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Abstract

Microplastics is an ubiquitous contaminant that has been detected in almost any environmental habitat on earth. However,
due to the lack of data the potentially harmful effects on the environment and human health can still not be determined.
In the past five years the interest in the topic has risen dramatically, where drivers include the research community, policy
makers but also the aware customer and thus also certain industries. The demand for better and comparable data drives the
need for harmonization and standardization of existing analytical methods. Currently, the most widely applied instrumental
approach is microspectroscopy based on FTIR, Raman or QCL. These methods have in common that the analysis of the
spectroscopic data is based on spectral library search.

While spectral reference databases for spectral library search can be easily bought on the market and are usually included
in the instrument software the identification of microplastics based on this approach has been criticised for poor data quality
and incomparability. For this reason, the research community has started to compile publicly available reference databases
and is currently discussing parameter settings for spectral library search to improve quality as well as comparability.

Looking at the state of the art of data science and the broad use of machine learning in our day-to-day life it is somewhat
surprising that only with a few exceptions this methodology has not been applied for microplastics detection and quantification
as an alternative to spectral library search. This leads to the question whether there are certain structural aspects of
microplastics data which make the application of machine learning difficult and also how these obstacles can be overcome.

Within this thesis the data originating from µFTIR imaging measurements has been studied from the viewpoint of
unsupervised and supervised learning in order to provide answers to these questions. This was done by developing a novel
graph-based clustering approach as well as different random forest based classifiers. The insights gained from the development
and the results from both methods show that the creation of annotated training data for supervised learning is far from
trivial. Representative samples which are required for sampling training examples are hard to come by. Further, the task of
annotating the sampled training data requires expert knowledge in the fields of spectroscopy as well as chemometrics and
is therefore prone to subjectivity and labeling errors. Among the achievements of this thesis is the creation of a random
forest classifier that shows superior performance, both with respect to data quality and throughput rate. While the effort for
creating these classifiers should not be underestimated the results show that machine learning brings significant advantages
with respect to the analysis of microplastics, such as increased speed and scalability, which is key to allow for large scale
monitoring of this environmental contaminant.





Kurzfassung

Mikroplastik ist ein allgegenwärtiger Umweltschadstoff, der in fast jedem Lebensraum auf der Erde nachgewiesen wurde.
Aufgrund des Mangels an representativen Daten lassen sich die potenziell schädlichen Auswirkungen auf die Umwelt und die
menschliche Gesundheit jedoch noch immer nicht bestimmen. In den letzten fünf Jahren ist das Interesse an diesem Thema
dramatisch gestiegen, wobei die Forschungsgemeinschaft, die politischen Entscheidungsträger, aber auch der Konsument und
damit bestimmte Industriebranchen die Nachfrage nach besseren und vergleichbaren Daten treiben. Der derzeit am häufigsten
angewandte instrumentelle Ansatz ist die Mikrospektroskopie auf der Basis von FTIR, Raman und QCL. Diese Methoden
haben gemeinsam, dass die Analyse der spektroskopischen Daten auf automatischen Abgleichen mit Spektrenbibliotheken
beruht.

Während Spektrenbibliotheken leicht auf dem Markt erhältlich sind und in der Regel auch in der Gerätesoftware enthalten
sind, ist die Identifizierung von Mikroplastik auf der Grundlage dieses Ansatzes wegen der schlechten Datenqualität und
schlechten Vergleichbarkeit immer häufiger kritisiert worden. Aus diesem Grund hat die Forschungsgemeinschaft begonnen,
öffentlich zugängliche Spektrenbibliotheken zusammenzustellen und diskutiert derzeit die Parametereinstellungen für den
automatischen Abgleich in Spektralbibliotheken, um die Qualität und die Vergleichbarkeit zu verbessern.

Betrachtet man den aktuellen Stand der Technik im bereich Data Science und die breite Anwendung des maschinellen
Lernens in unserem täglichen Leben, so ist es etwas verwunderlich, dass diese Methodik nur mit wenigen Ausnahmen bisher
keine Anwendung für die Analyse von Mikroplastik als Alternative zur Spektralbibliotheken gefunden hat. Dies wirft letzlich
die Frage auf, ob es bestimmte strukturelle Aspekte in Mikroplastikdaten gibt, die die Anwendung von maschinellem Lernen
erschweren und weiters, wie diese Hindernisse überwunden werden können.

Im Rahmen dieser Doktorarbeit wurden die aus µFTIR Imaging stammenden Daten unter dem Gesichtspunkt des
unüberwachten und überwachten Lernens untersucht, um Antworten auf diese Fragen zu finden. Dies geschah durch die
Entwicklung eines neuartigen graphenbasierten Clustering-Ansatzes sowie verschiedener Random-Forest-basierter Klassifika-
toren. Die aus der Entwicklung gewonnenen Erkenntnisse und die Ergebnisse beider Methoden zeigen, dass die Erstellung von
annotierten Trainingsdaten für das überwachte Lernen alles andere als trivial ist. Repräsentative Proben, die für die Auswahl
von Trainingsdaten benötigt werden, sind schwer zu beschaffen. Außerdem erfordert die Annotation der Trainingsdaten
Expertenwissen in den Bereichen Spektroskopie und Chemometrie und ist anfällig für Subjektivität und Flüchtigkeitsfehler.
Zu den Errungenschaften dieser Arbeit gehört die Entwicklung eines Random-Forest-Klassifikators, der sowohl in Bezug
auf die Datenqualität als auch auf die Durchsatzrate eine hervorragende Leistung zeigt. Während der Aufwand für die die
Erstellung dieser Klassifikatoren nicht zu unterschätzen ist, zeigen die Ergebnisse, dass maschinelles Lernen erhebliche Vorteile
für die Analyse von Mikroplastik mit sich bringt, wie z.B. eine höhere Geschwindigkeit und Skalierbarkeit, die für eine groß
angelegte Überwachung dieses Kontaminanten notwendig ist.





For my family;
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1 About this thesis
This doctoral thesis follows the cumulative form. Contrary to a monograph peer-reviewed papers are an essential part of
the thesis. In the printed version of this document the publications are supplied as annexes. The public web version only
contains the text body of this document. Table 1 summarizes the publications which make up the central matter of this
thesis. Summaries of the listed publications can be found in section 7.

Table 1: Peer-reviewed publications that are cumulated to form this doctoral thesis.

Citation DOI Title Journal
Hufnagl and Lohninger (2020) 10.1016/j.aca.2019.10.071 A graph-based clustering method with

special focus on hyperspectral imaging
Analytica Chim-
ica Acta

Hufnagl et al. (2019) 10.1039/C9AY00252A A methodology for the fast identifica-
tion and monitoring of microplastics in
environmental samples using random de-
cision forest classifiers

Analytical Meth-
ods

Hufnagl et al. (2022) 10.1021/acs.estlett.1c00851 Computer-Assisted Analysis of Mi-
croplastics in Environmental Samples
Based on µFTIR Imaging in Combina-
tion with Machine Learning

Environmental
Science & Tech-
nology Letters

Weisser et al. (2021) 10.3390/w13060841 From the Well to the Bottle: Identify-
ing Sources of Microplastics in Mineral
Water

Water

Ritschar et al. (2021) 10.1007/s00418-021-02037-1 Classification of target tissues of Eise-
nia fetida using sequential multimodal
chemical analysis and machine learning

Histochemistry
and Cell Biology

2 Introduction
Microplastics (Thompson et al., 2004) is a global pollutant which has been detected in almost any environmental habitat on
earth, as high up as the peak of Mount Everest (Napper et al., 2020) and as deep as the Mariana trench (Peng et al., 2018).
While microplastics was initially associated with ocean pollution, studies addressing terrestrial ecosystems soon revealed that
fresh water (Eerkes-Medrano et al., 2015), soil (Möller et al., 2020) and glaciers (Ambrosini et al., 2019) are also contaminated.
As microplastics are ingested by aquatic organisms they also traverse the food chain. In the human body microplastics have
been detected in placentas of unborn babies (Ragusa et al., 2021) as well as in stool (Schwabl et al., 2019).

Given the ubiquity of microplastics on earth and in organisms there are concerns regarding the effect on the environment
and ecosystem as well as potential health effects to humans. Even though the topic of microplastics has attracted a lot of
attention from researchers over the past fifteen years, well-founded statements regarding their toxicity cannot be made so far.
The reasons for this are manifold. One aspect is the fact that the detection and quantification of microplastics is a complex
and not fully resolved analytical problem. Because of this there is currently no broadly accepted measurement methodology.
Provencher et al. (2020) further criticized the lack of quality and lack of inter-comparability of a large portion of the published
microplastics literature and emphasized the need for harmonization as well as standardization.

Even though standards are currently in development at the International Organization for Standardization (ISO) as well
as other national standardization bodies and first interlaboratory proficiency tests have been conducted (Van Mourik et al.,
2021; Belz et al., 2021; DeFrond et al., 2022) there is still a long way to go to reach global consensus on definitions and
methodological aspects. The following sections will focus on the methodological issues of microplastics analysis to put the
associated research papers of this doctoral thesis into a broader context within the microplastics research domain.

2.1 How to define microplastics?
The definition of microplastics is a disputed matter, even when it comes to defining a size range (Hartmann et al., 2019).
Perhaps the most well-known size definition was given by the National Oceanic and Atmospheric Administration (NOAA)
(Arthur et al., 2009) as all plastic particles which are less than 5 mm in diameter. Considering the SI system this definition
might cause confusion as the ‘micro’ in microplastics can also be associated with a range of 1 µm to 1000 µm. The motivation
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for the definition by NOAA lies in the assumption that plastic particles below 5 mm are more likely to be ingested by
organisms.

