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Abstract: With the increasing occurrence of forest fires in the mid-latitudes and the alpine region,
fire risk assessments become important in these regions. Fuel assessments involve the collection
of information on forest structure as, e.g., the stand height or the stand density. The potential of
airborne laser scanning (ALS) to provide accurate forest structure information has been demonstrated
in several studies. Yet, flight acquisitions at the state level are carried out in intervals of typically five
to ten years in Central Europe, which often makes the information outdated. The Sentinel-1 (S-1)
synthetic aperture radar mission provides freely accessible earth observation (EO) data with short
revisit times of 6 days. Forest structure information derived from this data source could, therefore,
be used to update the respective ALS descriptors. In our study, we investigated the potential of
S-1 time series to derive stand height and fractional cover, which is a measure of the stand density,
over a temperate deciduous forest in Austria. A random forest (RF) model was used for this task,
which was trained using ALS-derived forest structure parameters from 2018. The comparison of
the estimated mean stand height from S-1 time series with the ALS derived stand height shows a
root mean square error (RMSE) of 4.76 m and a bias of 0.09 m on a 100 m cell size, while fractional
cover can be retrieved with an RMSE of 0.08 and a bias of 0.0. However, the predictions reveal a
tendency to underestimate stand height and fractional cover for high-growing stands and dense
areas, respectively. The stratified selection of the training set, which we investigated in order to
achieve a more homogeneous distribution of the metrics for training, mitigates the underestimation
tendency to some degree, yet, cannot fully eliminate it. We subsequently applied the trained model
to S-1 time series of 2017 and 2019, respectively. The computed difference between the predictions
suggests that large decreases in the forest height structure in this two-year interval become apparent
from our RF-model, while inter-annual forest growth cannot be measured. The spatial patterns of
the predicted forest height, however, are similar for both years (Pearson’s R = 0.89). Therefore, we
consider that S-1 time series in combination with machine learning techniques can be applied for the
derivation of forest structure information in an operational way.

Keywords: airborne laser scanning; stand height; stand density; random forest; SAR

1. Introduction

The area of globally burnt forests, grasslands, and croplands caused by wildfires
amounts to 3.3 to 3.8 million km2 per year [1,2]. Large amounts of greenhouse gases are
emitted by fires [3–5] thereby altering atmospheric composition [6,7]. In the past, major
wildfires predominantly occurred on the African continent, Australia and Brazil [1], but
showed an increasing trend in occurrence and severity also in California and Siberia [8,9]
and increasingly affect forest ecosystems in Central Europe due to climate change [9–11].

Occurrences of forest fires are a complex phenomenon. Physical and environmental
conditions such as weather conditions [12,13], topography and fuel [14] were found to
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control the fire risk. Fire ignition events, on the other hand, can have natural causes like
lightning, but human impacts are the major factor in Central Europe [15,16].

Fire risk assessments encompass two elements, namely the risk of fire ignition and
fire propagation [17]. Knowledge of the horizontal and vertical vegetation structure is
vital for such assessments as the fuel structure defines the preconditions for both of these
components [18–20]. Structure information of fire-relevant forest properties has been
derived from airborne laser scanning (ALS) data in the past, since ALS captures the forest
structure at a high level of detail and provides a three-dimensional representation of the
land surface. ALS allows the derivation of tree species (e.g., [21–23]), information on the
forest layering including the characteristics of the understory (e.g., [24–27]), crown base
height and crown length (e.g., [28–30]), canopy density related metrics such as crown
coverage, and distribution and size of forest gaps [31–33].

A disadvantage of ALS, however, is its limited temporal resolution due to the high
organizational and financial resources required. Therefore, county wide ALS acquisition
missions are carried out in time intervals of 5 to 10 years, typically, which implies that the
derived forest structure does not necessarily correspond to the situation today. Fire risk
assessments, thus, would benefit if the forest structure was derived from more recent data.

Spaceborne synthetic aperture radar (SAR) missions have the potential to overcome
the disadvantage of the low temporal resolution inherent to ALS data. SAR is an active mi-
crowave remote sensing technique which allows for the acquisition of vegetation structure
information independently of daylight and weather conditions [34–36].

SAR data have been widely used in the past for the estimation of forest stand related
parameters. A comprehensive overview on methods to derive the respective measures
is given by Kaasalainen [37]. Two conceptually different methods can be distinguished,
namely the inversion of SAR scattering models, and machine learning techniques. In
the former concept, a scattering model is established, which relates the measured SAR
interferometric coherence to structure properties [38–40]. Based on such models, stand
height, for instance, could be retrieved from L-band (e.g., [39–41]), X-band (e.g., [42–44]),
or C-band interferometric data [38]. SAR scattering models can also be applied for the
derivation of forest cover related information from L-band and P-band [45] as well as from
X-band interferometric data [43].

Independent of the quality of those methods, some of these studies deployed ex-
perimental systems, what hampers the operational application for forest surveys and
monitoring. With the increasing availability of open EO data, machine learning approaches
are coming into focus, which relate field-observed forest structure metrics and data-derived
metrics. As demonstrated by Morin [46] or Li [47], for instance, machine learning frame-
works allow for the combination of multiple sensor systems and offer the possibility to use
a wide range of predictor metrics computed from the respective data sets, which have a
known sensitivity to the forest structure. In particular, these two studies investigated the
derivation of, inter alia, the stand height from P-band and C-band backscatter information.
Urbazaev [48], finally, used multi-temporal and polarimetric information from L-band to
predict woody cover using machine learning techniques.

Potential predictors also encompass time series metrics, which were demonstrated
to be valuable for the derivation of structure-related forest parameters, such as forest
type [35,36,49] and woody cover [50].

In our study, we follow up on these studies and gauge the potential of Sentinel-1 (S-1)
C-band time series information for the derivation of forest structure metrics. S-1 carries a
C-band SAR sensor, operating at a frequency of 5.4 GHz [51]. The disadvantage of such
short wavelengths is their reduced ability to penetrate into the canopy [52,53]. As the
system, therefore, is more sensitive to upper canopy layers, not all of the structure elements
relevant for fire risk assessments are retrievable from S-1 data. It can only be expected to
derive structure metrics related to the upper height layers. In our study, we, thus, focus
on the derivation of the stand height and the fractional cover, which is a measure of the
stand density.
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Stand height is related to the canopy fuel, and its derivation from ALS data in the
context of fire risk assessments has been addressed in the past (e.g., [54,55]). Canopy density
controls the light regime with less dense canopies having a higher light transmission [56,57].
Increased solar irradiance on the forest floor, again, reduces the fuel moisture, thereby
increasing the fire ignition risk [58]. Since the introduction of the fractional cover metrics
computation from ALS data [59–61], its applicability for the characterization of the canopy
density has been widely investigated and its consistency in particular with the canopy
coverage has been proven (e.g., [33,57,62]). We therefore considered the fractional cover to
be another key parameter in fire risk assessments and defined it as target metric which we
want to derive from S-1.

