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Assessment of time-series-derived no-flood references for sar-based Bayesian 
flood mapping
Mark Edwin Tupas a,b, Florian Roth a, Bernhard Bauer-Marschallinger a and Wolfgang Wagner a,c

aRemote Sensing Research Group, Department of Geodesy and Geoinformation, TU Wien, Vienna, Austria; bDepartment of Geodetic 
Engineering, University of the Philippines Diliman, Quezon, Philippines; cEODC Earth Observation Data Centre for Water Resources Monitoring, 
Vienna, Austria

ABSTRACT
The systematic mapping of flood events with Synthetic Aperture Radar (SAR) data is an area of 
growing importance. One global flood mapping algorithm utilized within the Copernicus 
Emergency Management Service is based upon a Bayesian Inference model that compares a SAR 
image to a simulated reference image representing no-flood conditions. This no-flood reference 
image is at present generated using a harmonic model trained using historic time series, thereby 
producing a backscatter image representing mean seasonal conditions. One known weakness of 
this approach is that it cannot account for changing environmental conditions from year to year, 
potentially causing an overestimation of flood extent during dry periods, snow and frost, or other 
effects causing lower-than normal backscatter. To minimize this detrimental effect, we introduce 
an exponential filter to estimate the no-flood reference image by weighting the most recent 
backscatter observations according to their time difference to the current SAR acquisition. We 
compare the performance of the new exponential filter model against the harmonic model using 
a novel time-series flood mapping assessment approach. First, we assess their predictions against 
the actual SAR image time series for the year 2023. Then, we analyze the false positive rate of the 
corresponding flood maps generated to ensure the robustness of the automated algorithm out
side of flood events. Furthermore, we perform qualitative and quantitative analyses of flood maps 
matching with semi-automatic results from Copernicus Emergency Management Services and 
Sentinel Asia as a reference. Our time-series analysis confirms increased false positive rates due 
to well-known environmental drivers and highlights issues with agricultural overestimation. In this 
regard, the time-series comparisons of the no-flood reference models show a clear improvement in 
the TU Wien algorithm with the exponential filter, effectively reducing false positive rates on non- 
flooded scenes in most study sites. The exponential filter performed better than the harmonic 
model in most flooded scenes, where sites show generally improved Critical Success Index and 
User’s accuracy. However, the exponential filter model has difficulties with sites with prolonged 
floods in the time series, requiring further development. Overall, the exponential filter no-flood 
reference model shows great promise for improved global near-real-time flood mapping.
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1. Introduction

Floods are among the most frequent natural disasters 
affecting an increasing segment of the global popula
tion (Ceola, Laio, and Montanari 2014; Tellman et al.  
2021). A recent estimate suggests that 1.81 billion peo
ple, or almost one in four persons are directly exposed to 
severe flooding (Rentschler, Salhab, and Jafino 2022). 
Using remote sensing for large-scale mapping of flood 
situations is invaluable for emergency response, recov
ery, and reconstruction. Supporting these applications, 
Synthetic Aperture Radar (SAR) based flood mapping is 

gaining prominence for systematic global operations 
due to its spatiotemporal coverage and independence 
from weather and ligthining conditions (Salamon et al.  
2021; Schumann et al. 2023; Tarpanelli, Mondini, and 
Camici 2022).

SAR-based flood mapping techniques that have 
proven effective include single-image thresholding 
algorithms (Grimaldi et al. 2020; Martinis, Twele, and 
Voigt 2009), parametric or tile-based thresholding 
schemes (Chini et al. 2017; Martinis, Kersten, and 
Twele 2015; Twele et al. 2016; Zhao, Pelich, 
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Hostache, Matgen, Wagner, et al. 2021), and machine 
learning methods (Katiyar, Tamkuan, and Nagai 2021; 
Shen et al. 2019; Wu et al. 2023). However, due to 
floods’ transient and anomalous nature, most 
approaches employ some form of change detection. 
Therefore, these algorithms highly depend on appro
priate pre-flood baselines or no-flood references. 
Careful selection of such images is a crucial – often 
manual – task in algorithms using single pre-flood 
images (Alexandre et al. 2020; Ulloa, Chiang, and 
Yun 2020). These selection procedures are challen
ging for systematic flood mapping operations. As 
such, the automated selection of these no-flood refer
ences from time series stacks has attracted attention 
in the literature (Hostache, Matgen, and Wagner 2012; 
Li et al. 2018; Zhao, Pelich, Hostache, Matgen, Wagner, 
et al. 2021).

Instead of selection algorithms, which often face 
problems in Near-real-time (NRT) operations, synthetic 
no-flood references can be produced from time-series 
analysis. Common methods include using mean or 
median values (Clement, Kilsby, and Moore 2018; 
DeVries et al. 2020Nagai, Abe, and Ohki 2021), or 
employing harmonic models with seasonally 
adjusted day-of-year estimates (Schlaffer et al. 2015). 
These synthetic references have the advantage of 
speckle suppression (Tupas et al. 2023b) and ease of 
automation. However, while having an essential impact 
on mapping performance, model selection and para
meterization of these underlying models (e.g. the per
iod length of time-series analysis) are difficult to 
generalize in the context of global application.

SAR change detection algorithms, where these no- 
flood references are used, may involve differencing or 
index-based methods (Schlaffer et al. 2015), time- 
series anomaly detection, to no-flood probability 
functions in Bayesian methods (Schlaffer et al. 2017). 
An example of the latter is the flood mapping algo
rithm developed at Technische Universität Wien (TU 
Wien), which employs a pixel-based Bayesian decision 
between flooded references from historical samples 
versus a non-food reference based on a predefined 
harmonic model (Bauer-Marschallinger et al. 2022). 
The algorithm is currently deployed in an operational 
setup under the Copernicus’ Global Flood Monitoring 
service (Salamon et al. 2021). It has performed well in 
areas with well-defined seasonality but shows higher 
uncertainties for areas with ill-fitting temporal pat
terns, leading to overestimation.

Time-series derived estimates deviating from the 
actual SAR measurements can result from non- 
conformity with predefined parametric functions, 
leading to the proposal of non-parametric 
approaches (Colacicco et al. 2024; Refice et al. 2022). 
Balancing algorithm robustness and computational 
complexity is crucial. Rolling filters may provide an 
alternative. One such filter – the exponential filter – 
weighted filter, has been effectively used for improv
ing soil moisture monitoring (Wagner, Lemoine, and 
Rott 1999). Unlike other filters, it features a near-real- 
time iterative formulation (Albergel et al. 2008; Bauer- 
Marschallinger et al. 2018) that makes it enticing for 
systematic mapping operations. Here, we test its use 
for improving flood mapping for the first time.