In recent years plastic particles which are smaller than 1 µm have also come into the focus of attention. Plastic particles
below that size have been coined ‘nanoplastics’ which is another confusing term, as nanoparticles are commonly defined to be
between 1 nm and 100 nm. ISO/TR 21960:2020 (2020) distinguishes between nanoplastics (1nm − 1000nm), microplastics
(1µm − 1000µm) and large microplastics (1mm − 5mm) to provide a categorization framework that follows the SI system but
takes the NOAA definition into account.

Regarding chemical composition the term ‘plastics’ introduces additional issues as the definition of plastics does not
include elastomers such as rubber or silicone. Within microplastics research, however, man-made polymers are often included
even though they do not fall under the definition of plastic. Similar issues arise when considering plastics with a high content
of additives, co-polymers, composites, surface coatings and tire wear. From a scientific perspective a too narrow definition
might pose a hindrance for future research while on the other hand a globally accepted definition is an essential prerequisite
for regulations and policy making. (Hartmann et al., 2019)

2.2 Detection and quantification approaches

From the perspective of instrumental analytical chemistry the detection of microplastics poses difficulties, especially, if the
target size is less than 500 µm (Hidalgo-Ruz et al., 2012). Below that particle size manipulation of individual particles
becomes more and more difficult. Picking up individual particles, which would allow a spectroscopic analysis via ATR-FTIR,
is thus no longer feasible. Further particle numbers increase with decreasing size which makes manual approaches unsuitable
for gaining representative data. Different instrumental approaches have thus been developed over the course of the recent
years, which are becoming ever more performant in terms of detection limit as well as throughput rate (Käppler et al., 2016;
Renner et al., 2017b; Silva et al., 2018; Xu et al., 2019; Primpke et al., 2020a; Möller et al., 2020; Ivleva, 2021). The more
prominent approaches can be roughly summarized as spectroscopy, thermoanalytical methods and microscopy.

Light microscopy has been criticized to be very prone to bias with error rates estimated to be as high as 70% (Hidalgo-Ruz
et al., 2012). In a recent interlaboratory proficiency test which was conducted by the Southern California Coastal Water
Research Project (SCCWRP) (DeFrond et al., 2022) light microscopy was ruled out as an applicable method in the current
Californian monitoring program. Irrespective of that light microscopy remains an important tool for estimating the total
number of particles (Belz et al., 2021) and is often included in microspectroscopy devices applied for microplastics analysis.
Besides light microscopy fluorescense microscopy has gained increased interest as a surrogate method for detecting microplastics.
Here microplastics are selectively dyed using Nile Red as a fluorescence marker (Maes et al., 2017; Süssmann et al., 2021).

The most prominent thermoanalytical methods (La Nasa et al., 2020; Becker et al., 2020) include pyrolysis gas chromatog-
raphy - mass spectroscopy (py-GC-MS) (Picó and Barceló, 2020) and thermal extraction-desorption gas chromatography -
mass spectroscopy (TED-GC-MS) (Dümichen et al., 2017; Eisentraut et al., 2018; Bannick et al., 2019). The main advantages
of these methods include the possibility to skip extensive sample preparation and the high degree of automation. Thereby
a very high sample throughput can be achieved. Microplastics contamination is thus measured as a mass value which is a
typical measurand in environmental monitoring. Particle size classification is possible by using sieve cascades. However, both
methods sometimes cannot selectively differentiate between certain types of polymers and environmental matrix components.

Spectroscopy is currently the largest and most frequently applied instrument group. Microplastics in the size range of
large microplastics down to 200 µm can be detected and quantified using NIR hyperspectral imaging (Serranti et al., 2018;
Shan et al., 2019). As a manual approach ATR-FTIR can be applied with ease for particles larger than 500 µm (Löder et al.,
2015). Below 500 µm microspectroscopy approaches such as µFTIR and µRaman become predominant for microplastics
detection. These approaches have in common that the sample is usually purified using a preparation scheme (Renner et al.,
2017b; Möller et al., 2020) and then subsequently concentrated on a membrane filter. See figure 1 and 3 for a light microscopy
image of an environmental sample. The spectroscopic measurement is then conducted by measuring the particulate remnants
on the filter surface either by imaging or point-wise measurement. Microspectroscopy brings the advantage, that next to
polymer type information also particle size and shape can be measured.

2.2.1 An overview of microspectroscopy devices

While the analysis of microplastics larger than 500 µm is a rather straightforward matter (speaking from an instrumental
perspective), the range below 200 µm, especially below 50 µm, is a complex analytical problem. By the end of 2019
spectrometer manufacturers began with positioning certain microspectroscopy devices as solutions for microplastics analysis.
However, from the scientific literature we can gather that so far not a single approach can address all issues raised when
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Figure 1: Waste water treatment plant outlet sample prepared with the enzymatic digestion protocol developed by Löder
et al. (2017). The largest particles visible in the image are below 500 µm and can still be characterized using µFTIR imaging
in transmission mode. Above that the particles have to be measured manually using ATR-FTIR. Note, that only a very small
fraction of the present particles are microplatics. See figure 3 for a zoomed-in view of the sample. Courtesy M. G. J. Löder
and C. Laforsch, University of Bayreuth.

analyzing microplastics. Figure 2 gives an overview of devices which are currently in broader use or in the focus of more
recent publications.

A key distinguishing aspect between the methodologies is the way in which the instrument measures the filter sample
spatially. We can here differentiate between imaging and single point approaches. Devices capable of imaging usually rely on
an array detector which can either be one-dimensional (aka. line array (LA)), or two-dimensional (aka. focal plane array
(FPA)). Usually, large areas of interest or, ideally, the entire filter are mapped and the resulting tiles are assembled to form a
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Figure 2: Technical segmentation of the current market showing devices in broader use and upcoming technologies which are
prominently promoted for microplastics analysis. The domain of single point FTIR devices is summarized as ‘All OEMs’ as
these are usually distributed as product variations of their imaging-capable counterparts.

hyperspectral image.
Devices which lack array detectors can, of course, also be used to measure hyperspectral images. However, in the case

of microplastics analysis the time requirement for the measurement will be in the range of days to weeks. Because of this
constraint single point devices use a different approach to measure particles on the filter. Here, the particles are detected
before the spectroscopic measurement is performed. This can be done by capturing an image of the filter in visible light or by
measuring an intensity map at a certain wavelength. The particle contours can then be detected by means of binarization or
a watershed algorithm (Anger et al., 2019; Brandt et al., 2020). Subsequently, spectra are measured at the center of the
particles. Depending on the number of particles present on the filter this approach allows an analysis within a reasonable
amount of time, though limiting the spectroscopic measurement to a subsample of particles is often necessary (Anger et al.,
2018).

In both the imaging and the single point domain there are different spectroscopic techniques in use. As discussed above
Raman can potentially be used to capture hyperspectral images, though practically it has gained little relevance (Käppler
et al., 2016). This niche is thus dominated by focal plane array (FPA) and line array (LA) based systems in combination with
Fourier-transform infrared (FTIR). FPA-based µFTIR devices include the Bruker Hyperion 3000 (Löder et al., 2015), the
Bruker Lumos II and the Agilent Cary 620 (da Silva et al., 2020). LA-based µFTIR are the Perkin Elmer Spotlight 400 and
the Thermofisher Nicolet iM10 MX (Xu and Gowen, 2019). A special case within this niche is the DRS Daylight Spero QT
which is a quantum cascade laser (QCL) based system making use of an FPA bolometer (Primpke et al., 2020c).

Within the single point domain both FTIR and Raman play an important role. In figure 2 the µFTIR devices are not
further specified as they are usually distributed as product variations like the imaging µFTIRs. For example, the Perkin
Elmer Spotlight 200 is a single point device which can be upgraded to a Spotlight 400. In the same way Lumos II can be
bought with a FPA detector or a single detector installed.

The application of Raman microspectroscopy, on the other hand, has gained increased interest as it forms a complementary
technique to FTIR and comes with certain advantages (Xu et al., 2019). First, Raman allows the detection of particles down
to 1 µm. It therefore covers the full size range of microplastics which fall under the ISO definition. Secondly, samples do
not have to be dried carefully before the measurement as Raman is less affected by water. Thirdly, Raman is more robust
regarding colored or black microplastics and further allows to identify additives such as fillers and pigments (Käppler et al.,
2016). Examples of devices include the WITec alpha300, the Renishaw Invia and the Horiba LabRAM (Brandt et al., 2020;
Primpke et al., 2020a).

QCL-based systems are also represented by the Agilent 8700 LDIR and the Photothermal O-PTIR. The 8700 LDIR is a
rather new device but has already been applied in microplastics analysis (Scircle et al., 2020; Mughini-Gras et al., 2021; Li
et al., 2021; Belz et al., 2021). It uses a QCL as an illumination source for reflection measurements. The O-PTIR, on the
other hand, uses the QCL to induce the photothermal effect and allows to measure both an infrared as well as a Raman
signal concurrently with superior quality (Barrett et al., 2020). So far there are only few cases where it has been applied for
microplastics analysis though the technology seems to be promising.