SAR constellations like TanDEM-X, where two SAR scenes of the same spot are
acquired simultaneously from two platforms flying in a close formation, allow for across-
track interferometry. Such a technique can be used to derive accurate estimates of forest
height [63–66]. In contrast, the S-1 constellation allows for along-track interferometry [51].
However, the time interval between two acquisitions causes temporal decorrelation of
the phase information, which impedes the formation of interferograms over vegetated
areas. This temporal decorrelation is, among others, a function of vegetation cover and is
expressed in the form of the interferometric coherence (e.g., [53,67]). Different approaches
are therefore required for forest structure estimation. In our study, we test the feasibility of
retrieving forest parameters from S-1 data deploying machine learning techniques, as such
methods are straightforward to apply and would make open access earth observation (EO)
data available to a wider circle of users. We follow up on the work by Morin [46] and Li [47].
However, in contrast to these studies, we use data from S-1 alone, which further simplifies
the approach. We analyze to which degree the estimates of the forest structure parameters
based on S-1 data solely match those from ALS data. For the estimation of structure metrics
from S-1 time series, a random forest (RF) regression model is trained. Based on this model
we test the potential of S-1 time series for the derivation of the desired structure metrics and
investigate potential improvements in the training phase of the model. A further difference
to the aforementioned studies is that we also use interferometric coherence as a predictor.
Finally, the robustness of our model is tested by applying it to different years. Forest
structure metrics computed from the ALS data set served as reference data in our study.

2. Material and Methods
2.1. Study Area

The study was carried out over the Wienerwald, located south-west of Vienna, Austria.
The area is dominated by hills with heights between 200 m and 700 m above sea level.
Forest is the main land cover type, with beech (Fagus sylvatica), oak (Quercus spp.) and
hornbeam (Carpinus betulus) being the dominating species [68]. For our study, we selected
a 16 × 6 km2 subset of the area, which is mainly covered by deciduous forest (Figure 1).
Forest stand heights within the study area range up to 45 m, with a mean height of 17.8 m.
Our experiments were restricted to forest areas in order to avoid biases through settlement
areas. The official forest mask from the Austrian Research Centre for Forests (BFW) for
the federal state of Niederösterreich was used for the selection of forest areas, which was
available in a 10 m raster grid. We considered a respective cell on the level of the target
resolutions (i.e., 20 m, 40 m, 100 m) as forested, if at least 30% of the 10 m cells lying within
a respective cell of the target resolution were classified as forest. With this aggregation
approach of the forest mask, we fulfil the official forest definition of Austria [69].

2.2. ALS Data

ALS data were acquired on 20 September 2018 using a Riegl VQ-1560i sensor (RIEGL
Laser Measurement Systems, Horn, Austria). The sensor operates with two independent
laser channels, which results in scan lines tilted by ±14◦ from the flight direction’s per-
pendicular axis [70]. Both lasers operated at a wavelength of 1064 nm. During the flight
mission, an area of 53 × 8 km2 was captured by 18 strips with a side overlap > 50%,
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covering the city of Vienna and Wienerwald forest. The average flight altitude was 750 m
above ground at a flight speed of 60 m/s. The pulse repetition rate was set to 1.33 MHz.

The point cloud was clipped to the study area (Section 2.1; Figure 1). The point records
of both channels were used, which resulted in average point densities above forested areas
of 82–108 points/m2.
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Figure 1. Overview of Wienerwald test site. (Top): True color orthophoto (image source: Google Maps). The red squares
mark four 1.2 × 1.2 km2 tiles, which were used for the visual validation. (Bottom): 1 m normalized DSM derived from the
ALS point cloud. Coordinates are in Equi7 Grid [71].
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2.3. ALS Data Processing

An overview of the ALS data processing is given in Figure 2. The ALS point cloud
was normalized and reprojected from UTM 33 into the Equi7 Grid (cf., [71]) previous to the
derivation of the structure metrics in order to match the S-1 products. The transformation of
the ALS structure grids subsequent to their computation in UTM 33 would have involved
an interpolation, what would have modified the structure information. Therefore, the initial
transformation of the point cloud into the target reference system is more appropriate.

The entire point cloud processing was performed in the OPALS software package [72].
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nDSM 
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Compute 
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Spatial 
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Figure 2. Processing of the airborne laser scanning (ALS) data set, starting with a point cloud in Equi7 Grid coordinates [71].

2.3.1. Stand Height

A normalized digital surface model (nDSM) at a spatial resolution of 1 m formed the
basis for the derivation of the stand height. A DSM was computed from the point cloud
through the approach described in Hollaus (2010) [73], which afterwards was normalized
using a digital terrain model. The stand height, finally, was calculated by aggregating
the nDSM values to the target resolution, for which we applied cell sizes of 20, 40 and
100 m, respectively, in our experiments. We tested four different calculation modes for
the aggregation of the nDSM and summarized the stand height of a respective cell on the
target resolution as the mean, the 50%-, 75%- and 95%-height quantile of the nDSM values
falling within the cell area.

2.3.2. Fractional Cover

Fractional cover measures the fraction of ground which is covered by the forest canopy
within a certain area and was computed following Morsdorf (2006) [60] as:

f ractional cover =
Ncanopy

Ntotal
(1)

where Ncanopy corresponds to the number of canopy points and Ntotal to the total number of
points within each cell. A height of 3 m above terrain was used as lower canopy threshold
to distinguish canopy and ground points. Again, cell sizes of 20, 40, and 100 were selected
for the computation.

2.4. Sentinel-1 Data

The second major input data set was C-band data from S-1 at 10 m pixel spacing. For
this study, we used Level 1b high-resolution ground range detected (GRDH) and Level
1a single look complex (SLC) scenes, which were acquired in the Interferometric Wide
(IW) swath mode. A total of 36 variables (Table 1) were derived from S-1 using relative
orbits 22 (descending) and 146 (ascending) to supply the structure prediction model (cf.
Section 2.5) with input features being sensitive to the forest canopy structure at a fine
scale. This includes parameters, which have already proven successful for vegetation or
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crop monitoring, e.g., radiometric terrain flattened Gamma Nought (γrt f ), cross ratio (CR)
(e.g., [74–76]), coherence γ (e.g., [77–79]), and the backscatter-incidence angle slope and
correlation (e.g., [35,80]). Their meaning, characteristics, and processing procedure are
described in more detail in the subsequent sections. An overview of the main processing
steps for the retrieval of the backscatter products is given in Figure 3.

Table 1. Overview of the S-1 time series products used as predictor variables in our models. Slope and correlation
refer to the backscatter-incidence angle relationship (Section 2.4.5). FM, JJA, ON refer to the time span over which the
respective products where temporally aggregated and correspond to the months February–March, June–July–August, and
October–November, respectively (Section 2.4.4).

Product Name Temporal Aggregation Separate for Each Orbit Number of Products

VV backscatter FM, JJA, ON, year yes 8
VH backscatter FM, JJA, ON, year yes 8
Cross ratio VH/VV FM, JJA, ON, year yes 8
Coherence FM, JJA, ON, year yes 8
Slope VV year no 1
Slope VH year no 1
Correlation VV year no 1
Correlation VH year no 1

Total number of products 36
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Figure 3. Processing of the S-1 data to derive radiometric terrain flattened Gamma Nought (γrt f ) backscatter and coherence.

