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Kurzfassung

Heutzutage sind digitale Systeme allgegenwärtig. Dabei geht dieser sich kontinuierlich aus-
breitenden Vernetzung trotz vieler Vorteile auch eine große Anzahl von bisher unvorstell-
baren Bedrohungen einher. Ein großes Problem sind Cyber-Angriffe, die Schwachstellen
von Computersystemen ausnutzen, um diese zu zerstören oder Daten zu stehlen. Betrof-
fene Organisationen haben dabei oft nur wenig Möglichkeiten, um auf solche gezielten
Angriffe zeitnah zu reagieren, was zu finanziellen Verlusten und Rufschädigungen führt.
Um Angriffen vorzubeugen, werden deshalb sogenannte Intrusion-Detection-Systeme
(IDS) zur Systemüberwachung eingesetzt. Signatur-basierte IDSs sind in der Lage für
bestimmte Angriffe typische Muster in Logdaten zu lokalisieren, können aber keine
unbekannten Angriffe erkennen und erfordern kontinuierliche Aktualisierungen der ver-
wendeten Signaturen. Dazu kommen noch die Probleme, dass Signaturen aufgrund ihrer
Einfachheit oft leicht zu umgehen, ungeeignet zur Beschreibung komplexer Angriffe, und
schwierig zu erstellen sind. Eine Alternative stellen Anomalie-basierte IDSs dar, die durch
maschinelles Lernen auch unbekannte Angriffe erkennen können. Nachteile dieser Methode
sind jedoch die vergleichsweise höhere Anfälligkeit für Fehlalarme sowie die Notwendigkeit
von Expertenwissen zur Interpretation der Anomalien. In dieser Dissertation wird deshalb
ein Ansatz vorgestellt, der die Vorteile beider Methoden kombiniert. Das Ziel ist es,
aus Sequenzen von Anomalien sogenannte Meta-Alarme zu generieren, die ähnlich wie
Signaturen die Erkennung derselben oder ähnlicher Angriffe auf anderen Systemen ermög-
licht. Zu diesem Zweck wird eine Methode zur Aggregation von Alarmen und Anomalien
präsentiert, die unabhängig von IDSs, Angriffen, oder Systemen funktioniert. Der Ansatz
gruppiert Ereignisse nach Auftrittszeitpunkten und verwendet Ähnlichkeitsmetriken, um
Gruppen zu Meta-Alarmen zusammenzufassen. Die Evaluierung des Ansatzes erfolgt
insbesondere durch ein öffentlich verfügbares Anomalie-basiertes IDS. Im Rahmen dieser
Dissertation wird dieses IDS um ein Modul erweitert, dass die statistische Analyse von
Korrelationen in kategorischen Werten von Logdaten ermöglicht. Die Evaluierung dieser
Angriffserkennungsmethode erfordert die Verfügbarkeit von Logdaten. In der Dissertation
wird daher auch eine Methode zur automatischen Erstellung von Testbeds zur Logdatenge-
nerierung vorgestellt. Durch die modellgetriebene Abstraktion von Testbed-Komponenten
ist es dabei möglich, beliebig viele Testbeds mit variabel festgelegten Parametern zu erzeu-
gen. Da somit die Systeminfrastruktur, das Systemverhalten, sowie das Angriffsszenario
Variationen unterliegen, sind die resultierenden Logdaten repräsentativ für verschiedene
Systemumgebungen und dadurch besser geeignet für Evaluierungen.
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Abstract

The omnipresence of digital systems has led to an interconnected economy and society.
Unfortunately, the introduction of new technologies in the rapidly expanding global
networks has also enabled previously unimaginable threats. Cyber attackers are utilizing
advanced tools and techniques to compromise systems and exploit vulnerabilities for the
purpose of data exfiltration and destruction. Frequently targeted victims are corporations
or organizations that often have no methods in place to detect such targeted attacks
in time, resulting in financial and reputational losses. As a consequence, cyber security
deploys so-called intrusion detection systems (IDS) to monitor system behavior and
disclose suspicious activity. While signature-based IDSs that search for predefined
patterns in logs are highly effective, they are unable to detect unknown attacks and
rely on manually maintained databases of attack signatures. The main problem with
such signatures is that they are often easy to evade and too simple to detect complex
attack cases, and that their generation is slow and relies on domain knowledge. Anomaly-
based IDSs seem to resolve some of these issues by leveraging machine learning to
detect unknown attacks, however, are notorious for high false positive rates and produce
anomalies that are difficult to interpret and relate to specific attacks. The idea presented
in this dissertation is therefore to combine the advantages of both methods by generating
so-called meta-alerts from sequences of anomalies that enable detection of the same or
similar attacks on other systems, as achieved by signatures. For this purpose, a new alert
aggregation mechanism is proposed that does not rely on any predefined knowledge about
the deployed IDSs, observed attacks, or monitored systems. In particular, the method
groups anomalies and alerts by their occurrence times and uses similarity metrics to
cluster and merge groups into meta-alerts. For evaluation of the approach, anomalies are
generated by a publicly available anomaly-based IDS. As part of this dissertation, this IDS
is extended by a concept for analyzing categorical values in log data. Thereby, statistical
tests are used to recognize changes in value correlations as anomalies. Evaluating the
ability to detect attacks requires labeled log data. The dissertation therefore also proposes
a method for automatic testbed deployment. In particular, testbeds are instantiated
from abstract templates following principles from model-driven engineering. This enables
to generate arbitrary numbers of testbeds with dynamically assigned random values for
specific testbed parameters, which introduces variations in the infrastructure, normal
system behavior, and attack executions. The resulting log datasets are representative for
diverse system environments and thus improve evaluations.

xi





Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Statement & Goals . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background & Related Work 11
2.1 Log Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Cyber Threat Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Alert Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Simulation Testbeds 31
3.1 Testbed Design Methodology . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Testbed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Log Data Generation & Labeling 53
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Analysis of Log Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Log Clustering 89
5.1 Survey Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Survey Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xiii



5.3 Survey Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Anomaly Detection 117
6.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 CTI Extraction 137
7.1 Entities & Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.3 Implementation of the Framework . . . . . . . . . . . . . . . . . . . . 154
7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8 Conclusion 177

List of Figures 181

List of Tables 185

Bibliography 187



CHAPTER 1
Introduction

The past few years have seen a strong trend towards digitalization in many different
areas. This includes Industry 4.0 leveraging interconnected processes, automation, and
decision support [Gho20], Internet of Things such as sensors and other physical objects
that communicate with each other over networks [AKBS19], cloud computing where
data storage and processing is outsourced to external infrastructure [KKA14], and the
omnipresence of smart phones for communication, payment, entertainment, and more.
In addition, there has recently been a rapid but extensive shift towards remote work and
education as a consequence of the COVID-19 pandemic [BHO+20]. These transitions
lead to a situation where computers permeate all layers of economy and society, a concept
also known as ubiquitous computing [MC17].
While transitions to new technologies and procedures usually come with benefits in terms
of efficiency and convenience, it is undeniable that the increased complexities of systems
and a higher level of interconnectedness also led to unprecedented attack vectors that
pose a threat to people and organizations. This is clearly visible in recent reports on the
cyber security landscape, which indicate that cyber attacks have not only continuously
increased in numbers in the last years, but are also more frequently involving sophisticated
exploits; a tendency that is expected to continue in the future [ENI21]. In particular,
adversarial actors are continuously working on targeted intrusion methods that evade
existing detection mechanisms [Cro21]. Unfortunately, this implies that security analysts
are most often one step behind the attackers.
When intrusions are successful, attackers usually have multiple days or even weeks until
their presence is detected [SGIM21], which gives them enough time to exfiltrate data
or damage systems. Since attack attempts themselves can hardly be prevented, it is
therefore essential to drastically reduce the time required to recognize system infiltrations.
The most common method for automatic attack detection involves monitoring continu-
ously generated log data for known indicators of malicious events [KGVK19]. However,
generating cyber threat intelligence (CTI) such as attack signatures is non-trivial as

1
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CTI Sharing Platform

Anomaly 
Detection Rule Check

Organization A

Anomaly 
Detection Rule Check

Organization B

Rule Check

Organization C

Anomalous Logs
Rules

Aggregation, 
Correlation,
Extraction

Open-Source Intelligence

Figure 1.1: Concept for sharing anomalies to enable automatic attack detection and
classification across organizations.

it involves manual analysis of attack consequences and careful consolidation of attack
indicators into a single detection rule by a domain expert. To ease this situation and
enable faster detection, there is therefore a need for an automatic mechanism that detects
system activity related to attacks, extracts relevant traces from log data, and transforms
it into CTI that enables immediate detection of the same attack on other systems.

Figure 1.1 depicts an exemplary scenario employing such an approach. In particular,
organization A and B have similar system infrastructures (i.e., networks involving the
same technologies for servers and hosts) and furthermore have IDSs in place that detect
unusual system activities as anomalous log events. By publishing their findings on a
common CTI sharing platform it is possible to determine whether both organizations are
affected by the same attack and use aggregation mechanisms to automatically transform
the events into a generic detection rule. All participating organizations profit from the
resulting CTI, including organization C that may also be affected by the same attack.

1.1 Problem Statement & Goals
Cyber attacks make it necessary to deploy intrusion detection systems (IDS). These
applications monitor computer systems or networks and execute countermeasures or
at least notify administrators in case that any malicious activity is recognized. Many
approaches thereby focus on network traffic for detection, however, only have limited
visibility of attacks due to encryption of network packets. On the other hand, system log

2



1.1. Problem Statement & Goals

data is usually not affected by encryption, but occurs in many different formats, which
complicates analysis.

Independent of the ingested data, the most common type of detection involves signature-
based IDSs that search for predefined patterns that are known to correlate to specific
attacks. Their popularity is due to the fact that they are very effective in detecting
known attacks, have low false alarm rates, and are able to process large amounts of
logs with high efficiency [KGVK19]. Unfortunately, they are unable to detect unknown
attacks for which no signatures exist and also rely on a database of signatures that needs
to be maintained manually. In addition, signatures are usually only simple Indicators of
Compromise (IoC) such as hashes or IP addresses that are easy to evade for attackers.
Accordingly, these IoCs have limited reliability and only enable temporary protection
against cyber attacks [LSW+19,Rho14,TR18].

An alternative type of CTI are Tactics, Techniques, and Procedures (TTP). In contrast to
IoCs, they are abstract descriptions of attack cases and are thus generally valid. However,
due to their abstract nature, TTPs are primarily designed to support manual attack
analysis in forensic investigations and thus do not provide any indicators that feed into
signature-based IDSs, which prevents automatic attack recognition [HASA+17,Rho14].

Another form of intrusion detection that avoids aforementioned issues altogether is
anomaly detection. Other than signature-based IDSs that rely on a predefined set of
indicators, anomaly detection leverages methods from machine learning to automatically
generate a baseline of normal system behavior and subsequently detect any deviation
from that model as anomalous and potentially malicious [CBK09]. The main advantage
of anomaly-based IDSs is that they detect unknown attack cases without relying on
manually defined detection rules. However, anomaly detection generally suffers from a
higher false alarm rate since rare and unusual system activities are frequently reported
as anomalies [KGVK19]. Furthermore, as anomalies only relate to specific properties of
the data, they usually do not provide any labels for specific attacks, but instead rely on
semantic interpretation by analysts. Unfortunately, this is often infeasible as anomalies
occur in large numbers, a situation also known as alert flooding [LSWR22].

To address the high quantity and diverse structure of anomalies, aggregation and cor-
relation methods that group alerts into clusters are required. Thereby, correlation of
anomalies across systems requires fuzzy matching as the properties of anomalies are
subject to variation depending on the system infrastructure where they originate from.
Unfortunately, development and evaluation of such approaches is difficult as no bench-
mark datasets exist that contain anomalies generated in diverse but similar environments.
In particular, these datasets need to contain training log data from diverse sources that
represent normal system behavior as well as repeated executions of attack scenarios with
variations [NK19,SW99].

The aforementioned problems concern several aspects of log data analysis for security
applications, including generation of training data, detection techniques used in IDSs, and
properties of CTI. The problem statement of this thesis is thus summarized as follows.

3



1. Introduction

• Existing log datasets do not involve repeated attack executions in diverse system
infrastructures. Accordingly, they are not suitable for evaluation of IDSs or alert
aggregation approaches due to a lack of variation of both benign and malicious
attack consequences in log data.

• Signature-based IDSs are unable to detect unknown attacks. Anomaly detection
alleviates this problem, but suffers from high false positive rates and lack of attack
labels. This makes it difficult for analysts to aggregate and interpret the findings.
In addition, detection within system log data is often limited as the data involves
diverse formats and heterogeneous events.

• Neither IoCs nor TTPs enable detection or classification of complex attack cases.
While IoCs are too simple and easy to evade, TTPs do not provide detectable
indicators or patterns suitable for IDSs.

There is a need to alleviate aforementioned problems. The goal of this dissertation is
therefore as follows.

To develop a procedure and an analytic model that enables the automatic or semi-
automatic (i.e., including human validation) extraction of Indicators of Compromise
(IoC) as well as Tactics, Techniques and Procedures (TTP) from basic unprocessed raw
log data with limited knowledge about the infrastructure under investigation.

The problem statement and goal of the dissertation raise several research opportunities
and challenges. The following list enumerates the research questions to be answered in
the dissertation.

RQ1 What is an appropriate method to enable flexible generation of realistic and labeled
log data that facilitates evaluation of CTI extraction approaches?

RQ2 Which methods are appropriate to parse raw and unstructured log data to enable
unsupervised event classification, parameter analysis, and incremental anomaly
detection?

RQ3 To what extent can a detection method be designed to analyze categorical values
in parsed log data for the purpose of identifying anomalous system states with high
accuracy?

RQ4 What is an appropriate method to technically describe advanced attacks involving
multiple consecutive attack steps as artifacts and complex system behavior patterns
in an abstract way to provide reusability on other systems?

4



1.2. Contributions

1.2 Contributions
Major parts of this dissertation were published in conference proceedings, journal pa-
pers, magazine articles, and book chapters. The following list enumerates the main
contributions of this dissertation and states the most relevant publications.

1. Automatic generation of testbeds for log data collection and labeling.
There exist only few datasets containing system log data and most of them do
not fulfill the requirements for realistic evaluation of anomaly detection and alert
aggregation approaches, including a sufficiently long and complex training phase of
normal system activity, repeated executions of attack cases with variations, and
collection of raw logs from diverse sources. We therefore propose a method for the
automatic generation of testbeds using concepts from model-driven engineering
to ease deployment and configuration of components. Thereby, the main idea is
to specify the infrastructure, normal behavior and attacks as templates that are
dynamically instantiated for each testbed [LSW+21]. We also present a methodology
that assigns labels to malicious events in alignment with the model-driven nature
of our testbeds [LFS+22]. Based on our concepts, we generate and publish a
collection of labeled log datasets for evaluation of IDSs and alert aggregation
approaches [LSF+].

• Landauer M., Skopik F., Wurzenberger M., Hotwagner W., Rauber A. (2021):
Have It Your Way: Generating Customized Log Data Sets with a Model-driven
Simulation Testbed. IEEE Transactions on Reliability, Vol.70, Issue 1, pp.
402-415. IEEE. [LSW+21]

• Landauer M., Skopik F., Frank M., Hotwagner W., Wurzenberger M., Rauber
A. (2022): Maintainable Log Datasets for Evaluation of Intrusion Detection
Systems. Under review. [LSF+]

• Landauer M., Frank M., Skopik F., Hotwagner W., Wurzenberger M., Rauber
A. (2022): A Framework for Automatic Labeling of Log Datasets from Model-
driven Testbeds for HIDS Evaluation. Proceedings of the Workshop on Secure
and Trustworthy Cyber-Physical Systems, forthcoming. ACM. [LFS+22]1

2. Anomaly detection techniques for system log data. Most state-of-the-art
anomaly detection techniques analyze features of network traffic. Unfortunately,
network traffic is often encrypted in practice and thus detection in the payload is
limited. Log data on the other hand is not encrypted and keeps track of almost all
events that take place on a system, but is difficult to parse as it occurs in many
different formats and often involves heterogeneous events. We therefore survey log
clustering approaches and review their abilities to group log data, detect outliers
as anomalies, and provide parsers [LSWR20]. Based on these insights, we create

1Parts of the concepts and results presented in this paper were first published in a Master’s thesis by
Maximilian Frank [Fra21].

5



1. Introduction

parsers for our own log data and then design anomaly-based detectors. In particular,
we propose a sophisticated method that employs statistical tests to select categorical
variables in log data that are appropriate for correlation analysis [LHW+21].

• Landauer M., Skopik F., Wurzenberger M., Rauber A. (2020): System Log
Clustering Approaches for Cyber Security Applications: A Survey. Elsevier
Computers & Security Journal, Volume 92. May 2020, pp. 1-17. Elsevier.
[LSWR20]

• Landauer M., Höld G., Wurzenberger M., Skopik F., Rauber A. (2021):
Iterative Selection of Categorical Variables for Log Data Anomaly Detection.
The 26th European Symposium on Research in Computer Security (ESORICS
2021), October 04-08, 2021, virtual. Springer. [LHW+21]

• Landauer M., Skopik F., Wurzenberger M., Hotwagner W., Rauber A. (2020):
Visualizing Syscalls using Self-Organizing Maps for System Intrusion Detection.
6th International Conference on Information Systems Security and Privacy
(ICISSP 2020), February 25-27, 2020, Valetta, Malta. INSTICC. [LSW+20b]

• Wurzenberger M., Landauer M., Skopik F., Kastner W. (2019): AECID-PG:
A Tree-Based Log Parser Generator To Enable Log Analysis. 4th IEEE/IFIP
International Workshop on Analytics for Network and Service Management
(AnNet 2019) in conjunction with the IFIP/IEEE International Symposium
on Integrated Network Management (IM), April 8, 2019, Washington D.C.,
USA. IEEE. [WLSK19]

• Skopik F., Wurzenberger M., Landauer M. (2021): Smart Log Data Analytics:
Techniques for Advanced Security Analysis. 208p., 1st edition, ISBN-13: 978-
3-030-74449-6, Springer International Publishing. [SWL21b]

• Skopik F., Landauer M., Wurzenberger M. (2021): Skopik F., Landauer M.,
Wurzenberger M. (2021): Online Log Data Analysis With Efficient Machine
Learning: A Review. IEEE Security & Privacy, forthcoming. IEEE. [SLW21]

• Skopik F., Wurzenberger M., Landauer M. (2021): The Seven Golden
Principles of Effective Anomaly-Based Intrusion Detection. IEEE Security &
Privacy, Vol.19, Sept./Oct. 2021, pp. 36-45. IEEE. [SWL21a]

• Wurzenberger M., Höld G., Landauer M., Skopik F., Kastner W. (2020):
Creating Character-based Templates for Log Data to Enable Security Event
Classification. 15th ACM ASIA Conference on Computer and Communications
Security (ACM Asia CCS), October 05-09, 2020, Taipei, Taiwan. ACM.
[WHL+20]

• Skopik F., Landauer M., Wurzenberger M. et al. (2020): synERGY: Cross-
correlation of operational and contextual data to timely detect and mitigate
attacks to cyber-physical systems. Elsevier Journal of Information Security
and Applications (JISA), Volume 54, October 2020. Elsevier. [SLW+20]

6



1.2. Contributions

• Skopik F., Wurzenberger M., Landauer M. (2020): DECEPT: Detecting
Cyber-Physical Attacks using Machine Learning on Log Data. ERCIM News,
Number 123, October 2020, pp. 33-34. ERCIM - The European Research
Consortium for Informatics and Mathematics. [SWL20]

3. Alert aggregation techniques for extraction of CTI from raw log data.
Existing alert aggregation approaches rely on the presence of certain attributes in
alert formats, in particular, IP addresses. Unfortunately, this is mostly applicable
to alerts generated by IDSs that analyze network traffic, as system logs do not
necessarily involve network information or other attributes required by these alert
formats. We therefore present a similarity-based approach for alert aggregation that
does not rely on any domain knowledge about the monitored systems or deployed
IDSs [LSWR22]. Moreover, we outline a concept on how to integrate such an
aggregation approach into a pipeline that automatically extracts CTI from raw log
data [LSW+19].

• Landauer M., Skopik F., Wurzenberger M., Rauber A. (2022): Dealing with
Security Alert Flooding: Using Machine Learning for Domain-independent
Alert Aggregation. ACM Transactions on Privacy and Security, forthcoming.
ACM. [LSWR22]

• Landauer M., Skopik F., Wurzenberger M., Hotwagner W., Rauber A. (2019):
A Framework for Cyber Threat Intelligence Extraction from Raw Log Data.
International Workshop on Big Data Analytics for Cyber Threat Hunting
(CyberHunt 2019) in conjunction with the IEEE International Conference on
Big Data 2019, December 9-12, 2019, Los Angeles, CA, USA. IEEE. [LSW+19]

• Landauer M., Skopik F. (2019): INDICÆTING - Automatically Detecting,
Extracting, and Correlating Cyber Threat Intelligence from Raw Computer
Log Data. ERCIM News, Number 116, January 2019, pp. 25-26. ERCIM -
The European Research Consortium for Informatics and Mathematics. [LS19]

The following datasets were created and published in course of carrying out this thesis.

1. AIT-LDSv1.1 [LSW+20a]. The collection of four log datasets was obtained from
testbeds generated by the approach presented in [LSW+21]. In brief, the datasets
contain logs from webservers running Horde Groupware and OkayCMS. Over
the course of six days, normal user behavior was simulated with state machines
and several attacks were launched against the server, including scans, brute force
login attempts, remote command executions, and exploits of several vulnerabili-
ties. Log data is collected from diverse sources, including audit logs, access logs,
authentication logs, exim logs, mail logs, and syslog.

2. AIT-LDSv2.0 [LSF+21]. The second version of our dataset comprises logs from
eight testbeds. In contrast to the AIT-LDSv1.1, the testbed represents a more

7



1. Introduction

complex network structure comprising different zones and includes additional
components, such as a file share, VPN server, firewall, etc. We also extended
the user simulation to utilize new services and generate more complex behavior
patterns. We also improved the mechanism for labeling malicious events. The
dataset is described in detail in [LSF+].

Finally, several tools were developed and extended as part of the dissertation. The
following enumeration provides an overview of these applications.

1. AMiner [AMi]. The AMiner is an open-source log-processing pipeline that parses
log data and analyzes the parsed values for anomalies. The AMiner is part of the
ÆCID (Automatic Event Correlation for Incident Detection) framework [AEC]
developed in course of several research projects. The anomaly detection technique
for categorical values proposed as part of this thesis [LHW+21] is available in the
ÆCID toolbox and may thus be used as a detector in the AMiner pipeline.

2. Kyoushi Testbed [Kyo]. All code that is necessary to deploy and setup testbeds for
log data generation is available open-source. This also includes the transformation
engine that instantiates testbeds from models, the library for simulating normal
user activities and attacks, as well as the event labeling framework.

3. ÆCID Alert Aggregation [Ale]. We published the algorithms for alert aggrega-
tion as open-source code. The repository also contains all training and testing data
used to evaluate the approach. Accordingly, all results are reproducible.

1.3 Organization of the Thesis
This section maps the chapters of the thesis to the proposed concept for CTI extraction
from raw log data. Figure 1.2 provides an overview of the pipeline and references the
chapter number at the corresponding stage. The main idea of the proposed approach is
to generate log data containing traces of attacks in controlled environments, cluster the
log data to generate parsers, disclose anomalies in the parsed logs, and aggregate the
anomalies into meta-alerts that represent specific attack steps. The resulting meta-alerts
are then suitable to detect the same attacks on other systems with fuzzy matching.

The thesis is structured as follows. Chapter 2 reviews the state-of-the-art for all research
areas relevant for this thesis and also provides background information on CTI. The
presented literature was used to disclose existing research problems and identify opportu-
nities for new developments. The chapter is divided into sections for several stages of the
pipeline, in particular, log data testbeds and datasets, anomaly detection, CTI, and alert
aggregation.

Chapter 3 outlines an automatic approach for testbed generation using model-driven
concepts. The main idea is to define testbeds as abstract models that are dynamically
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Figure 1.2: Pipeline of the proposed approach for CTI extraction from raw log data.

instantiated with random variables to introduce variations to the system infrastructure,
normal behavior simulations, and attack executions. Chapter 4 extends this concept
with a rule-based labeling mechanism. In particular, the labeling rules are automatically
filled out by facts derived from the testbeds so that no manual modifications are required
when executing them across different testbed instances. The chapter also provides some
insights into the generated datasets and compares them with log data collected from real
system infrastructures.

Chapter 5 provides a survey on log clustering approaches in the security domain and
groups them based on a predefined list of requirements. Thereby, the generation of
parsers appears as one of the most relevant goal of clustering. Chapter 6 uses such a log
parser to extract categorical values from log events and carry out anomaly detection.
The approach is designed to identify correlating values through a series of filtering stages
in a training phase and then disclose anomalies as changes of these correlations with the
aid of statistical tests.

Violations of correlation rules may also appear as part of normal system behavior and
attacks often cause that multiple detectors raise anomalies. Accordingly, anomalies and
alerts are frequent in actively used systems and it is non-trivial to relate them to specific
attacks. Chapter 7 therefore proposes an alert aggregation algorithm that groups and
merges alerts that are considered similar. When sufficiently many alert groups that
correspond to the same attack are merged from different environments, the resulting
merged group only involves those properties that are present in the majority of all attack
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observations. This means that the resulting merged group is representative for a specific
attack execution, i.e., a so-called meta-alert. Applying the same similarity metrics used
for meta-alert generation allows to detect and classify attacks that occur on other systems.
Accordingly, meta-alerts are considered CTI as they provide complex patterns similar to
TTPs but also include detectable IoCs.

Chapter 8 concludes the thesis. The chapter provides answers to the research questions
and states recommendations for future work.
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CHAPTER 2
Background & Related Work

This chapter provides background information on the concepts discussed in this thesis
and furthermore describes and compares relevant approaches from the state-of-the-art.
As the scope of this thesis spans across several research fields that deserve separate
analysis, the remainder of the chapter is divided into the following sections.

• Log datasets. This section first outlines requirements on log datasets available
for evaluation of IDSs and alert aggregation approaches and then presents some
common datasets that are publicly available.

• Anomaly detection. This section covers some background of anomaly detection,
including types and methodologies of IDSs. Some well-known anomaly detection
techniques are described, in particular, with a focus on value correlations.

• Cyber threat intelligence. This section explains the terms Cyber Threat
Intelligence (CTI), Indicator of Compromise (IoC), and Tactics, Techniques, and
Procedures (TTP). In addition, some approaches that extract CTI from various
data sources are presented.

• Alert aggregation. This section states several requirements for alert aggregation
techniques and checks whether these requirements are met by state-of-the-art
methods.

2.1 Log Datasets
This section reviews and compares existing log datasets used in security research. Major
parts of this section have been published in [LSF+]. Due to the large need for datasets
for IDS evaluation, several attempts to generate benchmark datasets were made in the
past. However, most of these datasets are created with specific use-cases in mind and are
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thus not generally applicable. To compare these datasets on a common scheme, we first
describe a set of requirements that are relevant for intrusion detection datasets and then
discuss the fulfillment of these aspects for several state-of-the-art datasets.

Requirements

Recording log datasets in testbeds or real environments is not straightforward; it is a
task that requires careful planning, since the quality and usefulness of the resulting
data strongly relies on several decisions made by the analyst. We gathered a list of
requirements by reviewing design principles that were followed by authors of existing
datasets. In the following, we summarize our findings.

(1) Use-case. To ensure relevance and authenticity of the dataset, it is necessary to
design the overall network layout and technical infrastructure of the system where
log data is recorded in the context of a specific scenario. This also includes services
available on the involved machines [LSW+21]. Clearly specifying the scope of the
simulation also helps to define the limitations of the dataset.

(2) Synthetic data generation. Datasets collected from real-world system environ-
ments are sometimes considered superior to synthetically generated data due to the
fact that they are per definition realistic, while simulations only try to replicate
their characteristics [HHS+17]. However, real datasets have the strong disadvan-
tage that it is infeasible to differentiate normal from anomalous or malicious logs
with complete certainty, since the root causes of some actions are unknown to the
analysts [SW99]. Obviously, synthetic dataset generation implies that scripts that
replicate normal behavior on an appropriate level of detail are prepared beforehand.
This particularly concerns models for user activities that normally occur on the
system, which can be very diverse and thus non-trivial to formalize. On the plus
side, modeling the normal behavior effectively enables to steer the parameters of
the simulation to generate data that is representative for different levels of detection
complexity [SW99]. Therefore, we argue that synthetically generated log datasets
are the best option for IDS evaluations.

(3) Attacks. As part of a realistic evaluation of IDSs, it is necessary to select recent
and relevant attack scenarios that are suitable for the system environment at hand
[RWG+17,LSW+21]. Otherwise, outdated attack cases may not yield representative
intrusion detection evaluation results that are comparable to that of more modern
attacks.

(4) System logs. When IDSs are applied in productive systems, they are usually able
to analyze logs in raw and unaltered form. Accordingly, log datasets for evaluation
of IDSs should also provide logs that are not processed in any way [MFCMC+18].
Fortunately, synthetic datasets recorded in simulations are usually less critical
when it comes to privacy, since no humans are involved and thus anonymization
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2.1. Log Datasets

of personal user data that possibly occurs in the logs is not required. This also
concerns sensitive contents of files that may appear in the logs and should thus be
simulated with collections of predefined dummy files [UHH+21]. Another important
aspect is to configure the logging framework in a realistic way that fits the use case.
For this, analysts must decide where to log and what to log [ZHF+15]. In particular,
anomaly-based IDSs require logs corresponding to normal system behavior to learn
a baseline for detection, meaning that logging levels should be set to info or even
debug rather than error or warning. Moreover, it is beneficial to log performance
metrics such as CPU or memory data, because they are also adequate inputs for
IDSs [KAW11].

(5) Network traffic. Beside system logs that are the main input of host-based IDSs,
network traffic is a widely used data source for network-based IDSs. Accordingly,
datasets should also include packet captures to enable evaluation of network-
based IDSs and hybrid IDSs that make use of both system logs and network
traffic [LLLT13].

(6) Periodicity. Productive system environments naturally exhibit periodic behavior,
for example, cron jobs are scheduled for execution in fixed intervals and events
originating from human activities follow daily and weekly patterns of work shifts.
Self-learning IDSs are able to integrate these cycles in their models to detect
contextual anomalies, i.e., events that are considered anomalous due to their time
of occurrence [CBK09]. It is therefore essential to expand the duration of the
simulation to cover several of these cycles [MFCMC+18].

(7) Labels. Ground truth tables that unambiguously assign labels to all events
are needed to compute evaluation metrics such as detection accuracy or false
alarm rates [RWG+17]. Accordingly, it is essential to provide a comprehensible
methodology for creating correct ground truth tables for IDS evaluation.

(8) Documentation. Datasets should be published with detailed descriptions of all
relevant aspects of the data creation. Otherwise, it is not possible for others to fully
understand all artifacts present in the data, which could possibly lead to incorrect
assumptions and invalidate evaluation results [MFCMC+18].

(9) Repetitions. For anomaly-based IDSs that only learn from normal behavior and
then classify test data either as normal or anomalous, it is sufficient to only have
artifacts of a single attack execution in the data. However, for attack classification
it is necessary that attacks are at least present in training and test datasets, and
possibly validation datasets. Accordingly, attacks should be launched multiple
times by repeating the simulation. In addition, research on alert aggregation
urgently requires useful datasets, especially for system logs analyzed by host-based
IDSs [NDP18]. Thereby, clustering-based aggregation methods require that the
same attacks are carried out multiple times to form groups.
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(10) Variations. Approaches for both attack classification and alert aggregation should
be challenged by introducing variations in attack executions [SW99]. Moreover,
evaluation results have a higher robustness when they are based on multiple attack
executions that cover a spectrum of possible attack variations [LSW+21]. This
behavior could be realized by dynamically changing attack parameters in each
simulation run.

(11) Reproducibility. Technologies that constitute the simulation are continuously
updated. To avoid that datasets become outdated, it should be possible to repeat
simulations at any given time [TSB08,UHH+21]. This also allows to reuse existing
assets and only change certain parts of the simulation, e.g., keep the infrastructure
and user simulation, but include another attack vector. It is therefore beneficial to
publish all code used to carry out the simulation alongside the resulting datasets.

Literature Analysis

The previous section outlines a set of requirements that should be fulfilled by datasets to
enable evaluation of intrusion detection systems. We gathered several datasets that are
commonly used in scientific evaluations and analyzed whether they fulfill our requirements.
Table 2.1 shows a complete list of all datasets and our findings, where �indicates that the
datasets fulfill the respective requirement, ∼ indicates partial fulfillment, and no symbol
means that the requirement is not fulfilled. In the following, we discuss our findings and
relevant properties of the datasets in detail.

One of the earliest log datasets that became widely used in intrusion detection is the
KDD Cup 1999 dataset [SFL+99]. The logs were collected during a simulation of several
intrusions in a military network. Other than many modern datasets, the authors made
sure to label all events with the respective attack types and furthermore repeat and vary
the attacks to yield different probability distributions in the training, validation, and
test datasets. These properties make this dataset especially attractive for evaluating
machine learning techniques. Even today it is still widely used in scientific publications,
although the dataset has been repeatedly criticized for being outdated, too simple,
and not reproducible due to the fact that closed-source tools were used for traffic
generation [TSB08].

As a consequence of these criticisms, Creech et al. generated ADFA-LD [CH13] and
ADFA-WD, two datasets containing sequences of system calls on a Linux and Windows
host respectively. For the generation of the dataset, the authors simulated normal
activities such as web browsing and file editing and launched several attacks, such as
brute-force logins and exploits for webshell uploads. Unfortunately, the system calls
are stripped from all contextual variables such as timestamps, parameters, and return
values, and are thus not representative for real data [ČG18]. Moreover, the dataset is
criticized for only including a single host, not generalizing well for other systems, as well
as a lack of documentation detailing how the dataset is collected and what services are
installed [AHH20,MFCMC+18]. The AWSCTD [ČG18] aims to resolve at least one of
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these issues by recording Windows system calls without removing any parameters and
further extend the set of launched attacks. However, the authors also consider only a
single host and not a full network.

Another dataset based on Linux system calls is LID-DS [GRKG19]. While the authors
explain the attack scenarios in great detail, there is only little information on the
simulation of normal system behavior. They carry out all attacks multiple times and
collect the logs from hundreds of runs that last around 30 seconds each. CIDD [KB12]
provides logs specifically for masquerade attacks. One of the noteworthy aspects of this
data is that the authors manage to label all events by correlating network and system
logs and mapping them to attack tables specifying the expected times, IP addresses,
and user names related to attacks. Moreover, the users generating normal activity in
the dataset are categorized into normal, advanced, administrators, programmers, and
secretary users.

One of the few datasets that also include system logs other than system calls is from
the VAST Challenge 2011 [GCH+11]. In particular, the dataset comprises firewall
logs, IDS alerts, syslogs and network packet captures. Among the attacks launched
against the simulated system are security scans, denial-of-service attacks, and remote
desktop connections as consequences of a social-engineering attack. The authors also
provide a document describing the solutions to the challenge that depict a ground truth
of malicious events. The dataset presented alongside the open-source testbed called
SOCBED [UHH+21] contains system logs from a network of Windows and Linux hosts.
While the authors did not collect network traffic for this dataset, they state that it is
simple to extend their testbed accordingly and repeat the experiments. In addition, the
authors discuss variations in log data, however, only with respect to circumstantial factors
such as system performance and not purposefully incorporated variations as accomplished
by our model-driven approach. Skopik et al. [SSFF14] also collect network traffic as well
as access and application logs on a testbed where simulated users click around on a mail
platform. Contrary to most existing papers that present new datasets, they configure
their user simulations based on behavior of real users and also validate their data by
comparison of accessed resources. Other datasets comprising system and application logs
from various services are provided in Loghub [HZHL20]. The main problem with these
datasets is that they mainly involve traces related to failures rather than cyber attacks.

While system log datasets are most often collected from single hosts, whole networks
comprising several hosts are usually deployed to generate network traffic datasets. For
generating CIDDS [RWG+17], the authors recreated a virtual company with network
components that are commonly used in enterprise IT, e.g., Windows and Linux hosts as
well as file shares and web servers, and place them in separate subnets for managements,
office, and developers. Their user simulations are based on state machines to generate
complex behavior patterns instead of repeated sequences and their models also respect
working hours and breaks. Moreover, their network is also connected to the Internet
to mix the simulated traffic with real connections and possibly attacks. To generate
the UGR’16 [MFCMC+18], the authors also use a combination of real user behavior
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2.2. Anomaly Detection

traffic and simulated attack traffic. Thereby, the authors specifically pay attention to
the cyclic behavior of communication logs that originates from daily or weekly usage
patterns. Moreover, their attacks are generated with random starting times.

The authors of CICIDS 2017 [SLG18] follow a different approach as make use of a
profiler that analyzes real communication in a network and then arbitrarily generates
data following these patterns. They recorded the network traffic while launching several
attacks, among which are denial-of-service attacks, vulnerability exploits, and a botnet.
Similarly, a network traffic generation appliance was also used to generate NGIDS
DS [HHS+17]. Other than these datasets, the IoT-DDoS [AHH20] specifically focuses on
a scenario that simulates Internet of Things in a network.

In Chap. 3 we present the AIT-LDSv1.1 [LSW+21], a system log dataset collected
from a webserver hosting a content management system and groupware. Other than
most existing approaches for dataset generation, the chapter describes a model-driven
strategy for automatic testbed deployment to generate multiple datasets with variations
of attack executions. We recognize several shortcomings of the dataset: First, beside some
machines running user simulations, the network is relatively simple as it only consists
of a single webserver. Second, the simulation focuses on system log data and thus no
network traffic is captured. Third, labeling of malicious events is not reliable since it
relies on similarity-based matching, which may lead to incorrectly unlabeled lines in case
that variations lead to new or dissimilar events [LFS+22]. Finally, only the resulting
data is publicly available, but the scripts for deploying the testbed and running the
simulation are not accessible. As a consequence of these shortcomings, we propose the
AIT-LDSv2.0 [LSF+] in Chap. 4. In comparison to our previous testbed for log data
generation, we increased the network complexity, collected logs from all components of
the network (e.g., the firewall), extended the simulation of normal behavior, improved the
strategy for event labeling, and published all code for deploying the testbed along with
the generated dataset. As visible in Table 2.1, our new dataset meets all requirements
stated in Sect. 2.1. We discuss the fulfillment of these requirements in detail in Sect.
4.4.1.

2.2 Anomaly Detection
This section discusses anomaly detection techniques applicable for log datasets as described
in the previous section. First, the characteristics of different anomaly detection methods
are stated. Then, some state-of-the-art detection techniques are explained.

2.2.1 Overview
IDSs monitor continuously generated log data with the purpose of detecting and reporting
suspicious or malicious system activities. Thereby, it is common to differentiate between
two commonly used data sources: network traffic and system log data. In the following,
the two types of IDSs are described [KGVK19,CBK09].
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• Network-based IDSs monitor network traffic, such as packet captures or netflows.
Accordingly, they monitor several systems that are connected to a particular network
and specifically detect external malicious activities or attackers moving laterally
through the network. One of the main problems is that deep packet inspection
is usually impossible due to encryption, which limits the visibility of attacks. In
addition, network-based IDSs are unable to detect any malicious activity taking
place on hosts rather than the network, such as insider threats.

• Host-based IDSs are agents that are installed directly on the hosts they monitor.
They typically process system log data, including audit logs, logs from the operating
system, firewall logs, application logs, etc. As system log data keeps track of almost
all events that take place in a system and is usually not encrypted, host-based
IDSs are able to perform detection on a high level of granularity and also enable
detection of insider threats.

Independent of the type of analyzed data, there are generally three different methodologies
that determine the design and application of IDSs. The main characteristics of each
approach are stated in the following [SM+07].

• Signature-based detection makes use of predefined patterns to recognize known
attacks. These signatures are usually simple strings, e.g., IP addresses or hash
values. While this type of detection is fast and effective, it is unable to detect
unknown attacks for which no signatures exist and relies on signature databases
which need to be manually maintained.

• Anomaly detection learns models for normal system behavior and detects di-
vergences from these models as potentially malicious activities, which enables the
detection of previously unknown attacks. Since system behavior is usually sub-
ject to change over time, a dynamic baseline that allows incremental updates is
required to avoid that models become outdated or inaccurate. On the other hand,
dynamic models (and training phases in general) are susceptible to adversarial
machine learning, where attackers purposefully introduce certain artifacts that are
incorrectly learned as normal and thereby prevent subsequent detection of similar
activities that are related to attacks. Anomaly detection also suffers from a high
false positive rate as benign but rare events are sometimes detected as anomalies,
especially when they did not occur during training.

• Stateful protocol analysis relies on universal protocol profiles that are usually
developed by vendors. While these profiles are relatively precise and thus enable
fine-grained detection, they are often highly complex and thus difficult to create.
In addition, they require manual updating whenever implementations change.

For the context of this thesis, anomaly detection is the most relevant technique. When
it comes to self-learning systems as applied for anomaly detection, it is common to
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differentiate between supervised, semi-supervised, and unsupervised approaches. In the
following, each learning technique is briefly explained [KGVK19,CBK09].

• Supervised anomaly detection requires the presence of labels for all training
log events. Unfortunately, it is usually infeasible in practice to manually generate
these labels due to the sheer volume of log data and the fact that not all activities
that produce events are known by the analyst. Another problem for many machine
learning techniques is that labels are usually highly imbalanced, as events related
to attacks are far fewer than events related to benign activities.

• Semi-supervised anomaly detection only requires that instances of normal
events are labeled as such. In practice, this usually means that there exists a
training dataset that contains only benign activities and is thus free of anomalies,
and dedicated test datasets containing both normal and malicious events. Since no
labels for attacks are required, these approaches are more widely applicable than
supervised detection techniques.

• Unsupervised anomaly detection do not require any labels at all. These
methods usually base on the assumption that anomalous instances are far fewer
than benign instances, which enables detection techniques such as clustering or
outlier detection. Since no training data is required, unsupervised anomaly detection
is the most widely applicable technique.

As supervised anomaly detection techniques are hardly applicable in practice, the focus
of this thesis lies on semi-supervised and unsupervised approaches. Anomaly detection
has been an active field of research for many years and many such approaches have been
proposed in scientific literature. One of the first well-known approaches for anomaly
detection in log data was proposed by Forrest et al. [FHSL96], who use a sliding window
of a fixed size to learn a set of allowed sequences of system call operations during a
training phase. After processing a sufficient amount of logs, training is stopped and all
newly observed sequences that are not included in the trained model are detected as
anomalies. Even today, anomaly detection in sequences of log data is still widely pursued,
however, makes use of neural networks. Du et al. propose DeepLog [DLZS17], a detection
tool that uses a Long Short-Term Memory (LSTM) neural network to recognize unusual
sequences of log events. One of the most interesting aspects of their approach is that it
allows incremental updating of the model, which is difficult to achieve when applying
neural networks, but essential for semi-supervised learning in continuously generated
log data. Zhang et al. present a similar approach called LogRobust [ZXL+19] that is
especially designed to handle noise in log data, in particular, events that vary due to
changes of logging statements. Huang et al. [HLF+20] extend this approach to also
include the parameters of events when detecting unusual log sequences.

The diverse characteristics of different log types and formats are an explanation for
the various approaches for anomaly detection that have been proposed in the past. In
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addition, authors often make different assumptions on the data they analyze. Other than
aforementioned approaches on sequence detection, Juvonen et al. [JSH15] do not rely on
any knowledge about the data or even require parsing; instead, they split log lines into
n-grams and then apply projection methods (e.g., principal component analysis) to detect
outliers. Other approaches that operate on virtually any type of log data often involve
string metrics. For example, Wurzenberger et al. [WSL+17] propose an incremental
similarity-based clustering approach that discloses dissimilar lines as outliers that may
relate to suspicious or otherwise interesting events.

In contrast, some anomaly detection approaches require that the syntax of analyzed
log data is known so that it is possible to extract and individually analyze specific
values. In particular, Kruegel et al. [KV03] analyze the presence, lengths, character
distributions, orders, and structures of values extracted from HTTP traffic for detection.
Other approaches make use of parsed log data to generate event count matrices, i.e.,
sets of vectors that describe how often known events occur within a predefined time
window. He et al. [HZHL16] state that these vectors are suitable for grouping events
into normal and abnormal clusters using similarity thresholds, outlier detection using
principal component analysis, and extraction of invariants, i.e., linear relationships such
as dependencies between events.

Chapter 5 provides a survey that reviews many additional detection approaches using
static clustering that focuses on single events or dynamic clustering where collections of
events are considered (e.g., event sequences or frequencies). For this reason, the following
section focuses on detection techniques for correlations of categorical values, as they are
relevant for the detection approach presented in Chap. 6.

2.2.2 Anomaly Detection in Categorical Variables
Several anomaly detection techniques were stated in the previous section. This section
reviews approaches that are specifically developed for anomaly detection in categorical
variables. Note that major parts of this section have been published in [LHW+21].

Research on association mining between categorical variables in database transactions has
been ongoing for many years. One of the main issues prevalent in this field is the immense
search space arising from the many possible combinations of variables and values [TH19].
Accordingly, approaches such as the well-known Apriori algorithm [AS+94] are usually
designed for efficient searching and pruning.

To enable outlier or anomaly detection in categorical data, it is usually necessary to adjust
or extend association mining algorithms. For example, Narita and Kitagawa [NK08]
propose techniques to detect records that fail to occur in expected associations and to
compute outlier scores that are also suitable for speeding up the search. Khalili and
Sami [KS15] show that the Apriori algorithm is suitable to be used for intrusion detection,
in particular, by identifying critical states of industrial systems with sensor outputs as
variables. One of the downsides of algorithms based on frequent itemset mining is that
they require multiple passes over the data, which prevents online processing. Djenouri et
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al. [DBFV18] therefore propose a single-pass technique with improved parameter selection
and use pruning to limit the search space to itemsets that cover the largest amount of
events.

