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The research conveyed by the present dissertation explores 
microclimatic conditions the dwellers experience in urbanized 
locations. It focuses on the interrelationship between microclimatic 
conditions and building-related attributes. To this end, such 
interrelationships are examined at seven specific study areas in the 
city of Vienna (Austria) and its surroundings. Thereby, the research 
employs satellite-based land surface temperature (LST) data from 
Moderate Resolution Imaging Spectroradiometer (MODIS) sensors 
and examines this data with respect to the obtained near-surface 
air temperature (Tair) data from seven meteorological stations 
operated by Zentralanstalt für Meteorologie und Geodynamik 
(ZAMG). Thermal data from a temporal range of about 15 years 
(from 05.03.2000/04.07.2002 to 01.09.2015) are considered. The 
nature of the data is specifically studied at two day-time and two 
night-time intervals. The research explores alternative scenarios for 
deriving near-surface temperatures over the study locations. The 
present dissertation further proposes and evaluates the 
performance of day-time and night-time models for deriving near-
surface temperatures over all studied locations. The performance 
of the selected models at the individual weather station locations 
are further documented. 

 

Summary    



Die vorliegende Dissertation beschäftigt sich mit den 
mikroklimatische Bedingungen und deren Wirkung auf die Nutzer 
im urbanen Umfeld. Konkret wird die Wechselbeziehung des 
urbanen Mikroklimas sowie deren Veränderung durch 
gebäudebezogene Einflüsse betrachtet. Für die konkreten Analysen 
wurden sieben exemplarische Standorten in Österreich, mit 
Schwerpunkt auf die Stadt Wien und ihre Umgebung ausgewählt. 
Satellitengestützte Landoberflächen-temperatur (LST) auf 
Grundlage von Daten von Moderate Resolution Imaging 
Spectroradiometer (MODIS)-Sensoren und gemessenen 
oberflächennahen Lufttemperaturdaten (Tair) der zugehörigen 
meteorologischen Stationen der Zentralanstalt für Meteorologie 
und Geodynamik (ZAMG) wurden hinsichtlich ihrer Korrelation 
untersucht. Insgesamt wurden Daten aus etwa 15 Jahren (von 
05.03.2000/04.07.2002 bis 01.09.2015) an jeweils zwei Tages- und 
Nachtintervallen analysiert und für die Entwicklung neuer 
Szenarien zur Berechnung er bodennahen Lufttemperaturen 
verwendet. In dieser Arbeit wurde unterschiedliche Tages- und 
Nachtmodelle zur Ableitung der bodennahen Lufttemperatur 
vorgeschlagen und deren Qualität für die sieben Studienstandorte 
dokumentiert. 
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11..11..  MMoottiivvaattiioonn  

The Earth has been experiencing a significant growth in the human 
population, from around 2.6 billion (1950) to seven billion (2011) in 
just over 60 years. A further 1.5 billion increase is expected from 
this figure until 2030, at which, the projections indicate an 8.5 
billion people will be residing on Earth (UN 2022).  

An upward trend is also being observed in the demographic 
development of the urbanized regions, which accommodated 30% 
of the whole human population in 1950 and 55% in 2018. 2050 
projections indicate even larger figures with 68% (UN 2018). All 
these reported trends suggest significant transformations in the 
physical environments.  

While the developmental processes and consequent impacts of 
these transformations are many-fold, they commonly lead to the 
expansion and/or densification of the built environment in the 
(existing) urban areas (see, for instance, Chakraborty et al. 2021; 
Espindola et al. 2017). These "urbanization" processes take place 
via transformations in the material-based and form-related 
characteristics of these environments and are also strongly 
associated with increased anthropogenic activities and emissions 
(Grimmond 2007; Mills 2014; Voogt 2017).  

Due to the differences in the heat and water retention behaviours 
of natural surfaces and the artificial-urban ones, these afore-
mentioned transformations constitute an "urban fabric" which is 
"drier", and which possesses enhanced heat storage capabilities 
(Barlow 2014; EPA 2008; Grimmond 2007; Oke 1982; Rizwan et al. 
2008; Stathopoulou et al. 2009; Voogt 2002; 2017).  

11..    IINNTTRROODDUUCCTTIIOONN  
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Moreover, these changes also lead to a denser and "rougher" 3D 
environment, and thus influence the air-flow characteristics 
(Grimmond 2007; Rizwan et al. 2008; Voogt 2017), including the 
dispersion of pollutants in the urbanized regions (see, for instance, 
Ng 2009).  

Together with the afore-mentioned increase in anthropogenic 
emissions, these material and form-related transformations of the 
urbanization have a certain level of control on the thermal 
environment (Oke 1976; Taha 1997) and consequently, on the air 
quality, dweller well-being and habits of energy consumption in 
cities (Grimmond 2007; Taha 1997; Voogt 2002). 

Moreover, each city carries particular characteristics in terms of its 
urban climate and thermal environment, both of which are closely 
associated with the built environment properties, anthropogenic 
activities, topographical and geographical features, specific for that 
city (Oke 1982; 1984). These "unique" features also lead to 
"microclimatic variations" in the urban thermal domain, as 
documented in detail by previous research efforts (see, for 
instance, Lim et al. 2014; Mahdavi et al. 2013; Mahdavi 2018; 
Maleki et al. 2012; Vuckovic et al. 2016; 2017).  

The motivation behind the present dissertation stems from 
acknowledging that observing these "complex" variations in the 
urban thermal environment is potentially not practical via 
conventional terrestrial methods such as the use of meteorological 
networks (see, for instance, Crawley and Barnaby 2019), as 
supported by the previous work of Lim et al. (2014) for Vienna. 
Moreover, terrestrial meteorological information is still limited for 
some parts of the world. Contrarily, satellite-based platforms offer 
global thermal data with significantly superior spatial resolution 
(Weng 2009) and a large portion of this data can be publicly and 
freely accessible (see, for instance, ESA_Data 2022; Gorelick et al. 
2017; NASA_Data 2022).  

Motivated by these aspects, the present dissertation explores the 
thermal information acquired via satellite-based platforms with the 
aim of obtaining "location-specific" insights on the urban 
microclimate variations (Firat Ors and Mahdavi 2021; Firat Ors et al. 
2019).  
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11..22..  OObbjjeeccttiivvee  

Based on the afore-mentioned considerations regarding the urban 
microclimate variations and the potentials of satellite-based 
platforms for their observation (see, for further details Firat Ors and 
Mahdavi 2021; Firat Ors et al. 2019), the present dissertation aims 
to define a systematic approach that offers location-specific 
insights on urban thermal environments.  

For that purpose, it explores the inter-relationship between the 
microclimatic conditions, more specifically near-surface and land 
surface temperatures, and the building-related attributes (Firat Ors 
and Mahdavi 2021; see also Irger 2014). 

The aim is to propose a methodology that can facilitate estimations 
of near-surface temperatures based on GIS and remote sensing 
data accessible to the public-use (Firat Ors and Mahdavi 2021). The 
goal is to allow for the potential applicability of the purposed 
approach in areas where adequate terrestrial meteorological 
information is not available.  

11..33..    SSttrruuccttuurree  

This dissertation consists of seven chapters: 

• The first chapter provides an overall introduction to the 
investigated field and the defined research problem.  

This is presented by describing the motivation and the 
objectives that lead to the problem definition and 
consequently, to the proposed workflow.  

• The second chapter presents a detailed background on the 
investigated field.   

This includes information regarding the physical aspects and 
commonly applied methods on the urban climate, with a 
focus on the thermal remote sensing method.  
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• The third chapter describes the pursued approach to achieve 
the research goals defined in the first chapter.  

This is realized through several steps. Initially, the case area 
and the procedure followed to investigate the building-
related attributes are presented. Later, data-selection and 
filtering processes regarding the remotely-sensed datasets 
are described. In the last part, the proposed statistical 
approach to derive near-surface information on the urban 
thermal environment is explained in detail. 

• The fourth chapter presents and discusses the results 
obtained from the afore-mentioned efforts described in the 
previous steps. 

• The fifth chapter concludes the framework of this 
dissertation by discussing its findings, limitations and by 
proposing research topics that can be pursued by future 
works.  

• Further details regarding the references are presented in 
Chapter 6, and the Appendix is given in Chapter 7. 
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22..  BBAACCKKGGRROOUUNNDD  

According to Oke (1984), there is a general tendency to describe the 
"urban climates" (p. 19) as "natural climates" (p. 19) that were 
undergone through the human impacts. Therefore, identifying the 
role of "urbanization" (p. 19) on the urban climate can be regarded 
as the motivation behind its inquiries (Oke 1984).  

As described by Oke (1984), this aim, to a certain extent, brings up 
the need to understand the alterations urbanization causes in the 
environment, and find ways to quantify and address them in urban 
climate investigations (Oke 1984; see also Mahdavi et al. 2013; 
Stewart and Oke 2012). 

Motivated by these aspects, the first two sections of the present 
chapter convey the main principles and tendencies of the climatic 
states that the dwellers experience in urban environments. Here, 
the focus is given to the urban thermal domain, concerning the 
goals presented earlier in the first chapter.  

22..11..  CChhaarraacctteerriissttiiccss  ooff  uurrbbaann  cclliimmaattee  

As outlined by Oke (1984), looking at the changes in the geometry 
and material properties of the urban environments introduced with 
the urbanization processes can be the starting point to these 
explorations (Oke 1984; see also Mahdavi et al. 2013; Stewart and 
Oke 2012).  

This is supported by many studies which investigated and 
confirmed the influence of such alterations on the observed 
climatic conditions in urban environments (see, for instance, Coseo 
and Larsen 2014; Kantzioura et al. 2015).  
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In parallel with the findings of these works, Oke (1984) emphasizes 
the importance of "the urban-atmosphere interface" (p. 20) in 
urban climate investigations and points out that "the urban 
‘surface’" (p. 20) is a significant modifier of the climatic conditions 
observed in the urban settings. According to Oke (1984), this stems 
from the interaction of the "surface" (p. 20) with highly dynamic 
processes such as "energy, mass and momentum exchange and 
transformation" (p. 20) (Oke 1984).  

In-line with this point, and as further mentioned by Oke (1984), the 
material and form-related aspects of the urban environments are 
not the only features that influence the climatic behaviours of these 
settings (Mahdavi et al. 2013; Oke 1984; Stewart and Oke 2012; 
Taha 1997). Emissions from the activities of urban dwellers, i.e., 
"anthropogenic emissions", also bring about notable changes to the 
atmospheric composition and contribute to the observed climatic 
conditions (Mahdavi et al. 2013; Oke 1984; Stewart and Oke 2012; 
see also Kousis et al. 2021; Vahmani et al. 2022 amongst others).  

In this context, Oke (1984) explores investigating the urban climate 
through the role of the following aspects: "turbulent boundary 
layers" (p. 20) and "urban morphological units" (p. 20), as proposed 
by Oke (1976; 1983) (Oke 1984). The latter of these aspects is the 
geometrical urban features of various scales; whereas the former 
(mainly) refers to the atmospheric characteristics of the urban 
settings (Oke 1984; Oke et al. 2017).  

These aspects, i.e., atmospheric and surface considerations, have 
been utilized by Oke (1984) and Oke et al. (2017) as a guiding basis 
in their efforts to explain the urban climate principles. Following 
these two works, amongst others, this section explores these two 
mediums of the urban domain which are also primarily related with 
the objectives of the present dissertation.  

In this context, the motivation to describe the physical processes 
associated with the urban climate through these two features 
stems from the points discussed earlier, that these domains are the 
ones foremost affected by the "urbanization" activities. In other 
words, they are what is transformed in the environment by the 
introduction of human habitation. In turn, they influence the 
environmental quality humans experience and, to a certain degree, 
the energy they consume (see, Harlan et al. 2006; Santamouris et 
al. 2015; Sun and Augenbroe 2014; Tsitoura et al. 2014; Vuckovic et 
al. 2017 amongst others).  
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To summarize; changes of the "surface cover", transformations of 
the 3D environment by building urban structures, altering the 
topography, via activities such as "deforestation" or "plantation" 
lead to a significantly different physical environment in cities with 
respect to the one in "rural" regions. These "surface" alterations 
trigger "atmospheric" changes in the urban environments (see, 
Dimitrova et al. 2014; Kantzioura et al. 2015; Oke 1984; Oke et al. 
2017 amongst others).  

Furthermore, the activities that stem from the human habitation in 
urban areas transform the "structure" and thermal properties of 
the atmosphere via "anthropogenic emissions" (see, Kousis et al. 
2021; Oke et al. 2017; Taha 1997; Vahmani et al. 2022 amongst 
others).  

All of these afore-mentioned factors lead to the environmental and 
climatic conditions that we experience in the cities (see, Mahdavi et 
al. 2013; Oke 1984; Oke et al. 2017; Stewart and Oke 2012; Voogt 
2017 amongst others). 

22..11..11..  AAttmmoosspphheerriicc  ffeeaattuurreess  

Atmospheric profiles over and in the vicinity of urbanized regions 
present certain differences with respect to the ones over natural 
settings (Voogt 2017). These "modifications" occur up to a 
distinctive vertical extent - commonly 250 m to 2500 m (Oke et al. 
2017) - from ground and the layer of atmosphere carrying these 
effects is identified as the "urban boundary layer (UBL)" (see, for 
instance, Barlow 2014; Oke 1976; 1982; Oke et al. 2017; Voogt 
2017).  

Vertical profile of the UBL shows different characteristics which are 
closely associated with the observed height from the "roughness 
elements" underneath. For instance, the bottom part of the layer is 
strongly influenced by the local urban features as they considerably 
modify the airflow characteristics (Barlow 2014). This part is called 
the "roughness sublayer (RSL)" and occupies about to two to five 
times of the average height of the buildings from the ground 
(Barlow 2014).  

Besides the air-flow characteristics, the local features influence 
other mechanisms in RSL as well, such as the thermal behaviours or 
the solar access (Voogt 2017). 

 

 



8 
 

In RSL, the section just above the ground surface is identified as the 
"urban canopy layer (UCL)" (see, for further details, Barlow 2014; 
Mills 2014; Oke 1976; Oke et al. 2017). "Mean" building (in some 
cases, tree) heights generally set the UCL height (Oke et al. 2017; 
Voogt 2017); whereas the layer may not be formed in large areas 
that are devoid of these 3D urban features (Oke 1976). In the 
present dissertation, the employed air temperature observations 
are mainly representative of this layer. Further details regarding 
these observations are presented in the next chapter. 

22..11..22..  SSuurrffaaccee  ffeeaattuurreess  

As mentioned earlier, the urbanized settings are formed and 
developed via the modifications in form-related and material-based 
properties of the natural environments, as buildings and urban 
surfaces replace the natural topography and materials (see, for 
instance, Oke 1984; Oke et al. 2017).  

In this context, Oke (1984) argues that the geometrical structure of 
the urban areas exerts impacts on the observed climate at various 
spatial levels ("scales"). These impacts can influence formation of 
small distance events (such as "building wakes" (p. 20)) to much 
larger ones (such as the urban "heat island" effect (p. 21)) in urban 
environments (Oke 1984; see also Oke et al. 2017; Voogt 2017).  

Based on these insights, Oke (1984) groups the geometrical 
features of the urban settings into "urban morphological units" (p. 
20) of various sizes. According to the author, the idea behind this is 
to utilize these segments together with relevant atmospheric 
information to obtain practical insights about climatic behaviours 
at various spatial levels (Oke 1984; see also Oke et al. 2017; Voogt 
2017).  

These "morphological units" (p.19) differ from single surface 
features such as "walls" to the increasing "scales" of urban 
"canyon", "neighbourhood" and so on (Oke et al. 2017; see also Oke 
1984; Voogt 2017). Further details of these units can be found in 
these afore-mentioned sources with minor modifications (see, for 
instance, Table 2.1. at Oke et al. (2017), p. 19).   

From the stand-point of the present dissertation, the idea behind 
this segmentation (and the associated climatic interactions) is of 
significance in the context of determining the spatial extents of the 
selected study areas. This point is discussed further in the next 
chapter.  
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22..22..    UUrrbbaann  hheeaatt  iissllaannddss  aanndd  mmiiccrroocclliimmaatteess  

Based on the surface and atmospheric considerations presented in 
the previous section, the airflow patterns, pollutant concentrations, 
thermal behaviours, humidity conditions, characteristics of cloud 
formation and precipitation, amongst others, present altered 
characteristics in urban environments (Voogt 2017, amongst 
others).  

By acknowledging the cumulative influence of these processes to 
one another, the focus of the present dissertation mainly lies within 
the thermal characteristics of the urbanized settings. 

22..22..11..  UUrrbbaann  hheeaatt  iissllaanndd  eeffffeecctt  

The changes in the atmospheric behaviours and surface features 
due to urbanization and other anthropogenic activities lead to a 
warmer urban thermal domain with respect to its surroundings. 
This "phenomenon" has been identified as the "urban heat island 
(UHI) effect" (see, for instance, Crawley 2008; EPA 2008; Oke 1995; 
Oke et al. 2017; Rizwan et al. 2008; Voogt 2002; 2017).  

UHIs are observed as greater "sub-surface", "surface" and 
atmospheric temperatures in urban settings when compared with 
the ones of the city surroundings (Oke 1995; Oke et al. 2017; Voogt 
2002).  

The classification of UHIs is also performed accordingly, as "sub-
surface heat islands" (Oke 1995; Oke et al. 2017; Yow 2007), 
"surface heat islands (SUHI)" (EPA 2008; Oke 1995; Oke et al. 2017; 
Yow 2007) and "atmospheric heat islands (or heat islands in the 
air)" (EPA 2008; Oke 1995; Yow 2007).  

In the present dissertation, the term UHI corresponds to the 
"atmospheric heat islands", following most studies (see, for 
instance, Stewart and Oke 2012; Voogt 2002).  

In this context, the term "urban heat island intensity (UHII)" 
identifies the UHI magnitude (Voogt 2002). It is calculated by 
subtracting rural air temperature observations from spatially 
corresponding air temperature observations of the urban settings 
which are conducted within the same time interval (see, for 
instance, Magee et al. 1999; Yow 2007). UHII is a commonly 
employed metric to track down the extents of the urban warming.  
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2.2.1.1 Exploring surface and atmospheric heat islands 

Affected by the afore-mentioned dynamics of the urban 
environments, the developmental behaviours of UHIs and SUHIs 
present different characteristics (EPA 2008; Grimmond 2007; 
Oke et al. 2017; Voogt 2002).  

In this context, the "atmospheric urban heat islands" are 
investigated under two sub-groups based on the section of the 
atmosphere they are formed: "canopy layer urban heat islands" 
and "boundary layer urban heat islands" (EPA 2008). This 
differentiation was first suggested by Oke (1976).  

The boundary layer UHIs (UHIBLs) form within the upper part of 
the UBL, at the top of the UCL (EPA 2008; Oke 1976; 1995; Oke 
et al. 2017). Fixed ("tower", "sodar" (p. 82)) or mobile ("aircraft", 
"tetroon" (p. 82)) measurements are utilized for investigating 
them (Oke 1995).  

The canopy layer UHIs (UHICLs) are formed below the level that 
the UHIBLs are formed, within the UCL (EPA 2008; Oke 1995; Oke 
et al. 2017). The research efforts studying UHIs more often 
address the UHICLs in their inquiries (EPA 2008; Voogt 2002; 
Voogt 2017; Yow 2007). According to Yow (2007), this is largely 
attributed to the way UHICLs are detected, which is more 
convenient than observing UHIBLs with less complicated 
equipment and a more effortless reachability of the UCL (Yow 
2007).  

The observations of UHICLs are generally conducted from the 
"standard screen height", which corresponds to a height of 1-2 
meters from the ground level (Stewart and Oke 2012) and by 
means of weather stations that can be stationary or mobile (EPA 
2008; Voogt 2002).  

On the other hand, the "surface heat islands (SUHIs)" display a 
more dynamic behaviour, both temporally and spatially, with 
respect to UHIs (EPA 2008) and "remote sensing" method is 
commonly utilized in their inquiries (EPA 2008; Yow 2007; see 
also Mathew et al. 2018; Schwarz et al. 2011; Stathopoulou et al. 
2009; Wang et al. 2019 amongst others).  

As Voogt (2002) points out, with respect to the air temperatures, 
the surface temperatures have a more dynamic character as 
they are more responsive to the climatic processes exerted on 
them. These characteristics also depart SUHIs from UHIs (Voogt 
2002).  
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In this context, diurnal dynamics of urban and rural thermal 
environments are presented in the next sub-section of this 
dissertation. Here, the aim is to provide a background on how 
the urban thermal environment departs from the rural within a 
diurnal cycle. The factors and processes leading to this departure 
is also presented in the following parts of this chapter. 

2.2.1.2. Diurnal behaviours of urban and rural environments  

Oke (1982) provides an overview of the diurnal development of 
UHICLs by individually addressing "rural" and "urban" thermal 
environments. Note that, these insights belong to "idealized" (p. 
2) conditions at the "screen-level" (p. 2) height, pertaining to a 
day in hot season, with "calm or very light" (p. 2) wind and clear 
sky conditions for "a large temperate-climate city" (p. 2) (Oke 
1982).  

According to Oke (1982), for the afore-mentioned conditions, 
the rural thermal environment undergoes a cooling trend 
around the time of sunset, triggered by the radiative heat loss 
from rural surfaces. This trend slows down during the night. It is 
later replaced by a warming trend which starts a bit later than 
the sunrise and continues until the time of peak temperature in 
the afternoon (Oke 1982).  

As Oke (1982) points out, for the urban thermal environment, 
the thermal processes tend to develop at a slower pace when 
compared with the ones of rural. This holds true for the whole 
course of the day, apart from later during the night when urban 
environments present a bit higher cooling tendency (Oke 1982).  

As illustrated by Oke (1982), the main driver for the canopy layer 
UHIs is the different diurnal "cooling" dynamics within the rural 
and urban domains (Oke 1982; Voogt 2002).  

As Oke (1982) points out, the departure between the cooling 
trends of the two domains are more pronounced (in the favour 
of rural areas), around sunset and afterwards for a couple of 
hours (Oke 1982). According to Voogt (2002), the "nocturnal" 
tendencies of the UHIs stems from these dynamics (Voogt 2002; 
see also van Hove et al. 2015; Paulina et al. 2015; Vuckovic et al. 
2016 amongst others).   
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2.2.1.3. Further dynamics  

Besides the diurnal considerations stated in the previous sub-
section, there are various factors that influence the spatial 
behaviours of a city’s thermal environment with respect to the 
rural; or influence that relationship on various temporal 
intervals. These include spatial (i.e., "geometrical" and 
"material-based" features), anthropogenic, topographic, 
geographic factors that are related with the physical and/ or 
demographic attributes of the specific cities they exert impacts 
on; as well as the ones based on weather and seasonal 
conditions (see, for instance, EPA 2008; Grimmond 2007; Oke 
1982; 1995; Oke et al. 2017; Rizwan et al. 2008; Taha 1997; 
Voogt 2002).  

When we look at the weather conditions that result in greater 
UHIIs, they are primarily the ones with no cloud cover and no 
significant wind speed (EPA 2008; Grimmond 2007; Voogt 2002; 
2017). This is further supported by the findings of a recent 
research effort, where Ngarambe et al. (2021) reported cloud 
cover and wind speed had a negative influence on the observed 
"boundary layer" UHIIs for Seoul (Ngarambe et al. 2021). 

On the other hand, the seasonal changes are associated with the 
amount, direction (Oke 1982) and duration of the solar radiation 
that reaches the urban surface. They also have a potential 
control on the use of HVAC systems, thus have an influence on 
the anthropogenic emissions (Rizwan et al. 2008; Taha 1997). 
This is supported by the findings of Chapman et al. (2016) for 
their investigations on anthropogenic emissions in Australia. The 
seasonal changes associated with UHIIs are also emphasized by 
findings of van Hove et al. (2015), where they reported the 
greatest UHIIs for "summer" and "late spring" for Rotterdam 
agglomeration (van Hove et al. 2015). Likewise, for Vienna, 
Vuckovic et al. (2016) reported the highest UHIIs for May and 
August observations with respect to the ones in February and 
November (Vuckovic et al. 2016).  

In addition to the factors mentioned above, features such as 
latitude, proximity to the blue spaces, positioning of 
topographical elements such as mountains or valleys also have 
an influence on the reported UHIIs (see, for instance, EPA 2008; 
Oke 1982).  
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For instance, Kourtidis et al. (2015) clearly depict the temporal 
development of urban air temperatures in Greater Athens Area 
by focusing on locations at / near topographically significant 
places such as the sea-side and mountainous regions, and also 
industrial zones and the urban core; and report considerable 
differences in thermal behaviours observed at these places 
(Kourtidis et al. 2015).  

In this context, by acknowledging the contribution of all these 
afore-mentioned parameters on the urban thermal environment 
and the UHIs, the present dissertation is mainly concerned with 
the influence of building-related attributes on the thermal 
domain of the urbanized settings. In this regard, the potential 
impacts of the built environment and its spatial organization on 
the thermal environment is discussed with further detail in the 
following parts of this chapter.   

In the light of these points, Figure 1 below represents the 
distribution of a ("fully-developed" nocturnal) UHICL (EPA 2008), 
whose developmental patterns, i.e., "islands", show a notable 
interaction with the urban spatial features (EPA 2008; Oke 1982; 
Voogt 2002).  

At finer scales than illustrated by Figure 1, the urban thermal 
environment shows even a more dynamic behaviour (see Lim et 
al. (2014) amongst others) and presents significant 
"microclimatic variation". These microclimatic variations as well 
as further characteristics of UHIs and SUHIs are associated with 
the "surface energy balance" (Oke 1982; Oke et al. 2017 amongst 
others), which is discussed in the next sub-section of the present 
dissertation.   

 

Figure 1. Representation of nocturnal UHI (source: EPA 2008, original 
source: Voogt 2000 (as cited in EPA 2008)) 
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22..22..22..  MMiiccrroocclliimmaattee  ddyynnaammiiccss::  EEnneerrggyy  bbaallaannccee  

According to Voogt (2017), and as discussed earlier, the transfers of 
"mass" (p. 3) and "energy" (p. 3) due to the interaction of urban 
surfaces with the surrounding air is what drives the climate 
observed in an urbanized setting (Voogt 2017). However, this 
interaction is not mainly straightforward.  

As Oke (1982) points out, the UCL is a complex environment where 
each "surface facet" (p. 7) is characterized by two sets of features 
which determine their contribution to the urban climate dynamics. 
These are the surface’s own material-based features plus other 
characteristics stemming from its interaction with the immediate 
urban domain (Oke 1982). According to Oke (1982), numerous 
"energy balances" (p. 8) and consequently "microclimates" (p. 8) 
form in the urban environments thanks to these features and 
dynamics (Oke 1982).  

As Ali-Toudert (2021) remarks, in order to gain insights regarding 
these dynamics, the "urban energy balance" (p. 3) is fundamental 
(Ali-Toudert 2021).  

In this context, the "surface energy balance" is illustrated as 
(Arnfield 2003; Mirzaei and Haghighat 2010; Nunez and Oke 1977; 
Oke et al. 2017 amongst others): 

Q* = QH + QE + QG  [W m-2]               (Eq 2.1.) 

In Equation (2.1.), the term Q* corresponds to the "net all-wave 
radiation" whereas QH is the "sensible heat flux"; QE is the "latent 
heat flux" and QG is the "conductive heat flux" (Arnfield 2003; 
Mirzaei and Haghighat 2010).  

For the urban condition, to explore more than a single surface, the 
"energy balance" calculation is performed for a "volume", and is 
represented as (Ali-Toudert 2021; Arnfield 2003; Barlow 2014; 
Mirzaei and Haghighat 2010; Oke 1988; Oke et al. 2017; Voogt 2017 
amongst others):  

Q*+ QF = QH + QE + ∆QS + ∆QA  [W m-2]                           (Eq. 2.2.) 

In Equation (2.2.), QF corresponds to the "anthropogenic heat 
release" whereas ∆QS is the "storage heat flux" and ∆QA is the "net 
advection" (Mirzaei and Haghighat 2010; Rizwan et al. 2008).  
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The term "sensible heat flux, QH" stems from different atmospheric 
and surface temperatures (Grimmond et al. 2010; Oke et al. 2017). 
Its ratio to the "latent heat flux, QE" is identified as the "Bowen ratio 
– β" (QH/QE) (Oke 1988; Oke et al. 2017; Rizwan et al. 2008; Taha 
1997). β tends to be greater in urban environments at which more 
surfaces are sealed, green spaces are scarcer and large amounts of 
run-off water is observed (Voogt 2017). In parallel with that, 
according to Oke et al. (2017), it refers to a warming trend when β 
is greater than 1, and to a cooling trend as well as more humid 
conditions when smaller (Oke et al. 2017).  

The term "anthropogenic heat release, QF" results from activities of 
the dwellers (see, for instance, Ali-Toudert 2021; Arnfield 2003; 
Grimmond et al. 2010; Oke et al. 2017; Rizwan et al. 2008; Taha 
1997; Voogt 2017) and can contribute to the formation of UHIs (see, 
for instance, EPA 2008; Oke 1982; 1995; Rizwan et al. 2008; Taha 
1997). According to Taha (1997), they are generally greater in the 
cold season, specifically in developed parts of the urban settings 
with cold climates (Taha 1997).  

The term "net advection - ∆QA" is widely "neglected" in "energy 
balance" calculations (see, for instance, Oke et al. 2017, Rizwan et 
al. 2008; Voogt 2017). According to Grimmond et al. (2010), 
inhomogeneities in the physical near-surface environment lead to 
its formation and it is not yet extensively addressed by and 
investigated in neighbourhood-scale inquiries (Grimmond et al. 
2010).  

The term "storage heat flux - ∆QS" (Oke et al. 2017) is considered 
for each element within the investigated domain (i.e., the 
"volume") as well as the air (Arnfield 2003; Oke et al. 2017). 
According to Grimmond et al. (2010), the term corresponds to a 
maximum of 40-50 % of the Q* in urban environments, whereas in 
other regions the "soil heat flux" (p. 253) only makes up around 5% 
(Grimmond et al. 2010). 

In this context, Oke et al. (2017) argues that the literature had 
widely associated the "urban materials" with higher heat storage 
characteristics of urban settings in the past where first studies 
stated UHIs mainly stemmed from these dynamics. However, 
according to Oke et al. (2017), the enhanced heat storage 
tendencies in the urban domain stem from a combined influence of 
"moisture" (p. 168), "form" (p. 168) and "thermal properties" (p. 
168) and cannot be solely attributed to the "urban-rural" (p. 168) 
difference of the latter (Oke et al. 2017). 
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In this context, the urban dynamics and characteristics that 
influence how the input heat is shared among QH, QE and QS can be 
summarized as follows (Grimmond et al. 2010; Oke et al. 2017; 
Voogt 2017): The built environment in urbanized regions introduces 
an increase in the surface area, which is covered with artificial 
materials. Also, more surfaces are sealed in inhabited areas such as 
the ones for roads or parking lots. These "urban" surfaces are 
commonly covered by materials associated with rapid heat transfer 
and storage tendencies. Together with the greater surface area, this 
contributes to the increases in heat storage behaviours of the urban 
domain. The geometrical organization of the built environment also 
influence the airflow, especially within denser urbanized locations. 
This potentially alters the distribution of heat within the near-
surface layer. Less vegetative elements, i.e., fewer trees or green 
spaces, as well as less pervious cover in general, decrease the 
chance of cooling via evaporation and evapotranspiration. All these 
parameters influence the individual share of QH, QE and QS and 
potentially control the thermal environment one experiences 
within the UCL (Grimmond et al. 2010; Oke et al. 2017; Voogt 2017).   

22..22..33..  MMiiccrroocclliimmaattee  ddyynnaammiiccss::  RRaaddiiaattiioonn  bbuuddggeett    

Objects with temperatures above the 0 K threshold emit 
"electromagnetic radiation" at all times (see, for instance, Lillesand 
et al. 2015; Oke et al. 2017). The intervals of the wavelengths, by 
which the radiation travels, is shown by the "electromagnetic 
spectrum (CCRS 2019; Lillesand et al. 2015) and is illustrated in 
Figure 2 (NASA_Weather 2021).  

In this context, Planck’s Law specifies the radiation an object emits 
for a certain wavelength for a certain temperature (Oke et al. 2017). 
Based on this, according to Wien’s Displacement Law (Eq. 2.3.), one 
can determine the wavelength at which blackbodies emit most for 
a specific temperature (Lillesand et al. 2015).  Wien’s Displacement 
Law also indicates that, this wavelength is inversely proportional 
with the temperature: it corresponds to longer wavelengths for 
lower temperatures and vice versa (Lillesand et al. 2015).   

λm = A / T  [µm]               (Eq. 2.3.) 

In Equation (2.3.), λm refers to the wavelength at which the 
maximum emission occurs at temperature T (in kelvin). A is a 
constant with a value of 2898 µm/K (Lillesand et al. 2015).  
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Figure 2. Electromagnetic spectrum (source: NASA_Weather (2021) - 
adapted) 

Based on the afore-mentioned principles, as Oke et al. (2017) points 
out, there occurs a distinction in the wavelengths that the Sun and 
the Earth emit the biggest portion of their radiation. Due to much 
higher temperatures, the Sun emits mostly in shorter wavelengths, 
whereas the Earth in longer (Oke et al. 2017). According to Oke et 
al. (2017), this is the physical basis behind the different 
identification of the radiation emitted by the Sun ("shortwave" or 
"solar" (p. 123)) and the Earth ("longwave", "terrestrial", "thermal 
infrared" (p. 123)) (Oke et al. 2017).  

Furthermore, as Oke et al. (2017) states, when we look at the 
radiation emitted by the Sun, the distribution lies mainly between 
0.1 and 3 µm, whereas for the Earth, it is between 3 and 100 µm 
(Oke et al. 2017). This distinction also points out to a certain 
threshold around 3 µm which mainly separates the radiation 
emitted by and reflected from the surface (Lillesand et al. 2015). 
This principle is discussed further in detail in the following parts of 
this chapter in the context of the remote sensing method.  
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2.2.3.1. Surface radiation budget: Principles 

The term Q* in Equations (2.1.) and (2.2.) can be derived from 
the surface radiation budget below (Eq. 2.4) (Ali-Toudert 2021; 
Grimmond et al. 2010; Oke et al. 2017 amongst others): 

Q* = K* + L * = K↓ - K↑+ L↓ - L↑ [W m-2]              (Eq. 2.4.) 

In Equation (2.4.), the terms K* and L* correspond to "net 
shortwave radiation" and "net longwave radiation" respectively, 
whose components are shortwave (K) and longwave (L) radiation 
coming to (↓) and leaving from (↑) the surfaces (Grimmond et 
al. 2010).  

In Equation (2.4.), K↓ is identified as the "shortwave irradiance" 
(Oke et al. 2017). Parameters such as the atmospheric conditions 
(cloud conditions, pollutant concentrations, atmospheric 
composition), solar geometry (Grimmond et al. 2010; Oke et al. 
2017) as well as the characteristics and positioning of the 
immediate site geometry (Oke et al. 2017) contribute to the 
amount of K↓ that arrives a surface. 

In Equation (2.4.), K↑ is the "outgoing shortwave radiation" 
(Rizwan et al. 2008) and mainly can be represented as (Oke et al. 
2017): 

K↑ = α · K↓  [Wm-2]                                       (Eq. 2.5.) 

In Equation (2.5.), the term α refers to the albedo of the 
"surface" that K↓ is incident upon (Oke et al. 2017).  

Albedo is a commonly explored feature in inquiries in the field of 
urban climate and/ or building energy performance (see, for 
instance, Akbari and Matthews 2012; Wang et al. 2016; Yuan et 
al. 2015). Taha (1997) defines the albedo (α) of a medium based 
on "its hemispherically- and wavelength-integrated reflectivity" 
(Taha 1997, p. 100).  

In a general sense, materials with higher albedo values are 
favoured in urban environments to increase the K↑ which can 
assist in preventing the overheating (see, for instance, Akbari 
and Matthews 2012; Wang et al. 2016; Taha 1997; Yuan et al. 
2015).  
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The parameters that influence the albedo values of the 
urbanized settings are the material-based properties and the 
geometrical features (see, for instance, Ali-Toudert 2021; 
Grimmond et al. 2010; Oke et al. 2017). The colour of a material 
(light vs. dark), its texture (Ali-Toudert 2021; Grimmond et al. 
2010) as well as its moisture condition (wet vs. dry) has a role on 
the albedo value (Grimmond et al. 2010; Oke et al. 2017).   

In this context, Table 1 provides the albedo values of some 
common surface types and materials found in urban and rural 
domains based on Oke et al. (2017). Note that a more extensive 
and complete version of this table is presented in Oke et al. 
(2017) and the presented information is based on the works by 
Arnfield (1982); Bailey et al. (1997); Bretz et al. (1998); Gubareff 
et al. (1960); Maykut (1985); Oke (1987) and (1988), as cited by 
Oke et al. (2017).  

