
Machine Learning for Zero Defect
Manufacturing

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Embedded Systems

eingereicht von

José Matías Vásquez Lobos
Matrikelnummer 11742193

an der Fakultät für Elektrotechnik
der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze
Mitwirkung: Dr. techn. Amirreza Baghbanpourasl

Wien, 1. Oktober 2022
José Matías Vásquez Lobos Markus Vincze

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Machine Learning for Zero Defect
Manufacturing

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Embedded Systems

by

José Matías Vásquez Lobos
Registration Number 11742193

to the Faculty of Electrical Engineering
at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze
Assistance: Dr. techn. Amirreza Baghbanpourasl

Vienna, 1st October, 2022
José Matías Vásquez Lobos Markus Vincze

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der Arbeit

José Matías Vásquez Lobos

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Oktober 2022
José Matías Vásquez Lobos

iii

Acknowledgements

I would like to thank Profactor for funding my work through an internship and especially
Amir, who followed every step of this thesis and guided me towards a better understanding.
I would also like to thank Markus Vincze for his insight and continuous help to finish
this project.

I’m extremely grateful to Alex Amesmann and Eva Wilhelm who have supported me
through the years and accepted me into their family as one of their own.

Words cannot express my gratitude to Hannah, who has been there for me since the
start and has been the greatest partner and support I could have ever asked for. She and
her family have been without a doubt an enormous help to achieve my goals and feel at
home.

Lastly and with the deepest appreciation, I would like to thank my family, especially
my parents. Their belief in me and unconditional support have been crucial to achieving
this milestone. I will be forever thankful to them for raising me to value every opportunity
given to me and use them to seek a better future.

Matías Vásquez
Vienna, July 2022

iv

Kurzfassung

Die verarbeitende Industrie nutzt wertvolle natürliche Ressourcen, und unabhängig davon,
ob niedrigere Produktionskosten oder Umweltschutz im Vordergrund stehen, ist eine
bessere Effizienz durch weniger Defekte stets erwünscht.

Der Einsatz neuer Technologien kann helfen, dieses Ziel zu erreichen und die Res-
sourcen besser zu nutzen. Eine Möglichkeit, Technologie zu diesem Zweck einzusetzen,
ist die visuelle Überprüfung der Objekte mit Hilfe von Kameras. Algorithmen für Ma-
chine Vision und Machine Learning können eingesetzt werden, um mögliche Fehler zu
erkennen.

Eines der Hauptprobleme bei der Verwendung von Machine Learning zur Fehlerer-
kennung ist die Datenerfassung. Selbst wenn einige Tausend Bilder gesammelt werden,
reicht dies möglicherweise nicht aus, um ein Modell von Grund auf zu trainieren und die
erforderliche Leistung für den Einsatz in der Produktion zu erzielen. Feature Extraction
hingegen ermöglicht die Wiederverwendung vortrainierter Modelle, was zu besseren
Ergebnissen führt.

Diese Arbeit stellt eine Trainingsstrategie vor, bei der die vortrainierten Modelle voll-
ständig trainiert werden, um ihre Parameter für den gewünschten Datensatz anzupassen,
selbst wenn dieser neue Datensatz nicht mit den ursprünglichen Daten übereinstimmt,
für die das Modell zuvor trainiert wurde. Üblicherweise werden die ersten Schichten
eingefroren1, um die grobe Feature Extraction zu bewahren, und nur die nachfolgenden
Schichten zu trainieren, die sich auf feinere Details konzentrieren könnten. Indem jeder
Parameter des Modells mit einer sehr kleinen Lernrate trainiert wird, wurden ähnliche
Ergebnisse wie üblicherweise erzielt. Der Mehrwert liegt in der Analyse der Activation
Maps der verschiedenen Strategien. Diese werden dann mit Annotated Maps mit den
Orten der Defekte verglichen, die beim Training nicht vorhanden sind. Es wurde festge-
stellt, dass sich das Modell durch das Training aller Parameter stärker auf die möglichen
Defekte im Bild konzentrieren kann, wodurch das Modell besser interpretierbar wird.

1Die Anzahl der Schichten ist abhängig von der Ähnlichkeit der Datensätze, der Größe des neuen
Datensatzes und der Größe des Modells.

v

Abstract

The manufacturing industry makes use of valuable natural resources and regardless of
having lower production costs or the environment as a main reason, better efficiency
through less defects is always desired. The use of new technologies can help achieve this
goal and make better use of the resources.

One way of applying technology for this purpose is by visually inspecting the objects
using cameras. Machine Vision and Machine Learning algorithms can be implemented
to detect possible imperfections.

Among the main problems for using Machine Learning for defect detection is the
recollection of data. Even when collecting a couple of thousands of images, this might
not be enough to train a model from scratch and have the necessary performance to
be deployed into production. Feature extraction on the other hand allows the reuse of
pretrained models, which leads to better results.

This work presents a training strategy in which the pretrained models are fully trained
to accommodate their parameters for the desired dataset, even when this new dataset is
dissimilar to the original data for which the model was previously trained. The standard
practice is to freeze the first few layers2 to preserve the coarse feature extractions and only
train the later layers which might focus on more finer details. By letting every parameter
of the model be trained with a very small learning rate, similar results to the standard
practice were achieved. The added value is when analyzing the activation maps of the
different strategies. These are then compared to annotated maps with the locations of
the defects, which are not present during training. It was determined that training every
parameter allows the model to focus more on the possible defects present in the image,
making the model more interpretable.

2The amount of layers will depend on the similarity of the datasets, the size of the new dataset and the
size of the model.

vi

Contents

Kurzfassung v

Abstract vi

Contents vii

1 Introduction 1
1.1 Challenge . 2
1.2 Contribution . 2
1.3 Results . 4
1.4 Thesis Outline . 4

2 Related Work 6
2.1 Layers used . 7
2.2 Convolutional Neural Network . 11
2.3 Transformers . 17

3 Dataset: Images of Pump Impellers 32
3.1 Preprocessing . 34
3.2 Data Augmentation . 37

4 Training and Fine Tuning the Models for Image Classification 39
4.1 Creating/Loading the models . 39
4.2 Loss . 40
4.3 Optimizer . 42
4.4 Training Steps . 46
4.5 Metrics . 52

5 Evaluation: Interpreting the predictions of defective images 55
5.1 Annotation of defects . 55
5.2 CNN . 56
5.3 Attention Maps on Transformers . 63
5.4 Performances . 66

6 Conclusion 70

List of Figures 72

vii

List of Tables 74

List of Algorithms 76

Bibliography 77

Metric Comparison: Frozen vs Partially Frozen vs Unfrozen 83
Training . 83
Validating . 85
Testing . 86

1 Introduction

Zero Defect Manufacturing (ZDM) is a strategy seeking the reduction and avoidance of
failures during production focusing either on the product (analysing the product) or the
process (analysing the manufacturing equipment) [1]. Altough this concept was born
within the US army during the Cold War to prevent human error in the weapon systems
[1], the concept has been adapted to the general industry in order to reduce costs by
diminishing any type of failure.

The evolution of Industry 4.0, with the increase in data available for machine learning
techniques to work as desired, makes the concept of ZDM implementable [1]. Industry
4.0 has had a great impact on monitoring systems for pattern detection and detection of
fault after the occurrence of failures, however, a significant challenge lies in the generation
and collection of data [2].

The concept explored here is to apply Machine Learning (ML) for defect detection,
such that it can be implemented during manufacturing. Instead of carefully designing
Machine Vision algorithms and filters to detect the defects on a specific product, a ML
model is trained to distinguish between images with and without defects. This way the
model can be retrained when analyzing a new product, instead of manually designing the
necessary feature extractions again.

Figure 1.1: Defect detection with Machine Learning

1

1. INTRODUCTION

1.1 Challenge
Machine Learning techniques require large amounts of data to generalize and extrapolate
to unseen examples. If there is not enough data present, the models can memorize the
data, which leads to a poor performance on new data.

Even with enough data to train a model, the validation process refers to how well the
model is trained to predict the result. Nevertheless, this does not justify the model and its
predictions. In order to determine the responsible criteria for the decision and be able to
justify the model, a way to interpret the model is necessary [3].

Teh et al. [4] propose a way of locating objects in weakly labeled images through
the use of Attention Networks. This Neural Network takes a set of candidate regions of
the original image and computes "attention scores" by analysing the number of contours
inside a bounding box and the ones from the boxes overlapped.

A contemporary work to Teh et al. [4] was proposed by Selvaraju et al. [5], where
activation maps show the most relevant sections of the image for the specific class
predicted. This allows the analysis of the models in order to interpret what they might be
taking into account to make the classification.

Given a small weakly annotated dataset, the challenge is to train a model to classify
unseen images correctly, proving that the training causes the model to focus on the defects
present in the image. As a baseline, the same models with the pretrained weights are
used, when available. The goal is to increase the overlapping ratio between the most
active regions of the class activation maps and the manually annotated defects.

In other words, not only do the different models have to learn to classify the images
correctly, but the model has to be interpretable in such a way that it can be determined if
the defects are key contributors for the classification.

(a) Image of Pump
impeller with defects

(b) Before Fine
Tuning

(c) After Fine
Tuning

Figure 1.2: Example of the key features on a class activation map before and after fine
tuning.

1.2 Contribution
The main goal of this study is to facilitate the visual detection of defects while manufac-
turing in order to take action during production and minimize the loss. For this purpose,
many models where analyzed, where one relatively small model was trained from scratch,
while the other seven models where fine tuned from publicly available pretrained models.

2

1.2. Contribution

As a baseline for comparison for the fine tuned models, the same models were trained
using the same hyperparameters and training conditions, only changing the amount of
parameters frozen.

Figure 1.3: Proposed fine tuning strategy for small datasets that are dissimilar to the
pretrained backbone’s original dataset.

In addition to analyzing the performances of said architectures, the class activation
maps are computed. This way, the architectures can be interpreted in order to determine if
the defects present on the images are a key factor to classify the images as being defective
or not.

As a way to analyze the differences between the different training strategies, two
new metrics are introduced (Intersection over Prediction and Intersection over Ground
Truth). With these metrics, it can be analyzed with more detail what the strengths and
weaknesses of each model are. If one wants to make sure that the visual interpretation of
a model recognizes every defect present on an image, then the Intersection over Ground
Truth has to be maximized. If, on the other hand, one wants to make sure that the visual
interpretation for the prediction of the model lies inside of the defects present, then
Intersection over Prediction is the right metric.

𝐼𝑜𝑃 = Intersection
Prediction =

Ground Truth

Prediction

Ground Truth

Prediction

(1.1)

𝐼𝑜𝐺𝑇 = Intersection
Ground Truth =

Ground Truth

Prediction

Ground Truth

Prediction

(1.2)

3

1. INTRODUCTION

1.3 Results
While training, validating and testing the different models with the different training
strategies, all of the unfrozen models showed a significant improvement from the fully
frozen. From an average 78.45% accuracy among the different models, it increased to
97.78%. During validating this increment was from 82.39% to 99.12% accuracy and
for testing from 90.40% to 99.80%. Similar results were observed among every metric
computed.

All of the metrics for all of the models remained consistent between the partially
frozen and the unfrozen models. Both of these strategies performed better than the fully
frozen having excellent metrics when classifying the different images, but neither of them
showed a clear advantage over the other. Averaging the different models, every metric
remained below a 0.2% difference between partially frozen and unfrozen.

The different models were also interpreted using GradCAM for the CNN models
and extracting the Attention Maps for the Transformer models. Both of these methods
successfully detected the relevant features for the classification, demonstrating that the
models did learn to focus on the defects for the correct classification.

Interpreting the models showed that more freedom to modify the parameters meant
more accuracy towards detecting the defects. The Intersection over Union, Intersection
over Prediction and Intersection over Ground Truth improved for almost every model
when leaving every parameter unfrozen. The only model that did not follow this trend was
the DINO architecture. This suggests that unfreezing the parameters allows for an easier
adjustment of the parameters to detect the defects, while no decrease in the performance
was noticed.

Leaving every parameter unfrozen and using a very small learning rate leads to
more interpretable results that have similar performances to partially frozen models.
Leaving every parameter unfrozen also alleviates the burden of deciding up until where
the parameters shall remain frozen.

1.4 Thesis Outline
The way this thesis is structured is as follows. First, the necessary building blocks for
deep learning are explained, so that later the individual architectures can be presented.
Here, the explanation is divided into two different types of architectures, Convolutional
Neural Networks (CNNs) and Transformers.

The CNN architectures are only superficially explained, since these are the more
common and known architectures. These have been explored for a longer time and count
with many resources that explain them.

Transformers on the other side, are newer and even though there are many resources
explaining them in detail, it was deemed necessary to go into more detail to understand and
explain their functionality. Here, the introduction of Transformers to Natural Language
Processing (NLP) is discussed, then the adaptation to Machine Vision, as well as one
variation of the Vision Transformer.

This is then followed by a description of the dataset used. There is also a brief
explanation of how the code might be adapted to other datasets in order to implement

4

1.4. Thesis Outline

this work. This is done with the intention that the work can be reproduced and used for
different datasets.

After introducing the different models and dataset used, the necessary sections for
training a model are explained, such as the Loss, the Optimizer and how the training
actually occurs. The training, validation and testing results are presented here.

The Interpretability section explains how the different models are analyzed to see
if the defects are responsible for the correct classification. This will help describe the
functionality of the models, in order not to treat them as a black box, but rather understand
what the model "sees".

Finally, the conclusion gives the final remarks on the results shown both during the
training and the interpretation of the models.