The problem with such approaches based on frequent itemset mining is that they omit
infrequent values, because they are not interesting for the associations. Anomalies are
then considered as infrequent combinations of otherwise frequent values [TH19]. However,
infrequent values are important for anomaly detection, as long as they occur consistently
with their associated values. Accordingly, Das and Schneider [DS07] replace rare values
with placeholders and use conditional probabilities to disclose associations.

Distance-based techniques are commonly used for anomaly detection in numeric data,
however, it is non-trivial to compute distances between categorical values. Eiras-Franco
et al. [EFMRGB+19] solve this problem by encoding categories as binary vectors to apply
maximum likelihood analysis. Similarly, one-hot encoding is also used by Moustafa and
Slay [MS16], who measure the association strength between variables using the Pearson
correlation coefficient as well as Information Gain. Ren et al. [RWZH09] support anomaly
detection on data streams by computing cluster references on chunks of data, where a
distance function based on value equality is used.

A different strategy to tackle the lack of a distance metric and large event space is pursued
by Chen et al. [CTS+16], who embed the data in a latent space and mine associations
between pairs of variables, which include user IDs, IP addresses, and URLs. Similarly,
Pande and Ahuja [PA17] use an embedding method based on word2vec for anomaly
classification in HTTP logs. Alternatively, Ienco et al. [IPM16] measure the similarity
between value co-occurrences by applying distance metrics on their conditional occurrence
probabilities. The advantage of this method is that it enables anomaly score computation
for ranking. Conditional probabilities are also used by Tuor et al. [TKH+17], who show
that neural networks are suitable for anomaly detection in categorical user data. The
downside of these approaches is that they suffer from lower explainability than frequent
itemset methods, where variable associations are more intuitive.

Most aforementioned approaches rely on the assumption that their data involves only
categorical variables or that these variables have been manually pre-selected. However,
log files involve various data types, including discrete, continuous, static, and unique
variables. Gupta and Kulariya [GK16] therefore use a Chi-squared test to select variables
with sufficiently distinct value co-occurrences before comparing regression, support vector
machines, naive bayes, and decision trees for anomaly detection.

Chapter 6 presents an approach for anomaly detection in categorical values of log events.
Similar to some of the aforementioned approaches, our detection method analyzes chunks
of log data rather than individual lines for this purpose. However, other than existing
approaches, we employ a sequence of constraints to limit the search space and then make
use of statistical tests to disclose anomalies.
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2.3 Cyber Threat Intelligence
This section explains the term CTI and states advantages and disadvantages of relevant
types of CTI. In addition, some techniques for CTI extraction are discussed. Major parts
of this section have been published in [LSW+19].

2.3.1 Term
The term Cyber Threat Intelligence (CTI) is used highly ambiguously throughout all
kinds of literature. In particular, it is unclear at what point any available information on
cyber threats is regarded intelligent rather than just data.
Chismon and Ruks [CR15] define CTI through the process of detecting and subsequently
analyzing previously unknown threats with the aim of understanding and mitigating
risks. Zhu et al. [ZD18] state that unlike automatically collected data, generating CTI
encompasses manual threat analysis and reasoning by domain experts. McMillan [McM13]
provides a definition that involves evidence-based knowledge and context information on
mechanisms, indicators, implications, and actionable advice about existing or emerging
threats. Dalziel et al. [Dal14] state that CTI must be refined, analyzed, and processed in
order to be relevant, actionable, and valuable.
The consensus of these definitions is that security-related data needs to undergo a process
of advanced analysis and enrichment to provide usable insights into cyber threats and be
regarded as actionable CTI. The term actionable is thereby used just as ambiguously
as the term threat intelligence itself. Dalziel et al. [Dal14] denote CTI as actionable if
it is specific enough to enable decision-making and response to present threats. Tounsi
et al. [TR18] point out that outdated CTI loses its actionability, but mention that
fast sharing of CTI is not sufficient to prevent targeted attacks. They also discuss the
relevance of standardized CTI formats to ensure data quality and enable automated
analysis. Popular CTI formats are STIX [Bar12], IODEF [IOD], OpenIOC [Opea], and
CAPEC [Bar06].
We conclude that actionability means that no additional analyses are necessary to utilize
available CTI; however, the specific requirements on actionable CTI depend on the
desired use-case, such as detection, analysis, or containment.
Chismon and Ruks [CR15] separate CTI into four subtypes: (i) technical, i.e., low-level
Indicators of Compromise (IoC) with limited validity, (ii) tactical, i.e., low-level informa-
tion on Tactics, Techniques and Procedures (TTP) with longer validity, (iii) operational,
i.e., high-level details on imminent threats, and (iv) strategic threat intelligence, i.e.,
high-level reports on organizational risks. Due to their relevance to this thesis, we discuss
IoCs and TTPs in the following sections.

2.3.2 Indicators of Compromise
IoCs are typically described as artifacts which presences provide concrete evidence that
system security was breached with high confidence. The well-known STIX [Bar12] format
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defines indicators as “patterns that allow detection of suspicious or malicious cyber
activity”. Patterns thereby include IP addresses, email addresses, domain names, and
computed indicators such as hash values. They are highly specific and thus IDSs usually
report only few false alarms.

The actionability of IoCs is debatable and depends on the use-case at hand. On the one
side, Tounsi et al. [TR18] state that IoCs are immediately actionable, because they can
be automatically fed into Intrusion Detection Systems (IDS) once they become available.
On the other hand, detection based on predefined IoCs is more reactive than proactive,
i.e., detecting an IoC usually means that the system is already compromised. Moreover,
Rhoades [Rho14] argues that IoCs are too simple to identify complex malicious system
activities. Tounsi et al. [TR18] even state that a key failing of CTI is that it is relatively
simple for adversaries to ensure that attacks generate no artifacts that match pre-existing
IoCs.

Another important aspect pointed out by Chismon and Ruks [CR15] is that IoCs from
different CTI feeds yield small overlaps. Their explanation is twofold: First, it is easy
to vary attack parameters such as IPs. Second, existing CTI is not of any intelligent
value. Either way, these observations discredit the actionability of IoCs. Finally, one
more problem with IoCs is that they are usually consumed by IDS without their context
of occurrence, i.e., an IoC is either observed in the data or not [Rho14]. To alleviate these
issues, a more abstract way of describing threats is required. In the following section,
TTPs are reviewed as a method to provide such information.

2.3.3 Tactics, Techniques and Procedures
While IoCs are detective in nature, Tactics, Techniques and Procedures (TTP) provide
abstract and descriptive characterizations of threats, typically in human-readable form
[Bar12]. The main purpose of these descriptions is to detail the modus operandi, i.e.,
actions that attackers carry out on affected systems, and how these actions are carried
out, e.g., exploits of certain vulnerabilities.

Among the advantages of TTPs over IoCs is that they are valid for longer time spans and
that their abstract descriptions increase the difficulty of evasion by attackers. The reason
for both effects is that it is relatively difficult for adversaries to discover completely new
ways of executing attacks in comparison to the low efforts of changing artifacts such as
IP addresses [TR18]. This is also represented in the so-called “Pyramid of Pain” [Bia14]
that places TTPs as the most valuable type of CTI on top and IoCs at the bottom.

The main problem is that it usually takes extensive manual work and domain knowledge
to generate TTPs on an adequate level of abstraction. Furthermore, the currently
wide-spread human-readable descriptions of TTPs impede their usage for automatic
detection [HASA+17,Rho14].

For example, consider the entry “Embedding Scripts within Scripts” (CAPEC-19) in the
CAPEC database [CAPa]. The attack is detailed on the “Standard” abstraction level and
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contains an extensive description of the typical attack execution flow. However, based on
the available texts, it is not possible to manually or automatically extract indicators that
support attack detection for particular systems.

Enriching existing manually defined TTPs with measurable indicators that support
automatic detection of attacks or attack steps could improve this situation. Our research
efforts are therefore directed towards bringing IoCs and TTPs closer together by combining
and mapping IoCs to TTPs to yield more intelligent indicators.

2.3.4 CTI Extraction

Alert aggregation and the detection of multi-step attacks are well-researched problems
in cyber security. Thereby, most approaches aggregate, correlate, and connect alerts by
the similarity of certain features. For example, the approach proposed by Julisch [Jul03]
generalizes alerts received from IDSs by aggregating their attributes using hierarchies.
Valdes and Skinner [VS01] use features such as IP and port lists, user and sensor IDs, and
time to compute the similarity for probabilistic alert correlation. Qiao et al. [QZLS12]
also take IP, time, and the type of alerts into account for similarity computation and
then use LCS to extract the attack patterns. Pei et al. [PGS+16] generate a graph based
on the presence of certain attributes and then perform graph community extraction to
derive attack patterns. Almost all such approaches rely on the assumptions that attack
steps are detectable by traditional IDSs, i.e., that predefined signatures for detection
exist, and that alerts are available in well-structured formats that facilitate feature-based
similarity computation. In contrast to these methods, the approach proposed in Chap. 7
focuses on unknown anomalies detected in raw log data and incorporates every attribute
available in the log lines as well as detector information for similarity computation.

Mapping security events to existing TTPs is able to enrich human-readable attack
descriptions with detectable events. Scarabeo et al. [SFK15] use methods from text
mining to map IDS alerts to attack descriptions provided by CAPEC [Bar06]. Navarro
et al. [N+17] derive context and patterns from log events to generate a complex attack
model suitable for matching with TTPs from threat databases.

Other approaches automatically generate CTI from sources other than log files. Husari et
al. [HASA+17] use machine learning to extract threat actions from human-readable CTI
reports. They then map the sequences of actions to known attack patterns and output
them in STIX [Bar12] format. Zhu and Dumitras [ZD18] propose an algorithm that
automatically analyzes online security articles and generates detectable patterns that
consist of combinations of IoCs. Among the drawbacks of these methods is that they rely
on the availability of manually written threat reports, which do not necessarily provide
a comprehensive view on the affected systems. In addition, creating these reports is
time-consuming and thus threat information is not immediately available after incidents.
We argue that log data captures the system in more detail and enables real-time CTI
generation and detection.
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2.4 Alert Aggregation
The previous section outlined some techniques for the generation of CTI. One possibility
to automatically generate CTI is the aggregation of alerts into higher-level meta-alerts.
This section therefore reviews and compares existing methods for alert aggregation. Major
parts of this section have been published in [LSWR22].

2.4.1 Requirements
Alert aggregation has been an active field of research for many years. This section
therefore reviews the state-of-the-art of alert aggregation in scientific literature. We first
outline a number of requirements and then evaluate how each of these requirements is
met by existing approaches.

We recognize that the development of alert aggregation techniques is usually motivated
by specific problems at hand. Accordingly, existing approaches base on different assump-
tions regarding available data, acceptable accuracy, tolerable manual effort, application
scenarios, etc. To compare existing approaches with respect to the issues outlined in
the beginning of this chapter, we define the following list of requirements that should be
addressed by domain-independent alert aggregation techniques.

(1) Automatic. Manually crafting attack scenarios is time-consuming and subject
to human errors [NDP18]. Therefore, unsupervised methods should be employed
that enable the generation of patterns and meta-alerts relating to unknown attacks
without manual interference.

(2) Grouping. Attacks should be represented by more than a single alert. This
grouping is usually based on timing (T), common attributes (A), or a combination
of both (C).

(3) Format-independent. Alerts occur in diverse formats [NDP18]. Methods should
utilize all available information and not require specific attributes, such as IP
addresses.

(4) Incremental. IDSs generate alerts in streams. Alert aggregation methods should
therefore be designed to derive attack scenarios and classify alerts in incremental
operation.

(5) Meta-alerts. Aggregated alerts should be expressed by human-understandable
meta-alerts that also enable automatic detection [EO11]. Thereby, generated
patterns are usually based on single events (E), sequences (S), or a combination
(C) of both.

In the next section, we present the state-of-the-art of alert aggregation techniques.
Thereby, we determine which of the aforementioned requirements are met by the reviewed
approaches.
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Table 2.2: Fulfillment of requirements for existing alert aggregation approaches

Requirement
Approach (1) (2) (3) (4) (5)

Al-Mamory et al. [AMZ09] � ∼ � E
Alserhani et al. [Als16] A S
Alhaj et al. [ASZ+16] � �
Bateni et al. [BBG13] A S
Cuppens et al. [CM02] A � E
De Alvarenga et al. [DABJM+18] � A S
Haas et al. [HWF19] � A S
Hofmann et al. [HS09] � � � E
Husák et al. [HČLV17] � A � E
Husák et al. [HK19] � A � S
Julisch [Jul03] � ∼ E
Liang et al. [LCWX16] � ∼
Long et al. [LSS06] � �
Man et al. [MYWX12] � ∼ E
Moskal et al. [MYK18] � A S
Navarro et al. [NDP16] T � S
Ning et al. [NCR02] A � S
Patton et al. [PBS+11] � �
Pei et al. [PGS+16] � A S
Ramaki et al. [RAA15] � A C
Ren et al. [RSG10] C ∼ S
Saad et al. [ST12] � ∼ E
Sadoddin et al. [SG09] � A � S
Shittu et al. [SHGH+15] A S
Spathoulas et al. [SK13] � C � S
Sun et al. [SG+20] � � �
Vaarandi et al. [VP10] � ∼ E
Valdes et al. [VS01] A � S
Valeur et al. [VVKK04] � A � E
Wang et al. [WC16] � A S
Zheng et al. [ZXH11] � ∼ � E
Landauer et al. [LSW+19] � C ∼ � C
Landauer et al. [LSWR22] � C � � C
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2.4.2 Literature Analysis
This section provides an in-depth analysis of existing alert aggregation techniques with
respect to the requirements stated in the previous section. Table 2.2 shows the fulfillment
of these requirements, where � or a letter corresponding to the requirement mark
a sufficient fulfillment, ∼ marks partial fulfillment, and no symbol means that the
requirement is not addressed in the respective paper.

Alert aggregation techniques are divided into similarity-based methods that cluster alerts
based on common attributes, sequential-based methods that model causal relationships
between alerts as conditions, and case-based methods that employ predefined expert
rules for correlation [SMFDV13]. Clearly, case-based methods rely on human attack
specification and therefore do not fulfill requirement (1). Sequential-based methods on
the other hand are more flexible regarding the detection of attacks, for example, the
LAMBDA framework proposed by Cuppens et al. [CM02] models attack scenarios using
pre- and post-conditions based on alert properties. Ning et al. [NCR02] present a similar
mechanism with a higher focus on representing attack scenarios as graphs. Alserhani et
al. [Als16] build upon these ideas and create reduced graphs that act as meta-alerts.

Unfortunately, sequential-based methods have limited ability to extract unknown attack
scenarios [NDP18] and thus do not fulfill requirement (1). The same applies to approaches
that rely on supervised learning, such as algorithms for artificial immune systems used
by Bateni et al. [BBG13], or ant colony optimization through reinforcement learning
used by Navarro et al. [NDP16]. Our literature analysis shows that only similarity-based
methods are capable of fulfilling requirement (1) [NDP18].

Some approaches are designed for aggregation of single alerts only and therefore do not
fulfill requirement (2). These approaches mainly address alert filtering and the generation
of alert templates. For example, Julisch [Jul03] propose one of the first well-known
approaches for alert aggregation, which computes similarities between alert attributes
based on generalization hierarchies for specific attribute types, e.g., IP addresses and
ports. The approach by Al-Mamory et al. [AMZ09] builds upon these concepts and
uses generalization hierarchies to compute alert cluster representatives that are then
used for comparison. One of the issues with these hierarchies is that they are defined
manually and therefore require mapping to specific attributes. This is solved by Long et
al. [LSS06], who propose an XML-based similarity metric for alerts in Intrusion Detection
Message Exchange Format (IDMEF) [IDM]. Similarly, Zheng et al. [ZXH11] present
type-dependent similarity metrics for pre-selected attributes and use the mean, mode,
and set unions of specific attribute values to generate meta-alerts.

To enable attack classification rather than alert filtering, the context of alerts needs to be
included in the analysis. One possibility to achieve this is to arrange alerts in sequences
by their occurrence time [NDP16]. This is based on the idea that alerts relating to the
same root cause likely occur in short time intervals [SMFDV13]. The most common
approach however is to link alerts with coinciding values in particular attributes, e.g.,
De Alvarenga et al. [DABJM+18] and Husák et al. [HČLV17] group alerts by source
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or destination IP, Shittu et al. [SHGH+15] use fuzzy combinations of IP address parts
and ports, Moskal et al. [MYK18] use sequences of alerts with corresponding destination
IP and attack category, and Pei et al. [PGS+16] use a total of 29 comparisons of IP
addresses, ports, process IDs, host names, etc.
Some approaches consider both timing and attribute correspondence as relevant for
alert group formation. In particular, Spathoulas et al. [SK13] group alerts by their
occurrence time and use a weighted similarity metric specifically designed to compare
time differences and parts of IP addresses. The purpose of their approach is to display
attacks as clusters on IP ranges for visual analysis. Ren et al. [RSG10] also create groups
for alerts that occur in close temporal proximity and have coinciding attribute values,
which are represented as generalization hierarchies. In our earlier work [LSW+19], we
first determine alert types by attribute similarity and then create sequences of these alert
types based on their interarrival times. The problem with this strategy is that alert types
are generated without considering their context of occurrence. Our approach proposed in
Chap. 7 alleviates this problem by introducing similarity metrics for groups of alerts that
allow to cluster only those groups that relate to the same root cause. Since both timing
and attribute similarity are leveraged, the presented approach implements a combined
strategy for requirement (2) as we will discuss in Sect. 7.4.11.
Reviewing existing literature with respect to requirement (3) shows that many approaches
require that alerts are available in IDMEF format [IDM] or involve at least attributes for
source and destination IP addresses, ports, and type. For example, Husák et al. [HK19]
propose the AIDA framework, which implements an IDMEF alert processing pipeline that
removes duplicate alerts, groups the remaining alerts by source IP, and learns common
alert sequence patterns. Haas et al. [HWF19] propose to derive graphs from alerts
that represent communication between hosts and allow similarity computation. Even
though their approach generates so-called motif graphs that represent abstract attacks
and thus do not contain IP addresses and ports, their approach requires IP information
for graph generation and thus focuses on alerts from network-based IDSs. Approaches
with partial fulfillment of requirement (3) employ generalization hierarchies [Jul03] or
similarity functions [ST12,ZXH11] for specific attribute values that are generally valid,
but require manual mapping to attributes.
A different approach is proposed by Hoffmann et al. [HS09], who assume statistical
distributions for values of arbitrary attributes and therefore fulfill requirement (3).
Patton et al. [PBS+11] convert raw text of IDS alerts into vector space models to apply
hierarchical clustering. Alhaj et al. [ASZ+16] select features from all alert attributes based
on their respective information gain entropy. Sun et al. [SG+20] propose a generalized
attribute weighting scheme based on rough sets. Our approach also makes use of all
alert attributes and is not restricted to specific formats. However, none of the reviewed
techniques include similarity metrics for groups of such alerts, which is solved by our
approach.
Incremental clustering as described by requirement (4) is essential for the application in
real-world scenarios that involve continuously generated alerts. Sadoddin et al. [SG09]
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propose one of the few approaches specifically designed for incremental alert processing.
In particular, they mine frequent patterns from graphs representing correlated alerts. In
addition, Husák et al. [HK19] and Landauer et al. [LSW+19] implement their concepts as
pipelines for continuous alert processing. Most approaches however rely on hierarchical
clustering [DABJM+18, PBS+11, ASZ+16] or other techniques that do not support
incremental processing, or require computation of a correlation matrix prior to alert
aggregation [WC16, RSG10]. The main issues are that such algorithms only support
offline analysis and require repeated training phases that involve manual supervision.

The final requirement (5) concerns the generation of meta-alerts. Most commonly, meta-
alerts are represented as graphs of event sequences, for example, Wang et al. [WC16] create
a graph with transition probabilities for correlated alert types and Haas et al. [HWF19]
generate graphs that represent abstract communication patterns. Other approaches
generate patterns for single alerts, for example, Saad et al. [ST12] use a similarity metric
to iteratively refine similar alerts by repeated aggregation, where attributes are replaced
by common concepts defined in the generalization hierarchies. Vaarandi et al. [VP10]
use frequent itemset mining to obtain patterns of static and variable alert attributes.
Valdes et al. [VS01] fuse alerts to meta-alerts by creating supersets of values for shared
attributes. Valeur et al. [VVKK04] arrange their meta-alerts in hierarchical structures
and apply breadth-first search when merging new alerts. Similarly, we create abstract
alert objects in Landauer et al. [LSW+19] and extract sequences of their occurrences.
The approach proposed in Chap. 7 also combines alert and event sequence information
for meta-alert generation, but ensures to merge only those alerts that occur in a specific
sequence position to improve precision of the resulting meta-alerts.

Overall, most of the existing approaches only focus on particular aspects of alert aggre-
gation, e.g., focus on individual alerts rather than groups, rely on domain-specific input
in the correlation procedure, or impose strict requirements such as a specific format, in
particular, IDMEF [IDM]. Accordingly, none of the approaches fulfill all of our outlined
requirements on a domain-independent alert aggregation technique sufficiently. Chapter
7 will therefore propose an approach that addresses aforementioned issues with existing
approaches and fulfills requirements (1)-(5).
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CHAPTER 3
Simulation Testbeds

The literature research presented in Sect. 2.1 shows that no publicly available datasets are
suitable for evaluation of IDSs and alert aggregation approaches. This chapter therefore
presents an approach that enables the generation of such datasets in simulation testbeds.
Major parts of this chapter have been published in [LSW+21].
The ability to measure and compare the performances between IDSs in a representative
way is essential for improving their algorithms and providing new research directions
[TSB08]. However, many IDSs are designed and configured for deployment in particular
environments and focus on the detection of specific types of cyber attacks. Accordingly,
objective IDS benchmarking for selection and deployment in real world applications is
non-trivial [WSSS16]. For this reason, research groups have developed simulation testbeds
that resemble real networks and allow IDS deployment as well as attack execution in
controlled environments [SSFF14,SLG18]. Researchers then publish the network traffic
or log datasets collected during their simulation runs to enable others to recreate their
results or apply their own methods on the data. Some datasets then become standards for
evaluation for some time, however, will at some point be regarded as outdated or criticized
for particular aspects, e.g., focus on network traffic rather than log data [ČG18], missing
documentation of installed services [MFCMC+18], too simple or unknown simulations of
system behavior [TSB08], lack of multi-step attack vectors [NDP18] including long-term
advanced persistent threats [SHSK20], missing reproducibility [UHH+21], or too narrow
focus that impedes generalization [MFCMC+18]. Eventually, this will encourage other
research groups build new testbeds with updated technologies that are relevant for their
own use-cases.
Simulation testbeds are essential to validate, evaluate, and compare the capabilities of
IDSs. Thereby, testbeds offer analysts environments that yield unbiased results for their
use-cases and the real world. Otherwise, it is impossible to reliably assess whether the IDS
under test performs with similar efficiency and effectiveness when deployed in productive
operation. Furthermore, flawed tests may lead to misconfigurations of IDSs and thus
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Table 3.1: Testbed development phases

Phase Involved tasks Remedies and support
Concept Define use-cases and goals -
Design Component selection Reuse of code and settings
Deployment Parameterization and instanti-

ation of components
Tools for automatic system de-
ployment and setup

Utilization Testing and data collection Scripts enable automation
Adaptation Variation of parameters and

configuration settings
Automatic selection from pre-
defined ranges or lists

limit their abilities to detect certain attacks. In order to ensure that such requirements
are met, high efforts should be spent on preparing and designing the testbed setup.

Setting up testbeds for particular use-cases is usually time-consuming. The most tedious
tasks involve adjustments for tests carried out under different conditions as well as
follow-up modifications for related use-cases [GdVFM08]. The main problem is that
analysts are stuck with rigid testbeds that are set up a single time by domain experts
that could not predict the requirements that became necessary after setup. Such testbeds
are difficult to maintain or modify for a number of reasons:

• Manual work is required to change the testbed in hindsight, e.g., increase the
number of network components.

• Modifications of otherwise identical components have to be repeated multiple times.

• It is necessary to check and update all components individually to ensure that
up-to-date versions are used.

• Resetting the testbed to a “clean” state is often necessary to remove artifacts
that influence subsequent simulations. However, this undoes purposefully inserted
changes and thus complicates iterative testbed development.

Another problem is that most existing testbeds are relatively static, because their
configuration, e.g., the selection of a user behavior profile from a predefined list, relies
on manual input and domain knowledge. This impedes fast instantiation of different
testbeds with variable configurations. In addition, such parameters usually cover only
basic application settings of the testbed environment, but are not extensive enough to
fine-tune parameters with less influence, e.g., particular aspects of a specific system
behavior profile, and not powerful enough to change the overall testbed setup, e.g.,
upgrade components to newer versions. However, the possibility to obtain multiple
testbeds with variations would be highly beneficial for IDS evaluation, because more
available data representing different technical environments would enable generation of
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separate training, validation, and test datasets, improve robustness of evaluation results,
and support validation of approaches that derive reusable attack attributes and patterns
for detection of specific attacks across different systems [NK19,LSW+19].

There is thus a need for a methodology that addresses the aforementioned problems and
eases testbed setup and development. Table 3.1 gives an overview of the phases typically
encountered during testbed development and states ideas for automation of involved
tasks. To integrate these strategies in the development procedure, we propose to leverage
techniques from model-driven development. In particular, this dissertation presents an
approach that makes use of abstract and testbed-independent models for the testbed
infrastructure, system behavior, and attack scenarios, and uses a transformation engine
to automatically generate all scripts necessary to setup the infrastructure, configure all
components, install services, simulate normal system behavior, and start the attacks.
Thereby, our approach is able to generate multiple testbeds instances at once, each with
particular characteristics, and produce log datasets that cover variations occurring in
different environments. Note that this does not imply that data is generated using model-
driven techniques; instead, we propose a model-driven approach for the instantiation of
testbeds that are useful for the production of security data.

We implemented a proof-of-concept based on our proposed model-driven methodology
where an automatized pipeline allows us to generate arbitrary numbers of testbeds
running in parallel. We designed a common real world use-case, i.e., users that access
a mail platform and a web store, and launched two attacks that make use of recently
discovered exploits. We use this setup to generate four testbed instances with variations
and collect their log data, which is published online [LSW+20a]. We summarize the
contributions of this chapter as follows:

• A novel model-driven concept for automatically instantiating arbitrary numbers of
parameterized testbeds,

• adhering to a set of design principles,

• for the generation of new network and log datasets.

The remainder of this chapter is structured as follows. In Sect. 3.1 we first propose a list
of design principles and then introduce our approach for automatic testbed generation
using model-driven techniques. Section 3.2 contains concrete design decisions regarding
testbed infrastructure, simulation of normal behavior, and attacks. We validate our
approach in Sect. 3.3 and discuss applications and limitations of our approach in Sect.
3.4. Finally, Sect. 3.5 summarizes the chapter.

3.1 Testbed Design Methodology
In this section we introduce a methodology for model-driven testbed development. For
this, we state design principles that act as requirements for subsequent design decisions.

33



3. Simulation Testbeds

3.1.1 Design Principles
Most of the issues with existing log datasets generated in testbeds are attributable to
shortcomings of the system infrastructures and environments where the data was collected.
Accordingly, it is necessary to align the design process of the testbed with requirements
on the data to be generated. We therefore pursue a number of design principles that
form the basis of our testbed generation methodology. In the following, we briefly discuss
each of the principles.

Authenticity

Log data should be collected within realistic scenarios to ensure a representative evaluation
of the capabilities of IDSs. Thereby, several aspects must be considered: First, all involved
components, e.g., servers or clients, have to be selected and arranged within a network that
is representative for a well-defined use-case, e.g., a small enterprise. This includes network
complexity, i.e., diversity of involved components, as well as scale, i.e., total number of
components. Second, components must act and react like their real counterparts. This
includes automatic behavior, e.g., scheduled tasks, as well as user behavior that may
be erratic, unpredictable, and dependent on user roles. Third, attacks carried out on
the testbed should be related to recently discovered vulnerabilities to ensure that the
detection capabilities are not measured on outdated exploits that possibly have lost
relevance in modern infrastructures. Accordingly, all services should be set up with
fully patched and up-to-date software. Moreover, the attacks should affect common
technologies in order to be relevant for a large number of people and organizations.
Fourth, the collection of the log data and network traffic has to take place in a realistic
manner. This means that only commonly available log sources should be used and that
logging should be configured on a level that is adequate for the use-case.

Flexibility

Setting up a testbed encompasses manual time-consuming work [GdVFM08]. It is
therefore economically reasonable to design a testbed that is flexible in the sense that
it supports adjustments and extensions and enable iterative development. There are
mainly three dimensions of modifying the testbed: First, enlarge or shrink the scale of
the network by adding or removing components. Thereby, we suggest to initially create
a number of predefined components that act as building blocks that can be arbitrarily
duplicated and set into relation with each other. Second, the configurations of these
components, including all installed services and their versions, are subject to modification.
Third, it should be possible to change the dynamic behavior and interactions between
the components, e.g., the types of services accessed by clients.

Reproducibility

The ability to reproduce the generated log dataset requires that it is possible to reset
the testbed to a past state. This is particularly useful when the effects of an attack on
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modified versions of the testbed are subject of investigation, for example, comparisons of
patched and non-patched services. It is important to note that it is usually impossible to
guarantee that the reproduced dataset is identical to the original dataset, but rather only
conform in their main characteristics, such as the overall user behavior. This is due to
the fact that it is difficult to avoid that latencies during communication of components
as well as arbitrarily occurring events or failures result in non-deterministic behavior. In
order to ensure reproducibility, it is necessary to isolate the testbed from all external
sources that may have unpredictable influence on the outcome of the simulation and are
not under control of the analyst, for example, publicly accessible connection over the
Internet may cause unknown and potentially malicious behavior manifesting itself in the
logs, making subsequent evaluations on the captured data less reliable.

Another important aspect of reproducibility is that only freely available or open-source
services are used within the testbed. The reason for this is that the use of commercial
products or services that are not publicly available may prevent others from rebuilding
the same system.

Availability

To enable IDS benchmarking and comparison of detection capabilities with other ap-
proaches, it is important to make generated datasets publicly available. In addition, the
dataset has to be accompanied with appropriate documentation, including the overall
purpose of the dataset, the infrastructure setup, and a description of the normal and at-
tacker behavior. If such a documentation is missing, it is difficult for others to understand
certain artifacts in the data, interpret evaluation results, or reproduce the dataset.

Utilizability

The availability of a dataset alone is not sufficient to enable evaluation of IDSs. In
order to obtain comparable evaluation results, a ground truth that defines the malicious
behavior in a quantifiable way is needed. Thereby, several levels of labeling the data
are possible. The most superficial approach is to label all log events generated during
time intervals of attacks as malicious. Note that all other events can be considered
benign, because the testbed is a simulation that runs isolated from a productive system
that may be affected by unknown processes or attacks. While this form of labeling is
easy to accomplish since it is possible to derive anomalous time windows from attack
scenario descriptions, it has the disadvantage of also labeling normal events that occur
during attacks as anomalous. However, since most IDSs report individual events as
anomalies, a more in-depth evaluation is enabled by labeling only events that actually
correspond to malicious behavior as anomalous. Even better are labels that differentiate
between different types of attacks or attack steps, enabling in-depth evaluation of anomaly
detection systems that support attack classification or focus on multi-step attacks.

Anomaly detection systems or other self-learning approaches additionally require that
the generated log data covers a sufficiently large duration of the normal behavior in
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order to be adequately utilized [MFCMC+18]. In particular, the data has to span over
multiple cycles of normal behavior, i.e., all repeating processes should be at least once
fully present in the data. Incomplete training sets may lead to misclassifications, e.g.,
false alarms, during evaluation. In addition, log data should always be published in raw
format, because any modification such as anonymization or pseudonymization possibly
distort evaluation results [SLG18].

3.1.2 Model-driven Testbed Setup Methodology
The usual setup process of a testbed that adheres to the outlined design principles involves
time-consuming and non-trivial work. In particular, ensuring flexibility of the testbed, i.e.,
enabling arbitrary changes of the size of the represented network while at the same time
allowing the user to steer component configurations, is technically difficult and involves
tedious tasks, such as repeatedly setting up or modifying similar components in slightly
different environments. This procedure becomes especially nerve-racking when settings
of the system configuration have to match simulated user behavior or are dependent on
the type of attack [SSFF14].

We suggest to use techniques from model-driven engineering (MDE) [Sch06] to alleviate
these issues. MDE is a methodology that aims at simplifying software development by
providing programmers a framework to design solutions on a higher level of abstraction,
thereby allowing them to focus on the actual problem at hand independent of technical
details and complex implementations on specific platforms. This results in applicable
models that support development on multiple different platforms. MDE further makes
use of transformation engines that automatically process platform-independent models
and generate code for specific platforms.

For our proposed approach, we adopt these concepts from MDE and apply them for
testbeds rather than for software platforms. Figure 3.1 shows an overview of the layers
of abstraction and workflow that we use for testbed design and automated testbed
deployment. Our model-driven approach thereby differentiates between (i) the technical
infrastructure, (ii) the normal system behavior, and (iii) the modeled attack.

The top of the figure depicts pre-selected relevant aspects of the real world that is
simulated in the testbed. In particular, we seek for commonly available infrastructures
that are frequently subject to attacks, such as servers that are accessible over a network.
We also look for frequently installed packages and examine the settings of the logging
services. Given a real infrastructure, it is also possible to monitor the exhibited behavior
and derive relevant characteristics of normal system usage, such as usage distributions
over a period of time. Finally, attacks are either observed on the real infrastructure or
exist in documented form in online threat databases such as metasploit [Met].

We then define testbed-independent models (TIM). Regarding the infrastructure, this
implies declarations of the setup routines for all involved components and services without
specifying any concrete parameters. For example, we define how a component is connected
to the network, but do not allocate IP addresses, assign names, or specify the number of
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Figure 3.1: Model-driven testbed generation approach. Testbed-independent models
(TIM) are derived from real scenarios and transformed to testbed-specific models (TSM)
that instantiate the testbed for labeled network and log data generation.

users, but only the type and range of these parameters. Similarly, we design a model of
the system behavior as a state machine without fixed transition probabilities between
its states, and a model for the attack scenario that consists of the basic steps that are
necessary for carrying out the attack. All TIMs function as templates, i.e., they are
scripts that represent specific routines, but are configurable through consciously placed
parameters throughout the code.

Our transformation engine that generates testbed-specific models (TSM) processes the
templates and inserts all parameters to produce executable code. The parameters are
thereby selected randomly based on their type specified in the TIM. For example, the
number of simulated users is selected from a predefined range, their names and passwords
are picked from predefined lists, and IP addresses are automatically assigned from a
pool. For the user behavior, we specify a number of profiles with ranges for transition
frequencies that the transformation engine translates into probabilities. Regarding
the attack scenario, optional parameters of individual steps as well as their order and
delays are randomly selected. Note that modeling may be based either on attacks or
vulnerabilities, i.e., an attack model scenario may focus on a single malicious action or
involve several vulnerability exploits and diverse attack vectors.

Since transformation of TIMs to TSMs is fully automatic, it is possible to generate arbi-
trary amounts of TSMs at the same time, where each TSM exhibits variations depending
on the settings for random selection. For each TSM, we first run the infrastructure setup
scripts to build the virtual machines and set up the network of the testbed instance. We
then gather, allocate, and run all generated scripts for component setup, user simulation,
and attack execution, on the respective machines. After completion, we use another script
to copy all logs from the virtual machines and label them according to the outcomes of
the simulation. In MDE terminology, such labeled data are usually referred to as oracle
data [LPC+13].
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<for mailID in 0:numMails>
-hosts: mail-<mailID>
 hostname: <random(hosts.txt)>
 ip: <random(ip-pool)>
 user_list:
 <for u in random(users.txt)>
  -name: “<u.name>“
   password: “<crypt(u.pw)>“
 <end for>
<end for>
<for userID in 0:numUsers>
-hosts: user-<userID>
 ip: <random(ip-pool)>
 connectedTo: “<random(mail)>“
<end for>

-hosts: mail-0
 hostname: mail.abc.com
 ip: 192.168.10.175
 user_list:
  -name: “alice“
   password: “OyHkSWj“
  -name: “bob“
   password: “nqzkLYY“
-hosts: user-0
 ip: 192.168.10.229
 connectedTo: “mail-0“
-hosts: user-1
 ip: 192.168.10.190
 connectedTo: “mail-0“
...

Figure 3.2: Simplified sample transformation of TIM (left) to TSM (right) for infrastruc-
ture setup.

3.2 Testbed Models
The previous section outlines the idea of generating testbeds using a model-driven
approach. In this section, we discuss selected design aspects of our implementation in
more detail.

3.2.1 System Infrastructure
To evaluate our model-driven concept for generating testbeds, we were aiming to create
a simulation of a system infrastructure that is common in many organizations. After
reviewing usage statistics of well-known technologies, we decided to model an Apache
web server hosting a mail platform and content management system (CMS) that are
accessed and used by an arbitrary number of users. In particular, we selected Horde
Groupware [Hor] and a webshop provided by OkayCMS [Oka], because both platforms are
available open-source and have recently been affected by vulnerabilities. Each generated
testbed should consist of one web server with a database and a variable number of
connected host machines, each representing one or more users.

We designed TIMs in YAML syntax for setup of a web server and a user host machine.
Figure 3.2 shows a simplified and shortened version of such a template on the left
side, where “mail” refers to the web server and “user” to the user host machine. A
transformation engine is able to process such a TIM and generate the TSM on the right
side of the figure that acts as a configuration file for the setup procedure. The engine
thereby executes the code within the arrow brackets specified in the TIM to fill the gaps
of the template with parameters that are subject to change in every testbed instance.
For example, the server hostname is randomly selected from a predefined list of names,
IP addresses are automatically assigned during setup, and accounts for a random set of
users are created.
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Before running the transformation engine, it is necessary to specify the total amount
of web servers and user host machines to be generated from the TIM. These numbers
are critical, since there is usually a limited amount of computational resources available
for the virtual machines. The transformation engine then allocates the host machines
randomly to web servers (parameter “connectedTo” in Fig. 3.2) in accordance with
predefined values for the minimum and maximum number of host machines per web
server.

There are two main advantages of designing the infrastructure on this abstract level.
First, it is simple to generate large numbers of different testbeds that run in parallel. It
is thereby easy to steer the degree of variation by adjusting the predefined ranges in the
TIM. Second, changes that affect all components of a particular type only have to be
carried out once in the TIM, since these modifications will automatically propagate to
all TSMs when running the transformation engine again.

3.2.2 Normal System Behavior
The purpose of the testbed is to generate log data for evaluating attack detection tools.
However, executing malicious actions on an idle system makes their detection relatively
easy, since almost all generated logs are likely to be related to the attack. This scenario
is not authentic, because web servers in the real world are almost always actively used.
Furthermore, IDSs based on anomaly detection usually rely on a training phase that
represents normal and anomaly-free behavior in order to disclose deviations from the
learned patterns.

We therefore simulate normal system behavior by modeling typical user accesses. For this,
we created a state machine that covers all relevant functions of both the Horde Webmail
and OkayCMS platforms using the well-known web automation framework Selenium [Sel].
Figure 3.3 shows a graphical overview of all subpages and activities that are covered by
the state machine and users are thus able to visit. On Horde Webmail, the users are
capable of changing their preferences, writing mails to other users and responding to
received mails, and creating and deleting entries in the calendar, notebook, list of tasks,
and address book, where fields are filled out with random values or dummy text. Users
with administrator privileges are further able to access the admin page and its subpages.
On OkayCMS, users browse the articles available on the webshop and add or remove
products from their shopping carts.

Figure 3.4 shows a sample transformation from TIM to TSM and further an exemplary
execution of a parameterized system behavior script. The left side of the figure shows
the state machine as well as the instantiation of a predefined number of profiles, each
containing ranges of transition frequencies between the states, and their random allocation
to users. The profiles also specify the browser used to access the websites. Moreover,
the mail recipients are selected based on a randomly generated small-world network, i.e.,
most users communicate in small groups rather than randomly sending mails to every
other user with the same probability [SHH+06]. In addition, users regularly logout and
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Figure 3.3: Simulated normal user behavior on the Horde Webmail (yellow) and OkayCMS
(blue) modeled as a state machine.

for p in profiles:
 p.newEvntP = rand(0.3, 0.7)
for u in users:
 u.p = random(profiles)
------------------------------
Calendar(State):
 run():
  click(“Calendar“)
  click(random(days))
 next():
  if random() < u.p.newEvntP:
   return NewCalendarEvent()
  else:
   return Home()

profile1.newEvntP = 0.38
profile2.newEvntP = 0.55
alice.p = profile1
bob.p = profile2

alice.state = Calendar()
bob.state = Mail()
alice.state.run()
 alice.click(“Calendar“)
 alice.click(“01-May“)
alice.next()
 # 0.422 < 0.38 -> False
alice.state = Home()
bob.state.run() ...

Figure 3.4: Randomized user profiles and state machine of system behavior TIM (left)
transformed to TSM (top right) and testbed execution (bottom right).

go idle for random amounts of time, and stay inactive during night time to simulate daily
routines.

The TSM generated by the transformation engine yields a configuration that is exemplarily
displayed in the top right of Fig. 3.4. Note that probabilities for choices are normalized
to ensure that they sum up to 1. All users exhibit different behavior, even though their
actions are based on the same independent behavior model. The bottom right of the
figure shows the execution log of users “alice” and “bob”. In this sample, user “alice”
views a random day from the calendar, but returns to the home page rather than adding
a new event, because a randomly selected value is below the threshold. This sample also
shows multiple users using the system at the same time causing interleaving processes.

3.2.3 Attacker Behavior
We prepared two attacks to be executed on the testbed. The first one is a multi-step
intrusion that involves several tools commonly used by adversaries and exploits two
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1) Portscan (nmap)

2) Vulnerability scan (nikto)

3) User enumera�on (SMTP-VRFY)

4) Bruteforce login (hydra)

5) Webshell upload (exploit)

6) Reverse-shell command exec.

7) Priviledge escala�on (exploit)

8) Root command execu�on

1) nmap -sT --top-ports <random(80, 120)> -PN <mail-IP>
2) nikto -host <mail-IP> -port 80 -evasion <random(1,8)>
3) – 4) ...
6) curl “<mail-IP>/x.php?cmd=nc <user-IP> <port>“
<for c in random(comm.txt)> socket.send(<c>) <end for>
7) – 8) ...

1) nmap -sT --top-ports 95 -PN 192.168.10.175
2) nikto -host 192.168.10.175 -port 80 -evasion 3
3) – 4) ...
6) curl “192.168.10.175/x.php?cmd=nc 192.168.10.229 567“
socket.send(“id“)
socket.send(“cat /etc/passwd“)
7) – 8) ...

Figure 3.5: Multi-step attack on Horde Webmail (top) and its transformation from TIM
(center) to TSM (bottom).

well-known vulnerabilities to gain root access on a mail server. The top of Fig. 3.5 shows
an overview of the attack steps. The first two steps involve scans for open ports [Nma]
and vulnerabilities [Nik]. Then, the attacker uses the smtp-user-enum tool [Smt] for
discovering Horde Webmail accounts using a list of common names and the hydra
tool [Hyd] to brute-force log into one of the accounts using a list of common passwords.
The attack proceeds with an exploit in Horde Webmail that allows to upload a webshell
(CVE-2019-9858) and enables remote command execution. We simulate the attacker
examining the web server for further vulnerabilities by executing several commands,
such as printing out system info. In our scenario, the intruder realizes that a vulnerable
version of the Exim package is installed and thus uploads an exploit (CVE-2019-10149)
to obtain root privileges through another reverse connection.

Figure 3.5 shows how we model this attack procedure as TIM and one possible trans-
formation to TSM. As visible in the TIM, we use a sequence of predefined commands,
but do not specify values that are only known after instantiating the testbed, such as
the IP addresses of the web server (“mail-IP”) and user host (“user-IP”), as well as
parameters that are varied in each simulation, such as port numbers, evasion strategies, or
commands executed after gaining remote access. This attack was purposefully designed
as a multi-step attack with variable parameters to evaluate the ability of IDSs to disclose
and extract individual attack steps and their connections, and recognize the learned
patterns in different environments despite variations.

The second attack targets the web shop. A recently discovered flaw in OkayCMS allows
an attacker to inject a malicious php-object via a crafted cookie (CVE-2019-16885).
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In this scenario, the attacker uses the exploit to upload a webshell and is then again
able to execute commands through the remote interface. Since no user credentials are
required for authentication, this attack consists of only a single step and does not involve
variations. Instead, it is designed to evaluate whether IDSs are able to detect and classify
the injection of the php-object, since it only manifests itself in slightly different library
calls that are difficult to detect.

Both attacks are carried out at a random point in time within a predefined period on
randomly selected user host machines. Since the attacks are carried out independent of
each other, they may be executed at the same time. During execution, the outcomes of
the commands are automatically searched for keywords that indicate successful execution.
We log this information together with the start and end times of each attack step, which
is useful for labeling the recorded log data.

3.2.4 Ground Truth
Labeling data is essential for appropriately evaluating and comparing the detection
capabilities of IDSs. However, generating labels is difficult for several reasons: (i) log
data is generated in large volumes and manual labeling all lines is usually infeasible, (ii)
single actions may manifest themselves in multiple log sources in different ways, (iii)
processes are frequently interleaving and thus log lines corresponding to malicious actions
are interrupted by normal log messages, (iv) execution of malicious commands may cause
manifestations in logs at a much later time due to delays or dependencies on other events,
and (v) it is non-trivial to assign labels to missing events, i.e., log messages suppressed
by the attack.

We attempt to alleviate most of these problems by automatically labeling logs on two
levels. First, we assign time-based labels to all collected logs. For this, we make use of
the attack execution log mentioned in the previous section. We implemented a script
that processes all logs, parses their time stamps, and labels them if their occurrence
time lies within the time period of an attack stage. Under the assumption that attack
consequences and manifestations are not delayed, it is then simple to check whether
anomalies reported by IDSs lie within the expected attack time phases. Since exact
times of malicious command executions are known, it is even possible to count correctly
reported missing events as true positives.