Most flood algorithms are tuned and tested for spe
cific events, while mapping performance on non- 
flooded scenes is often ignored. This optimization of 
algorithms for flood scenes may disregard possible over
estimation and false flagging of images as flooded 
where there is none. In this contribution, we present 
a novel time-series flood mapping assessment approach 
to the TU Wien algorithm to compare time-series 
derived no-flood references. We analyze and compare 
the original harmonic model with a proposed exponen
tial-filter model. In seven study sites, we assess both 
non-flooded and flooded scenarios. First, we assess the 
no-flood models’ backscatter estimates against the 
actual SAR image time series for 2023. Then, we analyze 
the false positive rate of the corresponding flood maps 
generated. Qualitative and quantitative analyses of 
flood maps are conducted using rapid mapping activa
tions from Copernicus Emergency Management 
Services (CEMS) and Sentinel Asia as references.

2. TU Wien flood mapping algorithm

We present the TU Wien flood mapping algorithm’s 
theoretical foundation and the no-flood references 
we intend to examine.

A Bayesian classifier, the TU Wien algorithm uses 
a pixel-based rule in labeling floods dependent on the 
posterior probability pðFjσ0Þ surpassing a predefined 
threshold (e.g. 50%). The posterior probability from 
Bayes’ inference from different authors (e.g.(Bauer- 
Marschallinger et al. 2022; Giustarini et al. 2016; 
Refice et al. 2014; Schlaffer et al. 2017; Westerhoff 
et al. 2013)) is computed using Equation 1: 
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where the conditional probability, pðσ0jNÞ, to be non- 
flooded, is computed using the pixel’s incoming back
scatter against a probability distribution defined by 
the expected no-flood backscatter value and its tem
poral standard deviation (defined by the no-flood 
references presented in section 2.1 and 2.2). pðσ0jFÞ
for the flooded case is computed against the inci
dence angle-dependent water distribution derived 
from historical samples. Lastly, pðFÞ and pðNÞ are the 
prior probabilities of a pixel being flooded and non- 
flooded, respectively. Non-informed priors (Giustarini 
et al. 2016) were used for both.

2.1. Harmonic model

The current approach of the TU Wien algorithm 
defines the no-flood backscatter probability distribu
tion using the harmonic model. This model (shown in 
eq. 2) provides a practical way to estimate backscatter 
using the sum of harmonic (sinusoidal) terms to char
acterize its behavior over time. The presented algo
rithm builds upon the formulation of Schlaffer et al. 
(2015), where the trend is neglected and applies three 
iterations of harmonic terms, i.e. k ¼ 3. With this rea
lization, the model fluctuates in the order of months. 
Therefore, short-term backscatter variations, such as 
those caused by flooding, are smoothed, making it 
a notable no-flood reference. 

Here, σ̂0 is the expected Sentinel-1 backscatter at day- 
of-year (DOY) tn and is estimated based on ci and si 

representing the harmonic parameters. The first 

cosine coefficient is σ0, equivalent to the mean 
Sentinel-1 backscatter for the time series.

The harmonic parameters used for this model were 
precalculated using a linear least squares estimation 
(Tupas et al. 2022) using an input time series of three 
years. These are the same parameters currently used 
for Global Flood Monitoring (GFM) operations. This 
three-year formulation performs overall better than 
the original two-year parameters (Matgen et al. 2022).

The computational complexity of the harmonic 
model does not allow regular updating and is best pre- 
computed to meet operational demands (Tupas et al.  

2022). This limitation leads to issues for areas with 
abrupt land cover change or areas deviating from the 
modeled seasonal trend. The latter is typically observed 
in bare soil, grasslands, and agricultural areas, which are 
more prone to backscatter fluctuations induced by 
vegetation and soil moisture dynamics (Vreugdenhil 
et al. 2018). This leads to no-flood probability distribu
tions inaccurately reflecting the actual vegetation and 
soil moisture states that can lean toward flood labeling 
resulting in overestimation (Bauer-Marschallinger et al.  
2022).

2.2. Exponential filter model

To compensate for such overestimation, we seek 
alternative methods that could be updated dynami
cally, allowing a more accurate and up-to-date repre
sentation of vegetation or soil moisture dynamics. 
Consequently, we considered shorter moving 
averages or rolling filters. One such filter applies expo
nential weights decaying through time. We present 
the continuous formulation of the exponential filter 
model in equation 3 taken from Wagner, Lemoine, 
and Rott (1999) but adopted to estimate backscatter, 
σ̂0, at some day in time: tn. 

where σ0ðtiÞ is the observed Sentinel-1 backscatter at 
time ti. T is the equations’ characteristic time length 
parameter, representing the timescale of backscatter 
variation in days.

Preliminary tests with other rolling filters (like mean 
and median) showed similar or slightly worse perfor
mance than exponential filters and is presented in the 
Supplementary material (Section D) for brevity. 
Nonetheless, the practical prospect of the exponential 
filter lies in its recursive formulation (Bauer- 
Marschallinger et al. 2018). While mathematically giv
ing the same result, the recursive formulation allows 
updated estimates to be calculated at new time steps 
with only incrementally updated gain value and new 
measurements, dramatically reducing computational 
requirements compared other rolling filters where 
a recursive formulation is not feasible. However, to 
better illustrate the effect of T parameter and our 
current focus on performance rather than efficiency, 
we only present the continuous form in this work.
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To reduce the volume of datasets used in the con
tinuous formulation, we excluded measurements with 
effective weights of less than 0:05. This procedure 
roughly corresponds to considering measurements 
within the time range of ½tn � 3T ; tnÞ (excluding tn).

In soil moisture studies, the selection of T value is 
topic of ongoing investigation (Albergel et al. 2008; 
Pellarin, Calvet, and Wagner 2006), where Paulik et al. 
(2014) established basic relations of T values to soil 
depth from correlation analysis against in-situ refer
ence measurements. As the optimal value of T in 
flood mapping is still unknown, we aim to determine 
a suitable T parameter for robust flood mapping by 
experimenting with different values. We test multiple 
T , i.e. T = 10, 20, 30, 40, 60, 90, and 120.

From preliminary tests, we found that exponential 
filter estimates with shorter time-series inputs do not 
suppress speckle well. Therefore, input radar back
scatter images for exponential filter were de- 
speckled using Lee-Sigma Filter (Lee 1983; Lee et al.  
2009) with 3 × 3kernel size.

2.3. Standard deviation

To form the no-flood backscatter probability distribu
tion, we assume its form as Gaussian based on sug
gestions from the literature (Refice et al. 2014; 
Schlaffer et al. 2017; Sherpa et al. 2020). Thus, in 
addition to an expectation value, a degree of disper
sion (standard deviation) is required.

We compute the standard deviation using Equation 4 
based on Bauer-Marschallinger et al. (2022) approach, 
given by the square root of the time-independent sum 
of squared errors, SSEðσ0Þ, between the actual back
scatter time-series and the estimated values from the 
time-series models, divided by the models’ degrees of 
freedom ν. 

Here ν is the degrees of freedom and is solved by 
n � ð2k þ 1Þ for the harmonic model and n � 2 for 
the exponential filter model, where n is the number of 
observations. For the harmonic model, the standard 
deviations were computed from the same three-year 
period used to estimate the parameters. In contrast, 
the exponential filter standard deviations, regardless 
of T values, were computed using the 2023 time 
series.