5

2 Related Work

The field of Deep Learning has had a trending boom in the recent years. This has been
specially the case, since the general public is aware of their implementation in daily
activities used such as social media and streaming platforms. However, the founding
principles that make this possible date back to the second half of the last century.

Each architecture is composed of different layers that perform different tasks. Some
layers contain trainable parameters which need to be tuned in order to achieve the desired
task. These have been developed through the years. Alom et al. [6] have encompassed
these developments into this brief history of Deep Neural Networks1:

• 1943: McCulloch & Pitts show that neurons can be combined to construct a Turing
machine (using ANDs, ORs, & NOTs) [8].

• 1958: Rosenblatt shows that perceptron’s will converge if what they are trying to
learn can be represented [9].

• 1969: Minsky & Papert show the limitations of perceptron’s, killing research in
neural networks for a decade [10] also known as the first AI winter2,3.

• 1985: The backpropagation algorithm by Ackley et al. [11] revitalizes the field.
• 1988: Neocognitron: a hierarchical neural network capable of visual pattern recog-

nition [12].
• 1998: CNNs with Backpropagation for document analysis by Yan LeCun [13].
• 2006: The Hinton lab solves the training problem for DNNs [14, 15].
• 2012 : AlexNet by Alex Krizhevesky in 2012 [16]
In this section, the building blocks for creating a Deep Neural Network are presented.

The section is then divided into two main subsections, architectures consisting mainly
of Convolutions, also known as Convolutional Neural Networks (CNNs) and the other
subsection consists of Transformers.

CNNs are a well known concept with many resources that explain them, therefore, the
explanation here limits itself to the novelty of what each architecture might have brought

1Emmert-Streib et al. [7] have a more complete time line of key developments until the year 2019.
2https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b
3https://towardsdatascience.com/history-of-the-second-ai-winter-406f18789d45

6

https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b
https://towardsdatascience.com/history-of-the-second-ai-winter-406f18789d45

2.1. Layers used

to the field and not digging too deep into them. Transformers on the other hand, are a
more recently introduced concept and thus, the explanation goes deeper, describing in
detail how they work.

These building blocks are also called layers and can be stacked on top of each other
to form architectures.

2.1 Layers used
The layers described here are the necessary building blocks used for the architectures
described later. They can be arranged in almost any way that it is needed, as long as the
graph does not create a loop. Emmert-Streib et al. [7] compare this to building with Lego
blocks.

2.1.1 Linear
The first concept to grasp when trying to understand Neural Networks is the Artificial
Neuron. Figure 2.1 shows the mathematical representation of an artificial neuron with
multiple inputs and one output.

The main idea of the artificial neuron is that after receiving a vector input, 𝑥, each
element, 𝑥𝑖, is weighted by a corresponding weight, 𝑤𝑖. The results are added up together
along with a bias term, 𝑏. The sum is then passed through an activation function 𝜙 to get
the output 𝑦 [7].

𝑦 = 𝜙(𝑤𝑇 ⋅ 𝑥 + 𝑏) (2.1)

Figure 2.1: (A) Representation of a mathematical artificial neuron model (left). (B)
Simplified representation, depicting only the key elements. [7]

If the activation function, 𝜙, is the Heaviside step function, then the artificial neuron
corresponds to the original perceptron design proposed by Rosenblatt [17].

A linear layer consists of multiple artificial neurons in parallel, each processing the
same input with their respective weights and biases.

2.1.2 Multi-Layer Perceptron
The input mentioned in the linear layer might refer to the actual input of the architecture,
or just refer to the output of a previous layer. In order to create Neural Networks, the
layers have to be connected to each other.

7

2. RELATED WORK

One simple way to create a Neural Network is by connecting multiple linear layers,
where the activations can be linear or non-linear [18]. These configurations receive
multiple names, such as Fully Connected (FC), Feedforward Neural Network (FFNN) or
Multi-Layer Perceptron (MLP).

The very first layer is called the input layer and the last is the output layer, everything
in between is a hidden layer. The width refers to the amount of parallel neurons in a
layer, the depth on the other hand refers to the amount of layers in the network (without
counting the input layer) [7].

2.1.3 Convolutional Layer
For Linear layers it was mentioned that the input, 𝑥, has to be a vector. When analysing
images, in order to feed the pixels to the network, the information has to be flattened, thus
losing the spatial information. This means that neighbouring pixels might now be far
away in the sequence, making it more difficult for the network to infer their connection.

To address this problem, convolutional layers use kernels and slide them across
the input. This kernel acts as a window, where the result is a weighted sum of the
neighbouring input values and the weight is given by the kernel. Figure 2.2 shows a
simple example of an input being multiplied by a kernel.

Figure 2.2: Convolutional Layer: Multiplying an input by a kernel. 4

The size of the kernel determines how many neighbouring features are included in the
calculation, this is also known as the receptive field. There are also other parameters that
can be adjusted to the needs, such as the stride (number of pixels when moving the kernel
to get the next calculation) and the padding (extra pixels added on the borders). All of
these parameters determine how big the output (from this layer) will be, thus creating an
output that is equal in size to the input, or smaller.

2.1.4 Batch normalization
The batch normalization layer computes the mean and variance to normalize the batch
along the Channel dimension.

4Image taken from https://anhreynolds.com/blogs/cnn.html

8

https://anhreynolds.com/blogs/cnn.html

2.1. Layers used

Algorithm 1 Batch Normalization [19]
Input: Values of 𝑥 over a mini-batch: = {𝑥1...𝑚};

Parameters to be learned: 𝛾 , 𝛽
Output: {𝑦𝑖}

𝜇 ←
1
𝑚

𝑚∑
𝑖=1

𝑥𝑖

𝜎2 ←
1
𝑚

𝑚∑
𝑖=1

(𝑥𝑖 − 𝜇)2

𝑥𝑖 ←
𝑥𝑖 − 𝜇√
𝜎2 + 𝜖

𝑦𝑖 ← 𝛾𝑥𝑖 + 𝛽

2.1.5 Dropout
Dropout is a simple technique to avoid overfitting when training [20]. This regularizer
drops the connections to neurons, which are randomly selected on each iteration. This
forces the network to not rely on specific paths, but learn to generalize.

Figure 2.3: Dropout 5

2.1.6 Max Pool
The max pool layer selects the maximum values inside a windows of a chosen size. The
windows is then shifted by a stride, thus selecting a new maximum to create the output
[21]. Figure 2.4 shows the function of this layer with a window size of 2 and a stride of
2, so that the windows do not overlapp.

5Image taken from: https://dataaspirant.com/8-deep-learning-dropout/

9

https://dataaspirant.com/8-deep-learning-dropout/

2. RELATED WORK

Figure 2.4: MaxPool 6

2.1.7 Activation Functions
Sigmoid
The sigmoid function maps every input to a value between 0 and 1. The highest rate of
change, and thus where the function is most sensitive, is in the inflection point, where the
input is 0.

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

, 𝑖 = 1, ..., 𝐽 (2.2)

Figure 2.5: Sigmoid

Softmax
Given a vector �⃗�, where each element 𝑥𝑖 represents a class each element is normalized
by the probability function given in Equation 2.3. Here, each element is taken as an
exponent to the base 𝑒 and divided by the sum of these new values. The exponentiation
takes care of negative values, resulting in probabilities weighted by their original values,
where the sum of the outputs is 1

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖∑𝐽
𝑗=1 𝑒

𝑥𝑗
, 𝑖 = 1, ..., 𝐽 (2.3)

6Image taken from: https://cs231n.github.io/convolutional-networks/#pool

10

https://cs231n.github.io/convolutional-networks/#pool

2.2. Convolutional Neural Network

ReLU

Rectified Linear Units is an activation function. Every positive input remains unchanged,
whereas all the negative inputs are mapped to 0 [22].

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.4)

Figure 2.6: ReLU

GeLU

The Gaussian Error Linear Units[23] is an activation function that uses the standard
Gaussian cumulative distribution.

𝐺𝐸𝐿𝑈 (𝑥) = 𝑥𝑃 (𝑋 ≤ 𝑥) = 𝑥Φ(𝑥) = 𝑥 ⋅
1
2

[
1 + 𝑒𝑟𝑓

(
𝑥∕

√
2
)]

(2.5)

Figure 2.7: GeLU

2.2 Convolutional Neural Network
As the name suggests, the defining feature of these architectures is the (nonexclusive) use
of Convolutional Layers. Convolutional Neural Networks have been the go-to architecture
for image processing in the Deep Learning field since their breakthrough in 2015 with
AlexNet. Although the concepts have been there for a longer time, the improvement in
computational power was needed to get the ball rolling.

11

2. RELATED WORK

2.2.1 Luna Model
In order to get familiar with the framework used in this project (pytorch), the book "Deep
Learning with PyTorch" by Stevens et al. [24] was used as a starting point. This book is
divided into three main parts. First, an introduction to Deep Learning while explaining
the core concepts of the framework to solve common tasks. Second, a specific task of
image classification is solved, namely the use of CT scans from the LUNA (LUng Nodule
Analysis) Grand Challenge in order to detect cancer. Finally, the book describes how to
deploy the models.

While exploring a solution for the LUNA challenge, Stevens et al. [24] propose a
Convolutional Neural Network and decided to call it the Luna Model. The dataset used
consists of 3D scans of lungs with and without the presence of nodules and the position
and diameter of these when present. Since the nature of the task is to classify images
which share the overall structure and ultimately categorized by a defining feature, it
was deemed relevant to adapt the architecture for the casting task. Figure 2.8 shows a
general representation of the Luna Model. The original model was designed to process
3D images, thus the BatchNorm, Convolutional and MaxPool layers also are defined
specifically for 3D data. For the adaptation it was only necessary to change these layers
to the 2D version as well as the number of input features for the Linear layer.

Figure 2.8: Luna Model architecture [24]

Figure 2.8 shows the main workflow of the architecture along with a definition for
the Block used in it. It consists mainly of typical layers used for image analysis. After
performing the corresponding adaptations, this model consists of 115,088 parameters
to be trained. This was one of the key features for experimenting with this architecture,
since it is significantly lower than other models and allows for training from scratch.

2.2.2 AlexNet
Krizhevsky et al. [16] introduced the AlexNet architecture, which won the 2012 ImageNet

12

2.2. Convolutional Neural Network

Large Scale Visual Recognition Challenge (ILSVRC)7. The goal of this competition is to
classify images from 10,000+ different classes from a subset of the 10M labeled images.

As it can be seen in Figure 2.9, the results from this architecture greatly improved
on the results of past years by 10%. This image shows the winning architectures for the
top-5 error rate. This means that the correct class must be among the top-5 predictions
made by the model. However, the architecture did not only outperform the architectures
from previous years, but also the ones competing in the same year. The second place for
the 2012 competition achieved a top-5 error rate of 26% and was not based on a deep
network.

Figure 2.9: Algorithms that won the ILSVRC between 2010-2017. [25]

What Krizhevsky et al. [16] proposed was to make to make a deeper and wider CNN
than LeNet. LeNet was introduced in the 1990’s by Lecun et al. [26], but due to limited
computation it was very complicated to implement until 2010. LeNet consisted of 2
convolutional layers, 2 sub-sampling layers, 2 fully connected layers and an output layer
with Gaussian connection [6].

Figure 2.10 shows the architecture as presented in the paper. The first stage has one
convolutional layer with a kernel of size 11𝑥11 followed by max-pooling operations with
3𝑥3 filters and stride of 2. The second stage performs the same operations, only the
convolutional layer has a kernel of size 5𝑥5. The next three stages use convolutional
layers with kernels of size 3𝑥3. This is then followed by two fully connected layers with
dropout, ending with softmax8.

This deeper architecture achieved state of the art results, setting a defining moment in
the history of computer vision. Thanks to this improvement, many researchers shifted
towards Deep Learning.

7https://www.image-net.org/challenges/LSVRC/2012/index.php
8Here is a good comparison between LeNet and AlexNet: https://en.wikipedia.org/wiki/

AlexNet#/media/File:Comparison_image_neural_networks.svg

13

https://www.image-net.org/challenges/LSVRC/2012/index.php
https://en.wikipedia.org/wiki/AlexNet#/media/File:Comparison_image_neural_networks.svg
https://en.wikipedia.org/wiki/AlexNet#/media/File:Comparison_image_neural_networks.svg

2. RELATED WORK

Figure 2.10: AlexNet architecture [16]

2.2.3 ResNet
After the accomplishment of AlexNet, the focus shifted towards Machine Learning to
solve the ILSVRC and other Machine Vision tasks. The main idea was to make deeper
and wider architectures, while trying to optimize the number of parameters. One clear
example is VGG-16, which has more Convolutional layers than AlexNet, but only using
kernels of size 3. Using exclusively small kernels increases the speed of computation
[27].

However, stacking layers on top of layers resulted ultimatively in the degradation of
accuracy. At some point the performance started to saturate er even decrease with the
additional layers. The main cause was vanishing gradient effect. This effect occurs
when the gradients are so small that during backpropagation the weights are not updated,
meaning the networks stops training [28, 29].

In order to address this problem, He et al. [30] introduced the identity mapping or
also known as skip connections. Figure 2.11 shows the identity mapping. Here a value is
stored while other computations are performed on the same value, after the computation,
the stored value is added to the output.

Figure 2.11: ResNet skip connection [30]

Figure 2.12 shows the ResNet-34 architecture compared to the same architecture
without the identity mappings and the VGG-19 architecture.

This technique makes sure that deeper networks are able to keep learning without
the vanishing gradient effect problem. He et al. [30] proposed several architectures of
different depths with these properties and compared them to other SOTA (for that time)
architectures, showing a significant improvement.