2.4.1. Radiometric Terrain Flattened Gamma Nought (Backscatter)

Radiometric terrain flattened Gamma Nought (herein denoted as γrt f ) has become
an indispensable backscatter variable for a vast amount of applications over complex
terrain [36,81,82]. It stems from the novel radiometric terrain flattening algorithm pre-
sented in Small (2011) [83], where terrain effects are compensated by integrating the local
illuminated area, projecting it into the radar geometry, and applying it as a reference area
during radiometric normalization. The value of geo-referenced backscatter, i.e., Sigma
Nought or Gamma Nought (herein denoted as σ0 and γ0, respectively), for forest area or
type estimation has already been proven in the past [35,84]. However, obtaining reliable
results in steep topography remained challenging, due to SAR effects like foreshortening,
layover and shadowing, and those areas have therefore been masked. In comparison to
such non radiometric terrain flattened backscatter variables, Rüetschi [36] could clearly
show the benefit of using γrt f over γ0 for forest applications in complex terrain. Building
upon these findings, we decided to select a high-resolution γrt f data set covering our
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region of interest. Such a data set was available within the frame of the Austrian Data
Cube (ACube [85]) project, which aims for establishing a service for the Austrian earth
observation user community. The ingestion into the data cube was conducted using the
SAR Geophysical Retrieval Toolbox (SGRT v2.4, cf. Naeimi [86]). During pre-processing,
it invokes several modules from the Sentinel Application Platform (SNAP [87]) to apply
(1) precise orbit data (2) border-noise removal (3) radiometric terrain flattening and (4)
Range-Doppler terrain correction on Sentinel-1 IW GRDH scenes. A high-resolution terrain
model [88] at 10 m pixel spacing was utilised during step (3) and (4) allowing to diminish
terrain effects in γrt f as best as possible.

2.4.2. Cross Ratio

The cross ratio (CR) corresponds to the ratio between γrt f in VH and VV polarisation
(computed on a linear scale) [74–76]. CR increases with increasing biomass and vegetation
water content [76].

2.4.3. Coherence

The interferometric coherence γ of a SAR image pair is defined as the complex cross
correlation between the images e1 and e2:

γ =
| < e1e∗2 > |√

< |e1|2 >< |e∗2 |2 >
, (2)

where <> denotes the expected value (typically estimated over a spatial window) and e∗ is
the complex conjugate of e. A variety of factors can contribute to decorrelation between e1
and e2, such as the baseline, system noise and temporal decorrelation due to changes that
occur between the acquisition times of the two images [67]. In the presence of vegetation,
small movements of vegetation parts contribute to the temporal component of γ. As a
result, vegetated areas typically exhibit low values of γ.

For the study area, SLC data were downloaded for the relative orbits 22 (descending)
and 146 (ascending) covering the years 2015 to 2019. SLC products acquired in IW mode
had a spatial resolution of 20 m in azimuth and 5 m in range direction [51]. The time series
consisted of a total number of 481 datasets. During the processing, precise orbit vectors
and the same high-resolution terrain model as for the γrt f backscatter processing were
used. Coherence estimation was carried out using SNAP. The Terrain Observation by
Progressive Scan (TOPSAR, cf. [51]) data were subset to the subswath and bursts relevant
for the study area. Each pair of consecutive images was coregistered resulting in 232 and
247 pairs for orbit 22 and orbit 146, respectively. γ was estimated by applying Equation (2)
over a window of 3 (azimuth) × 10 (range) pixels. The resulting coherence images were
then georeferenced and resampled to the same grid definition as the γrt f images with a
pixel spacing of 10 m. Figure 3 provides an overview of the most important processing
steps applied during the estimation of γ.

2.4.4. Seasonal and Spatial Aggregation of SAR Data

The time series of the 10 m S-1 backscatter are affected by noise. Thus we conducted
a temporal aggregation previous to the utilization of the backscatter products in the
structure prediction model. We defined three seasons, Feburary–March (FM), June–July–
August (JJA), and October–November (ON), respectively, for which we calculated the mean
backscatter, cross ratio and coherence, respectively. Additionally, the yearly means of the
respective products were computed. The aggregation was performed separately for the
ascending and the descending orbit.

The definition of the seasons was based on phenological considerations. The seasons
should be representative for a phenological phase, on the one hand, but be affected by
snow as little as possible, as snow impacts the C-band backscatter [89]. Since the time of
leaf sprout can vary between years, we excluded April and May. However, we did not
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consider December and January, for which we assumed the highest probability of snow.
The three designated seasons thus represent leaf-off conditions (FM), leaf-on conditions
(JJA) and a transition period in autumn (ON).

In addition to the temporal aggregation, SAR data were spatially averaged to the cell
sizes of 20, 40 and 100 m. The aggregation level of 20 m is twice the sampling interval of the
S-1 scenes. The aggregation on that level allows to reduce speckle noise. 100 m was chosen
as this resolution would be applicable to larger areas (e.g., [33]). 40 m, finally, represents an
intermediate aggregation level, which we chose as twice the minimum aggregation level
we investigated. The averaging was computed in R [90] using the raster-package [91]. Only
pixels within the forest mask described in Section 2.1 were taken into account.

2.4.5. Backscatter-Incidence Angle Slope

The SAR backscatter is dependent on the projected local incidence angle (θ) of the
signal. Within the limited range of available incidence angles of the S-1 sensor (29.1◦ to
46.0◦ in case of flat terrain), the dependency is assumed to be linear. As such, the slope
parameter (β) can be computed for each pixel using the linear regression between the time
series of γrt f and the corresponding θ values.

2.5. Structure Prediction Model

The structure metric derivation from S-1 time series was built around an RF-model [92],
which took the 36 S-1 parameters (Table 1) as predictors and the ALS structure metrics as
target variables. An RF-model was chosen, as it constitutes a non-parametric approach, i.e.
does not make assumptions about the underlying statistic distributions of the variables.
This is of special importance considering the different SAR-derived predictor variables. Fur-
thermore, previous studies have shown the robustness and efficiency of the RF algorithm
in comparison to other machine learning methods for mapping forest-related parameters
(e.g., [47,93]).

Ascending and descending orbits were treated separately to this point and the time
series metrics computed from the respective orbits are used as individual predictors in the
model. An individual RF regression model was trained for each of the structure metrics
and for each resolution. In case of the stand height, this also applied to the different
aggregation modes.

The prediction models rely on the ranger-implementation of the RF framework [94] in
R [90]. The performance of the RF-models is controlled by the number of trees (num.trees),
which are established during the training phase and which form the assemblage of the
random forest, and the number of variables (mtry), which are randomly selected for
splitting at each node [94]. The values for these two parameters were previously tuned on
a randomly selected 7 ha subset of the scene, where num.trees was varied in range [30, 300]
and mtry in range [1, 14]. The accordance of the predictions with the actual measurements
was highest for mtry = 6, while the increase of the model prediction performance beyond
num.trees = 150 was little, for which reason we selected this parameterization. mtry = 6 is
equivalent to the default parameter as estimated by ranger, corresponding to the rounded-
down square root of the number of prediction variables.