2.4. No-sensitivity masking and post-processing

After initial labeling, the TU Wien algorithm applies 
a no-sensitivity masking procedure that tags pixels 
where the BI is not feasible. This includes areas 
with 1) extreme local incidence angle where the 
flood probability model is invalid, 2) conflicting flood 
and no-flood probability distributions, and 3) mea
surement outliers. We refer the reader to Bauer- 
Marschallinger et al. (2022) for further details on no- 
sensitivity masking. This study uses the same no- 
sensitivity mask thresholds as the original algorithm.

Finally, we omit the majority filter-based post- 
processing step, as we found that it results in unde
sired over- and under-labeling. Further exclusion 
masking (Zhao, Pelich, Hostache, Matgen, Cao, et al.  
2021) were not applied to allow for comparisons and 
observe possible improvements in these areas.

3. Materials and study sites

To give an overview of the materials and methods used 
in this study, Figure 1 shows the different phases of 
analysis. The green panel explains derivation from the 
Sentinel-1 data cube (section 3.1) of the TU Wien algo
rithm and the no-flood reference models, we described 
in described in section 2. To ensure a globally applic
able analysis, we endeavor to analyze as many sites as 
possible. The purple panel represents the site selection 
process discussed in section 3.4. We further ensure 
robustness in no-flood scenarios by extending our 
analysis to understand temporal behaviors. The yellow 
panel shows the no-flood time series analysis found in 
Section 4.1. Finally, we conduct traditional comparisons 
for a reference flood event for each test site. The 
orange panel represents the flood mapping accuracy 
assessment described in section 4.2.

3.1. Sentinel-1 data cube

To produce the flood maps and their corresponding 
no-flood reference images analyzed in this study we 
use the VV polarized subset of Sentinel-1 (Torres et al.  
2012) data cube maintained by TU Wien and EODC 
(Wagner et al. 2021). The data cube comprises curated 
Sentinel-1 Ground Range Detected (GRD) image tiles 
with 20 m × 20 m pixel size and organized using the 
T3 tiling level (300 km x 300 km extents) of the 
Equi7Grid system (Bauer-Marschallinger, Sabel, and 
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Wagner 2014). Spatial analysis performed throughout 
this study were conducted in the same tiling and grid 
system using the python based Yeoda software stack 
https://github.com/TUW-GEO/yeodahttps://github. 
com/TUW-GEO/yeoda (accessed 20 July 2024).

3.2. Ancillary data

To understand the environmental conditions and spa
tiotemporal backscatter dynamics governing our 
flood mapping results, we cross-referenced several 
ancillary datasets that were re-gridded and repro
jected to the Equi7Grid tiles.

Soil temperature and water content are crucial factors 
in explaining overestimation (Lin et al. 2019), and were 
used to rule out floods in images in which frozen and dry 
soils cause large swaths of low backscatter. ERA5-Land 
(Muñoz-Sabater et al. 2021) Daily Aggregated data 
accessed from Google Earth Engine (Gorelick et al.  
2017) were used to calculate the means of soil tempera
ture and volumetric soil water at the topmost level 
(0 – cm).

Furthermore, we used the ESA WorldCover (2021) 
(Zanaga et al. 2021) to explain spatial patterns. And, 
where available, Crop Map (2022) (d’Andrimont et al.  
2021) for finer separation of crop types. Land cover 

and crop type (and their associated cropping prac
tices) give further insights into the flood maps and 
overestimation patterns.

3.3. Reference Flood and Water Maps

We use activation-based flood maps as a reference for 
accuracy assessments under the premise that opera
tional service relies on expert intervention in (semi- 
automated) map generation and quality assurance. 
These maps are reasonable alternatives in lieu of 
actual ground truth flood data.

In this regard, Copernicus Emergency Management 
Services (CEMS) (Joubert-Boitat, Wania, and Dalmasso  
2020) rapid mapping vector flood extents and asso
ciated ancillary data (e.g. AOI, Hydrology) were retrieved 
from https://emergency.copernicus.eu/((accessed on 
13 March 2024). Sentinel Asia (Kaku 2019) vector flood 
extents were also downloaded from https://sentinel- 
asia.org/EO/EmergencyObservation.html (accessed on 
13 March 2024). The reference flood maps were raster
ized and reprojected to the Equi7Grid tiles.

To differentiate semi-permanent and permanent 
water bodies from flood results (Wieland and Martinis  
2019), we use the CEMS hydrology dataset for the 
assessed flooded AOIs. For comparisons of entire tiles 

Figure 1. Methodological flowchart and phases of analysis. Green panel: site selection procedure. Purple panel: flood mapping 
algorithm. Yellow panel: No-flood time-series analysis. Orange panel: flood mapping accuracy assessment.
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and where CEMS data is absent, we use Copernicus DEM 
(Fahrland et al. 2020) Water Body mask. Both datasets 
are used to mask out water areas for both qualitative 
and quantitative assessments.

3.4. Study sites

All flood mapping activations listed in the CEMS and 
Sentinel Asia databases from March 2023 to 
November 2023 were considered in our study. The 
aim is to analyze a diverse representation of environ
mental and climatic conditions, allowing for global 
generalization. However, emergency response maps 
as reference data require careful inspection, selection, 
and contextualization to obtain nuanced assess
ments. Thus, we implement a rigorous matching and 
screening procedure.

A preliminary search of the two flood mapping 
services’ activations was screened for flood maps 
delineated using Sentinel-1. This was done to ensure 
that our experimental results and the reference match 
temporally and spatially. The reference flood maps 
and corresponding Sentinel-1 images were scruti
nized to ensure that there were no obvious geoloca
tion errors and that flood extents could be reasonably 
determined from VV polarized data – for which the 
algorithm is tuned for. In cases with more than one 
area of interest (AOI), we selected the AOI with the 
most prominent flood coverage. The final area of 

interest for flooded assessments is selected based 
on the intersection of the Equi7Grid tile that contains 
the most significant portion of the AOIs. In contrast, 
the whole data cube tiles are used for non-flooded 
assessments.

Four test sites covered by CEMS are situated in 
Europe, where there is a noted increase in flood 
anomalies (Tarasova et al. 2023). The flooding inci
dents in Scotland (Graham et al. 2023), Slovenia 
(Bezak et al. 2023) and Greece were triggered by 
extreme precipitation, the latter noted for its excep
tional rainfall duration and intensity (Dimitriou et al.  
2024; He et al. 2023). Meanwhile, CEMS reports that 
the snow melt contributed to the flood event in 
Latvia. The Sentinel Asia activations describe the 
events in Vietnam and India as caused by heavy rain
fall, while tropical cyclone Doksuri caused the 
Philippine mapped event. The area was subjected to 
intense rainfall from a preceding tropical depression 
(He et al. 2023).

When plotted against global environmental strati
fication data (Metzger 2018), shown in Figure 2, one 
can see that our test sites contain a good mix of 
climate types and different seasonality inclinations. 
Metadata summary on the seven study sites is found 
in Table 1; these include the reference flood activation 
information, and the dominant Global environmental 
stratification (GEnS) zones per tile.