14

2.2. Convolutional Neural Network

Figure 2.12: ResNet architecture compared to plain architecture without identity mappings
and VGG-19 [30]

2.2.4 EfficientNetV2
In 2019 Tan and Le [31] proposed a way to create models that can be easily scaled when
resources are available. They did it in such a way that the depth, width and resolution
of the network are carefully balanced when scaling them up. This was meticulously
engineered to have a better performance and achieving state of the art results. Figure
2.13(e) shows their proposal to uniformly scale the three parameters mentioned using a
fixed ratio.

Figure 2.13: EfficientNetV1: Model Scaling [31]

In 2021, the same authors proposed an updated version of this architecture, calling
it EfficientNetV2 [32]. With their new proposal they achieved faster training and used
fewer parameters than other state of the art architectures with a drop in accuracy. To
compensate for this drop in accuracy, they propose a method for progressive learning by
adjusting the regularization along the image size.

Their study consisted of discovering the main bottlenecks in their previous architecture
and addressing them. They found out that training with large image sizes slows down
the process, depthwise convolutions are slow in early stages and that equally scaling up

15

2. RELATED WORK

every stage is sub-optimal. With the insight of which aspects to optimize, they designed a
search space to apply a training-aware Neural Architecture Search (NAS)9, thus obtaining
a new architecture design.

Their proposed progressive learning method consists of training with scaled down
versions of the images in early epochs and increasingly scaling them up. They also mention
that the previous works that used progressive resizing kept a constant regularization,
which led to a drop in accuracy. They argue that small image resolutions require weak
regularization to not lose too much information, while larger resolutions require strong
regularization to avoid overfitting. Therefore, they adapted the regularization to the
resolution.

In the end they came up with a new family of scalable architectures which require
less parameters and train faster than the state of the art. They also came up with a faster
way of training that allows these architectures to achieve better performances on the
mainstream datasets used, such as ImageNet and CIFAR.

2.2.5 ConvNeXt
With the increasing trend of research of Transformers10 for the Machine Vision field,
Liu et al. [33] combined gained knowledge from Convolutional Neural Networks and
Transformer architectures to create their own architecture.

Figure 2.14 shows the steps taken to gradually improve their performance. It can be
seen how they started with a base of ResNet50 (for the smallest version) and arrived to
their proposed architecture, ConvNeXt-T (tiny) and compared this to Swin-T.

Figure 2.14: ConvNeXt: Approaches taken to create the architecture [33].

9NAS is a way to automatically design Artificial Neural Networks instead of designing them ad-hoc.
The following link has more information about this topic: https://towardsdatascience.com/
what-is-neural-architecture-search-and-why-should-you-care-1e22393de461

10The next section explains Transformers in detail.

16

https://towardsdatascience.com/what-is-neural-architecture-search-and-why-should-you-care-1e22393de461
https://towardsdatascience.com/what-is-neural-architecture-search-and-why-should-you-care-1e22393de461

2.3. Transformers

2.3 Transformers
The attention mechanism was introduced by Bahdanau et al. [34] in 2015 as a way to
improve the encoder-decoder based translation systems for Natural Language Processing
(NLP). At this point, the state of the art for NLP relied on Recurrent Long Short-Term
Memory (LSTM) and Neural Networks (RNN). However these approaches do not perform
well when the size of the sentences increase. Thus, in 2017 a team at Google Brain
took advantage of the attention mechanism to tackle translation tasks by getting rid
of recurrence and convolutions and focusing entirely on attention [35]. The proposed
architecture still consists of an Encoder and a Decoder, as did the RNN and LSTM
ones. Figure 2.15 shows both encoder and decoder composed mainly of Multi-Headed
Self-Attention mechanisms, Skip, Add & Norm and Fully Connected Feed Forward layers.

Figure 2.15: The Transformer - model architecture [35]

Figure 2.16 shows how the Multi-Head Attention block is composed by h Scaled
Dot-Product Attention parallel operations, where h refers to the number of heads.

17

2. RELATED WORK

Figure 2.16: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention [35]

Let’s look at an example in order to understand how this Scaled Dot-Product Attention
works and what it produces. For this purpose, let’s consider the two following sentences:

Even though she did not win, she was happy.
Even though she did win, she was not happy.

Both of these sentences contain the same words, however the position of not is shifted
changing the meaning of the sentence. In the first one, not refers to win, whereas in the
second it makes reference to happy.

The first step is to tokenize the sentence. There are several ways of doing this
(character, subword, word), for this example we will do it by words. Thus, each word
corresponds to one token. Next, each token is vectorized11, where each vector 𝑣𝑡 has
𝒹 dimensions and the values in each dimension carry semantic meaning. In this case
the subscript 𝓉 from 𝑣𝑡 refers to each token/word in the sentence. When analyzing these
vectors, it can be determined that words with similar meaning tend to cluster near each
other and dissimilar ones are further apart12.

It is also important to establish how the dot product of two vectors behaves for similar
and dissimilar ones. Considering the simplified version of two dimensional vectors 𝑝,
𝑞 and 𝑟 in Figure 2.17, we can realize the dot product between two close vectors, 𝑝 and
𝑞, and between two that are further apart, 𝑝 and 𝑟, to understand how the more complex
multi-dimensional vectorized representation of words react to the dot product.

11This blog entry by J. Alammar explains in detail how vectorization can be done: https://
jalammar.github.io/illustrated-word2vec/

12http://projector.tensorflow.orghasagreatinteractiveviewertoanalyzedifferentwords

18

https://jalammar.github.io/illustrated-word2vec/
https://jalammar.github.io/illustrated-word2vec/
http://projector.tensorflow.org has a great interactive viewer to analyze different words

2.3. Transformers

−𝑥 𝑥

−𝑦

𝑦

𝑝(4, 1)
𝑞(3, 1)

𝑟(1, 4)

1 2 3 4

1
2
3
4

Figure 2.17: Example of two dimensional vectors

𝑝 ⋅ 𝑞 =
(
𝑥1 𝑦1

)(𝑥2
𝑦2

)
=
(
4 1

)(3
1

)
= 12 + 1 = 13

𝑝 ⋅ 𝑟 =
(
𝑥1 𝑦1

)(𝑥2
𝑦2

)
=
(
4 1

)(1
4

)
= 4 + 4 = 8

With this small example it can be seen that 𝑞 ⋅ 𝑞 produces a larger result than 𝑞 ⋅ 𝑟,
even though 𝑟 has a larger magnitude than 𝑞. This effect relies solely on the fact that they
are pointing in a similar direction. A pair of vectors pointing perpendicular to each other
would result in 0 and angles greater than 90° result in negative numbers.

This concept can be scaled up to the 𝒹 dimensions of the vectorized tokens 𝑣𝑡 and get
a confusion matrix when multiplying each word with each of the words in the sentence.
Figures 2.18(a) and 2.18(b) show these confusion matrices for the examples with a
representation of the resulting scalar. The way to get these scores (s) is by multiplying
each row vector (𝑣𝑚) by the corresponding column vectors (𝑣𝑛) of each word. Here, the
darker colors represent lower numbers and the lighter ones higher numbers, meaning the
higher the value, the closer the words at that row x column are. As it was expected, the
diagonal show high values, since the vectors are the same for row and column. The same
can be observed for the word she, which appears twice in the sentences, thus resulting in
higher values.

s𝑚𝑛 = 𝑣𝑚 ⋅ 𝑣𝑇𝑛 (2.6)

(a) Not win (b) Not happy
Figure 2.18: Confusion matrix for both sentences.

19

2. RELATED WORK

The x axis can be seen as the Keys (K) and the y axis as the Queries (Q), meaning the
same confusion matrix S can be expressed by the following dot product:

S = QK𝑇 (2.7)

This value is then scaled by the square root of 𝒹𝑘, where 𝒹𝑘 refers to the number
of dimensions in the vectors in K. The results are then normalized by their probability
distribution using the softmax function. We can call this W.

W(Q,K) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(
QK𝑇√

dK

)
(2.8)

It is important to mention that each of the weights W𝑚𝑛 has been influenced by its
neighbours. These weights are then multiplied by the Values (V), which are each of the
words in the given sentence, generating a contextualized representation of the given input
vectors. This results in the Self-Attention via Scaled Dot-Product proposed by Bahdanau
et al. [34] and shown on the left side of Figure 2.16

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(
QK𝑇√

dK

)
V (2.9)

Now any chosen query Q𝑚 can be selected in order to compute that specific contextu-
alized self-attention. However, the values are fixed and no learnable parameters have been
introduced. For this purpose new parameter matrices W𝑄

𝑖 , W𝐾
𝑖 , W𝑉

𝑖 and W𝑂
𝑖 are introduced.

Where W𝑄
𝑖 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , W𝐾

𝑖 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , W𝑉
𝑖 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 and W𝑂

𝑖 ∈ ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 . These
matrices are implemented through Linear Layers. This is then used for each input for
every head of the multi-head attention as well as after concatenating all of the results from
each head as shown on the right side of Figure 2.16. The dot products (Equations:2.6,
2.7) are now matrix multiplications, but the result is the same.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(Q, K, V) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊 𝑂, 𝑤ℎ𝑒𝑟𝑒 (2.10)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(QW𝑄
𝑖 ,KW𝐾

𝑖 ,VW𝑉
𝑖)

Having multiple heads allows the architecture to pay attention to different parts of the
sentence when training. Figures 2.19(a) and 2.19(b) were created using the pretrained
BERT13 [36] model from HuggingFace [37] and the BertViz [38] library. They show
how one of the multiple heads behaves when selecting not as the query. It can be clearly
seen how by introducing the (pretrained) weights, the focus of the sentence (for this head)
is directed towards the word that the negation refers to.

13BERT (Bidirectional Encoder Representations from Transformers) was trained using the entire English
Wikipedia.

20

2.3. Transformers

(a) Not win

(b) Not happy
Figure 2.19: Head 2 of Multi-Head Attention: Attention matrix focused on the word not
for both example sentences.

2.3.1 Vision Transformers (ViT)
Inspired by the great success of the Transformer in NLP, some researchers decided to
experiment by incorporating them in the field of Machine Vision. Facebook AI[39]
proposed an architecture called DEtection TRansformer (DETR), that consists of a
convolutional backbone, feeding the output (positional encoding is also added) to a
transformer encoder-decoder pair and finally a feed forward network. They trained this
model with the COCO14[40] dataset obtaining significant results.

Another team from Google Brain[41] introduced the Vision Transformer (ViT), which
also relies mostly on the Attention Mechanism. Figure 2.20 shows the Vision Transformer
architecture and Figure 2.26 shows a detailed view of the Transformer Encoder shown as
a blackbox in the previous image.

14COCO(Common Objects in COntext): is a dataset containing >200K labeled images with object
segmentation.

21

2. RELATED WORK

Figure 2.20: Vision Transformer - model architecture [41]

Before diving into the encoder, here is a quick overview of the steps taken to get a
classification from the ViT as shown in Figure 2.20:

1. Split original image into patches

2. Flatten the patches

3. Add positional embeddings (prepended CLS (Class) Token included)

4. Feed everything to the encoder

5. The output for the CLS Token contains a distribution for the probabilities of each
class

Split original image into patches

As Figure 2.21 shows, the original image15 is split into equally sized patches (𝑁16). Here
the batch (𝐵) and channels (𝐶) are kept the same size, only the height (𝐻) and width
(𝑊) are split to match the desired size of the patches. In this case, the patches are of size
16x16 pixels, thus resulting in 14x14 patches that do not overlap.

15The original paper[41] uses a resolution of 3x224x224 pixels. From this point forward, the images
will be resized to match this, since it will be necessary to have one of the default resolutions to have access
to available pretrained weights.

16𝑁-number of patches

22

2.3. Transformers

(a) Original image:
1x3x224x224

𝐵𝑥𝐶𝑥𝐻𝑖𝑚𝑔𝑥𝑊𝑖𝑚𝑔

(b) 14x14 Patches,
each Patch: 1x3x16x16
𝐵𝑥𝐶𝑥𝐻𝑝𝑎𝑡𝑐ℎ𝑥𝑊𝑝𝑎𝑡𝑐ℎ

Figure 2.21: Dividing images into patches.

Figure 2.21 is just a representation of what the intent is. The actual way this is done
is by the use of a Convolutional Layer with stride equal to the kernel size (to avoid
overlapping) and enough output channels to fit an entire patch (𝐶𝐻𝑝𝑎𝑡𝑐ℎ𝑊𝑝𝑎𝑡𝑐ℎ). The
actual split image looks like Figure 2.22, since the Convolutional layer has two 16x16
kernels with randomly initialized values that have to be trained.

Figure 2.22: 14x14 Patches with random kernel

Flatten the patches
The objective of these steps is to obtain vector tokens that can serve as input to the
encoder, similar to the word vectors in the previous NLP example. Equation 2.11 shows
the expected size of each image 𝑥, where there are 𝑁 vectors, each corresponding to each
patch.

𝑥 ∈ ℝ𝐶𝑥𝐻𝑖𝑚𝑔𝑥𝑊𝑖𝑚𝑔 ⇒ 𝑥 ∈ ℝ𝑁𝑥𝐶𝐻𝑝𝑎𝑡𝑐ℎ𝑊𝑝𝑎𝑡𝑐ℎ (2.11)
For the specific case where the images are of dimension 3x224x224 (𝐶𝑥𝐻𝑥𝑊) and

the patches are of size 16x16 the dimensions are as follows:
𝑥 ∈ ℝ3𝑥224𝑥224 ⇒ 𝑥 ∈ ℝ14∗14𝑥3∗16∗16 = 𝑥 ∈ ℝ196𝑥768 (2.12)

23

2. RELATED WORK

After splitting the image with the Convolutional Layer, the resulting shape of the
image is 𝑥 ∈ ℝ768𝑥14𝑥14. This means each patch is already flat (𝐶𝐻𝑝𝑎𝑡𝑐ℎ𝑥𝑊𝑝𝑎𝑡𝑐ℎ = 768),
however, the patches are still distributed into two dimensions (14𝑥14). By flattening the
tensor, 𝑥 ∈ ℝ768𝑥196 is obtained. The last step is to transpose the tensor, resulting in the
desired dimension depicted in Equation 2.12.