2.2.2 The challenges of measuring microplastics using microspectroscopy

Depending on the used spectroscopic technique there are different issues that arise when measuring microplastics, especially
when dealing with particle sizes below 50 µm. Regarding µFTIR the signal-to-noise ratio of reflectance spectra is usually
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Figure 3: Waste water treatment plant outlet sample prepared with the enzymatic digestion protocol developed by Löder
et al. (2017). Even though particles smaller than 10 µm are visible in the light microscopy image a characterization using
µFTIR in transmission mode is often impossible due to strong scattering effects. See figure 1 for a full view of the sample.
Courtesy M. G. J. Löder and C. Laforsch, University of Bayreuth.

too low to allow a reasonably accurate identification of microplastics. For this reason it is common to measure the filter
membranes in transmission mode. This, however, comes with the disadvantage that spectra of thick particles are sometimes
no longer recognizable due to total absorption. It can also be the case that total absorption arises due to additives which
are strongly absorbing, such as black carbon and pigments. The effect also plays a role in reflectance measurements if the
light path is reflected underneath the particle. In this case the optical path length through the particle is twice as long. The
resulting transflection spectra may thus also be affected by total absorption. The QCL-based 8700 LDIR is a case where this
effect sometimes hampers the identification of particles.

Scattering effects arise if the wavelength of the radiation source comes close to the particle size. In µFTIR this is very
prominent with particles in a size range of 5 µm to 30 µm. The spectra of such particles often exhibit strong baseline
distortions and sometimes peak deformations known as Mie scattering (Bassan et al., 2009). Scattering also occurs with
certain filter types such as silicon wafers and steel meshes at the pores.

Raman, on the other hand, suffers from similar problems due to fluorescence and low signal-to-noise ratios. Further,
different excitation lasers create different Raman spectra which adds to the complexity of building suitable spectral reference
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libraries.
Apart from the spectroscopic technique there are other problems related to microplastics and the embedding matrix.

Polymer ageing due to mechanical stress and oxidative weathering often occurs in environmental microplastics. As a result
changes in the characteristic vibrational bands can be observed, which in more severe cases, might hinder the identification.
Additives such as pigments and fillers overlap the signals created by the polymer backbone. Especially in µRaman spectroscopy
these substances might be stronger Raman scatterers than the polymer.

The used membrane filters also have a strong effect on the measurement. Usually, the filter material is transparent
only within a certain wavelength range. Because of this the spectral range for transmission FTIR has to be limited (e.g. if
aluminum oxide filters are used). (Xu et al., 2019; Ivleva, 2021)

2.2.3 The state of the art of data processing

Xu et al. (2019) observed that chemometric techniques are often neglected within the microplastics literature even though a lot
of research is based on spectroscopy. According to Renner et al. (2018) only 25% of papers reported the data analysis approach
and only 2% gave a more detailed description. The predominant data analysis approach for microplastics identification in
microspectroscopy is spectral library search. On the one hand this is not surprising as search engines as well as commercial
databases are available in most OEM software packages. Further, spectral library search is, after all, one of the workhorses in
day-to-day lab work for identifying unknown substances. On the other hand library search, or more precisely, the literature
which used this technique for microplastics analysis, has been criticized for two main reasons.

Figure 4: Schematic drawing of the measurement process and
data processing in a µFTIR imaging setup. Using focal plane
array or line array detectors the filter surface is measured to cre-
ate a FTIR hyperspectral image. The data is then processed by
means of a machine learning model to detect the microplastics
based on their characteristic vibrational signatures. Published
by Hufnagl et al. (2022) under CC BY 4.0.

First, there is no consensus on what kind of databases
should be used. Even though there are many commercial
polymer databases available, most of them are not tailored
towards microplastics detection. As already discussed earlier,
many effects (e.g. ageing, total absorption, . . . ) are not
represented in these databases, though more recently dedi-
cated commercial microplastics databases have been made
available in the marked. The research community reacted
to this problem by publishing self-made databases (Primpke
et al., 2018; Munno et al., 2020; Cowger et al., 2021).

Secondly, library search algorithms have been found to
lack robustness regarding said effects independently of the
used databases (Renner et al., 2017b). For this reason at-
tempts have been made to improve the results on the algorith-
mic level (Renner et al., 2017a; Primpke et al., 2017; Renner
et al., 2019; Kedzierski et al., 2019; Primpke et al., 2020b).
Additionally, there is no consensus both within research and
standardization on the search criterion for computing the
hit quality index (HQI) as well as the threshold that should
be applied to discard low-quality spectra. In the view of
the author this is perhaps the most critical point for the
following reason. Some literature recommends a HQI thresh-
old of 0.7 without giving a verifiable explanation why this
value was chosen (Renner et al., 2017b). By tuning this value
both the false-negative (FN) and the false-positive (FP) rate
is affected. Without a proper evaluation of this value the
microplastics content may either be overestimated or under-
estimated. However, if the HQI is fixed to a certain value, the FN and FP rate ultimately also depends on the database and
search criterion used. However, the research community and standardization still continues the discussion of setting a suitable
threshold, failing to see that such a definition makes sense only if the database and the search criterion are fixed as well.

Xu et al. (2019) further criticizes that databases are made up of reference spectra which have been measured with a certain
spectroscopic technique, however, when the user applies the database for microplastics detection the used spectroscopic
technique might be a different one. A typical example is the database published by Primpke et al. (2018) which contains
lots of ATR-FTIR spectra even though the intended application is for transmission µFTIR. The database is also available
in the device software of the Agilent 8700 LDIR even though this instrument is QCL-based. In the view of the author this
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critique is well justified, however, there is another aspect to this. Suppose there is a library search routine validated for
spectroscopic method A (including a fixed database, search criterion and HQI threshold) with known FN and FP rates. In
that case the library search routine might still be applied for identifying microplastics using spectroscopic method B. However,
the argument, that one still uses a validated method would be wrong and misleading. In that case the FN and FP rates will
have to be redetermined.

It can be summarized that there are various issues regarding spectral library search that are still unresolved. On the
other hand said problems are well-understood within the chemometrics and data science community. Taking the viewpoint
of machine learning, spectral library search can be categorized as a special case of the k nearest neighbors classifier (kNN),
namely k = 1. As a representative of instance-based learning kNN is also a distance-based learner, where different measures
such as e.g. Pearson correlation or Euclidean distance can be applied to determine the similarity between the training data
and the unknown object. While kNN is a well-established technique and is often used as a benchmark, it is in many cases
preferable to use different learners.

As spectra are high-dimensional data, distance metrics can be severely affected by the Curse of Dimensionality, a term
coined by Bellman (1961) to describe the strange behavior of distance metrics within high-dimensional feature spaces. It
can be observed, that with increasing dimensionality the distances between objects of a dataset become more and more
similar (Jimenez and Landgrebe, 1998). As a result the performance of distance-based classifiers decreases with increasing
dimensionality. Related to this effect is the popular nearest neighbors phenomenon (Radovanović et al., 2010), where a few
objects of the training data become overly popular as nearest neighbors and thus dominate the classification result. Even
though these effects where not specifically studied as part of this doctoral thesis, Primpke et al. (2018) described different
issues when assembling their database. Firstly, the polymers HDPE and LDPE could not be distinguished due to an artifact
caused by the ATR crystal. Only after the artifact was removed the two polymers could be distinguished. Considering, that
the artifact was only a diminutive feature of the spectra and did not overlap with any of the vibrational bands it is quite
astounding that it had such a severe effect. Secondly, the authors describe a long process of iteratively removing and adding
spectra to the database because the presence or absence of entries created cross-dependencies in the results. Both issues point
towards the discussed issues with high-dimensional feature spaces.

Even though machine learning has only played a minor role in microplastics analysis so far there are some examples of its
application. In the domain of NIR hyperspectral imaging Serranti et al. (2018) and Shan et al. (2019) trained classification
models based on partical least squares discriminant analysis (PLS-DA) (Wold et al., 2001; Lee et al., 2018) and Support Vector
Machine (SVM) (Cortes and Vapnik, 1995) respectively. Paul et al. (2018) and Hahn et al. (2019) developed pre-screening
methods based on bulk spectra of the samples using SVM and PLS-R respectively. The latter two works are one of the few
examples of regression models.

Within the domain of µFTIR imaging, however, only spectral library search approaches (Primpke et al., 2017, 2018; Liu
et al., 2019) had been published at that time. Hufnagl et al. (2019) described a random forest based approach (Breiman,
2001) for detecting five common polymer types using Bruker Hyperion 3000. Da Silva et al. (2020) compared PLS-DA and
soft independent modeling of class analogies (SIMCA) for nine polymer types using Agilent Cary 620. Weisser et al. (2021)
used the methodology of Hufnagl et al. (2019) to derive random forests for identifying sources of microplastics in drinking
water. This model was also able to detect nine common polymers using Agilent Cary 620. The to date most advanced
random forest which can detect more than twenty-one polymers was published by Hufnagl et al. (2022) for the devices Bruker
Hyperion 3000 and Bruker Lumos II (see figure 4 for a schematic drawing of the analysis process). Other spectral library
search based methods for µFTIR imaging which have been published after Hufnagl et al. (2019) include Primpke et al. (2020b)
and Corradini et al. (2021).

This doctoral thesis also deals with unsupervised learning. Hufnagl and Lohninger (2020) studied the structural aspects of
microplastics data using a newly developed clustering technique. Wander et al. (2020) applied uniform manifold approximation
and projection (UMAP) as well as k-means and hierarchical density based clustering (HDBSCAN) in a workflow to analyze
datasets from Agilent Cary 620 and Bruker Hyperion 3000.