Table 1. Albedo values for selected materials and surface types  
(source: Oke et al. (2017) p.129 Table 5.1. – modified. See above text 
for the list of references cited by Oke et al. (2017)) 

Surface 
type 

Surface and material  
properties 

Albedo (α) range* 

Soils  from dark coloured and wet 
to light coloured and dry 

0.05 – 0.30 

Vegetation  from bare deciduous forests  
to short grass 

0.13 – 0.26 

Road 
surfaces 

from fresh asphalt  
to certain concrete types 

0.05 – 0.35 

Wall 
surfaces 

from red coloured bricks  
to certain limestone types 

0.20 – 0.64 

Roof 
surfaces 

from dark coloured shingles  
to fresh clay tiles 

0.05 – 0.35 

from certain types of corrugated iron 
to new galvanized steel  

0.10 – 0.45 

Metals polished metal surfaces 0.50 – 0.90 

* Represented values are the lowest and highest albedo values reported in 
Oke et al. (2017) at p.129 Table 5.1., for the respective surface types. For 
instance, based on Oke et al. 2017, dark coloured and wet soils have an 
albedo range of 0.05 – 0.10, whereas light coloured and dry soils have a range 
of 0.18 – 0.30. In the above table, the lowest and highest values of these two 
intervals are presented.  
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Looking back to Equation (2.4.), the term L↓ is identified as the 
"incoming longwave radiation" (see, for instance, Ali-Toudert 
2021; Arnfield 2003).  

L↓ tend to be greater in urbanized settings (Arnfield 2003, Oke 
1982; Grimmond et al. 2010). This stems from the increased 
amount of pollutants within the urban atmosphere (Ali-Toudert 
2021; Arnfield 2003; Oke 1982; Grimmond et al. 2010); as well 
as the higher temperature profiles within cities (Arnfield 2003; 
Grimmond et al. 2010; Voogt 2017).  

In Equation (2.4.), the term L↑ is identified as the "outgoing 
longwave radiation" and is controlled by the urban geometry (in 
particular, sky view factor (SVF)), emissivity (ɛ), and the 
temperature of the surfaces (Ali-Toudert 2021; Grimmond et al. 
2010).  

In this context, Stefan-Boltzmann Law (Equation 2.6.) 
determines "total energy flux density (i.e., "emittance")" (Oke et 
al. 2017) which is closely related with the object’s temperature 
(Lillesand et al. 2015).  

E = ɛ σ T4  [W m-2]              (Eq. 2.6.) 

In Equation (2.6.), ɛ corresponds to the object’s mean 
"emissivity", T refers to the temperature of the object and σ is a 
constant identified as the "Stefan-Boltzmann constant" which 
corresponds to 5.67 · 10-8 Wm-2K-4 (Oke et al. 2017).  

The term L↑ of the Equation (2.4.) then can be calculated as 
(Oke et al. 2017): 

L↑ = ɛ ·σ· T04 + (1 – ɛ) · L↓  [W m-2]              (Eq. 2.7.) 

In Equation (2.7.), the term T0 refers to the surface’s "absolute 
temperature" (Oke et al. 2017). 
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In this context, the "emissivity - ɛ" determines the radiative 
capabilities of a medium (see, for instance, Lillesand et al. 2015; 
Mahdavi et al. 2013; Oke et al. 2017). The "emissivity" has a 
range from 0 to 1, i.e., from no emission to a full-emission, and 
for "blackbodies" it corresponds to 1 (see, for instance, Lillesand 
et al. 2015; Oke et al. 2017). 

Table 2. provides the emissivity values (for broadband-
longwave) of some common surface types and materials found 
in urban and rural domains based on Oke et al. (2017). Note that, 
similar to Table 1, Table 2 stems from a more detailed version 
presented by Oke et al. (2017). The information conveyed below 
in Table 2 is based on Arnfield (1982); ASHRAE (2009); Oke 
(1987) and (1988); Campbell and Norman (1998); Wittich (1997), 
as cited by Oke et al. (2017).   

Table 2. Emissivity values (broadband-longwave) for selected materials 
and surface types (source: Oke et al. (2017) p.130 Table 5.2. – modified. 
See above text for the list of references cited by Oke et al. (2017)) 

Surface type Surface and material properties Emissivity (ɛ) range 

Soils  from light coloured and dry  
to dark coloured and wet  

0.89 – 0.98 

Vegetation  from short grass  
to long grass 

0.90 – 0.98 

from bare deciduous forest  
to leaved deciduous forest 

0.90 – 0.99 

Road 
surfaces 

asphalt  0.89 – 0.96 

concrete 0.85 – 0.97 

Wall 
surfaces 

from red coloured bricks  
to white coloured bricks 

0.90 – 0.92 

Roof 
surfaces 

shingles and tiles 0.90 

corrugated iron  0.13 – 0.28 

Metals polished metals 0.02 – 0.06 
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22..22..44..  EEmmppllooyyeedd  mmeetthhooddss  iinn  uurrbbaann  cclliimmaattee  ssttuuddiieess  

Guided by the afore-mentioned principles, research efforts that 
explore urban climate inquiries follow a wide-range of approaches 
depending on the research problem, type and availability of the 
required data, feasibility-related aspects, amongst other 
considerations (see, for instance, Aleksandrowicz et al. 2017; 
Mirzaei and Haghighat 2010).  

In this context, Mirzaei and Haghighat (2010) provides a 
comprehensive overview regarding the methods employed in the 
UHI inquiries by discussing the benefits and drawbacks associated 
with each. They categorize these methods under observation- and 
simulation-based efforts (Mirzaei and Haghighat 2010), in-line with 
the building-physics investigations – and many other disciplines.  

Similar with Oke (1984), Mirzaei and Haghighat (2010) points out 
the necessity to identify the "scale" associated with the explored 
research problem in UHI studies. According to the Mirzaei and 
Haghighat (2010), the idea behind this is to prevent considering 
parameters which theoretically would not make a notable impact 
on the investigated domain. This would allow for an optimal use of 
the research resources as the urban domain is a complex entity and 
thus, is challenging to investigate (Mirzaei and Haghighat 2010).  

Although this remark by Mirzaei and Haghighat (2010) was 
primarily intended for UHI investigations, it can nevertheless be 
applied to any effort studying various other urban climate related 
aspects. This perspective is further evaluated in the next chapter, in 
the context of selecting the spatial extents of the investigated study 
areas for the present dissertation. In this context, Mirzaei and 
Haghighat (2010) divides observation-based methods into three 
further groups:  

• the methods which rely on in-situ detection and 
documentation of the investigated parameters (i.e., "field 
measurements" (Mirzaei and Haghighat 2010), 

• the methods which gather data through employment of 
aerial platforms or satellites with no actual contact to the 
investigated domain (i.e., "thermal remote sensing" (Mirzaei 
and Haghighat 2010); see also Lillesand et al. 2015; Toth and 
Jóźków 2016), 

• the methods which imitate and employ a scaled physical 
version of the study domain through "small-scale modelling" 
(Mirzaei and Haghighat 2010).  
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Amongst these methods, in-situ observations are commonly 
employed, either as a sole approach or together with other 
empirical or computational techniques (Mirzaei and Haghighat 
2010; see also Coseo and Larsen 2014; Kantzioura et al. 2015; 
Krüger 2015; Lim et al. 2014; Mahdavi et al. 2014; Maleki et al. 
2012; Ngarambe et al. 2021; Paulina et al. 2015; Rotach et al. 2005; 
Shi and Zhang 2022; Skarbit et al. 2017 amongst others).  

In-situ observations of the climatic variables are specifically 
advantageous regarding reliability-based concerns, such as 
precision and accuracy of the measurements. Moreover, these 
observation settings have the potential to provide this supreme 
data quality over long temporal periods that can span many 
decades. This is specifically common through organizational station 
networks (for instance, WMO 2018; WMO_OSCAR 2022a; ZAMG 
2022a; see also Stewart 2011).  

Meteorological stations allow for the detection of many parameters 
such as air temperature at various heights, humidity, wind speed/ 
direction, radiation, state and concentration of the atmospheric 
pollutants, and precipitation (Mirzaei and Haghighat 2010; WMO 
2018; WMO_OSCAR 2022a). These stations can be stationary (both 
long-term and short-term), or can be mounted on mobile 
platforms, i.e., "mobile traverses" (EPA 2008; Mirzaei and 
Haghighat 2010; see also Irger 2014; Lim et al. 2014; Maleki et al. 
2012).   

Stewart (2011) includes a critical overview regarding the 
employment of these sensors in data collection for UHI studies 
(canopy-level) with the aim of providing a reliable standardization 
among the UHI researchers and respective publications (Stewart 
2011). Likewise, such as Oke (2006) and WMO (2018), World 
Meteorological Organization (WMO) provides detailed guidelines 
towards obtaining reliable, comparable, and sustainable 
measurements of climatic parameters in order to establish a robust 
network across the globe to detect climatic tendencies and events 
(Oke 2006; WMO 2018; WMO_IMOP 2020; WMO_OSCAR 2022a; 
see also Stewart 2011; WMO 2022).  

In Austria, Zentralanstalt für Meteorologie und Geodynamik 
(ZAMG), together with its partnering organizations, provides a well-
established meteorological network which meets the WMO 
standards (ZAMG 2022a; 2022b). Further details regarding ZAMG 
observations are provided in the next chapter, in relation with the 
data collection and research design of the present dissertation.  
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On the other hand, computational inquiries of the urban climate 
investigations are widely applied as well (see, Han et al. 2015; 
Kaloustian and Diab 2015; Salata et al. 2016; Tsoka 2017; Vuckovic 
et al. 2017 amongst others) and address various-scale settings, 
from building-based assessments to micro- and meso-scale models 
(Mirzaei and Haghighat 2010; Sola et al. 2018).  

In the intersection of urban climate and building-energy/ comfort 
inquiries, Schneider dos Santos et al. (2016) provide a detailed 
perspective on the present efforts that address the application 
potentials of urban warming to the building-based thermal 
assessment tools. The authors specifically explore the "weather 
data" generation alternatives for this purpose, by investigating 
employment of micro-, global- and regional-scale models as well as 
in-situ and remotely-sensed data collection techniques (Schneider 
dos Santos et al. 2016; see also Crawley and Barnaby 2019). 

In the light of these points, it is a common practice in urban climate 
research to employ the afore-mentioned methods solely or in 
different combinations with each other (Mirzaei and Haghighat 
2010). Considering the data collection and analyses steps of the 
present dissertation, the next section conveys a detailed 
perspective on the (thermal) remote sensing method. 

22..33..  TThheerrmmaall  rreemmoottee  sseennssiinngg  mmeetthhoodd  

22..33..11..  BBaacckkggrroouunndd  &&  pprriinncciipplleess  

As Lillesand et al. (2015) describes, remote sensing is a data 
collection and analysis method which the instrument carrying out 
the data collection has no direct contact with the inspected medium 
(Lillesand et al. 2015; Toth and Jóźków 2016). The "distributions" of 
electromagnetic radiation or sound-waves are examples to the kind 
of information acquired via remote sensing (Lillesand et al. 2015).  

As Lillesand et al. (2015) delineates, the method relies on the 
characteristic behaviours of "earth features" whose abundantly 
different material-based properties lead to distinctive energy-
transfer behaviours, such as different fractions of transmitted, 
absorbed and reflected components. As the authors depict, 
variations in these fractions respond to different wavelengths and 
this holds true among the elements of the same kind as well 
(Lillesand et al. 2015).   
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Lillesand et al. (2015) remarks that, these principles are utilized by 
remote sensing to facilitate identifying specific elements within the 
remotely-sensed images, such as the way different colors are 
perceived by humans (Lillesand et al. 2015).  

In this context, the short- and long-wave radiation principles 
mentioned earlier, namely, the threshold around 3 μm wavelength 
that mainly separates the reflected and emitted radiation from 
earth surfaces (Lillesand et al. 2015; Oke et al. 2017) becomes 
significant. "Nonphotographic" sensors are employed above this 
threshold in remote sensing to detect the emitted long-wave 
radiation (Lillesand et al. 2015).  

Considering the afore-mentioned characteristics and "atmospheric 
windows" that only allow the transmission of certain wavelengths, 
3-5 μm and 8-14 μm intervals are employed by the thermal remote 
sensing sensors to detect the radiation emitted via earth surfaces 
(Lillesand et al. 2015; see also Oke et al. 2017). This is carried out by 
means of a range of different platforms, and Toth and Jóźków 
(2016) provides a relatively recent overview (which does not solely 
focus on thermal remote sensing, but remote sensing in general) by 
grouping them into satellites, aircrafts, drones, vehicles, and 
stationary platforms (Toth and Jóźków 2016).  

As already mentioned, the present dissertation is mainly concerned 
with the application of satellite-based (thermal) remote sensing. 
Therefore, in the following parts of this chapter, the focus is given 
to satellite-based thermal sensors and land surface temperatures 
derived through them, as well as research efforts that employ 
satellite-based thermal data in their inquiries. 

22..33..22..  SSaatteelllliittee  ppllaattffoorrmmss  

Remotely sensed thermal data of earth surfaces are available 
through a range of satellite sensors with different acquisitional 
capabilities, and sources such as Tomlinson et al. (2011) and 
Almeida et al. (2021) provide a good initial perspective regarding 
the ones commonly employed in UHI (Almeida et al. 2021) and 
climate-related inquiries (Tomlinson et al. 2011).  

According to Almeida et al. (2021), thermal sensors of Landsat 
satellites, MODIS sensors of Terra and Aqua satellites as well as 
ASTER sensor of Terra satellite are the ones more frequently 
employed for land surface temperature (LST) investigations in UHI 
studies (Almeida et al. 2021; Aqua 2022; ASTER 2022; Landsat 2022; 
MODIS 2022a; Terra 2022).  
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Main details regarding these satellite-based TIR sensors are 
presented in Table 3 below.  

Table 3. Information on selected satellite-based TIR sensors (sources: 
adapted from Almeida et al. (2021); Tomlinson et al. (2011) (as cited in 
Almeida et al. 2021); WMO_OSCAR 2022b (as cited in Almeida et al. 2021); 
partially based on LP DAAC_ASTER 2022; USGS_Landsat 2022)   

Satellite 
SENSOR 

Availability Wavelengths 
(µm) 

Spatial resolution Revisit time 

Landsat 4 
TM 

1982 - 1993 10.40 - 12.50 120m  
(Provided in 30m) 

16 days 

Landsat 5  
TM 

1985 - 2013 10.40 - 12.50  120m  
(Provided in 30m) 

16 days 

Landsat 7 
ETM+ 

1999 - (…) 10.40 - 12.50 60m  
(Provided in 30m) 

16 days 

Landsat 8  
TIRS 

2013 - (…) 10.60 - 11.19 
11.50 - 12.51 

100m  
(Provided in 30m) 

16 days 

Landsat 9  
TIRS2 

2022 - (…) 10.60 - 11.19 
11.50 - 12.51 

100m  
(Provided in 30m) 

16 days 

Terra  
ASTER 

1999 - (…) 8.125 - 8.475 
8.475 - 8.825 
8.925 - 9.275 
10.25 - 10.95 
10.95 - 11.65 

90m Twice a day 
(Irregular 
acquisitions) 
operational 
on-demand 

Terra  
MODIS 

1999 - (…) 10.78 - 11.28 
11.77 - 12.27 

~ 1000m Twice a day 

Aqua  
MODIS 

2002 - (…) 10.78 - 11.28 
11.77 - 12.27 

~ 1000m Twice a day 

The satellite-based TIR sensors presented in Table 3 is a small 
portion of the total available satellite sensors that LST can be 
derived from (Almeida et al. 2021). As pointed out by Almeida et al. 
(2021), other available satellite-based platforms and resources can 
be explored through platforms such as WMO OSCAR (Observing 
Systems Capability Analysis and Review Tool) (Almeida et al. 2021; 
WMO_OSCAR 2022b). WMO OSCAR includes a comprehensive 
database that allows users to perform inquiries based on criteria 
such as satellite characteristics, temporal data availability, acquired 
parameters, spatial limits, and so on (Almeida et al. 2021; 
WMO_OSCAR 2022b).  
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As it can be derived from Table 3, thermal data provided by these 
sensors are either more frequently available (lower revisit interval) 
or provide a more detailed spatial view of the investigated domain 
(higher spatial resolution) (see, for instance, Sobrino et al. 2012). 
This becomes even more evident in geostationary satellites, such as 
MSG SEVIRI which has a 15-minute temporal resolution but 
provides spatial details with a 3 km resolution for nadir (Benas et al. 
2017) and 5-6 km over Central Europe (Zakšek and Schroedter-
Homscheidt 2009), lower than any of the sensors listed on Table 3 
(Almeida et al. 2021). This is an ongoing dilemma in satellite-based 
remote sensing research, which becomes even a more complex 
research design issue when the investigated domain is a dynamic 
entity like the urban thermal environment (see, for instance, 
Sobrino et al. 2012). For instance, Yoo et al. (2018) mentions a 
similar concern towards employing Landsat in air temperature 
inquiries within the urban areas because of the long revisit-cycles 
of the satellites (Yoo et al. 2018) although their spatial resolution is 
favourable for urban climate investigations.  

In this context, the following parts of this background includes a 
brief overview of selected previous efforts which employed thermal 
remote sensing in their inquiries. In this overview, more attention 
is given to the works that employed Terra and Aqua MODIS data in 
their assessments, due to their sufficient temporal coverage (see 
Table 3) as well as rich diurnal availability of their acquisitions (two 
day-time and two night-time acquisitions when both satellites are 
utilized) (Aqua 2022; MODIS 2022a; Salomonson et al. 1989; Terra 
2022; see also Firat Ors and Mahdavi 2021). Considering these 
points, a brief information regarding these two satellite sensors and 
the characteristics of the LST data derived from them are provided 
below.  

22..33..33..  TTeerrrraa  aanndd  AAqquuaa  MMOODDIISS  

Thermal data acquired via Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensors can be accessed from the 
dates 24.02.2000 and 04.07.2002 for Terra and Aqua respectively 
(MOD11A1_Data 2022; MYD11A1_Data 2022; Wan 2014).  

MODIS sensors onboard these two satellites operate at 705 km 
altitude, on "circular", "sun-synchronous" and "near-polar" orbits. 
Each day, the satellites move over the Equator three hours apart 
from each other, with Terra crossing earlier at 10:30 a.m. and Aqua 
at 01:30 p.m. in UTC time (LAADS DAAC 2022; MODIS 2022b 
amongst others).  
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MODIS sensors operate for both day-time and night-time 
acquisitions. They gather information through 36 bands, and with 
250 m, 500 m or 1 km spatial resolutions depending on the 
employed band (LAADS DAAC 2022; MODIS 2022b).  

Various combinations of MODIS bands are utilized in different fields 
of observations. Table 4 below presents an overview regarding the 
instrument's capabilities and characteristics. 

Table 4. MODIS Bands and primary areas of application (sources: LAADS 
DAAC 2022; MODIS 2022b, modified) 

Primary application Spatial resolution Band Bandwidth (nm) 

Land/Cloud/ 
Aerosols Boundaries 

250 m 1 620 - 670 

2 841 - 876 

Land/Cloud/ 
Aerosols 

Properties 

500 m 3 459 - 479 

4 545 - 565 

5 1230 - 1250 

6 1628 - 1652 

7 2105 - 2155 

Ocean Colour/ 
Phytoplankton/ 

Biogeochemistry 

1000 m 8 405 - 420 

9 438 - 448 

10 483 - 493 

11 526 - 536 

12 546 - 556 

13 662 - 672 

14 673 - 683 

15 743 - 753 

16 862 - 877 

Atmospheric  
Water Vapor 

1000 m 17 890 -920 

18 931 - 941 

19 915 - 965 
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Table 4. (cont.) MODIS Bands and primary areas of application (sources: 
LAADS DAAC 2022; MODIS 2022b, modified) 

Primary application Spatial resolution Band Bandwidth (μm) 

Surface/ Cloud 
Temperature 

1000 m 20 3.660 - 3.840 

21 3.929 - 3.989 

22 3.929 - 3.989 

23 4.020 - 4.080 

Atmospheric 
Temperature 

1000 m 24 4.443 - 4.498 

25 4.482 - 4.549 

Cirrus Clouds Water 
Vapor 

1000 m 26 1.360 - 1.390 

27 6.535 - 6.895 

28 7.175 - 7.475 

Cloud Properties 1000 m 29 8.400 - 8.700 

Ozone 1000 m 30 9.580 - 9.880 

Surface/ Cloud 
Temperature 

1000 m 31 10.780 - 11.280 

32 11.770 - 12.270 

Cloud Top Altitude 1000 m 33 13.185 - 13.485 

34 13.485 - 13.785 

35 13.785 - 14.085 

36 14.085 - 14.385 

2.3.3.1. MODIS data characteristics 

MODIS datasets are provided with different levels of processing, 
as it is a common practice among satellite-based data providers 
(see, for instance, Wolfe et al. 1998; Young et al. 2017). Wolfe et 
al. (1998) describe the main processing steps differentiating the 
MODIS "land" category data types (which, land surface 
temperature is a part of) with different levels of complexity. As 
the authors delineate, Level 0 data refers to the unprocessed 
MODIS acquisitions which later go through a calibration and 
geolocation process to obtain the Level 1 data. This Level 1 data 
is further processed utilizing specific algorithms to attain the 
pertinent "geophysical parameter" (such as land surface 
temperature). Level 2 data conveys this computed parameter 
(Wolfe et al. 1998).  
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On the other hand, as Wolfe et al. (1998) depict, Level 3 data is 
the most sophisticated data category. It is generated utilizing a 
certain coordinate system, by "gridding" and/or "compositing" 
the Level 2 data (Wolfe et al. 1998).  

As Wolfe et al. (1998) describe, this categorization also leads to 
differences in the format these data types are distributed. Level 
1 and Level 2 data are provided as "granules" which have a 
spatial extent of, about, 2340 km to 2000 km. They belong to 5-
minute-long operations of the MODIS sensors (Wolfe et al. 
1998). On the other hand, Level 3 data are provided to users in 
a "grid" system that create "fixed, nonoverlapping, earth-located 
tiles" (Wolfe et al. 1998, p. 1327). As Wolfe et al. (1998) describe, 
these Level 3 data "tiles" are structured in various map 
projections and have, around, a 1200 km to 1200 km spatial 
extent. A total of 326 tiles belong to "land" locations around the 
world. The "grid cells" building these "tiles" correspond to the 
pixels of the Level 3 data (Wolfe et al. 1998; see also Grant 2017). 

In this context, further details regarding the MODIS grid system 
employed in the "land" products, which include the land surface 
temperature data, can be reached from MODLAND (2021a). 
Relevant conversions such as the individual MODIS tile that 
corresponds to a certain earth location ("geographic 
coordinate") for a specific spatial resolution and "map 
projection" (also vice-versa) can be accessed through MODLAND 
(2017).  

2.3.3.2. Land surface temperature: MODIS data  

Prata et al. (1995) provide a detailed overview regarding the land 
surface temperature (LST) retrieval by means of satellite-based 
thermal remote sensing platforms. As the authors delineate, a 
wide-range of investigations employ LST including 
evapotranspiration assessments and frost monitoring, inquiries 
of thermal inertia or crop health, as well as predictive 
computations of sea-breezes and clouds (Prata et al. 1995; see 
also Li et al. 2013 amongst others). As Prata et al. (1995) further 
emphasize, LST is also essential for proper modelling of the 
surface energy budget (Prata et al. 1995; see also Li et al. 2013; 
Voogt and Oke 2003; Weng 2009 amongst others).  

Likewise, Voogt and Oke (2003) point out the significance of LST 
in urban climate investigations due to its influence on 
parameters such as near-surface air temperature (Tair), indoor- 
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and outdoor-comfort conditions and suggest its significance to 
the surface energy balance (Voogt and Oke 2003; see also Li et 
al. 2013; Wan 2008; 2014; Weng 2009 amongst others).    

Currently, there are two main LST product families available 
through MODIS acquisitions which are MOD21 and MOD11 
(MYD 21 and MYD 11 respectively, for Aqua MODIS) products. 
These products differ from each other mainly regarding the 
approaches they are computed with (MOD21 2022).    

MOD21 (MYD21) product group is the more recent one and 
currently tagged with the "stage 1" "maturity" (MOD21 2022; 
MOD21_Data 2022). As MODLAND (2021b) describes, this "stage 
1 validation" refers to the condition that their accuracy is 
explored with respect to field data or other meaningful 
information for a limited number of case locations as well as 
temporal intervals (MODLAND 2021b).  

On the other hand, MOD11 (MYD11) data group is referred to as 
the "heritage LST product" (MOD11 2022) and are currently 
tagged with "stage 2" "maturity" (MOD11A1_Data 2022; 
MYD11A1_Data 2022). As MODLAND (2021b) describes, in 
"stage 2 validation" process, the accuracy is evaluated 
employing field data or other meaningful information for a 
"significant" number of case locations, also temporal intervals. 
Furthermore, the products go through a series of "consistency" 
assessments for temporal and spatial considerations, and with 
respect to other relevant products. These assessments are 
performed for "globally representative" settings, as well as 
temporal intervals. Also, the outcomes from the afore-
mentioned efforts are disseminated in the peer-reviewed 
publications (MODLAND 2021b).  

Considering these points, the focus is given to the MOD11 
(MYD11) data group in the overview below.   

2.3.3.3. MOD11/MYD11 LST data  

MOD11 (MYD11) LST data (hereafter M*D11) consist of nine LST 
products with different processing levels (Table 5) (Wan 2013). 
According to Wan (2013), "daily" LST computations are 
performed by either the "generalized split-window LST 
algorithm" (Wan and Dozier 1996) or the "day/night LST 
algorithm" (Wan and Li 1997), depending on the product type 
(Wan 2013). An overview of the M*D11 data types is presented 
in Table 5.  
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Table 5. MOD11(MYD11) products available for Collection 6          
(source: Wan 2013, modified)  

Product Level Spatial 
resolution 

Temporal 
resolution 

LST algorithm 

M*D11_L2 
 

2 1 km (at 
nadir) 

swath 
(scene) 

generalized 
split-window 

M*D11A1 3 1 km (actual 
0.928 km) 

daily generalized 
split-window 

(from MOD11_L2) 

M*D11B1 3 6 km (actual 
5.568 km) 

daily day/night 

M*D11B2 3 6 km (actual 
5.568 km) 

8 days day/night 
(from MOD11B1) 

M*D11B3 3 6km (actual 
5.568 km) 

monthly day/night 
(from MOD11B1) 

M*D11A2 3 1 km (actual 
0.928 km) 

8 days generalized 
split-window 

(from MOD11A1) 

M*D11C1 3 0.05° by 0.05° daily day/night 
["supplemented" by 

generalized split-
window] 

(from MOD11B1) 

M*D11C2 3 0.05° by 0.05° 8 days day/night 
["supplemented" by 

generalized split-
window] 

(from MOD11C1) 

M*D11C3 3 0.05° by 0.05° monthly day/night 
["supplemented" by 

generalized split-
window] 

(from MOD11C1) 
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As Table 5 indicates, the products which, both spatially and 
temporally, offer more enhanced detail (i.e., MOD11_L2 and 
MOD11A1) stem from the "generalized split-window algorithm" 
(Wan 2013). Due to these temporal and spatial observation 
capabilities, they can be regarded as better candidates (among 
the products presented in Table 5) for the urban climate 
assessments in-line with the goals of the present dissertation.   

In this context, Wan (2008) describes the LST data provided by 
M*D11 products as follows:  

"In the MODIS LST product, LST is the radiometric (kinetic) 
temperature related to the thermal infrared (TIR) radiation emitted 
from the land surface observed by an instantaneous MODIS 
observation."  

(Wan 2008, p. 60).  

Wan (2008) further explains that the LST computed from MODIS 
acquisitions is specific for the viewing angle of the acquisition 
and corresponds solely to "the radiometric temperature at the 
given viewing angle" (Wan 2008, p.60).  

In the light of these points, Equation 2.8 is utilized to obtain the 
Level-2 LST via the "generalized split window algorithm" (Wan 
and Dozier 1996) as represented below (Wan 2014):  

LST = b0 + [b1 + b2 · ((1-ɛ)/ɛ) + b3 · (∆ɛ/ɛ2)] · ((Ti + Tj)/2) +  
[b4 + b5 · ((1-ɛ)/ɛ) + b6 · (∆ɛ/ɛ2)] · ((Ti - Tj)/2)             [Eq. 2.8] 

In Equation (2.8), the terms b0 to b6 are coefficients based on 
"water vapor", "atmospheric surface temperature" and "viewing 
zenith angle" (Wan 2014). The term ɛ refers to the mean 
emissivity value of band 31 and band 32, whereas ∆ɛ denotes 
their difference, with i = 31 and j = 32 (Wan 2014). The term T 
corresponds to the "brightness temperature" at the respective 
MODIS bands (Wan 2014). Note that, for pixels that are classified 
as "bare soil", there is a slight modification in the algorithm 
introduced with Collection-6, as presented in Wan (2014).  

In this context, the emissivity values employed by MODIS Band 
31 and Band 32 can be accessed from Wan (2008) (see Wan 
2008, p.62, Table 2). As Wan (2008) delineates, these emissivity 
values are largely according to the model by Snyder et al. (1998) 
and relies on the land cover classification of the observed pixels 
(Wan 2008; see also Snyder et al. 1998).  
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22..44..  OOvveerrvviieeww  ooff  pprreevviioouuss  eeffffoorrttss::  TTaaiirr  eessttiimmaattiioonn  

In the light of the afore-mentioned principles related with the urban 
climate, thermal remote sensing method and respective data 
sources, this section of the present dissertation aims to convey a 
concise overview of the tendencies, goals, and findings of the 
selected previous efforts that explored estimating near-surface air 
temperatures.  

In this context, Zakšek and Schroedter-Homscheidt (2009) list the 
methods pursued in deriving screen-level air temperature (i.e., Tair), 
which can be regarded amongst the main research goals of the 
present dissertation, under four main themes. These are "simple-", 
and "advanced statistical approaches", "temperature-vegetation 
index (TVX) approach", and finally, the "energy-balance 
approaches" (Zakšek and Schroedter-Homscheidt 2009, p. 415; see 
also Benali et al. 2012 amongst others).  

Each of these groups of techniques have certain potentials or 
limitations regarding the characteristics of the studied domain, type 
and source of the required data or the goals addressed by the 
studies employing them (see, for instance Benali et al. 2012; Yoo et 
al. 2018; Zakšek and Schroedter-Homscheidt 2009) and this is tried 
to be addressed below. 

As Zakšek and Schroedter-Homscheidt (2009) describe; the 
differentiation between simple and advanced statistical techniques 
is mainly the number of independent variables explored in Tair 
calculations. Efforts to derive Tair through a simple linear regression 
with LST are considered as simple statistical procedures, whose 
disadvantage – according to Zakšek and Schroedter-Homscheidt 
(2009) – is the lack of applicability of these models to different 
samples from other geographic locations than they are originally 
built for (Zakšek and Schroedter-Homscheidt 2009; see also Benali 
et al. 2012). On the other hand, a minimum of two independent 
variables are employed in "advanced statistical approaches", which 
include machine learning techniques (Zakšek and Schroedter-
Homscheidt 2009; see also Benali et al. 2012).  

The "temperature-vegetation index (TVX) approach", as Zakšek and 
Schroedter-Homscheidt (2009) depict, is derived from the 
assumption that the air temperature within a vegetation canopy 
that is "infinitely thick" is equal to the surface temperature at the 
top of that canopy. Thus, the approach benefits from the 
Normalized Difference Vegetation Index (NDVI) parameter as an 
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indicator of the amount/ state of the vegetation cover and relies on 
the "hypothesis" of an inverse linear relationship between the 
amount of vegetation (more specifically, NDVI) and day-time LST 
(Zakšek and Schroedter-Homscheidt 2009; see also Benali et al. 
2012). Note that, here, NDVI is a "health" indicator of the observed 
vegetation via remote sensing and is calculated from remote 
sensing acquisitions in near-infrared, as well as the red portion of 
the visible wavelengths (EOS 2022).  

On the other hand, the last category described by Zakšek and 
Schroedter-Homscheidt (2009), the "energy balance approaches" 
are conducted based on the physical principles of the interaction 
among urban elements, as discussed previously in this chapter 
(Zakšek and Schroedter-Homscheidt 2009; see for instance Ali-
Toudert 2021; Grimmond et al. 2010).   

In this framework, Yoo et al. (2018) mention that the TVX approach 
is not a good alternative for Tair estimations within urban areas as 
they are characteristically scarce in green spaces, and as the 
application of TVX approach is closely associated with areas of 
abundant vegetation (Yoo et al. 2018). Furthermore, Yoo et al. 
(2018) further state that the heterogeneity of the urban domain 
makes it complicated to apply energy balance techniques for Tair 
estimations, due to the complexity of the surface interactions 
within these settings (Yoo et al. 2018; see also Ali-Toudert 2021; 
Grimmond et al. 2010). In this context, Yoo et al. (2018) conclude 
that advanced approaches such as machine learning and multiple 
regression are required in these settings to derive Tair from satellite-
based data sources (Yoo et al. 2018; see also Irger 2014; Schneider 
dos Santos 2020 amongst others).  

In the light of these points, Table 6 below provides an overview 
regarding the employed techniques and investigated variables by 
the Tair estimation efforts, in relation with the employed satellite 
sensors and the domains the models are developed for. Note that, 
here, the completeness of the works from literature that estimate 
Tair is not aimed or claimed. This table is only intended as a medium 
to convey a general perspective towards the approaches employed 
in the literature to derive Tair. These works are tried to be selected 
from the literature that deals with more relevant research 
questions or employs similar parameters and techniques with the 
present dissertation. 
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Table 6. Selected previous efforts that estimate Tair 

Study Domain Sensor & 
LST product 

Approach* Dependent & 
Independent variables 

Zakšek and 
Schroedter-
Homscheidt 
(2009) 

Regional 
(Central 
Europe) 

SEVIRI, 
LSA SAF LST 
(from 5-6 
km to 1km) 

Surface 
Energy 
Balance 

Tair 
& 
LST (multi-temporal), 
NDVI, albedo, "down-
welling short-wave 
radiation flux",  
solar angles, relief slope, 
elevation difference 

Benali et al. 
(2012) 

Regional 
(Portugal) 

MODIS, 
MOD11A1 
v5 (1km) 

Advanced 
Statistical 
Methods 

Tmin, Tmax, Tmean (weekly) 
& 
LST-daytime,  
LST-nighttime, elevation, 
distance to- coast and 
freshwater bodies, 
latitude, Julian day,  
day length 

Irger 
(2014) 

Urban 
(Sydney, 
Australia) 

Airborne 
Remote  
Sensing 
(2m) 

Advanced  
Statistical 
Methods 
(Multiple 
Regression, 
Spatial 
Regression 
Model) 

Tair (daytime, nighttime; 
individually assessed)  
& 
impervious surface 
fraction, vegetated 
surface fraction (high and 
medium-height), albedo, 
LST (daytime, or 
nighttime; based on the 
dependent variable), 
orientation and aspect 
ratio of urban canyons, 
distance to coast, sea-
level, observation time 

Shi et al. 
(2016) 

Regional 
(South-
east USA) 

MODIS, 
MOD11A1 
v5, 6 (1km) 

Advanced 
Statistical 
Methods 

Tmean (daily) 
& 
Ts (calculated as LST/ɛ1/4), 
NDVI, urban area 
percentage, elevation, 
distance to water 

Yoo et al. 
(2018) 

Urban 
(Los 
Angeles, 
Seoul) 

MODIS, 
MOD11A1 
v5 (1km) 
MYD11A1 
v5 (1km) 

Advanced 
Statistical 
Methods 
(Random 
Forest) 
 

Tmin, Tmax (daily) 
& 
LST-day, LST-night,  
LST-day of previous day, 
LST-night of previous day, 
solar radiation, NDVI, 
elevation, aspect, latitude, 
longitude, impervious 
area percentage 

Schneider 
dos Santos 
(2020) 

Urban 
(London) 

MODIS, 
MOD11A1 
v6 (1km) 

Advanced 
Statistical 
Methods 
 
 

Tmax (daily) 
& 
LST, SZA, NDVI, BSA, DEM, 
Julian day, distance to the 
coast, latitude, longitude 

* Based on the classification of Zakšek and Schroedter-Homscheidt (2009) 
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As summarized in Table 6, Zakšek and Schroedter-Homscheidt 
(2009) suggested an approach which utilizes energy balance 
principles and requires no in-situ observation data for deriving 
screen-level air temperatures with 30-minute and 1km resolution 
over Central Europe (Zakšek and Schroedter-Homscheidt 2009). As 
the authors reported, the performance of the proposed approach 
yielded 2K RMSD (-0.01 K bias) for day-time. The LST data employed 
in the process consisted of 5-6 km pixels that belong to MSG SEVIRI 
satellite sensor, which was downscaled to 1km. This downscaling 
was conducted considering a study area in regional scale ("large 
geographic regions", p.420), and the authors suggested employing 
more fine-tuned, additional variables that would consider urban-
climate related aspects for downscaling applications in smaller 
areas such as cities (Zakšek and Schroedter-Homscheidt 2009).  

Similar with the present dissertation, Yoo et al. (2018) employed 
LST data that belong to Terra and Aqua MODIS satellite-sensors, 
namely, MOD11A1 and MYD11A1 day-time and night-time LST 
data. They explored different temporal combinations of LST data, 
including the ones from the subject day (two day-time and two 
night-time, like the present dissertation) and the corresponding 
"day-before" observations. The goal defined in their work was to 
estimate daily Tmin and Tmax for Seoul and Los Angeles. For that 
purpose, in addition to the afore-mentioned LST data, they also 
considered parameters of "solar radiation", NDVI, "elevation", 
"aspect", "latitude", "longitude", "percentage of impervious area" 
(p. 149). (Here, note that the impervious area percentage was 
derived from a land-cover dataset with a spatial resolution of 250m 
for 1km grid cells.) Through random forest, a machine learning 
technique, the study derived Tmin and Tmax with less than 1.7K RMSE 
and greater than 0.7 R2 (Yoo et al. 2018).  