2.6. Experimental Design

We conducted four experiments in our study. In a first experiment, we investigated
which of the four aggregation modes for the stand height computation (i.e., the nDSM
height aggregated as mean, or as 50%-, 75%- or 95%-height quantile of the nDSM height)
can be best estimated from S-1 time series, and on which aggregation level (20 m, 40 m,
100 m) the predicted structure metrics showed the highest correspondence to the reference.
The training samples were randomly selected from the entire set of forest pixels and no
particular strategy was applied for the training of the RF-model.

In a second experiment, we focused on the aggregation level, and in case of the stand
height the aggregation mode, for which we obtained the best results in the first experiment.
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For the respective settings, we then investigated improvements in the training phase of
the RF-model through a stratified selection of training samples. Therefore, we stratified
the training set into three and four classes, respectively. For the stand height prediction,
we split the height range of 0–45 m, which is covered by the ALS heights, into groups
with equal height intervals (i.e., 0–15 m, 15–30 m and >30 m) for the stratification into
three groups, and into groups with intervals of 10 m (i.e., 0–10 m, 10–20 m, 20–30 m, and
>30 m) for the stratification into four groups. For the fractional cover, the thresholds
were set at 0.5 and 0.75 for the delineation of three classes, and to 0.5, 0.67 and 0.84 for
four classes, respectively. From each stratified group, the same number of samples was
randomly chosen, whereby the smallest stratification group defined the number of samples.
For the mean height at 100 m resolution, this were 803 samples per class in case of three
classes, and 744 samples per class in case of four classes. For the fractional cover at 100 m
resolution, the class with coverages ≤ 0.5 was the smallest one, comprising 350 samples.
Finally, in order to analyze the effect of the stratified training strategy, we reduced the
training set from the non-stratified training set and the training set with the four stratified
groups to the training sample size with three stratified groups, which was the smallest
training set, through random sampling of the initially designated training sets.

The aim of the third experiment was to analyze the predictive power of the coherence
metrics for the estimation of the forest structure. The experiment was carried out on a
random, non-stratified selection of training samples, whereby we excluded the coherence
metrics from the model.

In a final experiment, the transferability of the model to other years was tested.
Therefore, we trained an RF-model using the 2018 data and applied it to S-1 time series
metrics from 2017 and from 2019, which were processed in the same manner as the metrics
for 2018, in order to estimate the stand height of these respective years.

In all experiments, the performance of the RF-models were evaluated in their spatial
context through a visual inspection, and through a statistical analysis. In the first three ex-
periments, we removed four 1.2 × 1.2 km2 tiles of the entire scene (red squares in Figure 1)
previous to the separation of the training set and the test set, respectively, and the analysis
of the spatial performance was then conducted on these tiles. In the fourth experiment, the
exclusion of these tiles was not necessary because the models were transferred to data sets
of different years, for which the spatial performance was then tested.

The statistics for the analysis in experiments 1 through 3 were computed from the
joint pixel sets comprising of the designated test sample and the tile pixels. The test sample
thereby was randomly drawn from the forest pixels. Yet, slightly different fractions of
the forest pixels were picked as training and test samples in the three experiments after
removal of the tiles (Table 2), as the design of the study reduced the number of potential
training samples in case of the stratified training strategy.

Table 2. Fraction of pixels from the 2018 scene used for the training of the RF-models. The fraction
refers to the number of pixels after four 1.2 × 1.2 km2 tiles have been removed from the scene, if they
have been previously excluded. Only forest pixels were considered.

Experiment Fraction for Training Removed Tiles

1 75% yes
2 80% yes
3 75% yes
4 100% no

We selected three measures describing the quality of the RF-model for the statistical
analysis, namely the bias, the root mean square error (RMSE) and the correlation R between
the reference and the predicted metrics. As ideally, the correlation between the reference
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and the prediction should be linear, we chose Pearson’s linear correlation coefficient as
metrics for the latter, while bias and RMSE were computed as:

bias =
1
n

n

∑
i=1

(PredictionS1 − Re f erenceALS) (3)

and

RMSE =

√
∑n

i=1(PredictionS1 − Re f erenceALS)
2

n
(4)

whereby n corresponds to the number of pixels in the test set, PredictionS1 to the forest
metrics predicted by the RF-model, and ReferenceALS to the forest metrics computed from
the ALS data set.

3. Results
3.1. ALS Metrics Aggregation

Figure 4 shows the maps of the aggregated ALS metrics mean stand height and
fractional cover, respectively, both aggregated on cells with 100 m × 100 m extent, and cut
to forested areas considering the forest mask. Products aggregated in this manner served
as basis for the training and evaluation of the RF-models. The number of cells before and
after the limitation to forested areas is depicted in Table 3.

The mean stand height in the 100 m raster is 17.8 m with a maximum stand height of
42.9 m, while the fractional cover on 100 m has a mean of 0.76 and a median of 0.86. The
histograms in Figure 6c,d give a clearer picture of the ALS metrics distributions within the
test site.

Table 3. Number of cells with valid forest metrics computed from the ALS data set before (all) and
after the limitation to forested areas (forested).

Resolution
Number of Cells

All Forested

20 m 264,103 234,819
40 m 66,334 59,999
100 m 10,771 10,071
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Figure 4. Maps of the aggregated ALS metrics, cut to forested areas. (Top) Stand height, aggregated to a 100 m raster,
whereby each raster cell was assigned the mean height from the 1 m normalized digital surface model (nDSM). (Bottom)
Fractional cover, computed for a 100 m raster grid. Coordinates are in Equi7 Grid [71].

3.2. Prediction of ALS Metrics
3.2.1. Stand Height

Figure 5 reports the bias, RMSE and Pearson’s R of the stand height predictions for
the different aggregation levels (20, 40 and 100 m) and statistics with which the nDSM
heights were aggregated (i.e., mean, and 50%-, 75%-, and 95%-quantile height, respectively).
The bias changed from a slight underestimation of the predicted stand height on a 20 m
aggregation level (−0.14 to −0.01 m) to an overestimation in the same range (≤0.11 m) on
the 100 m aggregation level. RMSE decreased with increasing aggregation level (6.45 m to
7.07 m on 20 m, 5.83 m to 6.66 m on 40 m, 4.76 m to 5.91 m on 100 m), while the correlation
between the reference and the prediction increases (0.74 to 0.79 on 20 m, 0.76 to 0.81 on
40 m, 0.79 to 0.88 on 100 m).

Figure 5. Bias (left), RMSE (middle) and correlation (right) of the stand heights predicted through RF-models, compared to
the reference data. Depicted are the respective values for four different aggregation modes (mean, 50%-, 75%-, 95%-quantile
of the nDSM) and for three resolutions (20 m, 40 m, 100 m).

The observed biases for all modes on the same aggregation level were similar, while
the RMSE was lower when the nDSM height was aggregated as mean height (down to
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4.76 m on 100 m) than for aggregations deploying quantiles. Likewise, the correlation of
the prediction to the reference was highest when using the mean value for aggregation.