Other examples of machine learning include Kedzierski et al. (2019) who developed a classifier using kNN (in this case
k > 1) for ATR-FTIR. The training data was reused by de Medeiros Back et al. (2022) to benchmark random forests, SVM,
logistic regression, kNN, decision trees and Gaussian naive bayes. Kumar et al. (2021) developed a random forest based
approach for Raman spectroscopy. Recently, Brandt et al. (2021) demonstrated the potential of autoencoding neural networks
(Hinton and Salakhutdinov, 2006; Van Der Maaten et al., 2009) for noise reduction and removal of spectral distortions in
spectra originating from different techniques.
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2.2.4 µFTIR Imaging: Pros and Cons

As depicted in figure 2 µFTIR imaging can be divided into focal plane array (FPA) based systems and line array (LA) based
systems. In order to apply µFTIR imaging the sample needs to be purified using a sample preparation scheme. The literature
describes various approaches to selectively remove and digest the environmental matrix which in turn increases the relative
abundance of microplastics. One common step is density separation which will remove sediments from the sample. After
that follows the chemical removal of the matrix by either alkaline, acidic, oxidative or enzymatic treatment (Renner et al.,
2017b; Möller et al., 2020). In this thesis the samples have been prepared using an enzymatic purification scheme developed
by Löder et al. (2017). While the treatment with enzymes is rather time consuming and costly it comes with the advantage
that microplastics are not damaged or lost because of the use of strong chemicals (Hurley et al., 2018). On the other hand
there are certain matrix components which cannot be digested using enzymes. As a result there are usually more remnants
after sample preparation in comparison to other preparation schemes. In the context of this doctoral thesis this circumstance
is in so far beneficial for developing machine learning based approaches as the data thus contains various disruptive factors
which help to make the models more robust and generalizable.

After preparation the sample is concentrated on an IR transparent filter. Common examples include aluminum oxide (aka.
Anodisc) and monocrystalline silicon wafers. Less common are polytetrafluoroethylene (PTFE) and metal meshes. Anodiscs
become IR intransparent below 1250 cm−1. Above 3595 cm−1 interferences with water induce a lot of noise. Because of this
the measured spectral range is limited accordingly. The measurement setup for Bruker Hyperion 3000 is described in more
detail in Löder et al. (2015).

The result of the measurement is a hyperspectral image with a spectral resolution of 4 cm−1 and a lateral resolution of ca.
11µm × 11µm. Typical dimensions are 1024 × 1024 pixels though they can be considerably larger. The given characteristics
are achievable for Bruker Hyperion 3000, Bruker Lumos II and Agilent Cary 620, which are all FPA-based systems. For
LA-based systems both the spectral resolution as well as the imaged area are usually considerably reduced in order to conserve
measurement time.

Imaging, especially FPA-based imaging, comes with the advantage that the entire sample can be measured. As discussed
earlier it is common in single point approaches to measure only a subsample of particles. Further, the whole contour of the
particle is measured while single point approaches usually rely on a single spectrum at the center of the particle. This comes
with the advantage that more information is available and also allows to deal with agglomerates of particles, which pose a
problem for the image segmentation algorithms that locate the individual particles in single point approaches. Additionally,
there is no measurement time dependence on the number of particles on the filter. Because of this also very complex samples
such as sewage sludge or sediments require the same amount of measurement time as say drinking water. On the other hand
this is also one of the arguments why µRaman is a preferred candidate for the monitoring of drinking water as it makes little
sense to measure samples with µFTIR imaging if only a few particles are present on the filter.

However, µFTIR comes at a cost. The data which is produced during the measurement requires often more than 5 GB of
memory (there are examples of up to 70 GB) and the number of pixels (or spectra respectively) is usually in the millions.
Because of this the data analysis is non-trivial and requires a lot of time using the current state of the art. The perhaps most
widely used software for this purpose is siMPle (Primpke et al., 2020b), a spectral library search based approach. According
to Primpke et al. (2020a) the analysis time needed to process a single sample is about 4 h to 48 h. Here the analysis time that
is needed for the expert audit of the data is not included. While FPA-based µFTIR imaging comes with many advantages
from an instrumental perspective, the large amounts of data produced by a single measurement create a bottleneck for data
analysis. This has prevented the success of this method so far.

3 Research questions and goals of this thesis
The previous sections gave a brief introduction to the problem of microplastics analysis with special focus on analytical
instruments, typical challenges that arise with microspectroscopy and the current state of data processing approaches. A
common thread running through all discussed aspects is that there is no single approach, be it instrumental or data analytical,
that provides a solution for the problem of microplastics detection and quantification in all its aspects. This is in part rooted
in the fact that there are conflicting definitions of microplastics. Moreover, there are concerns voiced that it is too early to
standardize and harmonize methods and that further research and development is needed.1

1The author observed that at the SETAC Europe 31st Annual Meeting Virtual Conference the question was raised for whom the methods
should be standardized and harmonized. Interestingly, this question could not be answered. This is also in accordance with the polls conducted at
the JRC online symposium (09.09.21) Challenges of microplastics analysis - bridging state of the art and policy needs which revealed that most
attendees felt that most of the focus should be laid on method development.
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Comparing the state of the art of data processing in microplastics analysis with other fields which make use of spectroscopy
(e.g. remote sensing, process analytical technologies, . . . ) it is indeed interesting to find that only a few researchers made use
of machine learning approaches for microplastics analysis and not a single one of the proposed methods has been used in a
broader sense (e.g. like monitoring studies). On the other hand Renner et al. (2017b) stressed the need to develop more
robust spectral library search approaches to address the already discussed issues. In the view of the author this raises the
question why machine learning methods have been used so scarcely in this field and what potential impact the broader use of
it could have on microplastics research and monitoring, especially if one considers successful applications from other fields
(Plaza et al., 2009; Zhai et al., 2021).

From these considerations the author deduces the following research questions:

1. What are the structural aspects of microplastics measurement data which govern the performance of machine learning
approaches?

2. What are key obstacles that need to be overcome to apply machine learning more broadly for microplastics detection
and quantification?

Considering the different microscopy devices and spectroscopic techniques listed in figure 2 µFTIR imaging is ideal to provide
answers for these research questions as the datasets contain a wealth of data examples for testing different hypotheses and the
lateral context (the fact that we are dealing with images) adds another possibility to validate results based on human expert
knowledge.

The goals of this thesis are thus to

1. develop a clustering algorithm for the study of the structural aspects of hyperspectral imaging data and

2. build a classifier for microplastics detection and quantification to gain knowledge about the methodological challenges.

4 Methodology
In the more classical sense machine learning algorithms (Hastie et al., 2009) can be divided into supervised and unsupervised
learning approaches. Supervised learning infers a function from labeled training data, which is a dataset of objects and
associated labels. The perhaps most matured example is classification (Domingos, 2012). Unsupervised learning, on the other
hand, has to infer such a function by self-discovering patterns within the training dataset, as there are no labels provided with
the data. These differences come with the consequence that unsupervised learning is often applied in exploratory settings
or situations, where labeled training data is difficult to come by. Expert annotation, the process by which training data is
labeled, can be costly and time consuming (Sheng et al., 2008). Further, experts may overlook certain aspects of the data
which might become visible by using unsupervised learning techniques such as cluster analysis (Jain et al., 1999; Xu and
Wunsch, 2005; Jain, 2010). Supervised learning is thus preferable in situations where a task with a definable objective has to
be repeated multiple times.

Before pursuing the aim of building a classifier for detecting microplastics a profound understanding of structural aspects of
µFTIR imaging data should be obtained. Combining the knowledge obtained from applying both unsupervised and supervised
learning further allows to compare and validate two very antithetic approaches with each other. For this reason the first
research which was done for this doctoral thesis focused on cluster analysis.

4.1 Cluster analysis using a novel graph-based approach
Even though cluster analysis is a representative of unsupervised learning there are usually some assumptions that have to
be made by an expert from which decisions can be derived, such as the kind of data preprocessing, the applied similarity
measure and the selection of the clustering algorithm. In the case of µFTIR measurement data of membrane filters there is
already a lot of information available which can be used to formulate assumptions about structural aspects of the data and
the objective of the clustering:

• The objective of the cluster analysis is the following: given a µFTIR image the task is to detect microplastics in the
sample and assign them to different clusters according to their polymer type.

• The number of clusters is unknown in advance.

• Other particles which are present on the membrane filter originate from the environment and can therefore be very
heterogeneous regarding their chemical composition.
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• The spectra (or pixels respectively) of the membrane filter have been background corrected.

• Due to the limited lateral resolution of FPA-based µFTIR imaging, or because particles may overlap, mixed spectra are
to be expected.

From this information we can now derive certain assumptions about the datasets. A basic model for a cluster that corresponds
to a chemical compound (e.g. microplastics of the same polymer type) is a hyperellipsoidal data distribution. One end of the
hyperellipsoid structure is closely located at the coordinate origin while the other end protrudes into the d-dimensional feature
space. Moving from the origin along the main axis of the hyperellipsoid the spectral absorption increases. The extent of the
other axes correspond to variations in the spectra and noise. The spectra of the membrane filter form a hyperspherical data
distribution at the origin. Because of the expected mixture effects the clusters will not be clearly separated from each other,
but will be connected by spectra which can be seen as linear combinations of the different chemical compounds and the filter.

Another assumption is about the spatial extent of the clusters. Consider the case that we have a very homogeneous
constituent on the filter, then its spectra will show only minor variations which may result in a very compact cluster. On
the other hand, inhomogeneous material, such as remnants from the environment, may cause diffuse clusters of large extent.
Further, there might be marginal differences in the spectra which may be indicative of different species.

Figure 5 depicts two PCA plots where structural features of a µFTIR imaging dataset and a training dataset for
classification are depicted. Even though these PCA plots are two-dimensional projections of a very high dimensional feature
space the visible structures seem to support the stated assumptions.