Figure 2. Location of study sites (Equi7Grid tiles) colored based on available reference flood maps overlain on global environmental 
stratification (GEnS) layer (Metzger 2018).
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4. Assessment methodology

4.1. Reference image and No-flood time-series 
assessment

To compare the performance of the no-flood time 
series backscatter models (and T parameterization), 
we compute the root-mean-square deviation (RMSD) 
(Barsi Kugler et al. 2018) between the estimates and 
actual Sentinel-1 measurements per image acquisi
tion date for 2023. RMSD is computed using 
Equation 5: 

where σ̂0ðtnÞ is the estimated Sentinel-1 backscatter 
per pixel for a given time tn, while σ0ðtnÞ is the 
observed Sentinel-1 backscatter for that pixel at the 
same time and N is the total number of valid pixels.

Flood maps are then produced for every Sentinel-1 
acquisition date irrespective of flood occurrence. We 
create maps based on each no-flood reference for 
each date using the harmonic model and the expo
nential filter at varying T values.

We limit our assessments to one relative orbit per 
tile, which is selected to match the flooded reference 
maps’ source Sentinel-1 image’s relative orbit. At 
a specified relative orbit, with a 12-day revisit time, 
there are about 30 acquisition days per study site for 
a year. This mapping during each satellite pass simu
lates the automated procedure performed in the 
flood monitoring operations. Up to 240 flood maps 
for 2023 were created for each study site. We note 
actual flooded acquisition dates for each tile based on 
documented reports and flood mapping service acti
vations, while all other acquisitions are assumed to be 
entirely non-flooded. 

After masking permanent and seasonal water, we 
can compute the false positive rate (FPR) using 
equation 6 based on the assumption that all 
remaining flooded pixels are false positives (FP) 
and non-flooded as true negatives (TN) (Barsi 
Kugler et al. 2018; Tupas et al. 2023a). The FPR 
and RMSD are temporally plotted and cross- 
referenced with ERA5-Land data for soil tempera
ture and volumetric soil water for the uppermost 
soil layer. We do this to explore possible overesti
mation through time and attribute its possible 
causes vis-à-vis the no-flood model used for flood 
mapping. To confirm the difference in performance 
of the tested no-flood models, we perform pairwise 
comparisons between all models. For each two no- 
flood model comparison, we employ paired statis
tical tests between the aggregated FPR differences 
from all study sites.

4.2. Flood map assessment

In addition to the no-flood evaluations, we analyze the 
performance of our algorithm on dates where reference 
flood maps are present, described in Table 1. Before 
quantitative assessments, we harmonize our generated 
flood map with the reference data. First, the maps are 
clipped to reference data AOIs. These are provided as 
a separate vector layer for CEMS results, while the 
bounding box of the Sentinel Asia vector results is 
used as AOIs. Then, we apply the corresponding water 
masks before creating confusion maps and tables.

Subsequently, we compute accuracy assessment 
metrics for all flood maps. The metrics, Critical Success 
Index (CSI), User’s Accuracy (UA), and Producer’s 
Accuracy (PA), shown in equations 7, 8, and 9: 

Table 1. Study sites and metadata on Equi7grid tile details, reference flood maps and climate zones.
Location Rel. Orbit Source Activation Code AOI/Subset Est. Area (km2) Date GEnS zonea

Scotland A030 CEMS EMSR698 03 20 2023.10.08 E, J
Vietnam D091 Sentinel Asia FL-2023-000179-VNM Nghe An & Ha Tinh 286 2023.09.30 M, R
Greece A102 CEMS EMSR692 01 730 2023.09.07 K, L
Slovenia A146 CEMS EMSR680 04 3 2023.08.05 G, J
Philippines D032 Sentinel Asia TC-2023-000121-PHL – 416 2023.07.28 R
India A027 Sentinel Asia FL-2023-000112-IND – 537 2023.07.16 M, P
Latvia D080 CEMS EMSR657 01 55 2023.04.03 G

aGlobal environmental stratification (GEnS) zones: E-cold and wet, G-cold and mesic, J-cool temperate and moist, K-warm temperate and mesic, L-warm 
temperate and xeric, M-hot and mesic, P extremely hot and arid, R extremely hot and moist.
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where TP is the true positive, TN is the true negative, 
FP is the false positive, and FN is the false negative 
counts derived from the binary confusion matrix. 
These metrics are chosen to express the flooded 
maps’ overall performance via the CSI (Landuyt et al.  
2019), while over- and underestimations from UA and 
PA (Barsi Kugler et al. 2018). To compute these accu
racy assessment metrics for the flood maps against 
the vector reference data, we use ABCRaster https:// 
github.com/TUW-GEO/ABCRasterhttps://github.com/ 
TUW-GEO/ABCRaster (accessed 20 June 2024) to auto
mate the procedure. Relying solely on a few metrics 

may not fully capture mapping performance. 
Therefore, we conduct a qualitative visual evaluation 
of the confusion maps.

5. Results

5.1. No-flood time series

The plotted RMSD and FPR against ERA5-Land surface 
soil temperature and moisture shown in Figures 3, 4 
and 5, are sample plots for the Latvia, Greece, and 
India study sites, respectively. We include the time- 
series plots for the rest of the sites in the 
Supplementary material for conciseness.

The figures present three horizontal panels depict
ing the performance of the no-flood references using 
the harmonic and exponential filter models at various 
T values and soil properties per Sentinel-1 acquisition 
per tile in a specific relative orbit. The top panel shows 
the FPRs per flood map for every Sentinel-1 acquisi
tion date for the tile, assuming there is no actual 

Figure 3. Temporal plots of false positive rate, root mean square deviation, and ERA5-land soil temperature and volumetric soil water 
for the Latvia study site.
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flood. The middle panel shows the RMSDs for no- 
flood reference estimates versus the actual Sentinel- 
1 data. The bottom panel shows the ERA5-Land tem
perature and volumetric water content at the top
most soil layer (0–7 cm).

5.1.1. Latvia
We present the result for the Latvia test site (Figure 3) 
as a representative study site with a cool temperate 
climate. Similar phenomena can be observed with the 
Slovenia and Scotland study sites (in the 
Supplementary material).

Regarding FPRs, we observed peaks at the begin
ning and end of the year corresponding to frozen soils 
at those specific dates. As frozen soils exhibit a similar 
significant drop in backscatter (Baghdadi et al. 2018) 
thus is easily mistaken as floods. A smaller peak in FPR 
was observed during the flooding event in April. 

A prolonged peak is observed toward the summer 
months, corresponding to relatively dry soils from 
the ERA5-Land data. This rise in false positives relates 
to lower backscatter signals of drier soils being mis
taken for the low backscatter caused by specular 
reflection of inundated areas as radar backscatter 
increases with soil moisture content (Ulaby, Bradley, 
and Dobson 1979) except for arid environments 
where subsurface scatterers are present (Wagner 
et al. 2024). The scattering behavior of wet soil 
changes fundamentally once standing water forms 
at the surface. The peaks in RMSD mostly correspond 
to the same peaks in FPR. However, it was observed 
that there is a more prominent peak in RMSD com
pared to FPR during the documented flood, which is 
the expected behavior for a no-flood reference.