While time-based labeling is simple and effective, it cannot differentiate between inter-
leaved malicious and normal processes and does not correctly label delayed log manifesta-
tions that occur after the attack time frame. Therefore, our second labeling mechanism is
based on lines that are known to occur when executing malicious commands. For this, we
carry out the attack steps in an idle system, i.e., without simulating normal user behavior,
and gather all generated logs. We observed that most attack steps either generate short
event sequences of particular orders (e.g., webshell upload) or large amounts of repeating
events (e.g., scans). We assign the logs to their corresponding attack steps and use the
resulting dictionary for labeling new data. For the short ordered sequences, we pursue
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# line-b.
hydra
hydra
-
hydra
-
-
-
-
webshell
webshell
-
webshell

# Apache access logs
17:49:55 “POST /login.php“
17:50:03 “POST /login.php“
17:50:05 “GET /nag/“
17:50:10 “POST /login.php“
17:50:45 “GET /login.php“
17:50:51 “POST /login.php“
17:51:02 “GET /services/portal“
17:51:38 “GET /imp/dynamic.php“
17:52:10 “GET /login.php“
17:52:10 “POST /login.php“
17:52:12 “GET /imp/view.php“
17:52:20 “HEAD /static/x.php“

# attack log
17:40:11 hydra
17:50:33 success
17:52:10 webshell
17:52:13 success

# attack dictionary
hydra: (“repeating“, [
 00:00:00 “POST /login.php“
]),
webshell: (“exact“, [
 00:00:00 “GET /login.php“
 00:00:00 “POST /login.php“
 00:00:10 “HEAD /static/x.php“
]),

# time-b.
hydra
hydra
hydra
hydra
-
-
-
-
webshell
webshell
webshell
-

Figure 3.6: Example of our labeling procedure. Information on attack execution (top
left) and expected attack logs (top right) are used to create labels (bottom left) using
time-based and line-based techniques for log data (bottom right).

exact matching, i.e., we compute a similarity metric [WSL+17] based on a combination
of string similarity and timing difference between the expected and observed logs and
label the event sequence that achieves the highest similarity. For logs that occur in
large unordered sequences, we first reduce the logs in the dictionary to a set of only few
representative events, e.g., through similarity-based clustering [WSL+17]. Our algorithm
then labels each newly observed log line that occurs within the expected time frame and
achieves a sufficiently high similarity with one of the representative lines. These strategies
enable correct labeling of logs that occur with a temporal offset or are interrupted by
other events, but obviously suffer from misclassifications when malicious and normal lines
are similar enough to be grouped together during clustering.

Figure 3.6 shows an example of our labeling procedure that involves two sample attack
steps, the brute-force login tool “hydra” and the “webshell” upload. The top left of the
figure shows start and end times of both attacks logged during attack script execution.
The top right of the figure shows a dictionary that lists the log lines that are expected
to occur in the Apache access log at attack execution. Note that the “hydra” logs are
marked as “repeating”, i.e., they represent a large number of similar lines, while the
“webshell” logs are marked as “exact”, i.e., they correspond to ordered individual lines.
The bottom left of the figure displays the time-based and line-based labels for the Apache
access logs in the bottom right. As visible in this example, the time-based labels are
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Figure 3.7: Technical implementation of the model-driven testbed and log data generation
approach. Simple arrows indicate imports and filled arrows indicate generation of resources
such as scripts, configuration files, or machines.

assigned to the lines solely by their occurrence timestamps. Due to the interleaving user
actions, this means that lines generated by actions other than the attack (e.g., viewing
Horde task list “nag”), but occurring in the same time frame, are also labeled accordingly.
These lines remain correctly unlabeled by the line-based method. In particular, the
“repeating” technique labels all lines within the “hydra” attack time frame that achieve a
minimum string similarity to the message “POST /login.php”. In this simplified example,
these lines are identical and thus achieve a perfect similarity score. The “exact” technique
matches the three expected lines of the “webshell” attack step within all lines occurring
in the attack time frame to find and label their counterparts. Note that it is possible to
specify the temporal offset through the timestamp in the attack dictionary, e.g., “HEAD
/static/x.php” is expected to occur 10 seconds after the first two lines of the “webshell”
attack step.

3.2.5 Implementation
We implemented the outlined concept for the automatic generation of testbeds using
model-driven techniques. Figure 3.7 shows an overview of the typical workflow for testbed
and log data generation. As visible in the figure, we use the infrastructure-as-a-service
tool Terraform [Ter] to instantiate the testbed infrastructures as virtual machines on an
Openstack [Opeb] cloud platform using our predefined setup scripts. Configurations at
this point involve the total number of machines, operating systems, and computational
resources, e.g., memory.

Building the machines with Terraform yields a so-called state file that contains deploy-
ment information, such as IP addresses. The testbed script generator implemented in
Python that acts as the transformation engine of our model-driven proof-of-concept
implementation imports the state file together with a configuration file, system behavior
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Figure 3.8: Overview of role dependencies. To install any role, it is necessary that all
roles that the attached arrows point to are available and correctly installed.

and attack TIMs, and thesauri, i.e., word lists arranged by topics such as usernames,
passwords, and host names. The configuration contains lower and upper limits for
parameters that are randomly chosen when generating TSMs, i.e., files and executable
scripts. Moreover, the transformation function generates a playbook that specifies the
services to be installed, which are referred to as roles. Examples for such roles are PHP,
Apache for web server setup, MariaDB for database setup, suricata IDS, or Internet
browsers. Each role requires a setup script that states a list of tasks to be carried out.
Thereby, it is possible to use variables in the playbook to specify random modifications
of the setup process, e.g., install different versions, or replace them with alternative roles
altogether. We then use the application-deployment tool Ansible [Ans] to distribute all
generated files, set up services, and start the execution of user and attack scripts.

Note that roles have dependencies that have to be deployed before initiating the in-
stallation of the dependent role. Figure 3.8 shows an overview of all roles currently
available and their dependencies. As visible in the figure, the roles for installing Horde
Webmail and OkayCMS require several other roles for database setup, user managment,
mailing services, etc. The user automation scripts as well as the attacks on the respective
web services in turn require the availability of Horde Webmail and OkayCMS to access
the web pages. In addition, some services are depending on specific versions, e.g., the
vulnerable Exim version requires a specific debian snapshot.
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The right side of Fig. 3.7 shows that once the simulation is complete, another script
collects all log files from the virtual machines and stores them on disk. As outlined in
the previous section, we automatically label the logs using attack execution information
extracted together with the other logs as well as a predefined dictionary of expected log
lines for each attack step. We store the lists of generated labels in separate files.

3.3 Validation

We devote this section to the validation of our approach and discovery of limitations. We
first evaluate whether our approach adheres to the design principles defined in Sect. 3.1.1.
We then analyze the collected log data and show the effects of automatically selected
parameters on the system behavior. In addition, we discuss selected case examples to
demonstrate the simplified process of iterative testbed development.

3.3.1 Fulfillment of Design Principles

We selected a simple web server to target a realistic and common use case. However,
real web servers may be accessed by humans as well as bots with extremely high
frequency and diverse behavior patterns. While our approach theoretically allows to add
arbitrary numbers of user hosts, the total amount of machines is limited by the available
computational resources and may thus not represent the heavy loads present in real
networks. In addition, we did not use real user activity measurements to define behavior
parameters, but argue that our model-driven approach makes it easy to adjust the TIM
appropriately if such data is available. The prepared attacks are realistic, relevant, and
make use of recently discovered exploits. Finally, all used log sources were either left in
their standard configurations or were realistically adapted.

Our approach fulfills all three dimensions of the flexibility principle due to the incorpo-
ration of model-driven techniques. The number of testbeds and sizes of the networks
only depend on the predefined amount of machines. Changing components or user and
attack behavior is easy by modifying TIMs. For example, it is simple to extend the state
machine that represents an independent model of the user behavior by adding new states
for particular actions, while leaving everything else untouched. Since all the configuration
files are reusable, it is possible to recreate the overall system behavior multiple times and
thus reproduce the results. In addition, all technologies used in our scenario as well as
the tools used to generate the testbed (Terraform [Ter], Openstack [Opeb], Ansible [Ans])
are open-source.

We made all produced log data available online in documented form. In addition, we
provide labels for the logs created by time-based and line-based methods. The labels
are on the level of attack steps and thus support the evaluation of IDSs. Finally, our
generated data covers several days and thus contains several periods of repeating patterns,
which allows anomaly detection tools to learn a baseline of normal behavior.
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Figure 3.9: Event frequencies of Apache access logs. Scans executed as part of a multi-step
attack manifest themselves as peaks (shaded intervals).

3.3.2 Manifestations of Testbed Variations

Depending on the types and characteristics of variations, different log files are affected in
particular ways, e.g., by event appearances or changed parameters. In the following, we
focus on event frequencies as a measure to compare testbeds. We analyze Apache access
logs, because they keep record of page visits on Horde Webmail and OkayCMS, and thus
allow to reconstruct user behavior, which is subject to variation.

Figure 3.9 shows user access frequencies on four web servers cup, insect, onion, and
spiral, aggregated in time windows of one hour over six days. The plot depicts that users
access the server more frequently during the day than at night, resulting in a daily cycle.
The peaks (shaded intervals) are caused by the scans as part of the multi-step attacks.
Note that additional detection techniques are required to disclose manifestations of the
remaining attack steps. Since the amount of users per web server is selected randomly in
order to increase variation, the average access rates differ among the web servers.

We further retrieve activity logs from each user. Since transition probabilities of the
behavior state machines are specific to each user and remain constant over time, it
is possible to relate observed behavior to users. For this, we compute the relative
frequencies of accessed web pages for each user in time intervals of one day and use
principal component analysis (PCA) to scale down the resulting high-dimensional data.
Figure 3.10 shows a biplot [Bip] containing daily user behavior as scores (visualized as
points) and the influence of visited pages on principal components as loadings (visualized
as vectors). The ellipses represent the normal distributions of the daily user activities
and show that each user follows a distinct pattern. The behavior spectrum includes
admin users (daryl, lacresha, lino, and sadye) and shows overlaps between users following
similar behavior profiles, e.g., denis and long.

We also extract page visits from Apache access logs collected at the web servers. Note
that we do not attempt to trace individual accesses to specific users; instead, we analyze
differences of the overall behavior observed at the web servers. Figure 3.11 is another
biplot that shows groups of daily page visits on the web servers. Despite the aggregation
of different user behavior patterns, the activities on the web server form distinct groups,
for example, onion is located far away due to its high activity of admin users. The figures
suggest that our approach achieved to generate testbeds with variations.
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Figure 3.10: Biplot of user page visit frequencies aggregated in daily intervals.
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3.3.3 Case Examples of Testbed Extensions

We designed the presented approach to simplify iterative testbed development and
support variations across generated testbeds. Our experiences during development of our
proof-of-concept implementation (cf. Sect. 3.2) endorsed the achievement of this target.
In particular, we proceeded by adding new TIMs as reusable modules and repeatedly
built and destroyed testbeds to test new features. In the following, we discuss three
case examples of such extensions in detail and measure the required manual work in
lines-of-code that were adapted.

Tool

System administrators install different tools on web servers based on domain knowledge
and personal preference. We selected the Clam AntiVirus software [Cla] as an exemplary
tool to be installed on some testbeds. Since there are no dependencies to other modules,
another infrastructure TIM with 10 lines of code is required to define a new role that
contains two tasks that install the software and set up a cron job that regularly performs
scans. Thereby, we leave the scheduled scan time as a variable. In the transformation
engine that generates and populates the testbed setup scripts, we add 14 lines of code to
specify the probability for installing Clam Antivirus, set the scan intervals, and add the
resulting parameters to the Ansible playbook.

Browser

Since real users prefer different browsers for accessing web platforms, we planned to add
Firefox [Firb] as an alternative to Chromium [Chr]. Similar to the antivirus tool, this
implies creating a role with a single task consisting of 6 lines that specify the installation
details. However, it is further necessary to change the existing TIM of the user behavior
by adding a task that copies the required browser drivers for web automation (4 lines of
code) and adapting the user behavior script to support the new browser (5 lines of code).
Finally, a single line is edited in the transformation engine that randomly assigns one of
the available browsers to each user profile.

Web Platform

At first, only Horde was implemented in the testbed. To increase diversity of the generated
log data, we then decided to extend the simulation to also include OkayCMS [Oka]. For
this, we first set up and configured an OkayCMS instance. Once this was accomplished, a
role with only 23 lines of code was required to specify three tasks that copy the OkayCMS
instance in the appropriate webroot and set up the database to make the web store
accessible to the users. Around 120 lines of code were necessary to update the state
machine in the user behavior TIM so that users are able to navigate four pages of the
website and perform adequate actions. Finally, three lines of code in the transformation
engine specify the transition probabilities between the states.
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3.4 Discussion
We propose to shift from traditional testbed setup to model-driven testbed design in
order to overcome common issues, including high manual efforts and repeated work when
adjusting or upgrading components. In the previous sections, we discuss several design
aspects and show examples of TIMs and automatically generated TSMs. In the following,
we will outline possible use-cases and review limitations that could provide ideas for
future work.

3.4.1 Applications
There are several promising use-cases for our model-driven testbed generator. Foremost,
our main intention is to automatically build testbeds for generating log datasets suitable
for IDS evaluation without the need to start from scratch for every new use-case, but
instead reuse existing components and develop testbeds iteratively. For example, starting
from our proof-of-concept, it is possible to introduce and exploit new vulnerabilities
by changing only the affected components and attacks, while leaving everything else
untouched. Another idea is to model account hijacking by changing a user profile at
some particular point in time, which could be the focus of detection tools based on user
profiling.

Since testbeds are isolated from real networks and thus do not produce sensitive data
that could raise privacy concerns, the generated log data is always suitable to be shared
with others [UHH+21]. Moreover, it is simple to create multiple variants of the same
testbed in parallel and generate several datasets that represent different environments.
This improves the robustness of results from IDS evaluation and allows researchers to
measure the variation of the detection capabilities of their IDSs.

Alternatively, it is possible to deploy IDSs directly in the generated testbeds by adding
an appropriate setup script to the infrastructure TIM. In this case, the generation of
log data is less relevant, and instead analysts are able to observe and measure the
detection capabilities in real-time. This application scenario could be especially useful
for experiments and live demonstrations, where attacks are injected manually.

Another relevant application case is malware analysis. Since it is easy to generate many
testbeds with variabilities, inserting the code to deploy malware in the TIM allows to
observe their behavior in different environments. This enables analysts to derive insights
on the behavior of the malware without much effort spent on setting up the necessary
machines. Then, the same attack can be deployed in testbeds with patched services to
ensure that the intrusions fail in every case.

Finally, our provided datasets contain log data rather than network traffic and thus
enable evaluation of host-based IDSs, a field where datasets are urgently needed [ČG18].
In addition, since one of our injected attacks involves the execution of several steps, the
resulting dataset is a great benefit for the research community around multi-step attacks,
where publicly available datasets are rare [NDP18]. Even more so, the variations of these
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multi-step attacks across our generated datasets enable evaluation of algorithms that
extract attack patterns independent of the environment and transform them into reusable
cyber threat intelligence [LSW+19].

3.4.2 Limitations & Future Work

Despite the aforementioned benefits, we recognize some drawbacks of our method. First,
it is necessary to point out that model-driven testbed design requires more effort than
setting up a single static testbed, because all installation procedures have to be formalized
and separated into fixed and variable parts that are subject to change, e.g., IP addresses
have to be dynamically retrieved whenever they are necessary for a command. However,
we argue that this increased initial effort pays off when testbeds are reused multiple
times, especially when application scenarios are subject to change or multiple instances
and variations of testbeds are required.

We further encountered that the ability to automatically upgrade all components to their
newest versions in each rollout comes handy to ensure that the testbed is relevant to real
world scenarios, but possibly causes problems when services are dependent on each other
or rely on version-specific configurations. In such cases, there is no way around manually
fixing the TIMs, because such requirements of future versions cannot be foreseen. For
critical components, it is possible to always install a fixed version, despite the downside
that the service will eventually be outdated.

It is also important to note that generating data in our generated testbed requires the
users to run in real-time. The reason for this is that it is infeasible to speed up the
actions carried out by users, e.g., decreasing the sleep time between commands in the
user behavior or attack scripts, since also the timestamps have to be adopted accordingly,
i.e., the generated log data needs to be modified in hindsight. In addition, properties of
the infrastructure, e.g., latencies and loading times, may have unrealistic influence on the
log data when timestamps are changed, and eventually limit the possibility to increase
the speed of the publication. Thus, it is not simply possible to simulate long timespans
in a short amount of time.

Another limitation of our approach is that our line-based method for automatically
labeling log messages corresponding to malicious activity is not guaranteed to always
yield correct results and should thus only be seen as a complementary approach to the
time-based method that provides additional confidence to the labels. The reason for this
is that this method is based on string similarity, and as such is unable to differentiate
between messages that are not sufficiently distinct, which leads to incorrect labeling.
In addition, selecting the similarity threshold is non-trivial, since it depends on the
overall structures of all possible log events. At the moment, gathering the expected
logs for each attack step involves manual work, in particular, executing each attack step
separately to populate the attack dictionary. Introducing new attack steps or changes
of the logging infrastructure require to repeat this process. In Chap. 4, we therefore
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present a methodology to ease this task. Nevertheless, attack steps that involve random
or otherwise variable manifestations will remain difficult to label correctly.

Regarding the log dataset produced in our proof-of-concept, we see a number of extensions
that could improve future simulations. First of all, the authenticity of the user behavior
can be improved by deriving parameters from real system usage, which was omitted due to
lack of such real data. In addition, randomness is usually based on uniform distributions,
however, actual user behavior could be better represented by other distributions, such as
the normal distribution.

Finally, it would be interesting to develop a formal modeling language for generating
testbeds. Thereby, the transformation engine would work as a function that selects
properties of infrastructure components, user behavior, and attacks, from the predefined
ranges of allowed values. This would help to define a metric that makes testbeds
comparable by measuring their similarity through their common properties. Aggregating
such a testbed similarity metric over all generated testbeds, it would be possible to
provide the analyst with a feedback on the diversity of the testbeds, i.e., a measure on
the coverage of possible combinations of model parameters. Ultimately, the resulting
aggregated metric could be used to determine whether an appropriate amount of testbeds
have been generated to represent most possible testbed configurations, or to calculate an
estimation for the number of testbeds required.

3.5 Summary
In this chapter, we proposed a methodology for creating testbeds for log data generation
using techniques from model-driven engineering. For this, we designed abstract models
for the testbed infrastructure, the simulated system behavior, and the injected attacks,
and used a transformation engine to automatically translate these testbed-independent
models (TIM) into testbed-specific scripts and configuration files that allow deployment.
This increases the required initial effort, but largely reduces the amount of work required
to maintain and modify testbeds for different application scenarios. Due to the fact that
testbed-independent models (TIM) only define parameters as discrete lists or ranges of
allowed values, we were able to generate arbitrary numbers of testbeds with variations.

While the deployment and configuration of the testbed as well as the collection of log
data is fully automatic, labeling of log events that are related to attacks requires human
effort for gathering and maintaining the attack dictionary. In addition, the proposed
similarity-based approach is tricky to configure and may assign incorrect labels as pointed
out in Sect. 3.4.2. The following chapter will therefore extend the proposed approach
with an automatic labeling procedure that leverages rules rather than similarity-based
matching.
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CHAPTER 4
Log Data Generation & Labeling

The previous chapter introduced a method for the automatic creation of simulation
testbeds. These testbeds are the basis for the event labeling methodology presented in
this chapter. In addition, the log datasets analyzed in this chapter are generated and
labeled on such a testbed. Major parts of this chapter have been published in [LSF+]
and [LFS+22].
As outlined in the previous chapter, testbeds have several benefits for log data generation
in comparison to real infrastructures, including the abilities to arbitrarily adjust config-
urations, launch attacks without worrying about system damage, and make generated
datasets publicly available since they are free of sensitive data. Several log datasets
have therefore been generated in such controlled environments in the past. However,
one of the main problems that is rarely addressed in the methodologies for generating
these datasets is reliable labeling of malicious events, even though it is crucial for any
evaluations with respect to attack detection.
In general, the typical process of labeling log data as realized by existing works makes
use of similar techniques as signature-based IDSs: Log events are scanned for particular
keywords, e.g., IP addresses of attacker hosts, and labels are assigned to matching logs
to categorize them as malicious [AAAH+18]. This is intuitively reasonable for simple
scenarios, for example, where all activities originating from a dedicated attacker machine
are known to be malicious. In testbeds where analysts have full control and information
about the simulated attackers, labeling is trivial for such cases [RWG+17]. However, more
complex and realistic testbeds involve attack manifestations that are interleaved with
traces of normal system behavior, which makes it difficult to discern these two classes. In
particular, labeling by simple IP-based matching is impossible when normal and malicious
activities are executed simultaneously on the same host, which necessarily occurs when
attackers manage to compromise and misuse actively used systems. Even worse, system
logs that are necessary to evaluate HIDSs rarely contain network information and do
not even need to involve any expressive descriptors for keyword matching; in fact,
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manifestations of attacks are possibly identical to normal events and only their combined
occurrences in a specific execution context allow to determine their root cause. In
addition, system logs are usually unstructured and generated in heterogeneous formats
so that labeling rules cannot simply be applied on all log files [ZHL+19]. Unfortunately,
common ways of data labeling based on keyword matching are thus unable to adequately
label logs for HIDS evaluation.

Data generation methodologies that leverage model-driven testbeds as described in Chap.
3 suffer from the same problem [GFDVC10,LSW+21]. In fact, the dynamic assignment
of variables such as IP addresses imply that labeling rules based on hard-coded values
cannot simply be reused across testbeds, since these values are purposefully subject to
change. Therefore, it is necessary to repeatedly adapt labeling rules, creating a bottleneck
for model-based testbed generation.

This chapter aims to resolve aforementioned problems by integrating labeling rule design
into the model-driven testbed generation process. For this, our framework utilizes
abstract labeling rule templates that are completed with automatically extracted testbed
parameters. In addition, we propose four rule types that allow to label system log datasets
for HIDS evaluation. We also publish a collection of log datasets generated with the
presented approach as well as all code that is necessary to run our testbed and simulations
within it so that other researchers are able to replay or augment the simulation runs.
Our datasets are therefore maintainable and allow for continuous improvements such as
enlargements of the labeling range as well as additions of datasets from new testbeds.
We summarize our contributions as follows:

• A framework for model-driven labeling of system log data,

• a publicly available labeled collection of log datasets for evaluation of IDSs,

• an analysis and comparison of these datasets with respect to real user logs,

• an open-source implementation to launch testbeds for dataset generation, and

• an open-source library and models to simulate normal user behavior and attacker
activities.

The remainder of this chapter is structured as follows. Section 4.1 outlines an integrated
concept for model-driven testbed generation and log data labeling. In Sect. 4.2 we outline
our methodology for generating log datasets and explain our modeled scenario. We
analyze the generated datasets in Sect. 4.3 and discuss the results in Sect. 4.4. Finally,
Sect. 4.5 summarizes the chapter.

4.1 Methodology
Chapter 3 presented a model-driven procedure for testbed generation that utilizes separate
models for infrastructure, normal system behavior, and attack executions. This procedure
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Figure 4.1: Labeling concept for model-driven testbeds.

is extended and reflected in Fig. 4.1, where layer (L4) represents the TIMs, i.e., models
consisting of templates for deployment scripts, configurations, and state machines. Layer
(L3) holds TSMs, i.e., specific instances of testbeds. Note that these two layers represent
a simplified form of the procedure depicted in Fig. 3.1. As such, the TSMs allow to
roll out the testbed and run the simulation. We refer to the previous chapter for more
information on these steps.

Once the simulation is completed, the collection layer (L2) handles the extraction of
relevant information from the components. Foremost, this concerns the log data to be
labeled, which is collected from machines that are typically monitored by IDSs, e.g.,
web servers and firewalls. In addition, we collect logs relevant for labeling from all
other machines in the testbed. Thereby, logs from the attacker machine that outline
the timeline of attack executions are likely the most important source of information;
however, also logs from hosts running simulations of normal user behavior can be used
to verify attack labels or assign labels to benign activities. Moreover, we gather system
information that we refer to as facts from all components. Facts are the main source
for filling out labeling rule templates and include artifacts such as IP addresses, domain
names, user names, OS versions, etc [GSL+20]. Finally, we also extract configuration
files of installed services and logging frameworks. All gathered data is then transmitted
to a central storage system where labeling takes place.

The labeling layer (L1) generates ground truth labels for datasets in a four-step procedure.
First, a pre-processor prepares the logs for further analysis. In particular, this includes
unzipping log files that are compressed during rotation and converting logs stored as
binary or other formats into raw text files. Second, a parser transforms the system log
data, which is usually only available in unstructured form, into a semi-structured format
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so that all tokens can be referenced individually. These parsed log events are then loaded
into a database that supports storing and searching such semi-structured data. Third, a
post-processor trims the logs to fit the desired simulation time interval and prepares all
rules by inserting facts extracted by the collection layer into rule templates designed as
part of the attacker model. Fourth, the retrieval step iterates over all rendered labeling
rules and executes queries on the database storing the parsed log data so that all matching
events are assigned one or more labels corresponding to the respective rule. Sect. 4.2.4
will provide more details on these labeling rule templates, in particular, an overview of
different query types.

4.2 Scenario
The previous section outlined a general overview of the methodology for the generation
of our dataset. In this section, we first describe our targeted use-case and explain specific
design decisions regarding variations in the dataset before presenting the approach for
data labeling in detail.

4.2.1 Use-case
The purpose of our collection of log datasets is to enable evaluation of IDSs in the context
of a widespread application scenario that is frequently subject of cyber attacks. Specifically
small- or medium-sized organizations are a frequent target of cyber attacks, often due to
the fact that they do not have the required resources for extensive protection [Sym19].
We therefore design our testbed to resemble a small enterprise network that follows
well-known security guidelines, such as segmentation of networks into zones [ISO10]. This
is one of the aspects that we improved upon in comparison to the testbed infrastructure
described in Sect. 3.2.1.

Figure 4.2 displays an overview of the network realized by our testbed. The network
comprises three zones: (i) the intranet that contains a number of Linux hosts [Ubu] for
each employee as well as an intranet server running WordPress [Wor] and Samba file
share [Sam], (ii) the demilitarized zone (DMZ) that contains servers for VPN [Opec],
proxy, Horde Groupware [Hor], and cloud share [Own], and (iii) the Internet with
global DNS [Mar, Dnsa], hosts for remote employees that connect to the intranet via
VPN, external employees that use external mail servers, and an attacker host. The
zones are connected via a firewall [Sho] that also acts as an internal DNS server for all
domains owned by the organization. All employed technologies are publicly available and
commonly used in real networks [MFCMC+18].

As outlined in Chap. 3, TIMs result in different TSMs due to the fact that several
parameters are set dynamically during instantiation of the testbeds. With respect to
the system environment, this mainly concerns the network size and allocation of IP
addresses. In particular, we generate between 3 and 9 hosts for internal, remote, and
external employees respectively, meaning that the final testbed may consist of at least
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Figure 4.2: Overview of the testbed network. Steps (1)-(3) mark the attacker’s path to
compromise the intranet server and steps (a)-(c) represent connections related to the
data exfiltration attack vector.

Table 4.1: Variations of the system environment

Parameter Range

Number of user hosts 9-27
Number of mail servers 2-4
Network zone classes [ a, b, c ]
Host IPs Random IP within respective zones
Network and zone names Random names

9 and at most 27 user simulations running in parallel. Similarly, we generate between
2 and 4 external mail servers. We also assign each network zone a random class and
randomly choose IP addresses from these zones for each host. Finally, we also configure
the domain names of all network zones as random names using the Faker library [Fak].
Table 4.1 provides a summary of all variations of the technical infrastructure.

4.2.2 User simulation

Real networks in small- or medium-sized organizations are actively used by humans that
carry out their daily routines in their workplace. The simulation of normal behavior is
therefore an essential aspect of synthetic dataset generation for IDS evaluation. Simulated
normal system behavior that is not sufficiently complex may result in non-representative
datasets that yield too low false positive rates during IDS evaluation, as human interactions
with machines are often erratic and possibly lead to unexpected system states that may
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Figure 4.3: User state machine for simulating normal behavior on the cloud share
platform.

be incorrectly detected as malicious. We therefore decided to create state machines for
all services in our testbed that are normally accessed by real users. For this purpose,
we make use of web automation software [Sel] that allows to use scripts to navigate on
websites and click on specific links.

Figure 4.3 visualizes the state machine for a user accessing the cloud share platform.
Note that states describe the current view of the users and that activities such as clicking
buttons are carried out when traversing from one state to another. As visible in the
figure, the user first logs into the OwnCloud platform (possibly with incorrect credentials,
in which case login is retried) and then enters pages showing either all their files, files
marked as favorites, files shared with other users, or files other users shared with them.
Depending on their selection, the users are then able to view files, upload and share
new files, change or remove existing shares, accept or decline invitations to share files,
and manage their favorites. Furthermore, there is the possibility that a user leaves the
cloud sharing application and switches to another website, or enters the idle state in
which case no action is carried out for a certain amount of time. We argue that the total
number of possible transitions and interweaving of states visible in Fig. 4.3 is sufficiently
complex to represent real user interaction. Section 4.3.2 will compare log data generated
by simulated and real users to verify that their access frequencies and usage distributions
are indeed similar.

We do not provide figures for all state machines for brevity, but briefly discuss their main
features. (i) The web mail state machine (cf. Sect. 3.2.2) allows users to view, compose,
and respond to mails from other users, attach files to mails, change their preferences,
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Table 4.2: Variations of simulated user behavior

Parameter Range

User name Random name
Password Random string
Wordpress role [ editor, admin, none ]
SSH admin [ yes, no ]
Samba role [ employee, mgmt., acc., admin, none ]
OwnCloud role [ employee, mgmt., acc., admin, none ]
Working hours (5:00-9:00) - (17:00-22:00)
User mail provider Random selection from all mail servers
User mail contacts Random selection from all users
State transition
probabilities

0.0-1.0

Web browser [ firefox, chromium ]
Idle times Tiny: 0.4-2.5 seconds

Small: 3-60 seconds
Medium: 40-360 seconds
Large: 400-3600 seconds

and manage their calendar entries, contacts, notes, and tasks. In addition, privileged
users may access the administrator panel to view and change settings of the platform.
(ii) The WordPress state machine allows users to read existing posts on the WordPress
instance, publish new posts, comment on existing posts, and view available media. (iii)
The Internet state machine allows users to browse the Internet by randomly clicking on
links on one of the websites from a predefined list. (iv) The SSH state machine allows
users to connect to a host in the network via SSH to execute some of a predefined list
of commands. All state machines are connected with each other, i.e., users are able to
change between state machines, to further increase the complexity of the simulation.

Whether a user accesses specific states within the state machines or not depends on their
roles, which are subject to variation. In particular, we define an SSH administrator role and
furthermore differentiate between editor and administrator roles on the WordPress page
and employee, management, accounting, administrator roles on Samba and OwnCloud
pages. When no role is assigned to a user, the respective state machine is not entered at
all. The names of all users are randomly generated from databases and their passwords
are random strings. We also vary their working hours, assign their preferred web browser,
generate their mail addresses from one of the external mail servers, and select random
samples for their usual contacts and available files. To ensure that all files involved in
the simulation appear realistic and do not only involve completely randomized contents,
we make use of a collection of predefined dummy files with non-sensitive contents. Table
4.2 provides an overview of the varied parameters and their parameter spaces. Note that
we use idle times to temporarily pause the state machines not only in idle states that
are specifically created for this task, but also when entering or leaving certain states.

59



4. Log Data Generation & Labeling

This accomplishes to simulate delays between single clicks (tiny), pauses for reading and
reacting to website contents (small and medium), or longer breaks of inactivity (large).
The table leaves out several minor parameters, such as limits for maximum daily accesses
or factors that make repeated executions of same activities more unlikely, for which we
refer to our open-source implementation.

4.2.3 Attack scenario
While simulation of normal user activity is necessary to ensure authenticity of the
underlying conditions, injected attacks are required to provide the artifacts to be detected
or classified by IDSs. Accordingly, it is essential to design relevant attack cases that fit
the overall use-case and are suitable to generate desired consequences in the dataset. For
our use-case, we decided to model a multi-step attack that involves several stages of a
typical cyber kill chain [Fira] and makes use of common penetration testing tools [Kal].
The selected attacks are an evolution of the attack chain described in Sect. 3.2.3, as
several attack steps are replicated, but adapted to fit the updated network structure.
Figure 4.2 shows the connections and affected hosts of this attack scenario. In particular,
steps (1)-(3) show how the attacker first accesses the intranet over VPN to gather
information and eventually takeover the intranet server, and steps (a)-(c) indicate how
data is extracted from the file share in the intranet zone over a public DNS server to the
attacker. In the following, we explain all attack steps in detail.

As part of our attack scenario, we assume that the attacker illegitimately obtained VPN
credentials that allow them to access the network. In real-world attack cases, obtaining
such credentials could be achieved through phishing attacks or by compromising a personal
computer of an employee. Note that we do not simulate this part of the multi-step attack,
since it occurs outside of the enterprise’s network and thus does not leave any traces in
the logs.

Once the attack execution starts, the attacker makes use of the VPN credentials to
remotely establish a connection to the network over the VPN server. The first step of
the attack chain then consists of several scans of the network. In particular, the attacker
employs the well-known tool Nmap [Nma] to carry out DNS and port scans in the DMZ
network where the VPN server is located. This allows the attacker to discover the CIDR
of the intranet network and thus extend their scans to the hosts located in the intranet
zone. Eventually, a web service scan shows a WordPress instance running on the intranet
server, which leads to the attacker selecting this server as a possible target for intrusion.
The attacker thus launches a brute force directory scan using the tool dirb [Dir] in order
to find potentially interesting files. Since this scan shows up no results that allow the
attacker to progress any further, they carry out a WordPress security scan using the tool
WPScan [WPS] in order to discover vulnerable versions or misconfigurations of plugins
or themes installed on the server. Other than the directory scan, this security scan shows
that a vulnerable version of the plugin wpDiscuz is present on the server. At this point,
the attacker stops scanning and instead focuses on exploiting the vulnerability, which
marks the end of the reconnaissance phase.

60



4.2. Scenario

By exploiting the vulnerable plugin, the attacker is able to perform unrestricted file
uploads (CVE-2020-24186). This allows the attacker to upload a PHP webshell as a
backdoor that in turn allows them to execute arbitrary commands with the privileges of
the www-data user of the web server. The attacker proceeds to execute several commands
to gather information about the host, e.g., reading out processes, command histories, OS
information, connections, or file names. Eventually the attacker finds the password to
the user database in the WordPress configuration file and is thus able to access all user
names and their hashed passwords.

The attacker then attempts to crack one of the hashed passwords using a list of common
passwords. For this, our attacker state machine branches into two paths. In one path,
we assume that the attacker transfers the password hashes to their own system and
manages to crack one of the passwords there. Since this activity takes place outside of the
monitored network, no logs are created and thus detection is not possible. Accordingly,
we simulate this case by simply pausing the state machine for a specific amount of time.
The other path simulates that cracking takes place at the compromised server. For this,
the attacker installs the tool John the Ripper [Joh] and uses a common password list
for cracking. Due to the fact that the purpose of our datasets is to provide detectable
traces of anomalous behavior, we opt for the latter case when running our simulations.
Note that as part of our attack scenario, we assume that the password of at least one
system user is always present in the password list and thus successfully cracked after a
certain amount of time. Subsequently after obtaining the password, the attacker uploads
a fully interactive reverse shell and misuses the compromised user account to escalate
their privileges to root level. The attacker then executes several commands of which
some require root privileges, such as reading out the shadow file.

As a final step of the attack kill chain, the attacker runs the DNSteal [DNSb] tool that
exfiltrates sensitive data from the file share located in the intranet zone. Thereby, the
tool starts a process that converts files from certain directories into base64 to conform
to the requirements of DNS queries, splits them into chunks, and sends them as DNS
requests through the firewall to a specific attacker-controlled domain in the global DNS.
Eventually the data is transferred from the malicious domain to the attacker’s host,
where it is decoded and stored. While we could have modeled the attack chain in a way
so that the attacker would set up this exfiltration tool once they gained system privileges,
we decided to separate this step from the remaining attack vectors and instead start
the exfiltration tool already at the beginning of the simulation. The reason for this is
that we decided to design the exfiltration attack as a challenge for anomaly-based IDSs
that usually rely on an training phase that is free of attacks. By running the tool from
the beginning of the simulation, we purposefully poison the training phase so that the
malicious DNS communication is learned as part of the normal system behavior. However,
the attack may still be detected by anomaly-based IDSs, since the exfiltration stops after
a few days when all files are extracted. This is especially challenging, since it is usually
more difficult for an IDS to recognize that a service suddenly stopped compared to the
detection of a newly started service.
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Table 4.3 summarizes the attack scenario. The first column maps each of the attack steps
stated in the second column to phases of the cyber kill chain [Fira]. As stated before,
the Data Exfiltration step does not chronologically follow the other attack steps. The
third column lists related tactics and techniques from the well-known MITRE ATT&CK
matrix version 10 [MIT] for each attack step. The matrix classifies and describes a wide
range of common attack techniques and also provides information on detection. As visible
in the table, our multi-step attack involves a diverse set of attack techniques that are
part of several tactics. Finally, the last column states the most relevant log files that
contain attack traces for each attack step. Since many different log files are affected, it is
necessary to configure IDSs to monitor several hosts of the network in order to obtain a
full picture of the multi-step intrusion.

Similar to the infrastructure and user behavior, we vary the attack parameters as part
of the transformation from TIM to TSM. Table 4.4 provides an overview of the main
variations used to generate the dataset. Note that while the time of day at which attack
execution is initiated is varied, we manually set the day for each simulation run in
advance. The reason for this is to avoid that the attack is launched too early and thus
the dataset does not provide a sufficiently long training phase of at least 3 days. To select
and implement variations of parameters of utilized attack tools, we looked up allowed
values and ranges for each parameter in the respective documentations. Since tools such
as WPScan [WPS] and DNSteal [DNSb] have multiple parameters that support ranges
of allowed values, many possible combinations of values exist and thus the attack traces
resulting in the logs are highly different. To realize random command executions, we
assembled a list of common commands and randomly sampled them. We also injected
the user password to be cracked in specific positions of the password file used by John
the Ripper [Joh] so that the duration to complete cracking varies in each run.

These variations of the attack scenario are one of the reasons why labeling of specific
events is difficult when log data is generated from model-driven testbeds. In particular,
the labeling rules need to be flexible enough to cover different consequences of injected
attacks. In addition, variations of the system infrastructure contribute to the resulting
complexity of attack manifestations in log data. The following section therefore presents
labeling rules that align with the model-driven procedure of our approach and enable
labeling of different types of attack consequences.

4.2.4 Labeling

The previous section described attack cases for our testbed scenario. In this section,
we define rules for labeling the log events generated as part of these attacks. For this
purpose, we first propose four rule types that are suitable to be applied in model-driven
settings. We provide selected examples for these rules that enable label assignment for
the injected attacks. We then outline a strategy to select appropriate rule types and
discuss our implementation of the approach.
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Table 4.4: Variations of the attack scenario

Attack Parameter Range

General Start times 00:00 - 24:00
Attacker name Random name

Network scans Ports 100-2000 top ports
Hosts Random selection of servers

Wordpress scan Scan mode [ passive, mixed ]
Enumeration Random selection of plugins,

themes, configs., database
exports, users, and media

Directory scan Recursive [ yes, no ]
Case-sensitive [ yes, no ]

Webshell Shell name Random string
Commands Random commands

Password hash Mode [ online, offline ]
cracking Duration 30-90 minutes
Reverse shell Port 1100-65000

Commands Random commands
Exfiltration DNS domain Random string

Forced IP [ yes, no ]
Compression [ yes, no ]
Verbosity [ yes, no ]
Block size 32-63
Sub domains integer of (200 / block size)

Labeling Rule Templates

As outlined in the beginning of this chapter, common labeling strategies are usually
centered around searching for specific keywords, e.g., the IP address of an attacker
machine, and marking all matching log events as malicious. Unfortunately, this is not
possible in model-driven testbed generation approaches, because these keywords are
not available at the time of designing the TIMs. Furthermore, system log data is not
always discernible by such keywords and only combined and contextual occurrences of
events allow correct label assignment. To overcome these issues, we propose labeling
rule templates that are designed on the same level of abstraction as TIMs and are thus
independent of artifacts specific to TSMs. In addition, we propose four types of rules
to enable the assignment of labels to events that could not be labeled with common
labeling strategies: query, sequence, sub query, and parent query rules. In the following,
we describe each rule type in detail and provide examples.

Query Rule. Query rules are the most basic type of labeling rule template. Their
purpose is to match collected facts with specific parts of log events and assign labels to
all retrieved logs. Accordingly, this type of rule is only applicable when all relevant logs
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- type: elasticsearch.query
id: dnsteal.domain.match
labels: [dnsteal]
index: [dnsmasq-inet-firewall]
query:
bool:
should:

- regexp:
dns.answers.name: ’.*\.{{ attacker.dnsteal.domain | replace(’.’,

’\.’) }}’
- regexp:

dns.question.name: ’.*\.{{ attacker.dnsteal.domain | replace(’.’,
’\.’) }}’

Figure 4.4: Query labeling rule that matches domain names.

are known to match the respective fact in the selected field, and no logs generated by
benign behavior yield matches in that field. For example, in the simple case where all
activities associated with a malicious domain should be labeled as part of an attack, it is
possible to label a log file that monitors DNS connections by matching the domain name
occurring in the logs with the attacker’s domain name that was previously extracted as a
fact [AGR+19].

Figure 4.4 shows an exemplary query rule for this case. The rule specifies that all logs in
the dnsmasq-inet-firewall index matching the malicious domain referenced by variable
attacker.dnsteal.domain in the fields dns.answers.name or dns.question.name are assigned
the labels dnsteal. Note that variables such as dns.answers.name are resolved by the
respective field of the parsed logs in the database where the query is executed, while
attacker.dnsteal.domain is a templated variable as indicated by the curly braces and thus
replaced by the respective fact when the rule is rendered from the template. Thereby,
the domain name is a random string extracted from the TSM for attacker behavior. As
visible in the rule, queries may be connected with boolean operators, e.g., the keyword
should represents a logical OR operation. In addition, it is possible to apply functions on
the terms, e.g., we use a replace function in the sample rule to escape dots and enable
matching with regular expressions.

Sequence Rule. Some attack artifacts in log data cannot be labeled with query rules,
but require a more advanced strategy. In particular, this concerns logs that can only be
identified as part of the attack by their collective occurrence, while each of the events
individually is indiscernible from logs related to benign behavior. We therefore propose
sequence rules to model such cases.

Figure 4.5 shows a sample sequence rule that labels two consecutively generated log
events from two different sources, packet capture (PCAP) stored in index pcap-attacker_0
and Apache access logs stored in index apache_access-intranet_server. We use the by
parameter to obtain groups of logs with the same value in the url.full field and set the
maximum time span in which these logs have to occur through parameter max_span to

65



4. Log Data Generation & Labeling

- type: elasticsearch.sequence
id: attacker.foothold.apache.access
labels: [attacker_http, foothold]
index: [pcap-attacker_0, apache_access-intranet_server]
by: url.full
max_span: 3m
filter:
- range:

"@timestamp":
gte: "{{ ( foothold.start | as_datetime) }}"
lte: "{{ ( foothold.stop | as_datetime) + timedelta(seconds=1) }}"

sequences:
- ’[ apache where event.action == "access" and source.address == "{{

attacker.vpn_ipv4_address }}" ]’
- ’[ http where source.ip == "{{ servers.intranet_server.

default_ipv4_address }}" and layers.http.http_http_response == true
]’

Figure 4.5: Labeling rule of sequence type with filtering.

3 minutes. The sequence itself is specified through a list of queries, where each query
matches log event fields to facts or predefined values, e.g., source.address of Apache
access logs matches the attacker’s VPN IP extracted from the infrastructure TSM. While
this sample demonstrates labeling of events occurring across different files, we point out
that this rule type is also highly useful to label log sequences of arbitrary lengths that
occur in the same file but are interleaved with benign logs.

The rule also involves a filter that limits the number of logs on which the query is executed
based on their occurrence times. In the sample rule, this time range spans between start
time foothold.start and stop time foothold.stop of the respective attack phase. Note that
1 second is added to the stop time to avoid incorrect label assignment due to rounding of
log timestamps without sub-second precision. Filtering improves runtime performance
since fewer comparisons are carried out and further decreases the probability of incorrect
label assignment, e.g., benign events that match the query but are generated outside of
the interval are not labeled. It is also possible to filter logs based on value matches or
already assigned labels.

Sub Query Rule. Some logs do not contain all fields required to assign labels to
them. Instead, it is necessary to link them to other events to determine whether they
correspond to attacker behavior or not. Therefore, we propose sub query rules that
involve a two-stage query mechanism: First, a main query is executed to retrieve a set of
events. Then, each of these events is used in another query that allows matching based
on the fields of the main query result in addition to the usual matching based on facts.

Consider the example in Fig. 4.6 which aims to label attacker requests in Apache access
logs that cannot be labeled by the corresponding responses through the sequence rule
from Fig. 4.5, e.g., because the response is not sent or lost. The main query retrieves

66



4.2. Scenario

- type: elasticsearch.sub_query
id: attacker.foothold.apache.access_dropped
labels: [attacker_http, foothold]
index: [pcap-attacker_0]
query:
- term:

destination.ip: "{{ servers.intranet_server.default_ipv4_address }}"
sub_query:
index: [apache_access-intranet_server]
query:
- term:

url.full: "{{ HIT.url.full }}"
- term:

source.address: "{{ attacker.vpn_ipv4_address }}"

Figure 4.6: Labeling rule of sub query type.

all log events with destination IP addresses matching the IP of the intranet server from
PCAP logs in index pcap-attacker_0. The sub query then iterates over each of these
events and labels all Apache access logs from index apache_access-intranet_server that
have the attacker’s VPN IP in field source.address and the same url.full as the PCAP
event that is accessible through variable HIT.

We point out that sub queries have the disadvantage of a long runtime since a new query
needs to be executed for each result of the main query. Accordingly, it is usually necessary
to include time- and attribute-based filters in the main query to keep the number of
retrieved logs to a manageable size. We omit these filters in the sample for brevity and
refer to our open-source implementation.