(a) (b)

(c) class colors

Figure 5: PCA plots of (a) a µFTIR imaging dataset (Hufnagl et al., 2019) which is available through 10.5281/zenodo.2555732
and (b) the training dataset which was used to derive the random forest model in Hufnagl et al. (2022). The colors in (a)
correspond to the classification result obtained by the random forest and in (b) they correspond to the expert labels. For
both datasets the first derivative of the spectra was used to compute the PCA plot.

A common approach in the development and comparison of clustering algorithms is to apply them to 2D datasets where
point clouds depict different forms of separability problems (Zahn, 1971; Veenman et al., 2002; Gionis et al., 2007; Fu
and Medico, 2007; Jain and Law, 2005; Chang and Yeung, 2008). Even though separating clusters in the well-established
benchmarks is very challenging, the stated assumptions about the structural aspects of µFTIR imaging data is hardly reflected
in them. For this reason a benchmarking of common clustering algorithms based on datasets which incorporate such structures
was already conducted in the author’s diploma thesis (Steindl, 2018, p. 67-77).

Another topic of that diploma thesis was the development of a new graph-based clustering algorithm dubbed graph-based
competitive clustering (GBCC) which was also tested on these datasets. GBCC follows the idea that clusters can be separated
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by using the gradient of distances between consecutive pairs of observations along a path to determine the longest distance
as a cluster border. The concept is independent of the scales of the clusters, meaning that a border can be determined
independently of the relative extent of the clusters. It was found, that only GBCC and KNSC (Shi and Malik, 2000),
which is a representative of spectral clustering (Von Luxburg, 2007), could solve certain separability problems. However,
the application of GBCC to hyperspectral imaging datasets yielded rather unsatisfying results as the original methodology
of detecting dense centers for starting the algorithm was, back then, not very sophisticated. The method proved to be not
sensitive enough to detect minor variations of density in the data, which is key for detecting microplastics in µFTIR datasets.

In Hufnagl and Lohninger (2020) GBCC was revised to address the stated issues. First the concept behind the center
detection was changed. Secondly, the source code was rewritten from scratch and optimized in multiple iterations to increase
its computational speed. A specialized sparse matrix structure was developed, as the standard implementation in Matlab
(www.mathworks.com) proved to be too slow for the clustering step. Further, the graph computation was parallelized to speed
up the computation of the k nearest neighbor graph. GBCC was then compared with k-means, DBSCAN (Ester et al., 1996)
and KNSC on a multi-challenge 2D dataset (Hufnagl and Lohninger, 2019). In order to assess GBCC’s performance with
respect to hyperspectral imaging problems it was applied to a multimodal hyperspectral image of precipitated atmospheric
particulate matter combining Raman spectroscopy with energy dispersive electron probe X-ray (EDX) (Ofner et al., 2015) as
well as a µFTIR imaging dataset of microplastics (Hufnagl et al., 2019). The former dataset has been thoroughly studied
using PCA, hierarchical clustering (HCA), k-means and vertex component analysis (VCA) (Nascimento and Dias, 2005) which
allowed the comparison of GBCC’s results with those from an independently working expert. As research and development
for the random forest classifiers was done in parallel to this work the results published in Hufnagl et al. (2019) could be
compared to the one obtained with GBCC.

4.2 Classification using random forests

Leveraging the knowledge gained from the previously described clustering experiments a preliminary study (Hufnagl et al.,
2019) for the development of classifiers was conducted to understand the behavior of random forests (Breiman, 2001) in the
context of microplastics classification. The decision to use random forests was based on their performance regarding variable
selection in high-dimensional classification problems and their ability to solve non-linear problems.

For the creation of a labeled training dataset the author formed a group of three experts, including himself, to establish
a ground truth for the polymer types polyethylene (PE), polypropylene (PP), poly(methyl methacrylate) (PMMA), poly-
acrylonitrile (PAN) and polystyrene (PS). It was assumed from the beginning that in order to create a broadly applicable
classifier enough variability has to be ensured in the training data to also reflect differing expert opinions. As a source for
labeled microplastics spectra a spiked sample measured with a Bruker Hyperion 3000 was used. Spectra from the matrix and
the filter surface were sampled as well.

A common approach in the data processing of spectra is to subject them to a form of preprocessing, such as baseline
correction or noise filtering (Renner et al., 2018). In this study a different approach was taken by applying spectral descriptors
(SPDCs) (Lohninger and Ofner, 2014). In short, SPDCs are simple mathematical functions which can be defined by a
spectroscopy expert to map characteristic vibrational patterns in the spectra, such as a certain peak, to a single descriptive
number. By doing so for multiple classes of microplastics the expert creates a set of functions which can be used to map the
original raw data feature space into a descriptor space. This usually also means a significant dimensionality reduction from
hundreds of spectral sampling points to usually less than 50 SPDCs. Further, this method also has a de-correlating effect on
the data, which is always beneficial for the performance of classifiers.

In an initial experiment it could be shown that when the inferred random forest was applied to other datasets from the
literature (Primpke et al., 2018) the model performed poorly and created lots of false positives, especially when considering
the matrix and thick particles due to total absorption. By sampling additional matrix spectra the performance of the random
forest model improved significantly. However, datasets with microplastics that exhibit strong total absorption, but where, on
the other hand, the ground truth can be assured, where not available at that time, which is why this matter was addressed
later on. Classification results which have been obtained with this model are depicted in figures 6a and 6c. Performance
metrics of the random forest model where computed by means of out-of-bag estimates (Breiman, 2001; Biau and Scornet,
2016) as well as by binary confusion matrices, which were obtained from a separate test dataset.

In a follow-up study (Weisser et al., 2021) the method described in Hufnagl et al. (2019) was adapted for the context of
microplastics detection in mineral water. Here a training dataset for the polymers polyethylene (PE), polypropylene (PP),
polyethylene terephthalate (PET), polyvinylchloride (PVC), polystyrene (PS), polytetrafluoroethylene (PTFE), polyamide
(PA), polylactic acid (PLA), ethylene vinyl alcohol (EvOH) was assembled. Further, cellulose fibers from lab coats and
wipes as well as skin particles were sampled to account for possible contamination during sample preparation. The data was
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(a) ‘RefEnv1’ (b) ‘RefEnv1’

(c) ‘RefEnv2’ (d) ‘RefEnv2’

(e) class colors

Figure 6: A comparison of classification results on two µFTIR datasets using the random forest models. (a) and (c) have
been analyzed using the model of Hufnagl et al. (2019) whereas (b) and (d) have been analyzed using the extended model of
Hufnagl et al. (2022). ‘RefEnv1’ and ‘RefEnv2’ were published by Primpke et al. (2018) under CC BY 4.0. (a) and (c) are
available in the supporting information of Hufnagl et al. (2019) under CC BY 3.0.

measured using an Agilent Cary 620. In Hufnagl et al. (2019) the validation was based on binary confusion matrices. While
these give a more detailed insight into the behavior of each binary classifier the cross-dependencies between the classifiers can
not be assessed. For this reason a script for computing multi-class confusion matrices was implemented to validate the new
model. Global multi-class performance measures (Ballabio et al., 2018) as well as sensitivity, specificity and precision of the
ensemble of classifiers could thus be computed.
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Using the gathered experience from the previous studies the original training dataset used in Hufnagl et al. (2019), which
consisted of 3270 spectra, was iteratively enhanced to address different issues such as total absorption, Mie scattering and
polymer ageing. In the latter case it was found, that the model sometimes had difficulties identifying weathered microplastics
in real environmental samples. Even though in the encountered cases the spectral signatures still allowed an easy identification
of the polymer type, parts of the particles were not identified or the result was very noisy. Considering, that the original
training data was based on spiked samples where microplastics had been created artificially from reference materials the
original model was thus biased. By using a larger collection of real world samples the robustness of the model could be
improved for the more common polymers by also sampling weathered microplastics spectra. Further, the model was also
enhanced with training data sampled from Bruker Lumos II datasets. In this way the model became applicable for both types
of devices. In Hufnagl et al. (2022) the number of spectra in the training data already exceeded 12000 spectra of which 50%
were matrix spectra. This made the model very robust with respect to different kinds of matrices, including sediment, soil,
compost and sewage sludge. Further, the number of polymer types which can be identified by the model was increased to 21,
making it the model with the broadest applicability so far. In figure 6 the random forest models from Hufnagl et al. (2019)
and Hufnagl et al. (2022) are compared based on two well-studied datasets from the literature.

In order to reduce the effect of label noise in the microplastics training spectra a special auditing scheme was developed.
Label noise (aka. class noise) (Nettleton et al., 2010; Frénay and Verleysen, 2014) arises if the annotating expert makes a
mistake when defining the label of an observation of the training data. There are different reasons why label noise may occur.
It may be that the annotator is distracted at a certain moment and simply sets the wrong label. Another reason may be that
the data that shall be annotated is difficult to interpret which makes the process subjective. Reidsma and op den Akker
(2008) showed the effect subjectivity has on the inferred classifiers by using datasets which have been annotated by multiple
experts for a natural language processing task. Not surprisingly, the classifiers performed better when they were applied to
test data annotated by the same expert, while they performed inferior on other test data as a consequence of the subjectivity
of the other experts. This experiment inspired a data auditing process, which was used in Hufnagl et al. (2022) to reduce
possible label noise from the training data. From each annotating expert a random forest model was inferred based on his or
her training data. This model was then applied to the training datasets provided by the other annotating experts. If e is the
number of experts, then each spectrum thus received an expert label plus e − 1 votes from the random forest models. In this
way labeling errors could be identified easily because of the low agreement of votes cast by the models and the label given by
the expert.