For both the FPR and the RMSD, the HPAR per
forms less well than the exponential filter. In terms 

Figure 4. Temporal plots of false positive rate, root mean square deviation, and ERA5-land soil temperature and volumetric soil water 
for the Greece study site.

GISCIENCE & REMOTE SENSING 9



of exponential filter T value, most perform simi
larly. Aside from T ¼ 10 and T ¼ 20, they have 
varied performances relative to the other T values, 
sometimes getting the best and worst results in 
others.

5.1.2. Greece
Greece (Figure 4) is presented to show the behavior 
of a warm temperate study site. Regarding the FPR, it 
is observed that the exponential filter model per
forms better than the harmonic model for most of 
the year. Like the previous plots, the lower T values 
showed inconsistent performance compared to the 
other T values. The performance of other T values is 
difficult to differentiate. A similar pattern is observed 
for the RMSD, where the harmonic model consis
tently shows higher values than the exponential fil
ter model.

A significant flooding event on this tile lasted from 
most of September to early October (He et al. 2023). We 

observed elevated RMSD and FPR values during this 
period.

In contrast, there is a significant increase in FPR 
from most of April to May, which does not have 
a distinct rise in RMSD. Looking at the ERA5-Land 
plots, this April-May increase does not correspond 
to frozen soils or dry conditions. Thus, the most 
likely cause is the start of agricultural activity in 
the region, where bare ground or emergent vege
tation typically exhibits low backscatter 
(Harfenmeister, Spengler, and Weltzien 2019) and 
is maybe mistaken for flooding.

The considerable spike in FPR here can be 
explained by the large proportion of the agricul
tural area in the tile and the particular crops 
grown in this area. The more significant difference 
in performance between the harmonic model and 
exponential filter can be attributed to the same 
issue and is explained further in the spatial con
text in section 5.2).

Figure 5. Temporal plots of false positive rate, root mean square deviation, and ERA5-land soil temperature and volumetric soil water 
for the India study site.
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5.1.3. India
The Indian study site (Figure 5) is in an arid climate. 
Therefore, dry soil conditions primarily drive the tem
poral dynamics of FPR and RMSD. An increase in FPR 
and RMSD is observed from April to May due to dry 
soil conditions. A larger increase in RMSD was 
observed during the prolonged flood event in July. 
Compared to dry conditions, no prominent increase 
in FPR was observed. For the India study site, the 
harmonic model and all T parameterizations of the 
exponential filter performed similarly for the second 
of the year, with a noticeable difference from the start 
of the year until June.

5.1.4. Southeast Asia
The Vietnam and Philippines test sites have tropical 
climates and show less variation in the FPR and RMSD. 
This observation can be attributed to relatively stable 
soil moisture and temperature throughout the year.

In the case of the Philippines (Figure A1), a large 
percentage of the tile are dense tropical forests; thus, 
backscatter variations are small (Zhao, Pelich, 
Hostache, Matgen, Cao, et al., 2021), leading to stable 
tile-based aggregates where no peaks were observed 
in RMSD and FPR. The harmonic model and the expo
nential filter (regardless of the value T) are almost 
indistinguishable.

For Vietnam (Figure A3), there is greater variance in 
terms of RMSD as the climate is not purely hot and 
humid for the whole tile. Like Indian example, the 

harmonic model also performs worse than the expo
nential filter for the year’s first half. Unlike the other 
test sites, the harmonic model and exponential filter 
perform similarly for no-flood scenarios in the 
Southeast Asian test sites.

5.1.5. General perspective on false positive rates
To get a generalized perspective on the no-flood 
models’ FPR performance, we further analyze the 
aggregated observations from all study sites. As 
observed in the time series metrics plots, the no- 
flood models’ FPR performance show obvious similar 
trends following known environmental drivers. Thus, 
to differentiate the models, we statistically test the 
significance of the FPR differences per pair of no-flood 
models from all test sites.

The paired FPR differences between the various no- 
flood models showed significantly skewed (non- 
normal) distributions. Hence, the non-parametric 
Wilcoxon test (Pratt 1959; Wilcoxon 1945) was used 
instead of the paired t-test to test for significance. For 
this test, the null hypothesis (H0) states that there is 
no significant difference between the compared no- 
flood models. While the alternative hypothesis (H1) 
indicates a significant difference.

Figure 6 shows box and whisker plots of the aggre
gated False Positive Rates of selected no-flood reference 
model. Shown on top is the significance based on the 
pairwise Wilcoxon test. Almost all no-flood models 
showed significant statistical difference compared to 

Figure 6. Box and whisker plots of the aggregated false positive rates with the significance level. ***: p-values < 0:001, **: p-values < 0:01, 
*: p-values < 0:05, and ns: p-values > ¼ 0:05.

GISCIENCE & REMOTE SENSING 11



others, except for T = 60 compared to T = 90 and T = 120 
(see Table B1). Notably, the HPAR model against all 
Exponential model showed the highest (***) signifi
cance, while between the exponential filter models per 
T values show lower significance as T values become 
larger. On the box plots, we can see median FPR values 
of each no-flood model. The harmonic model in general 
shows about 0.027 FPR to less than 0.013 for all expo
nential filter models. Meanwhile, the differences in med
ian FPR values between the exponential filter model at 
various T values are very small (although statistically 
different).

5.2. False positive frequency mappings

To delve deeper into the issue of overestimation, we 
shift our focus from analyzing the time series data at 
the tile level to considering the spatial dimension. By 
generating flood frequency maps (Pelich et al. 2017) 
and excluding instances from flood dates, we can 
represent the occurrence of false positives in each 
pixel. These maps enable us to assess how the false 
positive rates align with land cover and crop type. We 
compare the false positive (FP) frequency map based 
on the harmonic model and the exponential filter 
with T ¼ 40 alongside the EU Crop map for specific 
locations as examples.

Consistent with the initial findings of Bauer- 
Marschallinger et al. (2022), we find further evidence 
of overestimation due to agriculture. In the Greek 
study site, as shown in the upper row of Figure 7, 
there is a noticeable variation in false positive fre
quency at the level of individual agricultural plots. 
Many agricultural plots are falsely labeled as flooded 
up to one-third of the year, some even exceeding 
40%, and thus indicating a clear disadvantage of the 
harmonic modeling at this location.

There are noticeable differences in FP count 
between plots growing maize and cereals compared 
to industrial crop plots, the latter being more easily 
misinterpreted as flood labels. K. He et al. (2023) 
identify cotton as the most prevalent industrial crop. 
The sensitivity of cotton fields to false labeling can be 
attributed to agricultural practices (e.g. field flooding) 
and the higher backscatter of the cotton plant in the 
middle of the cropping stages, leading to a higher 
temporal model variance (Maity et al. 2004).

The grasslands of the Slovenian test site shown in 
the lower row of Figure 7 have higher FP frequencies. 

From open optical satellite imagery, these areas 
appeared to be seasonally flooded and were missed 
by water masks. In these regions, the exponential 
filter shows fewer FPs. In the northeast corner of the 
map, some distinct agricultural plots are also appar
ent in the frequency maps, such as rape. Maize has 
fewer FPs on this site compared to Greece.