Add positional embeddings (prepended CLS (Class) Token included)
The Class Token (CLS) was introduced by Devlin et al. [36] when they proposed the
BERT architecture for NLP. In the example for NLP shown in Figure 2.19, there are both
[SEP] and [CLS] Tokens. They defined CLS as a special symbol added in front of every
input sample, and SEP as a special separator token. For the Vision Transformer, the CLS
token is used, appended at the beginning of each sample 𝑥. For this to be possible, the
CLS token has to be of a compatible dimension, thus, [𝐶𝐿𝑆] ∈ ℝ1𝑥768 in our case. When
preppending this token to 𝑥 we get:

𝑥𝐶𝐿𝑆 =
(
[𝐶𝐿𝑆]

𝑥

) 𝑥𝐶𝐿𝑆 ∈ ℝ197𝑥768

[𝐶𝐿𝑆] ∈ ℝ1𝑥768

𝑥 ∈ ℝ196𝑥768

(2.13)

After appending the [CLS] token at the beginning of the input image 𝑥, an additional
positional embedding has to be added. Without the positional embedding, Figures 2.23(a)
and 2.23(b) would represent the same input to the ViT, since the data is processed in
parallel, rather than sequentially. There are many ways of doing positional encoding,
absolute or relative, learned or fixed [42].

(a) No patches switched (b) Patches switched
Figure 2.23: Split image using bigger patches

The explanation given here of how Transformers for NLP work, focused primarily on
the Attention Mechanism. However, Dosovitskiy et al. [41] used positional embedding
for the Transformer, which included a way to establish the positional relation of the
words into the model. The way this is done for Transformers in NLP is by the use of
frequencies dependent on the position of the word and the dimension of the word vector,
and independent on the meaning of the input word. The value is alternated between

24

2.3. Transformers

𝑠𝑖𝑛 and 𝑐𝑜𝑠 for even and uneven position respectively. This result is then added to the
word vector, thus shifting its semantic meaning by a small value (-1,1) in the various
dimensions of the vector. The Transformer then learns that these constants that shift
every word, independent of the actual meaning, correspond to the position of the word in
the sentence.

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛
(
𝑝𝑜𝑠∕100002𝑖∕𝑑𝑚𝑜𝑑𝑒𝑙

) (2.14)
𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠

(
𝑝𝑜𝑠∕100002𝑖∕𝑑𝑚𝑜𝑑𝑒𝑙

) (2.15)
Figure 2.24 shows the values to be added to the first 5 dimensions of a 10 word

sentence. During training the model learns that these values are added to these positions,
and can then identify which words are closer or further to each other, or are even set apart
by a [SEP] token.

Figure 2.24: First 5 dimensions for 10 words, where 𝑑𝑚𝑜𝑑𝑒𝑙 = 512

For the Vision Transformer, there were different approaches considered17 and it was
established that adding a positional embedding improved the performance, however,
there was no significant difference between the different methods evaluated. The actual
implementation used is by defining a layer with trainable parameters that will act as the
positional embedding, this layer is then added to the input image 𝑥𝐶𝐿𝑆 . This positional
embedding layer (𝑃𝐸) has the same dimensions as 𝑥𝐶𝐿𝑆 .

𝑥𝑝𝑜𝑠_𝑒𝑚𝑏 = 𝑥𝐶𝐿𝑆 + 𝑃𝐸
𝑥𝑝𝑜𝑠_𝑒𝑚𝑏 ∈ ℝ197𝑥768

𝑥𝐶𝐿𝑆 ∈ ℝ197𝑥768

𝑃𝐸 ∈ ℝ197𝑥768

(2.16)

17

• No positional embedding
• 1-dimensional positional embedding (sequence of patches, e.g. 1-𝑁)
• 2-dimensional positional embedding (grid of patches, e.g. [1-𝑁𝑥, 1-𝑁𝑦])
• Relative positional embedding

25

2. RELATED WORK

Figure 2.25 shows three different positional embeddings, trained with different hy-
perparameters. These only represent one of the three RGB channels for each of the
different training methods. Here we can see how the learnt parameters range from −1 to
1, similarly to the NLP solution.

Figure 2.25: Positional embeddings of models trained with different hyperparameters
[41]

Feed everything to the encoder
At this point, the image to feed the encoder has been split into patches, flattened, appended
a class token and added a positional embedding. Now, as Figure 2.20 shows, this result
will be passed through the encoder. The original paper described Figure 2.26 to be the
Transformer Encoder, but there is a little bit more to understand. Let’s call this structure
"block". On the upper left corner is an "L x", signifying there are various of these blocks.

Figure 2.26: Vision Transformer Encoder (Block) [41]

Let’s look at one block. The first step of the block is to normalize the input. This input
(Embedded Patches) has all of the patches and the class token, meaning a single block
receives all the data. Then the normalized data is fed to a Multi-Head Self-Attention
Mechanism (MSA). This result is added to the original input through a Skip-Connection,
then it is normalized again before feeding it to a Multi-Layer Perceptron (MLP) and

26

2.3. Transformers

added again through another Skip-Connection18. Before going further to what happens
to the output of this single block, let’s look at the more relevant sections of this block,
namely the MSA and MLP layers.

Multi-Head Self-Attention Mechanism

Returning to Equation 2.16, we can redefine 𝑥𝑝𝑜𝑠_𝑒𝑚𝑏 as 𝑧, which will be the input for this
stage, after normalizing it. The Multi-Head Self-Attention Mechanism is the same as the
one described for Transformers in NLP. Here, each patch token (CLS token included) will
be analogous to the vector word in NLP. These are then represented as queries (𝑞), keys
(𝑘) and values (𝑣). We now know that these values are multiplied by a matrix (Linear
Layer - 𝑈𝑞𝑘𝑣) before performing the self-attention. Then 𝑞 and 𝑘 matrices are multiplied,
scaled by a factor (√𝐷ℎ) and the softmax is computed. This result is then multiplied by
𝑣, constituting the self-attention for a single head.

[𝑞, 𝑘, 𝑣] = 𝑧𝑈𝑞𝑘𝑣 𝑧 ∈ ℝ𝑁𝑥𝐷, (2.17)
𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(
𝑞𝑘𝑇∕

√
𝐷ℎ

)
𝑈𝑞𝑘𝑣 ∈ ℝ𝐷𝑥3𝐷ℎ , (2.18)

𝑆𝐴(𝑧) = 𝐴𝑣 𝐴 ∈ ℝ𝑁𝑥𝑁 (2.19)

In the same way as for NLP, there are multiple heads, each receiving the same input
and doing the same calculations, where each of them has a matrix 𝑈𝑞𝑘𝑣 with learnable
parameters that distinguishes them from each other. The resulting matrices from each
head are then stacked together and multiplied by another matrix with learnable parameters
(𝑈𝑚𝑠𝑎) to return to the original dimensions.

𝑀𝑆𝐴(𝑧) = [𝑆𝐴1(𝑧);𝑆𝐴2(𝑧); ...;𝑆𝐴𝑘(𝑧)]𝑈𝑚𝑠𝑎 𝑈𝑚𝑠𝑎 ∈ ℝ𝑘∗𝐷ℎ𝑥𝐷, (2.20)

where 𝑘 represents the number of heads. This process is done in parallel for each
head.

Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) used consists of only two linear layers and one GeLU
activation function. The shape of the output remains unchanged in respect to the input
given to the MLP.

After passing the embedded patches through a single block, the result is then used for
the next block. This means that this step is done sequentially for the 𝐿 number of blocks,
rather than parallel. Figure 2.27 shows a representation of how this should work.

18There are usually Dropout Layers scattered all over the Block to help generalize during training if
specified.

27

2. RELATED WORK

Figure 2.27: Vision Transformer Encoder (Block) [41]

The output for the CLS Token contains a distribution for the probabilities of each
class
As explained in the previous section, the output of the encoder has the same shape as the
input ℝ𝑁𝑥𝐷, where 𝑁 is the number of patches plus the class token in the first position
and 𝐷 is the size of these flat patches containing 16 by 16 pixels, all with RGB channels.
From this output, the first dimension corresponding to the class token is taken and passed
through another MLP with the number of output features equal to the number of classes
to classify the image.

Breaking the whole process down, it looks like this.

𝑧0 =
[
𝑥𝑐𝑙𝑎𝑠𝑠𝐸; 𝑥1

𝑝𝐸; 𝑥2
𝑝𝐸; ...; 𝑥𝑁

𝑝 𝐸
]
+ 𝐸𝑝𝑜𝑠, 𝐸 ∈ ℝ(𝑃 2⋅𝐶)𝑥𝐷, 𝐸𝑝𝑜𝑠 ∈ ℝ(𝑁+1)𝑥𝐷 (2.21)

The image is split into 𝑁 patches
(
𝑥1
𝑝 − 𝑥𝑁

𝑝

)
, each patch is flattened and multiplied

by a matrix with learnable parameters (𝐸). These are then concatenated along with a
class token (𝑥𝑐𝑙𝑎𝑠𝑠) in the first position. Finally, the positional embedding (𝐸𝑝𝑜𝑠) is added,
resulting in the input for the encoder (𝑧0).

𝑧′𝓁 = 𝑀𝑆𝐴(𝐿𝑁(𝑧𝓁−1)) + 𝑧𝓁−1, 𝓁 = 1...𝐿 (2.22)
Now in order to obtain the intermediate value (𝑧′𝓁), the input value (𝑧𝓁−1), which

for the first block corresponds to 𝑧0, is normalized (LN), then put trough a multi-head
self-attention mechanism (MSA) and added with the original input (𝑧𝓁−1) through a skip
layer.

𝑧𝓁 = 𝑀𝐿𝑃 (𝐿𝑁(𝑧′𝓁)) + 𝑧′𝓁, 𝓁 = 1...𝐿 (2.23)
The second half of the block consists of taking this intermediate value (𝑧′𝓁), normal-

izing it (LN), performing a feed forward through a multi layer perceptron (MLP) and

28

2.3. Transformers

adding it to the intermediate value (𝑧′𝓁) through a skip layer. This output is then fed to
the next block performing Equations 2.22 and 2.23 back and forth for 𝐿 iterations.

𝑦 = 𝑀𝐿𝑃 (𝐿𝑁(𝑧0𝐿)) (2.24)
The output classification is then done by taking the output of the last block of the

encoder (𝑧𝐿) and selecting only the first row, corresponding to the class token (𝑧0𝐿). This
is then normalized and passed through a last multi-layer perceptron (MLP) that outputs
the probabilities for each class.

2.3.2 Swin Transformer
We have now seen how the original Transformer and the Vision Transformer work.
However, the Vision Transformer scales poorly for larger images, because every pixel
"attends" to every other pixel. This means that every time the self-attention is computed,
every patch is multiplied by every other patch, even though they might not be close.

Liu et al. [43] propose a way to start these multiplications locally, and then scale up to
a more global view of the image. This pyramid form of doing the multiplications speeds
up the process and allows for a finer view of the details before scaling up to a broader
overview.

The first concept to understand how the Swin Transformer differs from the original
transformer is that there are local windows as shown in Figure 2.30. The right side shows
the original ViT transformer, where each patch of the image is multiplied by every other
patch in order to get the Self-Attention. This is marked with a red border along the entire
image, this can be seen as the window where the operations are done. The flow is from
bottom to top, where each window remains the same size.

On the left side is the Swin Transformer, there are several sizes of these windows.
The top representation of how the Self-Attention is done is the same as in ViT. Stepping
backwards into the flow, the windows are smaller and patches are also smaller. This
means that the Self-Attention operations are done only within the compounds of the red
windows, reducing the complexity of computations needed.

As the arrow shows, the flow goes from smaller windows to bigger ones. This
allows for smaller patches with higher resolution to interact with each other, gaining high
resolution information of patches attending to near neighbours. The windows are then
scaled up in next iterations to allow for a more general view, letting bigger patches (which
already contain information of the smaller patches interacting with each other) interact.

29

2. RELATED WORK

Figure 2.28: Swin Transformer [43]

However, if this process is done like as shown above, the information exchange is
done only locally, relying on the last blocks to exchange information from distant patches.
In order to avoid this, shifted windows are introduced. Figure 2.29 shows an example for
the case where there are four windows dividing the original image. These windows are
then shifted in the 𝑥 and 𝑦 directions by half of the window’s size. This configuration
allows the shifted blocks to exchange new information from neighbouring windows from
the previous configuration.

Figure 2.29: Swin Transformer [43]

The shifting is done always in pairs, meaning that the first block will have a normal
configuration and the next one will have a shifted configuration. Figure 2.30 shows
two successive Swin Transformer blocks with their Window-Multi-Head Self-Attention
(W-MSA) and the Shifted Window-Multi-Head Self-Attention (SW-MSA) respectively.

Figure 2.30: Swin Transformer: Two Successive Swin Transformer Blocks[43]

30

2.3. Transformers

The Swin Architecture is then composed by these concepts. As Figure 2.31 shows, it
consists of 4 stages. As with the ViT, the input image is split into patches and flattened
before feeding it into the block. At the first stage, the image is divided into patches of 4
pixels each, and after doing the linear embedding, it forwards it through two consecutive
Swin Transformer Blocks. As explained earlier, these blocks come in pairs, shifting the
windows back and forth as shown in Figures 2.29 and 2.30. The amount of successive
transformer blocks depends on the stage and the size of the architecture as shown in Table
2.1. This process is then repeated, scaling up the size of the patches (including more
pixels per patch) and also scaling the window accordingly to fit the new patches.