Parent Query Rule

Parent query rules function similar to sub query rules, i.e., they comprise a main query
and execute another nested query for each of the retrieved lines. However, while sub
query rules label the results of the nested query, the purpose of parent query rules is to
assign labels to each retrieved log of the main query if the nested parent query yields at
least n results, where n = 1 by default. This rule type is especially useful to assign labels
to special log events that were missed by earlier executed rules, e.g., timeout events that
occur some time after the recorded stop time of the respective attack. In this case, the
main query selects all logs within an extended time interval (i.e., a sufficiently long delta
is added to the stop time in the filter) that do not have a specific label assigned, and the
parent query then iterates over all results and queries for related events with matching
attributes that ascertain whether the event in question is actually part of the attack. In
case that at least one related event is retrieved in the parent query, a label is assigned to
the respective log from the main query.

Figure 4.7 shows a parent query rule for labeling dropped DNS logs corresponding to
query retries that occur when the DNS server is inactive and the malicious process
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- type: elasticsearch.parent_query
id: dnsteal.domain.dropped-retry
labels: [dnsteal-dropped]
index: [dnsmasq-inet-firewall]
filter:
range:
"@timestamp":

gt: "{{ attacker.exfiltration_service.stop }}"
lte: "{{ (attacker.exfiltration_service.stop | as_datetime) +

timedelta(minutes=3) }}"
query:
match:
labels.rules: dnsteal.domain.match

parent_query:
index: [dnsmasq-inet-firewall]
query:
bool:

must:
- term:

dns.question.name: "{{ HIT.dns.question.name }}"
- term:

event.action: "{{ HIT.event.action }}"
- term:

source.ip: "{{ HIT.source.ip }}"

Figure 4.7: Labeling rule of parent query type.

generating the queries has already stopped. The main query therefore selects all logs
labeled dnsteal.domain.match by a previously executed query rule that matches the
attacker’s domain name and filters them for the time range between the end of the attack
execution and three minutes thereafter. The parent query then checks whether there
exists an earlier occurring log event with matching query, event type, and IP, in which
case the respective log line from the main query is assumed to represent a retry of an
event generated by the attacker and labeled as such. Note that parent query rules have
similar disadvantages with respect to the runtime as sub query rules and thus also benefit
from filters. In particular, we use a time range filter to limit the results of the parent
query, but omit it in the example for brevity.

Rule Selection

The previous sections outlined four types of labeling rules. Thereby, each type offers
specific functionalities for labeling logs in certain situations where common labeling
strategies cannot be applied. To ease the selection of appropriate rule types depending
on the log data at hand, we outline a procedure that maps properties of attack artifacts
to the available types.

Figure 4.8 depicts this procedure as a flow chart. Whenever it is possible to limit the
queried logs to a certain time interval, e.g., the start and stop times of attacks, we
recommend to add time-based filters. Second, the presence of certain attributes or labels
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Filter log events by 
labels or a�ributes

Sequence rule

Query rule

Sub query rule Parent query rule

Can affected logs be filtered 
by labels or a�ributes?

Is it possible to assign a label 
by a single query match?

Do related logs appear in 
strict chronological order?

Are labels assigned to logs 
of main or nested queries?

no

yes

yes no

yes no

nested main

Are affected logs limited to 
a certain �me window?

Filter log events by 
a�ack �me windowyes

no

Figure 4.8: Procedure for labeling rule type selection.

assigned by previously executed rules allow to further reduce the number of logs. Query
rules assign labels to logs retrieved by single queries. In case that attacks reflect in
chronological sequences or correlating events across files, sequence rules should be applied.
Otherwise, sub query rules can be used to label logs retrieved by nested queries and
parent query rules can be used to label logs retrieved by main queries that also fulfill
constraints from nested queries.

Implementation

This section summarizes our implementation decisions of aforementioned concepts. We
realize testbed deployment as well as data collection with Ansible [Ans] roles. All
processors of the labeling layer are implemented as scripts. We use open-source Logstash
[SE19, Log] parsers that are available for a large number of common log formats and
integrate well with Elasticsearch [SE19,Ela], which we use as a database for log storage.
The main advantage of Elasticsearch for our approach is that it is designed for carrying
out complex queries on semi-structured data efficiently. We define our rule types in
YAML syntax based on the Elasticsearch query language and use the Event Query
Language [EQL] for sequence rules. Finally, we generate rules of these types as templates
using the Jinja templating engine [Jin].

4.3 Analysis of Log Datasets
The previous section outlined our methodology and scenario for generating testbeds using
a model-driven approach. Following this methodology, we generated eight testbeds and
collected log data from them. This section provides some insights into these datasets by
analyzing and comparing the logs.
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4.3.1 Testbed Infrastructures
In course of around four weeks we instantiated a total of eight testbeds that we used
to collect log datasets. The durations of the simulations for each dataset are between
4-6 days, where the exfiltration attack that is already running in the beginning of the
simulation usually stops after 1-3 days and the multi-step server takeover attack usually
takes place on one of the last two days.

Table 4.5 provides an overview of the technical infrastructure used to generate each of the
datasets. Note that we refer to each dataset by the randomly selected name of the overall
testbed network that contains all zones. As visible in the table, the randomly selected
numbers of mail servers and user host machines present in the testbeds correspond to
the parameter variations stated in Sect. 4.2.1. We point out that the size of the datasets
mostly depend on the number of active users and the length of the simulation.

Table 4.6 shows which log files are collected from which hosts, where �indicates that the
respective log file is collected from the host, �� indicates that the respective log file is
collected and also labels exist for that file, and no symbol indicates that the respective
files are not collected or not present on the hosts. The table also shows that we collect
network traffic as well as system logs from diverse sources, for example, access logs,
low-level logs of the operating system (audit logs), application logs (Horde and VPN
logs), monitoring logs, custom logs for state machine executions, etc. Note that files
not marked as labeled do not necessarily lack a ground truth, since several files are
not affected by any of the attacks and thus all occurring events correspond to normal
behavior. We therefore only mark files as labeled in case that attack traces are known to
occur in these files and labeling rules for the respective attack manifestations exist.

As visible in the table, we mainly focused on log files from the intranet server when
developing our labeling rules. The reason for this is that the majority of attack steps are
launched against that server and the diversity of these attack vectors cause that several
different files are affected. In Sect. 4.3.4 we provide a more detailed overview of assigned
labels.

4.3.2 Normal Behavior
It is essential for synthetic log data generation to simulate normal user behavior that
corresponds to real humans interacting with the system in terms of click frequency
as well as complexity and diversity of actions. However, we noticed in our literature
review (cf. Sect. 2.1) that comparisons of presented datasets with real user behavior are
rarely carried out. We therefore validate our log datasets by carrying out a comparison
with real-world log data generated by humans performing tasks in a similar network
environment. The real log data was collected during a cyber security exercise [Pla21]
that took place in September of 2021. As part of the exercise, eight teams consisting
of four people respectively were tasked to investigate traces of existing malware that
infected their networks, monitor their systems for incoming cyber attacks, and respond to
incidents by contacting authorities. As part of this one-day exercise, several attacks were
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scheduled for automatic execution at specific points in time, keeping the participants
busy at all times. During the exercise, the teams worked isolated from each other and
could not access the technical infrastructure of other teams.

To set up the system environment for each team, most of the provisioning scripts were
reused as TIMs for setting up the testbed as outlined in Sect. 4.2.1. This allows us
to compare the contents of the log files generated in the environments utilized by real
humans and those of our dataset. We select the DNS logs as a base for comparison, since
they contain queries on a level of abstraction that allows us to determine whether users
accessed the cloud server, mail server, file share, etc. Figure 4.9 visualizes the events
produced of the real users (left) and simulated users (right). Note that we only use logs
from the first day of each dataset since there is also just one day of logs from real users
available.

The plots show that there are some discrepancies between real and simulated users,
however, these are mostly linked to some conscious design decisions. First, it is apparent
that logs generated by simulated users are more spread out across the day with logs
occurring between 5:00-22:00, while real users only produced logs between 7:00-17:00.
This is clearly caused by the fact that the cyber security exercise had a clear start and
end time and participants were not freely able to carry out their tasks at any time they
desire. Accordingly, we argue that the user behavior in our datasets that simulates
employees rather than participants of an exercise adequately represents the active times
of employees with flexible working hours. Similarly, real logs show that users hardly
ever accessed the file share, which is mostly due to the fact that none of their tasks
were linked to sharing files with each other. Overall, the relative frequencies of accesses
per service from real users largely resemble those of simulated users, with mail servers
being the most actively accessed services. Considering the absolute event frequencies,
the simulation appears to correctly depict access frequencies of real users in terms of
average accesses per person and hour as well as fluctuations thereof across the day. In
particular, we computed that real users generate 306.2 DNS events per day across all
services on average with a standard deviation of 62.2 and simulated users generate 307.2
DNS events per day across all services on average with a standard deviation of 56.7.

4.3.3 Attacks
Manifestations of attack executions in log data and labels thereof are crucial for log
datasets. As discussed in Sect. 4.2.3, we designed our attack scenario to involve a wide
variety of attack types that affect several different files. In the following, we exemplarily
show how some of these attack steps manifest themselves in the generated datasets.

One of the most recognizable attack steps is the directory scan that is carried out as part
of the reconnaissance phase. This attack makes several thousands of requests in a short
amount of time to the targeted web server, of which all are recorded in the Apache access
logs. Since this log file usually contains events that relate to users requesting resources
by clicking around on web pages, the scan causes a drastic increase of the average load
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Figure 4.9: Event counts in DNS logs for different services.
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Figure 4.10: Apache access logs with attack consequences of scans.

during normal system operation. Figure 4.10 shows the number of events in the Apache
access logs per hour on the cloud, intranet, and mail servers of the santos dataset. As
visible in the plot, the accesses on the intranet server during the directory scan (the
relevant time interval is shaded red) increase from several hundred to more than 5000.

Monitoring logs contain numeric values of system measurements that are an interesting
input for anomaly detection [KAW11]. This includes measurements on the utilization
of CPU, memory, disk, file system, network communication, processes, etc. For our
datasets, we collect such monitoring logs from the file share and intranet server that
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Figure 4.11: Monitoring logs of CPU (top) and memory (bottom) showing attack
consequences of password cracking.

are both located in the intranet zone and are thus reasonable targets for monitoring in
real-world scenarios. Figure 4.11 shows several metrics derived from CPU and memory
utilization that are collected from the santos dataset. As visible in the top plot, both
system and total CPU are significantly increased as a consequence of the password
cracking attack step (the relevant time interval is shaded red). The memory metrics do
not show such a strong indication of an ongoing attack, even though a large file containing
passwords is loaded into memory during cracking. Nonetheless, these and other metrics
or combinations thereof could also contribute to the detection of certain attack steps.

Variations of the system environment, normal behavior simulation, and attack parameters,
cause that aforementioned attack consequences differ across datasets. For example, peaks
in event frequencies have different magnitudes relative to the baseline of event occurrences
that is considered normal for that dataset, and the time intervals where system metrics
are affected change in length. In addition, event sequences that are generated as a
consequence of commands executed by the attacker have different form or parameters.
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Jan 18 13:14:31 intranet-server su[28816]: Successful su for phopkins by www-data
Jan 18 13:14:31 intranet-server su[28816]: + /dev/pts/1 www-data:phopkins
Jan 18 13:14:31 intranet-server su[28816]: pam_unix(su:session): session opened for
user phopkins by (uid=33)

Jan 18 13:14:31 intranet-server systemd-logind[1011]: New session c1 of user phopkins.
Jan 18 13:14:31 intranet-server systemd: pam_unix(systemd-user:session): session opened
for user phopkins by (uid=0)

Jan 18 13:14:41 intranet-server sudo: phopkins : TTY=pts/1 ; USER=root ; COMMAND=list
Jan 18 13:14:43 intranet-server sudo: phopkins : TTY=pts/1 ; USER=root ;
COMMAND=/bin/ls -laR /root/

Feb 8 08:36:38 intranet-server su[28321]: Successful su for jward by www-data
Feb 8 08:36:38 intranet-server su[28321]: + /dev/pts/0 www-data:jward
Feb 8 08:36:38 intranet-server su[28321]: pam_unix(su:session): session opened for
user jward by (uid=33)

Feb 8 08:36:38 intranet-server systemd-logind[935]: New session c1 of user jward.
Feb 8 08:36:38 intranet-server systemd: pam_unix(systemd-user:session): session opened
for user jward by (uid=0)

Feb 8 08:36:54 intranet-server sudo: jward : TTY=pts/0 ; USER=root ; COMMAND=list
Feb 8 08:36:57 intranet-server sudo: jward : TTY=pts/0 ; USER=root ;
COMMAND=/bin/cat /etc/shadow

Figure 4.12: Different log events caused by the attacker escalating to system privileges in
the fox (top) and harrison (bottom) datasets.

Consider the log events shown in Fig. 4.12 as an example. In the fox dataset (top),
seven events are generated when the attacker logs into the compromised user account
phopkins. The same attack step appears different in the harrison dataset, as both the
affected user changes to jward, terminal /dev/pts/0 rather than /dev/pts/1 is used, and
different commands are executed. We argue that these variations are useful to achieve
higher robustness of results when evaluating IDSs, since detection accuracy should be
similar across all datasets even though the events to be detected vary.

4.3.4 Labels
As explained in Sect. 4.2.4, our labeling procedure does not just make use of attack time
windows to mark events as malicious based on their timestamps, but instead involves
query rules that enable labeling based on event attributes. We created such rules for eight
files as outlined in Table 4.6 and assign distinct labels to malicious events based on their
attack step. Note that we specifically selected files and attack steps which involve distinct
manifestations of attack consequences after manually checking all files, however, we also
point out that there are traces of attack steps in other files that are not labeled. Due to
the fact that our collection of log datasets is maintainable and the labeling procedure
is repeatable, it is possible to add labeling rules for these files in future versions of the
dataset.

We exemplarily show an overview of labeled events related to the multi-step attack of
the santos dataset in Fig. 4.13. The figure visualizes the chronological occurrence of
labeled events, where the distinct labels are depicted on the vertical axis and affected
files are marked with different symbols. As visible in the plot, some attack steps cause

76



4.3. Analysis of Log Datasets

attacker_vpn
traceroute
dns_scan

network_scan
service_scan

wpscan
dirb

webshell_upload
webshell_cmd

crack_passwords
attacker_change_user

escalated_sudo_session
escalated_command

11:50 12:00 12:10 12:20 12:30 12:40 12:50 13:00 13:10 13:20
Time

La
be

l

Log file
Apache access logs

Apache error logs

audit logs

auth logs

DNS logs

monitoring logs

VPN logs

Figure 4.13: Occurrences of events labeled as part of the attack steps.

singular events or short sequences (e.g., uploading the webshell), while others affect
groups of events that span over a longer duration (e.g., password cracking). Note that
we assign multiple labels to the same events for clarification. For example, we introduce
a label foothold that subsumes all attack steps involved in the initial intrusion, including
the VPN connection, scans, and webshell upload. This implies that our labels follow a
hierarchical order, which makes it easy to select specific types of events for evaluation
and furthermore allows to compute detection accuracies separately for different attack
steps.

Table 4.7 provides an overview of the numbers and types of rule templates and their
corresponding labels. For example, the template rule shown in Fig. 4.4 is a query rule
that assigns label dnsteal and thus contributes to the respective counter in column Query.
Note that it is possible that a single rule assigns multiple labels and that different rules
assign the same label. For this reason, the total number of rules displayed in the last
row does not represent the sum of all labels assigned per rule type, but instead the total
number of rules independent from the number of labels they assign. For example, we
designed three parent query rule templates and two of them assign labels foothold and
attacker_http, thus both counters for these labels show 2. Overall, this breakdown shows
that the majority of rules necessary for our scenario comprise query and sequence rules,
while comparatively few sub query and parent query rules are required.

Table 4.8 depicts the number of labeled log events in each file in the santos dataset,
where the top header row states the host at which the file was collected, and the bottom
header row states the specific file and its number of lines in brackets. Similar to rules,
lines can be assigned multiple labels and thus the bottom row depicts the total number
of labeled events per file. However, the total number of assigned labels is depicted across
all files in the column on the right hand side. The results indicate that the numbers of
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Table 4.7: Overview of the number of rule templates for each log data label

Label
Rule templates

Query Seq. Sub Parent

dnsteal 2
dnsteal-received 1
dnsteal-dropped 1 1
exfiltration-service 1
foothold 9 5 7 2
attacker_http 4 3 2
dirb 2 1
wpscan 2
service_scan 2 1
dns_scan 2 1
network_scan 1 1
traceroute 1
webshell_upload 1
webshell_cmd 3
escalate 4 12
crack_passwords 1
attacker_change_user 6
escalated_command 5
escalated_sudo_session 1
attacker_vpn 2 2

Total 20 18 7 3

labeled events differ greatly depending on the attack and considered file, i.e., most labels
are related to the data exfiltration that mainly affects the “firewall/dnsmasq.log” file.

Figure 4.14 depicts an Euler diagram of labeled events. The visualization makes it easy
to see the hierarchical structure of labels, e.g., the dirb attack involves HTTP traffic and
thus logs labeled dirb are a subset of logs labeled attacker_http.

We point out that due to the variations of the testbeds and attack parameters, the
resulting numbers of labeled events vary greatly. For example, the configurations of
the directory scan in the fox dataset cause that 406045 rather than only 4462 events
are generated in the access logs. On the other hand, the shaw dataset does not involve
traces of the data exfiltration attack in the DNS logs due to specific settings of DNSteal
(in particular, IP forcing is activated). In the following section, we will evaluate the
correctness of these label assignments for one particular dataset.

Expert Survey

The previous section provided an overview of the labels assigned to attack traces. We
evaluate our approach by validating the correctness of these labels. For this, we set up a
survey and ask security engineers and IT analysts to review the logs and labels. Note
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Figure 4.14: Euler diagram depicting label relationships.

that the labeled dataset used as a basis for the survey is not one of the eight published
datasets, but a preliminary dataset [LFS+21] with fewer attack cases that was only
generated to evaluate the labeling procedure and improve upon identified issues.

The used dataset involves a total of 451, 341 labels, which makes verification by humans
impossible without sampling the data. We restrict the evaluation to labels dirb, web-
shell_upload, webshell_cmd, reverse_shell, attacker_change_user, escalated_command,
dnsteal, and exfiltration-service to avoid labels of supersets so that users are presented
with the most specific label. We then randomly select events corresponding to these
labels and present them to survey participants. Since the context of occurrence is helpful
and sometimes essential for the correct interpretation of logs, we display the events with
four immediately succeeding and preceding log lines. Note that the experts also have
access to the whole dataset without labels in case that they want to review more lines
occurring close to the line in question. Furthermore, we provide them with relevant
technical details on the testbed and the launched attacks prior to filling out the survey.

Figure 4.15 shows a sample question from the survey. The participant is informed that
the dirb label was assigned to the marked Apache access log line and tasked to determine
whether this label is correct or not. Participants may select their opinion on a seven-point
scale ranging from strong disagreement to strong agreement and including “No answer”
as a neutral option in case that they are unable to make a decision. The log sample in
the figure depicts several requests made in a short time interval (all lines have the same
timestamp) and in seemingly alphabetical order, where all requested pages start with
the letters “em”. A participant with sufficient technical expertise and knowledge about
the attack could therefore conclude that these lines are likely artifacts of a dictionary
scan, and thus agree with the assigned label dirb. We decided for such a quantitative
evaluation over expert reviews of our developed rules for two reasons: First, we aim to
ensure an objective evaluation with adequate efforts. Second, we base the evaluation on
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Figure 4.15: Survey question asking the participant to decide if the marked line is
correctly labeled as part of the dirb attack step.

the generated labels rather than the rules to focus on the actual output of our approach
and recognize any incorrectly labeled events.

In addition to labels for attacker behavior, we also sampled unlabeled lines and asked
participants to determine whether these lines actually correspond to benign behavior.
Moreover, control questions ensure that participants do not just agree to all questions,
but are actually able to differentiate malicious from benign behavior. We therefore add
questions with purposefully incorrect labeled logs, i.e., events that received an attack
label from the labeling framework but are displayed with label normal, and benign events
that are presented with a randomly selected attack label from the same file. Overall, each
survey sheet consists of 54 questions: 14 log samples correctly labeled as malicious, 14
log samples correctly labeled as benign, 12 log samples incorrectly labeled as malicious,
and 14 log samples incorrectly labeled as benign. This setup allows us to identify and
possibly exclude participants who select random answers or do not have the technical
skills required to interpret the logs. However, we point out that the purpose of this
survey is not to rate the ability of participants to recognize attacks in log data, but
instead to determine whether manually assigned labels based on expert knowledge diverge
from labels generated by our automatic procedure. Thereby, the survey format aims to
discover incorrect rules rather than missing rules, since it is unlikely that logs without
labels that are actually part of an attack are selected during sampling of benign events.

We hosted the survey online and asked engineers with security expertise for anonymous
participation. In particular, we contacted cyber security experts, penetration testers, and
capture-the-flag contestants and invited them to share the link to the survey among their
peers. In the beginning of the survey, we asked participants about their roles. Then, the
same questions were displayed in random order to each participant. After one week, we
obtained responses from 16 participants, out of which 8 skipped more than 25% of all
questions and were thus excluded. The remaining 8 participants skipped less than 2% of
all questions on average, indicating their high confidence in filling out the survey. The
majority of these participants (5) identify their roles as security analysts, 2 as penetration
testers, and 1 as a cyber security research engineer. In the following, we analyze the
answers of these participants.
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Figure 4.16: Boxplots of survey answers to correctly labeled lines show that participants
mostly agreed with assigned labels.
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Figure 4.17: Boxplots of survey answers to incorrectly labeled lines show that participants
recognized consciously placed errors.

Figure 4.16 shows the answers to questions with correct labels as a boxplot, where
the labels and log files associated with the respective question are displayed on the
horizontal axis and each point represents an answer. For example, the answers to the
question from Fig. 4.15 are displayed on the left hand side of the plot with label dirb
(intranet/wp-access.log) and show that 7 out of 8 participants agree or strongly agree with
the assigned label. Note that “No answer” responses are excluded so that distributions
are not distorted.

Overall, the plot shows a clear trend towards agreement for labeled attacks, with few
exceptions. We thoroughly analyzed these outliers and ensured that the logs are in fact
correctly labeled by our approach. Since the survey is anonymous, we are unable to
determine the exact reasons for the disagreement of the participants, however, we see
several possible explanations. For example, label reverse_shell in file intranet/error.log
refers to a log event with message “Bad file descriptor”. We argue that the missing
timestamp and rather general error message made it difficult for participants to relate
the event to the attack. Moreover, label attacker_change_user in file intranet/audit.log
received mixed answers. This is likely due to two reasons: First, audit logs are designed
to be machine readable rather than human readable (e.g., timestamps are in unix epoch
format and values are sometimes encoded), which makes them more difficult to interpret
for analysts who are not sufficiently experienced with this log format. Second, in this log
sample relevant attack indicators occur in the preceding lines rather than the marked
line itself and are thus more easily overlooked by participants.
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Interestingly, logs correctly labeled as normal have slightly lower agreement scores on
average than logs corresponding to attacks. We argue that this is due to the fact that
analysts have higher confidence in their answer when they recognize indicators for specific
attacks that fit the proposed label, while the lack of such indicators is not sufficient to
deem normal logs as such with high certainty.

Figure 4.17 shows the survey results with respect to incorrectly labeled lines. Note that
the horizontal axis shows the actual labels assigned to the logs, not the randomly selected
incorrect ones. The overall trend towards disagreement indicates that participants were
able to recognize incorrect labels. Similar to the previous results from the correctly
labeled lines, there appears to be less consensus among participants when verifying labels
of normal behavior. One extreme example is the question labeled normal (intranet/wp-
error.log), where logs are incorrectly labeled as dirb and involve “no such file or directory”
warnings that are unrelated to the attacks. Since such events likely occur during scans,
it is understandable that some participants were drawn towards agreement.

4.4 Discussion
In this section we discuss whether our generated datasets fulfill the requirements for IDS
evaluation. In addition, we explain possible application scenarios for our datasets in
detail and outline their limitations.

4.4.1 Fulfillment of Requirements
We stated requirements for log dataset generation that we used as a basis for our
methodology in Sect. 2.1. Based on the generated datasets and the results of our analysis
provided in Sect. 4.3 we check whether all requirements are fulfilled. Requirement (1) is
fulfilled as our datasets address enterprise IT, which is a wide-spread and relevant use-case
for intrusion detection. We followed common guidelines for network design and selected
open-source components that are popular choices in such infrastructures [MFCMC+18].
Requirement (2) addresses simulation of normal system behavior. We argue that our state
machines and randomized user role assignments that are used for simulating employees as
outlined in Sect. 4.2.2 are sufficiently extensive to generate complex patterns. Moreover,
we show in Sect. 4.3.2 that page visit frequencies of our simulated employees largely
resemble those of real users. Similarly, our selected attack scenarios involve diverse
steps and recent exploits to fulfill requirement (3). We collect both system log data as
demanded by requirement (4) as well as network traffic as demanded by requirement (5).
Our user simulations follow daily activity cycles as visible in our analysis results presented
in Sect. 4.3.3. Since multiple days of such normal behavior is recorded, we consider
requirement (6) that addresses periodic patterns as fulfilled. Requirement (7) is fulfilled
as we generate a ground truth for events using our labeling framework as described in
Sect. 4.2.4. Beside a description of the overall scenario in the dataset repository, all
scripts and configurations of our testbeds are published together with the log data and
thus also requirement (8) on the availability of documentation is fulfilled. Requirements
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(9) and (10) are fulfilled, because we generate multiple datasets that contain repeated
executions of the same attack steps with variations. Finally, requirement (11) is fulfilled
as we publish all scripts for deploying and running the simulation as open-source code.

4.4.2 Application Scenarios

Due to the characteristics of our dataset, we foresee several different application scenarios.
In the following, we discuss (federated) intrusion detection, alert aggregation, and user
profiling as interesting research areas that benefit from our data.

Evaluation of Intrusion Detection Systems

Foremost, the purpose of our collection of datasets is to enable evaluation of host- and
network-based IDSs. We injected attacks that employ diverse techniques so that their
consequences manifesting in log files challenge a wide range of detection mechanisms
[SWL21b]. For example, we anticipate the following non-exhaustive list of detection
techniques to be applied on our dataset.

• New log artifacts. As part of many attack steps, new log events such as the
sample logs from Fig. 4.12 appear in some log files. Alternatively, normal event
types may appear with different parameters or combinations of parameter values.
Despite the fact that this detection technique is relatively simple, it is highly
powerful, because its low runtime requirements can be applied to most events or
categorical values.

• Structure of parameter values. The DNSteal attack makes use of a randomly
generated domain names for data exfiltration, which could be useful to evaluate
detectors for domain-generation algorithms [WAAG16]. The same applies for
Apache access logs, where commands sent to the webshell appear in URLs.

• Sequence mining. Log events usually occur in specific sequences that represent
inherent program flows of monitored services. Workflow mining extracts these
patterns and allows to detect unusual sequences as anomalies [DLZS17,HZHL16].
Consequences of exploits and other malicious attacker behavior often manifest in
such sequences, for example, audit events generated when the attacker executes
commands via the remote shell.

• Event frequencies. As pointed out in Sect. 4.3.3, attacks such as scans are
recognizable by high amounts of log occurrences in short time intervals. Anomaly
detection techniques therefore create event count matrices and detect time windows
with unusual high or low event frequencies with the aid of various machine learn-
ing methods, including time-series analysis [LWS+18a, LWS+18b] and principal
component analysis [HZHL16].
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• Missing events. We deliberately designed our attack scenario to include a data
exfiltration attack that is already ongoing at the beginning of the simulation and
stops after some days. We expect that detectors based on machine learning add
these malicious events to their model of normal behavior that is generated during
the training phase, and thus poison their models. Accordingly, detectors need to
raise anomalies for the stopping of event occurrences, which we consider a more
challenging detection scenario than recognizing the start of the exfiltration process.

• Statistical tests. System performance metrics and numeric features of network
traffic are suitable for statistical analyses such as testing for certain distributions. Al-
ternatively, hypothesis testing is also applicable for detecting changes of correlating
behavior of categorical variables in log data [LHW+21].

We argue that our data has a large benefit over most existing datasets for IDS evaluation,
as it contains data from multiple separate testbeds targeted by the same attack scenario.
Due to the variations in the log traces caused by changes of the system environment,
simulated normal behavior, and attack parameters, we expect that detection accuracies
vary when applying the same detectors on different datasets. However, by averaging the
detection metrics achieved on all datasets, the aggregated results have a higher robustness
as they are more representative for a general case and not fine-tuned to only a single
execution [NK19]. In addition, simulating many similar infrastructures allows to evaluate
approaches that leverage federated learning for intrusion detection [PRT+18].

Moreover, the ground truth tables of our datasets are not just binary labels that determine
whether an event is part of an attack or not, but instead precisely state the type of attack.
This means that it is also possible to evaluate attack classification accuracy in case that
the detectors are capable of determining attack types, e.g., by matching them with a list
of known and labeled meta-alerts.

Evaluation of Alert Aggregation Techniques

Intrusion detection techniques as stated in the previous section often raise large amounts
of alerts for some attack steps, where the vast majority of these alerts are duplicates and
only have little value to operators that monitor IDSs. Alert aggregation therefore attempts
to merge these alerts to reduce the workload of operators and ease the identification
of urgent alerts that require immediate actions. On top of that, advanced aggregation
techniques are capable of recognizing patterns of alert occurrences and are able to connect
attack steps to attack scenarios [LSW+19].

In order to merge alerts and attack steps, it is obviously necessary to have datasets
at hand that contain repetitions of the same or similar attacks. Unfortunately, these
datasets are rare even though they are urgently needed in research [NDP18]. We therefore
propose to forensically analyze our datasets with a desired selection of IDSs to obtain
sequences of alerts that are used for aggregation. Similar to the evaluation of IDSs, the
variations of our attack scenarios come in handy as they yield different alert patterns for

85



4. Log Data Generation & Labeling

each dataset, e.g., variable amounts of alerts for scans with varying duration or optional
alerts caused by commands that the attacker only carries out with certain probabilities.
This allows to evaluate whether alerts are indeed aggregated with the same attack types
independent of slight variations that occur in real-world environments.

Evaluation of User Profiling Approaches

User profiling is a trending research topic that aims to create a profile for each user and
then use these profiles to group users by their behavior or role. For this, algorithms based
on pattern mining read out access logs that detail all page visits by each user [PMGO18].
Note that this application scenario is not related to cyber attacks, because only the
simulation of normal user behavior is relevant. Due to the fact that our simulated
users have specific roles (e.g., WordPress editor or administrator) and visit all pages
based on transition probabilities, they clearly follow their own behavior profiles. The
main advantage over real data is that it is easy to adjust these profiles according to the
respective use case and to quantitatively compare their similarities, which is useful for
evaluations and cannot be replicated with humans.

4.4.3 Limitations

Despite all aforementioned benefits of our log dataset, we recognize some limitations.
Most important, the user simulation that generates a baseline of normal behavior for our
collection of log datasets is obviously limited by the extent of our state machines. On the
other hand, real datasets that contain traces of humans interacting with the monitored
environments always have the possibility to involve artifacts caused by deliberate or
accidental misuse of the systems that could yield incorrect alerts by IDSs. Despite our
efforts to generate complex user behavior, we therefore cannot ensure that false positive
rates achieved on our datasets are representative for real-world systems. Nonetheless,
we are convinced that our synthetic datasets have significant advantages over real ones,
as they can be freely published without the need to anonymize artifacts due to privacy
concerns and may be arbitrarily recreated in modified use-cases if necessary.

We also point out that we aimed to generate the log data in the most realistic way
possible, meaning that we did not configure the logging frameworks to collect data on the
highest level of granularity, but instead used standard or default configurations wherever
applicable. In case that logging levels need to be adapted, it is always possible to replay
the attack scenarios on our open-source testbeds.

As part of varying the parameters of our testbed when generating TSMs from TIMs, we
also decided to leave configurations of logging services unchanged in order to ensure that
our labeling rules do not accidentally leave some events unlabeled. We leave the task of
extending our labeling rules for this kind of variations for future work.
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4.5 Summary
In this chapter we present a collection of eight synthetic log datasets for evaluation
of intrusion detection systems. We collect our datasets from testbeds generated by a
model-driven methodology for testbed setup and labeling. This enables to repeat the
data collection procedure arbitrary many times while at the same time varying several
parameters of the simulation with low manual effort. In addition, it is simple to scale the
network and extend it with additional components or services. Our datasets are openly
accessible and maintainable as all code required to deploy testbeds, run simulations,
and assign labels to log events is available open-source. Our datasets thus solve several
problems that are prevalent in existing datasets, including control over the simulation
parameters, presence of repeated attack executions in similar environments, generation of
ground truth tables, complexity of the network, preprocessing of logs to protect sensitive
information, and more.

Our collected log data stems from many different sources and thus involves diverse formats.
This is often problematic, as IDSs and other analysis techniques for log data usually
require structured data. While it is essential for realistic analysis to provide datasets with
logs in raw and unprocessed format, it is just as important to aid analysts by providing
suitable parsers for the data. Manual generation of such parsers is time-consuming,
especially when log events have many parameters (e.g., event logs in JSON format) or
involve a large number of different events (e.g., syslog). The following chapter therefore
surveys log clustering algorithms in order to ease or even automatize parser generation.
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CHAPTER 5
Log Clustering

The previous sections introduced log datasets collected from simulation testbeds. Analysis
of these datasets is generally difficult as several of the collected log files contain large
amounts of events. In practice, organizations typically face up to 4 million log lines per
day [XHF+09] and peaks of 22,000 events per second [AR19]. Even more, log datasets
comprise logs from various sources, meaning that there are not only heterogeneous events
within a single log file, but there are also entirely different event formats across log
sources. One method to deal with this problem is to group log lines into clusters of
related events, which is capable of reducing large amounts of data into coherent chunks.
This facilitates manual analysis as well as generation of log parsers, i.e., rules that allow
to classify events, derive their syntax, and extract parameters. This chapter therefore
provides a survey on log clustering with the purpose of simple anomaly detection and
identification of suitable algorithms for log parser generation. Major parts of this chapter
have been published in [LSWR20].
Several clustering algorithms that were particularly designed for textual log data have
been proposed in the past. Since most of the algorithms were mainly developed for
certain application-specific scenarios at hand, their approaches frequently differ in their
overall goals and assumptions on the input data. We were specifically interested to
discover the different strategies the authors used to pursue the objectives induced by
their use-cases. However, to the best of our knowledge there is no exhaustive survey
on state-of-the-art log data clustering approaches that focuses on applications in cyber
security. Despite also concerned with certain types of log files, existing works are either
outdated or focus on network traffic classification [E+13], web clustering [CORW09],
and user profiling [VPD04,FL05]. Other surveys address only log parsers rather than
clustering [ZHL+19] or do not focus on security [HHC+21].
In this chapter we therefore create a survey of current and established strategies for log
clustering found in scientific literature. This survey is oriented towards the identification
of overall trends and highlights the contrasts between existing approaches. This supports
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analysts in selecting methods that fit the requirements imposed by their systems. In
addition, we aim at the generation of a work of reference that is helpful for all authors
planning to publish in this field. Overall, the research questions we address in this chapter
are as follows:

• What are essential properties of existing log clustering algorithms?

• How are these algorithms applied in cyber security?

• On what kind of data do these algorithms operate?

• How were these algorithms evaluated?

The remainder of the chapter is structured as follows. Section 5.1 outlines the problem
of clustering log data and discusses how log analysis is used in the cyber security domain.
In Sect. 5.2, we explain our method of carrying out the literature study. The results
of the survey are stated and discussed in Sect. 5.3. Finally, Sect. 5.4 summarizes the
chapter.

5.1 Survey Background
Log data exhibits certain characteristics that have to be taken into account when designing
a clustering algorithm. In the following, we therefore discuss important properties of log
data, outline the reasons why log data is suitable to be clustered and look into application
scenarios relevant to cyber security.

5.1.1 The Nature of Log Data
Despite the fact that log data exists in various forms, some general assumptions on
their compositions can be made. First, a log file typically consists of a set of single-
or multi-line strings listed in inherent chronological order. This chronological order is
usually underpinned by a time stamp attached to the log messages1. The messages may
be highly structured (e.g., a list of comma-separated values), partially structured (e.g.,
attribute-value pairs), unstructured (e.g., free text of arbitrary length) or a combination
thereof. In addition, log messages sometimes include process IDs (PIDs) that relate to
the task (also referred to as thread or case) that generated them. If this is the case, it is
simple to extract log traces, i.e., sequences of related log lines, and perform workflow
and process mining [NMA+16]. Other artifacts sometimes included in log messages are
line numbers, an indicator for the level or severity of the message (TRACE, DEBUG,

1The order and time stamps of messages do not necessarily have to correctly represent the actual
generation of log lines due to technological restrictions appearing during log collection, e.g., delays caused
by buffering or issues with time synchronization. A thorough investigation of any adverse consequences
evoked by such effects is considered out of scope for this thesis.
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INFO, WARN, ERROR, FATAL, ALL, or OFF), or a static identifier referencing the
statement printing the message [BLL+18].

Arguably, log files are fairly different from documents written in natural language. This
is not necessarily the case because the log messages themselves are different from natural
language (since they are supposed to be human-readable), but rather because of two
reasons: (i) Similar messages repeat over and over. This is caused by the fact that events
are recurring since procedures are usually executed in loops and the majority of the log
lines are generated by a limited set of print statements, i.e., predefined functions in the
code that write formatted strings to some output. (ii) The appearances of some messages
are highly correlated. This is due to the fact that programs usually follow certain control
flows and components that generate log lines are linked with each other. For example,
two consecutive print statements will always produce perfectly correlated log messages
during normal system behavior since the execution of the first statement will always be
followed by the execution of the second statement. In practice, it is difficult to derive
such correlations since they often depend on external events and are the result of states
and conditions.

These properties allow system logs to be clustered in two different ways. First, clustering
individual log lines by the similarity of their messages yields an overview of all events
that occur in the system. Second, clustering sequences of log messages gives insight into
the underlying program logic and uncovers otherwise hidden dependencies of events and
components.

5.1.2 Static Clustering
We consider clustering individual log lines as a static procedure, because the order and
dependencies between lines is usually neglected. After such static line-based clustering,
the resulting set of clusters should ideally resemble the set of all log-generating print
statements, where each log line should be allocated to the cluster representing the
statement it was generated by. Examining these statements in more detail shows that
they usually comprise static strings that are identical in all messages produced by that
statement and variable parts that are dynamically replaced at run time. Thereby, variable
parts are frequently numeric values, identifiers (e.g., IDs, names, or IP addresses), or
categorical attributes. Note that the generation of logs using mostly fixed statements is
responsible for a skewed word distribution in log files, where few words from the static
parts appear very frequently while the majority of words appears very infrequently or
even just once [Vaa03,NJCY14].

In the following, we demonstrate issues in clustering with the sample log lines shown in Fig.
5.1. In the example, log messages describe users logging in and out. Given this short log
file, a human would most probably assume that the two statements print(“User ” +
name + “ logs in with status ” + status) and print(“User ” + name
+ “ logs out with status ” + status) generated the lines, and thus allocate
lines {1, 2, 4} to the former and lines {3, 5} to the latter cluster. From this clustering,
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1 :: User Alice logs in with status 1
2 :: User Bob logs in with status 1
3 :: User Alice logs out with status 1
4 :: User Charlie logs in with status -1
5 :: User Bob logs out with status 1

Figure 5.1: Sample log messages for static analysis.

the templates (also referred to as signatures, patterns, or events) “User * logs in with
status *” and “User * logs out with status *” can be derived, where the Kleene star *
denotes a wildcard accepting any word at that position. Beside the high resemblance
of the original statements, the wildcards appear to be reasonably placed since all other
users logging in or out with any status will be correctly allocated, e.g., “User Dave logs
in with status 0”.

Other than humans, algorithms lack semantic understanding of the log messages and
might just as well group the lines according to the user name, i.e., create clusters {1, 3},
{2, 5}, and {4}, or according to a state variable, i.e., create clusters {1, 2, 3, 5} and {4}.
In the latter case, the most specific templates corresponding to the clusters are “User *
logs * with status 1” and “User Charlie logs in with status -1”. In most scenarios, the
quality of these templates is considered to be poor, since the second wildcard of the first
template is an over-generalization of a categorical attribute and the second template is
overly specific. Accordingly, newly arriving log lines would be likely to form outliers, i.e.,
not match any cluster template.

With this example in mind we want to point out that there always exist a multitude of
different possible valid clusterings and judging the quality of the clusters is eventually
a subjective decision that is largely application-specific. For example, investigations
regarding user-behavior may require that all log lines generated by a specific user end
up in the same cluster. In any way, appropriate cluster quality is highly important
since clusters are often the basis for further analyses that operate on top of the grouped
data and extracted templates. The next section explores dynamic clustering as such an
application that utilizes static cluster allocations.

5.1.3 Dynamic Clustering
As pointed out earlier, log files are suited for dynamic clustering, i.e., allocation of
sequences of log line appearances to patterns. However, raw log lines are usually not
suited for such sequential pattern recognition, due to the fact that each log line is a
uniquely occurring instance describing a part of the system state at a particular point in
time. Since pattern recognition relies on repeating behavior, the log lines first have to be
allocated to classes that refer to their originating event. This task is enabled by static
clustering as outlined in the previous section.

In the following, we consider the sample log file shown in Fig. 5.2 that contains three
users logging into the system, performing some action, and logging out. We assume that
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1 :: User Alice logs in with status 1 :: A
2 :: User Alice performs action open :: B
3 :: User Alice logs out with status 1 :: C
4 :: User Bob logs in with status 1 :: A
5 :: User Bob performs action write :: B
6 :: User Charlie logs in with status 1 :: A
7 :: User Bob logs out with status 1 :: C
8 :: User Charlie performs action exec :: B
9 :: User Charlie logs out with status 1 :: C

Figure 5.2: Sample log messages and their event allocations for dynamic analysis.
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Figure 5.3: Sample log events visualized on a timeline.

these steps are always carried out in this sequence, i.e., it is not possible to perform an
action or log out without first being logged in.

We assume that the sample log file has been analyzed by a static clustering algorithm
to generate the three templates A=”User * logs in with status *“, B=”User * performs
action *“, and C=”User * logs out with status *“. It is then possible to assign each
line one of the events as indicated on the right side of the figure. In such a setting, the
result of a dynamic clustering algorithm could be the extracted sequence A, B, C since
this pattern describes normal user behavior. However, the events in lines 6 and 7 are
switched, thus interrupting the pattern. Figure 5.3 shows that the reason for this issue is
caused by interleaved user behavior, i.e., user Charlie logs in before user Bob logs out.

Since many applications are running in parallel in real systems, interleaved processes are
commonly occurring in log files and thus complicate the pattern extraction process. As
mentioned in Sect. 5.1.1, some log files include process IDs that allow to analyze the
corresponding logs isolated from interrupting processes and thus resolve this issue. In the
simple example from Fig. 5.2, the username could have been used for this purpose. In
addition to interleaved event sequences, real systems obviously involve much more complex
patterns, including arbitrarily repeating, optional, alternative, or nested subpatterns.

While sequence mining is common, it is not the only dynamic clustering technique. In
particular, similar groups of log lines can be formed by aggregating them in time-windows
and analyzing their frequencies, co-occurrences, or correlations. For example, clustering
could aim at generating groups of log lines that frequently occur together. Note that in
this setting, the ordering of events is not relevant, but only their occurrence within a
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certain time interval. The next section outlines several applications of static and dynamic
clustering for system security.

5.1.4 Applications in the Security Domain
Due to the fact that log files contain permanent documentation of almost all events that
take place in a system, they are frequently used by analysts to investigate unexpected or
faulty system behavior in order to find its origin. In some cases, the strange behavior is
caused by system intrusions, cyber attacks, malware, or any other adversarial processes.
Since such attacks often lead to high costs for affected organizations, timely detection
and clarification of consequences is of particular importance.

Independent from whether anomalous log manifestations are caused by randomly occurring
failures or targeted adversarial activity, their detection is of great help for administrators
and may prevent or reduce costs. Clustering is able to largely reduce the effort required
to manually analyze log files, for example, by providing summaries of log file contents,
and even provides functionalities to automatize detection of anomalous behavior. In
the following, we outline some of the most relevant types of anomalies detectable or
supported by clustering.

• Outliers are single log lines that do not match any of the existing templates or
are dissimilar to all identified clusters that are known to represent normal system
behavior. Outliers are often new events that have not occurred during clustering
or contain highly dissimilar parameters in the log messages. An example could
be an error log message in a log file that usually only contains informational and
debugging messages.

• Frequency anomalies are log events that appear unexpectedly frequent or rare
during a given time interval. This may include cases where components stop logging,
or detection of attacks that involve the execution of many events, e.g., vulnerability
scans.

• Correlation anomalies are log events that are expected to occur in pairs or
groups but fail to do so. This may include simple co-occurrence anomalies, i.e.,
two or more events that are expected to occur together, and implication anomalies,
where one or more events imply that some other event or events have to occur,
but not the other way round. For example, a web server that logs an incoming
connection should imply that corresponding log lines on the firewall have occurred
earlier.

• Inter-arrival time anomalies are caused by deviating time intervals between
occurrences of log events. They are related to correlation anomalies and may
provide additional detection capabilities, e.g., an implied event is expected to occur
within a certain time window.
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• Sequence anomalies are caused by missing or additional log events as well as
deviating orders in sequences of log events that are expected to occur in certain
patterns.

Outliers are based on single log line occurrences and are thus the only type of anomalies
detectable by static cluster algorithms. All other types of anomalies require dynamic
clustering techniques. In addition, anomalies do not necessarily have to be detected using
strict rules that report every single violation. For example, event correlations that are
expected to occur only in 90% of all cases may be analyzed with appropriate statistical
tests.

5.2 Survey Method
In this section we describe our approach to gather and analyze the existing literature.

5.2.1 Set of Criteria
In order to carry out the literature survey on log clustering approaches in a structured
way, we initially created a set of evaluation criteria that addresses relevant aspects of the
research questions in more detail. The first block of questions in the set of criteria covers
purpose, applicability, and usability of the proposed solutions:

P-1 What is the purpose of the introduced approach?