Bare soils, grasslands, and croplands show more 
FPs than other land cover types. In terms of other 
specific crops, we observed with elevated FPs from 
other test sites include wheat, cereals, and rice (see 
Section C). These crops have been shown to have low 
backscatter periods during their growing stages 
Chang et al. (2021); Harfenmeister, Spengler, and 
Weltzien (2019); Vreugdenhil et al. (2018). However, 
there seems to be a site variation in the FP frequency 
of most crops.

In both exemplar flood frequency maps, the spatial 
patterns of FP are similar. However, the harmonic 
model shows significantly more FPs than the expo
nential filter, consistent with the temporal FPR plots.

5.3. Flood scenarios quantitative analysis

Next, we focused on flood mapping performance on 
flooded dates with reference flood maps. The critical 
success index of the flood maps using the baseline 
harmonic no-flood reference where 60.87%, 44.02%, 
56.38%, 41.90%, 58.08%, 68.04%, and 54.71% for the 
study sites in Latvia, India, the Philippines, Slovenia, 
Greece, Vietnam, and Scotland respectively. On aver
age, the seven study sites got 67.12% for User’s 
Accuracy and 79.53% for Producer’s Accuracy. These 
accuracy assessment results are consistent, but are 
nominally lower, with the similarly sized events and 
same environmental conditions examined when 
using the TU Wien flood mapping algorithm (Tupas 
et al. 2023a). This study obtained lower values 
because of non-application of external exclusion 
masks.

To differentiate the performance of harmonic 
model versus the exponential filter, we show 
Figure 8 where we plot the differences in CSI, UA, 
and PA of all our test sites.

Regarding CSI, we compare the performance of the 
no-flood references within sites. The varying sizes of 
flood extents, as shown in Table 1, influence the CSI 
(Stephens, Schumann, and Bates 2014). 
Consequently, we avoid direct inter-site comparisons 
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Figure 8. Heat maps summarizing difference in critical success index, user’s accuracy, and producer’s accuracy of flood maps between 
the harmonic model and exponential filter models with various t parameters (y-axis) for the seven study sites (x-axis).

Figure 7. Flood false positive (FP) frequency maps of Greece and Slovenia study sites. Greece N=26, Slovenia N=29 where N is number 
of observations less actual flooded images. EU crop cover map is provided as reference.
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based on the CSI. We focus on the comparison of the 
no-flood models in regard to the original harmonic 
model method, thus we present the differences rela
tive to the HPARs shown in Figure 8. With this differ
encing, we reduce the bias in CSI to be able to make 
more generalized observations.

The exponential filter performs better than the 
harmonic model in Latvia, Slovenia, and India. In 
Vietnam, the harmonic model is comparable to the 
exponential filter. Meanwhile, the exponential filter 
performs significantly better at the Scotland study 
site. The harmonic model performs better than the 
exponential filter in the Greece and Philippine study 
sites. We further discuss the cause of the poor perfor
mance of the exponential filter in section 5.4.3 on 
prolonged floods that are apparent in these two test 
sites.

In terms of the T parameter, the CSI difference 
decreases as T increases for both study sites in 
Southeast Asia. This observation is consistent with 
our initial results (Tupas et al. 2023b), where the har
monic model outperforms the long-term means as 
a no-flood reference. Apart from the Scotland study 
site, which shows slightly increasing performance at 
larger T values, all other test sites show better perfor
mance at mid T values, most often peaking at T ¼ 40. 
This is reflected by the mean of the differences for the 
tested sites also peaking at the same T , with a modest 
3.06% in CSI.

The middle panel in Figure 8 shows the UA plots of 
all study sites. It should be recalled that the UA is 
inversely related to the commission error. In most 
study sites, aside from the Vietnam and Philippine 
study sites, we see that the exponential filter typically 
shows less overestimation. Only the Scottish case 
showed a stark difference in UA values, while most 
others showed minor improvements. On average, 
there was 5.75% increase in the User’s accuracy at 
the same peak T value of 40.

Commission errors increase with increasing expo
nential filter T values in Scotland, Vietnam, and the 
Philippines. In contrast, a middle peak is observed in 
Latvia and India. Furthermore, we note an almost 
stable but slightly decreasing trend in Greece and 
Slovenia.

In the rightmost panel in Figure 8, we plot the PA – 
the inverse of omission errors, of the sites we tested. 
In general, the harmonic model flood maps show less 
underestimation. Greece is the only site with severe 

underestimation in the exponential filter. Most sites 
show slightly fewer omission errors. The exponential 
filter T values show a mainly increasing PA trend. 
Unlike the CSI and UA, PA of the exponential filter 
models had a decrease compared to the harmonic 
model. The best performing T value in case is 
T ¼ 120 with 1.79% mean decrease, while at T ¼ 40 
with 2.58% decrease on average was observed.

5.4. Flood scenarios confusion maps

To put the comparative metrics discussed into spatial 
context, we show exemplary confusion maps high
lighting the benefits and issues with the no-flood 
reference models we tested.

5.4.1. T parameter of the exponential filter
We present the study site in Scotland shown in 
Figure 9. Here, we show the eight confusion maps 
pertaining to the harmonic model and the exponential 
filter at varying T . The harmonic model produces more 
false positives compared to the exponential filter.

Although the flood delineations from the exponen
tial filter remain relatively consistent, intermediate 
values, such as T ¼ 40 to T ¼ 90, visually perform 
better. We observed higher and lower T values to 
have more No-sensitivity masked (NSM) pixels in 
both flooded and non-flooded areas. Similarly to 
most cases, this example shows more TP pixels for 
the harmonic model, thus higher PAs. Based on these 
visual observations and optimal performance indi
cated by the mean differences, T ¼ 40 is an appro
priate initial choice for the flooded scenario.

5.4.2. Reduced overestimation
For conciseness, we show the exemplary performance 
of the harmonic model and the exponential filter at 
T ¼ 40 in Figure 10, as the performance based on the 
T values, in most cases, reflects that of the Scotland 
site depicted above. We show insightful subsets of the 
confusion maps for four other sites covering diverse 
environmental zones.

The confusion maps for the study site in Latvia are 
shown in the first row of Figure 10. This study site 
suffers from high commission errors and is most 
apparent in sparse blobs of FP pixels. There are larger 
FP blobs from harmonic model flood maps compared 
to the exponential filter maps. Some of the reduced 
FP patches in the exponential filter model appear on 
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dense vegetation and might be removed through 
exclusion masking. This can be perceived both posi
tively and negatively; it suggests potentially lesser 
dependency on exclusion masking but also indicates 
that there might be limited improvement if they were 
masked.

In contrast, the exponential filter maps have sparse 
no-sensitivity masked pixels within the flooded area, 
thus missing TP pixels. Recall that the no-sensitivity 
mask covers pixels with similar no-flood and flooded 
distributions. FNs are a minor issue for both maps 
tested in this study site.