Similar with the goals of the present dissertation, Irger (2014) 
explored microclimatic conditions in Sydney city of Australia with 
respect to the built environment attributes. This was carried out by 
means of a series of regression analyses, namely, "multiple linear 
regression" inquiries as well as introduction of a "spatial regression 
model" at later stages. Dependent variables for these inquiries 
were air temperatures in specified urban canyons, mean land 
surface temperatures at specified 100m x 100m "grids" as well as, 
again, in urban canyons. These variables were evaluated separately 
at regression inquiries, and each were investigated for both day-
time and night-time conditions (Irger 2014).  
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As Irger (2014) describes, the study relied on the "airborne remote 
sensing" including lidar acquisitions, as well as vehicle transects 
(car) which were simultaneously carried out during the flights. This 
data acquisition by Irger (2014) was performed in early August 2012 
(winter season in Australia), one "midnight" and one "noon" 
campaign. The study explored the attributes of the "urban form" by 
largely employing the "local climate zone" (LCZ) parameters by 
Stewart and Oke (2012), with some "modifications" and omissions 
(Irger 2014).  

As presented in Table 6, the independent variables Irger (2014) 
examined for air temperature estimations consisted of variables 
representing the building-related characteristics as well as location-
based and temporal parameters, and LSTs. By evaluating these 
variables based on "Pearson's correlation coefficients", "Variance 
Inflation Factors" (VIFs), and "Durbin-Watson" tests, amongst other 
spatial assessments, Irger (2014) concluded that the area covered 
by high vegetated surface cover, albedo values associated with the 
ground covered by impervious surfaces and sea-level were the 
three variables that made a significant influence on the day-time air 
temperature predictions for the specified urban canyons. For the 
night-time prediction of air temperatures, the variables Irger (2014) 
classified as "significant" included the aspect ratio of the canyons, 
distance of the investigated canyon to the coast and the sea-level 
(Irger 2014).  

Note that, when the dependent variable was considered as the 
mean LSTs of the specified "grid" zones, Irger (2014) further looked 
into the built environment parameters such as surface fractions of 
building roofs (unless trees were blocking them), as well as other 
independent variables representing the three dimensionality of the 
study domain. These variables were "Height-to-Distance ratio" 
which is the proportion of mean building height to "the average 
distance between all buildings within a grid cell" (Irger 2014, p. 
147); and "Volume-to-Area ratio" which refers to "the ratio of the 
total building volume to grid cell area" (Irger 2014, p. 147) (see also, 
"equivalent building height", Chapter 3) (Irger 2014).  

This differentiation in the estimated parameters by Irger (2014) 
(i.e., Tair and LST) is to some extent related with the point 
emphasized by a recent study carried out in the Czech Republic by 
Středová et al. (2021). (Note that, this differentiation is also 
associated with the parameters employed by the present 
dissertation and further briefly discussed in relation with the 
research findings, in the conclusion chapter.) 
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According to Středová et al. (2021), existing literature tend to focus 
on either the air temperature behaviours among the LCZs or the LST 
characteristics. In that sense, Středová et al. (2021) argue that "a 
comprehensive method combining LCZs, LST and AT is still rare" (p. 
2), by referring to a research effort exploring this interaction, Cai et 
al. (2018) (Středová et al. 2021). Here, AT denotes Tair, based on 
Středová et al. (2021), and the work by Irger (2014) mentioned 
above is also an example which "combines" LST, Tair, and LCZs (Irger 
2014).  

In the light of these points, Středová et al. (2021) and Cai et al. 
(2018) also provide valuable insights regarding the thermal 
behaviours in relation with the built environment and from the 
perspective of LST and Tair interactions (Cai et al. 2018; Středová et 
al. 2021).  

Although this afore-mentioned argument by Středová et al. (2021) 
is focused on a more wider scale explorations of LCZs and their 
direct interactions with Tair and LST behaviours, it nevertheless 
implies a potential to further explorations carrying similar 
motivations, based on the built environment and urban climate 
perspective. This is further addressed in the next chapter of the 
present dissertation, in relation with the research design and 
methodology.  
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33..11..  FFrraammeewwoorrkk  ooff  tthhee  ssttuuddyy  

This chapter presents the case area, employed methods and the 
conducted workflow in the present dissertation. This is carried out 
by dividing the performed work into four sections based on the 
research objectives as well as the contribution of these sections to 
the overall goals of the study.  

As such, the present dissertation aims to define an approach for 
attaining near-surface air temperatures (Tair) with sufficient spatial 
detail that would allow its utilization in building science and urban 
canopy-layer inquiries (Firat Ors and Mahdavi 2021; Firat Ors et al. 
2019).  

The goal is to realize this objective in such a manner that the 
proposed approach would rely solely on "publicly-accessible" geo-
spatial and thermal data to derive this information (i.e., Tair) (Firat 
Ors and Mahdavi 2021). The motivation behind this is to facilitate 
the applicability of the proposed approach to the situations 
(regions) that are deficient of terrestrial thermal observations. This 
further includes urban environments, which require an immensely 
"dense" spatial distribution of the meteorological equipment for 
obtaining "representative" readings of Tair at the micro-climatic 
scale (see, for instance, Crawley and Barnaby 2019; Mahdavi 2018; 
Mahdavi et al. 2013; Maleki et al. 2012; Lim et al. 2014; Vuckovic 
2015; Vuckovic et al. 2017). 

In this context, the workflow that the present dissertation carries 
out to accomplish these objectives (following Firat Ors and Mahdavi 
2021; see also Firat Ors et al. 2019) can be described under four 
stages: 

 

33..  AAPPPPRROOAACCHH  
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• Defining the case study area and within that area, selecting 
sub-areas to focus further investigations.  

This was accomplished by considering potential thermal data 
sources (both remotely-sensed and terrestrially-observed), 
as well as the environmental aspects (spatial characteristics, 
building-related features, green spaces) of the considered 
locations.  

• Quantifying the building-related attributes of the specified 
areas to be able to objectively describe these locations, 
compare them with each other or with other locations.  

This was accomplished by exploring these settings – mainly – 
via the "Local Climate Zone" (LCZ) Classification System 
(Stewart 2011; Stewart and Oke 2012).  

• Selecting, filtering, pre-processing and obtaining remotely-
sensed thermal datasets; and exploring them with respect to 
the obtained Tair. 

This was carried out by comparing these data (i.e., remotely-
sensed data and Tair) to illustrate how they responded to one 
another, and thus, providing an initial and objective basis for 
obtaining Tair. 

• Exploring ways to derive Tair with an agreement better than 
the one acquired in the previous step (namely, its existing 
relationship with the remotely-sensed thermal data).  

This was accomplished by benefiting from the location-based 
attributes of the specified areas and by considering certain 
observational conditions (Benali et al. 2012; Irger 2014; 
Schneider dos Santos 2020; Shi et al. 2016; Yoo et al. 2018; 
Zakšek and Schroedter-Homscheidt 2009 amongst others).  

In this context, this framework is illustrated in detail in the following 
parts of this chapter. The next chapter includes the outcomes from 
the presented approach. Before explaining these points in more 
detail, it is of importance to remark that the goals, approach, and 
the findings conveyed in the present dissertation are to a 
considerable extent adapted, or at certain parts, modified/ 
changed, from a previous collaborative work that is presented in 
Firat Ors and Mahdavi (2021). The goals and the approach of the 
present dissertation also show a significant alignment with another 
collaborative work that is presented in Firat Ors et al. (2019). 
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33..22..  SSeelleecctteedd  aanndd  ssppeecciiffiieedd  ssttuuddyy  aarreeaass  

33..22..11..  CCaassee  aarreeaa    

The specified case area for the present dissertation is presented in 
Figure 3. Note that the exact perimeter of this area is determined 
considering certain properties of the remotely-sensed land surface 
temperature (LST) data and the locations of the "terrestrial 
meteorological weather station"s ("WS"s) employed in this work. 
This is explained with further detail in the following parts of this 
chapter (Firat Ors and Mahdavi 2021).  

 
Figure 3. Case study area including the City of Vienna   
Data source: OGD_Vienna (2021). Figure is illustrated using RStudio 
(RStudio Team 2018). Re-generated based on Firat Ors and Mahdavi 
(2021); partially based on Firat Ors et al. (2019) and Vuckovic et al. (2017)) 
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As illustrated, the City of Vienna (Austria) is located within the 
defined case area. Vienna lies between 48° 07' 06'' - 48° 19' 23'' N 
and 16° 10' 58'' - 16° 34' 43'' E (City of Vienna 2021a), occupying 
414.9 km2 surface area (Bauer et al. 2020; City of Vienna 2021a; see 
also Firat Ors and Mahdavi 2021).  

The city is closely situated to Austria’s three neighbouring countries 
of Czechia (North), Slovakia (North-East) and Hungary (East) (see, 
for instance, Latitude 2021) and currently hosts around 1.91 million 
residents (Bauer et al. 2020; see also Firat Ors and Mahdavi 2021; 
Firat Ors et al. 2019). 

Vienna has a notable topography. An Alpine "foothill" area, the 
Vienna Woods, lies at the West of Vienna (City of Vienna 2021b; 
Vienna Tourist Board 2021; see also Firat Ors and Mahdavi 2021). 
Danube River passes through the city and is a prominent element, 
like some other European cities such as Budapest (Hungary) or 
Bratislava (Slovakia), leading the dwellers to a frequent interaction 
with the "water" in the urban area via its channels (see, for 
instance, City of Vienna 2021c). Vienna also has a significant 
amount of vegetated surfaces, all of which makes up 45% of the 
City’s total surface area (City of Vienna 2021d). 

When we look at the climatic conditions experienced in Vienna, for 
the period between 1981 and 2010, the average monthly 
temperatures present a profile between 0.3 °C (January) and 20.8 
°C (July) with the yearly average at 10.4 °C (City of Vienna 2021e; 
see also Firat Ors and Mahdavi 2021).  

On the other hand, the "total" precipitation averaged for the same 
period (i.e., 1981-2010) is between 37.8 mm (October) and 72 mm 
(August) with the yearly total at 650.7 mm (City of Vienna 2021e; 
see also Firat Ors and Mahdavi 2021). According to the same data, 
the months from May to September stands out by being the most 
humid period of the year where the lowest total precipitation is 
noted for September at 60.8 mm (City of Vienna 2021e).  
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33..22..22..  SSeelleecctteedd  wweeaatthheerr  ssttaattiioonnss  aanndd  TTaaiirr  ddaattaa  

3.2.2.1. Selected stations 

The present work utilizes Tair data observed by seven WS (Firat 
Ors and Mahdavi 2021; Firat Ors et al. 2019). The locations of 
these WS are illustrated in Figure 3. Table 7 includes additional 
details regarding their positioning. 

As presented in Table 7, the employed WS are positioned with 
varying distances from the city center of Vienna. Three of them, 
namely, SD (Seibersdorf), SC (Schwechat) and GE (Gross-
Enzersdorf) are situated in the State of Lower Austria with 
distances from 1.5 km (GE) to 17 km (SD) to Vienna’s borders. 
Other four, (MB (Mariabrunn), DF (Donaufeld), HW (Hohe 
Warte), IS (Innere Stadt)), are located in the city of Vienna (Firat 
Ors and Mahdavi 2021; Firat Ors et al. 2019).  

Table 7. Further information on the selected weather stations  
(Partially based on ZAMG (2022b), modified from Firat Ors and 
Mahdavi (2021); Firat Ors et al. (2019)) 

WS State 
Distance to 
city center* 

(km) 
Latitude, 

Longitude 

Screening 
height  

(Ground / 
Altitude) 

(m) 

Innere Stadt  
(IS) Vienna 1.2 48.1984, 

16.3664 9.3 / 177 

Hohe Warte 
 (HW) Vienna 4.6 48.2486, 

16.3564 1.9 / 198 

Donaufeld 
(DF) Vienna 6.9 48.2573, 

16.4313 2 / 160 

Mariabrunn 
(MB) Vienna 10.7 48.2069, 

16.2294 2.1 / 225 

Gross-Enzersdorf 
(GE) 

Lower  
Austria 13.8 48.1997, 

16.5592 2.1 / 154 

Schwechat  
(SC) 

Lower  
Austria 18.5 48.1174, 

16.5815 2.2 / 183 

Seibersdorf  
(SD) 

Lower  
Austria 27.6 47.9764, 

16.5050 2.1 / 185 

(*City center of Vienna, taken as 48.208, 16.372) 
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The WS DF, one of the seven WS that the Tair data is obtained 
from, is presented in Figure 4. 

 

 
(a) 
 
 
(b) 
 

 

Figure 4. (a), (b) Weather station Donaufeld (DF) (photos by P. Fırat 
Örs, July 2019) 
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3.2.2.2. Tair data 

ZAMG, Zentralanstalt für Meteorologie und Geodynamik (ZAMG 
2022b) is the data provider of the employed Tair for the present 
dissertation (Firat Ors and Mahdavi 2021; Firat Ors et al. 2019). 

Obtained Tair data was provided in one-hour increments (Firat 
Ors and Mahdavi 2021; Firat Ors et al. 2019). The dataset had 
been constructed by ZAMG (2022b) by taking the last-ten-
minute average of the previous hour’s observations and 
specifying that value as the temperature reading for the subject 
hour (personal communication of Josef Lechleitner (TU Wien) 
with ZAMG (2022b) on July 3rd, 2019).  

For the present study, as an initial step, Tair data belonged to the 
period between 01.01.2000 – 01.09.2015 was attained from the 
afore-mentioned list of stations. This interval was specified 
considering the mutual availability of the terrestrial and remote-
sensing measurements, which is explained with further detail in 
the following parts of this chapter (Firat Ors and Mahdavi 2021). 

Furthermore, the selection of the seven WS presented in Table 
7 was conducted considering available meteorological 
observations within the case area as well as environmental 
characteristics of the evaluated locations (Firat Ors and Mahdavi 
2021). This is discussed in the next sub-section.  

33..22..33..  SSppeecciiffiieedd  ssttuuddyy  aarreeaass  

3.2.3.1. Background 

After selecting the weather stations whose Tair observations 
would be employed in this work, the next step was determining 
the spatial extent of the areas to be investigated around each. 
The aim was to define a perimeter within which the selected 
building-related attributes of the surrounding environment 
would be calculated and described.  

Defining the extent of this perimeter is of significance because it 
encompasses the area whose characteristics potentially 
"influence" the Tair observations (i.e., "circle of influence"; see, 
for instance, Oke 2006; Stewart and Oke 2012). Note that, this is 
associated with the "scale" of the research problem, as discussed 
earlier (for instance, Mirzaei and Haghighat 2010; Oke 1984), 
here, Tair interactions with the surrounding environment. 
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This decision was guided by a considerable number of previous 
research works (see, for instance, Lelovics et al. 2014; Mahdavi 
et al. 2013; Skarbit et al. 2017; Stewart and Oke 2009; 2012). 

Among these works, Mahdavi et al. (2013) introduce the term 
"Urban Units of Observation (U2O)". According to the authors, 
U2Os are "well-defined segments" (p. 4) within urban areas with 
similar built environment properties; and Tair observations from 
these areas are thus potentially insightful in illustrating the UHI 
"variation" inside an urban area (Mahdavi et al. 2013).  

On the other hand, after Stewart (2011), Stewart and Oke (2012) 
define a series of classes termed the "Local Climate Zones 
(LCZs)". Such as U2Os, LCZs represent specific portions of 
(urbanized) settings with similar climatic tendencies. According 
to the principles presented by the authors, possessing certain 
combinations of environmental properties provides the basis for 
an investigated "setting" (i.e., "zone") to be classified into the 
relevant, corresponding LCZ class. Thus, this assignment is also 
associated with certain climatic tendencies of that location with 
respect to other types of LCZs with similar (climatic, topographic, 
geographic features etc.) backgrounds (Stewart and Oke 2012).  

When we look at the spatial coverage of these areas, Mahdavi et 
al. (2013) consider "a spatial dimension (diameter) of 
approximately 400 to 1000 m" (p. 4) for the extent of the U2Os. 
Likewise, Stewart and Oke (2012) also suggest the same extent 
for the "minimum" dimensions of a LCZ setting.  

In the light of these works and following previous studies such as 
Skarbit et al. (2017) and Stewart and Oke (2009); the areas to be 
examined in this dissertation are specified by determining a 
500m diameter circle around each WS. The selected stations are 
readily positioned centrally within the specified areas (Firat Ors 
and Mahdavi 2021). Note that, for a consistent use of 
terminology within the present study, these specified areas are 
referred to as U2Os (Mahdavi et al. 2013) in this dissertation.  

3.2.3.2. Overview of the specified areas  

Based on the afore-mentioned considerations, seven U2Os are 
defined within the case area, around the WS illustrated in Figure 
3. Figures 5 to 11 provide aerial views from these locations. 
Before quantitatively addressing these areas in the following 
parts of this chapter, a short description of each is provided for 
explanatory purposes and following Vuckovic (2015). 
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Figure 5. Specified U20 (black circle) and the IS WS (yellow point) 
(source: Orthofoto (2015), image exported from QGIS.org (2021)) 

 
Figure 6. Specified U20 (black circle) and the HW WS (yellow point) 
(source: Orthofoto (2015), image exported from QGIS.org (2021)) 
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Figure 7. Specified U20 (black circle) and the DF WS (yellow point) 
(source: Orthofoto (2015), image exported from QGIS.org (2021)) 

 
Figure 8. Specified U20 (black circle) and the MB WS (yellow point) 
(source: Orthofoto (2015), image exported from QGIS.org (2021)) 
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Hohe Warte (HW) U2O largely consists of residential buildings, 
whereas buildings which belong to government institutions, and 
places of worship are also situated within the area. Vegetated 
surface cover is common. Transportation infrastructure is also 
clearly identifiable from the aerial images (Figure 6). The altitude 
generally increases when moving from South-East to North-West 
within the defined perimeter (see also Vuckovic 2015).  

Donaufeld (DF) U2O mainly consists of residential and 
educational buildings; and includes the campus of 
Veterinärmedizinische Universität Wien (the University of 
Veterinary Medicine Vienna), where the DF WS is situated 
(Figure 4). The vegetated cover is denser on the North-West part 
of the defined area (see also Vuckovic 2015) (Figure 7).  

Mariabrunn (MB) U2O consists of sparsely distributed buildings 
with residential, religious, research or trade functions. Green 
surfaces are common. Brick, concrete and metal roofs are found 
in the area. The transportation infrastructure includes a railway 
passing through the North edge of the defined perimeter. Aerial 
images also clearly depict the main roads (Figure 8). 

Gross-Enzersdorf (GE) U2O is situated in an intersection of open 
fields and a residential setting with rural/suburban 
characteristics. Buildings with education, research or trade 
functions are also present in the area. (Figure 9).  

Schwechat (SC) U2O is situated mainly in an airport area in the 
State of Lower Austria. The surface cover is largely pervious 
(Figure 10). 

Seibersdorf (SD) U2O is the Southernmost study area in the 
present work (Figure 3). Such as the GE U2O, the SD area is also 
positioned in an intersection of open fields and a built-up space. 
The buildings within the defined zone mainly belong to several 
research institutions. Pervious surface cover is common (see also 
Vuckovic 2015) (Figure 11).  
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33..33..  BBuuiillddiinngg--rreellaatteedd  aattttrriibbuutteess  ooff  tthhee  ssppeecciiffiieedd  
aarreeaass  

33..33..11..  BBaacckkggrroouunndd  

After specifying the study areas around the selected stations, the 
next step was to quantitatively describe these locations to assist the 
following stages of the present work. As stated earlier, this was 
accomplished by investigating these areas utilizing mainly the "local 
climate zone (LCZ)" classification system (Stewart 2011; Stewart 
and Oke 2012; see also Firat Ors and Mahdavi 2021).  

To summarize, according to Stewart and Oke (2012), LCZ classes are 
separated into two main groups referred to as "built types" and 
"land cover types" (p. 1885).  

"Built types" consist of 10 different LCZ classes where each class 
represents a combination of different built environment features. 
These include "compact" (LCZs 1-3) or "open" (LCZs 4-6) classes 
which differ by their spatial organization and roughness 
characteristics (i.e., "high-rise", "midrise", "low-rise"). The 
dominant type of land cover also shows certain tendencies amongst 
them (i.e., pervious for open and impervious for compact types). 
Remaining built classes include "lightweight low-rise" and "large 
low-rise" classes (LCZs 7 and 8), "sparsely-built" (LCZ 9) and "heavy 
industry" (LCZ 10) (Stewart and Oke 2012, p. 1885).  

On the other hand, the LCZs defined as "land cover types" consist 
of seven groups. These are "dense" or "scattered" trees (LCZs A, B), 
"bush, scrub" (LCZ C), "low plants" (LCZ D), "bare rock or paved" 
(LCZ E), "bare soil or sand" (LCZ F) and "water" (LCZ G) (Stewart and 
Oke 2012, p. 1885). Additionally, LCZ classification addresses 
temporal changes in the land cover as well by introducing "bare 
trees", "snow cover", "wet" or "dry" ground as "variable land cover 
categories" (Stewart and Oke 2012, p. 1885).  
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In this framework, Stewart and Oke (2012) suggests employing 
certain parameters to quantitatively assess subject areas and to 
classify them into LCZ classes. These are grouped under "geometric 
and surface cover properties" (seven parameters) and "thermal, 
radiative and metabolic properties" (three parameters) listed 
below (Stewart and Oke 2012, pp. 1886-1887): 

• Sky View Factor  
• Aspect Ratio  
• Building Surface Fraction  
• Impervious Surface Fraction  
• Pervious Surface Fraction  
• Height of Roughness Elements [m] 
• Terrain Roughness Class  

• Surface Admittance [J m2 s-1/2 K-1] 
• Surface Albedo  
• Anthropogenic Heat Output [W m-2]  

33..33..22..  PPhhyyssiiccaall  ddeessccrriippttiioonn  ooff  tthhee  ssppeecciiffiieedd  aarreeaass  

In this context, the specified seven U2Os in the present dissertation 
were explored regarding their environmental features by 
employing the "sky view factor", "height of roughness elements", 
"building surface fraction", "impervious surface fraction" and 
"pervious surface fraction" LCZ parameters from the above-
mentioned list (Stewart and Oke 2012; see also Firat Ors and 
Mahdavi 2021). 

Note that, in principle, these selected parameters are also present 
among the variables suggested by Mahdavi et al. (2013). Apart from 
these, one additional U2O variable, "equivalent building height" 
(Mahdavi et al. 2016; Vuckovic 2015), was also considered in this 
dissertation. This is explained in more detail in the following 
chapter in relation with the research findings.  

Furthermore, for the specified study areas, the "surface albedo" 
parameter was also considered via the remote-sensing data of 
"Black-sky Albedo". This is explained further in later sections of this 
chapter (Mahdavi et al. 2013; 2016; Stewart and Oke 2012; Firat Ors 
and Mahdavi 2021).  
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In this context, the selected "geometric and surface-cover" 
attributes were calculated for each specified U2O in this study 
(Stewart and Oke 2012; Mahdavi et al. 2013). The idea behind this 
was to utilize the results of these calculations in the next steps of 
the present work where the microclimatic behaviours within these 
settings would be explored (Firat Ors and Mahdavi 2021). As stated 
earlier, calculating these parameters would also provide the 
objective basis to compare and evaluate the environmental 
characteristics of the selected U2Os (Stewart and Oke 2012). This 
would provide a more informed perspective when evaluating the 
outcomes of the present study.  

3.3.2.1. Approach  

In the light of these considerations, calculations of the afore-
mentioned built environment parameters within the specified 
areas were carried out by employing Geographic Information 
System (GIS) tools and techniques.  

According to USGS, GIS has a wide range of application areas 
including "resource management", "earth sciences" and 
"biology" (USGS 2022a). Selvam et al. (2019) provides a 
comprehensive overview regarding its basic principles. Many 
recent studies employed GIS techniques for similar purposes as 
with the present dissertation, to quantify and document 
building-related attributes within the investigated locations (for 
instance, Glawischnig et al. 2014; Hammerberg 2014; Lelovics et 
al. 2013; Skarbit et al. 2017; Vuckovic 2015; Zheng et al. 2018).  

In this context, QGIS software (Version 3.8.0 Zanzibar) was 
mainly employed in the present study for the afore-mentioned 
purposes (QGIS.org 2021; Firat Ors and Mahdavi 2021). 
Microsoft_Excel (2022) also assisted at some points to further 
process the QGIS outputs.  

It is of significance to note here that, at certain instances, the 
pursued workflow for these calculations was adapted based on 
the type of the attained geospatial data for the study areas. This 
mainly depended upon whether the investigated U2O was 
situated within the city of Vienna or not (Figure 3, Table 7).  
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3.3.2.2. Calculating the surface fractions  

In principle, the whole surface area of an U2O is divided into 
three sub-areas according to the type of the surface cover: Areas 
covered with buildings, with pervious surfaces or with 
impervious surfaces (Mahdavi et al. 2013; Stewart and Oke 2012; 
see also Vuckovic 2015; Vuckovic et al. 2016). Their fractions 
within the U2Os were calculated based on the following 
relationships:  

"Building Surface Fraction" (BSF) is calculated as the ratio of 
total plan area of buildings at ground-level (∑Abuilding) to the 
whole surface area of U2O (AU2O), as represented in Equation 
(3.1) (Stewart and Oke 2012; Mahdavi et al. 2013; see also 
Vuckovic 2015; Vuckovic et al. 2016): 

BSF = ∑A Building / AU2O                                                    (Eq. 3.1.) 

"Pervious Surface Fraction" (PSF) is calculated as the ratio of the 
total surface area with pervious surface cover – including bare 
soil, water, and vegetated surfaces – (∑APervious) to the whole 
surface area of the U2O (AU2O), as represented in Equation (3.2) 
(Mahdavi et al. 2013; Stewart and Oke 2012; see also Vuckovic 
2015; Vuckovic et al. 2016): 

PSF = ∑APervious / AU2O                            (Eq. 3.2.) 

"Impervious Surface Fraction" (ISF) is calculated as the ratio of 
the total surface area with impervious surface cover  
(∑AImpervious) to the whole surface area of the U2O (AU2O) 
(Equation 3.3) (Mahdavi et al. 2013; Stewart and Oke 2012; see 
also Vuckovic 2015; Vuckovic et al. 2016): 

ISF = ∑ AImpervious / AU2O                                                           (Eq. 3.3.) 

Equations 3.1. to 3.3. lead to (Mahdavi et al. 2013; Stewart and 
Oke 2012; see also Vuckovic 2015; Vuckovic et al. 2016): 

BSF + PSF + ISF = 1                                                (Eq. 3.4.) 
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For the U2Os located within the City of Vienna (namely, IS, HW, 
DF and MB U2Os), the surface fraction calculations were carried 
out utilizing geospatial datasets in form of "vector" data. These 
data were obtained from the City of Vienna (City of Vienna 
2021f; Firat Ors and Mahdavi 2021; Glawischnig et al. 2014; 
Hammerberg 2014; Vuckovic 2015; Vuckovic et al. 2016).  

Since meteorological and remote sensing data employed in this 
study belongs to the period 2000-2015, obtained vector data 
does not represent the current conditions, but the built 
environment prior to 2015. Exception to this was the MB U2O, 
for which, historical geospatial data before 2015 was not readily 
available. For this location, a current dataset, namely, "Flächen-
Mehrzweckkarte Vektordaten Wien" ("Area Multi-purpose Map 
Vector Data Vienna") was obtained from MA41_Geodata (2021) 
(MA41_Geodata 2021; OGD_Vienna 2021; OGD_Vienna FMZK 
2021; Vienna_FMZK 2021). In this dataset, potential changes in 
the built environment were assessed with respect to the 
historical condition using the aerial imagery from 2015 
(Orthofoto 2015), and the data was decided to be used as it was 
provided. Note that, within the scope of the present work, 
special attention was not given to the possible changes in the 
(built) environment within the defined time period of the study 
(i.e., from 2000 to 2015).  

In this context, the obtained vector data for the Vienna locations 
include geo-spatial information that "attribute" each element 
within an U2O in various categories. These categories include the 
"Bodennutzungsklasse" (Land use class) of the elements 
(Glawischnig et al. 2014; Hammerberg 2014; Vienna_FMZK 
2021; Vuckovic 2015; Vuckovic et al. 2016). This information is in 
decimal number format for which a "look-up" table is provided 
for interpretation (Vienna_FMZK 2021). This assisted in surface 
fraction calculations to identify pervious, impervious surfaces 
and surfaces covered by buildings. Based on these insights, the 
following workflow was carried out individually for each 
specified U2O within the city of Vienna.  

The obtained vector file was first spatially clipped to include 
information only from the defined circular U2O area. After that, 
the geometry information of "area" and "perimeter" were added 
in QGIS to all spatial elements within the clipped area. This was 
achieved via the "Vector – Geometry Tools – Add Geometry 
Attributes" tool in QGIS.  
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Later, the clipped file was grouped into three separate layers 
depending on the land cover categories of its attributes. These 
layers were constructed so that, the U2O area was individually 
divided among "buildings" (ground-level), "impervious surfaces" 
and "pervious surfaces". This was accomplished by selecting the 
relevant attributes that belong to each surface fraction group 
and "exporting" the "selected features" to a new layer in QGIS. 
The afore-mentioned "look-up table" (Vienna_FMZK 2021) was 
consulted in the selection.  

Next, the total plan area of each layer was derived by employing 
the "Vector – Analysis Tool – Basic Statistics for Fields" tool in 
QGIS (following Vuckovic 2015). From the outputs, fraction of 
each plan area (i.e., "building", "pervious", "impervious") with 
respect to "the total U2O plan area" was computed based on the 
Equations 3.1. to 3.3.  

Figure 12 represents the vector data layers employed in the 
surface fraction calculations for the IS U2O. 

 
Figure 12. Layers representing buildings (brown), impervious surfaces 
(grey), pervious surfaces (green). Yellow point represents the IS WS  

(Data source: City of Vienna (2021f), image exported from QGIS.org 
(2021)) 
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For the U2Os situated outside the city of Vienna’s borders 
(namely, GE, SC, SD U2Os), it was first decided to construct a 
vector dataset for each of these areas due to the characteristics 
of the available geo-spatial data for these locations. For that 
purpose, aerial imagery and maps accessed mainly via QGIS were 
employed (Basemap_HIGHDPI 2021; Geoland_Basemap 
Orthofoto 2021; Google Earth 2022a; 2022b; 2022c; 
OpenStreetMap contributors 2021; Orthofoto 2014; 2015; see 
also Firat Ors and Mahdavi 2021). The exception to that was 
Google Earth (2022a; 2022b; 2022c) which was accessed via its 
web interface.  

Recent changes in the built environment due to urbanization 
was addressed in the process. The goal was to determine as 
representative conditions as possible for the time period of the 
present study. For that purpose, for the GE U2O, Orthofoto 
(2015) and (2014) were utilized. Although these sources provide 
aerial imagery acquired in the years 2015 and 2014 for the City 
of Vienna respectively, they also contain information from the 
GE U2O thanks to the close proximity of the area to Vienna. For 
the SC and SD U2Os, this information was not available. 
Addressing the historical condition was not found to be 
necessary for the SC U2O, as it is largely situated in an open 
airport area. For the SD location, the aerial image provided by 
Vuckovic (2015) was consulted to screen for the more recent 
changes in the built environment (Google Maps© image as 
presented in Vuckovic 2015 Figure 22, p.37).  

As with the Vienna locations, no extra attention was directed to 
track the potential urbanization activities within the specified 
time period of the present study (between the years 2000-2015).  

In the light of these considerations, the data sources noted 
above were utilized; and vector layers corresponding to 
"building", "pervious" and "impervious" surfaces were 
constructed in QGIS for the three specified U2Os in the State of 
Lower Austria. The same workflow was pursued with the Vienna 
locations to calculate surface fractions based on these layers. 

Note that, the presented approach employed for these three 
U2Os outside of Vienna was subject to a certain level of 
uncertainty. First, for some buildings, the ground-level plan area 
information was not found suitable (or was missing) and aerial 
images were used instead for defining the building areas. This 
led to using the roof area information as the building surface 
area for these buildings. At few instances, it was also not easy to 
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distinguish between bare soil and sealed surfaces from the aerial 
images. The way the surface fraction vector layers were 
constructed in QGIS via this workflow (by tracing) was also, 
precision-wise, prone to a certain level of error. All in all, it was 
decided that at the spatial level of an U2O, these uncertainties 
were not significant, and the approach yielded acceptable 
outcomes.  

3.3.2.3. Height of the buildings 

After calculating the surface fractions, the next step was to 
calculate the "height of roughness elements" within the U2Os 
(Stewart and Oke 2012). This was accomplished by calculating 
the "area-weighted mean building height" (MBH) of the 
specified locations (Abougendia et al. 2020; Firat Ors and 
Mahdavi 2021; Hammerberg et al. 2018; Lelovics et al. 2013; Wu 
et al. 2018; Unger et al. 2014; Zheng et al. 2018).  

The calculations were carried out based on the Equation 3.5 
presented below (Abougendia et al. 2020; Wu et al. 2018): 

MBH =  ∑ (𝐵𝐻𝑖∗𝐵𝐴𝑖)𝑛𝑖 ∑ 𝐵𝐴𝑖𝑛𝑖                                        (Eq. 3.5.) 

In Equation 3.5, BHi corresponds to the "height", BAi to the 
"footprint area" of the specific building and n is the total 
"number of buildings" within an U2O (Abougendia et al. 2020; 
Wu et al. 2018). 

For the U2Os situated in Vienna, the previously described vector 
data contains the information necessary to derive building 
heights (on the level of eaves) (Vienna_FMZK 2021; Vuckovic 
2015) except for the MB dataset. For MB, a new vector dataset, 
namely, "Baukörpermodell" (building model) was obtained from 
MA41_Geodata (2021) which included the necessary attributes 
(Vienna_Baukörpermodell 2021). This file was initially processed 
as described in the previous sub-section via spatial clipping and 
assigning the geometrical attributes of "area" and "perimeter" 
to all elements inside the U2O. After this pre-processing, the 
relevant elements were selected in QGIS individually for all 
specified U2Os in Vienna, and the geospatial data associated 
with them were exported in .csv format. From this data, the MBH 
calculations were performed employing Microsoft_Excel (2022) 
(Equation 3.5).  
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Note that, with this approach, the building heights were defined 
from the level of eaves (Vienna_FMZK 2021; Vuckovic 2015) and 
the building footprint areas were defined from the ground-level 
plan areas of the buildings.  

For the remaining U2Os, the following workflow was pursued 
individually. Initially, a "digital terrain model" (DTM) and a 
"digital surface model" (DSM) were obtained in "raster" format 
with 10m spatial resolution from the "Open Government Data" 
database of the State of Lower Austria (Land Niederösterreich) 
(DTM_NOE 2020; DSM_NOE 2020; OGD_NOE 2020).  

These raster files were spatially clipped in QGIS based on the 
U2O area. Afterwards, by utilizing "Raster Calculator", the DTM 
raster was subtracted from the DSM raster (hereafter, the "DSM-
DTM raster"). This provided height information of the 3D 
elements within the study area. As the DSM-DTM raster was in 
10 m spatial resolution, three-dimensional information from 
Google Earth (2022a; 2022c), a QGIS plug-in named 
AustrianElevation (AustrianElevation 2022), and height 
information provided by Geoland_map (2022) were also 
consulted. The following workflow was conducted to assign the 
building heights based on these data sources.  

First, from the DSM-DTM raster, the "maximum" pixel value 
overlapping the building area was selected for each building. The 
idea behind this was to avoid mis-leading information, as the 
spatial resolution of the DSM-DTM raster was not ideal. If this 
value was not found plausible based on the consulted sources 
listed above, another pixel value overlapping the investigated 
building was used or a representative value (mainly from the 
centroids of the building footprints) was selected based on 
Geoland_map (2022) and AustrianElevation (2022).  After the 
building heights were assigned, the same workflow pursued for 
the study areas in Vienna was followed to obtain the MBH 
values.  

Note that, the SC U2O is situated largely in an open airport area 
and includes only a couple of structural elements which belong 
to the meteorological observation setting. Therefore, MBH 
calculation was not performed for this location. Also, for the SD 
U2O, a minor subset of buildings was not included to the MBH 
calculations due to data reliability concerns associated with the 
recent changes in the built environment.  
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It is of significance to note here that, the presented approach 
brings about a difference in the MBH outcomes representing the 
U2Os situated within and outside of Vienna's borders. As already 
mentioned, the obtained vector data for Vienna provides height 
information from the level of building eaves (Vienna_FMZK 
2021; Vuckovic 2015) while with the presented approach, for the 
Lower Austria U2Os, the building heights were commonly 
assigned from the highest/higher parts of the buildings. 
Moreover, the LCZ parameter "height of roughness elements" 
refers to the "mean tree/plant height" in the absence of 
buildings (Stewart and Oke 2012). This was not considered in the 
present work as it was not found critical for the evaluated 
locations (was only relevant for the SC U2O) and for the purposes 
of this dissertation. 