Figure 2.31: Swin Transformer Architecture [43]

Model C Successive Transformer Blocks
Stage 1 Stage 2 Stage 3 Stage 4

Swin-T 96 2 2 6 2
Swin-S 96 2 2 18 2
Swin-B 128 2 2 18 2
Swin-L 192 2 2 18 2

Table 2.1: Architecture parameters for the different Swin Transformer sizes [43].

After this section, the reader should now have a basic understanding of the basic
building blocks and how they are connected to form complex architectures. Different
architectures are introduced and some were even explained in detail how they work.
However, there are still some steps until these architectures can classify the desired
dataset correctly.

Next we need to specify the dataset that is going to be used, then we can move on to
training these models.

31

3 Dataset: Images of Pump Impellers

This project is intended to be reproduced in the manufacturing field with images that
might present visible defects. The goal is to train a model to correctly classify images
with a small dataset, such that the decisions made by the model can be justified via visual
inspection of the regions of interest selected by the model. For this purpose a publicly
available dataset was selected to train eight models and verify their performances. The
dataset used in this project was uploaded to Kaggle by R. Dabhi. It contains images
provided by PILOT TECHNOCAST, a manufacturing company from India. The images
show the top view of stainless steel casted submersible pump impellers as depicted in
Figure 3.1. Pump impellers accelerate the pumped fluid radially outwards, transforming
energy from the motor into pressure.

Casting refers to the manufacturing process, where a liquid is poured into a mould
containing the negative impression of the shape desired and later allowed to solidify. This
process allows the manufacture of complex shapes in an inexpensive way. According to
Rundman [44], there are several sources of imperfections when performing this procedure
with metals.

(a) Defect (b) Ok
Figure 3.1: Top view of Pump Impellers

The first source mentioned are gases in the materials. If gas is present in the liquid,
the gas will be trapped resulting in porosity. The next source mentioned are hot tears,
resulting from residual stresses due to variations in the cooling rate. Shrinkage is also to
be considered during the process, which leads to the use of risers. The riser is an excess
of material which provides the actual piece a source to draw material from when cooling,
since the density is not the same in the liquid and solid form, thus shrinking up to 5-7%.

32

All of this leads to various sources of shortcomings in the manufacturing of these
pieces. The result of such errors can be seen in Figure 3.1(a). Hence, this dataset was
gathered to identify through Computer Vision algorithms if the images contain a visible
defect and classify the object as defective or not.

The dataset consists of one folder containing the original images with 512px by 512px
of resolution and another folder with augmented data as shown in the tree in Figure 3.2.
The first folder (casting_512x512) contains two sub-folders, which divide the data into
defective and ok. In these folders are 718 images for the defective class and 519 for the
correct one.

Figure 3.2: Dataset Folder Structure

The other folder containing augmented data has two sub-folders dividing the data
into training and testing data. For the training data, there are 3758 defective images and
2875 ok ones. For testing, there are 453 defective images and 262 ok ones.

Def Ok Total Def (%) Ok (%)
Original (512x512px) 718 519 1237 58.04 41.96

Train (′) 3758 2875 6633 56.66 43.34
Test () 453 262 715 63.36 36.64

Total (′ ∪) 4211 3137 7348 57.31 42.69
Table 3.1: Images provided in the dataset

Table 3.1 shows that the data is fairly well balanced and does not contain a class that
heavily outnumbers the other one. Let us denote the dataset as and its instances as
{(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 with N as the size of the dataset, {𝑥𝑖}𝑁𝑖=1 the images and {𝑦𝑖}𝑁𝑖=1 the class they
belong to, also referred to as labels. In this case the dataset would be the union of the
subsets Train (′) and Test (). Where each subset has unique instances.

 = ′ ∪ (3.1)
 ′ ∩ = ∅ (3.2)

As the names suggest, ′ will serve to train the different models and will serve
to analyze the performances after the training. However, in order to validate the model
during training, there has to be another subset in order to validate the performance of the
training. The Validation subset () is taken from ′, thus creating two new subsets, one
for the actual training and one for validating .

33

3. DATASET: IMAGES OF PUMP IMPELLERS

 ′ = ∪ (3.3)
This means that: = ′ ∪ = ∪ ∪ (3.4)

 ∩ = ∅, ∩ = ∅, ∩ = ∅ (3.5)
Usually is divided in a way that comprises 80%, 10% and the remaining

10%. This dataset is already divided into ′ and , with being around 9.7% of (715
images out of 7348). By splitting ′ by 90% for (5970 images) and 10% for (663
images), results in 9% of .

3.1 Preprocessing
The state of the art libraries for machine learning development (such as Pytorch and
TensorFlow) count with built-in techniques to prepare datasets in order to feed them to
the models. Many of these datasets are readily available online to download and the
libraries provide easy ways to access them. In the case of image processing, the vision
package of pytorch, torchvision, provides typically used datasets to download. The
example code in Listing 1 shows how with three lines of code the MNIST[45]1 dataset is
downloaded to the specified directories and split into train and validation.
Listing 1 Example on how to download the MNIST dataset

import torchvision

ds_train = torchvision.datasets.MNIST(
root='datasets/MNIST/train/',
train=True,
download=True

)
ds_val = torchvision.datasets.MNIST(

root='datasets/MNIST/val/',
train=False,
download=True

)

With these lines of code the images are available for use in the form of a subclass
of torch.utils.data.Dataset. However, the use of custom datasets is cru-
cial for Machine Learning, thus pytorch offers a simple way to define these datasets.
In order to do so, it is necessary to create a class that inherits from the abstract class
torch.utils.data.Dataset and implements the methods __len__ and __getitem__.
As the name of the methods suggest, the first one should return the number of items in
the dataset and the second should return an item corresponding to the index passed to it.
For this method, the loading and handling of the data must be done by the user.

1MNIST(Modified National Institute of Standards and Technology) contains grayscale images of
handwritten numbers.

34

3.1. Preprocessing

As with the ready to use datasets, the torchvision package provides a solution to
handle the data and create a custom dataset automatically either for generic files with the
class DatasetFolder or explicitly for images with ImageFolder which inherits
from DatasetFolder.

When creating an object of the DatasetFolder class, the following parameters
have to be provided:

• root(string) - Root directory path.
• loader(callable) - A function to load a sample given its path.
• extensions(tuple[string]) - A list of allowed extensions. Both extensions and

is_valid_file should not be passed.
• transform(callable, optional) - A function/transform that takes in a sample and

returns a transformed version. E.g, transforms.RandomCrop for images.
• target_transform(callable, optional) - A function/transform that takes in the target

and transforms it.
• is_valid_file - A function that takes path of a file and checks if the file is a valid

file (used to check of corrupt files) both extensions and is_valid_file should not be
passed.

The parameter root should specify the path to a directory like the one shown in
Figure 3.2, which already divides the different classes into sub-folders. It must also be
taken into consideration that this is a generic solution for every type of file defined in
either the extensions or the is_valid_file parameters, thus a way to read the
files from the directories must be specified within the loader parameter. Since this
project deals only with images, the subclass ImageFolder handles the loading of the
images and has a predefined list of allowed extensions. These are the parameters for
ImageFolder2:

• root (string) – Root directory path.
• transform (callable, optional) – A function/transform that takes in an PIL image

and returns a transformed version. E.g, transforms.RandomCrop

• target_transform (callable, optional) – A function/transform that takes in the
target and transforms it.

• loader (callable, optional) – A function to load an image given its path.
• is_valid_file – A function that takes path of an image file and checks if the file is a

valid file (used to check of corrupt files)
2The scope of this project is for it to be reproducible with other objects within the ZDMP, hence the

importance to explain how to create the corresponding dataset objects.

35

3. DATASET: IMAGES OF PUMP IMPELLERS

As the description of the parameters show, only the path is needed to create a valid
dataset. The optional parameters allow for a customized preprocessing of the dataset
when loading it, either by the way the data is loaded, the filtering of undesired data or by
applying transformations to the images.

Transform refer to a set of common image transformations that either prepare the
data to fit the needs of the models or distort the data, thus creating new versions of the
original data. This technique is further discussed in Data Augmentation.

Neural Networks work usually with floating-point data as input, showing best training
performance when ranging from 0 to 1 or -1 to 1. Typically the original pixel values
range from 0 to 255, so they have to be adjusted to either range mentioned. Ioffe and
Szegedy [19] proposed a way to reduce the internal covariance shift by normalizing each
training mini-batch inside the model architecture as Algorithm 2 shows.
Algorithm 2 Batch Normalization [19]

Input: Values of 𝑥 over a mini-batch: = {𝑥1...𝑚};
Parameters to be learned: 𝛾 , 𝛽

Output: {𝑦𝑖}

𝜇 ←
1
𝑚

𝑚∑
𝑖=1

𝑥𝑖

𝜎2 ←
1
𝑚

𝑚∑
𝑖=1

(𝑥𝑖 − 𝜇)2

𝑥𝑖 ←
𝑥𝑖 − 𝜇√
𝜎2 + 𝜖

𝑦𝑖 ← 𝛾𝑥𝑖 + 𝛽

The first steps are to get the mean (𝜇) and variance (𝜎2) for the input batch . Then
each datapoint 𝑥𝑖 is normalized by shifting it by 𝜇 towards zero mean and dividing it by
the sqare root of 𝜎 plus a constant 𝜖 resulting in new normalized datapoints 𝑥𝑖. These
new 𝑥𝑖 are then used to train the parameters 𝛾 and 𝛽. Usually the constant 𝜖 is a small
number for numerical stability that can be neglected, approximating the denominator to
the standard deviation 𝜎.

If the full training subset is available, 𝜇 and 𝜎 can be determined and used to
normalize the full dataset . These normalizing values can be used not only for training,
but also during validating, testing and in production. It is important to mention that only
the training data and not the validation or testing data are to be used in order to
avoid data leakage [46].

Another option is to used readily available 𝜇 and 𝜎 values from large datasets, provided
they belong to a pertinent dataset. ImageNet [47], for example is composed of millions
of images of natural scenes, such as animals, household items and food. The normalizing
values are as follow:

• 𝜇𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡: 0.485, 0.456, 0.406

36

3.2. Data Augmentation

• 𝜎𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡: 0.229, 0.224, 0.225
For each channel RGB respectively. For the case of the MNIST dataset, which has

grayscale images of handwritten numbers, the values are:
• 𝜇𝑀𝑁𝐼𝑆𝑇 : 0.1307
• 𝜎𝑀𝑁𝐼𝑆𝑇 : 0.3081
Since the casting dataset in question is very specific and is available, it makes sense

to work out the corresponding values. For the values are:
• 𝜇 : 0.5643
• 𝜎 : 0.2386
Figure 3.3 shows the pixel distribution along the different grayscale values before

normalizing the data for the subset . It also shows the original 𝜇 and 𝜎 before dividing
by 255. If the same diagram was plotted for the MNIST dataset, the expected result
would be two big bars, one at position 0 and one at 255, since the dataset consists of a
dark background and a white number, and then some orders of magnitude lower the rest
of values. Whereas here we clearly see a dark concentration of pixels for the center of
the pump impellers and then a larger consolidation at higher values for the different tones
that make up the rest of the objects as well as the background.

Figure 3.3: Grayscale Histogram for training subset of the Casting Dataset

3.2 Data Augmentation
An under-trained model tends to over-generalize (underfitting), whereas a model exten-
sively trained to perform one task is prone to under-generalize (overfitting) [48]. Thus,
overfitted models tend to perform well on the training set and very poorly on unseen data
[49].

One of the main reasons that overfitting occurs is due to noise learning [50]. An
example of this would be an architecture trained to predict the ages of different images of
faces. A good fit would try to look at signifiers like wrinkles, gray hair, hairstyle, clothing,
etc. An overfitted model would remember each person and their age [24]. Machine

37

3. DATASET: IMAGES OF PUMP IMPELLERS

Learning architectures have grown larger in size, which results millions of parameters
to be trained, thus making it easier to remember each input and which output it should
generate.

There are many approaches to avoid overfitting, such as early stopping, noise reduction,
regularization and expansion of the dataset. The expansion of the dataset might be done
either through the acquisition of more datapoints or the creation of new ones artificially
based on the existing ones. This last element is also called data augmentation [50]. The
main goal of data augmentation is to synthetically increase the training set size beyond
what the model is capable of memorizing, thus generalizing [24].

For Machine Vision there are many standard techniques used to augment the data with
common image transformations such as position augmentation and color augmentation.

Figures 3.4(b) to 3.4(i) show examples of position augmentation and Figures 3.4(j)
to 3.4(k) show examples of color augmentation on the casting dataset. Some of these
examples have been exaggerated to emphasize how they affect the original image.

(a) Original (b) Scale (c) Crop (d) Horizontal Flip

(e) Vertical Flip (f) Padding (g) Rotation (h) Translation

(i) Shear (j) Brightness (k) Saturation
Figure 3.4: Typical positional transformations

38

4 Training and Fine Tuning the Models
for Image Classification

Up until now, the dataset and also the architectures used in this project have been intro-
duced . This section will go step by step explaining how the architectures are trained to
classify the images.

First, this section shows how the models are loaded for the training. Then, the loss
is introduced. This will be the criteria to minimize in order to determine how well the
model is performing. Then the optimizer is explained to know how the model is guided
into a better performance (thus, minimizing the loss) and finally the actual steps taken
during training are described. Here, the resulting values of training, validation and testing
are also presented.