Figure 6a,c depict a comparison of the mean ALS stand height, aggregated to 100 m
(i.e., the best model, considering the performance metrics in Figure 5), to the respective
prediction from S-1 time series. The scatter plot (Figure 6a) reveals a high correlation of
the predicted stand heights to the reference (R = 0.88). Yet, the model showed a tendency
to overestimate the height of smaller stand heights, while the heights of taller stands
were underestimated. The histogram in Figure 6c illustrates this finding, showing a clear
overestimation of predicted stand heights in the range of 20 m to 25 m, while the number
of pixels with lower heights, and taller stands in particular, were under-represented in the
prediction (Figure 6).

The maps of the predicted mean stand heights on 100 m (Figures 7 and 8) reveal that
the general height structure is reproduced well from S-1. Yet, the underestimation of taller
stands, which we observed in Figure 6, can also be recognized in the maps and in the
profile sampled from Tile 4 (Figure 9). Furthermore, while spatially distinct transitions
in the stand height and gaps, in particular, stand out clearly in the prediction maps, it
becomes apparent that small height variations are not represented well in the predictions.

(a) (b)

(c) (d)
Figure 6. (a–d) Comparison of the structure metrics predicted from S-1 time series to the reference values. Left column:
stand height, aggregated as mean nDSM height, on 100 m aggregation level; right column: fractional cover on 100 m
aggregation level. Top row: Relationship between the ALS reference (x-axis) and the RF-prediction (y-axis). Bottom row:
histograms of the reference (white) and the predicted metrics (red).
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Figure 7. Maps of predicted mean nDSM height, aggregated on 100 m (top row) against the reference (second row). The
third row shows the difference between the predicted and the reference stand height. The maps on the bottom depict the
nDSM at 1 m resolution, which corresponds to the base product from which the aggregated ALS stand height was derived.
The maximum color value for each scene was set to the maximum predicted height of the respective scene. White pixels
depict non-forested areas.
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Figure 8. Predicted (left) versus reference mean stand height (right) on 100 m aggregation level for Tile 4. The map in
the middle shows the respective nDSM at 1 m resolution. White pixels depict non-forested areas. The red lines mark the
boarders of the profile in Figure 9.

Figure 9. Profile from Tile 4, depicting the heights of the nDSM at 1 m resolution (gray dots). The profile width is 100 m,
centered at 5,247,350 m east (red lines in the nDSM map Figure 8). The nDSM values within this profile were transformed
to points and correspond to the values which were aggregated to the ALS stand height on 100 m aggregation level (red),
which served as reference for the random forest (RF)-model. Further depicted is the predicted height on 100 m aggregation
level from the S-1 time series (blue). Only the predicted height within the 100 m cell is depicted in case that the prediction is
identical to the reference height. The profile length is 1.2 km.

3.2.2. Fractional Cover

The prediction of the fractional cover shows the highest agreement to the reference
on a 100 m resolution. The distribution of the predicted covers corresponds well to the
reference with a Pearsons’s R of 0.94 (Figure 6b), a bias of 0.0 and an RMSE of 0.08 (Table 4).
Yet, the comparison of the single predicted values (Figure 6d) reveals an over-representation
of stands with fractional cover values in the range of 0.85 to 0.9, while in contrast, the
model shows deficiencies in the detection of fractional cover values > 0.9.

The maps with the reconstructed tiles (Figure 10, and Figures A1 and A2 (Appendix A))
showed that the patterns of the predicted fractional cover closely matched the fractional
cover from the ALS reference, except for the mentioned deficiency to capture very dense
stand coverages (e.g., south-eastern corner in Tile 3, Figure 10).
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Table 4. Performance of RF-models for the prediction of the fractional cover. Best scores for each
measure are written in bolt letters.

Bias RMSE Person’s R

20 m −0.001 0.12 0.84
40 m −0.001 0.10 0.89
100 m 0.000 0.08 0.94

P
re

d
ic

ti
o
n

R
e
fe

re
n
c
e

F
ra

c
ti
o
n
a
lC

o
ve

r 
[1

0
 m

]

Tile 1 Tile 2 Tile 3

D
if
fe

re
n
c
e

Figure 10. Maps of predicted fractional cover (top row) against reference fractional cover at 100 m (second row). The third
row shows the differences between the predicted and the reference fractional cover values. The maps on the bottom row
depict the fractional cover at 10 m. The maximum color value for each scene was set to the maximum predicted fractional
cover of the respective scene. White pixels depict non-forested areas.
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3.3. Stratified Training Sets
3.3.1. Stand Height

The distribution of the height values was non-uniform, but showed an over-
representation of samples in the height class between 15 m and 30 m. In a second ex-
periment, we therefore tested the effect of a stratified selection of training samples for the
prediction of the mean stand height at 100 m resolution. The prediction performances of
the RF-models without a stratified training set selection, and from the sets using three and
four stratification groups, respectively, are shown in Figure 11 and summarized in Table 5.
Overall, the error in the predicted heights was in the same range if stratified training sets
were deployed (bias = 0.9 m, RMSE = 5.2 m for three classes; bias = 0.3 m, RMSE = 5.1 m
for four classes) as if the training set was obtained through random sampling (bias = 0.2 m,
RMSE = 5.1 m). Yet, the tendency to underestimate tall stand heights could be reduced.
While the RF-model from the non-stratified training set showed a bias = −6.1 m and an
RMSE = 6.7 m for stand heights > 30 m, the discrepancies to the reference in this height
class were smaller if stratified training sets are used (bias = −3.8 m, RMSE = 4.9 m for the
model with three stratified groups; bias = −4.7 m, RMSE = 5.7 m for the model with four
stratified groups). Likewise, the histograms in Figure 11d–f illustrate the stratified models’
ability to also better reproduce stand heights below 15 m. While the bias was 4.3 m with an
RMSE of 6.2 m for the non-stratified model, the bias was reduced to 3.9 and 3.6 m using
three and four height classes in the stratified training set retrieval. Yet, the RMSE remained
in the same range as for the non-stratified training set (RMSE = 6.3 m and 5.9 m for three
and four stratification groups, respectively).

(a) (b) (c)

(d) (e) (f)
Figure 11. (a–f) Comparison to the ALS derived mean stand height at 100 m, and the stand height predicted from RF-models
using a non-stratified (left, red) and stratified training sets with three classes (middle, blue) and four classes (right, yellow),
respectively. Top row: Relationship between the ALS reference stand height and the stand height predicted from the
RF-model. Bottom row: Distribution of the respective values from the RF-model compared to the reference. Bin width is
5 m.
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Table 5. Prediction error within the three height classes 0 m–15 m (H1), 15 m–30 m (H2), and >30 m
(H3), respectively, for the RF-model trained with a non-stratified training set, and sets comprising of
three and four height classes, respectively. Further stated are the overall Bias and RMSE measures for
the three models. All measures are in [m].