3.3.2.4. Sky view factor 

For the U2Os situated in Vienna, a DSM raster with 0.5m spatial 
resolution was obtained from MA41_Geodata (2021) to be 
employed in the "sky view factor" (SVF) calculations 
(DSM_Vienna 2020). This DSM raster provides a complete 3D 
overview of the specified U2Os including trees (see, for instance, 
Glawischnig et al. 2014; Hammerberg 2014; Vuckovic 2015). The 
workflow presented below was followed individually for each 
specified U2O within the city of Vienna. 

Following the recommendations of Glawischnig et al. (2014), as 
a first step, "a buffer zone" was specified around each U2O. This 
zone had a width of 50 – 100 meters depending on the geospatial 
data availability from the U2Os. As a next step, the DSM raster 
was spatially clipped to include only this circular "buffered" 
extent.  

SVF calculations were performed for this clipped DSM in QGIS, 
utilizing the "Sky View Factor" tool of the embedded SAGA-GIS 
module (Conrad et al. 2015; QGIS.org 2021). Other studies 
employed SAGA-GIS for SVF calculations include Zheng et al. 
(2018), Estacio et al. (2019) and Bernard et al. (2018).  

After obtaining the outputs, a "buffer" with a width of 1.5 meters 
was also specified around buildings. This is adapted from 
Glawischnig et al. (2014), to derive outputs without 
contamination from the building-pixels.  

 



63 
 

The building footprint areas and this 1.5-meter buffer zone 
around them was later subtracted from the whole U2O surface 
area and an "overlay layer" was constructed as a vector data in 
QGIS. SVF output from SAGA-GIS was averaged over this layer 
(which did not include the buildings and a 1.5m buffer zone 
around the buildings) to obtain the SVF result representing the 
investigated U2O. This was accomplished by employing the 
"Raster Analysis – Zonal Statistics" tool in QGIS.  

Figure 13 illustrates the example SVF output from IS U2O 
(Conrad et al. 2015; QGIS.org 2021). 

 

Figure 13. Example sky view factor output from SAGA_GIS module. Red 
circle indicates the boundaries of the IS U2O  

(Data source: OGD_Vienna (2021), image exported from QGIS.org 
(2021)) 
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For the remaining U2Os, the previously obtained DTM file 
(DTM_NOE 2020; OGD_NOE 2020) was also clipped to cover the 
U2O areas and the buffer zone specified around them. As stated 
earlier, this DTM was in 10m spatial resolution. After clipping, it 
was first resampled into a 1-m spatial resolution raster 
(hereafter, "1-m DTM raster") in QGIS via bilinear interpolation. 
For that purpose, the GRASS GIS tool "Raster – r.resamp.interp" 
was employed which was accessed through the "QGIS Desktop 
3.8.0 with GRASS 7.6.1" software option (GRASS Development 
Team 2019; QGIS.org 2021).  

In the next step, a vector layer was created for trees containing 
respective area and height information. For that purpose, the 
workflow and data sources described in the previous sub-
sections were employed, where the building areas and heights 
had been assigned for the Lower Austria U2Os. Note that, this 
was mainly an approximation where a single height information 
from the top-level of their canopies was assigned to the tree 
batches as they were detected from the aerial images.  

After that, the next step was to construct the raster files that 
would be used in SVF calculations. For that purpose, first, an 
initial "digital surface model" (DSMB) was generated utilizing the 
1-m DTM raster together with the "rasterized" building area and 
height data.  

This was accomplished through the following steps. As a first 
step, the vector layer constructed for the MBH calculation was 
adjusted so that the building height information would be given 
with respect to the sea level, to match the way information is 
stored in the 1-m DTM raster. As a second step, this layer was 
converted to the raster format in QGIS, via "GDAL – Vector 
conversion – Rasterize (vector to raster)" tool (GDAL/OGR 
contributors 2022). In the last step, this raster was utilized 
together with the 1-m DTM raster to create the digital surface 
model, DSMB, containing the terrain and building forms. This was 
achieved by employing the SAGA-GIS tool "Mosaic raster layers" 
in QGIS.  

After obtaining the DSMB, the vector layer representing the trees 
was also converted to raster format and a tree DSM was 
obtained as well. These two files were employed in the SVF 
calculations.  
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For the SVF calculations of the Lower Austria locations, the 
UMEP plug-in by Lindberg et al. (2018) was employed in QGIS 
since, unlike SAGA-GIS, it allowed the tree layer to be defined 
separately. After a brief assessment (not included here), this 
approach was found to be more suitable with the available type 
of data in these U2Os. To compensate for the lack of detail in the 
tree canopy representation with respect to the Vienna locations, 
40% light transmissivity was defined for the tree DSM at UMEP. 
This threshold was selected based on the observations of Canton 
et al. (1994), which determined a range between 9% (summer) – 
71% (winter) transmissivity amongst a variety of tree types 
(Canton et al. 1994, as presented in Konarska et al. 2014). The 
mean value of this interval (i.e., 40%) was applied in the present 
work. 

After the SVF outputs were obtained, the SVF value representing 
the U2Os were derived via the same workflow as with the Vienna 
locations.  

3.3.2.5. Equivalent building height 

The spatial characteristics of the built spaces within the specified 
U2Os were further explored by calculating the "equivalent 
building height" (EBH) of these areas (Mahdavi et al. 2016; 
Vuckovic 2015; Vuckovic et al. 2016). According to Mahdavi et al. 
(2016), EBH refers to " the ratio of built volume (above terrain) 
to total ground area" (p. 86). Therefore, it does not only provide 
information regarding the mean height or total area of the built 
structures within the investigated areas but provides a more 
holistic perspective regarding their spatial characteristics. Note 
that, as mentioned earlier, this metric was also employed (with 
another terminology) by Irger (2014) in land surface 
temperature prediction efforts. 

In this context, the EBH calculations were performed via the 
Equation 3.6. below (see also Vuckovic 2015):   

 EBH =  ∑ (𝐵𝐻𝑖∗𝐵𝐴𝑖)𝑛𝑖 𝐴𝑈2𝑂                                        (Eq. 3.6.) 

The same information that was used to calculate "area-weighted 
mean building height" was utilized in EBH calculations for the 
specified U2Os.  
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3.3.2.6. Assessment  

As mentioned earlier, the building-related attributes calculated 
for the specified U2Os were later utilized to explore strategies to 
facilitate and improve the Tair estimations at these settings. This 
is discussed in the following parts of this chapter.  

Moreover, a comparison of these calculation outputs with the 
previous work of Vuckovic (2015) is also provided in the next 
chapter for evaluation purposes.  

This comparison was conducted to offer only a brief perspective, 
acknowledging that the footprints of the U2Os defined by both 
works show dissimilarities, and only four out of seven U2Os 
specified in this dissertation are situated around the same WS 
with the work of Vuckovic (2015). Furthermore, the approaches 
employed to calculate the parameters also show considerable 
differences between both works and all calculated parameters 
are not mutually present in both. A comparison between the 
outputs is presented in the next chapter acknowledging these 
points. 

33..44..  MMiiccrroocclliimmaattiicc  aasssseessssmmeennttss  

33..44..11..  OOvveerrvviieeww  

After obtaining the Tair data and evaluating the environmental 
characteristics of the specified U2Os, the next step was exploring 
the microclimatic behaviours within these settings. This was carried 
out by investigating the obtained Tair data in relation to the remote 
sensing (RS) land surface temperature (LST) data acquired over the 
WS locations (Firat Ors and Mahdavi 2021; Firat Ors et al. 2019).  

The (initial) motivation behind this effort was to attain a general 
perspective concerning how LST and Tair data behaved under 
different circumstances and regarding the changes in one another. 
This was evaluated on both spatial and temporal (more specifically, 
diurnal) levels (Firat Ors and Mahdavi 2021). The idea was to 
establish a basis towards acquiring Tair and for that purpose, to 
illustrate the existing relationship of LST and Tair at the selected 
locations (Firat Ors and Mahdavi 2021; Firat Ors et al. 2019). 
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33..44..22..  RReemmoottee  sseennssiinngg  ddaattaa::  LLSSTT  

LST data which belong to Terra and Aqua MODIS acquisitions over 
the case area was employed in the present study (Aqua 2022; 
MODIS 2022a; Terra 2022; see also Firat Ors and Mahdavi 2021). 
Employed data consist of two LST products provided by "Land 
Processes Distributed Active Archive Center" (LP DAAC) (LP DAAC 
2022). LP DAAC is structured under "NASA's Earth Observing System 
Data and Information System" (EOSDIS). It is a joint effort by the 
"National Aeronautics and Space Administration" (NASA) and "U.S. 
Geological Survey" (USGS) (LP DAAC 2022; NASA 2022; 
NASA_EOSDIS 2022; USGS 2022b).  

The utilized LST products are the MOD11A1 (LSTTERRA) data of Terra 
MODIS and the MYD11A1 (LSTAQUA) data of Aqua MODIS satellite 
sensors. Version-6 datasets were utilized for both products (Wan et 
al. 2015a; 2015b; see also Firat Ors and Mahdavi 2021), as they 
were the most recent ones available at the time of data processing.  

The LSTTERRA and LSTAQUA datasets offer day-time (LSTTERRA-DAY, 
LSTAQUA-DAY) and night-time (LSTTERRA-NIGHT, LSTAQUA-NIGHT) 
observations, which were all obtained for the present work (Wan et 
al. 2015a; 2015b; see also Firat Ors and Mahdavi 2021). These 
datasets consist of 1km (precisely 0.928km) pixels (i.e., "grids") 
(Wan 2013; see also Firat Ors and Mahdavi 2021); and were 
accessed, filtered, pre-processed, and obtained employing Google 
Earth Engine (GEE) (GEE 2022; GEE_Aqua 2022; GEE_Catalog 2022; 
GEE_Terra 2022; Gorelick et al. 2017; see also Firat Ors and 
Mahdavi 2021). These steps are explained in the following parts of 
this section. 

In this context, Table 8 below provides a brief overview of the 
employed LST products. Further characteristics regarding the 
M*D11 products were presented earlier in Chapter 2. 

Table 8. LST Datasets employed in the present study (modified from Firat 
Ors and Mahdavi (2021), partially based on MOD11A1_Data (2022); 
MYD11A1_Data (2022)) 

Product, 
Version Product name Abbreviation 

MOD11A1, v006 
MODIS/ Terra Land Surface Temperature/ 

Emissivity Daily L3 Global 1 km SIN Grid 
LSTTERRA-DAY 

LSTTERRA-NIGHT 

MYD11A1, v006 
MODIS/ Aqua Land Surface Temperature/ 

Emissivity Daily L3 Global 1 km SIN Grid 
LSTAQUA-DAY 

LSTAQUA-NIGHT 
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3.4.2.1. Filtering and pre-processing of the LST data 

The pre-processing and filtering steps explained in this sub-
section were applied individually to the LSTTERRA-DAY, LSTAQUA-DAY, 
LSTTERRA-NIGHT and LSTAQUA-NIGHT datasets, utilizing GEE (Firat Ors 
and Mahdavi 2021).  

The workflow conducted in GEE is as follows. The LST datasets 
were filtered gradually a couple of times before obtaining the 
data which would be employed in further inquiries of the 
present work. A certain level of pre-processing was also 
performed on the data before exporting it. The purpose behind 
this was to derive the actual observational information delivered 
by the bands; and thus, to be able to perform filtering based on 
that information. These steps are explained in detail below.  

Note that, here and in the following text, "bands" refer to the 
"Scientific Data Sets" (SDS) of the products, following the way 
they are referred to in GEE (2022) and GEE_Catalog (2022) 
(MOD11A1_Data 2022; MYD11A1_Data 2022; Wan 2013). 

In this context, in the first step, the LST data was filtered 
regarding the acquisition dates of the images. The time frame 
utilized for that purpose was determined concerning the limits 
of available satellite-based and ground-based thermal data (Firat 
Ors and Mahdavi 2021). This time frame as well as further details 
regarding the LST datasets as they can be reached from the 
"Earth Engine Data Catalog" are presented in Table 9 (GEE_Aqua 
2022; GEE_Catalog 2022; GEE_Terra 2022).  

Table 9. LST datasets as stored in Earth Engine Data Catalog  
(modified from Firat Ors and Mahdavi (2021), partially based on 
GEE_Catalog (2022)) 

Abbreviation Employed period Earth Engine Data Catalog Dataset 

LSTTERRA    05.03.2000 – 
01.09.2015 

MOD11A1.006 Terra Land Surface 
Temperature and Emissivity Daily Global 1km 

LSTAQUA    04.07.2002 – 
01.09.2015 

MYD11A1.006 Aqua Land Surface 
Temperature and Emissivity Daily Global 1km 
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After specifying the temporal limits of the LST data to be called 
in, the next step was defining the spatial limits of the case area 
to perform filtering. This decision was of significance because 
this area would be later utilized in sky condition assessments to 
employ data with a good observational quality (Firat Ors and 
Mahdavi 2021).  

In this context, first, a "region of interest" (ROI) was selected. In 
GEE, the case area illustrated in Figure 3 was specified as a 
rectangular area that covers the selected WS as well as the City 
of Vienna. The borders of this area were defined so that it would 
encompass at least a 5km distance (or 5-to-6-pixel footprints of 
the LST data) from the seven WS. The idea behind this was to 
obtain a sufficient spatial extent to carry out the sky condition 
assessments (Firat Ors and Mahdavi 2021). Based on these 
considerations, a rectangular area covering from 16.15325 E, 
47.925 N to 16.654 E, 48.325 N was selected and specified in GEE 
(Figure 3). Note that, a similar approach was followed by Gawuc 
and Struzewska (2016), where they included a 10-km band 
around Warsaw and used it as a base for cloud screening and 
data filtering, amongst other analyses purposes. In GEE, the 
temporally filtered LST datasets (Table 9) were spatially filtered 
based on the specified case area (Firat Ors and Mahdavi 2021). 
For that purpose, the LST images were clipped with respect to 
this area and organized in a new "image collection" to be utilized 
in further pre-processing and filtering steps.  

In the third step, this "new" collection was first filtered for cloud 
conditions, more specifically, for the amount of "valid" LST pixels 
inside the specified area. This decision stemmed from the data 
characteristics of the employed LST products. As stated by 
MOD11A1_Data (2022) and MYD11A1_Data (2022), amongst 
others, the employed LST data had been through a cloud 
screening process before it was made available for public use. As 
a result of this screening, some pixels had been extracted from 
the products due to a certain level of influence from the clouds 
(MOD11A1_Data 2022; MYD11A1_Data 2022; Wan 2013). 
Keeping in mind that, cloudy sky conditions might not be the only 
basis for a certain pixel not to have a "valid" observation, high 
amount of valid LST pixels over an area nevertheless implies a 
strong potential for clear-sky observational conditions. This 
presumably leads to more representative observations of the 
actual surface conditions, as risk of un-detected contamination 
from clouds decreases even further than it may be potentially 
inherent in the products (see, for instance, Wan 2013).  
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Based on these considerations, the third stage of filtering was 
conducted in GEE; and only the LST images with 90% and more 
pixels over the specified case area were included in further 
analysis stages (Firat Ors and Mahdavi 2021). Note that, this is 
parallel with the recommendations of Hu et al. (2014), as the 
authors recommend eliminating images with less than 90% 
pixels over the investigated areas for cloud screening purposes 
(Hu et al. 2014). On the other hand, Gawuc and Struzewska 
(2016) eliminates the ones with less than 60%.  

To summarize, after these steps, the LST data which were 
acquired between the afore-mentioned dates (Table 9), and 
which have at least 90% LST pixels over the case area remained 
for further pre-processing and filtering. Number of available 
images at each LST dataset after these stages is presented in 
Table 10. 

Table 10. Number of available LST images after temporal filtering and 
cloud screening processes 

 Number of available images 

LSTTERRA-

DAY 
LSTAQUA-

DAY 
LSTTERRA-

NIGHT 
LSTAQUA-

NIGHT 

After temporal filtering 5609 4797 5609 4797 

After cloud screening 1222 962 1025 928 

Before proceeding with other data filtering steps, certain 
calculations were performed in the image bands. This was 
carried out to account for the "scale factor", and in some 
instances, "additional offset" values that are inherent in the 
information conveyed by the bands; and to obtain the actual 
observational information (MOD11A1_Data 2022; 
MYD11A1_Data 2022). This pre-processing was performed in 
GEE for bands including information on "view angle", "view 
time" and "land surface temperature". In GEE, new bands were 
created for the LST images and outputs from these calculations 
were stored in these bands. These bands (except for the one 
where "view time" calculations were stored) later assisted in 
further filtering efforts. From this point, the following workflow 
was carried out individually for each of the seven WS locations 
(instead of the whole case area); and only by considering the 
pixel (i.e., "grid") at the investigated WS location (Firat Ors and 
Mahdavi 2021).  
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In this context, first, a data filtering was conducted to eliminate 
LST images if they do not have an observation (i.e., "valid pixel") 
over the investigated WS. This was based on the overall goal of 
the study, where LST data would be employed in acquiring Tair.  

Second, from the remaining data, LST observations that have less 
than -35° or more than 35° "view zenith angles" were eliminated. 
This was decided based on the works by Monaghan et al. (2014) 
and Hu et al. (2014) (Firat Ors and Mahdavi 2021). To summarize, 
the idea behind this decision was to prevent unrepresentative 
LST observations (mostly due to the effects of "anisotropy"), as 
MODIS sensors have the capability to provide observations 
within -/+65° "view (zenith) angles" (Hu et al. 2014; Monaghan 
et al. 2014; see also MODIS_SDST 1997; Wolfe et al. 1998). 

Third, LST observations "flagged" with a certain error range were 
removed from the datasets. This information is given for each 
pixel with the "quality indicator" bands, and for the present 
study, tolerated errors for the pixel at the investigated WS 
location were decided to be limited at 2K "average LST error" 
and 0.02 "average emissivity error" (Wan 2013; see also Firat Ors 
and Mahdavi 2021).  

In order to eliminate data with a greater error range than 
specified above, it was first necessary to know which quality 
criteria was conveyed by the "bit-encoded" "quality indicator" 
bands (MOD11A1_Data 2022; MYD11A1_Data 2022; see also 
Firat Ors and Mahdavi 2021). As suggested by MOD11A1_Data 
(2022) and MYD11A1_Data (2022), this was accomplished by 
attaining a subset of the LST data from AppEEARS (AppEEARS 
Team 2020a; Wan et al. 2015a; 2015b) which provided the 
necessary, "decoded" explanations (MOD11A1_Data 2022; 
MYD11A1_Data 2022; see also Firat Ors and Mahdavi 2021). The 
filtering was then performed employing GEE, by considering the 
detailed information given by AppEEARS (Firat Ors and Mahdavi 
2021). 

After this final step, the filtered LST datasets were exported to 
Google Drive as .csv files. More specifically, the exported data 
was the values of the single pixels that correspond to the 
investigated WS location, for all available bands and for four 
afore-mentioned LST datasets. This process was repeated for 
each of the seven WS locations (Firat Ors and Mahdavi 2021). 
Table 11 provides the number of observations remained at each 
LST dataset after these efforts. 
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Table 11. Number of available LST observations after data filtering 

3.4.2.2. Assessment 

In order to test the presented filtering and pre-processing steps, 
several subsets of the LST datasets were additionally acquired 
from AppEEARS (AppEEARS Team 2020a; 2020b; Wan et al. 
2015a; 2015b). AppEEARS stands for "Application for Extracting 
and Exploring Analysis Ready Samples" and is an LP DAAC data 
platform (AppEEARS 2022; LP DAAC 2022). The acquired LST data 
was, again, the information conveyed by the pixels covering the 
WS location(s). It was provided in .csv format and as already 
processed. These data were attained so that they would provide 
information from all seven selected WS points for the period 
between 01.01.2014 – 01.09.2015. Furthermore, from one WS 
point (i.e., SC), the attained data included LST information from 
the whole investigated time period of the study. These data 
subsets were acquired for both LSTTERRA and LSTAQUA data 
(AppEEARS Team 2020a; 2020b; Wan et al. 2015a; 2015b). The 
workflow below was carried out to compare this data with the 
data acquired from GEE, and thus, to evaluate the pursued data 
filtering workflow. 

First, the data attained from AppEEARS was manually filtered in 
Microsoft_Excel (2022) to (content-wise) match the 
observations that remained after the cloud screening step was 
completed in GEE (Table 10). This provided a baseline for 
assessing the data filtering steps conducted in GEE for the WS 
locations. Second, the remaining data was once more filtered 
based on the criteria presented in the previous sub-section (i.e., 
view angle, LST data availability, quality thresholds). The 
observations remained after this stage were compared with the 
exported data from GEE to evaluate the pursued workflow.  

WS Locations LSTTERRA-DAY LSTAQUA-DAY LSTTERRA-NIGHT LSTAQUA-NIGHT 

IS 478 363 291 229 

HW 567 410 343 278 

DF 603 443 354 305 

MB 615 489 449 404 

GE 601 485 455 404 

SC 632 498 460 391 

SD 640 484 455 409 

All locations 4136 3172 2807 2420 
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33..44..33..  DDaattaa  mmaattcchhiinngg  

3.4.3.1. View time of the LST data 

After exporting the LST data from GEE, first, the datasets were 
processed so that the view time of the satellite-based data 
would match the way WS measurements were recorded. This 
conversion was done to provide the comparability of both 
datasets. 

Employed LST products are provided in "local solar time" (Wan 
2013). From the exported .csv files, the pixel values of the "view 
time" band were therefore converted to the "Central European 
Time" (CET), which, Tair data was recorded at. This conversion 
was carried out based on the guidelines described by Wan 
(2013).  

Equation 3.7. was employed in the process (Grant 2017; based 
on Wan 2013):  

tOBS_UTC = t OBS_LS – (longGRID / 15)  [h]               (Eq. 3.7.) 

In Equation (3.7), tOBS_UTC is the UTC, and tOBS_LS is the Local Solar 
Time of the observation for the investigated LST pixel (i.e., 
"grid"). tOBS_LS values were obtained with the pre-processing 
steps described earlier, by scaling the "view time" band via the 
corresponding "scale factor" of 0.1 (Wan 2013; see also Grant 
2017).  

In Equation (3.7), the term longGRID corresponds to the "grid’s 
longitude in degrees" (Wan 2013, p. 17). Here, "grid" is the LST 
pixel; and its longitude was calculated from its "centroid" 
following Grant (2017) (Grant (2017) (p.39) refers to a personal 
communication with Wan).  

After obtaining the UTC time of the LST observations, conversion 
to CET time was simply performed by adding 1 hour (see, for 
instance, TIME_IS (2021)). "Daylight saving time" was not 
considered due to the way Tair was recorded (personal 
communication of Josef Lechleitner (TU Wien) with ZAMG 
(2022b) on July 3rd, 2019). 
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3.4.3.2. Data matching: Tair and LST  

In order to explore the Tair data with respect to the obtained LST, 
these ground-based and satellite-based observations were 
initially "matched" with each other based on the times and 
locations they were observed (Firat Ors and Mahdavi 2021).  

For that purpose, Tair data was interpolated based on the 
following relationship:  

Qx = Qt + (x/60) · (Qt+1 – Qt)   [°C]            (Eq. 3.8.) 

In Equation (3.8), t and t+1 are two consecutive hours within 
which the LST observation time is listed. Qt and Qt+1 refer to the 
Tair data recorded at hours t and t+1, respectively. The term x 
refers to the minute of LST observation, and Qx is the assigned 
("matched") Tair value for the (corresponding) LST observation.  

Based on these principles, data assignment between Tair data 
and LST datasets was carried out.  

It is of significance to note here that, there were some 
unsystematic gaps present in the Tair data. Because of these 
gaps, the hourly data (Qt and Qt+1) that would have been 
employed in the interpolation was missing for some of the LST 
observations. When this occurred, two approaches were 
followed:  

• If only one Tair measurement was missing between Qt and 
Qt+1 pairs, the present one was assigned to the LST data 
without interpolation (as Qx). This was applicable for a total 
of 9 observations.  

• If both Tair observations of Qt and Qt+1 were missing, 
corresponding LST observation was removed from the LST 
dataset and not included in the study.  

After this elimination, total number of available LST data (pixel 
values at WS points from LSTTERRA-DAY, LSTAQUA-DAY, LSTTERRA-NIGHT, 
LSTAQUA-NIGHT) decreased from 12535 to 12454 (Firat Ors and 
Mahdavi 2021).  

In this context, Table 12 includes further information regarding 
the LST datasets after this data matching effort, whereas Table 
13 presents the observation times of these data over the case 
area. Their monthly distribution is further illustrated in Figure 14.  
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33..44..44..  MMiiccrroocclliimmaattiicc  aasssseessssmmeennttss::  TTaaiirr  aanndd  LLSSTT  rreellaattiioonnsshhiipp  

3.4.4.1. Investigating Tair and LST  

After the data matching between terrestrial Tair and satellite-
based LST data were completed, these datasets were 
investigated with respect to each other at the selected WS 
locations. This inquiry was carried out gradually via linear 
regression, employing Microsoft_Excel (2022) and 
Analysis_Toolpak (2022).  

Alexopoulos (2010) provides a detailed review on linear 
regression method and defines the approach as follows: The 
method devises a "linear equation" by estimating the associated 
"coefficients" that the numerical "dependent variable" can be 
predicted by with the closest fit through the equation. The 
equation employs "independent variables" that are either single 
or multiple (Alexopoulos 2010). According to the author, in 
regression, "to predict Y on the basis of X or to describe how Y 
depends on X (regression line or curve)" (p. 24) is the main goal 
(Alexopoulos 2010). 

In cases where only one parameter is considered as the 
"independent variable" and one as the "dependent variable", 
like described in the workflow below, the analysis is referred to 
as "simple linear regression" (Alexopoulos 2010; Fávero and 
Belfiore 2019; Holmes et al. 2017; PennState 2018a).  

This approach was employed in this stage of the present 
dissertation to illustrate and quantify how LST datasets relate to 
the observed Tair within the case area (Firat Ors and Mahdavi 
2021; see also Firat Ors et al. 2019). In these inquiries, the 
dependent variable was Tair with LST as the independent 
variable.  

In the described workflow below, the agreement between Tair 
and LST was explored through two metrics: R2 – namely – the 
Coefficient of Determination, and RMSE, Root-Mean-Squared-
Error. Note that these metrics were also employed by Vuckovic 
(2015) to assess the performance of a "predictive model".  

The "best-fitting lines" of the investigated datasets and their 
scatter-plots were further employed to better evaluate the 
above-mentioned outcomes and to allow for initial Tair 
estimations over the case area (Firat Ors and Mahdavi 2021; 
Firat Ors et al. 2019). 
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In this context, Equation 3.9. describes the "best-fitting line" of 
the "simple linear regression", which was utilized in this part of 
the present dissertation (Alexopoulos 2010; Fávero and Belfiore 
2019; Holmes et al. 2017; PennState 2018b): 

𝑦 =  𝑏0 + 𝑏1𝑥                (Eq. 3.9.) 

In Equation (3.9), b0 refers to the "y-intercept" and b1 to the 
"slope".  

Likewise, the Equation 3.10. below gives the "predicted value" 
for the dependent variable (i.e., 𝑦̂𝑖) from a single point belonging 
to the independent variable, which is 𝑥𝑖  (Alexopoulos 2010; 
Fávero and Belfiore 2019; Holmes et al. 2017; PennState 2018b). 

𝑦̂𝑖 = 𝑏0 + 𝑏1𝑥𝑖              (Eq. 3.10.) 

In this context, the Root-Mean-Squared-Error (RMSE) – or the 
"standard deviation of residual" – implies how scattered the data 
is with respect to the best-fitting line (Alexopoulos 2010; 
PennState 2018c). It is calculated via the Equation (3.11) below 
(Alexopoulos 2010; PennState 2018c). 

𝑅𝑀𝑆𝐸 = √∑(𝑦𝑖−𝑦̂𝑖)2𝐷𝐹              (Eq. 3.11.) 

In Equation (3.11), (yi − 𝑦̂𝑖) is termed as the "residual", showing 
the difference between the actual and "predicted" data points 
of the "dependent variable" (Alexopoulos 2010; Fávero and 
Belfiore 2019; Holmes et al. 2017; PennState 2018c).  

The term DF refers to the "degrees of freedom" for residual 
inquiries. It is taken as "n-2" for the Simple Linear Regression, 
where n corresponds to the number of data points (Alexopoulos 
2010; PennState 2018c).  
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On the other hand, the second metric employed in the present 
dissertation, i.e., R2 (the Coefficient of Determination) is 
calculated via Equation (3.12) below (Fávero and Belfiore 2019). 

𝑅2 = ∑ (𝑦̂𝑖−𝑦̅)2𝑛𝑖=1∑ (𝑦̂𝑖−𝑦̅)2𝑛𝑖=1 +∑ (𝑦𝑖−𝑦̂𝑖)2𝑛𝑖=1                         (Eq. 3.12.) 

where, 𝑦̅ refers to the "average" of the dependent variable y 
(Fávero and Belfiore 2019).  

R2 values can be within the range of 0 to 1, where greater values 
indicate a better agreement of the investigated datasets (Fávero 
and Belfiore 2019; PennState 2018d; see also Firat Ors et al. 
2019; Vuckovic 2015).  

In the light of these points, the following steps were pursued to 
explore the agreement between Tair and LST data within the case 
area (Firat Ors and Mahdavi 2021):  

• First, LST data from day-time acquisitions (a total of 7255 
data points from LSTTERRA-DAY and LSTAQUA-DAY) and night-
time acquisitions (5199 data points from LSTTERRA-NIGHT and 
LSTAQUA-NIGHT) were compared individually with the related 
Tair data.  

• Next, LST data was organized under four groups 
depending on the products and acquisition times (namely, 
LSTTERRA-DAY, LSTAQUA-DAY, LSTTERRA-NIGHT, LSTAQUA-NIGHT) which 
were compared with the related Tair data.  

• In the final step, four groups stated above were further 
divided into sub-groups based on their acquisitions over 
seven stations and compared with the Tair data.  

Results from these stages are presented in the next chapter, 
where they are evaluated regarding the temporal and spatial 
considerations discussed earlier.  
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3.4.4.2. Investigating Tair and LST: Temporal considerations  

Up to this point, investigations of Tair and LST datasets were 
performed based on the data filtering and matching constraints 
presented earlier. In order to further investigate the spatio-
temporal tendencies of both data types, additional filtering 
criteria were introduced to the datasets. Note that, this stage of 
data elimination was only employed in this part of the study (i.e., 
this sub-section) and does not affect the following parts of the 
presented approach. 

As mentioned earlier, four groups had been formed from LST-Tair 
"pairs" based on the four LST datasets (LSTTERRA-DAY, LSTAQUA-DAY, 
LSTTERRA-NIGHT, LSTAQUA-NIGHT). The following workflow was applied 
to each of these groups separately.  

First, a data subset was formed so that, the LST-Tair "pairs" of a 
certain date remained in the subset only if there were valid LST 
observations at each of the seven WS points for that specific 
date. The goal was to explore Tair and LST relationship with a 
more direct focus on the investigated locations by limiting, to the 
extent possible, potential influencing factors such as seasonal 
and weather conditions.  

Next, this remaining data were sorted based on the LST 
acquisition times over the rural WS. The idea behind this was to 
inquire how the behaviours of LST and Tair data differed between 
rural and more urbanized locations. For that purpose, SD WS was 
specified as the rural station (following Vuckovic 2015; Vuckovic 
et al. 2016).  

After organizing the data based on the viewing time over the SD 
station, these data were further divided into two sub-sections, 
so that a maximum of 30-minute difference would remain 
among the observation times over the SD WS (Table 13). The 
goal was once more to limit potential affects that may arise from 
viewing time differences and to obtain a more homogeneous 
dataset for this round of spatial assessments. Note that, among 
the WS points, there was a maximum of 6-minute difference in 
the viewing times of the same date observations. 

After these data were organized, they were assessed by means 
of box-plots to allow for a sufficient comparison amongst 
investigated locations. Findings from these inquiries are 
presented in the next chapter. Also, Table 14 presents additional 
details regarding the employed data in these assessments and 
the associated viewing time intervals over the SD WS.  
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Table 14. Details regarding LST datasets employed in the spatio-
temporal assessments over the case area 

Dataset group Observation times (CET) 
of the data sub-sections  

Number of observations  
at each WS point 

LSTTERRA-DAY 
10:36 – 11:00 192 

11:06 – 11:36 190 

LSTAQUA-DAY 
12:30 – 12:48 125 

12:54 – 13:18 148 

LSTTERRA-NIGHT 
21:30 – 21:48 117 

21:54 – 22:18 94 

LSTAQUA-NIGHT 
01:42 – 02:00 93 

02:06 – 02:30 108 

33..55..  DDeerriivviinngg  nneeaarr--ssuurrffaaccee  tteemmppeerraattuurreess  

After obtaining information on the behaviours of LST and Tair 
datasets with respect to one another at the specified U2Os, the 
derived relationships between these data were further addressed 
with an effort to attain Tair with a better agreement (Firat Ors and 
Mahdavi 2021).  

For that purpose, additional input parameters that may potentially 
assist this objective was explored. This was carried out building 
upon a considerable number of previous works as discussed earlier 
in the background chapter (see, Benali et al. 2012; Irger 2014; 
Schneider dos Santos 2020; Shi et al. 2016; Yoo et al. 2018; Zakšek 
and Schroedter-Homscheidt 2009 amongst others). 

33..55..11..  CCoommpplleemmeennttaarryy  ddaattaasseettss  

3.5.1.1. Building-related attributes of the U2Os 

Based on the afore-mentioned considerations, as a first step, the 
building-related attributes calculated for the specified U2Os 
were included to the "matched" datasets of ground- and 
satellite-based thermal observations (LST and Tair) (Firat Ors and 
Mahdavi 2021).  
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As discussed earlier, these parameters represent the 
geometrical features of the (built) environment within a "radius" 
which potentially affects the observed Tair ("circle of influence" 
(see, for instance, Oke 2006; Skarbit et al. 2017; Stewart and Oke 
2009; 2012). The idea behind considering these parameters 
stemmed from this, hypothesizing that employing these 
parameters might lead to a better performance in deriving Tair 
(Firat Ors and Mahdavi 2021; see also Irger 2014; Ho et al. 2016).  

Hence, these parameters were added to the relevant, "matched" 
Tair and LST observations for all acquired data; and a larger 
dataset was constructed this way (Firat Ors and Mahdavi 2021). 
This dataset was later employed in further statistical inquiries as 
described later in this chapter. 

3.5.1.2. Additional parameters 

In addition to the afore-mentioned list of parameters that reflect 
the built environment within the U2Os, and only for the day-time 
assessments, additional parameters of "Solar Zenith Angle" 
(SZA) and "Black Sky Albedo" (BSA) (following Schneider dos 
Santos, amongst others) were also employed (Firat Ors and 
Mahdavi 2021).  

Besides the motivation of building upon and contributing to the 
listed literature above, the idea behind considering these 
parameters is discussed in the next chapter, in relation with the 
findings of the previous inquiries where the relationships 
between the acquired thermal datasets are explored.  

In this context, these parameters were added to the day-time 
datasets which now consisted of the related Tair and LST data, 
and the calculated geometrical attributes of the U2Os (Firat Ors 
and Mahdavi 2021).  

Both parameters, i.e., the SZA and BSA data were selected from 
MODIS products (Schaaf and Wang 2015a; Vermote and Wolfe 
2015a; 2015b; see also Firat Ors and Mahdavi 2021). The data 
distributer of these products is NASA EOSDIS LP DAAC (LP DAAC 
2022). 

AppEEARS (Application for Extracting and Exploring Analysis 
Ready Samples) was selected to access and acquire both 
datasets, as no pre-processing was necessary for the data to be 
obtained (AppEEARS 2022; AppEEARS Team 2020c; Schaaf and 
Wang 2015a; Vermote and Wolfe 2015a; 2015b; see also Firat 



82 
 

Ors and Mahdavi 2021). This was a practical option, as all 
relevant data filtering steps had been already carried out in GEE 
(2022) when the LST data was first attained.  

In order to obtain SZA and BSA data, the WS points were defined 
in AppEEARS (2022) by their latitude and longitude (see Table 7), 
and the datasets were requested individually. When the 
processing by AppEEARS Team (2020c) was complete, the data 
was accessed and downloaded. By pursuing this workflow, the 
data provided by the pixel ("grid") covering the WS location was 
obtained for each of the seven WS locations in the present work 
and individually for SZATERRA, SZAAQUA and BSAT+A datasets 
(AppEEARS Team 2020c; Schaaf and Wang 2015a; Vermote and 
Wolfe 2015a; 2015b).  

The SZATERRA and SZAAQUA datasets, more specifically the acquired 
data from the listed Terra MODIS and Aqua MODIS SZA products 
which contained the "solar zenith angle" information, were 
provided in (around) 1km resolution (Vermote et al. 2015). The 
data was included to this part of the analyses in order to account 
for the influence of solar radiation (Firat Ors and Mahdavi 2021). 
As the LST data employed in the present dissertation belonged 
to cloud-free conditions (MOD11A1_Data 2022; MYD11A1_Data 
2022), solar angles potentially provide viable insights on the 
solar radiation arriving to the land surfaces. This is further 
discussed in the next chapter in relation with the research 
findings. Other studies considering Solar Zenith Angle for 
deriving Tair include Huang et al. (2017) and Schneider dos Santos 
(2020), amongst others. 