4.1 Creating/Loading the models
The Luna model comes from the book Deep Learning with PyTorch by Stevens et al.
[24]. This model was originally designed to detect nodules in three-dimensional data of
CT scans of lungs. Thus, by modifying the architecture to analyse two-dimensional data,
there are no pretrained weights available that can be used to initialize the model and then
fine tune for the specific task.

This model, its dependencies and its constructor have been defined inside the reposi-
tory for this project. In order to create a Luna model, either this library has to be imported,
or the architecture must be copied. Since this is the only model trained from scratch, it
was trained for 50 epochs.

The rest of the models have been part of publications which have trained their ar-
chitecture on the ImageNet dataset. For many of these architectures, there are several
sources to get pretrained weights from (e.g. torchvision, timm, huggingface, kaggle).
The main intent was to use torchvision as the only source of pretrained weights, however,
not all of them are available on torchvision.

The model that is not available on torchvision is DINO. This model has to be loaded
from the main source (facebookresearch). Even other libraries such as huggingface load
the pretrained weights from this github repository. The workflow to get this model with
its weights does not deviate from the other pretrained models.

Listing 2 shows an example to load a pretrained model from torchvision. This process
is similar with the other libraries, where with a single line of code, the model with

39

4. TRAINING AND FINE TUNING THE MODELS FOR IMAGE CLASSIFICATION

the pretrained weights is loaded. For the model to work with this binary classification
problem, the last layer has to be adjusted to converge to only two outputs. How this last
layer is accessed will depend on the architecture.

Listing 2 Example on how to load a pretrained model from torchvision:v0.13.0

model = torchvision.models.efficientnet_v2_s(
weights="EfficientNet_V2_S_Weights.IMAGENET1K_V1"

)
model.classifier = torch.nn.Linear(1280, 2)

Number of parameters per model
Each architecture is different, thus having a different number of parameters to be tuned.
Table 4.1 shows the amount of parameters per model after adjusting them to the right
amount of classes in the output layer.

Model Number of parameters
Luna 115 K
AlexNet 57.0 M
ResNet18 11.2 M
EfficientNetV2 20.2 M
ConvNext 27.8 M
Vision Transformer 85.8 M
Swin Transformer 27.5 M
DINO 21.7 M

Table 4.1: Number of parameters per model

4.2 Loss
In order to observe how well the model is learning, a way to describe its performance is
needed. There are many ways to compute this deviation between the ground truth and the
prediction, where these functions return a distance metric. The function used depends on
the specific implementation.

This is then used as a way to guide the model into better performance. The one used
for this classification is the Cross Entropy Loss function. Since there are only two classes
(Defective & Ok), the mathematical function automatically turns into a Binary Cross
Entropy Loss function.

Cross Entropy
Cross Entropy Loss is defined by Equation 4.1, where �̂�𝑖 represents the prediction and 𝑦𝑖the ground truth for the 𝑖𝑡ℎ class and 𝑁 is the total number of possible classes.

40

4.2. Loss

𝐶𝐸 = −
𝑁∑
𝑖=1

𝑦𝑖 ⋅ 𝑙𝑜𝑔
(
�̂�𝑖
) (4.1)

Knowing that 𝑦 is a one-hot encoded vector, means that every class is 0 except for
the class 𝑖 that is currently being evaluated, which is 1. This eliminates every 𝑙𝑜𝑔(�̂�𝑖) that
does not correspond to the class 𝑖.

As already mentioned, there are only two classes for this task, thus rewriting the
equation delivers the formula for the Binary Cross Entropy Loss.

𝐵𝐶𝐸 = −
[
𝑦1 ⋅ 𝑙𝑜𝑔

(
�̂�1
)
+ 𝑦2 ⋅ 𝑙𝑜𝑔

(
�̂�2
)] (4.2)

Provided that the probability �̂� has been normalized (via softmax or similar), the
probability for one class will be 100% minus the probability of the other class. Taking 𝑦
and �̂� as the ground truth and prediction respectively for a given image, the equation can
be rewritten as follows:

𝐵𝐶𝐸 = −
[𝐹 𝑖𝑟𝑠𝑡𝑐𝑙𝑎𝑠𝑠
⏞⏞⏞⏞⏞⏞⏞
𝑦 ⋅ 𝑙𝑜𝑔 (�̂�) +

𝑆𝑒𝑐𝑜𝑛𝑑𝐶𝑙𝑎𝑠𝑠
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(1 − 𝑦) ⋅ 𝑙𝑜𝑔 (1 − �̂�)

] (4.3)
For a batch of images , each individual loss 𝓁𝑗 is computed and the result is then

averaged.

𝓁 (�̂�, 𝑦) = 𝑚𝑒𝑎𝑛
(
{𝓁1, ...,𝓁𝐵}𝑇

)
, where 𝓁𝑗 = 𝐵𝐶𝐸

(
�̂�𝑗 , 𝑦𝑗

) (4.4)

Other examples of Loss functions that can be used, are Mean Squared Error, Mean
Absolute Error, Huber Loss, etc. The framework used here allows the creation of an
instance of the class torch.nn.modules.loss.CrossEntropyLoss, which can then be used
to compute the loss between a prediction (�̂�) and the corresponding ground truth (𝑦) as
shown on Listing 3.

Listing 3 Pytorch Implementation: Cross Entropy Loss

import torch

Creation of the CrossEntropyLoss iinstance
criterion = torch.nn.CrossEntropyLoss()

Random values for the example
�̂� = torch.randn(3, 5, requires_grad=True)
𝑦 = torch.empty(3, dtype=torch.long).random_(5)

Cross Entropy Loss computation
output = criterion(�̂�, 𝑦)

41

4. TRAINING AND FINE TUNING THE MODELS FOR IMAGE CLASSIFICATION

4.3 Optimizer
Once the error is computed, the model needs a way to interpret this in order to update
its parameters and head into the right direction. The direction taken will determine how
well the model will improve, if it does improve. As in any optimization task, the goal
is to find the parameters that minimize the objective function. For the case of ML, the
objective function refers to the loss function and the goal is to minimize it.

Here is a step by step description of how the used optimizer in this project (Adam)
was developed by Kingma and Ba [51] using previous works.

4.3.1 Gradient Descent
Given a starting point for the parameters (𝜃) of the network, the gradient (∇) of the
objective function (𝐽 (𝜃)) is computed. This leads to the direction which will have the
biggest effect on the function. The parameters are then updated in the negative direction
of the gradient by a single step (𝜂). This process is then repeated until the improvement of
the steps falls inside a certain threshold (𝜖). The size of the step taken is called learning
rate [52, 53].
Algorithm 3 Gradient Descent [52]

𝜃𝑐 ← Initial Values;
𝜃𝑛 ← 𝜃𝑐 − 𝜂∇𝜃𝐽𝜃(𝜃𝑐);
while ‖𝐽 (𝜃𝑛) − 𝐽 (𝜃𝑐)‖ > 𝜖 do

𝜃𝑐 ← 𝜃𝑛;
𝜃𝑛 ← 𝜃𝑐 − 𝜂∇𝜃𝑓𝜃(𝜃𝑐);

end while

In order to make a robust decision of where the gradient is pointing, a batch of samples
is taken into consideration and the result is averaged among the resulting gradients. This
is also known as Batched Gradient Descent [53].

4.3.2 Learning Rate
The learning rate (in combination with other parameters of the optimizer such as the
magnitude of the gradient) defines how much the parameters change in each step taken
while searching for the minimum loss. Usually, the learning rate is chosen ad-hoc [52].

If the learning rate is too small, it will take many steps for it to reach its destination,
delaying the learning process. However, if the learning rate is too large, it can miss
the minima due to overshooting, thus circling back and forth around it. Therefore, the
learning rate can also be adaptive, changing the step size accordingly to speed up the
converging process [54].

4.3.3 Stochastic Gradient Descent (SGD)
An issue of Gradient Descent (GD) is when encountering local minima. The initialization
of the parameters will determine where the optimization will stop. Depending on where

42

4.3. Optimizer

its parameters are initialized, the gradient will move them in the direction of minimum
loss, regardless of local or global minima. [55]

Machine learning architectures have many parameters that will determine the predic-
tion which is then fed to the loss function. This high-dimensionality makes it impossible
to plot and extremely hard to analyze and determine the positioning of the global minima
[52].

As the name suggests, a stochastic fluctuation is introduced by using each sample to
update the parameters, instead of an entire batch. This leads to oscillations, which can
help overcome local minima and search for a global one [53].

Figure 4.1: Stochastic Gradient Descent vs Gradient Descent 1

Figure 4.1 shows the main difference between SGD and GD. Here, the black lines
denote equal elevation and the black cross is the location of the minima for this concave
shape. For GD, the path shown with the red line follows a straight trajectory, whereas
SGD shows an erratic movement. Also, it can be seen that SGD requires more steps to
converge, however, each step takes less time to compute, as it depends on single inputs
and not entire batches to update the parameters [53].

4.3.4 Adagrad
Duchi et al. [56] proposed modifying SGD by adapting the learning rate of the parameters
depending on their update frequency. Thus, having greater learning rates for infrequent
parameters and smaller rates for frequent ones [53].

This helps sparse features which seldomly update their corresponding parameters.
Without this, frequent parameters might converge quickly before the infrequent have had
a chance to update enough.

1Image taken from: https:\/\/datascience-enthusiast.com\/DL\
/Optimization_methods.html

43

https:\/\/datascience-enthusiast.com\/DL\/Optimization_methods.html
https:\/\/datascience-enthusiast.com\/DL\/Optimization_methods.html

4. TRAINING AND FINE TUNING THE MODELS FOR IMAGE CLASSIFICATION

Algorithm 4 Adagrad [56, 53]
𝑡 ← 1;
𝐺0 ← Zeros;
𝜃0 ← Initial Values;
𝑔𝑡,𝑖 ← ∇𝜃𝐽 (𝜃0,𝑖);
𝐺𝑡 ← 𝐺0 + 𝑔2𝑡 ;
𝜃𝑡 ← 𝜃𝑐 −

𝜂√
𝐺𝑡+𝛿

× 𝑔𝑡;
while ‖𝐽 (𝜃𝑡) − 𝐽 (𝜃𝑡−1)‖ > 𝜖 do

𝑡 ← 𝑡 + 1
𝑔𝑡,𝑖 ← ∇𝜃𝐽 (𝜃𝑡,𝑖);
𝐺𝑡 ← 𝐺𝑡−1 + 𝑔2𝑡 ;
𝜃𝑡 ← 𝜃𝑡−1 −

𝜂√
𝐺𝑡+𝛿

× 𝑔𝑡;
end while

Where 𝜃𝑡 represents all of the parameters at iteration 𝑡, 𝑔𝑡 the gradient with respect
to the parameters, 𝐺𝑡 is a matrix containing the sum of the squares of past gradients
along the diagonal, 𝜂 is the learning rate, 𝜖 is a small value to avoid zero division and 𝜖
is the threshold to stop iterating. Variables with the subindex 𝑖 refer to per-parameter
operations. Meaning that 𝑔𝑡,𝑖 ← ∇𝜃𝐽 (𝜃𝑡,𝑖) results in each gradient being computed per
parameter and stored in its corresponding variable [53].

4.3.5 Adadelta
Zeiler [57] improved Adagrad by limiting the amount of past gradients stored in 𝐺.
Storing all of the previous squared gradients for a window of size 𝑤 is inefficient, thus
the accumulation is proposed as exponentially decaying. This exponentially decaying
running average (𝐸[𝑔2]𝑡) allows for further optimization without the updating parameters
decaying too quickly due to the rapid growth of 𝐺𝑡 in frequent parameters [53].

𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 + (1 + 𝛾)𝑔2𝑡 (4.5)

Algorithm 5 Adadelta [57, 53]
Require: Decay rate: 𝛾 , Constant 𝜖
Require: Initial Parameter: 𝜃1

𝐸[𝑔2]0 ← 0;
𝐸[Δ𝜃2]0 ← 0;
for 𝑡 = 1 ∶ 𝑇 do

𝑔𝑡,𝑖 ← ∇𝜃𝐽 (𝜃𝑡,𝑖);
𝐸[𝑔2]𝑡 ← 𝛾𝐸[𝑔2]𝑡−1 + (1 + 𝛾)𝑔2𝑡
Δ𝜃𝑡 ← −𝑅𝑀𝑆[Δ𝜃]𝑡−1

𝑅𝑀𝑆[𝑔]𝑡
𝑔𝑡;

𝐸[Δ𝜃2]𝑡 ← 𝛾𝐸[Δ𝜃2]𝑡−1 + (1 + 𝛾)Δ𝜃2𝑡
𝜃𝑡+1 ← 𝜃𝑡 + Δ𝜃𝑡

end for

44

4.3. Optimizer

Where

𝑅𝑀𝑆[𝑔]𝑡 =
√

𝐸[𝑔2]𝑡 + 𝜖 (4.6)
For this method, it must also be mentioned that it does not require a learning rate (𝜂)

as the previous methods did.

4.3.6 Root Mean Square Propogation (RMSprop)
During the same period where Adadelta was being developed, RMS was proposed by G.
Hinton2 independently but was not published. Here the equations are almost identical to
Adadelta [53].

𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔2𝑡 (4.7)

𝜃𝑡+1 = 𝜃𝑡 −
𝜂√

𝐸[𝑔2]𝑡 + 𝜖
𝑔𝑡 (4.8)

4.3.7 Adam
Adaptive Moment Estimation (Adam) [51] also uses adaptive learning rates per parameter.
Similarly to Adadelta and RMSprop, it stores the exponentially decaying average of
previous squared gradients (𝑣𝑡). Additionally, the exponentially decaying average of
previous gradients (𝑚𝑡) is stored, similarly to momentum [53].