In the context of this thesis Ritschar et al. (2021) forms the basis for future research regarding the detection of microplastics
in tissues. In this work the method described in Hufnagl et al. (2019) was adapted for segmenting tissue sections of the model
organism Eisenia fetida using µFTIR imaging in order to identify target tissue for ecotoxicological analysis. In a second step
MALDI-MS imaging is applied for detecting species which are indicative of metabolic changes. The tissue was segmented into
three classes, which were ‘muscle’, ‘digestive system’ and ‘other tissue’. A fourth class accounted for the background. In order
to ensure that the random forest model generalizes well on new datasets different sections and different worms were used as a
source for training data. The inferred model was then validated by means of Monte Carlo cross validation (Xu and Liang,
2001; Westad and Marini, 2015). Figure 7 shows the application of the random forest model to different thin-sections.

5 Results and Discussion
The following discussion of the results will lay the focus on aspects of the cumulated papers (see table 1) which are relevant in
the context of the research questions and goals of this thesis and the related microplastics and machine learning research
literature. Additional findings which are not central to this thesis are mentioned in section 7. The reader is advised to read
the cumulated papers before proceeding.

5.1 Structural aspects of microplastics data
5.1.1 Subjective annotation and label noise

If we follow the aim of building a supervised machine learning approach for performing a specific task we have to provide
information to the learner which describes the objective in terms of labeled training data. In the context of this doctoral
thesis this means that we have to sample spectra from µFTIR datasets and annotate them using predefined class labels. Even
though this seems trivial at first glance there are various effects that make the interpretation of the spectra very difficult.
As discussed in sections 2.2.2, 2.2.4 and 4.1 we have to deal with e.g. polymer ageing, total absorption, Mie scattering and
overlapping particles.
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Figure 7: Tissue sections of Eisenia fetida measured using µFTIR and classified with random forests. blue=‘background’,
red=‘muscle’, green=‘digestive system’, orange=‘other tissue’. Adapted from Ritschar et al. (2021) under CC BY 4.0.

As a simple example consider the case where the filter just contains artificial microplastics with no matrix present. Here,
the decision what spectra should be chosen for representing the particle edges is still problematic, because weak remnants of
the spectral signatures of a certain microplastics particle might still occur in pixels which are already relatively distant to
the observed edge in the light microscopy image. Thus, it is not obvious for an expert which pixels should be attributed to
the particle edge or the filter. If we now consider the effects that we are confronted with in a real world sample the task of
sampling and annotating spectra becomes even more difficult. Because of this experts might also disagree regarding the way
spectra are sampled and regarding the chosen labels.

With the advent of crowdsourcing solutions (Welinder et al., 2010) that facilitate the acquisition of large quantities of
non-expert labels for applications such as natural language tasks (Snow et al., 2008) and computer vision (Tommasi et al.,
2017) there has been an increased awareness of the problem that both the data as well as the labels may be erroneous and
biased (Frénay and Verleysen, 2014). One might argue that subjective tasks, such as describing the emotional content of
newspaper headlines, is far removed from annotating polymer spectra yet there is literature to be found also in the natural
sciences which address similar issues (Millard and Richardson, 2015; Malossini et al., 2006; Hughes et al., 2004; Albert and
Dodd, 2004; Smyth et al., 1995).

Subjectivity in the context of mathematical modeling is also discussed by Hennig (2010), who takes a constructivist
perspective and distinguishes between our personal reality and the observer-independent reality to which we have no access
to. In the context of machine learning the labeled training data is sometimes referred to as the ground truth. Yet beyond a
purely mathematical context this term is misleading as we cannot define an observer-independent truth. This ultimately also
applies to the annotation of spectra as could be observed when assembling the training data annotated by different experts
(Hufnagl et al., 2019). If our goal is to create a classifier which makes predictions that are accepted by many different users it
therefore makes sense to ensure that different personal truths regarding the sampled and annotated spectra are reflected
within the training datasets.

Besides that the process of annotating spectra is subjective, it is also tedious, considering the large number of spectra
which have been sampled for building the random forest classifiers. Inevitably, the annotating expert will sooner or later
make mistakes due to distraction or fatigue. It is therefore important to consider that these labeling errors can have an
effect on the classification. In that context the type of machine learning approach has to be considered because algorithms
exhibit different levels of robustness regarding the label noise effect (Folleco et al., 2008). Frénay and Verleysen (2014) give a
review about different ways to deal with label noise. The already discussed approach which was used in (Hufnagl et al., 2022)
provided a simple and yet effective approach to spot labeling errors in the training data.

26

https://creativecommons.org/licenses/by/4.0/


(a) Cluster analysis (b) Classification

(c) class colors

Figure 8: A comparison of GBCC’s clustering result (a) (Hufnagl and Lohninger, 2020) with the classification result (b) as
published by Hufnagl et al. (2019).

5.1.2 Clustering vs. classification

The impossibility of defining an observer-independent truth also concerns cluster analysis. In a later paper Hennig (2015)
discussed the question ‘What are the true clusters?’ as comparing and validating clustering algorithms ultimately depends on
what we define as a cluster or the ‘true’ clusters. It is thus not surprising that there is no general definition of a cluster. It
follows that what we perceive as a ‘good’ clustering in the end depends on the goal which we want to achieve and does not
constitute some fundamental observer-independent truth.

However, within the literature that deals with the development of clustering algorithms it is still a common validation
approach to apply the algorithm to labeled training datasets that originally have been designed for a specific classification
task. The result of the clustering algorithm is then compared to the labels of the training data, which is used as a ground
truth to compute error rates. The problem with this approach is, that it is a mere assumption that class labels and the data
structure coincide in some way (Von Luxburg et al., 2012). Further, as with classification algorithms, the data that is the
target of the analysis might have a very different structure.

This is evident if one compares figures 5a and 5b where PCA plots of a µFTIR dataset and the training dataset used in
Hufnagl et al. (2022) are depicted. Even though both plots show the hyperellipsoid structures which have been described in
section 4.1 the labeled training data is a very incomplete picture of the µFTIR data. The reason is simply that the experts
chose not only the labels but also the spectra. Therefore, the labeled training data is only a subsample that depends on
the ability of the expert to define a label. The experts didn’t sample spectra where they were unsure what label should be
assigned. This is typically the case if one encounters a spectrum which resembles a polymer but also looks very similar to
some matrix component.

In Hufnagl and Lohninger (2020) the clustering result obtained with GBCC was not compared to labeled training data,
but instead to the classification result obtained by the random forest model of Hufnagl et al. (2019) as can be seen in figure
8. This validation approach is not better than using labeled training data as a benchmark, because the criticism voiced by
Von Luxburg et al. (2012) also translates to this case, but the comparison allowed an interesting insight. By comparing the
found microplastics it can be seen, that the particles which have been detected by means of cluster analysis are often slightly
larger than the ones detected by means of classification. An explanation for these differences might be, that the variability of
the spectra at the particle edges is considerably higher than at the center. Therefore, it is very difficult to sample enough
spectra that the edges are well reflected in the training data. Further, the choice of adding a certain spectrum from the
edge to a microplastics class is not always obvious, as the characteristic spectral signature might already be very weak and
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distorted because of scattering effects. Once the random forest is trained the decision boundaries are fixed. GBCC, however,
assigned these spectra due to their proximity in the feature space. It will therefore be more flexible regarding mixture effects.

In conclusion it proved to be a useful comparison as GBCC highlighted weaknesses in the classification results that can
not be detected by means of classification performance measures (Ballabio et al., 2018). It thus makes sense to validate
the performance of a classifier with unsupervised learning approaches such as cluster analysis. In a similar way the results
published by Wander et al. (2020), who used PCA, k-means and UMAP to cluster the dataset ‘RefEnv2’ (Primpke et al.,
2018), can be compared to the random forest results shown in figures 6c and 6d.

5.1.3 Spectral variability of microplastics and matrix components

(a)

(b) class colors

Figure 9: Waste water treatment plant outlet sample analyzed using random forests. Published by Hufnagl et al. (2022)
under CC BY 4.0.
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The perhaps most striking example why the variability of the microplastics spectra needs to be modeled can be seen by
comparing figures 6c and 6d. Here the model developed in Hufnagl et al. (2019) could not detect any of the larger (and thus
thicker) particles while the improved model described in Hufnagl et al. (2022) could detect them and even distinguish between
PP and PE. However, there are some particles where the class affiliation is noisy, meaning that different polymers have been
assigned at neighboring pixels. The reason for this is that with increasing total absorption there is less and less information
which can be used to distinguish between the polymers. For example PP, PE and EVAc look very similar if one compares
spectra which exhibit strong total absorption. Because of this thick particles sometimes show a noisy mixture of these three
classes as can be seen in figure 9. Figures 6a and 6b also show that the increase in training data also had a positive effect on
smaller microplastics if one closely compares the detected contours in both images.

Overall the models performance with respect to false positive rates has improved considerably by ensuring that matrices
from different environmental origins have been incorporated in the training data. The broad applicability regarding different
matrices is also shown in Hufnagl et al. (2022, fig. 1), where the random forest has been applied to plankton, sediment, soil,
compost and other matrices. However, cases of false positives remain which are often caused by noisy total absorption spectra
of matrix components. These misclassified cases arise because a very noisy spectrum will traverse the decision trees of the
random forest and arrive at a leave node of a polymer with a certain non-zero probability. While this seems unlikely one
should keep in mind that we are dealing with millions of spectra that are classified during the analysis.