On the other hand, the BSAT+A data was acquired from "Black-
Sky Albedo for shortwave band" and it is a joint product from 
Terra MODIS and Aqua MODIS (MCD43A3_Data 2022). The BSA 
is defined as "albedo in the absence of a diffuse component" 
(MCD43A3_UserGuide 2021) and the employed BSAT+A data 
gives this information for 0.3-5.0µm interval, for the "local solar 
noon" and in 500m resolution (MCD43A3_UserGuide 2021). The 
data is provided as "temporally weighted to the ninth day of the 
16 day" (MCD43A3_Data 2022). Other studies considering Black-
sky Albedo for deriving Tair include Chen et al. 2016 and 
Schneider dos Santos (2020), amongst others. 
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Here, note that at the time of the data processing of the present 
dissertation, Version 6 data was the most recent version 
available for the MCD43A3 products. MCD43A3 products are 
distributed with a note of caution, stating that the outcomes 
provided by MCD43A3 products "may have" been influenced, 
"particularly over arid bright surfaces", due to "the incorrect 
representation of the aerosol quantities (low average high)" in 
other products that are employed in MCD43A3 data processing 
(MCD43A3_Data 2022). For that reason, and "and a few other 
issues", MCD43A3_Data (2022) advised "to avoid substantial use 
of the C6 MCD43A3 products and wait for the C6.1 products" 
(MCD43A3_Data 2022). A further recommendation was to 
consult the more detailed quality information provided with the 
MCD43A2 product (MCD43A3_Data 2022). Thus, this was 
carried out by accessing the MCD43A2 product through GEE 
(GEE_MCD43A2 2022; Schaaf and Wang 2015b), and after a brief 
assessment, it was decided to perform no further filtering on the 
BSAT+A data other than the temporal filtering that was necessary 
to match these observations with the LST datasets (as 
mentioned below). Due to time-related concerns regarding 
waiting for the introduction of Version 6.1 data, and because it 
was considered sufficient for the purposes of the present 
dissertation, provided pixel values by the Version 6 of the BSAT+A 
data products were utilized.  

In this context, the obtained SZATERRA, SZAAQUA and BSAT+A were 
filtered to be assigned to the related day-time datasets based on 
the image dates of the LSTDAY data and the WS locations. Note 
that, as BSAT+A data stem from both Terra and Aqua satellites 
(MCD43A3_Data 2022) and as this data assignment was 
performed based on the WS locations and the imaging dates, the 
same date LSTTERRA-DAY and LSTAQUA-DAY observations were 
matched with the same BSAT+A data point.  

During this process, it was noticed that some BSAT+A 
observations were missing for some of these dates. Thus, the 
total number of day-time observations available for this step of 
the study decreased from 7255 to 6714 after these assignments 
(Firat Ors and Mahdavi 2021).  

Note that, the linear regression results of LST and Tair data from 
the afore-mentioned categories (i.e., LSTDAY-Tair, LSTTERRA-DAY-Tair, 
LSTAQUA-DAY-Tair) after this data elimination can be found in 
Appendix 7.2. 
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In the light of these points, an overview of the employed SZA and 
BSA data is given in Table 15.  

Table 16 provides the updated data distribution (that occurred 
due to missing BSA data) with respect to individual WS points 
and the LST datasets.  

Table 15. SZA and BSA Datasets employed in the study (partially based 
on Schaaf and Wang 2015a; Vermote and Wolfe 2015a; 2015b) 

Product, 
Version 

Product name Abbreviation 

MOD09GA, 
v006 

MODIS/ Terra Surface Reflectance Daily L2G 
Global 1km and 500m SIN Grid SZATERRA 

MYD09GA, 
v006 

MODIS/ Aqua Surface Reflectance Daily L2G 
Global 1km and 500m SIN Grid SZAAQUA 

MCD43A3, 
v006 

MODIS/ Terra+Aqua Albedo Daily L3 Global  
500m SIN Grid BSAT+A 

Table 16. Number of available observations after including the BSA 
data  

WS Locations TERRA-DAY AQUA-DAY TERRA-NIGHT AQUA-NIGHT 

IS 363 285 291 229 

HW 541 400 343 278 

DF 550 412 350 302 

MB 580 475 449 403 

GE 580 469 455 404 

SC 556 449 457 386 

SD 597 457 452 400 

All WS 
Locations 

3767 2947 2797 2402 
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33..55..22..  AApppprrooaacchh    

In order to explore obtaining Tair based on the points discussed 
earlier, the constructed datasets were first grouped into day-time 
and night-time observations. These two groups of data were 
explored via "multiple linear regression analyses" (see Irger 2014 
amongst others).  

In these inquiries, the "dependent variable" was selected as Tair 
whereas the "independent variables" were selected from the afore-
mentioned parameters in the previous sub-section 3.5.1 (Firat Ors 
and Mahdavi 2021).  

An initial overview of these parameters is given in Table 17, with 
respect to their (potential) employment in day-time and night-time 
assessments. 

Table 17. List of variables employed in day-time and night-time analyses 
(partially based on Firat Ors and Mahdavi 2021) 

                     Independent variables      Evaluated models 

Abr. Variable   Day-time Night-time 

BSF Building Surface Fraction ✓ ✓ 

ISF Impervious Surface Fraction ✓ ✓ 

PSF Pervious Surface Fraction ✓ ✓ 

MBH Area-weighted Mean Building Height ✓ ✓ 

EBH Equivalent Building Height ✓ ✓ 

SVF Sky View Factor ✓ ✓ 

SZA Solar Zenith Angle ✓ × 

BSA Black-sky Albedo ✓ × 

LSTDAY Land Surface Temperature (day-time) ✓ × 

LSTNIGHT Land Surface Temperature (night-time) × ✓ 
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3.5.2.1.  Exploring the independent variables 

For obtaining Tair with a good performance, and preferably 
through a simple procedure as possible, the independent 
variables listed in Table 17 were explored through several steps. 
The workflow described below was applied individually to the 
day-time and night-time datasets. 

In this context, first, the inter-relationship among the 
independent variables were tested through correlation inquiries 
(following Irger 2014). This provided an initial perspective to 
consider which parameters together and to (preferably) refrain 
from using which ones within the same model. This is further 
explained in the text below.  

Second, a series of multiple regression analyses were conducted 
with different combinations of the independent variables (Table 
17). Here, the aim was to find the best performing model 
amongst the explored alternatives. This was accomplished by 
considering (urban-)climate-related aspects, initial insights 
gained from the correlation inquiries, as well as the results 
obtained from each considered multiple regression step. The 
latter two of these assessments were conducted based on the 
concepts, criteria and metrics described below.   

As a first step, potential (multi-)collinearity among the variables 
were explored. For that purpose, the Variance Inflation Factors 
(VIFs) were calculated for the independent variables of each 
explored regression inquiry (following Irger 2014; Yoo et al. 
2018). These VIF values and the correlation findings described 
earlier were evaluated together to gain insights regarding the 
(potential) relationships among the investigated parameters 
(Dormann et al. 2013; Fávero and Belfiore 2019; Hoffman 2019; 
Tsagris and Pandis 2021; Vu et al. 2015; see also Irger 2014; Yoo 
et al. 2018).  

(Multi-)collinearity is a potential issue in regression inquiries 
where there is a certain degree of inter-relationship amongst – 
at least two of – the explored "independent variables" (see, for 
instance, Dormann et al. 2013; Fávero and Belfiore 2019; 
Hoffman 2019; Holmes et al. 2017; Tsagris and Pandis 2021; Vu 
et al. 2015).  
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When this situation is present, the regression "coefficients" may 
not reflect the actual behaviours of the related parameters on 
the investigated "dependent variable", besides other potential 
issues (Alexopoulos 2010; Dormann et al. 2013; Fávero and 
Belfiore 2019; Hoffman 2019; Holmes et al. 2017; Salmerón 
Gómez et al. 2020; Tsagris and Pandis 2021; Vu et al. 2015).  

Furthermore, such an inter-relationship creates a tendency to 
influence the performance of the models when they are applied 
to new "samples" with dissimilar backgrounds (see, for instance, 
Dormann et al. 2013; Fávero and Belfiore 2019; Hoffman 2019; 
Vu et al. 2015).  

In this context VIF is commonly employed metric in multi-
collinearity inquiries (for instance, Irger 2014; Yoo et al. 2018). 
Depending on the research problem, and the discipline, the 
considered threshold for VIF differs, anyhow, thresholds of 5 and 
10 have been commonly utilized (Dormann et al. 2013; Hoffman 
2019; Irger 2014; Salmerón Gómez et al. 2020; Tsagris and 
Pandis 2021; Vu et al. 2015; see also Fávero and Belfiore 2019).  

VIF is calculated via the Equation 3.13 below (Fávero and Belfiore 
2019; Hoffman 2019; Salmerón Gómez et al. 2020; Vu et al. 
2015; see also Dormann et al. 2013): 

VIF(k) = 1/(1-Rk2)                (Eq. 3.13) 

In Equation 3.13, Rk2 refers to the R2 value resulting from the 
multiple regression inquiry where the dependent variable is Xk, 
the investigated independent variable from the original multiple 
regression model, and the independent variables are the 
remaining independent variables of the original model 
(Dormann et al. 2013; Hoffman 2019; Salmerón Gómez et al. 
2020; Vu et al. 2015; see also Fávero and Belfiore 2019). 

In the present dissertation, the VIF threshold is taken as 10 
(Dormann et al. 2013; Salmerón Gómez et al. 2020; see also 
Fávero and Belfiore 2019; Hoffman 2019). Furthermore, the 
regression results which contain independent variables with VIFs 
ranging from 5 to 10 were decided to be evaluated with caution 
(Vu et al. 2015, see also Irger 2014). Here, note that Hoffman 
(2019) suggests this evaluation range should start from 4, which 
is further supported by the notes of Fávero and Belfiore (2019). 
Irger (2014), on the other hand, practically employs a threshold 
of 3, while also reporting the VIFs greater than 5 (Irger 2014).  
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For the correlation inquiries, no strict threshold was applied in 
the present dissertation. As mentioned earlier, the correlation 
results were employed to gain a preliminary perspective 
between the variable pairs; and to make initial decisions 
regarding the regression inquiries.  

Outcomes from these efforts are further discussed in the next 
chapter, in relation with the multiple regression analysis results. 

In this context, as a second step to select the "best" performing 
model for the air temperature inquiries, performances of the 
obtained regression models were evaluated via the RMSE and 
Adjusted R2 metrics.  

RMSE calculation was described earlier in Equation (3.11) for the 
simple linear regression analyses. In multiple regression 
inquiries, the degrees-of-freedom (DF) term in the denominator 
of Equation (3.11) is taken as "n-(k+1)" (PennState 2018e). Here, 
"k" corresponds to how many independent variables are there in 
the multiple regression model (PennState 2018e).  

On the other hand, the Adjusted R2 is commonly utilized in 
multiple regression inquiries to assess whether including a 
certain variable improves the model's performance and to 
obtain the better performing model (PennState 2018e; 2018f). It 
is calculated via Equation 3.14 below (see, for instance, Karch 
2020; PennState 2018e; 2018f). 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 − 𝑛−1𝑛−𝑘−1  (1 −  𝑅2)           (Eq. 3.14.)
  

Note that, these inquiries described above were performed 
utilizing Microsoft_Excel (2022), Analysis_ToolPak (2022) and 
MATLAB® (MathWorks® 2018). RStudio (RStudio Team 2018) 
further assisted at some points for data evaluation purposes. 
Next chapter includes the results from these efforts. 
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3.5.2.2.  Deriving day-time and night-time Tair 

In the light of the presented framework, the initial relationships 
for estimating day-time and night-time near-surface air 
temperatures are presented in the Equations 3.15 to 3.17 below.  

𝑇̂𝑎𝑖𝑟 = b0 + (b1 · LSTDAY) + (b2 · SZA) + (b3 · BSA) + LF [°C]        (Eq. 3.15) 

Equation (3.15) represents the initial relationships to be 
explored for deriving day-time Tair. The term b0 is the intercept, 
whereas b1 to b3 refer to the estimated coefficients.  

The term LF denotes the "location factor" illustrating the 
building-related attributes of the investigated U2O. It is 
represented by the Equation (3.16) below: 

LF = (β1 · BSF) + (β2 · ISF) + (β3 · PSF) + (β4 · MBH) + (β5 · SVF) +  
(β6 · EBH)                           (Eq. 3.16) 

In this context, the initial relationships explored for estimating 
night-time Tair is given in Equation (3.17): 

𝑇̂𝑎𝑖𝑟 = a0 + (a1 · LSTNIGHT) + LF  [°C]                          (Eq. 3.17) 

where, a0 is the intercept and a1 is the estimated coefficient for 
night-time LST.  

As already mentioned, within the scope of the present 
dissertation, the relationships presented in Equations (3.15) to 
(3.17) were explored based on the selected regression metrics 
to attain the "best performing models" of the present work. The 
refined relationships representing these models are presented 
in the next chapter with further details.  
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This chapter is structured under four distinctive groups of inquiries 
whose goals, approach, and tools are detailly presented in the 
previous chapter.  

As such, the first group of results present the specified study areas 
in a quantitative manner via the calculation results from the LCZ and 
U2O variables (Mahdavi et al. 2013; Stewart and Oke 2012). As 
already mentioned, these results are further compared with the 
previous research effort by Vuckovic (2015) that was conducted in 
a subset of similar settings.  

The second group of results include the initial microclimatic 
assessments of the selected locations by exploring LST and Tair 
interactions. Likewise, the third group includes a more focused 
assessment of LST and Tair by considering a smaller number of 
observations that are mutually-available at each location for the 
investigated dates.  

Lastly, the final group of results present the outcomes of multiple 
regression inquiries by examining different combinations of 
potential influencing parameters (i.e., building-related attributes 
and other observational conditions) towards deriving Tair. 
Application of these findings to the specified study areas are also 
explored to evaluate the selected models.  

44..11..  PPhhyyssiiccaall  ddeessccrriippttiioonn  ooff  tthhee  ssppeecciiffiieedd  aarreeaass  

In the light of the points presented above, the results indicating the 
built environment properties of the seven specified U2Os are 
presented in Figures 15 and 16.  

Table 18 provides an overview of these results. Further details 
regarding these assessments can be found in Appendix 7.1. 

44..  RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN    
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Table 18. Calculated building-related attributes for the specified U2Os 

U2Os BSF ISF PSF MBH (m) EBH (m) SVF 

IS 0.471 0.450 0.079 19.95 9.39 0.47 

HW 0.139 0.211 0.650 9.21 1.28 0.55 

DF 0.201 0.275 0.524 7.41 1.49 0.70 

MB 0.062 0.264 0.674 6.99 0.43 0.62 

GE 0.090 0.103 0.807 7.24 0.65 0.91 

SC 0 0.153 0.847 0 0 1 

SD 0.096 0.131 0.773 7.20 0.61 0.87 

  

44..11..11..  RReessuullttss  eevvaalluuaattiioonn  

Table 19 provides the comparison of the findings presented above 
with the results of Vuckovic (2015) for evaluation purposes. Note 
that, the differences in the approaches and study areas between 
the two works were discussed in the previous chapter. 

Table 19. Comparison of the calculation results with Vuckovic (2015) 

U2Os BSF ISF PSF SVF EBH 

IS - Present Work 0.471 0.450 0.079 0.47 9.39 
IS - Vuckovic 2015 0.41 0.45 0.14 0.47 9.18 

HW - Present Work 0.139 0.211 0.650 0.55 1.28 
HW - Vuckovic 2015 0.18 0.34 0.48 0.59 1.43 

DF - Present Work 0.201 0.275 0.524 0.70 1.49 
DF - Vuckovic 2015 0.20 0.31 0.49 0.75 1.20 

SD - Present Work 0.096 0.131 0.773 0.87 0.61 
SD - Vuckovic 2015 0.08 0.09 0.83 0.87 0.45 
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44..22..  MMiiccrroocclliimmaattiicc  bbeehhaavviioouurrss::  TThheerrmmaall  ddaattaasseettss    

44..22..11..  OObbttaaiinneedd  rreellaattiioonnsshhiippss  oovveerr  tthhee  ccaassee  aarreeaa  

This sub-section includes the results obtained from the linear 
regression analyses conducted between the LST and Tair datasets.  

The linear equations and further details derived from these 
inquiries are given in Table 20. Figures 17-22 present the scatter-
plot graphs attained from these efforts. Note that, these results 
convey the comparison of LST and Tair data that were acquired over 
all selected locations for the present dissertation (Firat Ors and 
Mahdavi 2021).  

Note that, in an initial visual assessment of the scatter-plots 
conducted between LST – Tair datasets, it was observed that seven 
data points that belong to LSTAQUA-NIGHT data provided outlier LSTs. 
At a closer inspection, it was seen that all these points belonged to 
the same acquisition day, i.e., 04.02.2010. Therefore, these data 
points were removed from the datasets and were not included to 
any of the analysis stages in this dissertation.  

Note that, Microsoft_Excel (2022) including Analysis_ToolPak 
(2022), and RStudio Team (2018) were employed in these afore-
mentioned inquiries. MATLAB® (MathWorks® 2018) further 
assisted in some calculation stages. 

Further regression statistics of these assessments can be found in 
Appendix 7.2. 

Table 20. Overview of the linear regression analyses (source: modified 
from Firat Ors and Mahdavi 2021) 

Datasets n R2 SE (K) 
Linear relationships 
(Best-fitting-lines)  

LSTDAY - Tair 7255 0.903 2.60 Tair = 0.7755 LSTDAY – 0.1768 

LSTNIGHT - Tair 5192 0.971 1.50 Tair = 0.9829 LSTNIGHT + 1.8572 

LSTTERRA-DAY - Tair 4104 0.904 2.60 Tair = 0.7763 LSTTERRA-DAY – 0.2487 

LSTAQUA-DAY - Tair 3151 0.899 2.60 Tair = 0.7727 LSTAQUA-DAY – 0.0356 

LSTTERRA-NIGHT - Tair 2797 0.975 1.42 Tair = 0.9877 LSTTERRA-NIGHT + 2.2809 

LSTAQUA-NIGHT - Tair 2395 0.973 1.39 Tair = 0.9694 LSTAQUA-NIGHT + 1.4131 
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As indicated by the presented outcomes, all investigated 
combinations of LST-Tair data yield good relationships with each 
other over the case area (Firat Ors and Mahdavi 2021). As the "best-
fitting lines" of these inquiries imply, Tair is estimated to be lower 
than LSTs for temperatures (approximately) greater than 0°C during 
the day-time overpasses of Terra and Aqua MODIS over the study 
area. This corresponds to late-morning and early-afternoon hours 
in the local time, respectively (see, Table 14). This trend seems to 
largely reverse during the night-time overpasses and Tair values are 
expected to be (slightly) higher than LST (Figures 18, 21, 22). These 
behaviours are in-line with the LST-Tair behaviours anticipated from 
the (urban) climate perspective (for instance, Voogt and Oke 1997). 
Moreover, findings presented by Marzban (2020) also indicate a 
somehow similar tendency for day-time and night-time behaviours 
of LSTTERRA-DAY, LSTTERRA-NIGHT, LSTAQUA-DAY and LSTAQUA-NIGHT (version-
5) data with respect to the Tair measured between 2007 and 2013 
by 20 WS in Berlin (Marzban 2020; Marzban et al. 2018a; 2018b (as 
mentioned in Marzban 2020)). 

Furthermore, it is also evident from the presented outcomes that 
LST-Tair agreement is strong for each investigated dataset, and 
especially during night-time (Firat Ors and Mahdavi 2021). This 
finding is further discussed in the following parts of this chapter, in 
relation with the multiple regression inquiries. However, it is 
interesting to note that this better night-time agreement does not 
match with the reports of Marzban (2020) for Berlin where the 
author reported a better fit for the day-time comparisons (Marzban 
2020). Marzban (2020) mentions this point as "contradictory" to 
other similar efforts which yielded better night-time agreements, 
giving Benali et al. (2012) as an example (Marzban 2020). Although 
there are differences in the approach employed by Benali et al. 
(2012) such as excluding Aqua data as well as other aspects that 
may arise from differences in "geographical location" as pointed 
out by Marzban (2020), one point contributing to this 
"contradiction" reported for Berlin in Marzban (2020) may also 
stem from the pursued data filtering approaches, as the presented 
scatter plots show considerable scattering of the data points 
especially in the sub-zero (°C) LSTs.  
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44..22..22..  OObbttaaiinneedd  rreellaattiioonnsshhiippss  aatt  WWSS  ppooiinnttss  

After presenting the obtained LST-Tair behaviours for all specified 
locations, Tables 21-24 and Figures 23-26 below include linear 
regression outcomes attained for the individual WS locations.  

These results belong to the datasets that include LSTTERRA-DAY, 
LSTAQUA-DAY, LSTTERRA-NIGHT, and LSTAQUA-NIGHT data individually, with 
the corresponding Tair.  

Table 21. Relationship between LSTTERRA-DAY and Tair at WS points 

Location 
LSTTERRA-DAY and Tair 

n R2 SE [K] Linear relationships 
(Best-fitting-lines) 

IS 478 0.880 2.44 Tair = 0.7376 LSTTERRA-DAY – 1.6016 

HW 567 0.938 2.08 Tair = 0.8136 LSTTERRA-DAY – 1.4479 

DF 599 0.937 2.15 Tair = 0.7869 LSTTERRA-DAY – 0.7333 

MB 615 0.944 1.97 Tair = 0.8776 LSTTERRA-DAY – 0.1758 

GE 601 0.939 2.13 Tair = 0.8255 LSTTERRA-DAY – 1.3358 

SC 625 0.931 2.25 Tair = 0.7804 LSTTERRA-DAY – 0.6444 

SD 619 0.914 2.55 Tair = 0.8099 LSTTERRA-DAY – 0.754 

 

 

Table 22. Relationship between LSTAQUA-DAY and Tair at WS points 

Location 

LSTAQUA-DAY and Tair 

n R2 SE [K] Linear relationships 
(Best-fitting-lines) 

IS 363 0.886 2.42 Tair = 0.7608 LSTAQUA-DAY – 1.9663 

HW 410 0.926 2.07 Tair = 0.8082 LSTAQUA-DAY – 1.1533 

DF 442 0.925 2.33 Tair = 0.7676 LSTAQUA-DAY – 0.2641 

MB 489 0.935 2.02 Tair = 0.839 LSTAQUA-DAY – 0.1471 

GE 485 0.916 2.45 Tair = 0.7949 LSTAQUA-DAY – 0.8221 

SC 492 0.917 2.42 Tair = 0.8179 LSTAQUA-DAY – 0.4165 

SD 470 0.901 2.68 Tair = 0.7824 LSTAQUA-DAY – 0.3114 
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Table 23. Relationship between LSTTERRA-NIGHT and Tair at WS points 

Location 

LSTTERRA-NIGHT and Tair 

n R2 SE [K] Linear relationships 
(Best-fitting-lines) 

IS 291 0.992 0.92 Tair = 0.9904 LSTTERRA-NIGHT + 2.9438 

HW 343 0.989 1.01 Tair = 0.9783 LSTTERRA-NIGHT + 1.3731 

DF 350 0.986 1.13 Tair = 0.9993 LSTTERRA-NIGHT + 2.2953 

MB 449 0.980 1.16 Tair = 0.9812 LSTTERRA-NIGHT + 0.862 

GE 455 0.983 1.14 Tair = 0.9948 LSTTERRA-NIGHT + 2.6945 

SC 457 0.976 1.32 Tair = 0.9617 LSTTERRA-NIGHT + 3.0968 

SD 452 0.981 1.22 Tair = 1.0118 LSTTERRA-NIGHT + 2.7007 

 

 

Table 24. Relationship between LSTAQUA-NIGHT and Tair at WS points 

Location 

LSTAQUA-NIGHT 

n R2 SE [K] Linear relationships 
(Best-fitting-lines) 

IS 228 0.995 0.70 Tair = 0.9901 LSTAQUA-NIGHT + 2.3707 

HW 277 0.990 0.86 Tair = 0.9690 LSTAQUA-NIGHT + 0.9085 

DF 301 0.985 1.07 Tair = 0.9789 LSTAQUA-NIGHT + 0.8389 

MB 402 0.982 1.07   Tair = 0.9778 LSTAQUA-NIGHT – 0.2000 

GE 403 0.984 1.01 Tair = 0.9568 LSTAQUA-NIGHT + 1.6983 

SC 385 0.977 1.25 Tair = 0.9326 LSTAQUA-NIGHT + 2.4787 

SD 399 0.978 1.23 Tair = 0.9930 LSTAQUA-NIGHT + 1.9319 
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Figure 23. Relationship between LSTTERRA-DAY and Tair at WS points 

 

Figure 24. Relationship between LSTAQUA-DAY and Tair at WS points 
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Figure 25. Relationship between LSTTERRA-NIGHT and Tair at WS points 

 

Figure 26. Relationship between LSTAQUA-NIGHT and Tair at WS points 
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Presented outcomes above clearly illustrate the differences in the 
spatio-temporal tendencies of LST and Tair within the case area.  

The day-time results suggest a more distinctive differentiation in 
LST-Tair relationship among the investigated locations. This 
differentiation appears to be more evident in greater 
temperatures, and between IS and MB locations. Moreover, the 
outcomes conveyed in Figures 23 and 24 suggest that the 
temperature difference between LST and Tair is expected to be 
smallest at the MB location, and largest at the IS location when the 
same LST values that are greater than (around) O°C are considered 
for each location in Tair estimations.  

The night-time results imply a differentiation in LST-Tair behaviours 
among the investigated locations as well, though with more subtle 
differences. The behaviours at IS and MB locations again indicate a 
notable difference with respect to each other.  

As already presented, the IS U2O presents more "urban" 
characteristics when compared with the other investigated 
locations (Table 18, Figures 15 and 16). According to the day-time 
results, it is associated with the largest LST-Tair differences, and the 
lowest estimated Tair values when the same, positive LSTs are 
considered for all locations. The night-time inquiries also associate 
the location with one of the largest Tair and LST differences (this 
time with one of the highest Tair estimations); but the results 
indicate much "smaller" differences among the investigated 
locations with respect to day-time.  

As discussed earlier, the LST-Tair relationships derived for the MB 
location also stands out from the other WS locations, which lead to 
(generally) the greatest day-time and lowest night-time Tair 
estimations when the same LST value is considered across the 
locations.  

44..22..33..  IInnvveessttiiggaattiinngg  LLSSTT  aanndd  TTaaiirr  aatt  WWSS  ppooiinnttss  

Figures 27 to 34 present the box-plots which belong to the subsets 
of LST and Tair datasets. As already mentioned, these subsets consist 
of   same-date observations that are mutually available in all 
investigated locations.  

Number of observations considered at each of these assessments 
were presented earlier in Table 14. 
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The results conveyed in Figures 27-34 are to a large extent in-line 
with the linear regression outcomes presented in the previous sub-
section. 

The daytime findings indicate greater LST profiles with respect to 
Tair (Figures 27-30). Furthermore, the variation in LSTs is also higher 
than Tair among the investigated locations. This is consistent with 
the box-plot findings of Yoo et al. (2018) over Los Angeles and Seoul 
WS, where they compared the highest Tair (daily) with LSTTERRA-DAY 

and LSTAQUA-DAY data (Version 5) (Yoo et al. 2018).  

In this context, Zakšek and Schroedter-Homscheidt (2009) explored 
LST-Tair differences in one-hour increments from 04:00 UTC to 20:00 
UTC for Central Europe and concluded that LST-Tair difference 
becomes the greatest around noon, creating a sine wave plot 
responsive to the "solar zenith angle". For clear-sky conditions, such 
as the observations within the present dissertation, Zakšek and 
Schroedter-Homscheidt (2009) states that this pattern leads to 
positive day-time LST-Tair differences due to surface heating from 
sun. Furthermore, they associated the behaviour of this attained 
sine-wave shaped plot (in terms of its "amplitude") with the nature 
of surface cover, i.e., "vegetation status" (Zakšek and Schroedter-
Homscheidt 2009). 

In the light of these points, the results provided in Figures 27-30 are 
parallel with the previous findings presented in the previous sub-
section and MB stands out among the other locations with a 
notably lower LST profile. This differentiation is more pronounced 
during the Terra MODIS overpasses, i.e., in earlier time frames 
(Figures 27, 28). On the other hand, the day-time Tair profiles do not 
present a significant differentiation among the specified U2Os.  

Likewise, parallel with the earlier linear regression results, the 
night-time ranges of LST and Tair present a lower variation among 
the investigated locations (Figures 31-34). Again, this is consistent 
with the box plot analysis of Yoo et al. (2018), where they explored 
the lowest daily Tair with corresponding LSTTERRA-NIGHT and LSTAQUA-

NIGHT data (Version 5) over Seoul and Los Angeles WS (Yoo et al. 
2018).  

Furthermore, the box-plots presented in Figures 31-34 indicate that 
Tair data from the IS U2O shows slightly higher characteristics with 
respect to the other U2Os. This is in-line with the expected Tair 
profile from the most "urbanized" study area amongst the specified 
U2Os, as discussed earlier in the context of the urban heat island 
effect (see, for instance, Voogt 2002).  
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It is also observed that MB Tair presents a lower nocturnal profile 
with respect to the other locations, including when it is compared 
with SD, i.e., the "rural" station considered for the present 
dissertation (see also Vuckovic 2015; Vuckovic et al. 2016 amongst 
others).  

Parallel with these findings, Solman (2020) evaluated both locations 
as potential "rural" stations to be employed in urban climate 
simulations, and also concluded that, in general, MB presented a 
lower thermal profile than SD. The study outcomes further 
emphasized this finding where the simulation inquiries performed 
better when MB was considered as the rural station instead of SD 
(Solman 2020). 

44..33..  DDeerriivviinngg  TTaaiirr::  DDaayy--ttiimmee  aanndd  nniigghhtt--ttiimmee  rreessuullttss  

44..33..11..  DDaayy--ttiimmee  aasssseessssmmeennttss  

The results from the correlation analysis conducted among all 
considered parameters for day-time assessments are presented in 
Table 25 below. Note that, Analysis_Toolpak (2022) was employed 
in this inquiry. 

 In order to interpret the correlation analysis results, a threshold of 
+/- 0.90 was specified for the correlation coefficient (R). As 
discussed earlier, this value was not employed as a strict upper-limit 
but served as a first guidance towards identifying potential 
relationships between the variables. 

Table 25. Explored parameters to derive day-time Tair, and associated 
correlation coefficients 

 LSTDAY BSF ISF  PSF MBH SVF EBH SZA BSA 

LSTDAY 1.00         
BSF 0.21 1.00        
ISF 0.15 0.82 1.00       
PSF -0.19 -0.96 -0.94 1.00      
MBH 0.18 0.93 0.73 -0.88 1.00     
SVF -0.11 -0.68 -0.81 0.77 -0.76 1.00    
EBH 0.21 0.95 0.82 -0.94 0.89 -0.60 1.00   
SZA -0.85 -0.08 -0.08 0.08 -0.08 0.06 -0.09 1.00  
BSA -0.18 -0.33 -0.39 0.38 -0.40 0.53 -0.28 0.09 1.00 
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In this context, by considering the correlation analysis results in 
relation with the urban-climate-related aspects, the following 
decisions were initially made: 

• It was decided that the models would only include two out 
of three surface fraction variables. For the first round of 
inquiries, ISF was decided to be excluded from the model, 
since keeping BSF and PSF in the models were hypothesized 
as potentially more insightful for the urban microclimate 
assessments.  

• It was decided that BSF and MBH variables would enter or 
leave the models together, although the correlation results 
yield a strong relationship between them. In order to 
compensate this, it was decided to interpret their outcomes 
with caution by critically evaluating the associated 
coefficients and VIFs. Keeping both variables in the model 
was found to be significant for illustrating the built 
environment at the investigated U2Os to the extent possible.  

• Following the previous point, and considering the correlation 
results, it was decided that the models would either include 
EBH, or BSF and MBH variables. From the built environment 
perspective, EBH – in a way – conveys a parallel information 
that are given by the combination of BSF and MBH variables 
for the "representation" of an U2O (see, Mahdavi et al. 2016; 
Vuckovic 2015). Therefore, it was found to be sufficient as an 
approach to consider them separately in the models.  

In the light of these points, a series of multiple regression inquiries 
were conducted to derive day-time Tair. Following Tables 26-29 
include the selected outcomes from these efforts that represent 
the above-mentioned workflow and the performances of the 
established relationships.  

Note that further statistics regarding these assessments as well as 
other intermittent regression steps that are not provided below are 
presented in Appendix 7.3.1. 

Note that, these inquiries were conducted by Microsoft_Excel 
(2022), Analysis_ToolPak (2022) and MATLAB® (MathWorks® 
2018). RStudio (RStudio Team 2018) was further employed for 
evaluation purposes, including VIF calculations performed via the 
"car package" by Fox and Weisberg (2019). 
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Table 26. Multiple regression results for day-time: without ISF-EBH, 
without ISF-BSF-MBH-EBH, without ISF-PSF-EBH variables 

 without  
ISF, EBH 

without  
ISF, BSF, MBH, EBH 

without 
ISF, PSF, EBH 

 Coefficients VIF Coefficients VIF Coefficients VIF 

Intercept 1.563 X -7.2765 X -2.9997 X 

LSTDAY 0.89916 4.08 0.87708 3.97 0.89285 4.05 

BSF -34.069 53.19 X X -14.737 7.40 

ISF X X X X X X 

PSF -10.082 36.52 7.3573 2.66 X X 

MBH 0.24947 15.12 X X 0.073723 9.35 

SVF -0.53424* 6.62* -5.7679 3.07 -4.3988 2.90 

EBH X X X X X X 

SZA 0.087674 3.83 0.073448 3.76 0.083145 3.81 

BSA 7.0365 1.46 6.4656 1.45 7.0172 1.46 

Models'  
Performance 

Adjusted R2 0.920 0.913 0.918 

RMSE (K) 2.26 2.35 2.29 

n 6714 6714 6714 

* p-value for SVF variable is greater than 0.05 (see Appendix 7.3.1, Table 43) 

As presented in Table 26, an initial assessment where ISF and EBH 
variables were not considered in the regression model yielded 
significantly high VIF results for BSF, MBH and PSF variables. Based 
on these findings, BSF - MBH variables and PSF variable were not 
included to the next two multiple regression inquiries, respectively.  

In these two assessments, it was observed that the "p-value" for all 
investigated variables were now lower than 0.05, indicating that all 
evaluated parameters had a significant influence on day-time Tair 
(for instance, PennState 2018g; see Appendix 7.3.1, Tables 44 and 
45). These results further indicated that, the coefficient for SZA 
variable was considerably close to 0 for both inquiries. Therefore, 
the models were once more tested without SZA variable to assess 
if keeping the variable in the models was beneficial in terms of 
models' performance. The outcomes are presented in Table 27.  



111 
 

Table 27. Multiple regression results for day-time Tair: without ISF-BSF-
MBH-SZA-EBH and without ISF-PSF-SZA-EBH variables 

 without  
ISF, BSF, MBH, SZA, EBH 

without  
ISF, PSF, SZA, EBH 

 Coefficients VIF Coefficients VIF 

Intercept -1.7752 X 2.6999 X 

LSTDAY 0.79489 1.07 0.79926 1.08 

BSF X X -13.265 7.28 

ISF X X X X 

PSF 6.6945 2.57 X X 

MBH X X 0.067668 9.35 

SVF -5.1205 3.01 -3.7905 2.86 

EBH X X X X 

SZA X X X X 

BSA 4.1885 1.43 4.4129 1.43 

Models'  
Performance 

Adjusted R2 0.910 0.913 

RMSE (K) 2.40 2.35 

n 6714 6714 

As the Adjusted R2 and SE values given in Table 27 suggest, including 
the SZA variable lead to a better performance for both inquiries. 
However, it was observed that the associated coefficients and VIF 
values for LSTDAY variable was noticeably influenced when SZA was 
not considered in the models.  

Furthermore, it was noted that, the models where ISF, PSF, and EBH 
variables were not considered (with and without SZA) yielded 
better results with respect to the other explored models with 
reasonable (but, with a higher range of) VIFs. From the urban-
climate related aspects, it was not found to be a sufficient 
"representation" of the surrounding built environment when ISF 
and PSF variables were both missing from the models. Thus, it was 
decided that it would be more insightful to explore this point with 
a spatial dataset with richer variations than the present study 
employed.  
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Considering these points, and in-line with the initial decisions 
presented earlier about simultaneously considering (or not 
considering) which parameters together, multiple regression 
analyses were conducted without BSF and MBH variables (instead 
of EBH) to evaluate the models' performance. These outcomes are 
presented in Table 28.  

Note that, in the first step, this approach provided the opportunity 
to test ISF and PSF variables and EBH variable within the same 
model, illustrating pervious and impervious surfaces as well as the 
buildings within the investigated U2Os.  