Non-Stratified 3 Classes 4 Classes
H1 H2 H3 H1 H2 H3 H1 H2 H3

Bias 4.3 −0.7 −6.1 3.9 0.2 −3.8 3.6 -0.4 −4.7
RMSE 6.2 4.1 6.7 6.3 4.7 4.9 5.9 4.5 5.7

Biastot 0.2 0.9 0.3
RMSEtot 5.1 5.2 5.1

3.3.2. Fractional Cover

As for the stand height, the training sets for the RF-models for the prediction of the
fractional cover were also obtained from subsets stratified into three and four cover classes,
respectively, in a second experiment. Figure 12a–c compare the predicted fractional cover
estimates at 100 m from the non-stratified training set (a), and for training sets stratified
into three (b) and four (c) cover classes, respectively, to the reference. The statistics stated
the errors of the RF-models to be similar, regardless of the deployed stratification strategy
(RMSE = 0.08− 0.09), but to underestimate the fractional cover if stratified training sets
were applied (bias = −0.04 and −0.03 for three and four stratification classes, respectively)
in contrast to a bias of 0.0 in case of a non-stratified training set. Yet, the histograms
in Figure 12d–f, where the predicted fractional cover values are compared to the ALS
references, revealed that the models with stratified training sets could mitigate the over-
representation of fractional cover values in the range 0.85 to around 0.9, but at the expense
of lower fractional covers, which are now over-represented. The recognition of very dense
plots, i.e., with fractional cover values > 0.95, however, was not improved through the
stratification strategy.

(a) (b) (c)

(d) (e) (f)
Figure 12. (a–f) Comparison to the ALS derived fractional cover distributions of the fractional cover on 100 m, predicted
from RF-models using a non-stratified (left, red) and stratified training sets with 3 classes (middle, blue) and 4 classes (right,
yellow), respectively. Top row: Relationship between the ALS reference fractional cover and the predicted fractional cover at
100 m. Bottom row: Distribution of the respective values from the RF-models compared to the reference. Bin width is 0.025.
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3.4. Predictive Power of Coherence

The predictive power of the model for the mean stand height on 100 m deteriorates, if
the coherence metrics are excluded (bias = 0.21 m, RMSE = 5.64 m) compared to the model
including these metrics (bias = 0.09 m, RMSE = 4.76 m, cf. Figure 5). Low growing stands
with heights < 15 m and tall stands with heights > 30 m are overestimated (bias = 5.8 m,
RMSE = 7.2 m) and underestimated (bias = 7.3 m, RMSE = 8.0 m), respectively. Deficiencies
in accurately estimating these height layers already occurred in the model including the
coherence (Table 5), yet are more pronounced if the coherence is excluded. In particular,
the predicted stand heights show a distinct break pointing towards an underestimation
with increasing stand heights when the coherence metrics are excluded (Figure 13b) than
when including coherence (Figure 6a). As a result, we can observe an over-representation
of predicted medium stand heights for the model excluding coherence (Figure 13c), yet
with a shift of the dominant over-represented height range to 15 m to 20 m, compared to
the former model, which predominantly over-represents heights between 20 m and 25 m
(Section 3.2.1, Figure 13a).

In case of the fractional cover, we can observe an increase of the error (RMSE = 0.08 vs.
0.11 for the model including and excluding coherence, respectively) and a decrease of the
correlation (Pearson’s R = 0.94 vs. 0.82) if the coherence is excluded from the model. Yet,
the histogram of the predicted values including (Figure 13d) and excluding the coherence
(Figure 13f) reveals that coverages of forest stands with fractional covers larger 0.85 are
more often underestimated if the coherence is excluded from the model than is the case
including the coherence. In contrast, fractional covers in range 0.7 to 0.85 are more severely
over-represented. As in the case of stand height, the tendency of the model to underestimate
high vegetation densities is thus increased if the coherence is excluded (Figure 13).

(a) (b) (c)

(d) (e) (f)

Figure 13. Top row: Predicted stand height including (a) and excluding coherence (c), compared to the ALS reference.
(b) depicts the correspondence of the predicted stand height excluding coherence to the reference. Bottom row: Predicted
fractional cover including (d) and excluding coherence (f), compared to the ALS reference. (e) depicts the correspondence of
the predicted fractional cover excluding coherence to the reference. All metrics were computed on the 100 m aggregation
level. Bin widths are 5 m for the stand height, and 0.025 for the fractional cover.
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3.5. Model Transfer

In a final experiment, we applied the model for stand height prediction from 2018
to S-1 time series acquired in 2017 and 2019. The estimated heights for 2017 and 2019
corresponded well (Pearson’s R = 0.89; Figure A3b (Appendix B)), and the spatial patterns
of the predicted stand heights showed similar structures for both years (Figures A4 and A5).
However, the predicted stand height is higher for 2017 (mean stand height = 17.6 m) than
for 2019 (mean stand height = 16.5 m, Figure A3a,c) and, consequently, the difference map
(Figure A6) shows predominantly small negative changes for the 2 year time interval.

To verify our results, we analyzed whether major decreases in the predicted forest
stand heights could be linked to observations in aerial images, as no point clouds were
available to build the same type of reference data as in the experiments of Sections 3.2–3.4.
We disregarded small height changes between 2017 and 2019 and focused on height
decreases greater than 10 m. We subsequently compared the respective spots from the
difference map to aerial photographs, where changes are recognizable. Figure 14 illustrates
two exemplary plots with distinct negative height changes between the two investigated
years. For cells with detected height decreases of more than 10 m between the investigated
years, changes in the forest structure can be recognized in the aerial photographs. Note
that the undetected gap in the second example, which is clearly visible in the south-west
corner, to our knowledge was cleared in 2020.

Height Difference [m] Aerial Image 2018 Aerial Image 2020

∆� [�]

Figure 14. Examples of large decreases in the stand height between 2017 and 2019, detected based on the stand height
predictions from the RF-model. Left column: Stand height difference between 2017 and 2019, underlain by an aerial photo
acquired in 2020. Only height decreases >7 m are depicted, while smaller height changes were neglected. Middle column:
Aerial image acquired on 11 October 2018 (image source: Google Maps). Right column: Aerial image acquired 2020 (image
source: Bing Maps). Coordinates are in Equi7 Grid [71].
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4. Discussion
4.1. Prediction of Stand Height

Our results have shown that from the investigated aggregation levels, the correspon-
dence of the predicted height from S-1 time series to the ALS reference is highest if the
height is aggregated as mean nDSM height within 100 m cells. While biases for all mod-
els were close to 0 m, the overall prediction error in terms of the RMSE was smaller for
this aggregation mode than the errors when using quantiles (Figure 5). The effect of the
aggregation level was such that the bias and the RMSE decreased with increasing aggre-
gation level from 20 to 100 m for the same aggregation mode. The model was able to
reproduce the general forest height structure (Figure 7), however, we observed a satura-
tion of the predicted stand heights for heights larger 25–30 m, which are systematically
underestimated. This finding is in correspondence to other studies which reported the
SAR backscatter to saturate with increasing biomass [95–97]. The accurate estimation of
taller stands from SAR backscatter information is a pending task (e.g., [40]). Since the RF
methodology is a non-linear, non-parametric model, known SAR backscatter dependencies
on the forest structure are not considered explicitly by our RF-model. This may further
affect the stand height prediction. SAR scattering models describing the SAR backscatter
and phase in dependence of the forest volume (e.g., [39,40,43]), are advantageous in this
respect since process understanding on scattering mechanisms can be incorporated into
these models. The cited studies demonstrated that estimation errors could be kept small
with such models.