P-2 Does the method have a broad applicability or are there constraints, such as
requirements for specific logging standards?

P-3 Is the algorithm a commercial product or has been deployed in industry?

P-4 Is the code of the algorithm publicly accessible?

The next group of questions focuses on the properties of the introduced clustering
algorithms:

C-1a What type of technique is applied for static clustering?

C-1b What type of technique is applied for dynamic clustering?

C-2 Is the algorithm fully unsupervised as opposed to algorithms requiring detailed
knowledge about the log structures or labeled log data for training?

C-3 Is the clustering character-based?

C-4 Is the clustering word- or token-based?

C-5 Are log signatures or templates generated?
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C-6 Does the clustering algorithm take dynamic features of log lines (e.g., sequences)
into account?

C-7 Does the algorithm generate new clusters online, i.e., in a streaming manner, as
opposed to approaches that allocate log lines to a fixed set of clusters generated in
a training phase?

C-8 Is the clustering adaptive to system changes, i.e., are existing clusters adjusted over
time rather than static constructs?

C-9 Is the algorithm designed for fast data processing?

C-10 Is the algorithm designed for parallel execution?

C-11 Is the algorithm deterministic?

Since we were aware that a large number of approaches aim at anomaly detection, we
dedicated the following set of questions to this topic:

AD-1 Is the approach designed for the detection of outliers, i.e., static anomalies?

AD-2 Is the approach designed for the detection of dynamic anomalies?

AD-3 Is the approach designed for the detection of cyber attacks?

Finally, we defined questions that assess whether and how the approaches were evaluated
in the respective articles:

E-1 Did the evaluation include quantitative measures, e.g., accuracy or true positive
rates?

E-2 Did the evaluation involve qualitative reviews, e.g., expert reviews or discussions of
cluster quality?

E-3 Was the algorithm evaluated regarding its time complexity, i.e., running time and
scalability?

E-4 Was at least one existing algorithm used as a benchmark for validating the introduced
approach?

E-5 Was real log data used as opposed to synthetically generated log data?

E-6 Is the log data used for evaluation publicly available?

The set of evaluation criteria was then completed for every relevant approach. The
process of retrieving these articles is outlined in the following section.
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5.2.2 Literature Search

The search for relevant literature was carried out in November 2019. For this, three
research databases were used: (i) ACM Digital Library [ACM], a digital library containing
more than 500,000 full-text articles on computing and information technology, (ii) IEEE
Xplore Digital Library [IEE], a platform that enables the discovery of scientific articles
within more than 4.5 million documents published in the fields computer science, electrical
engineering and electronics, and (iii) Google Scholar [Goo], a web search engine for all
kinds of academic literature.

The keywords used for searching on these platforms were “log clustering” (29,383 results
on ACM, 2,210 on IEEE, 3,050,000 on Google), “log event mining” (54,833 results on
ACM, 621 on IEEE, 1,240,000 on Google), “log data anomaly detection” (207,821 results
on ACM, 377 on IEEE, 359,000 on Google). We did not make any restrictions regarding
the date of publication. The titles and abstracts of the first 300 articles retrieved for
each query were examined and potentially relevant documents were stored for thorough
inspection. It should be noted that a rather large amount of false positives were retrieved
and immediately dismissed. The reason why such unrelated articles appeared is that
the keywords in the queries were sometimes misinterpreted by the engines, e.g., results
related to “logarithm” showed up when searching for “log”. After removing duplicates,
this search yielded 207 potentially relevant articles.

During closer inspection, several of these articles were discarded. The majority of
these dismissed approaches focused on clustering numeric features extracted from highly
structured network traffic logs rather than clustering the raw string messages themselves.
This is a broad field of research and there exist numerous papers that apply well-
known machine learning techniques for analyzing, grouping, and classifying the parsed
data [PES01]. Many other approaches are directed towards process mining from event
logs [VdAWM04], which is an extensive topic considered out of scope for our survey
since it relies on log traces rather than simple log data. Furthermore, we discarded
papers that introduce approaches for analysis and information extraction from log data,
but are not fitted for clustering log lines, such as terminology extraction [SBL+09] and
compression [BS06]. We also dismissed approaches for clustering search engine query
logs [BB00] since they are designed to process keywords written by users rather than log
lines generated by programs as outlined in Section 5.1.1. Articles on protocol reverse
engineering are discarded, because they are not primarily designed for processing system
log lines and surveys on this topic already exist, e.g., [NSC16]. Finally, we excluded
articles that do not propose a new clustering approach, but apply existing algorithms
without modifications on different data or perform comparisons (e.g., [MZHM+09b])
as well as surveys. This also includes articles that propose algorithms for subsequent
analyses such as anomaly detection, alert aggregation, or process mining, that operate
on already clustered log data, but do not apply any log clustering techniques themselves.

After this stage, 50 articles remained. A snowball search was conducted with these
articles, i.e., articles referenced in the relevant papers as well as articles referencing these
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papers were individually retrieved. These articles were examined analogously and added
if they were considered relevant. Eventually, we obtained 59 articles and 2 tools that
were analyzed with respect to the aforementioned characteristics stated in the set of
evaluation criteria. We used these criteria to group articles with respect to different
features and discover interesting patterns. The following section discusses the findings.

5.3 Survey Results
We arranged the articles into groups according to the properties ascertained in the set of
evaluation criteria. We thereby derived common features that could be found in several
articles as well as interesting concepts and ideas that stood out from the overall strategies.
In the following, we discuss these insights for every group of questions.

5.3.1 Purpose and Applicability (P)
Four main categories of overall design goals (P-1) were identified during the review
process:

• Overview & Filtering. Log data is usually high-volume data that is tedious to
search and analyze manually. Therefore, it is reasonable to reduce the total
number of log messages presented to system administrators by removing log events
that are frequently repeating without contributing new or any other valuable
information. Clustering is able to provide such compact representations of complex
log files by filtering out most logs that belong to certain (large) clusters, thus
only leaving logs that occur rarely or do not fit into any clusters to be shown to
administrators [JSC+09,RJW11].

• Parsing & Signature Extraction. These approaches aim at the automatic generation
of log event templates (cf. Sect. 5.1.1) for parsing log lines. Parsers enable
the allocation of log lines to particular system events, i.e., log line classification,
and the structured extraction of parameters. These are important features for
subsequent analyses, such as clustering of event sequences or anomaly detection
[HZZL17,WLSK19].

• Outlier Detection. System failures, cyber attacks, or other adverse system behavior
generates log lines that differ from log lines representing normal behavior regarding
their syntax or parameter values. It is therefore reasonable to disclose single log
lines that do not fit into the overall picture of the log file. During clustering, these
log lines are identified as lines that have a high dissimilarity to all existing clusters
or do not match any signatures [JSH15,WSL+17].

• Sequences & Dynamic Anomaly Detection. Not all adverse system behavior mani-
fests itself as individual anomalous log lines, but rather as dynamic or sequence
anomalies (cf. Sect. 5.1.4). Thus, approaches that group sequences of log lines
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or disclose temporal patterns such as frequent co-occurrence or correlations are
required. Dynamic clustering usually relies on line-based event classification as an
initial step and often has to deal with interleaving processes that cause interrupted
sequences [JYC+17,ABCM09].

Table 5.1 shows the determined classes for each reviewed approach. Note that this
classification is not mutually exclusive, i.e., an approach may pursue multiple goals at
the same time. For example, [HZZL17] introduce an approach for the extraction of log
signatures and then perform anomaly detection on the retrieved events.

As expected, many approaches aim at broad applicability and do not make any specific
assumptions on the input data (P-2). Although some authors particularly design and
evaluate their approaches in the context of a specific type of log protocol (e.g., router
syslogs [QGP+10]), their proposed algorithms are also suitable for any other logging
standard. Only few approaches require artifacts specific to some protocol (e.g., Mod-
bus [WLKH18]) for similarity computation or prevent general applicability by relying
on labeled data [RJW11] or category labels (e.g., start, stop, dependency, create, con-
nection, report, request, configuration, and other [LLMP05]) for model training, log
level information [DC15] for an improved log similarity computation during clustering,
or process IDs for linking events to sequences [LZL+16]. Other approaches impose
constraints such as the requirement of manually defined parsers [TL10] or access to
binary/source code of the log generating system in order to parse logs using the respective
print statements [ZZH17,XHF+09,SAvD19].

We mentioned in Section 5.2 that we included two approaches from non-academic lit-
erature: Splunk [Car12] and Sequence [Zhe14]. Splunk is a commercial product (P-3)
that offers features that exceed log clustering and is deployed in numerous organizations.
However, also the authors of scientific papers share success stories about real-world ap-
plication in their works, e.g., Lin et al. [LZL+16] describe feedback and results following
the implementation of their approach in a large-scale environment and Li et al. [LJZ+17]
evaluate their approach within a case-study carried out in cooperation with an inter-
national company. We appreciate information about such deployments in real-world
scenarios, because they validate that the algorithms are meeting the requirements for
practical application. Finally, we could only find the original source code of [Zhe14,Vaa03,
Vaa04, VP15, MZHM09a, ZX16, TMP17, Shi16, MPB+18, HZZL17, HZH+17, XHF+09]
online (P-4). In addition, several reimplementations of algorithms provided by other
authors exist. We encourage authors to make their code available open-source in order
to enable reproducibility.

5.3.2 Clustering Techniques (C)

In the following, we explore different types of applied clustering techniques with respect
to their purpose, their applicability in live systems, and non-functional requirements.
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Table 5.1: Overview of main goals of reviewed approaches (categorizations are not
mutually exclusive)

Purpose of approach Approaches
Overview & Filtering Aharon et al. [ABCM09], Aussel et al. [APC18], Christensen

and Li [CL13], Jiang et al. [JHHF08], Joshi et al. [JBG14],
Li et al. [LLMP05,LJZ+17], Reidemeister et al. [RJW11],
Gainaru et al. [GCTMK11], Gurumdimma et al. [GJL+15],
Hamooni et al. [HDX+16], Jain et al. [JSC+09], Jayathilake
et al. [JWH17], Leichtnam et al. [LTPM17], Makanju et al.
[MZHM09a], Nandi et al. [NMA+16], Ning et al. [NJCY14],
Qiu et al. [QGP+10], Ren [RCY+18], Salfner and Tschirpke
[ST08], Schipper et al. [SAvD19], Splunk [Car12], Taerat et
al. [TBG+11], Xu et al. [XHF+09], Zou et al. [ZQJ16]

Parsing & Signature
Extraction

Agrawal et al. [AKG19], Chuah et al. [CKH+10], Du and
Li [DL16], Fu et al. [FLWL09], Gainaru et al. [GCTMK11],
Hamooni et al. [HDX+16], He et al. [HZZL17,HZH+17], Jay-
athilake et al. [JWH17], Kimura et al. [KIM+14], Kobayashi
et al. [KFE14], Li et al. [LJZ+17], Li et al. [LDF+18],
Makanju et al. [MZHM09a], Messaoudi et al. [MPB+18],
Menkovski and Petkovic [MP17], Mizutani [Miz13], Na-
gappan and Vouk [NV10], Nandi et al. [NMA+16], Ning
et al. [NJCY14], Qiu et al. [QGP+10], Sequence [Zhe14],
Shima [Shi16], Taerat et al. [TBG+11], Tang and Li [TL10],
Tang et al. [TLP11], Thaler et al. [TMP17], Tovarňák et
al. [TP19], Vaarandi [Vaa03, Vaa04], Vaarandi and Pihel-
gas [VP15], Wurzenberger et al. [WLSK19], Zhang et al.
[ZZH17], Zhao and Xiao [ZX16], Zulkernine et al. [ZMP+13]

Outlier Detection Juvonen et al. [JSH15], Leichtnam et al. [LTPM17], Splunk
[Car12], Wurzenberger et al. [WSFK17,WSL+17]

Sequences & Dynamic
Anomaly Detection

Aharon et al. [ABCM09], Chuah et al. [CKH+10], Du et
al. [DLZS17], Du and Cao [DC15], Fu et al. [FLWL09], Gu-
rumdimma et al. [GJL+15], He et al. [HZZL17,HZH+17], Jia
et al. [JYC+17], Kimura et al. [KIM+14], Li et al. [LDF+18],
Lin et al. [LZL+16], Nandi et al. [NMA+16], Salfner and
Tschirpke [ST08], Splunk [Car12], Stearley [Ste04], Vaarandi
[Vaa04], Wang et al. [WLKH18], Xu et al. [XHF+09], Zhang
et al. [ZZH17], Zhang et al. [ZXL+19], Zou et al. [ZQJ16]
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Types of Static Clustering Techniques

One of the most interesting findings of this research study turned out to be the large
diversity of proposed clustering techniques (C-1a, C-1b). Considering static clustering
approaches, a majority of the approaches employ a distance metric that determines the
similarity or dissimilarity of two or more strings. Based on the resulting scores, similar
log lines are placed in the same clusters, while dissimilar lines end up in different clusters.
The calculation of the distance metric may thereby be character-based, token-based or a
combination of both strategies (C-3, C-4). While token-based approaches assume that
the log lines can reasonably be split by a set of predefined delimiters (most frequently,
only white space is used as a delimiter), character-based approaches are typically more
flexible, but also computationally more expensive. For example, Juvonen et al. [JSH15]
and Christensen and Li [CL13] compute the amount of common n-grams between two
lines in order to determine their similarity. Du and Cao [DC15], Ren et al. [RCY+18],
Salfner and Tschirpke [ST08], and Wurzenberger et al. [WSFK17, WSL+17] use the
Levenshtein metric to compute the similarity between two lines by counting the character
insertions, deletions and replacements needed to transform one string into the other.
Taerat et al. [TBG+11], Gurumdimma et al. [GJL+15], Jain et al. [JSC+09], Zou et
al. [ZQJ16], and Fu et al. [FLWL09] employ a similar metric based on the words of a
line rather than its characters. Another simple token-based approach for computing the
similarity between two log lines is by summing up the amount of matching words at each
position. In mathematical terms, this similarity between log lines a and b with their
respective tokens a1, a2, ..., an and b1, b2, ..., bm is computed by �min(n,m)

i=1 I(ai, bi), where
I(ai, bi) is 1 if ai is equal to bi and 0 otherwise. This metric is frequently normalized
[NJCY14,ABCM09,HZZL17,LDF+18,Miz13] and weighted [TL10,HDX+16]. Joshi et
al. [JBG14] use bit patterns of tokens to achieve a similar result. Li et al. [LJZ+17]
compute the similarity between log lines after transforming them into a tree-like structure.
Du and Cao [DC15] also consider the log level (e.g., INFO, WARN, ERROR) relevant for
clustering and point out that log lines generated on a different level should not be grouped
together. Finally, token vectors that emphasize the occurrence counts of words rather
than their positions (i.e., the well-known bag of words model) may be used to compute
the cosine similarity [LZL+16,Shi16,Car12] or apply k-means clustering [APC18].

Not all approaches employ distance or similarity metrics. SLCT [Vaa03] is one of the
earliest published approaches for log clustering. The idea behind the concept of SLCT is
that frequent tokens (i.e., tokens that occur more often than a user-defined threshold)
represent fixed elements of log templates, while infrequent tokens represent variables.
Despite being highly efficient, one of the downsides of SLCT is that clustering requires
three passes over the data: The first pass over all log lines retrieves the frequent tokens,
the second pass generates cluster templates by identifying these frequent tokens in each
line and filling the gaps with wildcards, and the third pass reports cluster templates that
represent sufficiently many log lines. Allocating the log lines to clusters is accomplished
during the second pass, where each log line is assigned to the an already existing or newly
generated template.
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Table 5.2: Assessed properties regarding clustering techniques assigned to each approach

Approach C-1a C-1b C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10
[AKG19] 5, 11 � � � � � � �
[ABCM09] 1 1 � � � � � �
[APC18] 2, 11 � � ~
[CL13] 1 � � � � ~ �
[CKH+10] 11 2, 9 ~ � � � � ~
[DL16] 1, 5 � � � � � �
[DLZS17] [DL16] 2, 3, 9 � � � � ~ ~
[DC15] 1, 11 1, 2 � � �
[FLWL09] 1, 11 9 � � � � � �
[GCTMK11] 4 � � � � � ~
[GJL+15] 1 1, 2, 9 � � �
[HDX+16] 1 � � � � � � �
[HZH+17] 4, 5 � � � � �
[HZZL17] 1 � � � � � �
[JSC+09] 1 1, 2 � � � � � ~
[JWH17] 5 � � � �
[JYC+17] [Vaa03] 2, 9 � � � � � � �
[JHHF08] 11 � � � �
[JBG14] 1 � � � � � �
[JSH15] 1 � � �
[KIM+14] 9 9 � � � � ~
[KFE14] 3 � �
[LTPM17] 10 �
[LLMP05] 9 � � ~
[LJZ+17] 1 9 � � � � ~
[LDF+18] 1, 11 3, 9 � � � � � � ~
[LZL+16] [FLWL09] 1 � � �
[MZHM09a] 4 � � � �
[MP17] 1, 3 � � � ~
[MPB+18] 7 � � � ~
[Miz13] 1 � � � � � � �
[NV10] 2 � � � �
[NMA+16] 1, 2, 5 9 � � � � � � � �
[NJCY14] 1 � � � � � �
[QGP+10] 2, 11 9 � � � � ~
[RJW11] 1, 2, 5 � � � �
[RCY+18] 1, 3, 11 � � ~
[ST08] 1 9 � � � � ~
[SAvD19] 6 � � � � ~

Continued on next page
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Table 5.2 – continued from previous page
Approach C-1a C-1b C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10
[Zhe14] 11 � ~ � � � � �
[Shi16] 1 � � � � � ~
[Car12] 1 � � � �
[Ste04] 2, [Vaa03] 9 � � � �
[TBG+11] 1 � � � � ~
[TL10] 1 ~ � � � �
[TLP11] 5 � � � �
[TMP17] 3 � � ~
[TP19] 2, [NV10] � � � � �
[Vaa03] 2 � � � �
[Vaa04] [Vaa03] 8 � � � � �
[VP15] 2 � � � �
[WLKH18] 1 5 � � � � ~
[WSFK17] 1 � � �
[WSL+17] 1 � � � �
[WLSK19] 2 � � � ~
[XHF+09] 6 2, 9 � � � � � �
[ZZH17] 6 6 � � � � �
[ZXL+19] 2, 11, [HZZL17] 3 � � � � � � ~
[ZX16] 2, 11 � � �
[ZQJ16] 1 9 ~ � � � � ~ ~
[ZMP+13] 2 9 � � � � � � �

Density-based clustering appears to be a natural strategy for generating trees [QGP+10,
ZX16, WLSK19, TP19], i.e., data structures that represent the syntax of log data as
sequences of nodes that branch into subsequences to describe different log events. Thereby,
nodes represent fixed or variable tokens and may even differentiate between data types,
e.g., numeric values or IP addresses. The reason why all of the reviewed approaches
leveraging trees use density-based techniques is likely attributable to the way trees are
built: Log messages are processed token-wise from their beginning to their end; identical
tokens in all lines are frequent tokens that result in fixed nodes, tokens with highly
diverse values are infrequent and result in variable nodes, and cases in between result in
branches of the tree.

Types of Dynamic Clustering Techniques

Several approaches pursue the clustering of log sequences rather than only grouping
single log lines (C-6). Thereby, process IDs that uniquely identify related log lines
may be exploited to retrieve the sequences [LZL+16]. For example, Fu et al. [FLWL09]
use these IDs to build a finite state automaton describing the execution behavior of
the monitored system. However, logs that do not contain such process IDs require
mechanisms for detecting relations between identified log events. Du and Cao [DC15] and
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Figure 5.4: Relative frequencies of static clustering techniques used in the reviewed
articles.

Gurumdimma et al. [GJL+15] first cluster similar log lines, then generate sequences by
grouping events occurring in time windows and finally cluster the identified sequences in
order to derive behavior patterns. Similarly, Salfner and Tschirpke [ST08] group generated
events that occur within a predefined inter-arrival time and cluster the sequences with a
hidden semi-Markov Model. Also Qiu et al. [QGP+10] measure the inter-arrival time of
log lines for clustering periodically occurring events and additionally group the events
by derived correlation rules. Kimura et al. [KIM+14] derive event co-occurrences by
factorizing a 3-dimensional tensor consisting of the previously identified templates, hosts
and time windows. DeepLog [DLZS17] extends Spell [DL16] by computing probabilities
for transitions between the identified log events in order to construct a workflow model.
Jain et al. [JSC+09] group time-series derived from cluster appearances in a hierarchical
fashion. LogSed [JYC+17] and OASIS [NMA+16] analyze frequent successors and
predecessors of lines for mining a control flow graph. After first categorizing log messages
using probabilistic models [LLMP05] and distance-based strategies [LJZ+17], the authors
determine the temporal relationships between log events by learning the distributions of
their lag intervals, i.e., time periods between events. Other than the previous approaches,
Aharon et al. [ABCM09] assume that the order of log lines is meaningless and their
algorithm PARIS thus identifies log events that frequently occur together within certain
time windows regardless of their order.

We summarize the results in Table 5.2. For columns C-1a and C-1b, we coded distance-
based strategies as (1) and density-based strategies as (2). Note that for static clustering,
distances are usually measured between log lines and densities refer to token frequencies,
while for dynamic clustering techniques, distances are computed between time-series
of event occurrences and densities refer to event frequency counts. Other identified
strategies used for static and dynamic clustering are (3) Neural Networks, which are
useful for signature extraction [KFE14,MP17,TMP17] and event classification [RCY+18]
by Natural Language Processing (NLP) as well as for detecting sequences in the form of
Long Short-Term Memory (LSTM) recurrent neural networks [DLZS17,LDF+18,ZXL+19],
(4) iterative partitioning, where groups of log lines are recursively split into subgroups
according to particular token positions [MZHM09a,GCTMK11,HZH+17], (5) Longest
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Common Substring (LCS), which is a measure for the similarity of log lines [AKG19,DL16,
HZH+17,JWH17,RJW11,TLP11] or sequences of log events [WLKH18], (6) binary/source
code analysis [XHF+09,ZZH17,SAvD19], (7) genetic algorithms [MPB+18], (8) frequent
itemset mining [Vaa04], (9) statistical modeling [DLZS17, KIM+14, LLMP05, LJZ+17,
LDF+18], and (10) graph community extraction [LTPM17]. In addition, a number of
approaches employ (11) heuristics for replacing tokens with wildcards if they match
specific patterns, e.g., IP addresses or numeric values that most likely represent IDs.
While such rules are frequently only used for preprocessing log data before clustering, the
approaches by Chuah et al. [CKH+10] and Jiang et al. [JHHF08] suggest that heuristics
alone may be sufficient to generate templates. Figure 5.4 shows a visual overview of
the techniques used in static log clustering. The plot shows that distance-based and
density-based techniques are the most common techniques, being used in more than
half of all reviewed approaches. Dynamic clustering techniques are less diverse: Most
approaches apply statistical methods to generate links between events and rely on event
count matrices for grouping and anomaly detection.

Applicability in Live Systems

Almost all approaches employ self-learning techniques that operate in an unsupervised
fashion, i.e., no labeled training data is required for building the model of normal system
behavior (C-2). This corresponds to the mentioned ambition of proposing algorithms
that are mostly independent of the log structure and allow automatic processing with
minimal human interference. However, we identified some approaches that do not follow
this tendency and need labeled data for training: Kobayashi et al. [KFE14] use templates
that define which tokens in log messages are fixed or variable, Thaler et al. [TMP17] also
use such templates but mark every character of the log message as fixed or variable, Li et
al. [LLMP05] use categorical states that describe the type of log line, and Reidemeister et
al. [RJW11] use labels that describe types of failures. Other approaches rely on extensive
manual work preceding clustering, including the manual extraction of relevant attributes
into a common format [LTPM17] or the definition of parsers [TL10]. Similarly, Chuah et
al. [CKH+10] and Zou et al. [ZQJ16] incorporate domain knowledge of the log structure
in the clustering procedure.

Most articles lack precise investigations of running time complexities and upper bounds
due to algorithmic complexity and parametric dependencies. However, we observed
that some of the proposed approaches are particularly designed for online clustering
(C-7), while others pursue offline or batch clustering. Online clustering means that at
any given point in time during the clustering, all the processed log lines are already
allocated to clusters. This usually implies that the running time grows at most linearly
with the number of processed lines, which is an important property for many real-world
applications where log lines are processed in streams rather than limited sets. Note that
an allocation of lines to existing clusters in a streaming manner is almost always possible
and we therefore only considered approaches that are able to generate new clusters
on the fly as capable of online-processing. Typically, the reviewed online algorithms
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proceed in the following way: First, an empty set of clusters is initialized. Then, for each
newly processed log line, the algorithm attempts to find a fitting cluster in the set of
clusters. If such a cluster is found, the log line is allocated to it; otherwise, a new cluster
containing that line is created and added to the set of clusters. This step is repeated
indefinitely [ABCM09].

In addition to generating new clusters, approaches that we consider adaptive are also
able to modify existing cluster templates when new log lines are received (C-8). Such
adaptive approaches are in particular useful when being employed in systems that undergo
frequent changes, e.g., software upgrades or source code modifications that affect the
logging behavior [ZXL+19,GCTMK11]. While non-adaptive approaches usually require
a complete reformation of all clusters and templates, adaptive approaches dynamically
adjust to the new baseline without the need of instantly “forgetting” all previously learned
patterns. Approaches that do not aim at the generation of log templates may achieve
adaptive behavior by only considering the most recently added log lines as relevant for
clustering [CL13].

Non-functional Requirements

The further columns provide information on whether the approaches were particularly
designed for high efficiency (C-9) or parallel execution (C-10). Note that we considered a
comparative evaluation on the efficiency of all algorithms out of scope for this survey,
but rather assessed whether the authors particularly designed the algorithm for high log
throughput, for example, by employing data structures or methods that enable fast data
processing. In general, such an evaluation is difficult, because the running time often
depends on the type of log data, parameter settings and data preprocessing.

Finally, we assessed that most algorithms operate in a deterministic fashion (C-11).
However, some exceptions particularly make use of randomization, for example genetic
algorithms [MPB+18], randomized hash functions [JBG14], randomly initialized fields
[JSH15] and all approaches that rely on neural networks.

5.3.3 Anomaly Detection (AD)
According to our set of evaluation criteria, we group the approaches with respect to their
ability to detect static or dynamic anomalies and discuss the origin of anomalies that are
typically detected in the reviewed articles.

Static Outlier Detection

As mentioned before, not all reviewed articles primarily pursue anomaly detection (cf.
Table 5.1) and thus do not include discussions about the effectiveness of their detection
capabilities. However, the patterns or groups of log lines resulting from the clustering
can always be used for the detection of anomalies. For example, log lines that are very
dissimilar to all clusters or do not match any of the retrieved patterns are considered
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outliers (AD-1). New and previously unseen lines are usually regarded as suspicious and
should be reported. In addition, clusters that are unusually small or very distant to all
other clusters may indicate anomalous groups of log lines. Clearly, domain knowledge is
required to interpret the retrieved lines and Hamooni et al. [HDX+16] add that a keyword
search on the new logs is an effective measure for system administrators to locate and
interpret the occurred event.

SLCT [Vaa03] and LogCluster [VP15] allocate all log lines in an outlier cluster if they
do not match any of the generated log templates, i.e., patterns that represent each
cluster. They used logs collected from a mail server and found that the identified
outliers correspond to errors and unauthorized access attempts. In a similar manner,
Wurzenberger et al. [WSL+17], Stearley [Ste04] and Splunk [Car12] identify rare log lines
that do not end up in large clusters as outliers. HLAer [NJCY14] offers two possibilities
for outlier detection: an online method based on pattern matching as well as an offline
method that uses the same similarity score used for clustering. Similarly, Wurzenberger
et al. [WSFK17] defines a similarity function for outlier detection and further mentions
that small clusters contain potentially interesting log lines. Juvonen et al. [JSH15] detect
outliers without the need for pattern matching. They inject cross-site scripting (XSS)
attacks and the resulting log lines are located far away from all the other log lines when
being projected into an euclidean space.

Dynamic Anomaly Detection

Other than detecting outliers, some algorithms aim at the detection of failure patterns
(AD-2). Thereby, the retrieval of distinct and expressive descriptors is regarded as the
main goal. For example, Baler [TBG+11] identifies patterns corresponding to failure
modes of the system CPU and memory errors. Such fault types are also detected by Zou
et al. [ZQJ16] who group alerts that occur within time windows. Categories of these
alerts thereby include errors caused by the network, failed authentications, peripheral
devices and the web engine.

In addition, some approaches support root-cause analysis, where the identification of
log events occurring in the past that relate to detected failures is pursued. Thereby,
algorithms utilize the learned temporal dependencies between log events for such reasoning.
Chuah et al. [CKH+10] and Kimura et al. [KIM+14] particularly focus on root-cause
analysis and identify temporal dependencies by correlating event occurrences within time
windows. However, Li et al. [LLMP05,LJZ+17] point out that a correct selection of the
time window sizes is often difficult, and therefore propose a solution that relies on lag
time distributions rather than time windows.

It is non-trivial to derive dynamic properties from clusterings. LogTree [TL10] supports
manual detection by displaying patterns of cluster appearances. In their case study,
misconfigurations in HTML files were detected. For an analytical detection, Drain
[HZZL17] gradually fills an event count matrix that keeps track of the number of
occurrences of each log event. They then use principal component analysis for detecting
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unusual points in the resulting matrix. Similarly, Xu et al. [XHF+09] use PCA for
detecting anomalies in high-dimensional message count vectors and additionally consider
state variables for filling the matrix. Du and Cao [DC15] detect anomalous system
behavior by applying a distance metric on time-series derived from event frequencies.

Beside unusual frequencies of occurring events, the execution order of certain log line
types may be used as another indicator for anomalies. Zulkernine et al. [ZMP+13] derive
correlation rules from line patterns that frequently occur together. Fu et al. [FLWL09]
learn the execution order of events and detect deviations from this model as work flow
errors. In addition, they identify performance issues by measuring the execution times
of newly occurring log sequences and compare them with the learned behavior. Jia et
al. [JYC+17] also detect unknown logs as redundancy failures, deviations from execution
orders as sequence anomalies and deviations from interval times as latency anomalies.
Beside sequence errors, Nandi et al. [NMA+16] make use of a control flow-graph in order
to also detect changes of branching distributions, i.e., changes of occurrence probabilities
of certain log events in sequences. DeepLog [DLZS17] trains a Long Short-Term Memory
(LSTM) neural network with such workflow transition probabilities and automatically
detects any deviations from the learned behavior. A different approach is taken by
Gurumdimma et al. [GJL+15], who detect failure patterns of sequences rather than single
events.

Cyber Attack Detection

Finally, we noted that although many approaches are directed towards anomaly detection,
these anomalies are almost always considered to be random or naturally occurring failures
rather than targeted cyber attacks (AD-3), such as denial-of-service and scanning attacks
[WLKH18, DLZS17], injections [JSH15, WSL+17], or unauthorized accesses [RJW11,
Vaa03]. We assume that the reasons for this trend are manifold: (i) Failures may be more
common than attacks in the considered systems and thus pose a higher risk, (ii) attacks
are implicitly assumed to produce artifacts similar to failures and can thus be detected
using the same methods, and (iii) lack of log files containing cyber attacks for evaluation.

5.3.4 Evaluation (E)
In the following, we investigate the procedures of evaluating approaches presented in
the reviewed papers. In particular, we discuss what kind of evaluation techniques were
applied to assess fulfillment of functional and non-functional requirements, and whether
the results are reproducible.

Evaluation Techniques

Every reviewed clustering approach includes at least some kind of experiments and
discussion of results. As shown in Table 5.3, a majority of authors use quantitative
metrics for validating and evaluating their proposed concepts (E-1). We identified three
main approaches to quantitative evaluation: (i) Unsupervised methods that do not
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require a labeled ground truth for comparison. There exist various possibilities for
estimating the quality of the clustering in an unsupervised fashion. Menkovski and
Petkovic [MP17] show that the consistency of the clustering can be assessed by measures
such as the Silhouette Coefficient [Rou87], which measures the relation between inter-
and intra-cluster distances. Kimura et al. [KIM+14] estimate the quality of the log
templates heuristically, by assuming that all tokens without numbers should end up as
fixed elements in the generated templates. This measure is easy to compute, but has
the disadvantages that it may produce incorrect results in cases where the heuristics do
not apply and that it is only reasonably applicable for log files where such heuristics
are known to fit the data. Alternatively, Li et al. [LJZ+17] make use of event coverage
during clustering, a measure for the goodness of a set of cluster descriptors with respect
to their similarities to all log lines. The problem with such strategies is that it is typically
difficult to obtain interpretable and comparable results and thus most of the reviewed
approaches do not take unsupervised evaluation into consideration. (ii) The grouped log
lines are compared to a manually crafted ground truth of cluster allocations. This allows
the computation of the accuracy, precision, recall and F-score of the approach. Different
strategies for computing these metrics are possible. For example, He et al. [HZZL17]
count two log lines generated by the same event grouped in the same cluster as true
positive; two lines generated by different events grouped in the same cluster as false
positive and two lines generated by the same event grouped in different clusters as
false negative. Contrary to such a line-based measure, Du and Li [DL16] evaluate their
approach with a more strict focus on clusters. They measure the accuracy by the number
of lines allocated to correct clusters, where a cluster is counted correct if all and only all
log lines of a particular type from the ground truth are allocated to the same cluster.
The results of line-based and cluster-based evaluations can be very different: Consider a
clustering result containing one large cluster. A line-based accuracy measure will show
good results as long as many log lines of that type end up in the same clusters, even
if a portion of the lines end up in other clusters or a few misclassifications occurred.
The accuracy measured in cluster-based evaluation on the other hand will indicate poor
results when only one or few misclassifications occur in that cluster, since this causes
that all contained lines are considered as incorrectly classified. Kobayashi et al. [KFE14]
measure the accuracy by inspecting the templates rather than the associated log lines.
In particular, they count the number of fields correctly identified as fixed or variable in
each generated log template. Hamooni et al. [HDX+16] apply a similar approach but
also take types of fields, e.g., string, number or IP, into account. This approach appears
particularly useful when obtaining a ground truth or labeling all log lines is not possible,
but the number and structure of expected cluster templates can be determined. (iii) The
quality of the clustering is assessed by its ability to detect anomalies. In this case, a
ground truth of known anomalies is required for counting the true positives (correctly
identified anomalies), false positives (incorrectly identified anomalies), false negatives
(missed anomalies), and true negatives (correctly classified non-anomalous instances).
The advantage of this method is that it does not require labels for log lines or knowledge
about all clusters. However, anomaly-based evaluation relies on a dataset containing
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Figure 5.5: Relative frequencies of benchmarks used for evaluation.

anomalies and only measures the quality of the clustering indirectly, i.e., it is possible
that an inappropriate detection mechanism is responsible for a poor detection accuracy
even though the clustering is of good quality.

A number of approaches also qualitatively assess the clustering (E-2). This is especially
common for approaches that aim at the extraction of log signatures. For example,
Taerat et al. [TBG+11] discuss the appropriateness of the number of clusters and outliers
based on domain knowledge about the used log data. Moreover, they manually check
whether unnecessary signatures exist or generated patterns are too general and thus
lead to overgrouped clusters. In cases where a ground truth of expected signatures is
available, differences and overlaps between the generated and expected patterns can be
determined (e.g., Fu et al. [FLWL09]). Because of the ambiguities of what is considered
an appropriate clustering, experts or administrators with domain knowledge about the
specific real-world use cases are occasionally consulted for labeling the data [XHF+09] or
validating the results [LZL+16,ABCM09,LLMP05,LJZ+17,QGP+10,Ste04].

Evaluation of Non-functional Requirements

Given that many approaches are particularly designed for fast processing of log lines, a
high number of articles also include an empirical evaluation of running time requirements
(E-3). Thereby, both the total time necessary to process a specific log file [MPB+18]
as well as the scalability of the algorithm with respect to the number of processed log
lines [Miz13] are relevant characteristics.

Comparisons and Reproducibility

Most evaluations include thorough comparisons with one or multiple widely-applied
approaches (E-4). For example, HLAer [NJCY14] is compared by [HDX+16] with their
algorithm LogMine regarding the accuracy of the generated signatures and SLCT [Vaa03]
is used as a benchmark by Joshi et al. [JBG14] for comparing the quality of the clustering
and by Stearley [Ste04] regarding outlier detection. Figure 5.5 shows an overview of
approaches that are frequently used as benchmarks. Note that it is common that
more than one approach is used for comparison, in which case the approaches were
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Table 5.3: Assessed properties regarding the evaluation carried out in each approach

Approach E-1 E-2 E-3 E-4 E-5 E-6
Agrawal et al. (Logan) [AKG19] � � � � �
Aharon et al. (PARIS) [ABCM09] � � �
Aussel et al. [APC18] � � �
Christensen and Li [CL13] � ~ � �
Chuah et al. (Fdiag) [CKH+10] � � �
Du and Li (Spell) [DL16] � � � � �
Du et al. (DeepLog) [DLZS17] � � �
Du and Cao [DC15] � � � �
Fu et al. [FLWL09] � � �
Gainaru et al. (HELO) [GCTMK11] � � � �
Gurumdimma et al. [GJL+15] � � � �
Hamooni et al. (LogMine) [HDX+16] � � � �
He et al. (POP) [HZZL17] � � � � �
He et al. (Drain) [HZH+17] � � � � �
Jain et al. [JSC+09] � � � �
Jayathilake et al. [JWH17] �
Jia et al. (LogSed) [JYC+17] � � � �
Jiang et al. [JHHF08] � � � � �
Joshi et al. [JBG14] � � �
Juvonen et al. [JSH15] � �
Kimura et al. [KIM+14] � � �
Kobayashi et al. [KFE14] � � � �
Leichtnam et al. (STARLORD) [LTPM17] � � �
Li et al. [LLMP05] � � �
Li et al. (FLAP) [LJZ+17] � � � �
Li et al. [LDF+18] � � �
Lin et al. (LogCluster) [LZL+16] � � � �
Makanju et al. (IPLoM) [MZHM09a] � � � �
Menkovski and Petkovic [MP17] � � � � �
Messaoudi et al. (MoLFI) [MPB+18] � � �
Mizutani (SHISO) [Miz13] � � � � �
Nagappan and Vouk [NV10] � �
Nandi et al. (OASIS) [NMA+16] � � �
Ning et al. (HLAer) [NJCY14] � � � � �
Qiu et al. [QGP+10] � � �
Reidemeister et al. [RJW11] � �
Ren et al. [RCY+18] � � � �
Salfner and Tschirpke [ST08] � �
Schipper et al. [SAvD19] � � �

Continued on next page
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Table 5.3 – continued from previous page
Approach E-1 E-2 E-3 E-4 E-5 E-6
Sequence [Zhe14]
Shima (LenMa) [Shi16] � � � � �
Splunk [Car12]
Stearley (Teiresias) [Ste04] � � �
Taerat et al. (Baler) [TBG+11] � � �
Tang and Li (LogTree) [TL10] � � � � �
Tang et al. (LogSig) [TLP11] � � � �
Thaler et al. [TMP17] � �
Tovarňák et al. [TP19] � � � � � �
Vaarandi (SLCT) [Vaa03] � �
Vaarandi (LogHound) [Vaa04] � �
Vaarandi and Pihelgas (LogCluster) [VP15] � � �
Wang et al. [WLKH18] �
Wurzenberger et al. [WSFK17] � �
Wurzenberger et al. [WSL+17] �
Wurzenberger et al. (AECID-PG) [WLSK19] � � � �
Xu et al. [XHF+09] � � � �
Zhang et al. (GenLog) [ZZH17] � � � � �
Zhang et al. (LogRobust) [ZXL+19] � � �
Zhao and Xiao [ZX16] � � �
Zou et al. (UiLog) [ZQJ16] � � � � �
Zulkernine et al. (CAPRI) [ZMP+13] � � � �

added in proportionally. As visible in the plot, the most frequently used algorithms for
benchmarking are SLCT [Vaa03] and IPLoM [MZHM09a]. It is also remarkable that all
approaches visible in the plot are mainly used for signature extraction. This suggests that
there exist more renowned standards for signature extraction than for other clustering
approaches. It must however be noted that a majority of the reviewed articles employ
signature extraction and thus dominate this statistic.

Most of the articles were evaluated with logs collected from real-world computer systems
(E-5). Due to confidentiality of these logs, not all of them are publicly available (E-
6). The most common open-source datasets used in the reviewed articles are the
supercomputer logs [CFD] Blue Gene/L, Thunderbird, RedStorm, Spirit, Liberty, etc.
used by [AKG19,CKH+10,GCTMK11,HZZL17,HZH+17,NJCY14,MZHM09a,MPB+18,
JSC+09, GJL+15, DL16, DC15, JHHF08, TP19, WLSK19]; other sources are Hadoop
Distributed File System (HDFS) logs [Wei09] used by [AKG19,APC18,DLZS17,HZZL17,
MPB+18,XHF+09,ZXL+19,TP19,WLSK19], system logs [Chu10] used by [Miz13,Shi16],
and web logs [Capb] used by [ZMP+13]. The artificially generated network logs data
[GCH+11] used by [DLZS17] is particularly interesting, because it comes with a ground
truth and information on the attacks that were injected during the data collection.
Figure 5.6 shows an overview of log data sources used in the reviewed papers. Note that
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Figure 5.6: Relative frequencies of log data used for evaluation.

approaches that use multiple logs, e.g., supercomputer and HDFS logs, were added in
proportionally, and evaluation on non-available data (”Private data“) was only counted
when there was no evaluation on publicly available data. As visible in the plot, almost
60% of the reviewed approaches involve non-reproducible evaluation.

5.3.5 Discussion
Based on the results outlined in the previous section, several findings can be derived. In
the following, we discuss identified issues with the overall problem of clustering log data,
disadvantages of employed clustering techniques, and frequently encountered issues in
evaluation.

Problem domains

We did not expect to see such a high number of articles primarily focused on the
extraction and generation of signatures, while comparatively few articles are oriented
towards anomaly detection. Especially static outlier detection, i.e., the identification
of log lines with unusual structure or content, appears to be more of a by-product
rather than a main feature of signature generating approaches. This may of course be
attributable to the fact that such a detection is often a trivial subsequent step to any
clustering method. On the other hand, dynamic anomaly detection such as correlation
analysis and especially the identification of sequences of log lines appears to be of a
higher relevance and the problem of missing sequence identifiers (process IDs discussed
in Section 5.1.1) is tackled with various strategies.

Techniques

We were surprised to observe discords regarding some general assumptions on the nature
of log files. First of all, we noted a tendency to employ token-based approaches rather
than character-based approaches. We attribute this to the fact that token-based strategies
are generally computationally less expensive and align better with heuristics, for example,
replacing numeric values with wildcards before carrying out a more sophisticated clustering
procedure. Despite these advantages, we think that character-based approaches have
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high potential of generating more precise cluster templates. We have already pointed
out in [WSFK17] that token-based approaches are unable to correctly handle words
that differ only slightly, e.g., URLs or words with identical semantic meaning such as
“u.user” and “t.user” that are frequently found in SQL logs. Moreover, choosing a set of
delimiters that are used to split the log messages into tokens is not trivial in practice,
because different sets of delimiters may be required for appropriately tokenizing different
log messages [JVH+19,TP19].

We also observed that several token-based algorithms compare tokens only at identical
positions. The problem with such a strategy is that optional tokens or tokens consisting
of multiple words shift the positions of the remaining tokens in the log line. This may
cause otherwise similar log lines to incorrectly end up in different clusters [TP19]. While
some articles such as Makanju et al. [MZHM09a] explicitly state or implicitly assume that
the order of words is relevant for clustering, others (e.g., Vaarandi and Pihelgas [VP15])
particularly design their algorithms to be resilient to word shifts. Since optional words
and free text are common in most unstructured log files, we recommend to carry out
research on approaches that alleviate these issues.

We stated in Sect. 5.2.2 that approaches on protocol reverse engineering [NSC16] are
excluded from this survey, because of their focus on network protocols rather than system
log data. However, we see the application of algorithms from protocol reverse engineering
for the generation of log signatures as a potentially interesting area for future research.
The reason for this is that existing protocol reverse engineering approaches often consider
both character-based matching through n-grams as well as the positions of these n-grams
or tokens relevant for the extraction of protocol syntaxes. Adapting concepts from
protocol reverse engineering may thus effectively alleviate the previously described issues
with existing log signature extraction approaches.

Benchmarking & Evaluation

Despite of the fact that SLCT [Vaa03] is one of the first algorithms designed for log
clustering, it is still regarded as de facto standard due to its open-source availability.
However, more recent articles demonstrated its weaknesses and proposed alternative
clustering strategies that largely improved the quality of clusters and signatures. In
particular, SLCT generates overly general clusters consisting of only wildcards, which
obviously cover a large number of log lines but provide little to no information for the user,
as well as overly specific patterns of similar log lines [TBG+11]. We therefore suggest
to employ more recent alternative approaches for benchmarking in future articles. In
addition, SLCT and other standards such as LogHound [Vaa04], LogCluster [VP15], and
IPLoM [MZHM09a] only operate on fixed-size log files and are not able to incrementally
process log lines for clustering. However, since stream processing is essential for grouping
logs in real-world environments where frequent reclusterings on training sets are not an
option, we argue that algorithms capable of such online analyses are superior regarding
their applicability.
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We observed that evaluating log clustering approaches is far from trivial. In order to
quantitatively determine the quality of the generated clusters, anomalies or patterns,
ground truth consisting of labeled log data or at least expected signatures are required.
Moreover, since log data collected from specific sources often exhibits peculiarities, proper
evaluation should always be carried out on multiple datasets. However, generating
labeled data usually requires time-consuming manual work. Thus, open-source labeled
log data would be highly beneficial for objective comparisons and would allow researchers
to benchmark approaches in a thorough manner. We were pleased to see that He et
al. [HZZL17,HZH+17] not only provide the code of their algorithms, but also reimplement
other approaches and further collect log datasets including labels [HZHL20] that specify
which log lines belong to the same clusters, i.e., originate from the same log events. This
enables reproducibility and proper comparisons among different approaches. We hope to
see more researchers contributing or making their data and code accessible to the public.