Table 28. Multiple regression results for day-time Tair:  without BSF-MBH, 
without BSF-MBH-PSF, without BSF-MBH-ISF variables 

 without  
BSF, MBH 

without  
BSF, MBH, PSF 

without 
BSF, MBH, ISF 

 Coefficients VIF Coefficients VIF Coefficients VIF 

Intercept -16.11 X -6.4322 X -4.0714 X 

LSTDAY 0.89446 4.06 0.88487 4.00 0.88181 3.99 

BSF X X X X X X 

ISF 17.155 13.09 6.8172 5.88 X X 

PSF 11.244 39.66 X X 0.96437* 17.81* 

MBH X X X X X X 

SVF -3.1071 4.09 -1.5585 3.56 -3.8595 4.00 

EBH -0.17601 13.74 -0.65061 3.31 -0.45564 11.35 

SZA 0.084177 3.82 0.077338 3.77 0.075393 3.76 

BSA 6.5058 1.45 6.5304 1.45 6.835 1.45 

Models'  
Performance 

Adjusted R2 0.919 0.916 0.915 

RMSE (K) 2.28 2.31 2.33 

n 6714 6714 6714 

* p-value for the PSF variable is greater than 0.05 (see Appendix 7.3.1, Table 51) 
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The results presented in Table 28 indicate VIFs that are notably 
greater than the specified threshold of 10 for ISF, PSF and EBH 
variables when only BSF and MBH were excluded from the analysis. 
Therefore, it was decided to individually exclude ISF and PSF from 
the models in the next two steps, respectively (Table 28).  

As already mentioned, this was also guided by the motivation that 
at least two variables illustrating the surface fractions would be 
included to the models at the same analysis. This would also allow 
for – indirectly – considering the third fraction variable. These 
inquiries yielded a better performance when PSF variable was not 
considered within the model (Table 28). Due to the considerations 
mentioned earlier about the SZA variable, further inquiries were 
performed by excluding SZA from this model. Additionally, SVF 
variable was also excluded in the final step to observe how the 
coefficients, the associated VIFs, and the model performance would 
respond. This decision was made to observe the VIFs and associated 
coefficients among the location factor variables, as VIF of ISF was 
slightly higher than 5 (Table 28). The results are given in Table 29.  

Table 29. Multiple regression results for day-time Tair: without PSF-BSF-
MBH-SZA and without PSF-BSF-MBH-SZA-SVF variables 

 without  
PSF, BSF, MBH, SZA 

without  
PSF, BSF, MBH, SZA, SVF 

 Coefficients VIF Coefficients VIF 

Intercept -0.7371 X -1.8266 X 

LSTDAY 0.79812 1.08 0.7974 1.07 

BSF X X X X 

ISF 6.1959 5.86 8.1508 3.36 

PSF X X X X 

MBH X X X X 

SVF -1.2982 3.56 X X 

EBH -0.59256 3.22 -0.60549 3.15 

SZA X X X X 

BSA 4.1578 1.43 2.3376 1.22 

Models'  
Performance 

Adjusted R2 0.912 0.912 

RMSE (K) 2.36 2.37 

n 6714 6714 
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Based on the presented results in Tables 26-29, the model where 
BSF, MBH and PSF variables were not considered in Tair estimations 
(Table 28) was decided to be selected as the better performing 
model for the daytime assessments of the present dissertation.  

This model is utilized in the next steps of the work for deriving day-
time Tair, in order to test its performance at each specified U2O 
individually. This is presented later in the chapter.  

However, it is of significance to note here that, in an additional 
analysis (see Appendix 7.3.1, Table 54) it was found that excluding 
SVF variable from this model yielded a similar performance for 
deriving day-time Tair for the investigated dataset. This was also 
decided to be evaluated as a part of a future study with a richer 
dataset in terms of spatial characteristics and detail.  

Moreover, it would also be beneficial for future efforts to test the 
inclusion of SZA variable, as well as the elevated VIFs in ISF variable 
to see if keeping these variables in the models yield also better 
results for other explored samples.  

All in all, when compared with the initial case where only Tair and 
LSTDAY data were explored, the obtained results show an 
improvement from R2 0.896 (see Appendix 7.2, Table 42) to the 
adjusted R2 0.916 and from RMSE 2.57K to RMSE 2.31K for the day-
time assessments.  

44..33..22..  NNiigghhtt--ttiimmee  aasssseessssmmeennttss  

A similar workflow with the day-time assessments was followed to 
obtain a relationship that would derive night-time Tair with a good 
performance over the investigated locations. Table 30 presents an 
initial assessment of the considered parameters for this objective.  

In this context, the selection of independent variables that would 
be employed in each step was also conducted following the 
principles presented earlier for the day-time inquiries, employing 
the afore-mentioned tools (Analysis_ToolPak 2022; Fox and 
Weisberg 2019; MathWorks® 2018; Microsoft_Excel 2022; RStudio 
Team 2018). Tables 31 and 32 present the outcomes from these 
efforts.  

Further details regarding these assessments and additional steps 
that are not presented below can be found in Appendix 7.3.2, 
Tables 56 to 63.   
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Table 30. Explored parameters to derive night-time Tair, and associated 
correlation coefficients 

 LSTNIGHT BSF ISF PSF MBH SVF EBH 

LSTNIGHT 1.00       

BSF 0.05 1.00      

ISF 0.04 0.82 1.00     

PSF -0.05 -0.96 -0.94 1.00    

MBH 0.05 0.93 0.73 -0.88 1.00   

SVF -0.04 -0.69 -0.83 0.78 -0.77 1.00  

EBH 0.05 0.96 0.82 -0.94 0.89 -0.62 1.00 

 

 

Table 31. Multiple regression results for night-time:  without ISF-EBH, 
without ISF-BSF-MBH-EBH, without ISF-PSF-EBH variables 

 without  
ISF, EBH 

without  
ISF, BSF, MBH, EBH 

without 
ISF, PSF, EBH 

 Coefficients VIF Coefficients VIF Coefficients VIF 

Intercept -4.2038 X -0.21346 X -3.4867 X 

LSTNIGHT 0.98291 1.00 0.98351 1.00 0.98303 1.00 

BSF 10.324 56.75 X X 7.3418 7.55 

ISF X X X X X X 

PSF 1.5566 39.21 -4.5617 2.60 X X 

MBH -0.032671 16.69 X X -0.0043805* 9.85* 

SVF 5.2057 6.98 6.6976 2.60 5.8411 2.52 

EBH X X X X X X 

Models'  
Performance 

Adjusted R2 0.979 0.978 0.979 

RMSE (K) 1.27 1.30 1.27 

n 5192 5192 5192 

* p-value for the MBH variable is greater than 0.05 (see Appendix 7.3.2, Table 58) 
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Similar with the day-time assessments, the regression results given 
in Table 31 indicate undesirably high VIF values for BSF, PSF and 
MBH variables suggesting that the estimated coefficients would be 
more reliable when these parameters would not be considered 
together within the same model (for instance, Alexopoulos 2010).  

On the other hand, when ISF, PSF and EBH parameters were not 
included to the night-time analyses, the results further 
demonstrate considerably high VIF values for MBH and BSF 
variables, but also indicating that MBH parameter did not have a 
significant contribution to the model (see Appendix 7.3.2, Table 58). 

Based on these results, the model which did not consider ISF, BSF, 
MBH and EBH variables yielded notably better VIFs and a good 
performance. Once more, it was decided to be evaluated within the 
scope of a future work with more spatial variation to see if the 
captured agreement in deriving Tair would remain similar. In this 
context, further analyses were performed with different 
combinations of the considered variables. The outcomes from 
these efforts are presented in Table 32. 

Table 32. Multiple regression results for night-time:  without BSF-MBH, 
without BSF-MBH-PSF, without BSF-MBH-ISF variables 

 without  
BSF, MBH 

without  
BSF, MBH, PSF 

without 
BSF, MBH, ISF 

 Coefficients VIF Coefficients VIF Coefficients VIF 

Intercept 1.5378 X -1.366 X -2.6482 X 

LSTNIGHT 0.98284 1.00 0.98289 1.00 0.98308 1.00 

BSF X X X X X X 

ISF -6.2076 12.88 -3.086 6.22 X X 

PSF -3.6798 43.02 X X 0.10307* 20.78* 

MBH X X X X X X 

SVF 4.9175 3.97 4.344 3.26 5.1941 3.89 

EBH 0.21322 15.63 0.37572 3.20 0.32257 12.87 

Models'  
Performance 

Adjusted R2 0.980 0.979 0.979 

RMSE (K) 1.26 1.27 1.27 

n 5192 5192 5192 

* p-value for the PSF variable is greater than 0.05 (see Appendix 7.3.2, Table 62) 
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Among all explored combinations of investigated building-related 
parameters for the night-time assessments, the model which 
excluded BSF, MBH and PSF variables yielded a better performance 
in deriving Tair based on the criteria and considerations discussed 
earlier. A further assessment (see Appendix 7.3.2, Table 63) also 
indicated a similar performance when the ISF variable was also not 
considered in this model. This is also an interesting point to explore 
in further studies.  

All in all, the model which does not include BSF, MBH and PSF 
variables was selected to be employed in deriving Tair over the 
selected WS locations (Table 32). The outcomes from these efforts 
are presented in the next sub-section to better assess the 
presented results. 

Furthermore, it is of interest to note that a slight improvement was 
observed in the obtained results, when compared with the simple 
linear regression outcomes between LSTNIGHT and Tair, from 0.971 R2 
to the adjusted R2 of 0.979 and RMSE of 1.50K to RMSE of 1.27K.   

44..33..33..  MMooddeell  ppeerrffoorrmmaannccee  

Based on the presented outcomes earlier, the multiple regression 
equations that were employed to derive day-time Tair is presented 
in Equation (4.1) below:  

𝑇̂𝑎𝑖𝑟= -6.4322 + (0.88487 · LSTDAY) + (0.077338 · SZA) + (6.5304 · BSA) 
+ LFDAY   [°C]                (Eq. 4.1) 

In Equation (4.1), LFDAY is the "location factor" of the investigated 
U2O to be employed in deriving day-time Tair. It is calculated via 
Equation (4.2) below (see Table 28, Equation (3.16)): 

LFDAY = (6.8172 · ISF) – (1.5585 · SVF) – (0.65061 · EBH)          (Eq. 4.2.) 

On the other hand, Equation (4.3) represents the equation 
employed to derive night-time Tair, based on Table 32. 

𝑇̂𝑎𝑖𝑟 = -1.366 + (0.98289 · LSTNIGHT) + LFNIGHT             (Eq. 4.3.) 
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In Equation (4.3), LFNIGHT is the "location factor" of the investigated 
area to be employed in deriving night-time Tair. It is calculated based 
on Equation 4.4 below (see Table 32, Equation (3.16)):  

LFNIGHT = (-3.086 · ISF) + (4.344 · SVF) + (0.37572 · EBH)          (Eq. 4.4.) 

In this context, Tables 33 and 34 present the RMSE outcomes for 
the individual U2Os when Equations (4.1) – (4.4) were employed to 
derive Tair. Note that, in these assessments, related data that 
belongs to the same datasets utilized in multiple regression 
inquiries were employed. Furthermore, the "degrees of freedom" 
term in the denominator of RMSE formula (see Equation (3.11)) is 
taken as n, i.e., "the number of observations", when calculating 
RMSE for this part of calculations. Figures 34 and 35 further 
illustrate the box-plots that were generated from the estimation 
"errors" that result from the difference between Tair observations 
and corresponding 𝑇̂𝑎𝑖𝑟, where the former was subtracted from the 
latter.  

Table 33. Performance of the selected day-time model for deriving Tair over 
the specified U2Os 

 IS HW DF MB GE SC SD 

RMSE (K) 2.32 2.02 2.23 2.25 2.24 2.28 2.73 

n 648 941 962 1055 1049 1005 1054 

 

 
 
Table 34. Performance of the selected night-time model for deriving Tair 
over the specified U2Os 

 IS HW DF MB GE SC SD 

RMSE (K) 0.89 1.01 1.40 1.29 1.31 1.38 1.34 

n 519 620 651 851 858 842 851 
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The present dissertation addressed the inter-relationship between 
the building-related features and the microclimatic conditions 
displayed by the urbanized settings (Firat Ors et al. 2019; Firat Ors 
and Mahdavi 2021; see also Irger 2014; Vuckovic 2015 amongst 
others). This interaction was explored by utilizing remote-sensing 
data including land surface temperatures, derived from satellite-
based acquisitions by Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensors (MODIS 2022a; Salomonson et 
al. 1989). Furthermore, terrestrially-detected near-surface air 
temperatures and GIS-based calculation and documentation of the 
building-related attributes were further employed. Calculation of 
the latter relied upon urban-climate-related classification efforts by 
Stewart and Oke (2012), i.e., Local Climate Zones (LCZs), and 
Mahdavi et al. (2013), i.e., Urban Units of Observations (U2Os) 
(Stewart and Oke 2012; Mahdavi et al. 2013). 

Building on and contributing to the previous efforts (Benali et al. 
2012; Irger 2014; Schneider dos Santos 2020; Shi et al. 2016; Yoo et 
al. 2018; Zakšek and Schroedter-Homscheidt 2009 – to name a few), 
the overall goal was to derive relationships that would facilitate, 
potentially, a rich spatial estimation of near surface air 
temperatures with a strong agreement (Firat Ors and Mahdavi 
2021; see also Firat Ors et al. 2019). This objective was explored 
pursuing several steps and the associated findings are outlined as 
follows (partially based on Firat Ors and Mahdavi 2021; see also 
Firat Ors et al. 2019).  

In the first step of the inquiries, significant relationships were 
detected – for two day-time and two night-time intervals – between 
the LST and Tair behaviours over the inspected locations: seven WS 
points in Austria, more specifically city of Vienna and surroundings 
(Firat Ors and Mahdavi 2021; see also Firat Ors et al. 2019). For 
these temporal and spatial conditions, it was observed that the 
interaction between LST and Tair displays a much closer agreement 
at the inspected night-time intervals (Firat Ors and Mahdavi 2021). 

55..  CCOONNCCLLUUSSIIOONN  
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Furthermore, for the afore-mentioned assessments, the "best-
fitting lines" of LST-Tair indicated lower Tair estimations with respect 
to LSTs for the day-time investigations. The exception here was 
noted for LSTs that are below, approximately, the 0°C threshold. For 
the inspected night-time intervals, this trend is expected to display 
a largely reversed behaviour. Here, Tair is estimated to be greater 
than LSTs, but with lower differences with respect to the day-time. 

In the next steps of the inquiries, spatio-temporal variations were 
observed among the WS locations in the LST and Tair interactions, 
which are again stronger at the inspected day-time intervals. It was 
further gathered that, for the day-time assessments, these 
variations show a somehow consistent tendency for the most 
urbanized WS location, i.e., IS. For the same, positive LSTs across all 
locations, the IS location is estimated to yield the lowest Tair values 
for the day-time inquiries.  

A closer inspection yielded larger LST-Tair differences as well as 
higher LST profiles for the location with respect to the other 
investigated locations, for each specified day-time interval. This was 
confirmed by comparing the medians of LST and Tair (via box-plots) 
attained over the WS locations by further grouping the data into 
subsets with respect to the observation times of the same-date 
observations. It was also noted that Tair profiles among the locations 
did not show a considerable variation in the day-time intervals. For 
the night-time, the box-plots indicated the highest Tair profiles for 
the most urbanized IS location, which is in-line with the spatio-
temporal dynamics of the UHI phenomenon (for instance, Voogt 
2002). It was also observed that the location once more yields a 
higher LST profile in each specified night-time interval. This was 
again determined based on the medians of the LST datasets, as can 
be observed in the box-plots. 

These inquiries further yielded a distinctive profile for the MB 
location, which was regarded as a potential "rural" station by 
Solman (2020). Based on the derived relationships, the estimated 
Tair values for the location was found to be – generally – the lowest 
(night-time) and the highest (day-time) among the inspected 
locations for the same LSTs across the locations. Furthermore, it 
was observed that the medians of the presented box plots associate 
the location with the lowest LST-Tair differences and the lowest LSTs 
for the day-time inquiries when the datasets were further grouped 
and organized into subsets based on the same-date observations 
and closer observation times.  
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Based on these findings, it was concluded that the microclimatic 
conditions within the selected U2Os vary, and to a certain extent, 
this can be evaluated as a potential response to the built 
environment features of these settings (Mahdavi et al. 2013; 
Stewart and Oke 2012; see also Irger 2014; Vuckovic 2015; Vuckovic 
et al. 2016 amongst others). The last step of the inquiries explored 
specifically this point and sought to derive near-surface air 
temperature data by benefiting from the built environment 
attributes of the specified locations (see also, Irger 2014 amongst 
others).  

The multiple regression results carried out for that purpose yielded 
that by employing LSTDAY, SZA, BSA parameters together with the 
determined "location factors" based on ISF, SVF, and EBH of the 
inspected U2Os, Tair can be estimated over all selected WS points of 
the present dissertation with an adjusted R2 of 0.916 and RMSE of 
2.31K for the day-time inquiry. Note that, the attained relationship 
between LSTDAY and Tair had yielded R2 of 0.896, RMSE of 2.57K at 
the earlier steps (Firat Ors and Mahdavi 2021). For the night-time 
assessment, the multiple regression yielded an adjusted R2 of 0.979 
and RMSE of 1.27K when the independent variables of the model 
were determined as LSTNIGHT and the night-time "location factor" of 
the inspected U2O, which is calculated from, once more, ISF, SVF, 
and EBH of the investigated U2O. Here, the initial analyses had 
yielded an R2 of 0.971 with RMSE of 1.50K between LSTNIGHT and Tair. 
When these two models were applied to the individual U2Os 
specified for the present research, RMSEs were noted between 
2.02K – 2.73K for day-time and 0.89K – 1.40K for night-time, 
depending on the U2O. Note that, the data used in these 
assessments belonged to the same datasets that were used to 
generate these models, they were not independent samples.  

Generally speaking, it can be concluded that the present research 
effort provided encouraging results, when all selected locations 
were taken into account. As such, the models can be suggested to 
benefit, at least slightly, from the consideration of the explored 
parameters. As it can be derived from the presented findings, day-
time results yield a better "improvement" with respect to the night-
time when the models are investigated considering all study 
locations. It is not a surprising outcome, considering the diurnal 
dynamics where the absence of incoming solar radiation limiting 
the LST-Tair interactions (for instance, Oke 1982). As already 
mentioned, the initial agreement between these two different 
thermal data types is also considerably better at the inspected 
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night-time intervals, emphasizing this point and also making it not 
an easy task for model improvement for the night-time conditions.   

However, it is also evident that the performance of the models 
shows a variation among the inspected locations, both for day-time 
and night-time assessments. It is difficult to gain a good sense of 
the models' performance at the individual locations, given the 
limited spatial data availability and without introducing a new, 
independent sample. 

This point is somehow related to one of the objectives of the 
present dissertation, which was to obtain a detailed spatial 
overview of the investigated study areas, in the basis of quantifying 
the building-related attributes. Here, the focus was given 
specifically to the "circle of influence" (for instance Oke 2006; 
Stewart and Oke 2012) of the weather stations at the selected study 
sites as the dependent variable at question was the near-surface air 
temperatures. Thus, GIS-based calculations of the parameters were 
performed accordingly, for the specified areas. As the ground-
based observations were employed from seven WS points, special 
attention was not given to more rapid calculation possibilities for 
these variables, such as utilizing automatic computation techniques 
(see, Glawischnig et al. 2014 for their efforts in Vienna), and the 
employment of potential land-cover or DEM data sources via GIS or 
remote-sensing. Future studies may further explore the benefits 
and drawbacks of such approaches in relation with the obtained 
models (see, for instance, Hammerberg et al. 2018).  

This point also leads to a potential limitation for the present 
dissertation, where the footprints of the obtained remote-sensing 
data sources and calculated building-related attributes differed 
from each other. Here, as already mentioned, the decision was to 
explore built environment characteristics based on the "circle of 
influence" (Oke 2006; Stewart and Oke 2012) of the terrestrial 
stations, and to use the pixel values of the remote-sensing data 
sources that correspond to the inspected weather station. The 
specific locations of these stations within these pixels vary from 
being more centrally located to being situated notably close to the 
pixel borders. Special attention was not given to these situations.  

Furthermore, the conveyed findings reflect only the clear-sky 
conditions. Also, as documented by Zakšek and Schroedter-
Homscheidt (2009), the LST-Tair interaction does not remain stable 
within a diurnal cycle. Although the LSTTERRA and LSTAQUA datasets 
provided insights from four temporal intervals, the diurnal 
dynamics nevertheless would make an impact on the performance 
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of the proposed models. Future inquiries may explore these diurnal 
variations to adjust the obtained models for different intervals. 

Also, as mentioned briefly in the background chapter, research 
efforts such as Irger (2014) explore land surface temperature as a 
dependent variable with respect to the independent variables 
"representing" the built environment properties. Although the 
potential inter-relationships of the explored independent variables 
in the present dissertation were tried to be limited by consulting 
correlation outcomes (Irger 2014) and associated VIFs (Irger 2014; 
Yoo et al. 2018), the interaction of LSTs and other independent 
variables in the proposed models nevertheless should be further 
examined in future efforts with richer spatial datasets.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



125 
 

Abougendia, S.M., Ayad, H.M. and El-Sayad, Z.T. (2020) 
'Classification framework of Local Climate Zones using 
World Urban Database And Access Portal Tools: case study 
of Alexandria City, Egypt', in Syngellakis, S. and Hernández, 
S., eds., WIT Transactions on Ecology and the Environment. 
Volume 241. Eleventh International Conference on 
Sustainable Development and Planning & Second 
International Conference on Urban Growth and the Circular 
Economy. Sustainable Development and Planning 2020. 
Incorporating Urban Growth 2020., Held online, 09 
September - 11 September 2020, WIT Press, 309-322, 
available: https://doi.org/10.2495/SDP200251. 

 
Akbari, H. and Matthews, H.D. (2012) 'Global cooling updates: 

reflective roofs and pavements', Energy and Buildings, 55, 
2-6, available: https://doi.org/10.1016/j.enbuild.
2012.02.055. 

 
Aleksandrowicz, O., Vuckovic, M., Kiesel, K. and Mahdavi, A. (2017) 

'Current trends in urban heat island mitigation research: 
observations based on a comprehensive research 
repository', Urban Climate, 21, 1-26, available: 
https://doi.org/10.1016/j.uclim.2017.04.002. 

 
Alexopoulos, E.C. (2010) 'Introduction to multivariate regression 

analysis', Hippokratia, 14(Suppl 1), 23-28. 

 
Ali-Toudert, F. (2021) 'Exploration of the thermal behaviour and 

energy balance of urban canyons in relation to their 
geometrical and constructive properties', Building and 
Environment, 188, 107466, available: 
https://doi.org/10.1016/j.buildenv.2020.107466. 

 

66..  RREEFFEERREENNCCEESS          



126 
 

Almeida, C.R.d., Teodoro, A.C. and Gonçalves, A. (2021) 'Study of 
the Urban Heat Island (UHI) using remote sensing 
data/techniques: a systematic review', Environments, 8(10), 
105, available: https://doi.org/10.3390/
environments8100105. 

 
Analysis_Toolpak (2022) Microsoft – Use the Analysis ToolPak to 

perform complex data analysis, available: 
https://support.microsoft.com/en-us/office/use-the-
analysis-toolpak-to-perform-complex-data-analysis-
6c67ccf0-f4a9-487c-8dec-bdb5a2cefab6 [accessed 09 April 
2022]. 

 
AppEEARS (2022) The Application for Extracting and Exploring 

Analysis Ready Samples (AppEEARS), available: 
https://lpdaac.usgs.gov/tools/appeears/ [accessed 23 
January 2022]. 

 
AppEEARS Team (2020a) Application for Extracting and Exploring 

Analysis Ready Samples (AppEEARS). Ver. 2.39. NASA 
EOSDIS Land Processes Distributed Active Archive Center (LP 
DAAC), USGS/Earth Resources Observation and Science 
(EROS) Center, Sioux Falls, South Dakota, USA, available: 
https://lpdaacsvc.cr.usgs.gov/appeears [accessed 11 April 
2020, 12 April 2020]. 

 
AppEEARS Team (2020b) Application for Extracting and Exploring 

Analysis Ready Samples (AppEEARS). Ver. 2.46. NASA 
EOSDIS Land Processes Distributed Active Archive Center (LP 
DAAC), USGS/Earth Resources Observation and Science 
(EROS) Center, Sioux Falls, South Dakota, USA, available: 
https://lpdaacsvc.cr.usgs.gov/appeears [accessed 05 
October 2020]. 

 
AppEEARS Team (2020c) Application for Extracting and Exploring 

Analysis Ready Samples (AppEEARS). Ver. 2.51. NASA 
EOSDIS Land Processes Distributed Active Archive Center (LP 
DAAC), USGS/Earth Resources Observation and Science 
(EROS) Center, Sioux Falls, South Dakota, USA, available: 
https://lpdaacsvc.cr.usgs.gov/appeears [accessed 27 
December 2020, 28 December 2020]. 



127 
 

 
Aqua (2022) NASA - Aqua Earth-observing satellite mission, 

available: https://aqua.nasa.gov/ [accessed 09 April 2022]. 

 
Arnfield, A.J. (1982) 'An approach to the estimation of the surface 

radiative properties and radiation budgets of cities', Physical 
Geography, 3(2), 97-122, available: 
https://doi.org/10.1080/02723646.1982.10642221. 

 
Arnfield, A.J. (2003) 'Two decades of urban climate research: a 

review of turbulence, exchanges of energy and water, and 
the urban heat island', International Journal of Climatology, 
23(1), 1-26, available: https://doi.org/10.1002/joc.859. 

 
ASHRAE (2009) 2009 ASHRAE handbook: fundamentals - IP edition, 

Atlanta, GA: American Society of Heating, Refrigeration and 
Air-Conditioning Engineers. 

 
ASTER (2022) NASA - Jet Propulsion Laboratory - California Institute 

of Technology - ASTER Advanced Spaceborne Thermal 
Emission and Reflection Radiometer, available: 
https://asterweb.jpl.nasa.gov/ [accessed 25 March 2022]. 

 
AustrianElevation (2022) OGD Österreich Anwendung 

AustrianElevation1m (OGD Austria Application 
AustrianElevation1m) Official Q-GIS 3 Plug-in. Contact: 
Manfred Egger (https://www.egger-gis.at/) [dataset], 
available: https://www.data.gv.at/anwendungen/
austrianelevation1m/ [accessed 09 April 2022]. 

 
Bailey, W.G., Oke, T.R. and Rouse, W.R. (1997) Surface climates of 

Canada, Montreal, Quebec: McGill-Queen's University 
Press. 

 
Barlow, J.F. (2014) 'Progress in observing and modelling the urban 

boundary layer', Urban Climate, 10, 216-240, available: 
https://doi.org/10.1016/j.uclim.2014.03.011. 

 
 



128 
 

Basemap_HIGHDPI (2021) Basemap.at Raster HIGHDPI - 
Datenquelle: basemap.at/ (Data source: basemap.at/) 
[dataset], available: https://basemap.at/highdpi/ [accessed 
21 September 2021]. 

 
Bauer, R., Fendt, C., Jost, D., Lukacsy, M., Seidl, R. and Trautinger, F. 

(2020) Vienna in figures 2020, Vienna, Austria: Statistics 
Vienna, available: 
https://www.wien.gv.at/statistik/publikationen/
uebersicht-pub.html#wiz [accessed 12 January 2022]. 

 
Benali, A., Carvalho, A.C., Nunes, J.P., Carvalhais, N. and Santos, A. 

(2012) 'Estimating air surface temperature in Portugal using 
MODIS LST data', Remote Sensing of Environment, 124, 108-
121, available: https://doi.org/10.1016/j.rse.2012.04.024. 

 
Benas, N., Finkensieper, S., Stengel, M., van Zadelhoff, G.J., 

Hanschmann, T., Hollmann, R. and Meirink, J.F. (2017) 'The 
MSG-SEVIRI-based cloud property data record CLAAS-2', 
Earth System Science Data, 9(2), 415-434, available: 
https://doi.org/10.5194/essd-9-415-2017. 

 
Bernard, J., Bocher, E., Petit, G. and Palominos, S. (2018) 'Sky view 

factor calculation in urban context: computational 
performance and accuracy analysis of two open and free GIS 
tools', Climate, 6(3), 60, available: 
https://doi.org/10.3390/cli6030060. 

 
Bretz, S., Akbari, H. and Rosenfeld, A. (1998) 'Practical issues for 

using solar-reflective materials to mitigate urban heat 
islands', Atmospheric Environment, 32(1), 95-101, available: 
https://doi.org/10.1016/S1352-2310(97)00182-9. 

 
Cai, M., Ren, C., Xu, Y., Lau, K.K.-L. and Wang, R. (2018) 

'Investigating the relationship between local climate zone 
and land surface temperature using an improved WUDAPT 
methodology – a case study of Yangtze River Delta, China', 
Urban Climate, 24, 485-502, available: 
https://doi.org/10.1016/j.uclim.2017.05.010. 

 



129 
 

Campbell, G.S. and Norman, J.M. (1998) An introduction to 
environmental biophysics, New York: Springer-Verlag. 

 
Cantón, M.A., Cortegoso, J.L. and de Rosa, C. (1994) 'Solar 

permeability of urban trees in cities of western Argentina', 
Energy and Buildings, 20(3), 219-230, available: 
https://doi.org/10.1016/0378-7788(94)90025-6. 

 
CCRS (2019) Canada Centre for Mapping and Earth Observation 

(formerly Canada Centre for Remote Sensing), Natural 
Resources Canada. Fundamentals of Remote Sensing 
Tutorial, available: https://www.nrcan.gc.ca/maps-tools-
publications/satellite-imagery-air-photos/tutorial-
fundamentals-remote-sensing/9309 [accessed 27 May 
2021]. 

 
Chakraborty, S., Maity, I., Patel, P.P., Dadashpoor, H., Pramanik, S., 

Follmann, A., Novotný, J. and Roy, U. (2021) 'Spatio-
temporal patterns of urbanization in the Kolkata Urban 
Agglomeration: a dynamic spatial territory-based approach', 
Sustainable Cities and Society, 67, 102715, available: 
https://doi.org/10.1016/j.scs.2021.102715. 

 
Chapman, S., Watson, J.E.M. and McAlpine, C.A. (2016) 'Large 

seasonal and diurnal anthropogenic heat flux across four 
Australian cities', Journal of Southern Hemisphere Earth 
Systems Science, 66(3), 342-360, available: 
https://doi.org/10.1071/ES16022. 

 
Chen, Y., Quan, J., Zhan, W. and Guo, Z. (2016) 'Enhanced statistical 

estimation of air temperature incorporating nighttime light 
data', Remote Sensing, 8(8), 656, available: 
https://doi.org/10.3390/rs8080656. 

 
City of Vienna (2021a) Wiener Stadtgebiet 2021 - Geografische 

eckdaten (Vienna urban area 2021 – Geographic key data), 
available: https://www.wien.gv.at/statistik/lebensraum/
tabellen/stadtgebiet-eckdaten.html [accessed 15 January 
2022]. 

 



130 
 

City of Vienna (2021b) Stadtgebiet - Statistiken (Urban area - 
Statistics), available: https://www.wien.gv.at/statistik/
lebensraum/stadtgebiet/index.html#erlaeuterungen 
[accessed 18 April 2021]. 

 
City of Vienna (2021c) Die Donau in Wien (The Danube in Vienna), 

available: https://www.wien.gv.at/umwelt/gewaesser/
donau/ [accessed 18 April 2021]. 

 
City of Vienna (2021d) Urban area, available: 

https://www.wien.gv.at/english/administration/statistics/
urban-area.html [accessed 18 April 2021]. 

 
City of Vienna (2021e) Langjährige Klimamittelwerte 1981-2010 

(Long-term climate averages 1981-2010), available: 
https://www.wien.gv.at/statistik/lebensraum/tabellen/kli
mamittelwerte-zr.html [accessed 18 April 2021]. 

 
City of Vienna (2021f) Stadt Wien (City of Vienna), available: 

https://www.wien.gv.at/ [accessed 30 May 2021]. 

 
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., 

Wehberg, J., Wichmann, V. and Böhner, J. (2015) 'System for 
Automated Geoscientific Analyses (SAGA) v. 2.1.4', 
Geoscientific Model Development, 8(7), 1991-2007, 
available: https://doi.org/10.5194/gmd-8-1991-2015. 

 
Coseo, P. and Larsen, L. (2014) 'How factors of land use/land cover, 

building configuration, and adjacent heat sources and sinks 
explain Urban Heat Islands in Chicago', Landscape and 
Urban Planning, 125, 117-129, available: 
https://doi.org/10.1016/j.landurbplan.2014.02.019. 

 
Crawley, D.B. (2008) 'Estimating the impacts of climate change and 

urbanization on building performance', Journal of Building 
Performance Simulation, 1(2), 91-115, available: 
https://doi.org/10.1080/19401490802182079. 

 
 



131 
 

Crawley, D.B. and Barnaby, C.S. (2019) 'Weather and climate in 
building performance simulation' in Hensen, J. L. M. and 
Lamberts, R., eds., Building performance simulation for 
design and operation, London (UK): Routledge, 191-220. 

 
Dimitrova, B., Vuckovic, M., Kiesel, K. and Mahdavi, A. (2014) 'Trees 

and the microclimate of the urban canyon: A case study', in 
Proceedings of the 2nd ICAUD International Conference in 
Architecture and Urban Design, Epoka University, Tirana, 
Albania, 08-10 May 2014, Paper No. 262. 

 
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., 

Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitão, P.J., 
Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., 
Schröder, B., Skidmore, A.K., Zurell, D. and Lautenbach, S. 
(2013) 'Collinearity: a review of methods to deal with it and 
a simulation study evaluating their performance', 
Ecography, 36(1), 27-46, available: 
https://doi.org/10.1111/j.1600-0587.2012.07348.x. 

 
DSM_NOE (2020) OGD NOE - Digitales Oberflächenmodell - 10m 

Niederösterreich (Digital surface model - 10m Lower Austria) 
Datenquelle: Land Niederösterreich - data.noe.gv.at (Data 
source: State of Lower Austria - data.noe.gv.at) [dataset], 
available: https://www.noe.gv.at/noe/OGD_Detailseite.
html?id=17c00cca-e08e-42d0-a6c9-bf8861d7f9ac 
[accessed 26 November 2020]. 

 
DSM_Vienna (2020) Stadt Wien - Oberflächenmodell (DOM) (City of 

Vienna - Surface model (DOM)) Datenquelle: Stadt Wien – 
data.wien.gv.at (Data source: City of Vienna – 
data.wien.gv.at) [dataset], available: 
https://www.wien.gv.at/stadtentwicklung/stadtvermessun
g/geodaten/als/ [accessed 08 December 2020]. 

 
DTM_NOE (2020) OGD NOE - Digitales Geländemodell - 10m 

Niederösterreich (Digital terrain model - 10m Lower Austria) 
Datenquelle: Land Niederösterreich - data.noe.gv.at (Data 
source: State of Lower Austria - data.noe.gv.at) [dataset], 
available: https://www.noe.gv.at/noe/OGD_Detailseite.
html?id=46a7a06a-f69b-405e-aac2-77f775449ad3 
[accessed 26 November 2020]. 



132 
 

EOS (2022) EOS (Earth Observing System) - NDVI, available: 
https://eos.com/make-an-analysis/ndvi/ [accessed 31 
March 2022]. 

 
EPA (2008) U.S. Environmental Protection Agency (EPA). Reducing 

urban heat islands: compendium of strategies. Draft., 
available: https://www.epa.gov/heat-islands/heat-island-
compendium [accessed 27 May 2021]. 

 
ESA_Data (2022) The European Space Agency (ESA) Earth Online 

available: https://earth.esa.int/eogateway/ [accessed 09 
April 2022]. 

 
Espindola, G.M.d., Carneiro, E.L.N.d.C. and Façanha, A.C. (2017) 

'Four decades of urban sprawl and population growth in 
Teresina, Brazil', Applied Geography, 79, 73-83, available: 
https://doi.org/10.1016/j.apgeog.2016.12.018. 

 
Estacio, I., Babaan, J., Pecson, N.J., Blanco, A.C., Escoto, J.E. and 

Alcantara, C.K. (2019) 'GIS-based mapping of local climate 
zones using fuzzy logic and cellular automata', in Blanco, A. 
C., Sarmiento, C. J. S., Tupas, M. E. A. and Rahman, A. A., 
eds., The International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, Volume 
XLII-4/W19, 2019, PhilGEOS x GeoAdvances 2019, Manila, 
Philippines, 14–15 November 2019, 199-206, available: 
https://doi.org/10.5194/isprs-archives-XLII-4-W19-199-
2019  

 
Fávero, L.P. and Belfiore, P. (2019) 'Chapter 13 - Simple and Multiple 

Regression Models' in Fávero, L. P. and Belfiore, P., eds., 
Data Science for Business and Decision Making, Academic 
Press, 443-538. 

 
Firat Ors, P. and Mahdavi, A. (2021) 'Derivation of high-resolution 

local thermal conditions from satellite-based data', in 
Proceedings of Building Simulation 2021 Conference, 
Bruges, Belgium, 1-3 September 2021. 

 
 



133 
 

Firat Ors, P., Vuckovic, M. and Mahdavi, A. (2019) 'Utilization of 
satellite-based remote-sensing for the representation of 
external boundary conditions in building energy modelling', 
in Corrado, V., Fabrizio, E., Gasparella, A. and Patuzzi, F., 
eds., Proceedings of Building Simulation 2019: 16th 
Conference of IBPSA, Rome, Italy, 2-4 September 2019, 
4746-4753, available: https://doi.org/10.26868/25222708.
2019.210126  

 
Fox, J. and Weisberg, S. (2019) An R companion to applied 

regression, Third Edition, Thousand Oaks, CA: Sage. 
available: https://socialsciences.mcmaster.ca/jfox/
Books/Companion/ [accessed 13 April 2022]. 

