 𝑤)| for two integrated Legendre polynomials 𝑣 ∶ 𝑇 →ℝ
and 𝑤 ∶ 𝑇 ′ →ℝ versus the number of quadrature points 𝑛. On the reference domain (−1, 1) they are defined as

𝑣(𝑥) =

𝑥

∫
−1

𝑃5(𝑡)𝑑𝑡 and 𝑤(𝑦) =

𝑦

∫
−1

𝑃7(𝑡)𝑑𝑡, (7.4)

where 𝑃𝑖(𝑡) ∈ 𝑖 denotes the 𝑖-th Legendre polynomial. We used 𝑄50
𝑇 ,𝑇 ′ (𝑣, 𝑤) with 50 quadrature points, as the reference solution 

𝐼𝑇 ,𝑇 ′ (𝑣, 𝑤) and observe the predicted exponential convergence rate as well as that the rate decreases with 𝜎. This is in line with 
Lemma 5.5 since 𝜌 → 1 as 𝜎→ 0. We stress that Fig. 4 shows the absolute error; the final relative error is close to machine precision.
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