5.1.4 Device bias

An important aspect regarding the problem of building a machine learning model that generalizes well across different
µFTIR devices could be identified during the research conducted for the publication by Weisser et al. (2021). The model
developed in Hufnagl et al. (2019) could detect microplastics in the data that was measured using the Agilent Cary 620,
however, with a decreased performance. While Bruker Hyperion 3000 and Agilent Cary 620 are very similar devices, there are
certain differences which create slightly different data. These include, for example, the optical pathway, the detector and the
apodization function. In Hufnagl et al. (2022) the training data was already extended to also include spectra from other
devices such as Bruker Lumos II. It was found that the performance of the model improved for these devices, however, further
research is needed to better understand the influence certain differences between the µFTIR devices have on the classification
result. A comparative study is insofar difficult as this would require a lab where different µFTIR imaging devices are located
next to each other. A transport of filter samples between labs would not make sense in that case because some particles
would move or worse be lost, making the data incomparable.

5.2 Performance of the learning approaches
5.2.1 Throughput rate

A major factor that governs the throughput rate regarding the number of samples which can be processed within a certain
time frame is the computational speed of the algorithms. In this context clustering is very slow compared to classification.
The computation times required to cluster the dataset shown in figure 8 using GBCC (Hufnagl and Lohninger, 2020) was
more than a day. The specific hardware used for the computation was the same as the one used in Hufnagl et al. (2019). The
main bottleneck was the computation of the kNN graph even though the process is parallelized. In direct communications
with the first author of Wander et al. (2020) it was found that the long computation times are probably related to the used
code base, which was Matlab R2016b. According to the author the python scripts for UMAP finished computations on
much larger datasets within a few hours, even though UMAP also relies on kNN graphs. While there might be room for
further improvement regarding the computational speed GBCC remains an exploratory analysis approach and is unsuitable
for the processing of multiple samples on a routine basis.

Regarding classification the situation is quite different. The performance assessment conducted in Hufnagl et al. (2019)
based on the random forest for six binary classifiers allowed an estimation of computation times for 20 polymers and 106

pixels, which yielded 15 min. In Hufnagl et al. (2022) this estimation proved to be correct as the random forest for 22 binary
classifiers requires about 20 min. By using a statistical detection method for masking the pixels that cover the filter surface
the computational time can often be reduced by more than 50%. The computation time is thus no longer a bottleneck for the
analysis. The software siMPle (Primpke et al., 2020b), which is based on spectral library search, requires more than 4 hours
in comparison (Primpke et al., 2020a).

Another important aspect is the number of parameters that needs to be chosen by the user for the application of the
approach. In siMPle the user has to optimize more than 3 parameters for samples of different matrix types. Considering
that the computation time is rather long this can become a very tedious iterative process. The design philosophy behind the
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random forest model is that all parameters are fixed and that no optimization has to be done by the user. This can save the
user a lot of time if the samples have a high variability.

5.2.2 Statistical performance

The performance assessments based on confusion matrices for both models show that the most difficult training problem is
the differentiation between microplastics and other spectra while wrong assignments among polymer classes are rare (Hufnagl
et al., 2019, fig. 3)(Hufnagl et al., 2022, tab. S2). This highlights the importance of the ‘Non-Polymer’ or ‘Other’ class
regarding the overall result. False positives, meaning spectra which are wrongly identified as microplastics, and false negatives,
true microplastics which are not detected, are in the end the most important performance indicator. However, even though
the accuracy of the random forest for 21 polymer classes is convincing, one should keep in mind that the conducted Monte
Carlo cross validation (Xu and Liang, 2001) has its limitations. As discussed more in-depth by Westad and Marini (2015) a
different approach to cross validation would be to split the samples according to the measurement devices, the matrices or
any kind of other factor that may have a strong influence on the data. This would give more information about the stability
of the model and show sources of variation that need special attention for future development. Further, cross validation
is commonly known to cause overfitting, if it is used iteratively during the development process, which in turn causes an
underestimation of the classification error. Therefore a truly independent test dataset, ideally assembled by an independent
research group, would be more suitable for error rate estimation.

6 Scientific Contribution
6.1 Conference Contributions

• Peeken et al. (2021)

• Hufnagl et al. (2021)

• Wander et al. (2021)

• Speaker at the Agilent - Microplastics in the Environment Virtual Symposium 2021 on the topic ‘Machine Learning vs.
Databases: A question of speed, accuracy and scalability’; (30th of September 2021)

• Speaker at the Final online workshop MISSOURI project on the topic ‘Robust Ultra-Fast Analysis of Microplastics in
Large µFTIR Imaging Datasets using Machine Learning’; (15th of October 2021)

6.2 Application studies
Earlier as well as later versions of the random forest model have been used in environmental application studies (Frei et al.,
2019; Kumar et al., 2021; Möller et al., 2021; Teichert et al., 2021). Further, Dong et al. (2022) used the model of (Hufnagl
et al., 2022) in a study to compare analysis results obtained with the devices Bruker Lumos II, Agilent 8700 LDIR and WITec
alpha300 R.

7 Summaries of the scientific publications
7.1 Hufnagl and Lohninger (2020)
Title A graph-based clustering method with special focus on hyperspectral imaging

Authors Benedikt Hufnagl and Hans Lohninger

Abstract A common trait of the more established clustering algorithms such as k-means and HCA is their tendency to
focus mainly on the bulk features of the data which causes minor features to be attributed to larger clusters. For hyperspectral
imaging this has the consequence that substances which are covered by only a few pixels tend to be overlooked and thus
cannot be separated. If small lateral features such as particles are the research objective this might be the reason why cluster
analysis fails. Therefore we propose a novel graph-based clustering algorithm dubbed GBCC which is sensitive to small
variations in data density and scales its clusters according to the underlying structures. The analysis of the proposed method
covers a comparison to k-means, DBSCAN and KNSC using a 2D artificial dataset. Further the method is evaluated on
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a multisensor image of atmospheric particulate matter composed of Raman and EDX data as well as an FTIR image of
microplastics.

Findings and impact Within that work ‘gradient-separable’ was discussed as a new separation problem for clustering and
a new 2D clustering benchmark dataset was introduced. The structural aspects of hyperspectral imaging data in the context
of the applied similarity measures and clusters of large differences in scale was discussed, which highlighted the importance of
understanding the relation between the aim of the cluster analysis and the used methodology. The comparison of established
clustering algorithms with the new graph-based algorithm ‘GBCC’ using the 2D benchmark dataset showed that there are
vast differences in the results regarding gradient-separability and showed that only graph-based algorithms like GBCC and
KNSC scaled their clusters according to the underlying data structures. The comparison of GBCC’s results with Ofner et al.
(2015) demonstrated the usability of the center detection step as a means to detect chemical compounds and thus provides
an alternative to spectral endmember extraction techniques such as VCA. GBCC also proved to work in high-dimensional
feature spaces as could be demonstrated on the Raman dataset, which contains 1024 spectral variables. Seen in the broader
context of graph-based clustering algorithms GBCC contributes to the clustering of directed graphs, meaning that edges are
not bi-directional.

Contribution B.H. wrote the manuscript and performed the associated research, including the methodological development,
implementation of algorithms and analysis and interpretation of the results. H.L. supervised the research and critically
reviewed the manuscript. B.H.’s estimated contribution is 95%.

Citations CrossRef: 3; Google Scholar: 7; (retrieved on the 3rd of January 2022)

7.2 Hufnagl et al. (2019)
Title A methodology for the fast identification and monitoring of microplastics in environmental samples using random
decision forest classifiers

Authors Benedikt Hufnagl, Dieter Steiner, Elisabeth Renner, Martin G. J. Löder, Christian Laforsch and Hans Lohninger

Abstract A new yet little understood threat to our ecosystems is microplastics. These microscopic particles accumulate in
our oceans and in the end may find their way into the food chain. Even though their origin and the laws governing their
formation have become ever more clear fast and reliable methodologies for their analysis and identification are still lacking
or at an early stage of development. The first automatic approaches to analyze µFTIR images of microplastics which have
been enriched on membrane filters are promising and provide the impetus to put further effort into their development. In
this paper we present a methodology which allows discrimination between different polymer types and measurement of their
abundance and their size distributions with high accuracy. In particular we apply random decision forest classifiers and
compute a multiclass model for the polymers polyethylene, polypropylene, poly(methyl methacrylate), polyacrylonitrile and
polystyrene. Further classification results of the analyzed µFTIR images are given for comparability. The study also briefly
discusses common issues that can arise in classification such as the curse of dimensionality and label noise.

Findings and impact The herein conducted research revealed that the most challenging classification problem is the
separation of the matrix and the microplastics classes. Ambiguous spectra make the task of annotating the training data
subjective which may be a cause for label noise. Strong total absorption hampers the detection of thick microplastics but
not all types of polymers are affected to a similar degree. This work provided preliminary proof that random forests are
well-suited for detecting microplastics and microfibers. The throughput rate highlighted the advantages of model-based
machine learning over library search based approaches.

Contribution B.H. wrote the manuscript and performed a major part of the associated research, including the methodological
development, implementation of algorithms and analysis and interpretation of the results. D.S and H.L also contributed to
the design of the training data. H.L. further implemented algorithms and supervised the research. D.S., E.R., M.L., C.L. and
H.L. critically reviewed the manuscript. B.H.’s estimated contribution is 55%.