In our study, we addressed the deficiency of the RF-model in the prediction of both
tall and lower-height stands by applying a stratified sampling strategy for the selection
of the training set. The correspondence of the predicted heights to the reference could be
increased if random sub-samples of equal size were drawn from three or four stratified
height classes for the training of the model (Figure 11a–c). In particular, the representation
of the range of the heights within the test site could be improved through a stratified
training set selection (Figure 11d–f). The improvement is reflected in the bias and RMSE
of the investigated height classes (i.e., 0–15 m, 15–30 m, >30 m), whereas the prediction
accuracy of the tallest of these height classes increased most noticeably (Table 5). Yet, in
our experiment, the stratification into three classes yielded slightly better results than if
four classes were distinguished. Therefore, three classes should be the better choice, also
since the model is not tailored too specifically to one test site.

Studies using spaceborne sensors emphasize that the X-band, whose radiation is scat-
tered on the uppermost canopy layers, offers the best canopy height prediction capability
(e.g., RMSE in range of 2.6 m on a 31 × 15 m2 grid when using data from the Shuttle
Radar Topography Mission (SRTM) [42]; RMSE in range 3.5 m to 4.3 m on a 90 m raster
when using TanDEM-X data [98]) while predictions from L-band typically are lower (e.g.,
RMSE of 3–4 m on a grid size of 3–6 ha when using ALOS/PALSAR data [40]). The acquisi-
tion geometry of the TanDEM-X mission with its two sensor, small baseline constellation
is therefore a valuable data source for forest structure derivation using SAR scattering
models [63–66]. In contrast, SAR C-band in combination with an RF-model in our study
delivered height predictions with slightly larger errors.

However, due to the increasing number of EO missions which provide freely accessi-
ble data and convenient access, these new spaceborne missions have gained interest, in
particular the Sentinel-1 constellation. Yet, the sensor constellation of S-1 only allows for
multi-pass interferometry, which, however, has a decreased coherence over vegetation [53],
and does not allow for the derivation of the forest height using SAR scattering models.
New approaches are therefore required for the derivation of forest structure information.
Morin [46] and Li [47] demonstrated that machine learning frameworks are feasible means
for the exploitation of open access, multi-modal EO data and that through this combina-
tion, similar estimation accuracies can be achieved as when using interferometric SAR
in combination with scattering model inversion approaches. The results from our study
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showcase that such estimation accuracies can also be achieved from S-1 time series metrics
alone, when introduced into a machine learning framework.

4.2. Prediction of Fractional Cover

As for the stand height, the best correspondence of the predicted fractional cover
to the reference was achieved on a 100 m aggregation level (Table 4). Yet, here again, a
saturation in the predicted values is discernible since the RF-model showed deficiencies in
the prediction of fractional cover values above 0.9. Nevertheless, the RF-model was able to
adequately reproduce the general density patterns (Figure 10), whereby distinct transitions
were well retained and gaps, in particular, could be reproduced.

A stratified approach for the selection of the training samples lead to a less distinct
improvement of the predictions than was the case for the stand height. Although the over-
representation of predicted pixels in the range between 0.85 and 0.9 could be mitigated, the
stratified training phase lead to an overestimation of lower fractional cover values, while
the inability to recognize very dense stands remained.

One general issue with our study design is the fractional cover distribution within
our test site, which shows a distinct left skewed density distribution with a mean fractional
cover value of 0.79 and only 10% of the pixels having fractional cover values below 0.5.
Studies by Lucas [45] and Urban [50], which investigated the potential to estimate the
foliage cover and the woody cover, respectively, from SAR data, were performed over
larger areas and over differing bioms to ours, covering a wider range of coverage densities.
However, our test area corresponds to a typical temperate forest in Central Europe, which
is why methods are required to capture such canopy densities.

4.3. Predictive Power of Coherence

One issue with the applied SAR metrics is the additional computation step which is
required to estimate coherence. Applications of stand metrics estimations from S-1 time
series would benefit if the coherence could be excluded from the models. We therefore
tested the influence of the coherence in the RF-models for the prediction of the mean stand
height and the fractional cover, both on a 100 m aggregation level. RF-models including
and excluding the coherence metrics were applied on the same subset of test pixels in order
to ensure their comparability.

The comparison of the prediction models including and excluding coherence metrics
showed that the dynamic range in the stand height was better reproduced if the coherence
was included in the model. The height overestimation of low-growing vegetation (i.e.,
stand heights < 15 m) was more severe if coherence was excluded from the model. For
forest stands with heights > 30 m, the differences were less distinct since both models
underestimated high-growing forest areas. Yet, the flattening tendency of height estima-
tions with increasing stand height was more pronounced if the coherence was excluded
(Figure 13b) when compared to the model including the coherence (Figure 6a), since already
heights above 15 m were affected. In contrast, in the predictions including the coherence, a
systematic underestimation applied to heights above 20 m only.

In the case of fractional cover, we could observe an increase in the error and a tendency
of the model to over-represent fractional covers in the range 0.7 to 0.85 (Figure 13d,f), if
the coherence was excluded from the model. Thus, here again, a clear improvement of the
prediction accuracies could be attained when coherence was included.

Previous studies have investigated the relationship between biomass-related param-
eters and coherence and demonstrated the potential of coherence for the retrieval of
biomass-related parameters (e.g., [77–79]). Generally, a lower multi-pass coherence was
observed for higher biomass [53], in particular over forests [99–101]. The sensitivity of
coherence to both, the stand height and the fractional cover, which we observed, is therefore
consistent with the aforementioned studies and we consider the inclusion of coherence
metrics in our RF-model as important.
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4.4. Model Transfer

S-1 time series in combination with an RF-model offer the potential to update forest
structure descriptions in annual intervals, thereby closing gaps between the ALS acquisi-
tions. Following this intention, we applied a model from 2018 to predict stand heights for
2019 and 2017. The comparison of the predicted stand heights with the reference stand
height from 2018 showed a similar pattern (Figure A3a,c) as we have observed in the model
validation (Figure 6a), with a distinct saturation of the predicted height with increasing ac-
tual stand height. Likewise, the spatial analysis revealed a similar pattern of the predicted
forest height structure for both years (Figures A4 and A5) but also in comparison with 2018.
Yet, the predicted stand height was larger for 2017 than for 2019. Although changes of the
forest structure between 2017 and 2018, and between 2018 and 2019, respectively, should
be similar, the height predictions for 2017 showed a higher correspondence to the 2018
reference (R = 0.81) than the prediction for 2019 (R = 0.75). However, the correspondence
of the predictions for 2017 and 2019 was high (R = 0.89, Figure A3b). This supports our
hypothesis that the model can in principle be applied to different years in order to derive
updated information on the stand height, which is an important parameter in fire risk
assessments as it is related to biomass and forest fuel [18–20].