 
Gawuc, L. and Struzewska, J. (2016) 'Impact of MODIS quality 

control on temporally aggregated urban surface 
temperature and long-term surface urban heat island 
intensity', Remote Sensing, 8(5), 374, available: 
https://doi.org/10.3390/rs8050374. 

 
GDAL/OGR contributors (2022) 'GDAL/OGR Geospatial Data 

Abstraction software Library. Open Source Geospatial 
Foundation.'  available: https://gdal.org [accessed 10 April 
2022]. 

 
GEE (2022) Google Earth Engine (GEE), available: 

https://earthengine.google.com/ [accessed 21 January 
2022]. 

 
GEE_Aqua (2022) Earth Engine Data Catalog - MYD11A1.006 Aqua 

Land Surface Temperature and Emissivity Daily Global 1km 
[dataset] , available: https://developers.google.com/earth-
engine/datasets/catalog/MODIS_006_MYD11A1 [accessed 
09 April 2022]. 

 
GEE_Catalog (2022) Earth Engine Data Catalog, available: 

https://developers.google.com/earth-engine/datasets 
[accessed 09 April 2022]. 

 
 



134 
 

GEE_MCD43A2 (2022) Earth Engine Data Catalog - MCD43A2.006 
MODIS BRDF-Albedo Quality Daily 500m [dataset], 
available: https://developers.google.com/earth-
engine/datasets/catalog/MODIS_006_MCD43A2 [accessed 
09 April 2022]. 

 
GEE_Terra (2022) Earth Engine Data Catalog - MOD11A1.006 Terra 

Land Surface Temperature and Emissivity Daily Global 1km 
[dataset], available: https://developers.google.com/earth-
engine/datasets/catalog/MODIS_006_MOD11A1 [accessed 
09 April 2022]. 

 
Geoland_Basemap Orthofoto (2021) Katalog Orthofoto Österreich. 

(Catalog Orthophoto Austria). Datenquelle: basemap.at/ 
(Data source: basemap.at/) [dataset], available: 
https://www.data.gv.at/katalog/dataset/254757be-69ef-
4a6c-a4c1-1432815d7522 [accessed 21 September 2021]. 

 
Geoland_map (2022) Geoland.at web GIS viewer - Map application, 

available: https://www.geoland.at/webgisviewer/geoland/
map/Geoland_Viewer/Geoland [accessed 09 April 2022]. 

 
Glawischnig, S., Hammerberg, K., Vuckovic, M., Kiesel, K. and 

Mahdavi, A. (2014) 'A case study of geometry-based 
automated calculation of microclimatic attributes', in 
Mahdavi, A., Martens, B. and Scherer, R., eds., ECPPM 2014 
eWork and eBusiness in Architecture, Engineering and 
Construction. Proceedings of the 10th European Conference 
on Product and Process Modelling (ECPPM 2014), Vienna, 
Austria, 17-19 September 2014, London: Taylor and Francis-
Balkema, 231-236. 

 
Google Earth (2022a) Aerial Imagery from Gross-Enzersdorf Area - 

© Google - Camera: 611m, 48°11'55"N 16°33'26"E, 161m, 
available: https://earth.google.com/web/search/
Gro%c3%9f-Enzersdorf/@48.19937061,16.5579398,
154.28225603a,566.13831337d,35y,34.31595095h,36.301
15952t,0r/data=CigiJgokCfx_WaYpD0hAEQxuv9XqDkhAGa
BIO0eYlTBAIWwRXhRHlDBA [accessed 14 January 2022]. 

 



135 
 

Google Earth (2022b) Aerial Imagery from Schwechat Airport Area - 
© Google - Camera: 965m, 48°07'00" N 16°34'53" E, 181m, 
available: https://earth.google.com/web/@48.11736405,
16.58142951,180.51010191a,843.68853598d,35y,-
14.8026567h,21.68003412t,0r [accessed 14 January 2022]. 

 
Google Earth (2022c) Aerial Imagery from Seibersdorf Area - Google 

"Imagery ©2022 CNES / Airbus, European Space Imaging, 
Geoimage Austria, Maxar Technologies, Map data ©2022 
Austria" available: https://www.google.com/maps/
@47.9763128,16.5069064,1023m/data=!3m1!1e3 
[accessed 14 January 2022]. 

 
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and 

Moore, R. (2017) 'Google Earth Engine: Planetary-scale 
geospatial analysis for everyone', Remote Sensing of 
Environment, 202, 18-27, available: 
https://doi.org/10.1016/j.rse.2017.06.031. 

 
Grant, G.E. (2017) Exploring antarctic land surface temperature 

extremes using condensed anomaly databases, thesis 
(Doctor of Philosophy), University of Colorado available: 
https://scholar.colorado.edu/concern/graduate_thesis_or_
dissertations/bv73c0488 [accessed 09 April 2022]. 

 
GRASS Development Team (2019) 'Geographic Resources Analysis 

Support System (GRASS) Software, Version 7.6. Open Source 
Geospatial Foundation'. available: https://grass.osgeo.org 
[accessed 09 April 2022]. 

 
Grimmond, C.S.B., Roth, M., Oke, T.R., Au, Y.C., Best, M., Betts, R., 

Carmichael, G., Cleugh, H., Dabberdt, W., Emmanuel, R., 
Freitas, E., Fortuniak, K., Hanna, S., Klein, P., Kalkstein, L.S., 
Liu, C.H., Nickson, A., Pearlmutter, D., Sailor, D. and Voogt, 
J. (2010) 'Climate and more sustainable cities: climate 
information for improved planning and management of 
cities (Producers/capabilities perspective)', Procedia 
Environmental Sciences, 1, 247-274, available: 
https://doi.org/10.1016/j.proenv.2010.09.016. 

 



136 
 

Grimmond, S. (2007) 'Urbanization and global environmental 
change: local effects of urban warming', The Geographical 
Journal, 173(1), 83-88, available: 
https://doi.org/10.1111/j.1475-4959.2007.232_3.x. 

 
Gubareff, G.G., Janssen, J.E. and Torborg, R.H. (1960) Thermal 

radiation properties survey: a review of the literature, 
Minneapolis, MN: Honeywell Research Center; 
Minneapolis-Honeywell Regulator Company. 

 
Hammerberg, K., Brousse, O., Martilli, A. and Mahdavi, A. (2018) 

'Implications of employing detailed urban canopy 
parameters for mesoscale climate modelling: a comparison 
between WUDAPT and GIS databases over Vienna, Austria', 
International Journal of Climatology, 38(S1), e1241-e1257, 
available: https://doi.org/10.1002/joc.5447. 

 
Hammerberg, K.F. (2014) Accounting for the role of trees in urban 

energy balance modeling using GIS techniques, thesis 
(Diplom-Ingenieur), Technischen Universität Wien, 
reposiTUm, available: https://doi.org/10.34726/
hss.2014.16409. 

 
Han, Y., Taylor, J.E. and Pisello, A.L. (2015) 'Toward mitigating urban 

heat island effects: investigating the thermal-energy impact 
of bio-inspired retro-reflective building envelopes in dense 
urban settings', Energy and Buildings, 102, 380-389, 
available: https://doi.org/10.1016/j.enbuild.2015.05.040. 

 
Harlan, S.L., Brazel, A.J., Prashad, L., Stefanov, W.L. and Larsen, L. 

(2006) 'Neighborhood microclimates and vulnerability to 
heat stress', Social Science & Medicine, 63(11), 2847-2863, 
available: https://doi.org/10.1016/
j.socscimed.2006.07.030. 

 
Ho, H.C., Knudby, A., Xu, Y., Hodul, M. and Aminipouri, M. (2016) 'A 

comparison of urban heat islands mapped using skin 
temperature, air temperature, and apparent temperature 
(Humidex), for the greater Vancouver area', Science of The 
Total Environment, 544, 929-938, available: 
https://doi.org/10.1016/j.scitotenv.2015.12.021. 



137 
 

Hoffman, J.I.E. (2019) 'Chapter 30 - Multiple regression' in Hoffman, 
J. I. E., ed., Basic biostatistics for medical and biomedical 
practitioners (Second Edition) Academic Press, 525-560. 

 
Holmes, A., Illowsky, B. and Dean, S. (2017) '13.4 The regression 

equation' in Introductory business statistics, OpenStax, 
available: https://openstax.org/books/introductory-
business-statistics/pages/13-4-the-regression-equation 
[accessed 23 January 2022]. 

 
Hu, L., Brunsell, N.A., Monaghan, A.J., Barlage, M. and Wilhelmi, 

O.V. (2014) 'How can we use MODIS land surface 
temperature to validate long-term urban model 
simulations?', Journal of Geophysical Research: 
Atmospheres, 119(6), 3185-3201, available: 
https://doi.org/10.1002/2013JD021101. 

 
Huang, W., Li, J., Guo, Q., Mansaray, L.R., Li, X. and Huang, J. (2017) 

'A satellite-derived climatological analysis of urban heat 
island over Shanghai during 2000–2013', Remote Sensing, 
9(7), 641, available: https://doi.org/10.3390/rs9070641. 

 
Irger, M. (2014) The Effect of Urban Form on Urban Microclimate, 

thesis (PhD Doctorate), The University of New South Wales, 
available: https://doi.org/10.26190/unsworks/16956. 

 
Kaloustian, N. and Diab, Y. (2015) 'Effects of urbanization on the 

urban heat island in Beirut', Urban Climate, 14, 154-165, 
available: https://doi.org/10.1016/j.uclim.2015.06.004. 

 
Kantzioura, A., Kosmopoulos, P., Dimoudi, A. and Zoras, S. (2015) 

'Experimental investigation of microclimatic conditions in 
relation to the built environment in a central urban area in 
Thessaloniki (Northern Greece): A case study', Sustainable 
Cities and Society, 19, 331-340, available: 
https://doi.org/10.1016/j.scs.2015.03.006. 

 
Karch, J. (2020) 'Improving on adjusted R-Squared', Collabra: 

Psychology, 6(1), 45 available: https://doi.org/10.1525/
collabra.343. 



138 
 

Konarska, J., Lindberg, F., Larsson, A., Thorsson, S. and Holmer, B. 
(2014) 'Transmissivity of solar radiation through crowns of 
single urban trees—application for outdoor thermal 
comfort modelling', Theoretical and Applied Climatology, 
117(3), 363-376, available: https://doi.org/10.1007/
s00704-013-1000-3. 

 
Kourtidis, K., Georgoulias, A.K., Rapsomanikis, S., Amiridis, V., 

Keramitsoglou, I., Hooyberghs, H., Maiheu, B. and Melas, D. 
(2015) 'A study of the hourly variability of the urban heat 
island effect in the Greater Athens Area during summer', 
Science of The Total Environment, 517, 162-177, available: 
https://doi.org/10.1016/j.scitotenv.2015.02.062. 

 
Kousis, I., Pigliautile, I. and Pisello, A.L. (2021) 'Intra-urban 

microclimate investigation in urban heat island through a 
novel mobile monitoring system', Scientific Reports, 11, 
9732, available: https://doi.org/10.1038/s41598-021-
88344-y. 

 
Krüger, E.L. (2015) 'Urban heat island and indoor comfort effects in 

social housing dwellings', Landscape and Urban Planning, 
134, 147-156, available: https://doi.org/10.1016/
j.landurbplan.2014.10.017. 

 
LAADS DAAC (2022) LAADS DAAC  -  Level-1 and Atmosphere Archive 

& Distribution System Distributed Active Archive Center  -  
Terra & Aqua Moderate Resolution Imaging 
Spectroradiometer (MODIS), available: 
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-
measurements/modis/ [accessed 31 March 2022]. 

 
Landsat (2022) NASA Landsat Science, available: 

https://landsat.gsfc.nasa.gov/ [accessed 25 March 2022]. 

 
Latitude (2021) Latitude – Articles by country – Austria – Vienna, 

available: https://latitude.to/articles-by-
country/at/austria/153/vienna [accessed 18 April 2021]. 

 
 



139 
 

Lelovics, E., Gál, T. and Unger, J. (2013) 'Mapping local climate zones 
with a vector-based GIS method', in Proceedings of the Air 
and Water Components of the Environment: Conference 
Dedicated to World Meteorological Day and World Water 
Day, Cluj-Napoca, Romania, 2013, 423-430. 

 
Lelovics, E., Unger, J., Gál, T. and Gál, C.V. (2014) 'Design of an urban 

monitoring network based on Local Climate Zone mapping 
and temperature pattern modelling', Climate research, 
60(1), 51-62, available: https://doi.org/10.3354/cr01220. 

 
Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F. and 

Sobrino, J.A. (2013) 'Satellite-derived land surface 
temperature: current status and perspectives', Remote 
Sensing of Environment, 131, 14-37, available: 
https://doi.org/10.1016/j.rse.2012.12.008. 

 
Lillesand, T., Kiefer, R.W. and Chipman, J. (2015) Remote sensing 

and image interpretation, 7th Edition, United States of 
America: John Wiley & Sons. 

 
Lim, S.J., Vuckovic, M., Kiesel, K. and Mahdavi, A. (2014) 'The 

variance of the urban microclimate in the City of Vienna, 
Austria', in Proceedings of the 2nd ICAUD International 
Conference in Architecture and Urban Design, Epoka 
University, Tirana, Albania, 08-10 May 2014, Paper No. 259. 

 
Lindberg, F., Grimmond, C.S.B., Gabey, A., Huang, B., Kent, C.W., 

Sun, T., Theeuwes, N.E., Järvi, L., Ward, H.C., Capel-Timms, 
I., Chang, Y., Jonsson, P., Krave, N., Liu, D., Meyer, D., 
Olofson, K.F.G., Tan, J., Wästberg, D., Xue, L. and Zhang, Z. 
(2018) 'Urban Multi-scale Environmental Predictor (UMEP): 
An integrated tool for city-based climate services', 
Environmental Modelling & Software, 99, 70-87, available: 
https://doi.org/10.1016/j.envsoft.2017.09.020. 

 
LP DAAC (2022) The Land Processes Distributed Active Archive 

Center (LP DAAC), available: https://lpdaac.usgs.gov/ 
[accessed 10 April 2022]. 

 



140 
 

LP DAAC_ASTER (2022) LP DAAC USGS - ASTER Overview, available: 
https://lpdaac.usgs.gov/data/get-started-data/collection-
overview/missions/aster-overview/ [accessed 10 April 
2022]. 

 
MA41_Geodata (2021) Stadt Wien - Geodatenviewer der 

Stadtvermessung Wien (City of Vienna – Geodata viewer of 
the City Survey Vienna) available: 
https://www.wien.gv.at/ma41datenviewer/public/ 
[accessed 27 May 2021]. 

 
Magee, N., Curtis, J. and Wendler, G. (1999) 'The urban heat island 

effect at Fairbanks, Alaska', Theoretical and Applied 
Climatology, 64, 39-47, available: 
https://doi.org/10.1007/s007040050109. 

 
Mahdavi, A. (2018) 'Approaches to the evaluation and mitigation of 

the urban microclimate' in Hofbauer, C. K., Madadi-
Kandjani, E. and Meuwissen, J. M. C., eds., Climate change 
and sustainable heritage, Newcastle upon Tyne (UK): 
Cambridge Scholars Publishing, 1-37. 

 
Mahdavi, A., Kiesel, K. and Vuckovic, M. (2013) 'A framework for the 

evaluation of urban heat island mitigation measures', in 
Proceedings of SB13 Munich: Implementing Sustainability – 
Barriers and Chances Conference, Munich (Germany), 24-26 
April 2013. 

 
Mahdavi, A., Kiesel, K. and Vuckovic, M. (2014) 'Empirical and 

computational assessment of the urban heat island 
phenomenon and related mitigation measures', Geographia 
Polonica, 87(4), 505-516, available: 
http://dx.doi.org/10.7163/GPol.2014.34. 

 
Mahdavi, A., Kiesel, K. and Vuckovic, M. (2016) 'Methodologies for 

UHI analysis' in Musco, F., ed., Counteracting urban heat 
island effects in a global climate change scenario, Cham: 
Springer International Publishing, 71-91. 

 
 



141 
 

Maleki, A., Orehounig, K. and Mahdavi, A. (2012) 'Monitoring and 
modeling of the urban micro-climate', in Proceedings of 1-
ICAUD 1st International Conference on Architecture & Urban 
Design EPOKA University, Tirana (Albenia), 19-21 April 2012, 
1019-1028. 

 
Marzban, F. (2020) Estimation of near-surface Air temperature 

during day and night-time from MODIS over Different LC/LU 
Using machine learning methods in Berlin, thesis (Dr. rer. 
nat.), Freie Universität Berlin, available: 
https://refubium.fu-berlin.de/handle/fub188/28282.2 
[accessed 09 April 2022]. 

 
Marzban, F., Conrad, T., Marban, P. and Sodoudi, S. (2018a) 

'Estimation of the Near-Surface Air Temperature during the 
Day and Nighttime from MODIS in Berlin, Germany', 
International Journal of Advanced Remote Sensing and GIS, 
7(1). 

 
Marzban, F., Sodoudi, S. and Preusker, R. (2018b) 'The influence of 

land-cover type on the relationship between NDVI–LST and 
LST-Tair', International Journal of Remote Sensing, 39(5), 
1377-1398, available: https://doi.org/10.1080/
01431161.2017.1402386. 

 
Mathew, A., Khandelwal, S. and Kaul, N. (2018) 'Analysis of diurnal 

surface temperature variations for the assessment of 
surface urban heat island effect over Indian cities', Energy 
and Buildings, 159, 271-295, available: 
https://doi.org/10.1016/j.enbuild.2017.10.062. 

 
MathWorks® (2018) 'MATLAB - Copyright 2018 The MathWorks, 

Inc.'. 

 
Maykut, G.A. (1985) An introduction to ice in the polar oceans. 

Report 2nd printing, APL-UW 8510, Department of 
Atmospheric Sciences, University of Washington, Seattle, 
WA. 

 
 



142 
 

MCD43A3_Data (2022) LP DAAC Data Catalog - MCD43A3 v006 
MODIS/Terra+Aqua Albedo Daily L3 Global 500 m SIN Grid 
available: https://lpdaac.usgs.gov/products/mcd43a3v006/ 
[accessed 10 April 2022]. 

 
MCD43A3_UserGuide (2021) University of Massachussets Boston - 

Professor Cyrstal Schaaf's Lab - MODIS User Guide V006 and 
V006.1 for MCD43 products: MCD43A3 Albedo Product, 
available: https://www.umb.edu/spectralmass/
terra_aqua_modis/v006/mcd43a3_albedo_product 
[accessed 27 May 2021]. 

 
Microsoft_Excel (2022) 'Microsoft 365 – Excel'. available: 

https://www.microsoft.com/en-gb/microsoft-365/excel 
[accessed: 10 April 2022]. 

 
Mills, G. (2014) 'Urban climatology: history, status and prospects', 

Urban Climate, 10, 479-489, available: 
https://doi.org/10.1016/j.uclim.2014.06.004. 

 
Mirzaei, P.A. and Haghighat, F. (2010) 'Approaches to study Urban 

Heat Island – Abilities and limitations', Building and 
Environment, 45(10), 2192-2201, available: 
https://doi.org/10.1016/j.buildenv.2010.04.001. 

 
MOD11 (2022) NASA - MODIS Land -Land Surface 

Temperature/Emissivity (MOD11), available: https://modis-
land.gsfc.nasa.gov/temp.html [accessed 31 March 2022]. 

 
MOD11A1_Data (2022) LP DAAC Data Catalog - MOD11A1 v006 

MODIS/Terra Land Surface Temperature/Emissivity Daily L3 
Global 1 km SIN Grid, available: 
https://lpdaac.usgs.gov/products/mod11a1v006/ 
[accessed 21 January 2022]. 

 
MOD21 (2022) NASA - MODIS Land - Land Surface 

Temperature/Emissivity (MOD21), available: https://modis-
land.gsfc.nasa.gov/temp21.html [accessed 31 March 2022]. 

 



143 
 

MOD21_Data (2022) LP DAAC Data Catalog - MOD21 v061 
MODIS/Terra Land Surface Temperature/3-Band Emissivity 
5-Min L2 1 km, available: https://lpdaac.usgs.gov/products/
mod21v061/ [accessed 31 March 2022]. 

 
MODIS (2022a) NASA - Moderate Resolution Imaging 

Spectroradiometer (MODIS), available: https://modis.gsfc.
nasa.gov/about/ [accessed 10 April 2022]. 

 
MODIS (2022b) NASA - Moderate Resolution Imaging 

Spectroradiometer (MODIS) - Specifications, available: 
https://modis.gsfc.nasa.gov/about/specifications.php 
[accessed 31 March 2022]. 

 
MODIS_SDST (1997) MODIS Science Data Support Team - MODIS 

Level 1A Earth Location: Algorithm Theoretical Basis 
Document Version 3.0 available: 
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_
v3.pdf [accessed 21 January 2022]. 

 
MODLAND (2017) MODLAND Tile Calculator, available: 

https://landweb.modaps.eosdis.nasa.gov/cgi-
bin/developer/tilemap.cgi [accessed 31 March 2022]. 

 
MODLAND (2021a) NASA - MODIS Land - MODIS Grids, available: 

https://modis-land.gsfc.nasa.gov/MODLAND_grid.html 
[accessed 31 March 2022]. 

 
MODLAND (2021b) NASA - MODIS Land - MODIS Validation 

Strategy, available: https://modis-
land.gsfc.nasa.gov/MODLAND_val.html?_ga=2.142246641.
2145581044.1647635978-80034865.1647635978 
[accessed 31 March 2022]. 

 
Monaghan, A.J., Hu, L., Brunsell, N.A., Barlage, M. and Wilhelmi, 

O.V. (2014) 'Evaluating the impact of urban morphology 
configurations on the accuracy of urban canopy model 
temperature simulations with MODIS', Journal of 
Geophysical Research: Atmospheres, 119(11), 6376-6392, 
available: https://doi.org/10.1002/2013JD021227. 



144 
 

MYD11A1_Data (2022) LP DAAC Data Catalog - MYD11A1 v006 
MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 
Global 1 km SIN Grid, available: https://lpdaac.usgs.gov/
products/myd11a1v006/ [accessed 21 January 2022]. 

 
NASA (2022) National Aeronautics and Space Administration 

(NASA), available: https://www.nasa.gov/ [accessed 09 
April 2022]. 

 
NASA_Data (2022) DATA.NASA.GOV: A catalog of publicly available 

NASA datasets, available: https://data.nasa.gov/ [accessed 
09 April 2022]. 

 
NASA_EOSDIS (2022) NASA Earth Observing System Data and 

Information System (EOSDIS), available: 
https://earthdata.nasa.gov/eosdis [accessed 21 January 
2022]. 

 
NASA_Weather (2021) Archeological Remote Sensing 

Electromagnetic Spectrum - NASA Webpage - (Responsible 
Official: Dr. James L. Smoot, Page Author: Tom Sever, Page 
Curator: Diane Samuelson), available: 
https://weather.msfc.nasa.gov/archeology/remote_sensin
g_spectrum.html [accessed 27 May 2021]. 

 
Ng, E. (2009) 'Policies and technical guidelines for urban planning of 

high-density cities – air ventilation assessment (AVA) of 
Hong Kong', Building and Environment, 44(7), 1478-1488, 
available: https://doi.org/10.1016/j.buildenv.2008.06.013. 

 
Ngarambe, J., Oh, J.W., Su, M.A., Santamouris, M. and Yun, G.Y. 

(2021) 'Influences of wind speed, sky conditions, land use 
and land cover characteristics on the magnitude of the 
urban heat island in Seoul: an exploratory analysis', 
Sustainable Cities and Society, 71, 102953, available: 
https://doi.org/10.1016/j.scs.2021.102953. 

 
Nunez, M. and Oke, T.R. (1977) 'The energy balance of an urban 

canyon ', Journal of Applied Meteorology and Climatology, 
16(1), 11-19, available: https://doi.org/10.1175/1520-
0450(1977)016<0011:TEBOAU>2.0.CO;2. 



145 
 

OGD_NOE (2020) Open Government Data - Land Niederösterreich 
(Open Government Data - State of Lower Austria) 
Datenquelle: Land Niederösterreich - data.noe.gv.at (Data 
source: State of Lower Austria - data.noe.gv.at), available: 
https://noe.gv.at/noe/Open-Government-Data/Open-
Government-Data.html [accessed 26 November 2020]. 

 
OGD_Vienna (2021) City of Vienna - Open Government Data (OGD) 

in Vienna. “Datenquelle: Stadt Wien - data.wien.gv.at” 
(Data source: City of Vienna - data.wien.gv.at), available: 
https://digitales.wien.gv.at/open-data/ [accessed 27 May 
2021]. 

 
OGD_Vienna FMZK (2021) Open Data Österreich – Katalog Flächen-

Mehrzweckkarte Vektordaten Wien (Open Data Austria – 
Catalog Area Multi-purpose Map Vector Data Vienna), 
available: https://www.data.gv.at/katalog/dataset/
7cf0da04-1f77-4321-929e-78172c74aa0b [accessed 1 
October 2021]. 

 
Oke, T.R. (1976) 'The distinction between canopy and boundary‐

layer urban heat islands', Atmosphere, 14(4), 268-277, 
available: https://doi.org/10.1080/00046973.
1976.9648422. 

 
Oke, T.R. (1982) 'The energetic basis of the urban heat island', 

Quarterly Journal of the Royal Meteorological Society, 
108(455), 1-24, available: https://doi.org/10.1002/qj.
49710845502. 

 
Oke, T.R. (1983) 'Surfaces, scales and scale interactions in urban 

climatology', presented at the Int. Assoc. Meteorol. Atmos. 
Physics, IUGG Congress, Hamburg, Abstract CL-1, 54. 

 
Oke, T.R. (1984) 'Methods in urban climatology', in Kirchhofer, W., 

Ohmura, A. and Wanner, H., eds., Applied Climatology - 25th 
International Geographical Congress Symposium No. 18: 
Applied Geography, Zurich, 21 August 1984 - Zürcher 
Geographische Schriften, 14, 19-29. 

Oke, T.R. (1987) Boundary layer climates, 2nd Edition ed., London: 
Routledge. 



146 
 

Oke, T.R. (1988) 'The urban energy balance', Progress in Physical 
Geography: Earth and Environment, 12(4), 471-508, 
available: https://doi.org/10.1177/030913338801200401. 

 
Oke, T.R. (1995) 'The heat island of the urban boundary layer: 

characteristics, causes and effects' in Cermak, J. E., 
Davenport, A. G., Plate, E. J. and Viegas, D. X., eds., Wind 
climate in cities. NATO ASI Series, vol 277, Dordrecht: 
Springer Netherlands, 81-107. 

 
Oke, T.R. (2006) Initial guidance to obtain representative 

meteorological observations at urban sites. Instruments and 
observing methods. Report No. 81, WMO/TD-No. 1250 
World Meteorological Organization, available: 
https://library.wmo.int/index.php?lvl=notice_display&id=9
262%20#.YlLWmshBxMs [accessed 10 April 2022]. 

 
Oke, T.R., Mills, G., Christen, A. and Voogt, J.A. (2017) Urban 

climates, Cambridge: Cambridge University Press. 

 
OpenStreetMap contributors (2021) OpenStreetMap. “© 

OpenStreetMap contributors”, available: https://www.
openstreetmap.org/copyright [accessed 07 June 2021]. 

 
Orthofoto (2014) Open Data Österreich Katalog Orthofoto 2014 

Wien (Open Data Austria Orthofoto 2014 Vienna ) 
Datenquelle: Stadt Wien – data.wien.gv.at (Data source: 
City of Vienna – data.wien.gv.at) [dataset], available: 
https://www.data.gv.at/katalog/dataset/stadt-
wien_orthofotowien2014 [accessed 27 May 2021]. 

 
Orthofoto (2015) Open Data Österreich Katalog Orthofoto 2015 

Wien - Entzerrtes Luftbild (Open Data Austria Orthofoto 
2015 Vienna - Rectified aerial photo). Datenquelle: Stadt 
Wien  – data.wien.gv.at (Data source: City of Vienna – 
data.wien.gv.at) [dataset], available: 
https://www.data.gv.at/katalog/en/dataset/stadt-
wien_orthofotowien2015 [accessed 10 April 2022]. 

 



147 
 

Paulina, W., Poh-Chin, L. and Melissa, H. (2015) 'Temporal statistical 
analysis of urban heat islands at the microclimate level', 
Procedia Environmental Sciences, 26, 91-94, available: 
https://doi.org/10.1016/j.proenv.2015.05.006. 

 
PennState (2018a) PennState Eberly College of Science - STAT 462 

Applied Regression Analysis - Lesson 2: Simple Linear 
Regression (SLR) Model - 2.1 What is Simple Linear 
Regression (Lesson notes "reorganized and supplemented by 
Dr. Iain Pardoe, based on original notes by Dr. Laura Simon 
and Dr. Derek Young".), available: 
https://online.stat.psu.edu/stat462/node/91/ [accessed 04 
November 2021]. 

 
PennState (2018b) PennState Eberly College of Science - STAT 462 

Applied Regression Analysis - Lesson 2: Simple Linear 
Regression (SLR) Model - 2.2 What is the "Best Fitting Line"? 
(Lesson notes "reorganized and supplemented by Dr. Iain 
Pardoe, based on original notes by Dr. Laura Simon and Dr. 
Derek Young".), available: https://online.stat.psu.edu/
stat462/node/92/ [accessed 04 November 2021]. 

 
PennState (2018c) PennState Eberly College of Science - STAT 462 

Applied Regression Analysis - Lesson 2: Simple Linear 
Regression (SLR) Model - 2.4 What is the Common Error 
Variance? (Lesson notes "reorganized and supplemented by 
Dr. Iain Pardoe, based on original notes by Dr. Laura Simon 
and Dr. Derek Young".), available: https://online.stat.
psu.edu/stat462/node/94/ [accessed 04 November 2021]. 

 
PennState (2018d) PennState Eberly College of Science - STAT 462 

Applied Regression Analysis - Lesson 2: Simple Linear 
Regression (SLR) Model - 2.5 The Coefficient of 
Determination, r-squared (Lesson notes "reorganized and 
supplemented by Dr. Iain Pardoe, based on original notes by 
Dr. Laura Simon and Dr. Derek Young".), available: 
https://online.stat.psu.edu/stat462/node/95/ [accessed 04 
November 2021]. 

 
 
 



148 
 

PennState (2018e) PennState Eberly College of Science - STAT 462 
Applied Regression Analysis - Lesson 5: Multiple Linear 
Regression (MLR) Model & Evaluation - 5.3 - The Multiple 
Linear Regression Model (Lesson notes "reorganized and 
supplemented by Dr. Iain Pardoe, based on original notes by 
Dr. Laura Simon and Dr. Derek Young".), available: 
https://online.stat.psu.edu/stat462/node/131/ [accessed 
26 January 2022]. 

 
PennState (2018f) PennState Eberly College of Science - STAT 462 

Applied Regression Analysis - Lesson 11: Model Building - 
11.3 - Best Subsets Regression, Adjusted R-Sq, Mallows Cp 
(Lesson notes "reorganized and supplemented by Dr. Iain 
Pardoe, based on original notes by Dr. Laura Simon and Dr. 
Derek Young".), available: https://online.stat.psu.edu/
stat462/node/197/ [accessed 26 January 2022]. 

 
PennState (2018g) PennState Eberly College of Science - STAT 462 

Applied Regression Analysis - Lesson 3: SLR Evaluation - 3.6 
- Further SLR Evaluation Examples (Lesson notes 
"reorganized and supplemented by Dr. Iain Pardoe, based on 
original notes by Dr. Laura Simon and Dr. Derek Young".), 
available: https://online.stat.psu.edu/stat462/node/108/ 
[accessed 31 March 2022]. 

 
Prata, A.J., Caselles, V., Coll, C., Sobrino, J.A. and Ottlé, C. (1995) 

'Thermal remote sensing of land surface temperature from 
satellites: current status and future prospects', Remote 
Sensing Reviews, 12(3-4), 175-224, available: 
https://doi.org/10.1080/02757259509532285. 

 
QGIS.org (2021) 'QGIS Geographic Information System. QGIS 

Association', available: http://www.qgis.org [accessed: 10 
April 2022].  

 
Rizwan, A.M., Dennis, L.Y.C. and Liu, C. (2008) 'A review on the 

generation, determination and mitigation of Urban Heat 
Island', Journal of Environmental Sciences, 20(1), 120-128, 
available: https://doi.org/10.1016/S1001-0742(08)60019-4. 

 



149 
 

Rotach, M.W., Vogt, R., Bernhofer, C., Batchvarova, E., Christen, A., 
Clappier, A., Feddersen, B., Gryning, S.E., Martucci, G., 
Mayer, H., Mitev, V., Oke, T.R., Parlow, E., Richner, H., Roth, 
M., Roulet, Y.A., Ruffieux, D., Salmond, J.A., Schatzmann, M. 
and Voogt, J.A. (2005) 'BUBBLE – an Urban Boundary Layer 
Meteorology Project', Theoretical and Applied Climatology, 
81(3), 231-261, available: https://doi.org/10.1007/s00704-
004-0117-9. 

 
RStudio Team (2018) 'RStudio: Integrated Development for R. 

RStudio, Inc., Boston, MA URL'. available: 
http://www.rstudio.com/ [accessed: 10 April 2022]. 

 
Salata, F., Golasi, I., de Lieto Vollaro, R. and de Lieto Vollaro, A. 

(2016) 'Urban microclimate and outdoor thermal comfort. A 
proper procedure to fit ENVI-met simulation outputs to 
experimental data', Sustainable Cities and Society, 26, 318-
343, available: https://doi.org/10.1016/j.scs.2016.07.005. 

 
Salmerón Gómez, R., Rodríguez Sánchez, A., García, C.G. and García 

Pérez, J. (2020) 'The VIF and MSE in Raise Regression', 
Mathematics, 8(4), 605, available: 
https://doi.org/10.3390/math8040605. 

 
Salomonson, V.V., Barnes, W.L., Maymon, P.W., Montgomery, H.E. 

and Ostrow, H. (1989) 'MODIS: advanced facility instrument 
for studies of the Earth as a system', IEEE Transactions on 
Geoscience and Remote Sensing, 27(2), 145-153, available: 
https://doi.org/10.1109/36.20292. 

 
Santamouris, M., Cartalis, C., Synnefa, A. and Kolokotsa, D. (2015) 

'On the impact of urban heat island and global warming on 
the power demand and electricity consumption of 
buildings—A review', Energy and Buildings, 98, 119-124, 
available: https://doi.org/10.1016/j.enbuild.2014.09.052. 

 
Schaaf, C. and Wang, Z. (2015a) MCD43A3 MODIS/Terra+Aqua 

BRDF/Albedo Daily L3 Global - 500m V006 [dataset], NASA 
EOSDIS Land Processes DAAC, available: 
https://doi.org/10.5067/MODIS/MCD43A3.006 [accessed 
27 December 2020]. 



150 
 

Schaaf, C. and Wang, Z. (2015b) MCD43A2 MODIS/Terra+Aqua 
BRDF/Albedo Quality Daily L3 Global - 500m V006 [dataset], 
NASA EOSDIS Land Processes DAAC, available: 
https://doi.org/10.5067/MODIS/MCD43A2.006 [accessed 
09 April 2022]. 

 
Schneider dos Santos, R. (2020) 'Estimating spatio-temporal air 

temperature in London (UK) using machine learning and 
earth observation satellite data', International Journal of 
Applied Earth Observation and Geoinformation, 88, 102066, 
available: https://doi.org/10.1016/j.jag.2020.102066. 

 
Schneider dos Santos, R., Taylor, J., Davies, M., Mavrogianni, A. and 

Symonds, P. (2016) 'Modelling and monitoring tools to 
evaluate the urban heat island's contribution to the risk of 
indoor overheating', in Proceedings of the 3rd IBPSA-
England Conference BSO16, Great North Museum, 
Newcastle, UK, 12 - 14 September 2016, 1134. 

 
Schwarz, N., Lautenbach, S. and Seppelt, R. (2011) 'Exploring 

indicators for quantifying surface urban heat islands of 
European cities with MODIS land surface temperatures', 
Remote Sensing of Environment, 115(12), 3175-3186, 
available: https://doi.org/10.1016/j.rse.2011.07.003. 

 
Selvam, S., Manisha, A., Vidhya, J. and Venkatramanan, S. (2019) 

'Chapter 1 - Fundamentals of GIS' in Venkatramanan, S., 
Prasanna, M. V. and Chung, S. Y., eds., GIS and Geostatistical 
techniques for groundwater science, Elsevier, 3-15. 

 
Shi, L., Liu, P., Kloog, I., Lee, M., Kosheleva, A. and Schwartz, J. 

(2016) 'Estimating daily air temperature across the 
Southeastern United States using high-resolution satellite 
data: a statistical modeling study', Environmental Research, 
146, 51-58, available: https://doi.org/10.1016/
j.envres.2015.12.006. 

 
 

 



151 
 

Shi, Y. and Zhang, Y. (2022) 'Urban morphological indicators of 
urban heat and moisture islands under various sky 
conditions in a humid subtropical region', Building and 
Environment, 214, 108906, available: 
https://doi.org/10.1016/j.buildenv.2022.108906. 

 
Skarbit, N., Stewart, I.D., Unger, J. and Gál, T. (2017) 'Employing an 

urban meteorological network to monitor air temperature 
conditions in the ‘local climate zones’ of Szeged, Hungary', 
International Journal of Climatology, 37(S1), 582-596, 
available: https://doi.org/10.1002/joc.5023. 