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 + 𝛽1)𝑔𝑡 (4.9)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 + 𝛽2)𝑔2𝑡 (4.10)
These represent the estimates for the first (𝑚𝑡) and second (𝑣𝑡) moment of gradients. In

order to counteract a bias towards zero, the estimates are computed as shown in equations
4.11 and 4.12.

�̂�𝑡 =
𝑚𝑡

1 − 𝛽 𝑡
1

(4.11)

𝑣𝑡 =
𝑣𝑡

1 − 𝛽 𝑡
2

(4.12)

These values are then used in order to determine the updated parameters (𝜃𝑡+1) as:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂√

�̂� + 𝜖�̂�
(4.13)

As shown in Figure 4.2, Adam shows the best performance.
2http://www.cs.toronto.edu/\simtijmen/csc321/slides/lecture_

slides_lec6.pdf

45

http://www.cs.toronto.edu/$\sim $tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/$\sim $tijmen/csc321/slides/lecture_slides_lec6.pdf

4. TRAINING AND FINE TUNING THE MODELS FOR IMAGE CLASSIFICATION

Figure 4.2: Optimizers comparison with neural networks using dropout stochastic regu-
larization on the MNIST dataset. [51]

Pytorch handles the optimization of parameter through an Optimizer object bound to
the parameters of the model to optimize. Listing 4 shows how this is done.

Listing 4 Pytorch Implementation: Adam Optimizer

import torch

Creation of the Adam Optimizer instance
optimizer = torch.optim.Adam(model.parameters(),

lr=2e-5,
weight_decay=2.5e-4
)

4.4 Training Steps
In order for the model to train, we need to actually define a loop that takes care of
computing the loss and updating the parameters. For this purpose we can divide the
training in each iteration into two crucial parts, the forward and the backward step.
Also, in order to make sure that the training is working, validation is done to verify the
performance of the model with "unseen" images.

Referring back to Equations 3.1 to 3.5 it can be seen that a Subset of the dataset
has been set aside for training and another for validation .

46

4.4. Training Steps

4.4.1 Training
During training, the subset is used in batches. This helps parallelize the process,
making better use of the resources, while also helping the optimizer converge faster than
using single images. Using the whole subset once is called an epoch. The architecture
can be trained for many epochs until it reaches the desired level of accuracy3.

Forward Step
In the forward step, a batch of images from is run through the architecture. This process
yields an output which corresponds to the prediction of the model for each image. This
process is also called forward propagation. This being a classification problem, the result
can be in the form of logits or smoothed into probabilities using softmax or something
similar.

During this process the frameworks collects the gradients making sure to follow the
chain of operations done to the input. The framework used in this project is pytorch.
Pytorch takes care of tracking the gradients with torch.autograd. This will be needed for
the backward step.

Backward Step
After passing the image through the model in the forward pass, the loss must be computed
for each result of each image in the batch. Typically the mean loss of the batch is used, but
there are other ways it can be used, such as the sum or the median. The loss determines
how acceptable the results are and also help determine how each of the parameters has
influenced the results.

As mentioned in the forward step, while using pytorch, the framework takes care of
computing the derivatives during the forward propagation and collects these gradients to
use during the backward propagation4.

The optimizer is then responsible for taking the computed gradients and update the
parameters of the model. If a model is being trained from scratch, then every parameter
will be updated. However, if transfer learning is being performed, then the amount of
parameters updated during the backward propagation will depend on the strategy used.

During transfer Learning, the initial weights of the parameters correspond to a previous
training on a large dataset. Figure 4.3 shows the different possible ways to adjust a
pretrained model. Strategies one and two correspond to fine tuning and strategy number
three is also referred to as feature extraction. In feature extraction, the pretrained model
is used as a backbone and only the classifier is adjusted in order to correctly classify the
data. In fine tuning, the unfrozen weights can be adjusted as well, thus changing the
pretrained information.

In other words, a strategy needs to be chosen. The weights are frozen or unfrozen
according to the strategy. Then during backpropagation only the unfrozen weights are
updated according to the optimizer.

3Or whatever metric is being used to determine the performance of the model.
4Frameworks like pytorch require that the gradients are manually reset to zero after using them to

update the parameters. If this is not done, the gradients will be accumulated over the course of multiple
batches, which might be desirably for Recurrent Neural Networks.

47

4. TRAINING AND FINE TUNING THE MODELS FOR IMAGE CLASSIFICATION

Figure 4.3: Training strategies for transfer learning [58].

Sali et al. [58] present a graphical representation for choosing the right strategy
according the dataset analyzed. For manufacturing datasets, it is very common to have a
small number of images and they will most likely be dissimilar to other datasets that have
publicly available pretrained weights. This is also the case for the present problem, thus
positioning the proposed strategy in the third quadrant, where some layers are frozen, but
the majority remain unfrozen. There is a high uncertainty as to how much of the model
has to be frozen.

Our proposal for the training strategy is to retrain the entire model with a smaller
learning rate, even if the dataset has a small number of images and the images are
dissimilar to the original dataset used for pretraining the weights. A typical learning rate
value used with the Adam optimizer is 0.001. The learning rate used here is 2 ⋅ 10−5.

In order to compare the results and see if there is an improvement with respect to the
other strategies, this work was performed for every model using frozen, partially frozen
and unfrozen pretrained weights5. For the partially frozen weights, the first third of all
the layers were frozen as suggested by Figure 4.4.

Figure 4.4: Decision map for fine tuning pretrained models [58].
5Where the pretrained weights are available. The Luna architecture was used to compare a small model

trained from scratch, rather than using transfer learning, since there are no pretrained weights available.

48

4.4. Training Steps

Listing 5 Pytorch Implementation: Train Loop

import torch

Define the model
model = MODEL

Define loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(mode.parameters(), lr=2e-5,

weight_decay=2.5e-4)↪

Training loop
for epoch in range(max_epochs):

for images, labels in train_dataloader:
Ground Truth and prediction
𝑦 = labels
�̂� = model(images)

Reset the parameter gradients
optimizer.zero_grad()

Compute loss
output = criterion(�̂�, 𝑦)
output.backward() # Backward propagation

Update the parameters
optimizer.step()

As previously mentioned, different training strategies were used for comparison. The
following sections (training, validating and testing results) show only the results corre-
sponding to fine tuning unfrozen pretrained weights. The section "Metric Comparison:
Frozen vs Partially Frozen vs Unfrozen" in the appendix shows a more complete analysis,
comparing the different training strategies for every model.

4.4.2 Training results
The different models were trained on the training subset . Table 4.2 shows the final
results for the different models using different metrics. There is a quick recap on the
Metrics used at the end of this section if needed. These metrics are computed during the
training loop using the ground truth and the predictions done by the model.

As mentioned before, in the annex are tables comparing the results for the different
training strategies. The results shown here correspond only to the strategy proposed here,
by fine tuning every parameter.

49

4. TRAINING AND FINE TUNING THE MODELS FOR IMAGE CLASSIFICATION

Training -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

Luna 91.22 90.93 91.22 91.06 33.18 ⋅ 10−2
AlexNet 97.87 97.81 97.87 97.84 7.39 ⋅ 10−4
ResNet18 98.76 98.63 98.76 98.69 4.86 ⋅ 10−4
EfficientNet 98.23 98.21 98.23 98.22 12.94 ⋅ 10−4
ConvNext 98.98 98.94 98.98 98.96 1.97 ⋅ 10−4

ViT 98.97 98.90 98.97 98.93 2.12 ⋅ 10−4
Swin Transformer 98.60 98.57 98.60 98.58 1.92 ⋅ 10−4
DINO 99.07 99.01 99.07 99.04 51.91 ⋅ 10−4

Table 4.2: Training metrics

Table 4.3 shows the time needed to train the different models over all layers.
Epochs Time Time/Epoch

Luna 50 1h 29m 14s 1m 47s
AlexNet 6 49m 42s 8m 17s
ResNet18 6 13m 50s 2m 18s
EfficientNet 6 12m 44s 2m 07s
ConvNeXt 6 25m 51s 4m 19s
ViT 6 13m 32s 2m 15s
Swin Transformer 6 10m 06s 1m 41s
DINO 6 22m 55s 3m 49s

Table 4.3: Training time

After training all of the models with the different strategies, the cosine similarity
between the fully frozen and the unfrozen models was computed. For this, all the
parameters of every model were vectorized and compared between the different training
strategies.

Cosine Similarity to Unfrozen Fine Tuned Weights
Random

Initialization
(%)

Fully Frozen
Pretrained Weights

(%)
Partially Frozen

Pretrained Weights (%)
AlexNet 0.003 82.41 95.69
ResNet18 23.43 99.76 99.72
EfficientNet 34.11 99.98 99.99
ConvNeXt 29.95 97.40 99.56
ViT 9.67 96.80 97.92
Swin Transformer 21.11 98.64 99.78
DINO 34.83 99.94 99.99

Table 4.4: Cosine Similarity between unfrozen fine tuned weights and

50

4.4. Training Steps

4.4.3 Validating results
After each epoch, the performance of the model is verified. In order to do this, the model
has to interact with images that have not been used during training. For this purpose the
Subset for validation of the Dataset is used.

The process of validation looks very similar to the training. Batches of images (from
another non-overlapping subset of) are passed through the model. This yields outputs
which are then used in the loss function to determine how good the model is performing.

The main difference is that the gradients are not computed and are not back propagated
with the optimizer. This ensures that the model does not remember the image.

The main purpose of validating is making sure that the model is generalizing and not
overfitting to the training data. If the model tends to perform exceptionally well on the
training data but poorly on the validating one, then the model is overfitting. This might
be a good place to stop the training

When training and validating, there are other metrics that can be used in order to
determine how good the model is performing.

Table 4.5, shows the performances during the final epoch of training on the validation
subset ().

Validation -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

Luna 91.35 90.49 91.35 90.77 33.07 ⋅ 10−2
AlexNet 98.17 97.62 98.17 97.86 8.38 ⋅ 10−3
ResNet18 99.13 98.98 99.13 99.05 9.79 ⋅ 10−3
EfficientNet 99.51 99.32 99.51 99.41 8.59 ⋅ 10−3
ConvNext 99.19 99.32 99.19 99.25 4.55 ⋅ 10−3

ViT 99.39 99.18 99.39 99.28 3.07 ⋅ 10−3
Swin Transformer 99.21 99.05 99.21 99.13 10.95 ⋅ 10−3
DINO 99.21 99.89 99.21 99.08 6.60 ⋅ 10−3

Table 4.5: Validation metrics

4.4.4 Testing results
After training and validation, these trained models were used with the test subset .
While training and validating are done on the same loop (sharing the number of epochs),
the testing is done afterwards. The testing loop is done with the same principle, selecting
batches of the subset, getting the predicted output from the model and computing the loss
and other metrics.

51

4. TRAINING AND FINE TUNING THE MODELS FOR IMAGE CLASSIFICATION

Testing -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

Luna 99.41 98.69 99.41 98.92 32.11 ⋅ 10−2
AlexNet 99.80 99.58 99.80 99.67 7.37 ⋅ 10−3
ResNet18 99.80 99.59 99.80 99.67 10.47 ⋅ 10−3
EfficientNet 99.80 99.59 99.80 99.67 10.58 ⋅ 10−3
ConvNext 99.89 99.81 99.89 99.84 6.38 ⋅ 10−3

ViT 99.80 99.59 99.80 99.67 8.20 ⋅ 10−3
Swin Transformer 99.80 99.59 99.80 99.67 12.50 ⋅ 10−3
DINO 99.70 99.40 99.70 99.52 13.52 ⋅ 10−3

Table 4.6: Test metrics

As it can be seen on Tables 4.2, 4.5 and 4.6, all of the models have great performances
in every metric during training, validating and testing.

4.5 Metrics
Here is a quick recap on the metrics used here to quantify the performances. If the reader
is familiar with them, then feel free to skip to the next section.

Metrics are needed to quantify the models. They help determine how performant
they are and see what the strengths and weaknesses of each model are. Here is a short
description of the metrics used in this work6. The following table shows the possible
combinations between the ground truth and the prediction (classification) given by the
model. In statistics the false positive term is denoted as type I error and false negative as
type II.

Predicted
Negative Positive

Actual Negative True Negative (TN) False positive (FP)
Positive False Negative (FN) True Positive (TP)

Table 4.7: Relation between atcual labels and predicted ones

4.5.1 Accuracy
Accuracy is a metric that evaluates how many times the model is correct with respect to
the entire dataset.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(4.14)
6Here is a blog with metrics listed and explained: https://tinyurl.com/3aur8yhe https:

//tinyurl.com/4d7z9u8d

52

https://tinyurl.com/3aur8yhe
https://tinyurl.com/4d7z9u8d
https://tinyurl.com/4d7z9u8d

4.5. Metrics

4.5.2 Precision
Precision reflects how good the model is at performing a specific task. This metric is also
known as specificity.

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4.15)

However, the number of predictions made is irrelevant. The worst case scenario
for this metric is cherry picking only the most certain values as positive, avoiding false
positives, at the expense of predicting many actual positive values as being negative.

4.5.3 Recall
In contrast, recall ensures to not miss any actual positive inputs. This metric is also
referred to as sensibility.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(4.16)

The worst case scenario for this metric is classifying everything as positive, regardless
of the false negatives that it might predict.

4.5.4 F1-Score
As a way to counteract the shortcomings of both precision and recall, Rijsbergen [59]
introduced a metric that uses both of them.

The general equation for the 𝐹𝛽-Score has the parameter 𝛽, which influences how the
precision and recall influence the result.