Finally, we also point out that only few authors injected actual attacks in their datasets,
but rather targeted failures and errors. While these could of course be artifacts of attacks,
we suggest to use real attack scenarios in future evaluations. Since anomaly detection is
applied in intrusion detection solutions, use cases more closely related to cyber threats
have the potential to expand the possible application areas.

5.4 Summary
Log clustering plays an important role in many application fields, including cyber
security. Accordingly, a large number of approaches have been developed in the past.
However, existing approaches are often designed towards particular objectives, make
specific assumptions on the log data and exhibit characteristics that prevent or foster
their application in certain domains. This makes it difficult to select one or multiple
approaches for a use case at hand. In this chapter we therefore carried out a survey that
groups clustering approaches according to attributes that support such decisions.

As part of the survey, several gaps of state-of-the-art approaches for log clustering were
identified, including a need for parser generation methods that leverage tree structures
as well as tokenization on arbitrary characters. As a consequence, we proposed and
developed a concept for a parser generator that ingests complex and unstructured log data
and produces parsers that are immediately applicable for specific IDSs [WLSK19]. The
resulting parsers are leveraged in the following chapter to process log data for anomaly
detection, in particular, to extract categorical values of log events for correlation analysis.
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CHAPTER 6
Anomaly Detection

The previous chapter outlined a survey for log clustering techniques. The findings of this
survey contributed to the development of an approach for automatic parser generation
that is presented in [WLSK19]. This approach enables the automatic generation of
parsers for the log data presented in Chap. 3 and Chap. 4. In this chapter, an anomaly
detection method is introduced that leverages parsed log events from these datasets for
evaluation and validation. Major parts of this chapter have been published in [LHW+21].
As stated in Sect. 2.2.2, categorical variables are common in system logs and complement
the detection of anomalous events. In particular, variables such as user identifiers, IP
addresses, service names, system operations, or program states, occur in regular patterns
that are expected to persist over time as long as the system behavior remains steady. For
example, services utilize specific subsets of all available system operations and execute
them with particular relative frequencies. Unexpected deviations from such conditional
occurrence distributions indicate a change of system behavior and should therefore be
reported to the system operators as anomalies. Unfortunately, the selection of variables
suitable for such a detection mechanism is non-trivial, because it usually relies on expert
knowledge about the system at hand and is difficult to automatize.
We propose the Variable Correlation Detector (VCD) as a solution to aforementioned
issues. The approach comprises of a sequence of selection constraints to reduce the search
space and identify interesting correlations between categorical variables. In addition, the
VCD reuses conditional distributions of value occurrences computed in the selection phase
for the disclosure of deviations in a subsequent detection phase. Our approach has several
advantages over state-of-the-art methods. First, it identifies interesting correlations
independent from the total occurrences of the involved values, which is different to
approaches based on frequent itemset mining [TH19]. This is especially important for the
detection of stealthy attacks that only produce infrequent values. Second, our approach
does not generate strict rules for value co-occurrences, but instead involves fuzzy rules
that do not always have to be fulfilled by employing statistical tests on chunks of events.
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Third, our approach is designed for online detection in streams of log data, which is
essential for application in real-world scenarios. An implementation of our approach is
available online as part of the log-based anomaly detection system AMiner [AMi]. We
summarize our contributions as follows:

• An iterative method for selecting useful correlations of categorical variables,

• an online anomaly detection technique based on identified correlations, and

• an evaluation of our open-source implementation of the proposed concepts.

The remainder of this chapter is structured as follows. In Sect. 6.1, we outline the concept
of the VCD. We then provide details of our proposed correlation selection constraints in
Sect. 6.2. We present the evaluation of our algorithm in Sect. 6.3 and discuss the results
in Sect. 6.4. Finally, Sect. 6.5 summarizes the chapter.

6.1 Concept
This section outlines the concept of the Variable Correlation Detector (VCD). First, we
explain important aspects of correlations of variables. Then, we state definitions relevant
for this chapter and outline the overall procedure of the VCD.

6.1.1 Correlations of Variables
Log data are chronological sequences of events. Most log datasets comprise of a certain
number of different event types, where each type defines the syntax of the corresponding
log lines (cf. Sect. 5.1.1). Accordingly, simple log data such as comma-separated-values
only consist of a single event. In any way, each event type specifies a sequence of variables
or features. For example, the syscall event in Audit logs consists of a sequence of key-value
pairs, such as “syscall=2” that specifies the syscall type or “items=1” that specifies the
number of associated path records.

Some variables are strongly correlated, meaning that the occurrence of a value in one
variable indicates the occurrence of a specific value in another variable. Given a sufficiently
large time frame, these conditional probabilities should be more or less constant on a
system with stable behavior. Any changes to these occurrence patterns indicate potentially
malicious activities, i.e., anomalies.

Table 6.1 shows the number of occurrences of syscall types and items extracted from
10000 Audit logs that are also used in the evaluation in Sect. 6.3.1. With 7195 total
occurrences, the majority of these events involve “items=0” (sum of first row). However,
it is visible that syscall type 2 (“open”) mostly occurs with “items=1” (2592 occurrences)
and sometimes “items=2” (90 occurrences), but never with “items=0”. Since other value
pairs exhibit similar dependencies, it is reasonable to monitor the conditional probability
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Table 6.1: Value co-occurrences of syscall types and items in Audit logs

syscall type
items 0 1 2 20 42 49 59 90 105 Total

0 6097 860 0 189 34 14 0 0 1 7195
1 0 0 2592 0 104 0 0 5 0 2701
2 0 0 90 0 0 0 14 0 0 104

distributions of the variable “items” with respect to “syscall” for improved detection over
monitoring the occurrences of “items” alone. The same reasoning applies for the other
direction, i.e., monitoring the occurrences of syscall types given the number of items.

Different to existing approaches, we do not only focus on the selection of variables that
are suitable for such correlations, but monitor the co-occurrences of their values. Thereby,
we are not solely interested in frequent values or value combinations, but instead calculate
the conditional probability distributions of all values that are useful for anomaly detection.
Consider syscall type 59 (“exec”) as an example: Even though the value only occurs in 14
events, it always co-occurs with “items=2” and thus indicates a strong correlation. Due to
the large number of possible combinations of variables and distinct values, a brute-force
solution is computationally not feasible in practice, especially for high-volume log data
with diverse values. This chapter therefore presents an iterative selection strategy for
interesting correlations that is presented in the following sections.

6.1.2 Definitions

As mentioned in the previous section, most log files comprise of several events E , each
containing a unique set of variables. For simplicity, we only consider a single event E ∈ E
in the following and assume that the procedure is applicable to all other events analogously.
Moreover, we assume that event E involves n variables V1, .., Vn, each comprising of an
arbitrary number of values vi,1, ..., vi,mi from the unique value set Vi. We compute the
estimated value occurrence probability as P (vi,j) = |{Vi = vi,j}| /N in a sample of size N
and the conditional probabilities as P (vi,j | vk,l) = |{Vi = vi,j ∧ Vk = vk,l}| / |{Vk = vk,l}|.
Correlations are denoted using the � operator. Table 6.2 summarizes all symbol
definitions.

6.1.3 Procedure

Our approach selects variable fields of log events and performs statistical tests on value
occurrences in these fields for the purpose of anomaly detection. To limit the search
space, we propose several sequential analysis steps that act as filters for all possible
variable and value combinations. Figure 6.1 shows these steps as a state chart, with an
in-depth description of each step following in Sects. 6.2.2-6.2.6.
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Table 6.2: Definitions of symbols used in this chapter

Symbol Definition
E Log event type from the set of all event types E , i.e., E ∈ E .
Vi Variable of log event type E, with V1, ..., Vn ∈ E.
Vi Set of distinct values attained by Vi.
vi,j Value j of variable Vi, i.e., Vi = {vi,1, ..., vi,mi}.

P (vi,j) Probability that value j occurs in Vi.
P (vi,j | vk,l) Probability that value j occurs in Vi given that value l occurs in Vk.

Vi � Vk Correlation between variables Vi and Vk.
vi,j � vk,l Correlation between values of variables, i.e., occurrence of value j in Vi

correlates with value l of Vk.
θi Threshold parameter for correlation selection.
N Size of the sample for computing correlations during initialization.
M Size of the sample for updating and testing in online mode.

(1) Variable Filtering

(2) Variable Pairing

(3) Correla�on Genera�on

(4) Correla�on Valida�on

(5) Correla�on Upda�ng

(6) Correla�on Tes�ng

V1,   V2,   V3,   V4

V1⇝V3: v1,1⇝v3,1, …, v1,2⇝v3,1, ...    

{V1,V2}, {V1,V3}, {V2,V3}

V‘1⇝V2, V2⇝V‘1

✓ ✓ ✓ ✗

✓ ✓ ✗

✓ ✗

✓ ✓ ✗ ✗

V‘1⇝V2, V2⇝V‘1

V1⇝V2,V2⇝V1,V1⇝V3,V3⇝V1, ...  

In
i�

al
iza

�o
n

On
lin

e

Figure 6.1: Procedure of the Variable Type Detector. Correlations between variables
and values are filtered iteratively.

For the initialization phase in steps (1)-(4), the VCD first collects a sample of N log lines.
We assume that all available variables of a log event are possible choices for correlations
and that there is no manual pre-selection. Step (1) Variable Filtering sorts out variables
that are unlikely to yield useful correlations, such as variables with many unique or
static values. This step is exemplarily visualized in the figure by removing variable V4
for subsequent analyses steps.

Step (2) Variable Pairing then generates pairs of the remaining variables V1, V2, V3. This
step removes pairs with dissimilar value probability distributions or disjoint value sets.
In the figure, the variable pair {V2, V3} is not considered for correlation. Remaining pairs
are transformed to correlation hypotheses in step (3) Correlation Generation, where
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conditional occurrence probabilities of all involved values are computed. Correlations
between values denoted by � that exhibit weak associations are omitted, e.g., values that
occur in many combinations or have similar conditional probabilities to other correlated
values. In the figure, value correlation v1,2 � v3,1 of variable correlation V1 � V3 is
removed. Note that correlations are directed, i.e., V1 � V3 is different from V3 � V1.

Step (4) Correlation Validation then evaluates whether all resulting value correlations
indicate a sufficiently strong dependency between the correlated variables, in particular,
whether the valid value correlations have independent probability distributions and
involve sufficiently many occurring values. For example, assuming that several value
correlations such as v1,2 � v3,1 were removed in step (3), the variable correlation V1 � V3
is removed. This marks the end of the initialization phase, which is only executed once
for every log event type.

For online anomaly detection, all correlation hypotheses that remain after step (4) are
transformed into rules, which are repeatedly evaluated using samples of size M . For
this, we perform statistical tests in step (5) Correlation Updating and go back to step (3)
to re-initialize the correlation rules if value distributions change or new values appear,
e.g., V1 is replaced by V �

1 in Fig. 6.1. Once correlation rules are stable for a sufficiently
long time period and should not be updated anymore, they are tested in step (6) for the
purpose of anomaly detection.

6.2 Approach

This section presents detailed explanations of all aforementioned steps of the VCD
procedure. We also provide examples for the various selection criteria.

6.2.1 Sample data

We provide a small sample to make the equations in the following sections easier to
understand and to obtain a rough estimate for reasonable choices for threshold parameters
θi. The data shown in Table 6.3 comprises of one event with four variables, i.e., E =
{V1, V2, V3, V4}, and a sample size of N = 12. We point out that this data is only for
illustrative purposes and that the application of the VCD in practice requires sufficiently
large sample sizes for appropriate probability estimation. Each variable involves three
possible values, in particular, V1 = V2 = V3 = {1, 2, 3}. The occurrence probabilities of
the values of V1 are computed as P (v1,1) = 7

12 , P (v1,2) = 4
12 , P (v1,3) = 1

12 . The data is
set up so that V1 and V2 correlate, i.e., the occurrence of any value in V1 usually co-occurs
with the same value in V2. This is also reflected in the conditional probabilities, e.g.,
P (v2,1 | v1,1) = 5

7 , P (v2,2 | v1,2) = 3
4 . On the other hand, V3 and V4 do not show a strong

correlation with any other variable. Accordingly, the following examples usually set the
thresholds θi so that correlations involving V3 and V4 are removed, but V1 � V2 and
V2 � V1 are selected as relevant for detection.
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Table 6.3: Sample data

ID V1 V2 V3 V4

1 1 1 1 1
2 1 1 2 1
3 1 1 3 3
4 1 2 1 1

ID V1 V2 V3 V4

5 1 1 3 1
6 2 2 2 2
7 1 2 1 1
8 2 3 2 1

ID V1 V2 V3 V4

9 3 3 3 1
10 2 2 1 1
11 2 2 1 3
12 1 1 2 1

6.2.2 Variable Filtering

This section covers heuristics for variables. The first criterion targets variables with many
unique values and the second criterion addresses dominating values.

Diversity of Values

Correlation analysis as it is done by the VCD requires categorical variables to reasonably
calculate occurrence probabilities from the sample. Accordingly, we assume that there is a
finite number of different values attained by each variable and that the sample size is large
enough to obtain an estimate on their occurrence probabilities, i.e., |Vi| � N . Variables
with a large number of unique values are likely discrete rather than categorical, e.g., event
IDs or timestamps, and do not yield stable correlations as described in Sect. 6.1.1. The
reason for this is that they result in a high number of infrequent value co-occurrences
that do not represent any actual correlation between the variables, e.g., an event ID
is usually a random value. Equation 6.1 thus defines an upper limit for the number of
unique values in Vi, where θ1 ∈ [0, 1]. From all available variables, we select all Vi that
fulfill Eq. 6.1, and omit all others.

|Vi| ≤ θ1 · N (6.1)

The small sample size of the data in Table 6.3 requires θ1 ≥ 0.25 to retain the variables,
e.g., θ1 = 0.25 yields a critical value of 3 and |V1| ≤ 3 is fulfilled.

Distribution Probabilities

In some variables, one or few values are occurring more often than others and are thus
dominating the value probability distribution. These variables usually have weaker
correlation with other variables, since most correlated values co-occur with the same
dominating value. An extreme case of this situation are static variables, where the same
value occurs in every log line and is thus trivially useless for correlation. We therefore
use Eq. 6.2 to select only variables Vi where no occurrence probability of vi,j exceeds a
certain limit. To allow more unique values θ2 ∈ [0, 1] should be selected closer to 1.
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P (vi,j) < θ2 + 1 − θ2
|Vi| (6.2)

We point out that this heuristic causes that variables with similarly dominated value
probability distributions that may have a strong association between the values are
omitted. Since this heuristic is mainly used to efficiently limit the search space, it is
possible to set θ2 to a sufficiently large value to include these variables and use subsequent
analysis steps to omit incorrect variable pairings.

The data from Table 6.3 involves value v4,1 which dominates V4. Setting θ2 = 0.6 excludes
only this variable, since P (v4,1) = 0.75 exceeds 0.6 + 1−0.6

3 = 0.73.

6.2.3 Variable Pairing
This section describes criteria for selecting pairs of variables suitable for correlation. The
first criterion matches variables with similar probability distributions and the second
criterion addresses common value spaces.

Similarity of Distributions

As pointed out in the previous section, variables with similar value probability distribu-
tions are more likely to exhibit associations between their values than other variable pairs.
The reason for this is that similar distributions imply that for each value in Vi there
exists another value in Vk that occurs roughly the same amount of times and may thus
have a direct relationship with the former value. On the other hand, comparing the value
occurrences of one dominated distribution and another evenly distributed distribution,
there is necessarily at least one value in one variable that co-occurs with more than one
value in another variable, which indicates a weaker association.

We therefore generate variable pair {Vi, Vk} if the occurrence probabilities P (vi,j) of all
values in Vi do not differ from P (vk,l) in Vk, where each value is only used once. Equation
6.3 describes this rule formally, where θ3 ∈ [0, ∞) and p = 1, ..., min(|Vi| , |Vk|) is the
index of the order statistic so that vi,(1) is the most occurring value of Vi, vi,(2) is the
second most occurring value of Vi, etc.

���P 	
vi,(p)

�
− P

	
vk,(p)

���� ≤ θ3
max(|Vi| , |Vk|) (6.3)

Setting θ3 = 0.6 yields a critical value of 0.6
3 = 0.2. In this case, variables V1 and V2

from Table 6.3 are correctly paired, since all probability differences |P (v1,1) − P (v2,1)| =
0.16, |P (v1,2) − P (v2,2)| = 0.08, and |P (v1,3) − P (v2,3)| = 0.08 are lower than 0.2,
where values are compared in decreasing order of their occurrences. Assuming that
V4 is not removed in the variable filtering phase, the pair {V2, V4} is omitted since
|P (v2,1) − P (v4,1)| = 0.33 which exceeds 0.2.
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Common Values

Another heuristic is that variables sharing common values are likely related in some
way. For example, log lines that involve separate variables for source and destination
IP addresses often have the same value space, since data is sent and received from the
same IP addresses. This also applies to state transitions in logs, such as network logs
that contain messages like “inactive -> scanning”, “scanning -> authenticating”, etc.
As an alternative in case that Eq. 6.3 is not fulfilled, we select pairs {Vi, Vk} where
both variables share a certain fraction of common values. This corresponds to selecting
variable pairs that fulfill Eq. 6.4, where θ4 ∈ [0, 1]. For the sample data displayed in
Table 6.3, this constraint is trivially fulfilled since all variables have the same value space.

|Vi ∩ Vk| ≥ θ4 · min(|Vi| , |Vk|) (6.4)

6.2.4 Correlation Generation
This section outlines the generation of correlation hypotheses for values of variable pairs.
Note that each pair {Vi, Vk} is considered as the two hypotheses Vi � Vk and Vk � Vi

that are analyzed separately.

Diversity of Correlations

For optimal variable correlation, each value of one variable only occurs with a particular
value of another variable and vice versa. Conversely, values that co-occur with many
different values from the correlated variable indicate weak or random associations as
pointed out in Sect. 6.2.2 and should not be considered for correlation hypotheses. We
therefore select only value correlations vi,j � vk,l for hypothesis Vi � Vk if the relative
amount of co-occurring values of vi,j does not exceed θ5 ∈ [0, 1], i.e., if Eq. 6.5 is fulfilled.

|{vk,l : P (vk,l | vi,j) > 0}|
|Vk| ≤ θ5 (6.5)

Selecting θ5 = 0.7 for the data from Table 6.3 yields that v1,1 � v2,l of V1 � V2 are
fulfilled for all l, since v1,1 only occurs with v2,1, v2,2 and 2

3 ≤ θ5. Similarly, v1,2 � v2,l

yield 2
3 and v1,3 � v2,l yield 1

3 , thus all possible value correlations from V1 � V2 are
selected. On the other hand, all v1,1 � v3,l of V1 � V3 are omitted since v1,1 co-occurs
with three values in V3 and 3

3 exceeds θ5.

Skewness of Distributions

If Eq. 6.5 from the previous section is not fulfilled, we use an alternative selection
constraint to avoid that useful correlations are omitted too easily. In particular, we check
the shape of the conditional distributions to identify dependencies between values, i.e., if
one of the values in Vk occurs with relatively high frequency given that vi,j occurs, we
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add vi,j � vk,l, ∀l to the hypothesis Vi � Vk. Equation 6.7 shows that this constraint is
realized by subtracting the highest from the lowest of all conditional probabilities given
vi,j (cf. Eq. 6.6), where θ6 ∈ [0, ∞). The idea behind this is that the difference is large
for skewed distributions where some values co-occur frequently and others only rarely,
and small for evenly distributed values. Note that this does not take into consideration
that dominating values in Vk could incorrectly cause that the constraint is fulfilled, which
is addressed in the following section.

Pi,j,k = {P (vk,l | vi,j) : P (vk,l | vi,j) > 0, ∀l} (6.6)

max (Pi,j,k) − min (Pi,j,k) >
θ6

|{vk,l : P (vk,l | vi,j) > 0}| (6.7)

We use θ6 = 0.8 as a sample for the data in Table 6.3 and assume that v1,2 � v2,l, ∀l was
omitted by the constraint from Eq. 6.5. Then P (v2,1 | v1,1) − P (v2,2 | v1,1) = 0.42 and
P (v2,2 | v1,2) − P (v2,3 | v1,2) = 0.5 both exceed the critical value of 0.8

2 = 0.4. However,
v1,1 � v3,l, ∀l is not fulfilled, because P (v3,1 | v1,1)−P (v3,3 | v1,1) = 0.14 does not exceed
the critical value of 0.8

3 = 0.27 and is therefore correctly omitted from hypothesis V1 � V3.

6.2.5 Validation of Correlations
This section presents hypothesis validation constraints that omit correlations without
sufficiently strong dependencies between values or few correlating values.

Dependencies of Distributions

As pointed out in Sect. 6.2.4, a valid correlation Vi � Vk should imply that the conditional
value probabilities P (vk,l | vi,j) differ from each other depending on the value vi,j attained
by Vi. Otherwise, the values in Vk are independent from the attained values in Vi, which
means that the correlation hypothesis should be discarded. We address this by measuring
the variances of all conditional distributions in Vk with respect to the overall distribution
of Vk. Equation 6.8 shows that the variances are added for all value correlations selected
by one of the constraints from Sect. 6.2.4. Since variances of more frequently occurring
value correlations are more representative for the variable and should therefore have
a higher influence on the result, Eq. 6.9 with θ7 ∈ [0, ∞) weights all variances by the
occurrence probabilities of vi,j and checks whether their sum exceeds a threshold. In this
case, the conditional distributions involved in the correlation hypothesis are sufficiently
dependent and thus selected, otherwise the correlation is omitted from further analysis.

Vk (vi,j) =


l

�
(P (vk,l | vi,j) − P (vk,l))2 : vi,j � vk,l

�
(6.8)


j

{Vk (vi,j) · P (vi,j) : vi,j � vk,l} ≥ θ7 (6.9)
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We first consider correlation V1 � V2 from Table 6.3 as an example and use θ7 = 0.2
as a threshold. The variances V2 (v1,1) = 0.13, V2 (v1,2) = 0.29, and V2 (v1,3) = 1.04
are weighted by probabilities P (v1,1) = 0.58, P (v1,2) = 0.33, and P (v1,3) = 0.08
respectively to yield a total of 0.26 that exceeds θ7 = 0.2. Accordingly, the conditional
value distributions in V2 sufficiently depend on the attained values in V1, thus V1 � V2
is selected as a valid correlation. On the other hand, the weighted sum of variances for
V3 � V1 yields 0.06, which does not exceed the threshold and thus indicates that the
correlation should be omitted.

Value Coverage

The second selection criterion for value correlations from one of the constraints from Sect.
6.2.4 ensures that only variable correlations supported by sufficiently many correlating
values are selected. In other words, a correlation Vi � Vk is omitted if only a small fraction
of the values in Vi have corresponding correlations. Thereby, we use the occurrence
probabilities of vi,j to weight frequent values higher. According to Eq. 6.10, we only
select Vi � Vk if the relative amount of correlating values exceeds a threshold θ8 ∈ [0, 1].


j

{P (vi,j) : vi,j � vk,l} ≥ θ8 (6.10)

We use data from Table 6.3 and consider the variable correlation V1 � V3 with θ8 = 0.5.
We assume that all correlations from v1,1 to values from V3 were removed as outlined
in the example in Sect. 6.2.4, but correlations from v1,2 and v1,3 to V3 exist. The sum
of probabilities for these values is then P (v1,2) + P (v1,3) = 0.416. Since this sum does
not exceed the threshold of 0.5, correlation V1 � V3 is omitted from further analysis.
Assuming that all value correlations were selected for V1 � V2 the constraint is trivially
fulfilled since the sum of all occurrence probabilities always equals 1 and thus exceeds
the threshold.

6.2.6 Correlation Updating and Testing
The previous sections outlined the initialization phase of the VCD, where correlations
are selected by a sample of N log lines. Afterwards, the VCD switches to online mode,
where samples of M log lines are repeatedly collected and tested with respect to the
previously generated correlation rules. In the following, we use �P to denote occurrence
probabilities of values from these test samples. We use a two-sample Chi-squared test for
homogeneity [BJS+11] to determine whether a test sample corresponds to the rules. For
this, we first compute a test statistic t by comparing the conditional probabilities of the
training and test samples with the expected probability Pe based on the mean as shown
in Eq. 6.11 and Eq. 6.12.

Pe = N · P (vk,l | vi,j) + M · �P (vk,l | vi,j)
N + M

(6.11)
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t =


l



N · (P (vk,l | vi,j) − Pe)2

Pe
+ M · ( �P (vk,l | vi,j) − Pe)2

Pe

�
(6.12)

For a given vi,j , we then define an indicator function Ik(vi,j) in Eq. 6.13 that is 1 if
the test statistic does not exceed a critical value given by the Chi-squared distribution
with confidence α1 ∈ [0, 1], i.e., there is no significant difference between the conditional
distributions of the training and test samples, and is 0 otherwise. We then store these
indicators for all vi,j ∈ Vi in a list ri,j , so that r

(t−d)
i,j , ..., r

(t)
i,j are the d most recent

indicators after t tests of vi,j , and compute another test statistic st
i,j = �t

x=t−d r
(x)
i,j

on these values. The purpose of this is to reduce the number of false positives, i.e.,
anomalies are only reported when a certain number of Chi-squared tests fail. Since r
is a binomial process, we use Eq. 6.14 to compute a critical value λ, where α2 ∈ [0, 1]
is the confidence of the binomial test and α1 is reused as the success probability of the
Chi-squared test. If st

i,j ≥ λ holds, there is no significant change of the conditional
probabilities of vi,j � vk,l, ∀l at test t, and vice versa. Note that the runtime can be
reduced by computing λ a single time in advance when d, α1, and α2 remain constant.

Ik(vi,j) =

 1 if t < χ2
α1,|Vk|−1

0 otherwise
(6.13)

λ = min

kmax :
kmax
k=0

d!
k! · (d − k)! · αk

1 (1 − α1)d−k > 1 − α2

 (6.14)

The aforementioned computations are carried out for updating as well as testing correla-
tions. The main difference between both phases is that step (6) Correlation Testing only
reports anomalies when tests fail, i.e., s < λ, meaning that all changes of correlations are
reported every time after processing the test samples as long as they persist. On the other
hand, step (5) Correlation Updating adjusts the base line for comparison by updating
distributions with newly observed values, removing correlations if the binomial test fails,
and periodically repeating steps (3)-(4) to identify new correlations. Accordingly, this
phase is seen as an extended training phase that is essential for online learning.

6.3 Evaluation
This section outlines the evaluation of our approach. We first compare variable correlations
selected from a real dataset with two well-known correlation metrics. We then showcase
the detection capabilities of the VCD. Finally, we investigate the influences of thresholds
on the selected variables based on properties of the input data.

6.3.1 Comparison with Association Metrics
This section compares the selected correlations of the VCD with well-known association
metrics. We first describe the data and then show the results.
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Data

We use 10000 Audit logs of type syscall from the publicly available AIT-LDSv1.1
[LSW+20a] that was presented in Chap. 3 for this evaluation. We select Audit logs,
because they are a common source for log analysis and are sufficiently complex to be rep-
resentative for all kinds of log data. In addition, they contain many categorical variables
that correlate with varying strength and have diverse value occurrence distributions. Out
of all 27 variables, we remove the timestamp as well as 6 static variables that only attain
one value, because it is not possible to generate useful correlations with them. The VCD
always omits these variables due to Eq. 6.1 and Eq. 6.2.

We use the remaining 20 variables to generate all 380 possible variable pairs and measure
their association strength. For this, we employ two association metrics for nominal
values with arbitrary many categories, (i) the Uncertainty Coefficient U [PTVF07]
based on conditional entropy, and (ii) the Unbiased Tschuprow’s T [Ber13] based on the
Pearson Chi-squared statistic. Both metrics are in the range [0, 1], where 0 indicates
no association between the variables, and 1 indicates the highest possible dependency.
However, while T is symmetrical, U is non-symmetrical and measures how well the
dependent variable is predictable by the given variable. For example, the data in
Table 6.1 yields T ({syscall, items}) = 0.53 as well as U(syscall | items) = 0.58 and
U(items | syscall) = 0.93.

Results

We run the sequential selection steps of the VCD on the raw event logs and analyze
the variable correlations that remain after the initialization phase. In Figs. 6.2a and
6.2b, these remaining correlations are marked “yes” (blue triangles), while all variable
pairs that are omitted by one of the selection constraints are marked “no” (red circles).
Each point in the scatter plots represents one of the 380 variable pairs displayed by their
respective U and T , i.e., points closer to the top right corner of the plot indicate stronger
association between the two involved variables, while points closer to the bottom left
indicate weaker association.

The VCD was used with default settings (cf. Sect. 6.3.3) to classify the variable pairs in
Fig. 6.2a. From all variable pairs, 222 were selected as interesting after the initialization
phase and 158 were omitted. Since all of the omitted pairs received a relatively low
association score by at least one of the metrics, we conclude that the VCD achieved
to correctly omit irrelevant correlations. For example, among the omitted correlations
is “syscall” � “pid”, which is reasonable as the process id “pid” is mostly random and
independent from syscall types.

It is possible to further narrow down the set of tracked variable correlations by adjusting
the thresholds. In particular, some of the variables involve large numbers of distinct
values, which means that the number of monitored value correlations for pairs of these
variables is immense. The default value θ1 = 0.3 allows 3.000 unique values in each
variable, which is limited to 100 by setting θ1 = 0.01. This causes that the number of
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(b) θ1 = 0.01 and θ7 = 0.2.

Figure 6.2: Comparison of VCD selection with association metrics.

remaining correlations drops from 222 to 126, where most of the rejected pairs are located
close to the top left corner of the plot. Closer examination of these rejected pairs shows
that they involve variables with many distinct values on the left side of the correlation
and thus achieve a high U score, e.g., syscall arguments such as “a1” � “items” with
around 1000 unique “a1” values. Since their prediction strengths merely emerge from the
large value space, adjusting θ1 successfully omits these correlations.

In addition to adjusting θ1, we increase θ7 from 0.05 to 0.2 in Fig. 6.2b so that only
variable pairs with strong dependency remain. This further reduces the amount of
monitored correlations to 97 and omits correlations involving IDs such as “ppid” � “exe”,
while more interesting correlations such as the sample correlation between “syscall” and
“items” from Table 6.1 remains in both directions. We conclude that these experiments
show the VCD is capable of selecting useful and strong correlations based on user-defined
thresholds.

6.3.2 Anomaly Detection
This part of the evaluation validates the anomaly detection capabilities of the VCD. We
first provide information on the log data and then present the results.

Data

We use Apache access logs from the AIT-LDSv1.1 [LSW+20a] that was presented in Chap.
3 for this part of the evaluation. These logs are relevant, because they involve several
categorical variables, including IP addresses, request methods (e.g., “GET”, “POST”),
resource names, status codes, etc. In addition, web-based attacks frequently manifest
themselves as changes of multiple sequential values in these variables. In particular, we
select (i) a brute-force login attack using Hydra [Hyd] that repeatedly requests the login
web page with arbitrary user data, and (ii) a Nikto vulnerability scan [Nik] that requests
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Figure 6.3: Anomaly detection ROC plots for two attack scenarios.

non-available resources and thereby causes multiple redirects that correspond to status
code 302. To evaluate detection accuracy with respect to different attack executions, we
simulate varying intensities by injecting only a certain amount of events at particular
times. Precisely, we inject batches of 5, 10, 20, 50, and 200 events for each attack in
intervals of 10000 lines (around 12 hours). We label log line samples containing these
batches as anomalous to measure the detection accuracy of the VCD in the following.

Results

For both attack cases, we configure the VCD to use the first N = 10000 lines of the
Apache Access log files for initialization of the correlations. Thereby, we set θ3 = 0.7
and θ7 = 0.005 since the involved variables usually have different distributions and are
relatively independent. All other parameters are used with default values (cf. Sect. 6.3.3).
After initialization, we use a test sample size of M = 1000 to update the correlations on
the remaining lines of the first day (20000 lines) using empirically determined confidences
α1 = 0.001 and α2 = 0.05, and an indicator list size d = 30. This phase omits correlations
that appear interesting during initialization, but are too unstable for anomaly detection.
With the beginning of the second day, we switch the VCD from updating to testing
mode, i.e., correlations that fail tests are no longer changed or omitted. We experiment
with different values for α1 in the test phase and count true positives (TP ) as detected
samples containing injected lines, false positives (FP ) as detected normal samples, false
negatives (FN) as undetected samples containing injected lines, and true negatives (TN)
as undetected normal samples.

For comparison, we select Principal Component Analysis (PCA) as a baseline, because
it allows to handle categorical data through one-hot encoding of values. Similar to the
VCD, we use samples of 1000 lines to generate value count vectors and use the first 30000
lines for model building. In the subsequent detection phase, we measure the squared
prediction error of test samples and mark them as anomalies if the error exceeds threshold
Qα, where confidence α is varied [HZHL16].

Figure 6.3a shows the trade-off between true positive rate (TPR = T P
T P +F N ) and false

positive rate (FPR = F P
F P +T N ) of VCD and PCA in the first attack scenario. The

results indicate that the VCD successfully detects the attack and yields TPR = 60%
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(corresponding to the detection of the samples containing 20, 50, and 200 injected
lines) at only FPR = 10%. Closer inspection of the anomalies shows that involved
variables are mainly “request” and “referer”. In the training phase, the request to the
login page “/login.php” occurs in 1.2% of all lines, half of these times with referer
“http://mail.insect.com/login.php” and with “-” otherwise. However, requests to the login
page made by the Hydra attack always have referer “-” and thus distort this distribution
within the test sample, which is detected by the VCD. On the other hand, the PCA ROC
curve indicates that it is only slightly better than random guessing. The reason for this
is that the one-hot encoded data becomes very high-dimensional and PCA is thus unable
to detect slight changes of single values in such complex models.

For the second attack scenario, relevant variables include the request method, where
values “GET”, “POST”, and “OPTIONS” occur with 74%, 21%, and 5% in the training
data respectively, as well as the status code, where 200 occurs in 96% and 302 in 4% of
these lines. The Nikto scan generates lines with request method “GET” and status code
“302”, a combination that only occurs in 0.5% of all lines. Since the VCD is better suited
to detect changes of occurrences conditioned by infrequent values such as “302”�“GET”
of correlation “status”�“method”, it performs better than PCA as visible in Fig. 6.3b.

6.3.3 Threshold Parameter Selection
The filtering steps for correlations between variables and values presented in Sect. 6.2
make use of threshold parameters θ1-θ8 to narrow down the search space and select only
those correlations that are likely to positively contribute to the detection of anomalies.
This section investigates the influence of these threshold parameters on the resulting
correlations and thereby supports the manual parameter selection process, in particular,
by relating each parameter to specific properties of the data at hand. In the following,
we first explain the generation of synthetic data for this evaluation and then describe our
experiments.

Data

To measure the influence of thresholds on the correlation selection, it is necessary to
control properties of the input data. Therefore, we generate synthetic data for our
experiments. We use three variables V1, V2, and V3, of which only V1 and V2 correlate
with varying strength, and monitor the correlations found by the VCD for different
threshold settings. We use values Vi = {0, 1, ..., x} , x ∈ N for each variable and compute
their occurrence probabilities as normalized geometric series. Equation 6.15 shows how
the probabilities for values in V1 and V3 are computed, where pi = 1 means that all values
are equally likely to occur, and lower values mean that one or more values are dominating
the probability distribution. Equation 6.16 shows how the conditional probabilities of
values in V2 given values from V1 are computed. Thereby, ρ specifies the correlation
strength, i.e., larger values for ρ indicate that the same values co-occur more frequently
with each other, and ζ is a damping factor that reduces the correlation strength for larger
vi,j , i.e., higher values for ζ cause more co-occurrences between different values.
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Figure 6.4: Value co-occurrences of damped correlation.

P (vi,j) = pj
i�|Vi|

j�=0 pj�
i

(6.15)

P (vk,l | vi,j) = (1 − ρ)|j−l| + ζ ||Vi|−j|�|Vk|
l�=0 (1 − ρ)|j−l�| + ζ ||Vi|−j|

(6.16)

Figure 6.4 shows the co-occurrences of values from V1 and V2 for a sample configuration
of x = 9, p1 = 0.7, ρ = 0.9, and ζ = 0.4. Due to the relatively strong correlation factor,
most values in V1 occur with the same value of V2. The figure also shows that higher
values of V1 co-occur with more values of V2 due to the damping factor, e.g., while v1,1
only occurs with four different values of V2, v1,9 occurs with each value of V2 at least
once.

To evaluate the accuracy of the correlation selection procedure, we generate a ground
truth of expected value correlations that contains all v1,j � v2,l and v2,l � v1,j that
occur at least once in the data. We count correlations selected by the VCD and
present in the ground truth as true positives (TP), correlations not present in the
ground truth as false positives (FP), correlations missed by the VCD as false negatives
(FN), and all other correlations as true negatives (TN). We use the F-score F1 =
TP/ (TP + 0.5 · (FP + FN)) to measure the accuracy in the next section.

Results

We first experiment with θ7, which is essential for selecting correlations that represent
actual dependencies between the values and do not spuriously emerge from skewed value
probability distributions. To analyze the relationship between θ7 and the correlation
strength, we increase θ7 in steps of 0.05 and ρ in steps of 0.1 in the range [0, 1] while
leaving p1 = 0.7, p3 = 0.7, ζ = 0.4 constant, generate 10 data samples with 10000 events
respectively as outlined in the previous section, and then compute the average F-score of
these simulation runs. The results visualized in Fig. 6.5a show that weaker correlation
strengths require θ7 to be sufficiently low to select all correct correlations and achieve the
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Figure 6.5: Influence of thresholds on accuracy of correlation selection.

highest possible F-score of 1. However, setting θ7 to 0 causes a decrease of the F-score
independent of the correlation strength. The reason for this is that correlations involving
V3 are not checked for dependency and are thus incorrectly selected, which increases
the number of FP. We therefore conclude that θ7 should be set to a low, but non-zero
value, e.g., 0.05. Note that the selection of θ7 is not affected by ζ, since additional value
co-occurrences only have little influence on the sum of variances as long as they are not
dominating the distribution.

Threshold θ5 on the other hand relies on the total number of co-occurrences for a given
value and is thus influenced by ζ in addition to ρ. Figure 6.5b shows the F-score for
various combinations of θ5 and ζ, while ρ = 1 is fixed. As expected, increasing values for
ζ yield lower F-scores for a given θ5, because the number of distinct co-occurring values
for any given value increases quickly (cf. Fig. 6.4). Accordingly, it is necessary to set
θ5 ≥ 1 for ζ > 0.5 to select any correlations. For ζ ≤ 0.5, θ5 effectively steers the allowed
number of distinct co-occurrences, e.g., for θ5 = 0.5 at most 5 co-occurring values are
allowed since |Vi| = 10, ∀i.

We argue that the influence of other thresholds is trivial and therefore omit the plots for
brevity. Table 6.4 shows a summary of all thresholds and the data properties with the
highest influence on their selection. Note that θ8 is most influenced by θ5 and θ6 rather
than a property of the input data, because these thresholds regulate the generation of
value correlations that affect the selection criterion involving θ8. The table also provides
default values that we identified as useful during our experiments and are used in the
evaluations in Sect. 6.3.

These results indicate that the large number of parameters does not impede practical
application of the VCD, since the thresholds are mostly independent from each other
and allow to configure the correlation selection constraints specifically to counteract
otherwise problematic properties of the data. For example, a high number of correlations
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Table 6.4: Dependencies and default values of thresholds

Thresh. Infl. by Default
θ1 |V| , N 0.3
θ2 p 0.4
θ3 p, ρ 0.5
θ4 V 0

Thresh. Infl. by Default
θ5 ρ, ζ 0.5
θ6 ρ, ζ 1
θ7 ρ 0.05
θ8 θ5, θ6 0.7

involving many distinct values (i.e., |V| is large) or weakly correlated variables (i.e., ρ is
low) should be addressed by adjusting θ1 and θ7 accordingly to reduce the total number
of correlations that are considered for anomaly detection as shown in Sect. 6.3.1.

6.4 Discussion
The evaluation in the previous section ascertains that the VCD selects appropriate
variables for correlation analysis and detects anomalies by monitoring co-occurrences of
correlated values over time. Thereby, the VCD makes use of a sequence of filtering steps
that are separately configured by thresholds. We recognize that such a large number
of parameters usually complicates practical application [TH19], however, we argue that
this is not the case for the VCD since the thresholds are set relatively independent and
specific to certain properties of the data (cf. Sect. 6.3.3). In addition, it is possible to
omit single selection steps and iteratively refine the limits of the search space as we show
in Sect. 6.3.1.

Our approach focuses on the correlation between pairs of variables rather than correlations
where more than two variables are involved, e.g., V1 � {V2, V3} or {V1, V2} � V3.
However, we argue that this is trivial to achieve, since our selection criteria work
analogously with combined occurrences of values. In fact, our implementation [AMi]
supports correlation analysis of specific subsets of variables.

Finally, we suggest to develop selection strategies similar to the one presented in this
chapter, but with a focus on mixes of categorical and continuous variables, i.e., categorical
values indicate that values of another variable origin from a particular continuous
distribution. For example, logged measurement data such as memory usage could follow
a normal distribution with mean and variance depending on an active user. We leave
this task for future research.

6.5 Summary
This chapter presents the Variable Correlation Detector (VCD), a novel approach for
anomaly detection based on value co-occurrences in categorical variables of log events.
The VCD comprises two modes. First, an initialization mode where variable and value
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correlations are iteratively selected by multiple factors, such as skewness, similarity, and
dependency of value occurrence probabilities as well as diversity and coverage of values.
Second, an online learning and detection mode that continuously updates the identified
correlations and reports anomalies based on deviations of the conditional occurrences.
Other than state-of-the-art approaches, the VCD also analyzes infrequent values and
recognizes system behavior changes that occur over long time spans.

As all anomaly-based detectors, application of the VCD in real-world scenarios is con-
strained by high amounts of false positives. To some degree, this situation may be
related to inappropriate configurations and could thus be alleviated by modifying the
thresholds accordingly. However, many anomalies may also be related to unusual but
otherwise benign changes of the monitored system behavior, such as events caused by
changes of the system landscape or erratic human behavior. In addition, both benign
and malicious changes in behavior patterns are likely to raise multiple anomalies since
correlations of categorical variables are often interrelated and thus collectively report
anomalies. Whether they are true or false positives, analysts struggle to deal with such
large numbers of anomalies. To alleviate this problem, the following chapter proposes an
alert aggregation approach that groups anomalies and helps to identify false positives or
specific attack cases.
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CHAPTER 7
CTI Extraction

The previous section outlined a technique for the detection of anomalous value correlations
in log data. Anomalies reported by this detector provide some information on the
expected and observed correlation behavior, but otherwise require human operators
for interpretation and reasoning as the detector itself is unable to recognize specific
attacks or assign corresponding labels. In addition, as all anomaly detection techniques,
the presented approach may produce relatively high amounts of false positives. Alert
aggregation pursues to alleviate these problems by grouping and correlating alerts into
cyber threat intelligence (CTI), i.e., alert patterns that describe complex system behavior
and enable automatic detection of similar attacks. This chapter therefore describes an
alert aggregation technique that transforms anomalies generated by one or more detectors
into higher-level CTI. Major parts of this chapter have been published in [LSWR22].

The situation where alerts occur in such large volumes that analysts are too overwhelmed
to reliably assess and process them is commonly referred to as alert flooding [Jul03]. The
number of produced alerts thereby usually depends on the deployed IDS as well as the
type of attack. For example, attacks that result in many alerts include denial-of-service
attacks that access machines with high intensity, brute-force attacks that repeatedly
attempt to log into accounts with random passwords, and automatic scripts that search
for vulnerabilities [HWF19]. These attacks produce high loads on the network and
consequently cause the generation of many events in the monitored logs, of which a large
part is reported by signature-based IDSs that search for patterns corresponding to such
common attacks. On the other hand, anomaly-based IDSs such as the VCD presented in
Chap. 6 that learn a baseline of normal system behavior and report alerts for statistical
deviations are known to suffer from high false positive rates, i.e., they frequently report
alerts during normal operation. Independent from their origin, alerts that occur in
large frequencies are problematic, because they are difficult to categorize and may cause
that analysts overlook other relevant alerts that occur less frequently [EO11,Jul03]. To
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alleviate this issue, alerts should be filtered or aggregated before being presented to
human analysts.

Alert aggregation techniques usually rely on automatic correlation or manual linking of
alert attributes [NDP18]. However, organizations frequently deploy heterogeneous IDSs
to enable broad and comprehensive protection against a wide variety of threats, causing
that generated alerts have different formats and thus require normalization [SMFDV13].
Most commonly, attributes of alerts are thereby reduced to timestamps, source and
destination IP addresses and ports, and IDS-specific classifications, which are considered
the most relevant features of alerts [ASZ+16]. Unfortunately, alerts from host-based
IDSs do not necessarily contain network information and alerts from anomaly-based
IDSs do not involve alert types, which renders them unsuitable for existing aggregation
techniques. In their survey, Navarro et al. [NDP18] therefore recommend to develop alert
aggregation techniques that operate on general events rather than well-formatted alerts to
avoid loss of context information. The authors also found that most existing approaches
rely on predefined knowledge for linking alerts, which impedes detection of unknown
attack scenarios. In addition, modern infrastructures consist of decentralized networks
and container-based virtualization that prevent IP-based correlation [HWF19]. There is
therefore a need for an automatic and domain-independent alert aggregation technique
that operates on arbitrary formatted alerts and is capable of generating representative
attack patterns independent from any pre-existing knowledge about attack scenarios.

IDSs generate streams of individual alerts. Aggregating these alerts means to group
them so that all alerts in each group are related to the same root cause, i.e., a specific
malicious action or attack. Unfortunately, finding such a mapping between alerts and
attacks is difficult for a number of reasons. First, attack executions usually trigger the
generation of multiple alerts [RSG10], because IDSs are set up to monitor various parts
of a system and any malicious activity frequently affects multiple monitored services
at the same time. This implies that it is necessary to map a set of alerts to a specific
attack execution, not just a single alert instance. Second, it is possible that the same or
similar alerts are generated as part of multiple different attacks, which implies that there
is no unique mapping from alerts to attacks. This is caused by the fact that IDSs are
usually configured for a very broad detection and do not only consist of precise rules that
are specific to particular attacks. Third, repeated executions of the same attack do not
necessarily manifest themselves in the same way, but rather involve different amounts of
alerts and changes of their attributes. This effect is even more drastic when parameters
of the attack are varied, their executions take place on different system environments, or
alerts are obtained from differently configured IDSs. Fourth, randomly occurring false
positives that make up a considerable part of all alerts [Jul03] as well as interleaving
attacks complicate a correct separation of alerts that relate to the same root cause.