 
Snyder, W.C., Wan, Z., Zhang, Y. and Feng, Y.Z. (1998) 'Classification-

based emissivity for land surface temperature 
measurement from space', International Journal of Remote 
Sensing, 19(14), 2753-2774, available: 
https://doi.org/10.1080/014311698214497. 

 
Sobrino, J.A., Oltra-Carrió, R., Sòria, G., Bianchi, R. and Paganini, M. 

(2012) 'Impact of spatial resolution and satellite overpass 
time on evaluation of the surface urban heat island effects', 
Remote Sensing of Environment, 117, 50-56, available: 
https://doi.org/10.1016/j.rse.2011.04.042. 

 
Sola, A., Corchero, C., Salom, J. and Sanmarti, M. (2018) 'Simulation 

tools to build urban-scale energy models: a review', 
Energies, 11(12), available: 
https://doi.org/10.3390/en11123269. 

 
Solman, M. (2020) The representation of urban climate for effective 

building energy performance simulation, thesis (Diploma 
Thesis), Technische Universität Wien, reposiTUm, available: 
https://doi.org/10.34726/hss.2020.45904. 

 
Stathopoulou, M., Synnefa, A., Cartalis, C., Santamouris, M., 

Karlessi, T. and Akbari, H. (2009) 'A surface heat island study 
of Athens using high-resolution satellite imagery and 
measurements of the optical and thermal properties of 
commonly used building and paving materials', 
International Journal of Sustainable Energy, 28(1-3), 59-76, 
available: https://doi.org/10.1080/14786450802452753. 



152 
 

Stewart, I. and Oke, T. (2009) 'Classifying urban climate field sites 
by “local climate zones”: The case of Nagano, Japan', ICUC-
7 The Seventh International Conference on Urban Climate 
Yokohama, Japan, 29 June - 3 July 2009, Extended Abstract. 

 
Stewart, I.D. (2011) Redefining the urban heat island, thesis (Doctor 

of Philosophy), The University of British Columbia, available: 
https://doi.org/10.14288/1.0072360. 

 
Stewart, I.D. and Oke, T.R. (2012) 'Local Climate Zones for urban 

temperature studies', Bulletin of the American 
Meteorological Society, 93(12), 1879-1900, available: 
https://doi.org/10.1175/BAMS-D-11-00019.1. 

 
Středová, H., Chuchma, F., Rožnovský, J. and Středa, T. (2021) 'Local 

Climate Zones, land surface temperature and air 
temperature interactions: case study of Hradec Králové, the 
Czech Republic', ISPRS International Journal of Geo-
Information, 10(10), 704, available: 
https://doi.org/10.3390/ijgi10100704. 

 
Sun, Y. and Augenbroe, G. (2014) 'Urban heat island effect on 

energy application studies of office buildings', Energy and 
Buildings, 77, 171-179, available: 
https://doi.org/10.1016/j.enbuild.2014.03.055. 

 
Taha, H. (1997) 'Urban climates and heat islands: albedo, 

evapotranspiration, and anthropogenic heat', Energy and 
Buildings, 25(2), 99-103, available: 
https://doi.org/10.1016/S0378-7788(96)00999-1. 

 
Terra (2022) NASA - Terra: The EOS Flagship, available: 

https://terra.nasa.gov/ [accessed 10 April 2022]. 

 
TIME_IS (2021) Time.is Central European Time available: 

https://time.is/CET [accessed 27 May 2021]. 

 
 



153 
 

Tomlinson, C.J., Chapman, L., Thornes, J.E. and Baker, C. (2011) 
'Remote sensing land surface temperature for meteorology 
and climatology: a review', Meteorological Applications, 
18(3), 296-306, available: https://doi.org/10.1002/met.287. 

 
Toth, C. and Jóźków, G. (2016) 'Remote sensing platforms and 

sensors: a survey', ISPRS Journal of Photogrammetry and 
Remote Sensing, 115, 22-36, available: 
https://doi.org/10.1016/j.isprsjprs.2015.10.004. 

 
Tsagris, M. and Pandis, N. (2021) 'Multicollinearity', American 

Journal of Orthodontics and Dentofacial Orthopedics, 
159(5), 695-696, available: https://doi.org/10.1016/
j.ajodo.2021.02.005  

 
Tsitoura, M., Tsoutsos, T. and Daras, T. (2014) 'Evaluation of 

comfort conditions in urban open spaces. Application in the 
island of Crete', Energy Conversion and Management, 86, 
250-258, available: https://doi.org/10.1016/
j.enconman.2014.04.059. 

 
Tsoka, S. (2017) 'Investigating the relationship between urban 

spaces morphology and local microclimate: a study for 
Thessaloniki', Procedia Environmental Sciences, 38, 674-
681, available: https://doi.org/10.1016/
j.proenv.2017.03.148. 

 
UN (2018) United Nations - World Urbanization Prospects: The 2018 

Revision [key facts], available: https://population.un.org/
wup/Publications/Files/WUP2018-KeyFacts.pdf [accessed 
31 March 2021]. 

 
UN (2022) United Nations (UN) - Population, available: 

https://www.un.org/en/global-issues/population#:~:text=
The%20world%20population%20is%20projected,surroundi
ng%20these%20latest%20population%20projections 
[accessed 10 April 2022]. 

 
 



154 
 

Unger, J., Lelovics, E. and Gál, T. (2014) 'Local Climate Zone mapping 
using GIS methods in Szeged', Hungarian Geographical 
Bulletin, 63(1), 29-41, available: https://doi.org/10.15201/
hungeobull.63.1.3. 

 
USGS (2022a) US. Geological Survey (USGS). What is a geographic 

information system (GIS)?, available: 
https://www.usgs.gov/faqs/what-geographic-information-
system-gis [accessed 10 April 2022]. 

 
USGS (2022b) U.S. Geological Survey (USGS), available: 

https://www.usgs.gov/ [accessed 21 January 2022]. 

 
USGS_Landsat (2022) USGS - What are the band designations for 

the Landsat satellites?, available: 
https://www.usgs.gov/faqs/what-are-band-designations-
landsat-satellites [accessed 25 March 2022]. 

 
Vahmani, P., Luo, X., Jones, A. and Hong, T. (2022) 'Anthropogenic 

heating of the urban environment: An investigation of 
feedback dynamics between urban micro-climate and 
decomposed anthropogenic heating from buildings', 
Building and Environment, 213, 108841, available: 
https://doi.org/10.1016/j.buildenv.2022.108841. 

 
van Hove, L.W.A., Jacobs, C.M.J., Heusinkveld, B.G., Elbers, J.A., van 

Driel, B.L. and Holtslag, A.A.M. (2015) 'Temporal and spatial 
variability of urban heat island and thermal comfort within 
the Rotterdam agglomeration', Building and Environment, 
83, 91-103, available: https://doi.org/10.1016/
j.buildenv.2014.08.029. 

 
Vermote, E. and Wolfe, R. (2015a) MOD09GA MODIS/Terra Surface 

Reflectance Daily L2G Global 1kmand 500m SIN Grid V006 
[dataset], NASA EOSDIS Land Processes DAAC, available: 
https://doi.org/10.5067/MODIS/MOD09GA.006 [accessed 
28 December 2020]. 

 
 



155 
 

Vermote, E. and Wolfe, R. (2015b) MYD09GA MODIS/Aqua Surface 
Reflectance Daily L2G Global 1kmand 500m SIN Grid V006 
[dataset], NASA EOSDIS Land Processes DAAC, available: 
https://doi.org/10.5067/MODIS/MYD09GA.006 [accessed 
28 December 2020]. 

 
Vermote, E.F., Roger, J.C. and Ray, J.P. (2015) MODIS Surface 

Reflectance User’s Guide - Collection 6. MODIS Land Surface 
Reflectance Science Computing Facility, available: 
https://lpdaac.usgs.gov/documents/306/MOD09_User_Gu
ide_V6.pdf [accessed 30 May 2021]. 

 
Vienna_Baukörpermodell (2021) Stadt Wien - Baukörpermodell 

(LOD1.4)  (City of Vienna - Building Model (LOD1.4)) 
Datenquelle: Stadt Wien – data.wien.gv.at (Data source: 
City of Vienna – data.wien.gv.at) [dataset], available: 
https://www.wien.gv.at/stadtentwicklung/stadtvermessun
g/geodaten/bkm/ [accessed 27 May 2021]. 

 
Vienna_FMZK (2021) Stadt Wien - Flächen-Mehrzweckkarte (City of 

Vienna –Area multipurpose map) Datenquelle: Stadt Wien – 
data.wien.gv.at (Data source: City of Vienna – 
data.wien.gv.at) [dataset], available: 
https://www.wien.gv.at/stadtentwicklung/stadtvermessun
g/geodaten/fmzk/ [accessed 27 May 2021]. 

 
Vienna Tourist Board (2021) The Vienna Woods, available: 

https://www.wien.info/en/sightseeing/excursions/vienna-
woods-363998 [accessed 18 April 2021]. 

 
Voogt, J.A. (2002). 'Urban heat island' in Munn, T., editor-in-chief, 

Encyclopedia of global environmental change, Chichester 
(UK): John Wiley & Sons, 660 – 666. 

 
Voogt, J. A. (2017). 'Urban climatology' in Richardson, D., Castree 

N., Goodchild, M.F., Kobayashi, A., Liu, W., and Marston, 
R.A., eds.,  The international encyclopedia of geography: 
people, the earth, environment and technology. John Wiley 
& Sons, Ltd, 1-14, available: 
https://doi.org/10.1002/9781118786352.wbieg0694. 

 



156 
 

Voogt, J.A. and Oke, T.R. (2003) 'Thermal remote sensing of urban 
climates', Remote Sensing of Environment, 86(3), 370-384, 
available: https://doi.org/10.1016/S0034-4257(03)00079-8. 

 
Vu, D.H., Muttaqi, K.M. and Agalgaonkar, A.P. (2015) 'A variance 

inflation factor and backward elimination based robust 
regression model for forecasting monthly electricity 
demand using climatic variables', Applied Energy, 140, 385-
394, available: https://doi.org/10.1016/
j.apenergy.2014.12.011. 

 
Vuckovic, M. (2015) A framework for the representation of the 

urban environment and the assessment of its microclimatic 
variation, thesis (Doktors der technischen Wissenschaften), 
Technische Universität Wien, reposiTUm, available: 
https://doi.org/10.34726/hss.2015.29763. 

 
Vuckovic, M., Kiesel, K. and Mahdavi, A. (2016) 'Toward advanced 

representations of the urban microclimate in building 
performance simulation', Sustainable Cities and Society, 27, 
356-366, available: https://doi.org/10.1016/
j.scs.2016.05.002. 

 
Vuckovic, M., Kiesel, K. and Mahdavi, A. (2017) 'The extent and 

implications of the microclimatic conditions in the urban 
environment: A Vienna case study', Sustainability, 9(2), 177, 
available: https://doi.org/10.3390/su9020177. 

 
Wan, Z. (2008) 'New refinements and validation of the MODIS Land-

Surface Temperature/Emissivity products', Remote Sensing 
of Environment, 112(1), 59-74, available: 
https://doi.org/10.1016/j.rse.2006.06.026. 

 
Wan, Z. (2013) Collection-6 MODIS Land Surface Temperature 

Products Users’ Guide, available: 
https://lpdaac.usgs.gov/documents/118/MOD11_User_Gu
ide_V6.pdf [accessed 07 June 2021]. 

 
 



157 
 

Wan, Z. (2014) 'New refinements and validation of the collection-6 
MODIS land-surface temperature/emissivity product', 
Remote Sensing of Environment, 140, 36-45, available: 
https://doi.org/10.1016/j.rse.2013.08.027. 

 
Wan, Z. and Dozier, J. (1996) 'A generalized split-window algorithm 

for retrieving land-surface temperature from space', IEEE 
Transactions on Geoscience and Remote Sensing, 34(4), 892-
905, available: https://doi.org/10.1109/36.508406. 

 
Wan, Z., Hook, S. and Hulley, G. (2015a) MOD11A1 MODIS/Terra 

Land Surface Temperature/Emissivity Daily L3 Global 1km 
SIN Grid V006 [dataset], NASA EOSDIS Land Processes DAAC, 
available: https://doi.org/10.5067/MODIS/MOD11A1.006 
[accessed 11 April 2020]. 

 
Wan, Z., Hook, S. and Hulley, G. (2015b) MYD11A1 MODIS/Aqua 

Land Surface Temperature/Emissivity Daily L3 Global 1km 
SIN Grid V006 [dataset], NASA EOSDIS Land Processes DAAC, 
available: https://doi.org/10.5067/MODIS/MYD11A1.006 
[accessed 12 April 2020]. 

 
Wan, Z. and Li, Z.-L. (1997) 'A physics-based algorithm for retrieving 

land-surface emissivity and temperature from EOS/MODIS 
data', IEEE Transactions on Geoscience and Remote Sensing, 
35(4), 980-996, available: https://doi.org/10.1109/
36.602541. 

 
Wang, W., Liu, K., Tang, R. and Wang, S. (2019) 'Remote sensing 

image-based analysis of the urban heat island effect in 
Shenzhen, China', Physics and Chemistry of the Earth, Parts 
A/B/C, 110, 168-175, available: https://doi.org/10.1016/
j.pce.2019.01.002. 

 
Wang, Y., Berardi, U. and Akbari, H. (2016) 'Comparing the effects 

of urban heat island mitigation strategies for Toronto, 
Canada', Energy and Buildings, 114, 2-19, available: 
https://doi.org/10.1016/j.enbuild.2015.06.046. 

 
 



158 
 

Weng, Q. (2009) 'Thermal infrared remote sensing for urban 
climate and environmental studies: methods, applications, 
and trends', ISPRS Journal of Photogrammetry and Remote 
Sensing, 64(4), 335-344, available: https://doi.org/10.1016/
j.isprsjprs.2009.03.007. 

 
Wittich, K.P. (1997) 'Some simple relationships between land-

surface emissivity, greenness and the plant cover fraction 
for use in satellite remote sensing', International Journal of 
Biometeorology, 41(2), 58-64, available: 
https://doi.org/10.1007/s004840050054. 

 
WMO (2018) World Meteorological Organization (WMO) - Guide to 

Instruments and Methods of Observation (WMO-No. 8), 
2018 edition, available: https://community.wmo.int/
activity-areas/imop/wmo-no_8 [accessed 30 March 2022]. 

 
WMO (2022) World Meteorological Organization (WMO), available: 

https://public.wmo.int/en [accessed 30 March 2022]. 

 
WMO_IMOP (2020) WMO - Instruments and Methods of 

Observation Programme (IMOP), available: 
https://community.wmo.int/activity-areas/imop [accessed 
30 March 2022]. 

 
WMO_OSCAR (2022a) WMO - Observing Systems Capability 

Analysis and Review Tool (OSCAR) / Surface 
(OSCAR/Surface), available: https://oscar.wmo.int/
surface/#/ [accessed 25 March 2022]. 

 
WMO_OSCAR (2022b) WMO - Observing Systems Capability 

Analysis and Review Tool (OSCAR) Space-based Capabilities 
(OSCAR/Space), available: https://space.oscar.wmo.int/
spacecapabilities [accessed 25 March 2022]. 

 
Wolfe, R.E., Roy, D.P. and Vermote, E. (1998) 'MODIS land data 

storage, gridding, and compositing methodology: Level 2 
grid', IEEE Transactions on Geoscience and Remote Sensing, 
36(4), 1324-1338, available: 
https://doi.org/10.1109/36.701082. 



159 
 

Wu, Y., Sharifi, A., Yang, P., Borjigin, H., Murakami, D. and 
Yamagata, Y. (2018) 'Mapping building carbon emissions 
within local climate zones in Shanghai', Energy Procedia, 
152, 815-822, available: https://doi.org/10.1016/
j.egypro.2018.09.195. 

 
Yoo, C., Im, J., Park, S. and Quackenbush, L.J. (2018) 'Estimation of 

daily maximum and minimum air temperatures in urban 
landscapes using MODIS time series satellite data', ISPRS 
Journal of Photogrammetry and Remote Sensing, 137, 149-
162, available: https://doi.org/10.1016/
j.isprsjprs.2018.01.018. 

 
Young, N.E., Anderson, R.S., Chignell, S.M., Vorster, A.G., Lawrence, 

R. and Evangelista, P.H. (2017) 'A survival guide to Landsat 
preprocessing', Ecology, 98(4), 920-932, available: 
https://doi.org/10.1002/ecy.1730. 

 
Yow, D.M. (2007) 'Urban Heat Islands: Observations, impacts, and 

adaptation', Geography Compass, 1(6), 1227-1251, 
available: https://doi.org/10.1111/j.1749-
8198.2007.00063.x. 

 
Yuan, J., Farnham, C. and Emura, K. (2015) 'Development of a retro-

reflective material as building coating and evaluation on 
albedo of urban canyons and building heat loads', Energy 
and Buildings, 103, 107-117, available: 
https://doi.org/10.1016/j.enbuild.2015.06.055. 

 
Zakšek, K. and Schroedter-Homscheidt, M. (2009) 

'Parameterization of air temperature in high temporal and 
spatial resolution from a combination of the SEVIRI and 
MODIS instruments', ISPRS Journal of Photogrammetry and 
Remote Sensing, 64(4), 414-421, available: 
https://doi.org/10.1016/j.isprsjprs.2009.02.006. 

 
ZAMG (2022a) Zentralanstalt für Meteorologie und Geodynamik 

(ZAMG) - Messnetze - Wetterstationen (Measuring Network 
- Weather Stations), available: 
https://www.zamg.ac.at/cms/de/klima/messnetze/wetters
tationen [accessed 25 March 2022]. 



160 
 

ZAMG (2022b) Zentralanstalt für Meteorologie und Geodynamik 
(ZAMG), available: https://www.zamg.ac.at/cms/de/aktuell 
[accessed 25 March 2022]. 

 
Zheng, Y., Ren, C., Xu, Y., Wang, R., Ho, J., Lau, K. and Ng, E. (2018) 

'GIS-based mapping of Local Climate Zone in the high-
density city of Hong Kong', Urban Climate, 24, 419-448, 
available: https://doi.org/10.1016/j.uclim.2017.05.008. 

 

 

 

 

 

 

 



161 
 

 

77..11..  CCaallccuullaattiinngg  bbuuiillddiinngg--rreellaatteedd  aattttrriibbuutteess  

Table 35. Results from surface fraction calculations 

 Building Surface Area 
(m2) 

Pervious Surface Area 
(m2) 

Impervious Surface 
Area (m2) 

IS 92391.86 15513.79 88443.89 

HW 27376.55 127628.52 41344.45 

DF 39520.85 102811.30 54017.38 

MB 12184.57 132373.53 51791.44 

GE 17747.43 158435.79 20166.27 

SC 29.77 166244.01 30075.77 

SD 18901.63 151814.01 25633.97 
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77..22..  LLSSTT  --  TTaaiirr  rreellaattiioonnsshhiipp  

Table 36. Linear regression results of LSTDAY – Tair datasets  

Ov
er

vi
ew

 
R-Squared (R2) RMSE [K] Number of 

observations (n) 

0.903 2.60 7255 

 

AN
OV

A 
Re

su
lts

  DF Sum of 
squares 

Mean 
squares 

F statistics P-value 

Regression 1 456431.90 456431.90 67542.40 0.00 

Residual 7253 49013.66 6.76   

Total 7254 505445.56    

 

Va
ria

bl
es

 

 Coefficients Standard Error (SE) 
[K] 

t Statistics P-value 

Intercept -0.1768 0.08 -2.10 0.04 

LSTDAY 0.7755 2.98e-3 259.89 0.00 

 

 

Table 37. Linear regression results of LSTNIGHT – Tair datasets 

Ov
er

vi
ew

 R-Squared (R2) RMSE [K] Number of 
observations (n) 

0.971 1.50 5192 

 

AN
OV

A 
Re

su
lts

  DF Sum of 
squares 

Mean 
squares 

F statistics P-value 

Regression 1 394049.36 394049.36 175845.58 0.00 

Residual 5190 11630.18 2.24   

Total 5191 405679.54    

 

Va
ria

bl
es

 

 Coefficients Standard Error (SE) 
[K] 

t Statistics P-value 

Intercept 1.8572 0.03 67.25 0.00 

LSTNIGHT 0.9829 2.34e-3 419.34 0.00 



163 
 

 

Table 38. Linear regression results of LSTTERRA-DAY – Tair datasets  

Ov
er

vi
ew

 R-Squared (R2) RMSE [K] Number of 
observations (n) 

0.904 2.60 4104 

 

AN
OV

A 
Re

su
lts

  DF Sum of 
squares 

Mean 
squares 

F statistics P-value 

Regression 1 261309.67 261309.67 38636.58 0.00 

Residual 4102 27742.93 6.76   

Total 4103 289052.60    

 

Va
ria

bl
es

 

 Coefficients Standard Error (SE) 
[K] 

t Statistics P-value 

Intercept -0.2487 0.11 -2.31 0.02 

LSTTERRA-DAY 0.7763 3.95e-3 196.56 0.00 

 

 

Table 39. Linear regression results of LSTAQUA-DAY – Tair datasets  

Ov
er

vi
ew

 R-Squared (R2) RMSE [K] Number of 
observations (n) 

0.899 2.60 3151 

 

AN
OV

A 
Re

su
lts

  DF Sum of 
squares 

Mean 
squares 

F statistics P-value 

Regression 1 188144.31 188144.31 27887.89 0.00 

Residual 3149 21244.58 6.75   

Total 3150 209388.89    

 

Va
ria

bl
es

 

 Coefficients Standard Error (SE) 
[K] 

t Statistics P-value 

Intercept -0.0356 0.14 -0.26 0.79 

LSTAQUA-DAY 0.7727 4.63e-3 167.00 0.00 
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Table 40. Linear regression results of LSTTERRA-NIGHT – Tair datasets  

Ov
er

vi
ew

 R-Squared (R2) RMSE [K] Number of 
observations (n) 

0.975 1.42 2797 

 

AN
OV

A 
Re

su
lts

  DF Sum of 
squares 

Mean 
squares 

F statistics P-value 

Regression 1 224005.41 224005.41 111104.76 0.00 

Residual 2795 5635.18 2.02   

Total 2796 229640.59    

 

Va
ria

bl
es

 

 Coefficients Standard Error (SE) 
[K] 

t Statistics P-value 

Intercept 2.2809 0.04 62.94 0.00 

LSTTERRA-NIGHT 0.9877 2.96e-3 333.32 0.00 

 

 

Table 41. Linear regression results of LSTAQUA-NIGHT – Tair datasets  

Ov
er

vi
ew

 R-Squared (R2) RMSE [K] Number of 
observations (n) 

0.973 1.39 2395 

 

AN
OV

A 
Re

su
lts

  DF Sum of 
squares 

Mean 
squares 

F statistics P-value 

Regression 1 166397.17 166397.17 85567.57 0.00 

Residual 2393 4653.50 1.94   

Total 2394 171050.67    

 

Va
ria

bl
es

 

 Coefficients Standard Error (SE) 
[K] 

t Statistics P-value 

Intercept 1.4131 0.04 37.94 0.00 

LSTAQUA-NIGHT 0.9694 3.31e-3 292.52 0.00 
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Table 42. Linear regression results of remaining LSTDAY – Tair observations 
after including BSA data 

Ov
er

vi
ew

 R-Squared (R2) RMSE [K] Number of 
observations (n) 

0.896 2.57 6714 

 

AN
OV

A 
Re

su
lts

  DF Sum of 
squares 

Mean 
squares 

F statistics P-value 

Regression 1 383542.68 383542.68 58012.55 0.00 

Residual 6712 44375.54 6.61   

Total 6713 427918.23    

 

Va
ria

bl
es

 

 Coefficients Standard Error (SE) 
[K] 

t Statistics P-value 

Intercept -0.0699 0.09 -0.76 0.45 

LSTDAY 0.7739 3.21e-3 240.86 0.00 
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77..33..  DDeerriivviinngg  TTaaiirr::  MMuullttiippllee  rreeggrreessssiioonn  rreessuullttss  

77..33..11..  DDaayy--ttiimmee  iinnqquuiirriieess    

Table 43. Results from multiple regression inquiries for day-time without 
ISF and EBH parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept 1.563 X 0.53 2.9326 3.37e-3 

LSTDAY 0.89916 4.08 0.01 157.56 0.00 

BSF -34.069 53.19 1.61 -21.179 2.01e-96 

PSF -10.082 36.52 0.78 -12.953 6.46e-38 

MBH 0.24947 15.12 0.02 11.357 1.27e-29 

SVF -0.53424 6.62 0.40 -1.3424 0.18 

SZA 0.087674 3.83 4.34e-3 20.191 4.63e-88 

BSA 7.0365 1.46 1.08 6.5454 6.37e-11 

Model's Performance 

Adjusted R2 0.920 

RMSE (K) 2.26 

n 6714 

 

 

Table 44. Results from multiple regression inquiries for day-time without 
ISF, BSF, MBH and EBH parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -7.2765 X 0.38 -19.068 5.56e-79 

LSTDAY 0.87708 3.97 0.01 149.64 0.00 

PSF 7.3573 2.66 0.22 33.627 3.09e-229 

SVF -5.7679 3.07 0.28 -20.451 3.18e-90 

SZA 0.073448 3.76 4.48e-3 16.406 2.44e-59 

BSA 6.4656 1.45 1.12 5.7867 7.50e-09 

Model's Performance 

Adjusted R2 0.913 

RMSE (K) 2.35 

n 6714 
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Table 45. Results from multiple regression inquiries for day-time without 
ISF, PSF and EBH parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -2.9997 X 0.40 -7.4083 1.44e-13 

LSTDAY 0.89285 4.05 0.01 155.11 0.00 

BSF -14.737 7.40 0.61 -24.264 9.96e-125 

MBH 0.073723 9.35 0.02 4.2159 2.52e-5 

SVF -4.3988 2.90 0.27 -16.498 5.72e-60 

SZA 0.083145 3.81 4.38e-3 18.976 2.92e-78 

BSA 7.0172 1.46 1.09 6.4478 1.21e-10 

Model's Performance 

Adjusted R2 0.918 

RMSE (K) 2.29 

n 6714 

 

 

 

Table 46. Results from multiple regression inquiries for day-time without 
ISF, BSF, MBH, SZA and EBH parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -1.7752 X 0.19 -9.5553 1.69e-21 

LSTDAY 0.79489 1.07 3.10e-3 256.23 0.00 

PSF 6.6945 2.57 0.22 30.529 8.69e-192 

SVF -5.1205 3.01 0.28 -17.98 1.24e-70 

BSA 4.1885 1.43 1.13 3.7047 2.13e-4 

Model's Performance 

Adjusted R2 0.910 

RMSE (K) 2.40 

n 6714 
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Table 47. Results from multiple regression inquiries for day-time without 
ISF, PSF, SZA and EBH parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept 2.6999 X 0.28 9.6869 4.77e-22 

LSTDAY 0.79926 1.08 3.05e-3 262.34 0.00 

BSF -13.265 7.28 0.62 -21.454 8.20e-99 

MBH 0.067668 9.35 0.02 3.7706 1.64e-4 

SVF -3.7905 2.86 0.27 -13.952 1.25e-43 

BSA 4.4129 1.43 1.11 3.9822 6.90e-5 

Model's Performance 

Adjusted R2 0.913 

RMSE (K) 2.35 

n 6714 

 

 

 

Table 48. Results from multiple regression inquiries for day-time without 
PSF and EBH parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -8.5187 X 0.58 -14.577 2.09e-47 

LSTDAY 0.89916 4.08 0.01 157.56 0.00 

BSF -23.987 17.88 0.93 -25.717 3.49e-139 

ISF 10.082 7.86 0.78 12.953 6.46e-38 

MBH 0.24947 15.12 0.02 11.357 1.27e-29 

SVF -0.53424 6.62 0.40 -1.3424 0.18 

SZA 0.087674 3.83 4.34e-3 20.191 4.63e-88 

BSA 7.0365 1.46 1.08 6.5454 6.37e-11 

Model's Performance 

Adjusted R2 0.920 

RMSE (K) 2.26 

n 6714 
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Table 49. Results from multiple regression inquiries for day-time without 
BSF and MBH parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -16.11 X 0.84 -19.174 8.04e-80 

LSTDAY 0.89446 4.06 0.01 155.91 0.00 

ISF 17.155 13.09 1.01 16.938 4.76e-63 

PSF 11.244 39.66 0.82 13.752 1.87e-42 

SVF -3.1071 4.09 0.32 -9.8588 8.97e-23 

EBH -0.17601 13.74 0.04 -4.4426 9.03e-06 

SZA 0.084177 3.82 4.37e-3 19.267 1.48e-80 

BSA 6.5058 1.45 1.08 6.0095 1.96e-09 

Model's Performance 

Adjusted R2 0.919 

RMSE (K) 2.28 

n 6714 

 

 

Table 50. Results from multiple regression inquiries for day-time without 
BSF, MBH and PSF parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -6.4322 X 0.47 -13.823 7.15e-43 

LSTDAY 0.88487 4.00 0.01 153.25 0.00 

ISF 6.8172 5.88 0.69 9.9063 5.62e-23 

SVF -1.5585 3.56 0.30 -5.222 1.82e-7 

EBH -0.65061 3.31 0.02 -32.976 3.84e-221 

SZA 0.077338 3.77 4.40e-3 17.573 1.28e-67 

BSA 6.5304 1.45 1.10 5.9494 2.83e-9 

Model's Performance 

Adjusted R2 0.916 

RMSE (K) 2.31 

n 6714 
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Table 51. Results from multiple regression inquiries for day-time without 
BSF, MBH and ISF parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -4.0714 X 0.46 -8.8992 7.14e-19 

LSTDAY 0.88181 3.99 0.01 151.82 0.00 

PSF 0.96437 17.81 0.56 1.7236 0.08 

SVF -3.8595 4.00 0.32 -12.114 1.98e-33 

EBH -0.45564 11.35 0.04 -12.39 7.13e-35 

SZA 0.075393 3.76 4.43e-3 17.021 1.24e-63 

BSA 6.835 1.45 1.11 6.1842 6.61e-10 

Model's Performance 

Adjusted R2 0.915 

RMSE (K) 2.33 

n 6714 

 

 

 

Table 52. Results from multiple regression inquiries for day-time without 
BSF, MBH, PSF and SZA parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -0.7371 X 0.34 -2.1585 0.03 

LSTDAY 0.79812 1.08 3.06e-3 260.56 0.00 

ISF 6.1959 5.86 0.70 8.8155 1.50e-18 

SVF -1.2982 3.56 0.30 -4.2584 2.09e-5 

EBH -0.59256 3.22 0.02 -29.788 3.14e-183 

BSA 4.1578 1.43 1.11 3.7322 1.91e-4 

Model's Performance 

Adjusted R2 0.912 

RMSE (K) 2.36 

n 6714 
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Table 53. Results from multiple regression inquiries for day-time without 
BSF, MBH, PSF and ISF parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -3.6086 X 0.37 -9.7405 2.84e-22 

LSTDAY 0.88143 3.99 0.01 151.84 0.00 

SVF -3.4772 2.06 0.23 -15.203 2.39e-51 

EBH -0.5141 1.70 0.01 -36.148 1.40e-261 

SZA 0.075098 3.76 4.43e-3 16.964 3.11e-63 

BSA 6.8018 1.45 1.11 6.1542 7.98e-10 

Model's Performance 

Adjusted R2 0.915 

RMSE (K) 2.33 

n 6714 

 

 

 

 

Table 54. Results from multiple regression inquiries for day-time without 
BSF, MBH, PSF and SVF parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -7.653 X 0.40 -18.984 2.56e-78 

LSTDAY 0.88272 3.98 0.01 152.97 0.00 

ISF 9.1492 3.40 0.52 17.44 1.18e-66 

EBH -0.66524 3.25 0.02 -33.996 7.30e-234 

SZA 0.076197 3.76 4.40e-3 17.301 1.21e-65 

BSA 4.3156 1.24 1.01 4.2544 2.123-5 

Model's Performance 

Adjusted R2 0.916 

RMSE (K) 2.31 

n 6714 
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Table 55. Results from multiple regression inquiries for day-time without 
BSF, MBH, PSF, SVF and SZA parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -1.8266 X 0.23 -8.0653 8.59e-16 

LSTDAY 0.7974 1.07 0.00 260.39 0.00 

ISF 8.1508 3.36 0.53 15.296 6.10e-52 

EBH -0.60549 3.15 0.02 -30.759 1.76e-194 

BSA 2.3376 1.22 1.03 2.2694 0.02 

Model's Performance 

Adjusted R2 0.912 

RMSE (K) 2.37 

n 6714 

 

 

77..33..22..  NNiigghhtt--ttiimmee  iinnqquuiirriieess    

 

Table 56. Results from multiple regression inquiries for night-time without 
ISF and EBH parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -4.2038 X 0.28 -14.911 2.90e-49 

LSTNIGHT 0.98291 1.00 1.99e-3 493.6 0.00 

BSF 10.324 56.75 1.04 9.9024 6.48e-23 

PSF 1.5566 39.21 0.51 3.072 2.14e-3 

MBH -0.032671 16.69 0.01 -2.2705 0.02 

SVF 5.2057 6.98 0.26 20.117 9.97e-87 

Model's Performance 

Adjusted R2 0.979 

RMSE (K) 1.27 

n 5192 
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Table 57. Results from multiple regression inquiries for night-time without 
ISF, BSF, MBH and EBH parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -0.21346 X 0.08 -2.6522 8.02e-3 

LSTNIGHT 0.98351 1.00 2.03e-3 483.97 0.00 

PSF -4.5617 2.60 0.13 -34.222 1.27e-231 

SVF 6.6976 2.60 0.16 41.513 0.00 

Model's Performance 

Adjusted R2 0.978 

RMSE (K) 1.30 

n 5192 

 

 

 

 

 

Table 58. Results from multiple regression inquiries for night-time without 
ISF, PSF and EBH parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -3.4867 X 0.16 -22.041 5.45e-103 

LSTNIGHT 0.98303 1.00 1.99e-3 493.34 0.00 

BSF 7.3418 7.55 0.38 19.297 3.49e-80 

MBH -0.0043805 9.85 0.01 -0.39586 0.69 

SVF 5.8411 2.52 0.16 37.529 6.43e-273 

Model's Performance 

Adjusted R2 0.979 

RMSE (K) 1.27 

n 5192 
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Table 59. Results from multiple regression inquiries for night-time without 
PSF and EBH parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -2.6472  0.32 -8.3861 6.41e-17 

LSTNIGHT 0.98291 1.00 1.99e-3 493.6 0.00 

BSF 8.7675 18.79 0.60 14.614 1.97e-47 

ISF -1.5566 8.44 0.51 -3.072 2.14e-3 

MBH -0.032671 16.69 0.01 -2.2705 0.02 

SVF 5.2057 6.98 0.26 20.117 9.97e-87 

Model's Performance 

Adjusted R2 0.979 

RMSE (K) 1.27 

n 5192 

 

 

 

Table 60. Results from multiple regression inquiries for night-time without 
BSF and MBH parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept 1.5378 X 0.46 3.3212 9.03e-4 

LSTNIGHT 0.98284 1.00 1.98e-3 496.53 0.00 

ISF -6.2076 12.88 0.62 -9.972 3.27e-23 

PSF -3.6798 43.02 0.53 -6.9744 3.46e-12 

SVF 4.9175 3.97 0.19 25.335 1.31e-133 

EBH 0.21322 15.63 0.03 8.1604 4.15e-16 

Model's Performance 

Adjusted R2 0.980 

RMSE (K) 1.26 

n 5192 
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Table 61. Results from multiple regression inquiries for night-time without 
BSF, MBH and PSF parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -1.366 X 0.20 -6.7105 2.15e-11 

LSTNIGHT 0.98289 1.00 1.99e-3 494.29 0.00 

ISF -3.086 6.22 0.43 -7.1003 1.41e-12 

SVF 4.344 3.26 0.18 24.594 1.98e-126 

EBH 0.37572 3.20 0.01 31.632 5.81e-201 

Model's Performance 

Adjusted R2 0.979 

RMSE (K) 1.27 

n 5192 

 

 

 

 
Table 62. Results from multiple regression inquiries for night-time without 
BSF, MBH and ISF parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -2.6482 X 0.20 -13.425 2.03e-40 

LSTNIGHT 0.98308 1.00 2.00e-3 492.04 0.00 

PSF 0.10307 20.78 0.37 0.27845 0.78 

SVF 5.1941 3.89 0.19 26.784 3.91e-148 

EBH 0.32257 12.87 0.02 13.474 1.07e-40 

Model's Performance 

Adjusted R2 0.979 

RMSE (K) 1.27 

n 5192 
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Table 63. Results from multiple regression inquiries for night-time without 
BSF, MBH, ISF and PSF parameters  

 Coefficients VIF SE (K) t-Statistics p-value 

Intercept -2.6019 X 0.11 -24.542 6.26e-126 

LSTNIGHT 0.98308 1.00 2.00e-3 492.1 0.00 

SVF 5.2354 1.61 0.12 41.94 0.00 

EBH 0.31633 1.61 0.01 37.331 2.16e-270 

Model's Performance 

Adjusted R2 0.979 

RMSE (K) 1.27 

n 5192 
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