From the stand height estimations derived in this manner, inter-annual changes in
forest cover could be detected by applying a threshold of 10 m, corresponding to the
minimum height decrease between 2017 and 2019. Within our test site comprising of
managed forests, clearings originate from logging activities and predominantly affect
mature forest stands, which are characterized by large heights. New clearings, therefore,
should be clearly discernible since a change from a tall stand to nearly ground level can be
detected. Information on newly emerging clearings are elementary for fire risk assessments
as they represent locations which can act as potential fire ignition spots and need to be
integrated into risk assessments. S-1 time series therefore are valuable to regularly update
the forest structure information between ALS surveys over such managed forests, even if
the accuracy of the predicted forest structure is not as high as from ALS data. Yet, based on
our data set, we could not test the feasibility of our approach to detect major changes in
non-managed, more natural forests.

The potential to recognize forest structure changes using S-1 time series has been
reported in previous studies (e.g., [102]) and the detection of deforestation from S-1 data
has been shown, whereby time series were applied [103,104] or the SAR shadowing effect
was exploited [105]. These studies also highlight the potential of S-1 data for the detection
of natural disturbances and of illegal logging activities, which, apart from fires, are crucial
aspects in forest management. As becomes obvious from these studies, however, the
detection of forest gaps and deforestation is a non-trivial task. We did not aim at providing
such a thorough framework, but used the detection of large gaps, which we could identify
in aerial images, as a way to test the transferability of the model, since we could not validate
the models with reference data from the respective years.

The inter-annual transfer, however, also revealed some open issues of our method.
The model prediction is based on the seasonal backscatter behaviour. Yet, the backscatter
processes are not only controlled by the actual forest structure, but also by meteorological
conditions. The impact of the temperature on the measured backscatter has been reported in
previous studies [36,106,107]. Furthermore, the temperature controls the plant phenology
in spring, which leads to differences in the S-1 time series across the years. Therefore, S-1
time series are more suitable for detecting larger forest structure changes on time scales
of multiple years rather than inter-annual changes, since the reported prediction error
(RMSE = 4.76 m, Figure 5) is larger than the yearly height increase.

Finally, the performance over different forest types, i.e., over conifer, deciduous or
mixed forest stands, has to be investigated further. Rüetschi [36] and Dostálová [35] noted
a distinct, opposing intra-annual backscatter pattern for deciduous and coniferous stands.
Therefore, it should be tested whether the structure estimation works better for one of these
specific forest types and even more so the requirement to train specific RF-models for each
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stand type. The required forest type maps for the stratification could be derived from S-1
time series in a preceding step, as these two studies further demonstrated. However, we
could not perform a robust stratified analysis based on our data set as, firstly, only a small
fraction of the test site was covered with conifer tree stands and secondly, the majority of
these conifer stand pixels had stand heights below 10 m, and are thereby in the range of
the largest prediction error (Table 5).

5. Conclusions

We tested the potential of S-1 time series for the derivation of forest stand height
and fractional cover over a temperate deciduous forest area. Deriving vegetation struc-
ture parameters from S-1 would allow updating forest structure information on a yearly
basis. This can augment ALS time series, which typically have multiple years between
subsequent acquisitions.

Reference data derived from ALS was used to train a Random Forest model to estimate
the vegetation structure. The comparison of the predictions of the RF-model to the ALS
reference on different scales revealed the highest level of agreement at a 100 m resolution.
The predicted mean stand height had an RMSE of 4.76 m (bias = 0.09 m; R = 0.88), while for
the fractional cover the RMSE was 0.08 (bias = 0.0; R = 0.94). The comparison of the spatial
arrangement of the structure metrics predictions to the reference showed that the general
height and density structure, respectively, could be reproduced well by the RF-model.
Yet, we recognized the predictions of both, stand height and fractional cover, to get into
saturation. Stand heights above 30 m were underestimated as were dense stands with
fractional cover values larger 0.9. Likewise, in case of the stand height, we recognized
a deficit of the RF-model to accurately predict stand heights below 15 m, as the height
of such low-growing stands were generally overestimated. The stratified selection of the
training set, yielding a homogeneous distribution of the structure metrics for training,
could partially mitigate but not completely eliminate the saturation behaviour. We further
learned that the SAR coherence, which was evaluated as predictor in our model, was
indeed crucial for the prediction accuracy, as its inclusion reduced the saturation tendency.

We further applied the trained RF-model to S-1 time series one year before and after
the year, for which the model was trained. The predicted height values for the two years
revealed a high level of consistency (R = 0.89), and the spatial patterns of the height
predictions were similar, additionally confirming the effectiveness of our approach. Yet,
the predicted heights of the earlier year were higher than those of the later (difference of
the mean heights = 1.1 m).

Overall, the prediction accuracies in our experiments were close to those of previ-
ous studies, which predicted stand heights through the application of scattering model
inversion on SAR interferometric data. We therefore conclude that S-1 time series in com-
bination with machine learning frameworks facilitate the derivation of forest height and
fractional cover. However, the approach should also be tested over coniferous and mixed
forest stands, what was not possible in our study as the test site comprised predominantly
deciduous tree species. This would further refine the approach and make it applicable for
forest structure estimations over larger areas.
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Appendix A

Figure A1 shows the predicted fractional cover at 100 m resolution for Tile 4, alongside
with the ALS reference fractional cover at 100 m and at 10 m, respectively. Additionally, a
profile from the point cloud was taken, which is depicted in Figure A2, alongside with the
reference fractional cover from ALS (red) and the prediction from S-1 (blue).

Figure A1. Predicted (left) versus reference fractional cover (right) on 100 m aggregation level for Tile 4. The map in the
middle shows the respective fractional cover at 10 m resolution. White pixels depict non-forested areas. The red lines mark
the boarders of the profile in Figure A2.

Figure A2. Profile through the terrain normalized ALS point cloud from Tile 4. Profile width is 100 m, centered at
5,247,350 m east (red lines in the nDSM map Figure A1) . Depicted alongside the point cloud are the fractional cover from
ALS (red) and the predicted fractional from the S-1 time series (blue), respectively, both aggregated on 100 m. Only the
predicted height within the 100 m cell is depicted in case that the prediction is identical to the reference height. The profile
length is 1.2 km.

Appendix B

Supplementary information on the prediction models for 2017 and 2019. Figure A3
compares the predicted stand heights for 2017 and 2019, respectively, to the ALS reference
stand height from 2018. The maps of the predicted stand heights for 2017 and 2019 are
depicted in Figures A4 and A5, the difference map between the two predictions is shown
in Figure A6.
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(a) (b) (c)

(d) (e) (f)
Figure A3. (a–f) Comparison between the predicted stand heights for 2017 (left) and for 2019 (right) to the ALS reference
height from 2018, and the comparison between the prediction for 2017 and the prediction for 2019 (middle column).
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Figure A4. Predicted mean stand height at 100 m resolution for 2017. Coordinates are in Equi7 Grid [71].
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Figure A5. Predicted mean stand height at 100 m resolution for 2019. Coordinates are in Equi7 Grid [71].
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Figure A6. Height differences between the predicted stand heights of 2019 and 2017. Coordinates are in Equi7 Grid [71].
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