In addition, alert sequences should be aggregated to higher-level alert patterns to enable
the classification of other alerts relating to the same root cause. In the following, we
refer to these patterns as meta-alerts. The aforementioned problems are insufficiently
solved by existing approaches, which usually rely on models built on pre-existing domain
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knowledge, manually crafted links between alerts, and exploitation of well-structured
alert formats.

This chapter thus presents a framework for automatic and domain-independent alert
aggregation. The approach consists of an algorithm that groups alerts by their occurrence
times, clusters these groups by similarity, and extracts commonalities to model meta-alerts.
We summarize our contributions as follows:

• An approach for the incremental generation of meta-alerts from heterogeneous IDS
alerts,

• similarity-metrics for semi-structured alerts and groups of such alerts,

• aggregation mechanisms for semi-structured alerts and groups of such alerts, and

• an evaluation of the proposed approach based on alerts from real-world systems.

The remainder of this chapter is structured as follows. Section 7.1 outlines important
concepts of our approach, including alerts, alert groups, and meta-alerts. Section 7.2
describes the overall procedure of the framework. Section 7.3 explains the realization of
the concepts with the aid of pseudo code. We present the evaluation of our approach in
Sect. 7.4 and discuss the results. Finally, Sect. 7.5 summarizes the chapter.

7.1 Entities & Operations
This section presents relevant concepts of our alert aggregation approach. We first provide
an overview of the entities and their relationships. We then discuss our notion of alerts,
outline how alerts are clustered into groups, and introduce a meta-alert model based on
aggregated alert groups.

7.1.1 Overview
Our approach transforms alerts generated by IDS into higher-level meta-alerts that
represent specific attack patterns. Figure 7.1 shows an overview of the involved concepts.
The top of the figure represents alerts occurring as sequences of events on two timelines,
which represent different IDSs deployed in the same network infrastructure or even
separate system environments. Another possibility is that events are retrieved from
historic alert logs and used for forensic attack analysis.

Alert occurrences are marked with symbols and colors that represent their types. Thereby,
two alerts could be of the same type if they share the same structure, were generated
by the same rule in the IDS, or have coinciding classifications. We differentiate between
square (�), triangle (�,�, 1, 2), circle (◦), and dash (−) symbols, which are marked blue,
red, green, and yellow respectively. For the examples presented throughout this chapter,
we consider alerts represented by one of {�,�, 1, 2} as variations of the same alert type,
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1) Alerts

2) Alert groups

3) Meta-alerts

t t

Figure 7.1: Overview of the relationships between concepts. Alerts (top) occurring
on timelines (t) are grouped by temporal proximity (center) and then aggregated to
meta-alerts by similarity (bottom).

i.e., these alerts have sufficiently many commonalities such as matching attributes and
are thus similar to each other. In general, each alert represents a unique event that occurs
only at one specific point in time. However, alerts of the same type, e.g., alerts that are
generated by the same violation of a predefined rule or alerts reported by the same IDS,
may occur multiple times. We mark these alerts accordingly with the same color.

As outlined in the beginning of this chapter, automatic mapping of alerts to higher-level
meta-alerts is non-trivial. In the simple example shown in Fig. 7.1, it is easy to see
that the alert sequence (�, �, ◦) and the similar sequence (�,�, ◦) occur a total of three
times, and that the pattern (◦, ◦,�) occurs two times over the two timelines. This is
intuitively visible, because these alerts occur close together. Accordingly, it is reasonable
to allocate alerts to groups that reflect this characteristic.

The center part of the figure shows groups of alerts based on their respective positions
on the timelines. Note that grouping by alert type instead of temporal proximity would
result in a loss of information, because alerts would be allocated to groups independent of
their contexts, i.e., other alerts that are generated by the same root cause. For example,
grouping all alerts of type ◦ would have neglected the fact that this type actually occurs
in the patterns (�, �, ◦) as well as (◦, ◦,�) and may thus not be a good indicator for a
particular attack execution on its own.

Computing similarities between groups means measuring the differences of orders, frequen-
cies, and attributes of their contained alerts. Alert groups that yield a high similarity are
likely related to the same root cause and should thus be aggregated into a condensed form
that reflects a typical instance of that group, i.e., a meta-alert. The bottom of the figure
shows the generation of meta-alerts from similar groups. Thereby, orders, frequencies,
and attributes of meta-alerts are created in a way to represent all allocated alert groups
as accurate as possible. The figure shows that this is accomplished by merging the second
alert in the patterns (�, �, ◦) and (�,�, ◦) into alert 21, which combines attributes and
values of � and � so that both are adequately represented. In practice, this could mean
that two different values of the same attribute in both alerts are combined into a set.
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The second meta-alert with alert sequence (◦, ◦,�) is formed from two identical groups
and thus does not involve changes to merged alerts. If meta-alert generation was based
on similarity of alerts rather than groups, all occurrences of similar alerts � and � would
be replaced with 21, thereby decreasing the specificity of the second meta-alert. This
suggests that forming groups of logically related alerts is an essential step for meta-alert
generation. Finally, the third meta-alert contains a single alert that only occurred once
and is the only alert in its group. Since alerts form the basis of the presented approach,
the following section will discuss their compositions in more detail.

7.1.2 Alerts
IDSs are designed to transmit as much useful information as possible to the person or
system that receives, interprets, and acts upon the generated alerts. This includes data
derived from the event that triggered the alert, e.g., IP addresses present in the monitored
data, as well as information on the context of detection, e.g., detection rule identifiers.
As outlined in Sect. 2.4, most existing approaches omit a lot of this information and only
focus on specific predefined attributes. Our approach, however, utilizes all available data
to generate meta-alerts without imposing any domain-specific restrictions.

To organize all data conveyed with each alert in an intuitive form, alerts are frequently
represented as semi-structured objects, e.g., XML-formatted alerts as defined by the
IDMEF [IDM] or JSON-formatted alerts generated by Wazuh [Waz] IDS. Even though
such standards exist, different IDSs produce alerts with data fields specific to their
detection techniques. For example, a signature-based detection approach usually provides
information on the rule that triggered the alert, while anomaly-based IDSs only indicate
suspicious event occurrences without any semantic interpretation of the observed activity.
In addition, some IDSs do not provide all attributes required by standards such as IDMEF,
e.g., host-based IDSs analyze system logs that do not necessarily contain network and IP
information.

Figure 7.2 shows such an alert that was caused by a failed user login attempt generated
by Wazuh. Note that it does not support IP-based correlation, since only “srcip”
that points to localhost is available. The alert contains semi-structured elements, i.e.,
key-value pairs (e.g., “timestamp”), lists (e.g., “groups”), and nested objects (e.g.,
“rule”). In alignment with this observation, we model alerts as abstract objects with
arbitrary numbers of attributes. Formally, given a set of alerts A, an alert a ∈ A holds
one or more attributes κa, where each attribute a.k is defined as in Eq. 7.1.

a.k = v1, v2, ..., vn ∀k ∈ κa, n ∈ N (7.1)

Note that Eq. 7.1 also holds for nested attributes, i.e., a.k.j, ∀j ∈ κa.k, and that vi is an
arbitrary value, such as a number or character sequence. In the following we assume
that the timestamp of the alert is stored in key t ∈ κa, ∀a ∈ A, e.g., a.t = 1 for alert a
that occurs at time step 1. These alert attributes are suitable to compare alerts and
measure their similarities, e.g., alerts that share a high number of keys and additionally
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{
"timestamp": "2020-03-04T19:26:05.000000+0000",
"rule": {

"level": 5,
"description": "PAM: User login failed.",
"id": "5503",
"firedtimes": 28,
"groups": [

"pam",
"syslog",
"authentication_failed"

]
},
"full_log": "Mar 4 19:26:05 mail auth: pam_unix(dovecot:auth): authentication

failure; logname= uid=0 euid=0 tty=dovecot ruser=daryl rhost=127.0.0.1
user=daryl",

"data": {
"srcip": "127.0.0.1",
"srcuser": "daryl",
"dstuser": "daryl",
"uid": "0",
"euid": "0",
"tty": "dovecot"

},
"location": "/var/log/forensic/auth.log"

}

Figure 7.2: Simplified sample alert documenting a failed user login.

have many coinciding values for each common key should yield a high similarity, because
they are likely related to the same suspicious event. This also means that values such as
IPs are not ignored, but matched by common keys like all other attributes. We define a
function alert_sim in Eq. 7.2 that computes the similarity of alerts a, b ∈ A.

alert_sim : a, b ∈ A → [0, 1] (7.2)

Thereby, the similarity between any non-empty alert and itself is 1 and the similarity
to an empty object is 0. Furthermore, the function is symmetric, which is intuitively
reasonable when comparing alerts on the same level of abstraction. On the other hand,
the function implicitly computes how well one alert is represented by another more
abstract alert as we will outline in Sect. 7.3.1. We summarize the properties of the
function in Eq. 7.3-7.5.

alert_sim(a, a) = 1 (7.3)
alert_sim(a, ∅) = 0, a �= ∅ (7.4)
alert_sim(a, b) = alert_sim(b, a) (7.5)

As mentioned, we do not make any restrictions on the attributes of alerts and only
consider the timestamp a.t of alert a as mandatory, which is not a limitation since the
time of detection is always known by the IDS or can be extracted from the monitored
data. In the next section, this timestamp will be used to allocate alerts that occur in
close temporal proximity to groups.
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7.1.3 Alert Groups
Alerts generated by an arbitrary number of deployed IDSs result in a sequence of
heterogeneous events. Since attacks typically manifest themselves in multiple mutually
dependent alerts rather than singular events, it is beneficial to find groups of alerts that
were generated by the same root cause as shown in Sect. 7.1.1. In the following, we
describe our strategies for formation and representation of alert groups that enable group
similarity computation.

Formation

Depending on the type of IDS, alerts may already contain some kind of classification
provided by their detection rules. For example, the message “PAM: User login
failed.” contained in the alert shown in Fig. 7.2 could be used to classify and group
every event caused by invalid logins. While existing approaches commonly perform
clustering on such pre-classifications of IDSs, single alerts are usually not sufficient to
differentiate between specific types of attacks or accurately filter out false positives. To
alleviate this problem, we identify multiple alerts that are generated in close temporal
proximity and whose combined occurrence is a better indicator for a specific attack
execution. For example, a large number of alerts classified as failed user login attempts
that occur in a short period of time and in combination with a suspicious user agent
could be an indicator for a brute-force password guessing attack executed through a
particular tool. Such a reasoning would not be possible when all alerts are analyzed
individually, because single failed logins may be false positives and the specific user agent
could also be part of other attack scenarios.

The problem of insufficient classification is even more drastic when alerts are received
from anomaly-based IDS, because they mainly disclose unknown attacks. Accordingly, an
approach that relies on clustering by alert classification attributes would require human
analysts who interpret the root causes and assign a classifier to each alert. Temporal
grouping on the other hand is always possible for sequentially incoming alerts and does
not rely on the presence of alert attributes.

Our strategy for alert group formation is based on the interval times between alerts.
In particular, two alerts a, b ∈ A that occur at times a.t, b.t have an interval time
|a.t − b.t| and are allocated to the same group if |a.t − b.t| ≤ δ, where δ ∈ R+. This
is achieved through single-linkage clustering [ELLS11]. In particular, all alerts are
initially contained in their own sets, i.e., sδ,i = {ai} , ∀ai ∈ A. Then, clusters are
iteratively formed by repeatedly merging the two sets with the shortest interval time
d = min (|ai.t − aj .t|) , ∀ai ∈ sδ,i, ∀aj ∈ sδ,j . This agglomerative clustering procedure is
stopped when d > δ, which results in a number of sets sδ,i. Each set is transformed into
a group gδ,i that holds all alerts of set sδ,i as a sequence sorted by their occurrence time
stamps as in Eq. 7.6.

gδ,i = {(a1, a2, . . . , an) , ∀ai ∈ sδ,i : a1.t ≤ a2.t ≤ · · · ≤ an.t} (7.6)
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(a) δ=3.5 

(b) δ=2.5 

(c) δ=1.5 
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Figure 7.3: Alert occurrences duplicated over four parallel timelines show the formation of
alert groups based on alert interval times. Larger intervals (top) allow more elapsed time
between alerts and thus lead to fewer and larger groups compared to smaller intervals
(bottom).

Equation 7.7 defines the set of all groups for a specific δ as their union.

Gδ =
�
i∈N

gδ,i (7.7)

This group formation strategy is exemplarily visualized in Fig. 7.3. The figure shows
alert occurrences of types {�, �, ◦, −} in specific patterns duplicated over four timelines
with different δ. The sequence (�, �, ◦) at the beginning of the timelines occurs with
short alert interval times and that a similar sequence (�,�, ◦) occurs at the end, but
involves � instead of its variant � and has an increased interval time between � and ◦.
Nevertheless, due to the similar compositions of these two alert sequences, it is reasonable
to assume that they are two manifestations of the same root cause.

In this example, each tick in the figure marks a time span of 1 unit. In timeline (d),
all alerts end up in separate groups, because no two alerts yield a sufficiently small
interval time lower than δ = 0.5, i.e., G0.5 = {(�) , (�) , (◦) , (−) , (�) , (�) , (◦)}. In
timeline (c) where alerts are grouped using δ = 1.5, two groups that contain more
than a single alert are formed, because the grouped alerts occur within sufficiently close
temporal proximity, i.e., G1.5 = {(�, �, ◦) , (−) , (�,�) , (◦)}. Considering the results for
G2.5 = {(�, �, ◦) , (−) , (�,�, ◦)} in timeline (b) shows that the aforementioned repeating
pattern (�, �, ◦) and its variant end up in two distinct groups. This is the optimal case,
since subsequent steps for group analysis could determine that both groups are similar
and thus merge them into a meta-alert as shown in Sect. 7.1.1. A larger value for delta,
e.g., δ = 3.5 that yields G3.5 = {(�, �, ◦) , (−,�,�, ◦)} in timeline (a), adds alert of type
− to form group (−,�,�, ◦), which is not desirable since this decreases its similarity to
group (�, �, ◦). This example thus shows the importance for an appropriate selection of
the interval threshold for subsequent analyses.

Note that this strategy for temporal grouping has several advantages over sliding time-
windows. First, instead of time window size and step width, only a single parameter that
specifies the maximum delta time between alerts is required, which reduces complexity of
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parameter selection. Second, it ensures that alerts with close temporal proximity remain
in the same group given any delta larger than their interval times, while intervals of
sliding time-windows possibly break up groups by chance. Third, related sequences with
variable delays are more likely to end up in the same group, e.g., two groups with similar
alerts but varying delays are found for δ = 2.5 in Fig. 7.3.

Despite these benefits, pure time-based grouping suffers from some drawbacks compared
to knowledge-based clustering methods, e.g., grouping by classification messages. As seen
in the example from Fig. 7.3, the quality of the resulting grouping is highly dependent
on a selection of the parameter δ that fits the typical time interval of the events to
be grouped. Another issue is that randomly occurring alerts, e.g., false positives, are
incorrectly allocated to groups if they occur in close proximity to one of the grouped
alerts, and may even connect two or more groups into a single large group if they happen
to occur in between and in sufficiently high amount or close proximity to both groups.
As we will outline in the following sections, our approach mitigates these problems by
finding groups using several values for δ in parallel.

Similarity Computation

Other than clustering based on predefined alert types, time-based grouping only acts as
a preparatory step for subsequent analyses. In particular, a similarity measure for alert
groups is required that allows to determine which groups of alerts are likely generated
from the same root cause. Only then it is possible to cluster groups by their similarities
and in turn generate meta-alerts by merging alert groups that end up in the same clusters.
We therefore define function group_sim in Eq. 7.8 that computes the similarity of any
two groups g, h ∈ Gδ.

group_sim : g, h ∈ Gδ → [0, 1] (7.8)

Analogous to alert similarity computation (cf. Sect. 7.1.2), the similarity between any
non-empty group g ∈ Gδ and itself is 1 and the similarity to an empty object is 0.
However, we do not impose symmetry on the function, since it can be of interest to
measure whether one group is contained in another possibly more abstract group, such
as a meta-alert. Details on such a similarity function are discussed in Sect. 7.3.2. In the
following section, we first explain the representation of meta-alerts and then introduce
matching strategies for similarity computations between groups.

7.1.4 Meta-Alerts

We generate meta-alerts by merging groups, which relies on merging alerts within these
groups. In the following, we first introduce features that support the representation of
merged alerts and then outline group merging strategies for similarity computations and
meta-alert generation.
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Alert Merges

As outlined in Sect. 7.1.2, alerts are semi-structured objects, i.e., data structures that
contain key-value pairs, and are suitable for similarity computation. However, aggregating
similar alerts into a merged object that is representative for all allocated alerts is non-
trivial, because single alert objects may have different keys or values that need to be
taken into account.

For example, the failed login alert in Fig. 7.2 contains the attribute “srcuser” with value
“daryl” in the “data” object. Since a large number of users may trigger such alerts,
this event type occurs with many different values for attribute “srcuser” over time.
An aggregated alert optimally abstracts over such attributes to represent a general failed
login alert that does not contain any user information. The computed similarity between
such an aggregated alert and any specific alert instance is independent of attributes that
are known to vary, i.e., only the presence of the attribute “srcuser” contributes to
similarity computations, but not its value. Note that this assumes that keys across alerts
have the same semantic meaning or that keys with different names are correctly mapped
if alert formats are inconsistent, e.g., keys “src_user” and “srcuser”.

We incorporate merging of alerts by introducing two new types of values. First, a wildcard
value type that indicates that the specific value of the corresponding key is not expressive
for that type of alert, i.e., any value of that field will yield a perfect match just like two
coinciding values. Typical candidates for values replaced by wildcards are user names,
domain names, IP addresses, counts, and timestamps. Second, a mergelist value type
that comprises a finite set of values observed in several alerts that are all regarded as
valid values, i.e., a single matching value from the mergelist is sufficient to yield a perfect
match for this attribute present in two compared alerts. The mergelist type is useful
for discrete values that occur in variations, e.g., commands or parameters derived from
events. Deciding whether an attribute should be represented as a wildcard or mergelist
is therefore based on the total number of unique values observed for that attribute (see
Sect. 7.3.3).

We define that each attribute key k ∈ κa of an aggregated alert a that is the result of a
merge of alerts A ⊆ A is represented as either a wildcard or mergelist as in Eq. 7.9.

a.k =

wildcard ()

mergelist (�b∈A b.k)
(7.9)

Note that Eq. 7.9 also applies for nested keys, i.e., values within nested objects stored in
the alerts. Since our approach is independent of any domain-specific reasoning, a manual
selection of attributes for the replacement with wildcards and mergelists is infeasible. The
function alert_merge thus automatically counts the number of unique values for each
attribute from alerts A ⊆ A passed as a parameter, selects and replaces them with the
appropriate representations, and returns a new alert object a that represents a merged
alert that is added to all alerts A as shown in Eq. 7.10-7.11.
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a = alert_merge(A), A ⊆ A (7.10)
A ⇐ a (7.11)

Note that we use the operation ⇐ to indicate set extensions, i.e., A ⇐ a ⇐⇒ A� =
A ∪ {a}. We drop the prime of sets like A� in the following for simplicity and assume
that after extension only the new sets will be used. The extension of A implies that
merged alerts are also suitable for similarity computation and merging with other alerts
or merged alerts. We will elaborate on the details of the alert merging procedure in Sect.
7.3.3. The next section will outline the role of alert merging when groups are merged for
meta-alert generation.

Group Merges

Similar to merging of alerts that was discussed in the previous section, a merged group
should represent a condensed abstraction of all groups used for its generation. Since each
group should ideally comprise a similar sequence of alerts, it may be tempting to merge
groups by forming a sequence of merged alerts, where the first alert is merged from the
first alerts in all groups, the second alert is merged from the second alerts in all groups,
and so on. Unfortunately, this is infeasible in practice, because alert sequences are not
necessarily ordered, involve optional alerts, or are affected by false positives causing that
alert positions in sequences are shifted. To alleviate this issue, it is necessary to find
matches between the alerts of all groups to be merged. In the following, we describe
three matching strategies used in our approach that are suitable for group similarity
computation as well as meta-alert generation.

Exact matching. This strategy finds for each alert in one group the most similar alert
in another group and uses these pairs to determine which alerts to merge. The idea of
finding these matches is depicted in the left side of Fig. 7.4, where lines across groups
g1, g2, g3 indicate which alerts were identified as the most similar. As expected, alerts of
the same type are matched, because they share several common attributes and values
that are specific to their respective types. The figure also shows that correct alerts are
matched even though the second and third alert in g2 are in a different order than in
g1 and g3. In addition, note that the alert of type � in g1 is correctly matched to the
related alert type � in g2 and that the merged group thus contains the merged alert
type 21 at that position. In addition, there is a missing alert of type ◦ in g3 that leads
to an incomplete match. Nevertheless, the alert of type ◦ ends up in the merged group,
because it occurs in the majority of all merged groups and is therefore considered to be
representative for this root cause manifestation.

When only two groups are considered, this matching method is also suitable for measuring
their similarity. In particular, this is achieved by computing the average similarity of all
matched alerts, where non-matching alerts count as total mismatches. The similarity
score is further enhanced by incorporating an edit distance [Nav01] that measures the
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Figure 7.4: Merging strategies for alert groups. Left: Finding exact matches between alert
pairs. Center: Matching representatives using a bag-of-alerts model. Right: Matching
using alert sequence alignment.

amount of inserts, removes, and substitutions of alerts, i.e., misalignments such as the
occurrence of (◦, �) instead of (�, ◦) in g2.

While the exact matching strategy yields accurate group similarities, it is rather inefficient
for large groups. The reason for this is that computing the pairwise similarities of all
alerts requires quadratic runtime with respect to group sizes. We therefore only use this
strategy when the number of required comparisons for groups g, h does not exceed a limit
lbag ∈ N, i.e., |g| · |h| ≤ lbag, where |g| denotes the size of group g. In the following, we
outline an alternative strategy for larger groups.

Bag-of-alerts matching. For this strategy, we transform the alert sequences of all groups
into a bag-of-alerts model following the well-known bag-of-words model [MSR08]. This is
accomplished by incrementally clustering the alerts within each group using a certain
similarity threshold θalert ∈ [0, 1], where each alert a that is sufficiently similar to one of
the initially empty set of cluster representatives R, i.e., alert_sim(r, a) ≥ θalert, ∀r ∈ R,
is added to the list Cr that stores all alerts of that cluster, i.e., Cr ⇐ a, or forms a new
cluster with itself as a representative otherwise, i.e., R ⇐ a. Once all alerts of a group
are processed, the bag-of-alerts model for that group is generated by merging all alerts
in each cluster, i.e., alert_merge(Cr), ∀r ∈ R.

The matching procedure then finds the pairs of these merged alerts that yield the highest
similarities across groups and aggregates them by identifying lower and upper limits of
their corresponding cluster sizes |Cr| in each group. The advantage in comparison to
the exact matching strategy is that the number of necessary similarity computations
is reduced to the product of the number of clusters per group, which is controllable
through θalert. Note that the speedup stems from the fact that the computation of the
bag-of-alerts model only has to be carried out once for each group, but then enables fast
matching with all other groups.

The center part of Fig. 7.4 shows bag-of-alert models for sample groups, where alerts of
types � and � in g1 are merged to 21, which is then matched to � in g2 and g3 before
they are once again merged for the generation of the meta-alert. Since alert type ◦ occurs
twice in g1 and g2, but only once in g3, the meta-alert uses a range with minimum limit
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lmin = 1 and maximum limit lmax = 2 to describe the occurrence frequency of this alert
type.

This strategy also supports measuring the similarity of two groups g, h by averaging the
relative differences of occurrence counts, which yields the highest possible similarity of
1 (i.e., a perfect match) if the respective counts coincide or their intervals overlap, and
min(lmax,g, lmax,h)/max(lmin,g, lmin,h) otherwise. Alerts without a match are considered
as total mismatches and contribute the lowest possible similarity score of 0 to the average.
We favored this similarity metric over existing measures such as cosine similarity [MSR08],
because it allows a more intuitive representation of lower and upper occurrence limits
which supports human interpretation of meta-alerts.

The downside of the bag-of-alerts strategy is that information on the order of the alerts is
lost. However, it is possible to resolve this issue by combining the original alert sequence
with the bag-of-alerts model. In the following, we outline this addition to the bag-of-alerts
matching.

Alignment-based matching. To incorporate alignment information for large clusters
that are not suited for the exact matching strategy, it is necessary to store the original
sequence position of all clustered alerts during generation of the bag-of-alerts model of
each group. This information enables to generate a sequence of cluster representatives.
For example, the right side of Fig. 7.4 shows that group g1 has sequence (�, 21, ◦,�, 21, ◦),
because the occurrences of � and � have been replaced by their cluster representative 21

that was generated in the bag-of-alerts model. Note that this strategy is much faster
for large groups than the exact matching strategy, because it enables to reuse the
matching information of representative alerts from the bag-of-alerts model instead of
finding matches between all alerts. Since the corresponding sequence elements across
groups are known, it is simple to use sequence alignment algorithms for merging and
similarity computation.

We decided to merge the sequences using longest common sequence (LCS) [Nav01],
because it enables to retrieve the common alert pattern present in all groups and thereby
omit randomly occurring false positive alerts [LSW+19]. The example in Fig. 7.4 shows
that this results in a sequence of representatives (�, ◦,�, 21) that occurs in the same
order in all groups. Using the LCS also enables to compute the sequence similarity of
two groups g, h by |LCS(g, h)| /min(|g| , |h|), which we use to improve the bag-of-alerts
similarity by incorporating it as a weighted term after averaging.

Equation 7.12 defines a function that takes a set of groups G ⊆ Gδ and automatically
performs all aforementioned merging strategies to generate a new group g.

g = group_merge(G), G ⊆ Gδ (7.12)
Gδ ⇐ g (7.13)

Analogous to merges of single alerts, Eq. 7.13 indicates that merges of alert groups have
the same properties as normal groups and therefore support similarity computation and
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merging. In the previous sections, we defined several functions required for meta-alert
generation. The following section will embed all aforementioned concepts in an overall
procedure.

7.2 Framework
This section outlines a procedure for meta-alert generation based on the aforementioned
concepts and functions. We first describe the overall approach and then present its steps
in two scenarios.

7.2.1 Overview
Our procedure reads in a sequence of alerts from one or multiple IDSs. The first step
is to form groups from these incoming alerts as outlined in Sect. 7.1.3. Unfortunately,
manually specifying δ as the maximum allowed interval time between alerts is non-trivial,
because it requires a high amount of knowledge about alert interactions and expected
attack pattern structures. Even worse, different alert patterns may require specific
settings for δ that are incompatible with each other. To resolve this issue, we carry out
group formation in parallel for several values δ ∈ Δ similar to Fig. 7.3, where Δ is the
set of all values for δ. This increases the chance that valid and usable meta-alerts are
found for various types of attacks. In addition, it forms a hierarchical structure of alert
patterns, where small δ values generate groups that contain mainly technically linked
alerts, e.g., a failed login alert that occurs simultaneously with a frequency alert for such
events, and groups generated by large δ values that contain sequentially executed attack
steps [LSW+19]. For simplicity, we only use δ in the following and implicitly assume that
all computations are carried out for all δ ∈ Δ analogously.

We define a set of meta-alerts Mδ that holds merged groups. Note that the index δ
indicates that meta-alerts are generated for all δ values separately, i.e., groups formed by
different δ values are not merged together. The reason for this is that merging groups
that were partially formed from the same alert occurrences may lead to overly generalized
meta-alerts and thus loss of information. For example, consider the groups from Fig.
7.3, where group (�,�, ◦) ∈ G2.5 and group (−,�,�, ◦) ∈ G3.5 contain three identical
alerts and may thus be considered similar enough for merging. This is not desirable,
since the resulting merge will involve the alert type −, which is not part of the actual
attack pattern (�, 21, ◦) that is the result of merging (�, �, ◦) ∈ G2.5 and (�,�, ◦) ∈ G2.5.
Such cascading merges occurring over different δ values could mostly be prevented by
prohibiting merges of groups that contain identical alert instances. However, to avoid
this issue altogether and to enable a thorough evaluation for each δ value, we process all
meta-alerts sets Mδ isolated.

A new group g ∈ Gδ is incrementally added to the set of meta-alerts Mδ by finding the
meta-alert m ∈ Mδ with the highest similarity, i.e., sim = maxm∈Mδ

(group_sim(g, m)).
If the similarity is higher than a predefined threshold θgroup ∈ [0, 1], i.e., sim ≥ θgroup,
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the group is added to the most similar meta-alert m, otherwise a new meta-alert is
generated for this group.

While it may be typical for incremental approaches, it is not recommended to merge
group g and meta-alert m directly, i.e., m = group_merge({g, m}), because this causes
that meta-alerts over-generalize over time. The reason for this is that a single incorrect
allocation of a group to a meta-alert extends mergelists of attributes or introduces
wildcards, which will increase the similarity of the meta-alert to all other groups and thus
make it more susceptible to incorrect allocations in a self-enforcing loop. As a solution,
we store allocated groups for each meta-alert in a so-called knowledge base Kδ, where
Km ⊆ Kδ is the set of all groups allocated to meta-alert m. For group g and meta-alert
m where sim ≥ θgroup, we therefore update the knowledge base Km ⇐ g and regenerate
meta-alert m = group_merge(Km) from all groups. The advantage of this strategy is
that it allows to generate meta-alerts from more than two groups at the same time,
which is more robust against single group misallocations since attribute merging can be
based on majority decision or predefined minimum occurrences. In addition, it allows to
adapt group allocations in the knowledge base, e.g., reallocate individual groups that
turn out to be incorrectly classified without the need to remove the meta-alert, split one
meta-alert m into multiple meta-alerts by extracting subsets of Km, or merge meta-alerts
by unifying their groups.

Storing all identified groups in the knowledge base is usually infeasible in practice due to
limited available memory as well as increasing runtime for merging larger amounts of
groups. We therefore use a queue to enable the following strategies for storing groups in
each Km ⊆ Kδ:

• Unlimited storage. This strategy implies that queue sizes grow indefinitely. Such
a strategy is useful for forensic analyses, where the total number of groups is limited
and known to be sufficiently small, and it is thus possible to store all groups.

• Linear storage. With this strategy, the size of the queues is limited. Once the
queue is full, adding a new group will cause the oldest group in the queue to be
removed.

• Logarithmic storage. First, the queue is filled to its maximum size. Then, any
newly added group will replace the last group with probability 1/2, move the last
group one position lower with probability 1/4, move each of the last two groups one
position lower with probability 1/8, etc. This ensures that groups at the beginning
of the queue remain in the queue for a longer time span and that the groups stored
in the queue collectively represent a more diverse set. This strategy is therefore
especially useful when related alerts are expected to occur over long time intervals,
e.g., when they are collected from different environments.
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In the next section, we show the individual steps of the procedure by two application
cases. For simplicity, we assume that the unlimited storage strategy is used and thus
treat each Km as a set.

7.2.2 Scenarios
We select two scenarios to explain the approach for meta-alert generation in the following.
The first scenario is displayed in Figs. 7.5a-7.5d and deals with reusing meta-alerts for
classification of alerts occurring on other systems. Thereby, each of the figures depicts the
state of the incremental alert aggregation framework at a specific point in time. Moreover,
we constructed the figures to show the alert occurrences A and the formed groups Gδ in
the bottom, the generated meta-alerts Mδ in the center, and the knowledge base Kδ in
the top. Note that in each of these blocks we display two sections, one for a δlarge value
(top) and one for a δsmall value (bottom), where δlarge > δsmall. For simplicity, we focus
only on groups generated by the δlarge value in the first scenario.

Figure 7.5a depicts the state of the framework after one group g1 = (�, �, ◦,�, �, ◦)
was formed for δlarge, i.e., the time passed after the last alert occurrence exceeds δlarge.
Since no meta-alerts exist at this point, a new meta-alert m1 is created by instantiating
group Km1 ⇐ g1 so that Km1 = {g1} in the knowledge-base as indicated by step (1),
and generating meta-alert m1 = group_merge(Km1) as indicated by step (2). Note that
meta-alert m1 involves the same alert sequence with identical attributes as group g1, but
all values are represented as mergelists as outlined in Sect. 7.1.4.

Figure 7.5b depicts the occurrence of another group g2 = (�, �, ◦,�, �, ◦) on system A.
Step (3) shows that the similarity between g2 and each m ∈ Mδ is computed, in particular,
only the similarity simg2 = group_sim(g2, m1) is computed since only m1 ∈ Mδ exists.
Due to the fact that both groups g1, g2 involve the same alert sequence, we assume that
their similarity exceeds a predefined threshold θgroup, i.e., simg2 = group_sim(g2, m1) ≥
θgroup, indicating that g1 relates to the same root cause as m1 and should therefore be
aggregated. Figure 7.5c shows that this is achieved by adding group g2 to the knowledge
base storing the groups allocated to m1, i.e., Km1 ⇐ g2 so that Km1 = {g1, g2}, as
indicated by step (4). Adding a group to Km1 triggers a regeneration of meta-alert m1
as indicated by step (5), i.e., m1 = group_merge(Km1). Assuming that all alerts in
groups g1, g2 have the same attributes and values, the resulting meta-alert m1 remains
unchanged.

Figure 7.5d displays group g3 = (�, �, ◦,�,�, −) occurring in system B at some point
after m1 is generated from alerts on system A. Step (6) depicts the similarity computation
simg3 = group_sim(g3, m1). Note that only the first four out of six alerts in m1 and g3
are identical, while the fifth alert � of g3 is a variation of alert � in m1 and the sixth
alert is of a different type. If the similarity is sufficiently high, i.e., simg3 ≥ θgroup, the
occurrence of the group is interpreted as a detection of the attack represented by m1.
Otherwise, the group is assumed to depict a new unknown attack, causing that a new
meta-alert is generated from group g3 similar to steps (1)-(2).
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(d) Detection of meta-alert on system B.

Figure 7.5: Scenario for cross-system alert recognition. Steps (1)-(5) show the meta-alert
generation procedure using alerts from system A. Steps (6) indicates the detection of a
similar alert group on system B.

The procedure for groups identified for δsmall is indicated by dashed arrows and works
analogously. Figures 7.5a-7.5c show that four groups occurring on system A are iteratively
added to the knowledge base Km2 and are merged to a single meta-alert m2 = (�, �, ◦).
Figure 7.5d shows that two groups are identified for δsmall, of which one comprises the
same alert sequence as meta-alert m2 and is thus similar enough to yield a successful
detection of the same attack pattern, while the other group is rather dissimilar and could
therefore lead to the generation of a new meta-alert.

The second scenario is visualized in Figs. 7.6a-7.6d and focuses on merging alert groups
across systems. For simplicity, the following description focuses on groups generated by
the δsmall value. Similar to the first scenario, steps (1) and (2) in Fig. 7.6a indicate
the generation of meta-alert m1 from the first group g1 = (◦, �, ◦, �) on system A,
so that Km1 = {g1}. As shown in Fig. 7.6b, the difference to the first scenario is
that group g2 = (◦,�, ◦, 2) in system A has variations of alert type � occurring in the
second and fourth alert. For the sake of example, we consider alert types {�,�, 2, 1}
to be similar alerts with the same set of attributes but different values in one specific
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attribute, e.g., a different user name (cf. Sect. 7.1.4). Despite these variations, group
g2 involves similar alert types and therefore yields a sufficiently high similarity, i.e.,
simg2 = group_sim(g2, m1) ≥ θgroup. As a consequence, group g2 added to the knowledge
base of meta-alert m1 in step (3), i.e., Km1 ⇐ g2 so that Km1 = {g1, g2}, which is in turn
used to update meta-alert m1 = group_merge(Km1) as indicated by step (4). Since the
resulting meta-alert m1 is a merge of groups g1, g2, its second alert is a merge of alert
types {�,�} and its fourth alert is a merge of alert types {�, 2}.

Different to the first scenario, alert groups from system B are used to generate a cross-
system meta-alert. Figure 7.6c shows group g3 = (◦, �, ◦, �), which involves alerts � on
the second and fourth positions. Since � is part of the aggregated alerts of meta-alert
m1, similarity simg3 = group_sim(g3, m1) ≥ θgroup is high and the group is thus added
to Km1 . While also the second alert � of group g4 = (◦,�, ◦, 1) yields a perfect match
with the second alert 21 of meta-alert m1, the fourth alert 1 of group g4 is not part of m1
and thus slightly decreases similarity simg4 = group_sim(g4, m1), which is nonetheless
assumed to exceed θgroup since all other alerts match. Therefore, Km1 ⇐ g4 so that
Km1 = {g1, g2, g3, g4} as indicated by step (5). Note that in all four groups, the second
alert is one of {�,�}, and the fourth alert is one of {�, 2, 1}. When generating m1 after
updating Km1 in step (6), the affected attribute of the fourth alert is therefore replaced
with a wildcard so that m1 = (◦, 21, ◦, ∗). Since the wildcard matches all values, both
groups g5, g6 displayed in Fig. 7.6d yield perfect matches with m1, even though alert �
in g6 does not occur in any group of Km1 .

Inspecting meta-alert m2 in Fig. 7.6d that was generated by groups of system A and
system B using δlarge shows that the sequence of merged alerts differs from m1, e.g.,
alert types � and � occur instead of alert type 21. Since this scenario depicts just an
exemplary demonstration that is not based on real alerts, it is not possible to determine
which of the meta-alerts m1, m2 is better suited for detection. However, both scenarios
suggest that it is reasonable to consider multiple values for δ to generate several different
meta-alerts that cover a large variety of attack manifestations.

7.3 Implementation of the Framework
The previous sections provided a theoretical overview of alerts, alert groups, and meta-
alerts. Thereby, we defined abstract functions for similarity computation and merging
of these concepts to introduce a procedure for automatic meta-alert generation. In this
section, we will go into more detail about these functions and discuss their properties
with the aid of pseudo code.

7.3.1 Alert Similarity
This section outlines the alert similarity function from Sect. 7.1.2. Since alert objects
contain nested dictionaries, recursions are used for similarity computation. Algorithm 1
shows the recursion start in Line 2 of procedure alert_sim with parameters a, b ∈ A. The

154



7.3. Implementation of the Framework

System A

Alerts
M

eta-alerts
Know

ledge
base

g1

m1

Km1

δ
large

δ
sm

all
δ

large
δ

sm
all

δ
large δ

sm
all

②①

Km2

(a) Generation of initial meta-alert.

System A

Alerts
M

eta-alerts
Know

ledge
base

g1

m2

Km2

m1

Km1

δ
large

δ
sm

all
δ

large
δ

sm
all

δ
large δ

sm
all g2

④ ③

Km2

(b) Alerts in m1 containing mergelists.

System A

Alerts
M

eta-alerts
Know

ledge
base

g1

m2

Km2

m1

Km1

δ
large

δ
sm

all
δ

large
δ

sm
all

δ
large δ

sm
all

System B

2x

g2 g3 g4

⑤⑥

(c) Wildcard occurring in fourth alert of m1.

System A

Alerts
M

eta-alerts
Know

ledge
base

g1

m2

Km2

m1

Km1

δ
large

δ
sm

all
δ

large
δ

sm
all

δ
large δ

sm
all

System B

3x

g2 g3 g4 g5 g6

⑦⑧

(d) Additional groups do not further change m1.

Figure 7.6: Scenario for cross-system alert merging. Steps (1)-(8) alternate between
knowledge base extensions and repeated meta-alert generation.

recursion returns scores for matching and mismatching attributes, which are normalized
to a single similarity (Line 3).

The recursive function is realized by iterating over all common attributes of alerts
a, b (Line 7). For each of these attributes, the function adds up the achieved match
and mismatch scores by comparing the types of the respective values to ensure suitable
comparison. This includes (i) dictionary types (Lines 9-10) that call the recursive function
with the nested dictionaries, (ii) wildcard (WC) types (Lines 11-12) that always count
as matches, (iii) mergelist (ML) types (Lines 13-15) that only count as a mismatch if
no two elements are the same in both mergelists and yield larger match scores for more
identical elements present in both mergelists corresponding to the overlap metric [MSR08],
(iv) standard list types (Lines 16-20) that measure the ratio of common elements with
respect to all elements in both lists, and (v) standard value types (Lines 21-25) match if
the values of the same attribute in both alerts are identical, and count as mismatches
otherwise. We place the check of standard value types at the end to ensure comparison
is not carried out on different data types. Finally, the number of keys that are present in
one of alerts a, b but not the other contributes to the mismatch score (Line 29), where �
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Algorithm 1 Alert similarity computation.
1: procedure alert_sim(a, b)
2: match, mismatch ← alert_sim_rec(a, b)
3: return match/(match + mismatch)
4: end procedure
5: procedure alert_sim_rec(a, b)
6: match ← 0, mismatch ← 0
7: for all k ∈ {κa ∩ κb} do
8: mat ← 0, mis ← 0
9: if type(a.k) = dict and

type(b.k) = dict then
10: mat, mis ← alert_sim_rec(a.k, b.k)
11: else if type(a.k) = WC or

type(b.k) = WC then
12: mat ← 1
13: else if type(a.k) = ML or

type(b.k) = ML then
14: mat ← |a.k ∩ b.k| / min(|a.k| , |b.k|)
15: mis ← (mat > 0) ? 1 : 0
16: else if type(a.k) = list or

type(b.k) = list then
17: com ← |a.k ∩ b.k|
18: dif ←max(|(a.k \ b.k| , |b.k \ a.k|)
19: mat ← com/(com + dif)
20: mis ← dif/(com + dif)
21: else if a.k = b.k then
22: mat ← 1
23: else
24: mis ← 1
25: end if
26: match ← match + mat
27: mismatch ← mismatch + mis
28: end for
29: mismatch ← mismatch + |κa � κb|
30: return match, mismatch
31: end procedure

Algorithm 2 Group similarity computa-
tion.
1: procedure get_matching(g, h)
2: pairs ← list(), sims ← list()
3: for all a ∈ g do
4: for all b ∈ h do
5: pairs.append((a, b))
6: sims.append(alert_sim(a, b))
7: end for
8: end for
9: sort(pairs, by=sims, order=descending)

10: return pairs
11: end procedure
12: procedure group_sim(g, h)
13: sim ← 0
14: used_a ← ∅
15: used_b ← ∅
16: for all a, b ∈ get_matching(g, h) do
17: if a /∈ used_a and b /∈ used_b then
18: used_a ⇐ a
19: used_b ⇐ b
20: sim ← sim + alert_sim(a, b)
21: end if
22: end for
23: return sim/max(|g|, |h|)
24: end procedure

156



7.3. Implementation of the Framework

is the operator for symmetric difference.

The function fulfills all requirements specified in Sect. 7.1.2. The normalization in Line 3
ensures that the resulting similarity scores lie within the interval [0, 1], where 1 indicates
that all keys and values match, and 0 indicates that none of the keys and values match.
Moreover, the similarity function is symmetric, since all operations on alerts a, b are
symmetric. Due to the incorporation of wildcard and mergelist types, the similarity
function implicitly measures how well one alert is represented by another merged alert
when comparing alerts on different levels of abstraction.

The pseudo code contains the most important type comparisons, however, the presented
checks are not exhaustive. For example, match and mismatch scores of specific type
combinations such as list and mergelist are neglected for brevity. Furthermore, the pseudo
code does not incorporate weights, which allow to steer the contribution of attributes to
the similarity, e.g., attribute “timestamp” should have weight 0, because the occurrence
times of alerts are not expected to match and should not prevent perfect matches. We
refer to our implementation for more details.

7.3.2 Group Similarity
This section defines a similarity measure for groups that fulfills the requirements defined
in Sect. 7.1.3. In addition, we present the pseudo code for the comparison method that
we refer to as the exact matching strategy in Sect. 7.1.4. We select this strategy, because
it establishes the basis for the other matching strategies that involve additional steps
such as clustering of alerts within groups.

Algorithm 2 shows the pseudo code for the matching procedure get_matching as well
as the group similarity function group_sim. The matching procedure takes two groups
g, h ∈ Gδ as parameters and computes the pairwise similarities between the alerts of each
group (Lines 3-8) and stores both the alert pairs and their similarities in respective lists.
Then, the pairs are sorted in decreasing order so that the most similar pairs of alerts are
at the beginning of the list (Line 9).

As mentioned in Sect. 7.1.4, computing the alert similarity between all alerts may cause a
loss of performance when large groups are compared. The bag-of-alerts matching strategy
solves this issue by calling the function with representative alerts for each group, which
largely reduces the number of required alert similarity computations. More details on the
similarity computation in the bag-of-alerts model is stated in Sect. 7.1.4 and provided in
our implementation.

The function group_sim also takes two groups g, h ∈ Gδ as parameters and computes an
aggregated similarity of all contained alerts. For this, it first finds the matching between
the alerts of the groups and then iterates over all returned pairs (Line 16). Lines 17-19
ensure that each alert is only considered at most once, i.e., alert pairs where one of the
alerts was already used for similarity computation are skipped. Line 20 shows that the
aggregated group similarity is the sum of all individual pair similarities. Finally, the
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resulting similarity is normalized in Line 23 to lie in the interval [0, 1]. This line also
ensures that alerts without matches due to different group sizes decrease the overall
group similarity score. Moreover, the function yields a similarity of 1 if groups g, h are
identical and a similarity of 0 when all alert pairs achieve a similarity of 0 as required
in Sect. 7.1.3. Also note that the function is symmetric, but can easily be adapted to
measure how well one group g fits to another group h, in particular, by replacing the
division in Line 23 with sim/ |g|.
Note that we neglected alignments [Nav01] in the pseudo code for brevity. This could be
achieved by counting mismatching alerts as well as misalignments of matched alerts. We
refer to our implementation, where we enhance the final similarity by incorporating such
an alignment score.