The second row of Figure 10 shows the confusion 
maps for the Indian tile. This map shows reduced 
flood labels from the exponential filter for TP and FP 
areas. Consequently, this reduces the commission 
errors but increases the omission errors similar to 
the temperate study sites discussed above.

A subset of the Philippine test site is shown in 
the third row of Figure 10. A cursory check of the 
Philippine Rice Information System (https://prism. 
philrice.gov.ph). (Mabalay et al. 2022) reveals that 

this area is mainly cultivated for rice. The harmo
nic model showed more prominent areas of 
omitted TP but consequently fewer FP. This area 
appears to be problematic for the static harmonic 
model to estimate. We attribute this to year-to- 
year variations in the rice planting season 
(Gutierrez et al., 2019), which causes temporal 
shifting leading to higher than usual variability 
in the temporal radar back scatter signature. 
While this issue occurs for most land cover 
types, this is very pronounced in rice fields due 
to paddy flooding (very low backscatter) at start 
of season. This results in ill fitting no-flood refer
ence causing the significantly large no-sensitivity 
masked area.

In contrast, the dynamic nature of the exponen
tial filter is beneficial in this area. It should be 
noted that the overall metrics of the whole 
Philippine site do not match this sample area, as 
there are far more significant areas of missed TP 
from the exponential filter from prolonged floods 
(further discussed below).

Figure 9. Scotland study site confusion maps, computed from flood maps on 2023.10.08 generated using the harmonic model (HPAR) 
and exponential filter (EXPF) at various T values against CEMS rapid mapping product. Legend: FN - false negative, TN - true negative, 
TP - true positive, FP -false positive, WM - reference water mask, NSM - TU Wien no sensitivity mask. Flooded SIG0 backscatter is 
presented as reference.
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5.4.3. Long floods
The test sites in Greece and the Philippines have lower 
exponential filter performance. We consider it conse
quential that these test sites were documented to 
have had prolonged floods (He et al. 2023; He et al.  
2023). This points to a deficiency of the exponential 
filter in accurately modeling the no-flood reference 
probability distribution.

This results in underestimation at the Greece 
test site is highlighted in the bottom row of 
Figure 10. Prolonged flood results in lower back
scatter estimates from the exponential filter; thus, 
the no-flood probability distribution moves closer 
to the flood probability distribution, causing con
flicting distributions in some cases. As the expo
nential filter standard deviation was computed 
from the 2023 time series, we observed elevated 
variance which can be attributed to the prolonged 
floods in the area, thus exacerbating the under
estimation issue.

6. Discussion

6.1. No-flood conditions

As expected, most of the increase in FPR at the tile 
level can be attributed to frozen soil (Baghdadi et al.  
2018) and dry conditions (O’Grady, Leblanc, and 
Gillieson 2011) and dry conditions (O’Grady, Leblanc, 
and Gillieson 2011) supported by ERA5-Land data. 
Agricultural overestimation – unrelated to these con
ditions – which has been observed mostly on local 
scales (Bauer-Marschallinger et al. 2022; Cian et al.  
2018) – we have now shown instances where they 
also cause a significant increase in FPR at the tile level.

Although the case of overestimation due to 
frozen soils and dry conditions could be effectively 
identified from auxiliary data (as is done in GFM 
(Matgen et al. 2022)), the effect of low backscatter 
due to agriculture is much more challenging to 
address due to local variations. Our analysis of FP 
frequency reveals that this overestimation is 

Figure 10. Flood confusion maps from Latvia (top row), India (2nd row), the Philippines (3rd row), and Greece (bottom row) study 
sites. Flood confusion maps from flood maps using harmonic model (left most column) versus exponential filter at T=40 (2nd column) 
with the flooded SIG0 backscatter (3rd column) and optical image from google as reference. Legend: FN - false negative, TN - true 
negative, TP - true positive, FP -false positive, WM - reference water mask, NSM - TU Wien no sensitivity mask.
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influenced by the type of crops and cropping 
practices, as evidenced by plot-level variation. 
This observation suggests the possibility of seaso
nal and land cover class-based correction or relia
bility metric; thus, it is recommended for future 
work.

Although these overestimation issues in no- 
flood conditions were not completely eliminated, 
switching to an exponential filter-based no-flood 
reference improves overall performance. In most 
cases, the FPR of the exponential filter model is 
less than half of the harmonic model. We observed 
that the FPR differences between the harmonic 
model and the exponential filter is more pro
nounced in sites with clear seasonality. 
Temperate and arid regions benefit more com
pared to the tropical areas where there is no 
clear improvement.

In general, the FPR of the exponential model 
does not vary much based on T value. For several 
test cases, T values of 10 and 20 showed inconsis
tent results. There are instances where they have 
the lowest FPR but more often have the higher 
FPRs. Even on the tile level, all other T values were 
difficult to distinguish based on their performance 
FPR and RMSD values. Thus, to safely limit FPR in 
cases without flood, we suggest T values starting 
at 30.

The time series assessments were limited to the 
same Sentinel-1A relative orbit of the reference 
flood data to remove effects due to changing ima
ging geometry (Schlaffer et al. 2017). This means 
that for the 2023 time series per orbit, there were 
at most 30 samples per tile we analyzed. We 
recommend that a longer time-series analysis, e.g. 
two years, be conducted in the future. The flood 
time series and frequency analysis relies on the 
accuracy of the reference water mask (Rättich, 
Martinis, and Wieland 2020). The seven locations 
examined in this study do not exhibit substantial 
seasonally flooded regions; however, overlooking 
the possibility of localized genuine floods might 
result in the extent of false positives to be over
stated (see Figure 7). Although we consider this 
a minor issue for the sites tested e.g. no big spikes 
in FPR in Slovenian case, we suggest using 
a higher quality and more consistent mask in 
future research.

6.2. Flood conditions

Based on CSI, UA, and PA values, the TU Wien flood 
mapping algorithm showed good performance rela
tive to the reference flood maps for most of the seven 
validated flood events. The confusion maps presented 
mainly corroborated the quantitative trends of 
decreased FP from the exponential filter maps com
pared to the harmonic model maps.

We find a similar result of reduced overestimation 
with the exponential filter for the flooded scenes 
where reference flood maps were available. From 
the differences in the CSI, UA, and PA trends based 
on the values of T , we found that T ¼ 40 is a good 
choice for most study sites. This selection corresponds 
to roughly nine Sentinel-1 observations and about 
four months in the temporal range. This criterion is 
similar to the common suggestion from literature to 
limit no-flood reference input to images near in time 
or season (Clement, Kilsby, and Moore 2018; 
Hostache, Matgen, and Wagner 2012).

Further, the computational needs for this number 
of input images seem reasonable, unlike higher T 
values which would be unmanageable at global 
scale. The number of input images appears consistent 
with suggestions of five images minimum (Karamvasis 
and Karathanassi 2021) as we see T < ¼ 20 with less 
than five inputs having degraded performance. These 
qualitative trends are corroborated by confusion 
maps that point to the tested middle values T pre
ferred over the lower and higher values. As the T 
value is less significant in the non-flooded scenes we 
select T ¼ 40 as our default choice.