Citations CrossRef: 36; Google Scholar: 45; (retrieved on the 3rd of January 2022)
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7.3 Hufnagl et al. (2022)
Title Computer-Assisted Analysis of Microplastics in Environmental Samples Based on µFTIR Imaging in Combination
with Machine Learning

Authors Benedikt Hufnagl, Michael Stibi, Heghnar Martirosyan, Ursula Wilczek, Julia N. Möller, Martin G. J. Löder,
Christian Laforsch and Hans Lohninger

Abstract The problem of automating the data analysis of microplastics following a spectroscopic measurement such as
focal plane array (FPA)-based micro-Fourier transform infrared (FTIR), Raman, or QCL is gaining ever more attention. Ease
of use of the analysis software, reduction of expert time, analysis speed, and accuracy of the result are key for making the
overall process scalable and thus allowing nonresearch laboratories to offer microplastics analysis as a service. Over the recent
years, the prevailing approach has been to use spectral library search to automatically identify spectra of the sample. Recent
studies, however, showed that this approach is rather limited in certain contexts, which led to developments for making library
searches more robust but on the other hand also paved the way for introducing more advanced machine learning approaches.
This study describes a model-based machine learning approach based on random decision forests for the analysis of large
FPA-µFTIR data sets of environmental samples. The model can distinguish between more than 20 different polymer types
and is applicable to complex matrices. The performance of the model under these demanding circumstances is shown based
on eight different data sets. Further, a Monte Carlo cross validation has been performed to compute error rates such as
sensitivity, specificity, and precision.

Findings and impact In this study the original random forest model was extended from 5 to 21 polymer types. Further
a rich variety of matrix spectra was added to the training data which in the end contained more than 12000 annotated
spectra. The resulting random forest model performed very well considering the sensitivity, specificity and precision of the
respective classes. The robustness regarding total absorption could be increased significantly by creating samples with very
thick particles. The auditing scheme allowed to reduce label noise in the training data and thus proved to be a useful tool.
The work also demonstrated the advantage of superimposing the light microscope image of the sample with the µFTIR image
for improved dual control of the results. By including both spectra from Bruker Hyperion 3000 and Bruker Lumos II a
cross-device model could be created successfully.

Contribution B.H. drafted the manuscript and performed a major part of the associated research, including the methodolog-
ical development, implementation of algorithms and analysis and interpretation of the results. J.M. and C.L. also contributed
text to the introduction. J.M. and M.L. created spiked samples. H.L. further implemented algorithms and supervised the
research. M.S., H.M., U.W., J.M., M.L., C.L., H.L. critically reviewed the manuscript. B.H.’s estimated contribution is 50%.

Citations CrossRef: 0; Google Scholar: 2; ResearchGate: 3 (retrieved on the 19th of March 2022)

7.4 Weisser et al. (2021)
Title From the Well to the Bottle: Identifying Sources of Microplastics in Mineral Water

Authors Jana Weisser, Irina Beer, Benedikt Hufnagl, Thomas Hofmann, Hans Lohninger, Natalia P. Ivleva and Karl Glas

Abstract Microplastics (MP) have been detected in bottled mineral water across the world. Because only few MP particles
have been reported in ground water-sourced drinking water, it is suspected that MP enter the water during bottle cleaning
and filling. However, until today, MP entry paths were not revealed. For the first time, this study provides findings of MP
from the well to the bottle including the bottle washing process. At four mineral water bottlers, five sample types were
taken along the process: raw and deferrized water samples were filtered in situ; clean bottles were sampled right after they
left the bottle washer and after filling and capping. Caustic cleaning solutions were sampled from bottle washers and MP
particles isolated through enzymatic and chemical treatments. The samples were analyzed for eleven synthetic and natural
polymer particles ≥11 µm with Fourier-transform infrared imaging and random decision forests. MP were present in all steps
of mineral water bottling, with a sharp increase from <1 MP L−1 to 317 ± 257 MP L−1 attributed to bottle capping. As
81% of MP resembled the PE-based cap sealing material, abrasion from the sealings was identified as the main entry path for
MP into bottled mineral water.
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Findings and impact In the context of this doctoral thesis this study contributed to a better understanding of how the
original methodology for the development of classifiers can be transferred to other devices. Indeed, the application of the
original random forest model to data measured using the Agilent Cary 620 showed that the model could only generalize well
within bounds. These experiments laid the groundwork for later developments to extend the model to Bruker Lumos II.
Further, the development of additional scripts allowed a more thorough validation based on Monte Carlo cross validation.
This approach was then also applied to the later studies cited in this thesis.

Contribution B.H. contributed by advising on the methodological level to assist in the development of a new random
forest model, however, he was not involved in the sampling or annotation of training data. This was done by the colleagues at
TU Munich independently. B.H. further contributed new algorithms for data processing as well as for validation and critically
reviewed the manuscript. His estimated contribution is 10%.

Citations CrossRef: 9; Google Scholar: 10; (retrieved on the 3rd of January 2022)

7.5 Ritschar et al. (2021)
Title Classification of target tissues of Eisenia fetida using sequential multimodal chemical analysis and machine learning

Authors Sven Ritschar, Elisabeth Schirmer, Benedikt Hufnagl, Martin G. J. Löder, Andreas Römpp and Christian Laforsch

Abstract Acquiring comprehensive knowledge about the uptake of pollutants, impact on tissue integrity and the effects at
the molecular level in organisms is of increasing interest due to the environmental exposure to numerous contaminants. The
analysis of tissues can be performed by histological examination, which is still time-consuming and restricted to target-specific
staining methods. The histological approaches can be complemented with chemical imaging analysis. Chemical imaging of
tissue sections is typically performed using a single imaging approach. However, for toxicological testing of environmental
pollutants, a multimodal approach combined with improved data acquisition and evaluation is desirable, since it may allow for
more rapid tissue characterization and give further information on ecotoxicological effects at the tissue level. Therefore, using
the soil model organism Eisenia fetida as a model, we developed a sequential workflow combining Fourier transform infrared
spectroscopy (FTIR) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for chemical
analysis of the same tissue sections. Data analysis of the FTIR spectra via random decision forest (RDF) classification
enabled the rapid identification of target tissues (e.g., digestive tissue), which are relevant from an ecotoxicological point of
view. MALDI imaging analysis provided specific lipid species which are sensitive to metabolic changes and environmental
stressors. Taken together, our approach provides a fast and reproducible workflow for label-free histochemical tissue analyses
in E. fetida, which can be applied to other model organisms as well.

Findings and impact This work demonstrated how random forests can be used for segmenting tissues in Eisenia fetida.
In order to ensure that the model generalizes well across different samples the variability of the spectra was modeled by
sampling different thin-sections. As the detection of microplastics in tissues is an upcoming research topic this work represent
a first step towards solving this problem.

Contribution B.H. contributed by advising on the methodological level to assist in the development of a new random
forest model. The sampling and annotation of training data was done independently at the University of Bayreuth by S.R..
B.H. and S.R. worked together to iteratively improve the training data so that the model works across different thin-sections.
B.H. also wrote the section ‘Random forest statistical performance assessment’ and conducted the validation of the final
random forest model. His estimated contribution is 15%.

Citations CrossRef: 0; Google Scholar: 0; (retrieved on the 3rd of January 2022)

8 Conclusion
To date the analysis of microplastics remains a challenging analytical problem where many different instrumental approaches
are applied to address certain aspects such as quantifying particle numbers, analyzing shape or polymer type, degradation
state, size distributions and mass balances. Within the domain of microspectroscopy there already exists a rich variety of
analytical instruments for FTIR, Raman and QCL spectroscopy. What all of these approaches have in common is the way in
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which data analysis of the measured spectra is handled. Spectral library search is the predominant approach with only a few
exceptions where advanced chemometric techniques such as unsupervised or supervised learning have been used. Within this
thesis both clustering and classification algorithms have been studied with respect to µFTIR imaging data in order to provide
answers to the following research questions:

1. What are the structural aspects of microplastics measurement data which govern the performance of machine learning
approaches?

2. What are key obstacles that need to be overcome to apply machine learning more broadly for microplastics detection
and quantification?

The performance of clustering approaches mostly depends on their ability to detect clusters which contain only a few objects,
as microplastics are rather scarce within the data. At the same time the algorithms also need to be able to deal with the
clusters originating from the matrix components which make up the bulk of the data. If this strong imbalance cannot be
handled the microplastics will most likely be masked by other compounds on the filter. In a similar way the performance of
classification ultimately depends on the quality of the training data with respect to the variability of the matrix and physical
measurement effects such as Mie scattering and total absorption. False positives are a typical sign that certain structural
aspects have not been modeled well.

Considering the effort which was put into the development of the random forest classifiers the biggest obstacles for building
broadly applicable classification models is the collection of representative filter samples as well as the sampling, annotating
and auditing of training data. Depending on the intended applicability domain the effort increases considerably if one wants
to address both different matrices as well as different devices. This obstacle is not limited to µFTIR imaging but translates to
Raman and QCL as well.

While building broadly applicable classifiers seems overly complex and resource intensive it is nonetheless an endeavor
worth considering. The performance of spectral library search is governed by a trade-off between analytical quality and
analysis speed. Further, the research community still hasn’t reached a consensus on how to set appropriate thresholds for
HQI indices and what kind of databases should be used. The reason for this is rooted in the problem that different reference
databases yield different results and also in the Curse of Dimensionality, which decreases the performance of distance metrics
in high-dimensional feature spaces.

Supervised learning offers an alternative way as it imposes no limit on the number of reference spectra which can be used
and further uses such methods as variable selection and dimensionality reduction to yield significantly better performance on
high-dimensional data. In order to fully exploit the potential of supervised learning for microplastics detection the goal should
be to build a broadly applicable model which can perform the task independently of the device and the matrix. Considering
that the demand for microplastics research and analysis is also driven by certain industrial sectors and a first monitoring
campaign has started in the USA, high-throughput methodologies will become more and more important in the future. In
this context supervised machine learning provides both the necessary analysis speed as well as the technical scalability to
meet these demands.
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