7.3.3 Alert Merging
In this section, we outline a function for alert merging as specified in Sect. 7.1.4.
The function generates a new alert that comprises wildcards and mergelists, which
are represented by the two classes WC and ML that have already been used for alert
similarity computation in Alg. 1.

Algorithm 3 shows the pseudo code for generating a merged alert. Parameters are a set of
alerts A ⊆ A to be merged, a ratio kmin ∈ [0, 1] specifying the minimal relative occurrence
frequency of an attribute to be included in the merged alert, a ratio vmin ∈ [0, 1] specifying
the minimal relative occurrence frequency of a value to be included in an attribute of the
merged alert, and a number vmax ∈ N0 specifying the maximum amount of values before
mergelists are replaced by wildcards.

The procedure first extracts list keys that holds all attributes present in the alerts, where
identical keys are stored multiple times (Lines 2-5). Line 6 computes the occurrence
frequencies of these keys using a count function, which yields dictionary keys_count
that holds all keys and their respective frequencies. Lines 6-11 then remove all keys with
relative occurrence frequencies smaller than kmin. This step ensures that rare keys that
do not occur in sufficiently many alerts of A are omitted.

An initially empty object c for the alert merge is defined in Line 12. Every remaining
attribute key k is then added iteratively to that object in Lines 13-35. Thereby, the
values of each key from all alerts are stored in a list (Lines 14-19). Note that a value
may also be a list or mergelist, in which case the list vals is extended with all values
from that list. In case that all values of a particular key are dictionaries, the function
alert_merge is called recursively for that attribute (Lines 20-21). Otherwise, the values
in the list are counted to remove all values that occur with relative frequencies lower
than vmin (Lines 23-28). In case that no values remain, the number of values exceeds
vmax, or one of the values is a wildcard, an attribute with key k and a wildcard as value
is added to the merged alert c (Lines 29-30). Otherwise, all disclosed values are added
to an attribute holding a mergelist (Line 32). Line 36 returns the merged alert c after
processing all keys.
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Algorithm 3 Alert merge computation.
1: procedure

alert_merge(A, kmin, vmin, vmax)
2: keys ← list()
3: for all a ∈ A do
4: keys.extend(κa)
5: end for
6: keys_count ← count(keys)
7: for all k, freq ∈ keys_count do
8: if freq/ |A| < kmin then
9: keys.remove(k)

10: end if
11: end for
12: c ← dict()
13: for all k ∈ keys do
14: vals ← list()
15: for all a ∈ A do
16: if k ∈ κa then
17: vals.append(a.k)
18: end if
19: end for
20: if ∀type(v ∈ vals) = dict then
21: ck ← alert_merge(

vals, kmin, vmin, vmax)
22: else
23: vals_count ← count(vals)
24: for all v, freq ∈ vals_count do
25: if freq/ |values| < vmin and

type(v) �= WC then
26: vals.remove(v)
27: end if
28: end for
29: if |vals| = 0 or |vals| > vmax or

∃type(v ∈ vals) = WC then
30: ck = WC()
31: else
32: ck = ML(vals)
33: end if
34: end if
35: end for
36: return c
37: end procedure

Algorithm 4 Group merge computation.
1: procedure group_merge(G, θalert, kmin, vmin,

vmax)
2: largest_group ← list()
3: for all g ∈ G do
4: if |g| > |largest_group| then
5: largest_group ← g
6: end if
7: end for
8: d ←dict()
9: for all a ∈ largest_group do

10: d [a] ← {a}
11: end for
12: for all g ∈ (G \ largest_group) do
13: used_a ← ∅
14: used_b ← ∅
15: for all a, b ∈ get_matching(g,

d.keys()) do
16: if alert_sim(a, b) < θalert then
17: break
18: else if a /∈ used_a and

b /∈ used_b then
19: used_a ⇐ a
20: used_b ⇐ b
21: d [b] ⇐ a
22: end if
23: end for
24: for all missing ∈ (g \ used_a) do
25: d [missing] ⇐ missing
26: end for
27: end for
28: h ←list()
29: for all A ∈ d.values() do
30: c ← alert_merge(A, kmin, vmin, vmax)
31: h.append(c)
32: end for
33: return h
34: end procedure
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As required in Sect. 7.1.4, every generated alert c is a possibly nested semi-structured
object that only holds wildcards and mergelists in its attributes. Accordingly, it is
possible to treat it like any other alert a ∈ A, which includes similarity computations
and merging.

7.3.4 Group Merging
This section discusses the group merging function introduced in Sect. 7.1.4 that is
capable of generating meta-alerts, i.e., aggregated alert groups. The parameters of the
function outlined in Alg. 4 are a set of groups G ⊆ Gδ, a similarity threshold for alerts
θalert ∈ [0, 1], and the values kmin, vmin, vmax required for the alert_merge function
discussed in Sect. 7.3.3.

We introduced the bag-of-alerts model to alleviate performance issues that arise from
determining alert matches between two large groups to compute their similarity. Un-
fortunately, group merging introduces a new problem, since not just two, but arbitrary
numbers of groups can be merged at the same time. The main issue with that scenario is
that finding alert matches between all pairs of groups is highly resource-intensive and
should therefore be avoided. In the following, we solve this problem by merging groups
incrementally, i.e., use one group as a representative that all other groups are merged
to. This is also represented in Fig. 7.4, where alerts of both groups g1, g3 are matched
with alerts of group g2, but there is no alert matching taking place between groups g1, g2
themselves. In that scenario, group g2 acts as the representative group.

Lines 2-7 in Alg. 4 show that we select the largest group in the set of groups G as the
representative group, because it contains the most alerts and is thus the most likely to
yield many alert matches with all other groups to be merged. We then define a dictionary
d in Line 8 that holds lists of alerts to be merged in its values. For this, we first initialize
it by adding all alerts of the largest group as keys and each alert in a list as their values.
Lines 12-27 then append all matching alerts of other groups to these lists by iterating
over all remaining groups. For each group, the alert matching is computed in Line 15. We
iterate over all alert pairs ordered by their achieved similarity (cf. Alg. 2) and add the
alerts to the best matching key of dictionary d. The iteration stops when the minimum
similarity θalert is reached (Line 16). This check is necessary to avoid that alerts with
low similarity are incorrectly merged with each other, resulting in over-generalized alerts
in the merged group. In case that not all alerts of the currently processed group could
be matched, e.g., if the achieved similarity to any alert in the largest group is lower than
the minimum matching similarity θalert, the alerts are added as new keys in d (Lines
24-26) for finding matches in other groups.

After processing all groups, the algorithm iterates over all values of d, merges the alert
lists using function alert_merge, and stores each of the generated merged alerts in the
initially empty list h (Lines 28-32). List h thus contains a sequence of alerts merged from
all groups G ⊆ Gδ, which means that list h is a meta-alert that has all properties of a
group as required in Sect. 7.1.4. Finally, group h is returned by the function in Line 33.
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Algorithm 5 Incremental merging.
1: procedure add_group(Kδ, g, θgroup,

θalert, kmin, vmin, vmax)
2: simmax ← −1
3: for all Km ∈ Kδ do
4: sim ←group_sim(g, m)
5: if sim > simmax then
6: simmax ← sim
7: best ← m
8: if sim = 1 then
9: break

10: end if
11: end if
12: end for
13: if simmax < θgroup then
14: best ←Meta_Alert()
15: end if
16: Kbest ⇐ g
17: Kbest ←group_merge(Kbest, θalert,

kmin, vmin, vmax)
18: end procedure

Algorithm 6 Meta-alert generation.
1: procedure generate_meta_alerts(A, Δ, θgroup,

θalert, kmin, vmin, vmax)
2: for all δ ∈ Δ do
3: Kδ ← ∅
4: for all A ⊆ A, ∀a ∈ A : ∃b ∈ A :

|a.t − b.t| < δ do
5: g ← A : a1.t ≤ a2.t ≤ · · · ≤ an.t, ∀ai ∈ A
6: Gδ ⇐ g
7: end for
8: end for
9: for all g ∈ Gδ do

10: add_group(Kδ, g, θgroup, θalert, kmin,
vmin, vmax)

11: end for
12: end procedure

We do not provide the pseudo code for the generation of merged groups using the bag-
of-alerts model for brevity. Similar to the group similarity algorithm from Sect. 7.3.2,
the main difference is that alert representatives instead of the actual alerts are used
for matching. In addition, intervals for occurrence counts of alerts are adjusted during
merging so that all merged groups are appropriately represented (cf. Sect 7.3.4). The
alignment of alerts in the bag-of-alerts model is computed by repeatedly applying the
LCS procedure to the individual alignments of alert representatives of all groups. For
more details on the realization of these methods, we refer to our implementation.

7.3.5 Meta-alert generation
The group_merge function presented in the previous section allows to generate meta-
alerts from sets of similar groups. To select these groups, we outline procedure add_group
in Alg. 5 that produces meta-alerts using the knowledge base as proposed in Sect. 7.2.1.
In particular, the procedure iterates over all meta-alerts stored in the knowledge base
(Line 3) and computes their similarities to the currently processed group g (Line 4) to
find the meta-alert best that yields the highest similarity (Lines 5-11). In case that a
comparison yields a perfect similarity of 1, there is no need to check all other meta-alerts
and the loop stops prematurely to improve performance (Lines 8-10).

After the loop is completed, Line 13 checks whether the highest similarity between group
g and any meta-alert is lower than threshold θgroup or no meta-alerts are available. In this
case, a new meta-alert is generated by replacing best with an object of class Meta_Alert
in Line 14, otherwise best is an adequate match for group g. Either way, group g is added
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to the knowledge base of meta-alert best (Line 16) and the corresponding meta-alert is
subsequently updated (Line 10).

Function generate_meta_alerts in Alg. 6 runs the overall framework. The parameters
involve all alerts A, a group similarity threshold θgroup ∈ [0, 1], and the parameters
θalert, kmin, vmin, vmax that are already known from Sect. 7.3.3 and Sect. 7.3.4. The
function iterates over all δ ∈ Δ values specified by the analyst (Lines 2-8) and initializes
a knowledge base for every δ as an empty set (Line 3). Lines 4-7 represent the group
formation phase for each δ value. Note that instead of the agglomerative clustering
algorithm, we only display the requirements on the groups for simplicity, i.e., alerts in
groups must occur in sufficiently close temporal proximity (Line 4) and be sorted by
timestamp (Line 5). Finally, the function iterates over all groups and calls function
add_group repeatedly (Lines 9-11). Note this procedure was designed for an offline
setting where all groups are known in advance, however, we argue that it is easy to adapt
the code for online analysis.

Note that the pseudo codes in this and the previous section leave out several aspects of
our implementation that were omitted for brevity. This includes handling of multiple δ
values by running function generate_meta_alerts in parallel, queuing strategies, and
heuristics that allow to prematurely stop alert and group matching procedures for groups
with low similarity to improve performance. Once more we refer to our implementation
that provides more details on such aspects.

7.4 Evaluation
This section outlines our evaluation of the proposed alert aggregation approach. We
first describe the methodology of our evaluation and introduce the data that we used to
generate meta-alerts before showing and discussing the results. We point out that the
code and data used in this evaluation are available open-source and thus all results are
reproducible.

7.4.1 Methodology
The purpose of our evaluation is to validate the approach presented in this chapter with
respect to well-known metrics that are relevant in machine learning and alert aggregation.
Thereby, we use a publicly available real-world dataset described in Sect. 7.4.2 that
centers around an illustrative attack scenario. The evaluation aims to demonstrate the
capability of our framework to extract meta-alerts that represent attack manifestations
present in the data.

For a better overview, we evaluate the introduced concepts and operations of our
framework stepwise in alignment with Sect. 7.1. First, Sect. 7.4.3 provides empirical
results from the group formation strategy and is used for the selection of appropriate
δ values for the remainder of the evaluation. Section 7.4.4 contains a plot of the group
similarities that allows to visually examine whether the proposed similarity functions are
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suitable for allocating alert groups to attacks. The hierarchical clustering shown in Sect.
7.4.5 allows to draw similar conclusions, but additionally visualizes whether the outcomes
of the proposed merging functions fit the overall picture. This hierarchical clustering also
allows to estimate appropriate values for θgroup, which is used in the following sections.

The remaining evaluations focus on quantitatively measuring the performance of the
overall approach rather than visual validation and parameter estimation. In Sect. 7.4.6,
we execute the incremental alert aggregation procedure in a fully unsupervised setting and
measure the clustering accuracy as well as the reduction rate. Section 7.4.7 on the other
hand first generates meta-alerts in a supervised way and then measures the accuracy of
classification of unknown sample alerts. We argue that both unsupervised and supervised
evaluations are necessary to evaluate the capability of generating meta-alerts as well as
using these meta-alerts for detection of similar alerts respectively.

We measure reduction rates for several δ values and thresholds θgroup, θalert in Sect. 7.4.8.
Since real systems are affected by false positive alerts that impair the performance of
alert aggregation, we evaluate the robustness of our approach in Sect. 7.4.9. Moreover,
we measure the runtime of our approach in Sect. 7.4.10. Finally, we discuss the results
of the evaluation with respect to the requirements from Sect. 7.4.11. All evaluations are
carried out on a 64-bit Windows 10 machine with an Intel i7-6600U CPU at 2.60 GHz
and 16 GB RAM running Python 3.6.8.

7.4.2 Data
We use the publicly available dataset AIT-LDSv1.1 presented in Chap. 3 for our evaluation.
The advantage of this dataset is that it comprises diverse log files collected from four
different web servers that are targeted by the same attack scenario, which is a multi-step
attack that involves (i) an Nmap [Nma] scan, (ii) a vulnerability scan using Nikto [Nik],
(iii) an enumeration of user accounts using the vrfy command of the smtp-user-enum
tool [Smt], (iv) a brute-force login attack using Hydra [Hyd], (v) an exploit of a webmail
client for webshell upload (CVE-2019-9858), and (vi) an exploit of Exim for privilege
escalation (CVE-2019-10149). The parameters of some attack steps are thereby varied so
that their manifestations in the log data appear different on each system.

We used two open-source host-based intrusion detection systems, Wazuh [Waz] and
AMiner [AMi], to process the logs and generate alerts. Wazuh is a signature-based
detection engine that comes with a predefined set of rules and was used in its standard
configuration. The sample alert from Fig. 7.2 is one of the alerts generated by Wazuh
from the logs. AMiner on the other hand is an anomaly-based IDS that was configured
to report unknown events as well as new values and combinations of values that occur in
predefined positions of the log events. Since the exact execution times of each of the six
aforementioned attack steps are provided in the dataset, we were able to label all alerts
for our evaluation accordingly. Note that the generated alerts are not in IDMEF format
or involve useful IP information and thus cannot be appropriately handled by existing
approaches.
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Figure 7.7: Alerts from AMiner (1) and Wazuh (2) IDS on four web servers. From
left to right, the attacks are Nmap scans (red), Nikto vulnerability scans (blue), user
enumerations (green), Hydra brute-force login attempts (pink), webmail exploits for
webshell uploads (orange), and Exim exploits for privilege escalation (purple).

Figure 7.7 shows the alerts on timelines for each of the four web servers named cup, spiral,
onion, and insect. The total number of alerts on all systems is 57,766. We display the type
of the alerts (attribute “AnalysisComponentName” in AMiner alerts and attribute
“description” in Wazuh alerts) on the vertical axis, where (1) marks AMiner anomaly
types and (2) marks Wazuh rules. The alerts are displayed as circles, where larger sizes
indicate more co-occurring alerts. These groups were formed by our grouping approach
from Sect. 7.1.3 with δ = 1 second. Note that the attack using the smtp-user-enum tool
(green) was not executed on the onion web server and that there is a false positive alert
caused by an update after the Exim exploit (purple) on the insect web server.

Comparing the graphs for the four web servers shows that attack parameter variations
cause highly different alert patterns, in particular, the duration and amount of alerts
generated by the Nikto scan (blue) and the user account enumeration (pink) varies greatly.
On the other hand, close inspection of the plots reveal that some attack steps that are
less affected by variations, e.g., the Exim exploit (purple), show the appearance of the
same types of alerts with similar frequencies and timings on all systems. This suggests
that it possible to derive meta-alerts across infrastructures that comprise attack patterns
suitable for the detection of the same attack on other systems.
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Figure 7.8: Influence of δ value on the number of generated alert groups on four systems.

7.4.3 Group formation

We discussed the importance of δ values for our grouping method in Sect. 7.1.3 and
proposed to use multiple δ values in parallel to overcome issues with group formation
in Sect. 7.2.1. To support this decision with real-world evidence, we plot the number
of groups from four systems for different δ values in Fig. 7.8. Note that other than the
plots in Fig. 7.7, groups are formed across all alert types.

As expected, fewer and larger groups are formed for increasingly larger values of δ and
vice versa. In particular, the lowest selected δ value of 0.01 seconds yields a total of 2,417
groups on all systems, while a δ value of 500 seconds causes that only a single group
on each system is generated, comprising all attack phases. This large range confirms
that the usage of multiple δ values is reasonable. Furthermore, the figure suggests that δ
values should be selected on a logarithmic range to avoid that the same or very similar
groups are formed multiple times on different δ levels. Accordingly, we will only consider
logarithmically distributed δ values in the following.

7.4.4 Group Similarities

Due to the fact that our meta-alert generation approach is based on group similarities, it
is necessary that our similarity functions are capable of clustering related groups with
high accuracy. We therefore compute a pairwise similarity matrix of all groups formed
using a specific δ value. For this, we make use of the group_sim function (cf. Sect. 7.3.2)
that relies on the alert similarity function alert_sim (cf. Sect. 7.3.1). As outlined in Sect.
7.1.4, quadratic runtime complexity of the exact matching strategy makes it necessary
to switch to the bag-of-alerts strategy for large groups. We empirically determined that
lbag = 2000 keeps processing times for most groups below 0.05 seconds, which we consider
acceptable. Furthermore, we set kmin = 0.1, vmin = 0.1, and vmax = 10 to ensure that
meta-alerts do not contain alert characteristics that occur in less than 10% of merged
groups. Finally, we set the weight of alignment information to 0.1 and the weight of
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Figure 7.9: Multi-dimensional scaling of pairwise group similarities using δ values of 10
seconds (left) and 1 second (right) shows that groups of same attack steps are frequently
located close together.

attribute “timestamp” to 0. These parameters are used in all following evaluations unless
stated otherwise.

We then apply multi-dimensional scaling [BG05], which is a dimensionality-reduction
technique that allows to represent groups as points that largely retain their original
similarities derived from the pairwise similarity matrix. Figure 7.9 shows the groups
formed with δ values of 10 seconds (left) and 1 second (right) plotted on the first two
dimensions. Groups are marked with the same symbol if they originate from the same
system and have the same color if they occurred in the same attack phase. Since
groups that relate to the same attack should be similar independent from the system
infrastructure, we expect to see groups with the same color and different symbols close
together.

The left figure shows that several groups correctly form clusters of related attack steps.
For example, the groups related to the “vrfy” attack are placed close together and are
relatively isolated. Other groups, such as the ones belonging to the “hydra” attack,
appear more spread out. The groups belonging to “nikto” result in two distinct clusters,
which corresponds to Fig. 7.7 that shows that this attack step lasted over a long time on
spiral and insect systems, but only a short time on cup and onion. Similarly, the “exploit”
attack step forms four separate clusters. The reason for this is that this attack step
actually consists of several smaller steps that are sequentially executed and disclosed as
separate groups at this δ level, but comprise rather different alert types and frequencies.

The right plot of Fig. 7.9 shows that much more groups are generated for the “nikto”
and “hydra” attack when δ is set to a lower value. Since groups that belong to one of
these two attacks dominate the variance of the data, it is difficult to reason about the
correct clustering of groups that belong to other attacks. However, the fact that groups
of “nikto” and “hydra” attacks are clearly separated suggests that similarity-based group
clustering is reasonable even for small δ values.
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Figure 7.10: Dendrogram of group similarities, where each node represents a merged
group. The dashed line shows a reasonable cutoff threshold at a similarity of 0.3 that
yields meta-alerts with few incorrect allocations.

7.4.5 Hierarchical Aggregation

We evaluate our merging functions alert_merge (cf. Sect. 7.3.3) and group_merge
(cf. Sect. 7.3.4) by first computing the pairwise similarity matrix and then merging
the two groups that yield the highest similarity. These groups are then removed from
the similarity matrix and instead the resulting merged group is added by computing
its similarity to all remaining groups. This is repeated until the similarity matrix only
contains one group. At this point, we are able to construct a rooted dendrogram with
branches that connect at the height of the similarity of the merged groups.

Figure 7.10 displays such a dendrogram for groups formed with a δ value of 10 seconds.
The original groups are placed at the leaves of the tree and are labeled with the names
of their corresponding systems and attack steps, connected with a dash. Each node
of the tree represents a merged group, where the height displayed on the vertical axis
describes the similarity between the groups used for merging. Examining the dendrogram
shows that groups that are part of the same attack phase are frequently merged with a
relatively high similarity, while groups that relate to different attacks only merge with
low similarity. For example, each of the first four “exploit” groups from the left occurred
on different systems and were merged with a similarity of 0.6. The similarity of the
resulting merged group to all other groups was 0, indicating that meta-alerts do not tend
to over-generalize.

To select the similarity threshold θgroup, we plot cluster purity [MSR08] against the
number of clusters in Fig. 7.11. The similarity threshold is selected so that purity is
large, i.e., clusters contain mostly groups belonging to the same attack phase, and the
number of clusters approximates the true number of attack steps, which is 6 in our case.
The figure shows that purity drops for thresholds lower than 0.25, while the number of
clusters continuously increases for larger thresholds. Accordingly, we select θgroup = 0.3
as a reasonable trade-off that yields a purity of 0.94 and 13 clusters.
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Figure 7.11: Cluster purity and the total
number of clusters suggests 0.3 as a simi-
larity cutoff threshold.
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Figure 7.12: Reduction rate plotted
against false positive rate for several
threshold values.

The reason why the number of clusters is larger than the number of attack phases is due
to the fact that the labels of the data are not sufficiently fine-grained, i.e., some attack
phases actually comprise sequences of sub-steps that should be labeled differently from
each other. We decided against manually altering the ground truth data to fit our needs
and we will therefore mainly focus on the correct separation of groups into homogeneous
meta-alerts in the next section.

7.4.6 Meta-Alert Generation

The previous sections evaluated the similarity and merging functions. In this section, we
evaluate the procedure using these functions for incremental meta-alert generation (cf.
Sect. 7.3.5). For this, we use the logarithmic storage strategy with a maximum queue size
of 25. We then create groups for intervals Δ = {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500}
seconds and iteratively generate meta-alerts through continuous similarity computations
and merging. To analyze the influence of the thresholds specifying minimum similarity
for group merging and alert matching, we conduct the experiment multiple times and
vary θgroup, θalert equally in the range of [0.1, 0.7] and a step width of 0.05.

We obtain a set of meta-alerts Mδ for each δ ∈ Δ once all groups are processed. To
evaluate the quality of the meta-alert generation procedure, we measure the homogeneity
of all meta-alerts. In particular, we count (i) two groups with the same attack phase label
in the same meta-alert as true positives (TP ), (ii) two groups with different labels in the
same meta-alert as false positives (FP ), (iii) two groups of the same label in different
meta-alerts as false negatives (FN), and (iv) two groups with different labels in different
meta-alerts as true negatives (TN). As mentioned in previous sections, groups which
belong to the same attack phases frequently end up in separate meta-alerts due to sub-
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steps in attack executions, and the true positive rate TPR = TP/(TP +FN) is therefore
not expressive. For this reason, we plot the false positive rate FPR = FP/(FP + TN)
against the reduction rate, i.e., the ratio between the number of meta-alerts and groups
computed as rgroup = |Mδ| / |Gδ|. To deal with groups that only contain false positive
alerts and groups that span over several attack phases, we introduce the labels non-attack
and multiple.

Figure 7.12 shows the results of aforementioned calculations carried out for each attack
phase separately. Each point shows the average FPR and reduction rate over all δ values
achieved for a particular threshold for both θgroup and θalert. In general, larger thresholds
yield more meta-alerts that lead to lower FPR and reduction rates, i.e., points closer to
the bottom-left of the plot, while smaller thresholds cause that groups are more easily
merged to meta-alerts, which increases reduction rate and FPR, i.e., result in points
closer to the top-right of the plot. There is thus a trade-off between the reduction rate
and accuracy. Thresholds in the range [0.2, 0.4] yield the best results for all attack phases
and achieve average reduction rates of around 80% and average FPR of less than 5% for
all attack types. These results correspond to a rule of thumb from Husák et al. [HČLV17],
who state that up to 85% of alerts can reasonably be aggregated on average.

7.4.7 Cross-System Classification
The previous section focused on the evaluation of the incremental meta-alert generation
procedure in an unsupervised way. To evaluate whether the generated meta-alerts are
suitable for classification of attack executions on other systems, we carry out a supervised
evaluation. In particular, we use alerts from three out of the four systems to form groups
and generate meta-alerts in a training phase, where groups are only allocated and merged
with meta-alerts that belong to the same attack phase. We then use the alerts from the
fourth system as test data to generate groups, determine the most similar meta-alert,
and measure the accuracy of this classification. We also require that the similarity to the
best-matching meta-alert exceeds 0.1, otherwise the group is assigned to the non-attack
class. Thereby, we count (i) a true positive (TP ) for an attack if a group belonging to
that attack is correctly allocated to a meta-alert of the same attack, (ii) a false positive
(FP ) for the meta-alert’s attack and (iii) a false negative (FN) for the group’s attack if
the group is incorrectly allocated to a meta-alert with a different attack, and (iv) a true
negative (TN) for all attacks that the group is correctly not assigned to. To obtain better
estimations for model performance through cross-validation, we repeat this procedure so
that alerts from every system are used as test data and average the results. As before,
we also use a range of δ values and compute all rates as averages.

The left side of Fig. 7.13 shows TPR plotted against FPR for all attacks, where each
point represents the results achieved using a specific threshold. The graph shows that
each of the six original attack classes achieve a low FPR of less than 5%. The TPR
appears to depend on the attack type, since several points that refer to the same attack
label are relatively close together and form groups. The attacks achieve TPR in the range
[0.75, 0.95] for most threshold settings, except for the “upload” attack, which performs
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Figure 7.13: Left: True positive rate plotted against false positive rate of cross-system
attack classifications for several threshold values. Right: Confusion matrix of attack
classifications using 0.3 as threshold.

comparatively bad with a TPR of only 0.5. The reason for this is that this attack only
caused similar alert sequences in onion and insect, but involved additional alerts in cup
and spiral due to differences in the infrastructure setup (cf. Fig. 7.7).

The right side of Fig. 7.13 shows the confusion matrix for θgroup = θalert = 0.3. Note
that other than the plot on the left side, the confusion matrix represents total numbers of
TP , FP , FN , and TN rather than averages over all δ values. We normalized the matrix
column-wise to obtain the relative frequencies of class allocations so that TPR is visible
in the main diagonal. This allows to obtain a better overview of the misclassifications,
e.g., around 50% of alert groups belonging to “upload” are incorrectly classified as one of
“non-attack”, “vrfy”, “hydra”, or “nikto” for aforementioned reasons.

We also visualize the performance of our classifier with respect to δ. For this, we use
the F1-score computed by F1 = TP/(TP + 0.5 ∗ (FN + FP )), since it provides a single
measure that is large when both FN and FP are low. Figure 7.14 shows box plots of
the F1-score for several δ values, split up by attack steps and thresholds. As visible by
the height of the boxes, the variance of the F1-score with respect to δ values is relatively
small. In addition, four out of six attacks have at least one setting for the threshold
and δ value so that the highest possible F1-score is reached. The plot also confirms that
the performance is mostly dependent on the type of attack, since similar F1-scores are
reached for most threshold values. There are some exceptions to this observations, in
particular, the performance declines for a threshold of 0.7 for “vrfy” and for thresholds
larger than 0.6 for “exploit” and “nmap”. As visible in Fig. 7.13, this is due to a decrease
of TPR.
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Figure 7.14: F1-score boxplots of cross-system classification for several δ values, catego-
rized by attack and θgroup.

7.4.8 Reduction

The ability to reduce alert groups to meta-alerts is a key feature of our approach, because
a high reduction rate indicates that many groups were merged to few meta-alerts. As
shown in Fig. 7.12, there is a limit to the reduction rate at which accuracy starts to
decline. To improve understanding of parameter influence on the reduction rate, we
therefore visualize the reduction rate for several combinations of δ values and thresholds
θgroup, θalert in the following. Note that we compute the reduction rate on alerts of only
four systems. Using more data, i.e., obtaining alerts of the same attack scenario from
additional systems, would likely increase the reduction rates.

The left plot in Fig. 7.15 shows the group reduction rates, i.e., the ratio between the
number of meta-alerts and the number of groups computed as rgroup = 1 − |Mδ| / |Gδ|.
The plot shows that reduction rates decrease for increasing thresholds, because larger
thresholds mean that it is less likely that groups reach the minimum required similarity
to be allocated to meta-alerts. Moreover, reduction rates decrease for increasing δ values,
because smaller δ values cause that more groups are generated, making it easier to find
similar groups. For example, the “hydra” brute-force attack repeats the same action
multiple times in short intervals, and smaller δ values break up the generated alert
patterns into shorter sequences that are then suitable to be merged with each other. A
cutoff appears around δ = 0.5 seconds that reaches reduction rates of around 88% to
99% for all thresholds, while δ = 1 second yields reduction rates down to 33% for high
thresholds.

The right plot in Fig. 7.15 shows the reduction rates of alerts rather than groups.
The value is computed as the average reduction rate of all meta-alerts, i.e., ralert =
(1/ |Mδ|) Σm∈Mδ

(1 − |m| / (|Km|)). Overall, the alert reduction rates also decrease for
increasing δ values and thresholds, however, to a less effect compared to the group
reduction rates.
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Figure 7.15: Influence of δ and θgroup on reduction rates. Left: Group reduction rates.
Right: Alert reduction rates.

7.4.9 Robustness

Our approach relies on the assumption that adequate alert groups are formed in the
first stage of our procedure (cf. Sect. 7.1.3). Despite using several δ values in parallel,
the grouping phase is susceptible to intervening alerts that are not part of attacks. In
particular, such noise alerts form new groups, change the composition of existing groups,
or cause that groups are combined.

To evaluate the robustness of our approach with respect to noise alerts, we randomly
duplicate alerts and uniformly distribute them over the input data. Adjusting the total
number of alerts added in this way allows us to set the noise intensity. The plots in
Fig. 7.16 show the influence of noise alerts on the number of generated groups and
classification performance on each system, where the noise intensity on the horizontal axis
is displayed as the average amount of alerts inserted per minute. As visible in the plot on
the left side, the total number of groups increases, since random alerts that occur with a
temporal distance larger than δ to other alerts form new groups. The curve peaks when
approximately 10 noise alerts are inserted, followed by a rapid decline caused by group
merges. This is reasonable, since 10 noise alerts per minute mean that an alert is inserted
every 6 seconds on average, which corresponds to the used δ values of 5 seconds. The
plot on the right side shows that the average TPR and F1-score decline with increasing
noise intensity, while the FPR remains constant at a low level. In particular, TPR and
F1-score rapidly decrease from around 0.6 to 0 approximately when 10 noise alerts per
minute are inserted, corresponding to the peak of the number of groups. We therefore
conclude that δ functions as a breakdown point for our approach and that δ values
exceeding the average noise intensity should be avoided.

To overcome this issue, we recommend to reconfigure the deployed IDSs. Randomly and
repeatedly occurring alerts indicate that some sensors are too sensitive and therefore
report normal behavior as malicious, which is not desirable for manual or automatic
analysis and should be fixed anyway. Alternatively, it is also possible to set up a
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Figure 7.16: Robustness to randomly generated noise alerts for δ = 5 seconds and
θgroup = θalert = 0.3. Left: Influence on number of alert groups. Right: Influence on
TPR, FPR, and F1-score.

filter for particular alert types that are known to report false positive alerts prior to
performing alert aggregation. In particular, meta-alerts generated by our approach that
have been manually labeled as false positive alerts could be used to design such filter
rules. Furthermore, our implementation also provides a non-symmetric variation of the
group similarity metric outlined in Sect. 7.3.2 that measures how well one alert group is
represented by another and thus improves robustness against noise alerts in one of the
groups.

7.4.10 Runtime

We analyze the runtime of our approach by measuring the time it takes to process
groups, i.e., compute the similarity between a group and all meta-alerts, find the best
matching meta-alert, add the group to the knowledge base, and generate the meta-alert.
Since our procedure is incremental, the number of meta-alerts and therefore also the
number of necessary similarity computations is increasing over time, causing that the
processing time per group is also expected to increase. However, due to the fact that
most meta-alerts are generated at the beginning and few new meta-alerts are generated
over the long run, the runtime should be approximately linear.

In the following, we considered alerts rather than groups to compensate for the fact
that larger groups likely require more time to process than smaller groups. Figure 7.17
therefore shows the cumulative runtimes it took to process alerts for several δ values at
thresholds θgroup = θalert = 0.3 (left) and different thresholds θgroup, θalert using δ = 0.1
seconds (right). Note that for δ > 0.01 two large groups are generated by “nikto” on
systems cup and onion, each with approximately 20, 000 alerts. The plots show that
processing these large groups (approx. alerts 0 to 40, 000) as well as large amounts of
small groups (approx. alerts 40, 000 to 60, 000) largely follows linear complexity.
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Figure 7.17: Runtime required to process alerts for different values for different δ (left)
and thresholds (right).

7.4.11 Discussion
The previous sections present empirical results that give insights into the practical appli-
cation of the proposed alert similarity functions and aggregation strategies. The results
assert the functioning of the approach and confirm the fulfillment of all requirements
on a domain-independent alert aggregation approach stated in Sect. 2.1. Requirement
(1) is fulfilled, because our framework is fully automatic and capable of extracting meta-
alerts representing unknown attack scenarios. We recognize that sequential-based and
case-based methods that rely on manually coded knowledge are capable of modeling only
the most distinct features of attacks and thus achieve higher accuracy when classifying
attack executions than similarity-based methods, especially when variations of attacks or
IDS configurations are considered. However, we argue that this issue generally applies to
all similarity-based methods and is compensated by the ability to detect new attacks.
Furthermore, meta-alerts generated by our approach could ease the process of manual
attack specification, since the merging procedure also reduces attributes and values of
alerts as well as alert occurrences to typical properties of the attacks.

Our approach combines time-based and attribute-based grouping strategies by contex-
tualizing alerts through temporal proximity and considering all available attributes for
similarity computation. This solves the problem of mapping alerts to attacks in alignment
with requirement (2). Due to our format-agnostic similarity metrics, requirement (3) is
also fulfilled.

To meet requirement (4), we designed our approach as an incremental clustering procedure
and avoided over-generalization of meta-alerts by the use of knowledge bases. Queueing
strategies (cf. Sect. 7.2.1) thereby ensure that the time required to update meta-alerts is
not continuously increasing. We recorded the processing times during our evaluations
and ascertained that the overall runtime is approximately linear with respect to the
number of alerts processed.

Finally, we see our generated meta-alerts as improvements over state-of-the-art that
usually involve graphs of attack steps, because they have the same semi-structured format
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as incoming alerts and are therefore easy to understand for humans and support machine
processing. Regarding requirement (5), our approach is thus implementing a combined
strategy of meta-alert representation, since single alerts are enriched with mergelists and
wildcards, and embedded in sequences.

7.5 Summary
In this chapter we introduced a novel approach for meta-alert generation based on
automatic alert aggregation. Our method is designed for arbitrary formatted alerts and
does not require manually crafted attack scenarios. This enables to process alerts from
anomaly-based and host-based IDSs that involve heterogeneous alert formats and lack
IP information, which is hardly possible using state-of-the-art methods. We presented a
similarity metric for semi-structured alerts and three different strategies for similarity
computation of alert groups: exact matching, bag-of-alerts matching, and alignment-
based matching. Moreover, we proposed techniques for merging multiple alerts into a
single representative alert and multiple alert groups into a meta-alert. We outlined an
incremental procedure for continuous generation of meta-alerts using aforementioned
metrics and techniques that also enables the classification of incoming alerts in online
settings.

For our evaluation, we generated alert datasets by forensically analyzing the log datasets
presented in Chap. 3 using a signature-based IDS and an anomaly-based IDS. The
evaluation shows that our approach is capable of reducing the number of alert groups by
around 80% while maintaining a true positive rate of around 80% and a false positive rate
of less than 5%. These results suggest that our framework is suitable for application in
real-world scenarios, in particular, situations where a large number of similarly configured
machines are available and meta-alerts could be generated and used for detection across
systems with high precision.

We consider the meta-alerts generated as a result of our approach as cyber threat
intelligence (CTI) as defined in Sect. 2.3. In particular, the meta-alerts are capable
of expressing complex behavior patterns manifesting in log data as sequences of alerts
generated by IDSs. Thereby, a key feature is that meta-alerts are detectable by comparing
newly observed alert sequences with the patterns stored in each available meta-alert. As
such, the meta-alerts combine the advantages of abstract TTPs and measurable IoCs.
Since meta-alert generation is accomplished without any manual or forensic analysis, the
meta-alerts are also immediately actionable, i.e., may be used to disclose similar attacks
or at least make analysts aware of suspicious system behavior. Nonetheless, to actually
classify unknown alert sequences, it is obviously necessary to have a human-in-the-loop
who assigns labels to respective meta-alerts that should be used to recognize similar
attacks on other systems.
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CHAPTER 8
Conclusion

The thesis proposed a procedure for extracting cyber threat intelligence (CTI) from raw
log data. Thereby, one of the most crucial aspects turned out to be the availability of
labeled training data that is representative for diverse system and network infrastructures.
For this purpose, log data is generated and labeled in testbeds to enable repeated attack
execution with variations in controlled environments. The generated data is then parsed
and analyzed for anomalies using a custom detection method for categorical values, which
are common in log data. Subsequently, anomalies and alerts reported by such detectors
are aggregated into detectable meta-alerts that allow recognition of the same attacks
on other systems. The contributions presented in this dissertation address the problem
statements and research questions stated in Sect. 1.1. In the following, the answers to
the research questions are summarized.
RQ1: What is an appropriate method to enable flexible generation of realistic and labeled
log data that facilitates evaluation of CTI extraction approaches?

It may seem that the ideal case is to collect log data from productive system infrastructures
of many different organizations and employ human specialists to manually label all normal
and malicious activities in the logs. However, this is hardly feasible in practice, as log
data from real infrastructures is usually very sensitive and manual label assignment is
difficult to carry out reliably in large amounts of logs. Fortunately, testbeds are a viable
alternative to real system and network infrastructures. The strong benefits of testbeds
include the possibilities to run simulations of normal behavior and attacks in isolated
settings so that no unknown activities are incorrectly labeled, to control all parameters of
the testbed and simulation, and to generate arbitrary numbers of testbeds. In particular,
the latter aspect is enabled by model-driven concepts that introduce variations in every
instantiated testbed as described in this thesis. This is essential to generate log data that
is representative for diverse infrastructures and attack executions, which is required to
evaluate whether extracted CTI enables detection of same or similar attacks in different
system environments. Chapter 4 demonstrates that the semi-synthetic log data is similar
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to logs generated by real users in terms of access frequencies and behavior patterns. In
addition, the evaluation presented in Chap. 3 indicates that the shift from traditional
testbeds to abstract models of testbed components eases adjustments or extensions of
testbeds and thus enables flexible testbed development.
RQ2: Which methods are appropriate to parse raw and unstructured log data to enable
unsupervised event classification, parameter analysis, and incremental anomaly detection?
Most of the time, log data occurs as sequences of heterogeneous events, i.e., there are
multiple event types with distinct syntaxes that need to be considered to process the
whole log file. While the static parts of a log line determine the event type, the variable
parts (i.e., the parameters) need to be extracted for analysis. As many log events share
some of the static parts, the most efficient way to process logs are parser trees, i.e., data
structures where nodes that connect in sequences or branches represent either static
or variable parts of the lines. The survey carried out in Chap. 5 shows that there are
many different techniques for generating such parser trees automatically; most common
are similarity-based techniques that split lines into tokens using delimiters (e.g., white
space) and then apply string metrics. An alternative to that are density-based techniques
that consider frequent tokens as static and others as variable. The survey also showed
that there are several classes of algorithms for parser generation that are designed for
specific requirements, e.g., forensic or online analysis, character- or token-based event
processing, static or adaptive clustering, single or multiple event analysis, etc. When
parsers are generated from training log files, parsing itself becomes a simple form of
anomaly detection, since structures and parameters of new logs that do not fit the learned
event types are detected as outliers. Once data is parsed, subsequent detection techniques
usually either focus on extracted values or analyze the sequences of event types.
RQ3: To what extent can a detection method be designed to analyze categorical values in
parsed log data for the purpose of identifying anomalous system states with high accuracy?
Reviewing the state-of-the-art shows that there are several different methods to detect
anomalies in log data. This is reasonable, since log data exhibits plenty of characteristics
that may be affected by attacks, including event correlations, sequences, and timing, as
well as all patterns that occur in their parameters, e.g., statistical properties in numeric
values. The anomaly detection technique presented in Chap. 6 focuses on parameters for
categorical values, which are common in logs but often difficult to analyze. In particular,
some categorical parameters correlate with each other (i.e., the likelihood that one value
occurs depends on another value in the same event), however, there are too many possible
combinations to consider all pairs of parameters. The proposed solution is a sequence of
filtering steps that select correlating values for further analysis based on several factors,
including their number of unique values, similarities of independent or conditional value
probability distributions, and correlation strengths. Statistical tests are used to detect
anomalies as changes of usual correlation behavior that persisted over a long time. The
evaluation of the presented detection technique shows that it is capable of recognizing even
small changes of value distributions as well as changes that affect only rarely occurring
values with a true positive rate of 80% and a false positive rate of less than 5%.
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RQ4: What is an appropriate method to technically describe advanced attacks involving
multiple consecutive attack steps as artifacts and complex system behavior patterns in an
abstract way to provide reusability on other systems?

One of the main problems is that there exists no unique mapping between alerts and
attacks, as different alert sequences are generated by single attack executions but some of
these alerts may occur also as part of other attacks. One way to tackle this problem is to
focus on sequences of alerts as they are more distinct for certain attacks than individual
alert instances. Another problem is that the attributes of alerts are unknown beforehand
as different IDSs do not use the same alert formats. The solution proposed in this thesis
therefore leverages a similarity metric that is independent of any domain knowledge
about alerts or monitored systems, which makes it more widely applicable. The approach
assumes, however, that alerts that are related to each other occur in close proximity,
which is necessary to form groups. Extending the similarity metric to these groups
enables to continuously merge alert groups from diverse systems to generate abstract
meta-alerts. Since it is possible to compute the similarity between any of the meta-alerts
with newly observed alert sequences on another system, they are reusable for attack
classification. The evaluation presented in Chap. 7 showed that the approach yields true
positive rates of around 75%-95% depending on the attack type and reduce the number
of alerts by up to 85%.

There are many ways how the concepts proposed in this thesis may be extended in
future work. Foremost, the model-driven approach for testbed generation allows to
target many additional use-cases other than enterprise networks, for example, use-cases
centered on Internet-of-Things (IoT). Independent of the use-case, a problem that remains
with testbeds is that simulations need to run in real-time, which makes it difficult to
generate log data that covers large periods of time, e.g., months or years. This issue
could possibly be alleviated by training Generative Adversarial Networks (GAN) on log
data from testbeds and use them to generate more logs that follow the same patterns
and exhibit similar characteristics; a technique that has already been demonstrated for
network traffic [SBJ+20] and could be extended to system log data. Thereby, testbeds
with variations could be particularly valuable to provide a diverse baseline for training.
Another useful addition to testbeds would be an approach for (semi-)automatic generation
of labeling rules from observed malicious log events. Such a mechanism could largely
reduce the amount of time spent by analysts for modeling testbeds, specifically when
attacks are adjusted causing their consequences in log data to change, and thus labeling
rules need to be updated. One way to achieve this could be to automatically execute
attacks with all (or sufficiently many) combinations of parameter values in an idle testbed
where no other actions are carried out, capture their consequences in log data, and
derive a small set of identifiers that discerns them from the logs corresponding to normal
behavior.

When it comes to anomaly detection methods for log data, the possibilities are virtually
endless, as log data has so many different inherent regularities that ask for the development
and application of new techniques for pattern extraction. The main recommendation
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8. Conclusion

is to design detection techniques that are appropriate to process log data as streams,
i.e., they need to be capable of efficient online or incremental learning and utilize a
dynamic baseline for detection to comply with changing system infrastructures. One
of the most challenging aspects of log analysis is thereby the breadth of events formats
and their unique characteristics. As requirements for logging are just too versatile, it
is unreasonable to expect that a unified log format will ever gain universal acceptance.
Accordingly, advanced analysis methods are often either too generic to leverage specific
properties of certain types of log data, or too specific to be broadly applicable. There is
therefore a need to find solutions in between those two extremes, in particular, anomaly
detection methods for specific types of log files that yield very low false positive rates
independent of system usage to ensure applicability in productive systems. Another
interesting research problem is anomaly detection using federated learning [PRT+18], i.e.,
extending the training across many systems to obtain more generic models and reduce
the required training time. Since the testbeds generated as part of this dissertation are
representative for diverse systems, they could be beneficial to evaluate intrusion detection
relying on federated learning.

The aforementioned problems regarding diverse log formats directly propagate to alert
aggregation as log events are at the core of alerts and anomalies. This thesis presented
an alert aggregation approach that is independent from alert formats, but still relies on
certain properties of the data, in particular, alerts in JSON format. Extensions to this
approach could either generalize this idea for other formats or even natural language,
which is common in reports of cyber incidents that often contain information on artifacts
that are useful for detection. Moreover, our approach could be extended to implement a
function that measures how well one alert group is contained in another one. This could
reduce the problem of noise within groups and could even be used to separate alerts
of overlapping attack executions into distinct groups. On the other hand, determining
how well meta-alerts are represented by groups could allow to automatically recognize
and improve incorrectly formed meta-alerts. Finally, the presented approach generates a
hierarchical structure of groups due to the fact that different interval times are used for
group formation. It could be interesting to transfer these relationships between groups
to meta-alerts in order to improve their precision.
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