However, unlike in soil moisture studies where the 
T parameter has been well documented (Albergel 
et al. 2008; Paulik et al. 2014; Pellarin, Calvet, and 
Wagner 2006) and uses higher temporal resolution 
inputs, we can only use comparatively limited back
scatter observations. Consequently, the number of 
observations used to make a no-flood estimate 
depends on the T value. Distinguishing the effect of 
the model independent of the number of observa
tions is not possible from our experiments. Further, 
while care was taken to match reference flood maps 
to our results to minimize external differences (e.g. 
temporal and spatial mismatches), the reference data 
used are not actual ground truth. Thus, over- and 
under-detection due to the limitations of flood 
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retrievals from SAR backscatter are persistent in the 
analysis.

6.3. T-value selection

Based on the flooded and non-flooded test scenarios 
described previously, we have identified T ¼ 40 as 
a reasonable selection based on several considerations. 
First, while most T values are quite similar, lower 
T values (< ¼ 20) for specific test sites exhibited 
increased variance, prompting us to limit our range 
to T > ¼ 30. Second, as shown in Figure 9, mid-range 
T values (40 to 90) present a more favorable pattern 
with less noise and less no-sensitivity pixels. Third, 
average metrics for flooded scenarios indicate 
a preference for T ¼ 40. Finally, higher T values 
(> ¼ 90) are computationally expensive, even for initi
alizing the recursive formulation.

6.4. Long floods and exponential filter prospects

It is also clear that prolonged floods severely affect 
the performance no-flood references using the expo
nential filter model. While this issue is localized to 
pixels with longer floods and does not affect the over
all performance in other regions a generalized solu
tion is needed. A simple solution is to remove flooded 
Sentinel-1 images as inputs. However, the automated 
identification of images that contain floods is 
a significant scientific question on its own. Some 
workflows suggest using auxiliary markers, such as 
precipitation (Karamvasis and Karathanassi 2021), to 
omit dates with a high probability of being flooded. 
Another possibility is the removal of flooded scenes 
based on some (non-)similarity metric (Hostache, 
Matgen, and Wagner 2012). Although requiring sig
nificant infrastructure to execute, a recent method 
based on detecting time series anomalies by 
Fichtner et al. (2023) is currently being used in GFM, 
showing promising results.

From our results in section 5.1, there appears to be 
a potential to identify anomalies based on the ratios 
of the FPR and RMSD. There is often a good correla
tion between FPR and RMSD. When the FPR increases 
due to freezing soil conditions, a significant propor
tion of the area changes, meaning the RMSD also 
increases. In contrast, the increase in FPR due to dry 

(and, to an extent, cropping practices) has a longer 
duration but proportional increase in RMSD.

Flood events appear as anomalies that do not follow 
this trend. Floods often cover a small portion of a 300  
km-wide Equi7Grid T3 scene; hence, FPR does not 
increase much. Since RMSD is sensitive to outliers, 
a significant decrease in backscatter due to floods 
increases the RMSD even in cases where floods are 
relatively small. However, there seems to be inter-site 
variance; thus, it is unexplored here and left for future 
work.

7. Conclusions and outlook

In this study, we assessed the performance of different 
no-flood parameterizations of the TU Wien flood map
ping algorithm using a novel non-flooded time-series 
approach and traditional qualitative and quantitative 
flood map assessments. We analyzed the algorithms 
performance on varying environmental and climatic 
zones for one year time-series. In doing so, we highlight 
spatiotemporal patterns of overestimation.

While the importance of a no-flood reference in 
SAR flood mapping algorithms has been extensively 
covered (Giustarini et al. 2013; Hostache, Matgen, and 
Wagner 2012; Li et al. 2018; Schlaffer et al. 2015; Zhao, 
Pelich, Hostache, Matgen, Wagner, & Chini, 2021), the 
impact it has on the overestimation of automatically 
classified non-flooded scenes has not been given 
attention until now. We find that flood overestimation 
at scale could be triggered not just by frost and dry 
soil conditions but also by agriculture. Further, the 
degree of agricultural overestimation depends on 
the crop type and agricultural practices.

Aside from limited testing we introduced in 
a previous work (Tupas et al. 2023a), to our knowl
edge this concept of testing flood mapping methods 
on non-flooded times series scenes have not yet been 
attempted before. This work sheds light on the fre
quency of these different overestimation issues, thus 
highlighting the need for further studies to reduce 
them.

We compared the original harmonic and novel 
exponential filter models with no-flood references, 
with the latter showing promising performance. 
Similar to observations from recent studies 
(Colacicco et al. 2024) the enhanced modeling of the 
no-flood reference resulted in improved flood maps. 
The exponential filter reduced overestimation in both 
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flooded and non-flooded conditions. This is sup
ported by improved flood labeling in areas where 
dynamically updated no-flood models are required. 
Reduced overestimation by switching to the expo
nential filter can be complemented using topogra
phy-based priors (Tupas et al. 2023a), which 
improved the underestimation.

We found that the exponential filter with T ¼ 40 
provides a good balance in performance for both 
flooded and non-flooded conditions. This T value 
requires a reasonable time series input (allowing for 
application at a global scale) to achieve good initial 
results. However, the recursive formulation is still 
a must for actual NRT operations. Provided computa
tional cost does not prohibit NRT application, more 
advanced updating of temporal models e.g. Kalman 
filters (Dalaison and Jolivet 2020; Komisarenko et al.  
2022) should be explored.

Prolonged floods present an issue for the exponen
tial filter based no-flood backscatter estimate and 
generated standard deviation, the two parameters 
needed to estimate the no-flood model probability 
distribution. Therefore, an automated screening of 
flooded Sentinel-1 images as input is strongly recom
mended for operational implementation both for the 
backscatter estimation and no-flood standard devia
tion calculation.

To conclude, we showed a holistic assessment of 
the TU Wien algorithm geared toward automated 
deployment over multiple climatic zones for 
flooded and non-flooded cases. As far as we are 
aware, analyses of flood mapping on this spatial 
and temporal extents have not been conducted 
previously. Understanding of the algorithm’s limita
tions in the temporal and environmental context 
opens new avenues for improvement. While further 
development is needed, the exponential filter as 
a no-flood reference was shown to be a feasible 
alternative to the harmonic model. Overall, the 
exponential filter no-flood reference model shows 
great promise for improved global near-real-time 
flood mapping.

Abbrevations

BI Bayes(ian) Inference
CEMS Copernicus Emergency Management Service
CSI Critical Success Index
DOY Day Of Year

EODC Earth Observation Data Centre for Water Resources 
Monitoring

EXPF Exponential Filter
FN False Negative
FP False Positive
FPR False Positive Rates
GFM Global Flood Monitoring
HAND Height Above Nearest Drainage
HPAR Harmonic Parameters
NSM No-sensitivity Mask
PA Producer Accuracy
PDF Probability Distribution Function
RMSD Root Mean Square Deviation
UA User Accuracy
NRT Near-Real-Time
SAR Synthetic Aperture Radar
SIG0 Sigma Nought backscatter coefficient σ0

STD Standard Deviation
TN True Negative
TP True Positive
WM Water Mask
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