𝐹𝛽 = (1 + 𝛽2) ⋅ 𝑝 ⋅ 𝑟
𝛽2 ⋅ 𝑝 + 𝑟

(4.17)

Using 𝛽 as 1 results in an equal distribution between precision and recall.

𝐹1 =
2 ⋅ 𝑝 ⋅ 𝑟
𝑝 + 𝑟

(4.18)

Figure 4.5 shows a visual representation of an equal distribution between precision
and recall when using 𝛽 = 17.

7https://andersource.dev/2019/09/30/f-score-deep-dive.html has a great vi-
sualizer, where beta can be modified to see the effect it has on the curve.

53

https://andersource.dev/2019/09/30/f-score-deep-dive.html

4. TRAINING AND FINE TUNING THE MODELS FOR IMAGE CLASSIFICATION

Figure 4.5: Visualization of the F1 score

This metric penalizes wrongful detection (precision - FP) and the lack of detection
of positive inputs (recall - FN) equally. A model which makes few mistakes predicting
positive inputs and also misses few actual positives will score highly in this metric.

4.5.5 Intersection over Union (IoU)
This metric is used in object detection to determine how much overlap exists between
the actual location of the object within the image and the predicted location. As the
name suggests, the formula consists of dividing the intersection by the union. This is also
known as the Jaccard Index.

𝐼𝑜𝑈 = Intersection
Union = (4.19)

This section explained the necessary steps to train/fine tune the different models. This
was then used to train the different models and to do the corresponding validation during
training and testing afterwards. It was shown that all of the models used achieved near
perfect performances across the different metrics used.

Even though the validation and testing could be enough to accept a model as working
correctly, this thesis wanted to explore if the models were learning to actually detect the
defects on the images. The next section focuses on explaining a visual inspection of the
models, in order to determine the relevance of the defects during the classification.

54

5 Evaluation: Interpreting the predic-
tions of defective images

Interpretability attempts to dissect these models in such a way that they can be understood
by a person. Rather than treating the models as a black box, characteristic features that
determine which class is being selected are extracted in order to clearly visualize where
the architecture focuses and if they actually learn to detect the defects present on the
images [60].

An often cited example of the necessity for the understanding of classifiers is given by
Ribeiro et al. [61]. One of the examples used here is the classification of images between
wolves and huskies. After training their model, they examined the model and found that
the model was only focusing on whether there was snow present on the image or not
(snow=wolf, no snow=husky).

This section explains the different methods used to interpret the architectures for CNN
and for Transformers. These methods are the ones used to determine if the architectures
have indirectly learned to localize the defects. In order to quantify the influence of the
defects towards the correct classification of defective images, a ground truth is needed.
When the actual location of the defects is not present, they have to be manually annotated
to have a ground truth to compare to. Here, the annotation is presented, followed by the
interpretations of the various models.

5.1 Annotation of defects
This project consists of a weakly supervised dataset, where only the labels of the images
are provided and not the location of where the defects are found on the image, they had to
be manually annotated. PixelAnnotationTool1 was used for the annotation of the images.

Figures 5.1(a) and 5.1(b) show an image of a defective iron casting with its corre-
sponding mask made manually using PixelAnnotationTool. The annotation was done
for the 453 images with defect of the Test () subset. In all of them, the defects were
highlighted with red, the casting with green and the background with purple.

On these images, it can be seen that the annotation of the defects is not perfect. The
annotation of the defects is very subjective, since the person annotating has to determine
which annotations are important enough to mark and which to leave. In this same example
we can see that on the lower part of the middle ring is a defect annotated, however on the

1The tool can be found here: https://github.com/abreheret/PixelAnnotationTool

55

https://github.com/abreheret/PixelAnnotationTool

5. EVALUATION: INTERPRETING THE PREDICTIONS OF DEFECTIVE IMAGES

upper left side of the innermost ring are some irregularities that could also be selected as
such.

For the annotation, only some parts of the images are selected and the tool uses a
technique called "watershed" to decide which pixels belong to which label (background,
cast, defect). So, even though the annotation was done manually and the best effort was
made to select only the defects, the annotation is not perfect. This is something to be
taken into account when comparing the performances of the models with respect to the
annotated images.

(a) Defective iron casting. (b) Mask of defective iron casting.
Figure 5.1: Defective iron casting and its corresponding annotated mask. Image
(cast_def_0_221.jpeg) taken from the test subset ().

5.2 CNN
Many studies have addressed the need to visualize relevant features from CNNs by
highlighting the most relevant pixels for the prediction (e.g. [62, 63, 64, 65]), where
changes in intensity of said pixels might lead to a change in prediction. However, these
methods are not class specific.

5.2.1 CAM - Class Activation Map
Zhou et al. [66] proposed class activation maps as a way to visualize relevant features
of an input image with respect to the predicted class. Here the fully connected layers at
the end of the architecture are replaced by convolutional networks and global average
pooling. The network is then retrained to classify images with the new structure, where
each weight that is connected to the classification layer represents the importance of each
feature map in the global average pooling stage.

56

5.2. CNN

Figure 5.2: CNN with global average pooling at the end for Class Activation Mapping
[66].

This can be described through the following equation, where 𝑌 𝑐 is the prediction 𝑌
for a given class 𝑐. The weights 𝑤𝑐

𝑘 correspond to the weights connecting each feature
map 𝐴𝑘 with the predicted class 𝑌 𝑐 . 𝐴𝑘

𝑖𝑗 refers to the activations of the feature map at the
location (𝑖, 𝑗). 𝑍 corresponds to the number of pixels in the feature maps.

𝑌 𝑐 =
∑
𝑘

𝑤𝑐
𝑘

⏟⏟⏟
class feature weights

globalaverage pooling
⏞⏞⏞⏞⏞⏞⏞
1
𝑍

∑
𝑖

∑
𝑗

𝐴𝑘
𝑖𝑗

⏟⏟⏟
feature map

(5.1)

The result is shown in Figure 5.2. Here, each feature map learns to distinguish certain
aspects of the image and the weights make sure to reference the correct class. Thus if a
different class was being inspected, other than the one shown on the image (Australian
terrier), then the only thing that would change would be the weights. The feature maps
remain the same.

The downside on this approach is having to manipulate the original architecture and
having to retrain it in order to get these results.

5.2.2 Grad-CAM - Gradient Class Activation Map
In order to bypass the modification and retrain of the network, Selvaraju et al. [5] proposed
a modified version of Class Activation Maps.

Through generalization of CAM they arrived at the conclusion that the necessary
values to compute a way to generate visual explanations are already present on the
architecture without the need for restructure or retraining.

𝐿𝑐
Grad-CAM = 𝑅𝑒𝐿𝑈

(∑
𝑘
𝛼𝑐
𝑘𝐴

𝑘

)
(5.2)

57

5. EVALUATION: INTERPRETING THE PREDICTIONS OF DEFECTIVE IMAGES

Where

𝛼𝑐
𝑘 =

global average pooling
⏞⏞⏞⏞⏞⏞⏞
1
𝑍

∑
𝑖

∑
𝑗

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖𝑗

⏟⏟⏟
gradients via back-prop

(5.3)

The way these values are retrieved is by first computing the gradients of the score
class 𝑐 (𝑦𝑐) with respect to the feature map activations (𝐴𝑘) of a convolutional layer (𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖𝑗

).
During backpropagation, these gradients are average pooled over the width and height to
obtain the importance weights (𝛼𝑐

𝑘) as shown on Equation 5.3.
The weights in 𝛼𝑐

𝑘 represent a partial linearization of the network downstream from
the feature maps 𝐴𝑘 for a specific class 𝑐. The feature maps (𝐴𝑘 obtained in the forward
step) are then multiplied by the weights (𝛼𝑐

𝑘 obtained with the help of the backward step)
resulting in the most important features to determine said class. This result is then passed
through a ReLU layer to only get the positive values, meaning the ones that positively
influence the classification.

Figure 5.3 shows this process in more detail. There are additional concepts not relevant
for this project (Guided Grad-CAM), which are also proposed in the same publication.

Figure 5.3: GradCAM architecture [5].

5.2.3 GradCAM - Implementation
PyTorch has a way to allow the user to add functionality to an architecture during the
forward / backward propagation on a user-defined layer, even after the model has already
been created. This way to access the model is called hook. During the forward propaga-
tion, the feature map (𝐴𝑘) can be extracted and the corresponding gradients with respect
to the predicted class (𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖𝑗

) can be obtained during the backward propagation.

58

5.2. CNN

Listing 6 Registering hooks to extract feature maps and gradients

class GradCAM():
def __init__(self, model, target_layer, **kwargs):

...
target_layer.register_forward_hook(

self.save_feature_map
)

target_layer.register_backward_hook(
self.save_grad

)

def save_feature_map(self, module, input, output):
self.feature_map = output.detach()

def save_grad(self, module, grad_in, grad_out):
self.grad = grad_out[0].detach()

def __call__(self, x):
output = self.model(x)
index = output.argmax(dim=1)
self.model.zero_grad()
(F.one_hot(index, 2) * output).sum().backward()

cam = F.relu(
(self.feature_map[0] * (self.grad.mean(dim=(2,3))
[0, :])[:, None, None]).sum(dim=0))

cam = cv2.resize((cam/cam.max()).cpu().numpy(),
(x.shape[-2], x.shape[-1]))

return cam, index

In order to demonstrate how the snipped performs in the different CNN architectures,
the image cast_def_0_1618.jpeg from the test subset () was used.

(a) Defective iron casting. (b) Annotated mask.
Figure 5.4: Defective iron casting and its corresponding annotated mask.

In order to determine which layer to perform the GradCAM to, it was applied to every
possible layer and plotted. This was then visually inspected to determine which one
matches the defect locations the best. This process was done for every CNN architecture.
All of the GradCAMs have also been normalized between 0 and 1. However, an individual

59

5. EVALUATION: INTERPRETING THE PREDICTIONS OF DEFECTIVE IMAGES

threshold has to be selected per architecture to only select the most relevant features,
trying to minimize the error in the IoU computation.

Luna
For the Luna architecture, the block4.maxpool layer was chosen with a threshold of 0.4.
Figures 5.5(a) and 5.5(b) show the result for GradCAM using the example image with a
defect. It can be clearly seen that the network has learned to identify the location of the
defects.

(a) GradCAM for Luna. (b) Thresholded GradCAM
Figure 5.5: Resulting GradCAM for a defective sample using Luna, before and after
applying a threshold of 0.4.

The resulting mask is then used alongside the annotated mask to get the intersection
and union.

AlexNet
The same process was done for the other architectures. First, GradCAM was applied to
every possible layer in the model to visually inspect which one shows the desired feature.
After selecting the desired layer to apply GradCAM, a threshold is selected. For Alexnet,
the features.11 layer was selected with a threshold of 0.5. Figures 5.6(a) and 5.6(b) show
similar results to the previous architecture.

(a) GradCAM for AlexNet. (b) Thresholded GradCAM
Figure 5.6: Resulting GradCAM for defective sample using AlexNet, before and after
applying a threshold of 0.4.

60

5.2. CNN

Using the same layer and same parameters, an image without defects can also be
analyzed to inspect what the model is focusing on. Figure 5.7 shows the resulting
GradCAM for the image cast_ok_0_235.jpeg. Here the resulting GradCAM appears to be
focusing on some defect that the image might have. However, it is important to mention
that the values have been normalized between 0 and 1. Without this normalization, for
AlexNet, the maximum values for images with defect range between 0.20 and 0.30. The
maximum values for images without defects are ten times smaller, ranging from 0.015 to
0.25. This GradCAM with the thresholds mentioned, show that the architecture is really
focusing on the defect to select the appropriate classification.

(a) cast_ok_0_235.jpeg (b) GradCAM for cast_ok_0_235.jpeg
Figure 5.7: Iron casting without defect and its resulting GradCAM for AlexNet.

It must also be mentioned that these models have been fine tuned without freezing
the parameter. Thus the layers have the ability to learn new features that might be crucial
to classify the data. Freezing the parameters and only training the last layer is also a very
useful way to fine tune models, especially when the new dataset is similar to the original
training dataset. However, this dataset, as well as many datasets that are needed for zero
defect manufacturing, will not resemble the data on ImageNet or other datasets where
pretrained weights for these models are available.

Figure 5.8 shows the same process being applied to the same architecture, but with
the frozen pretrained weights on ImageNet for the defective image cast_def_0_1618.jpeg.
Here, it can be clearly seen that not freezing the pretrained weights does yield an advantage
when trying to interpret the model. Also, using the same hyperparameters, training epochs
and overall training workflow, but freezing the previous layers to the last, resulted in
training metrics around 70% (Accuracy, Precision, Recall and F1), which is clearly
inferior to the results presented in table 4.2.

The classification layer might be done using something more complex after the frozen
parameters, using multiple layers, also using regularization and more epochs. However,
this simple setup of not freezing the pretrained weights and fine tuning has generated
great results. Also, as the contrast between Figures 5.6 and 5.8 shows, the unfrozen
fine tuned model is more interpretable, highlighting the features that might be crucial to
classify the image as defective.

61

5. EVALUATION: INTERPRETING THE PREDICTIONS OF DEFECTIVE IMAGES

(a) GradCAM AlexNet with frozen weights (b) Thresholded GradCAM
Figure 5.8: GradCAM of defective iron casting using AlexNet with frozen weights and
the thresholded result.

ResNet

For ResNet the layer used was layer4.0.downsample.0 with a threshold of 0.4. As Figures
5.9 shows, this model also managed to focus on some of the defects on the image.

(a) GradCAM for ResNet (b) Thresholded GradCAM
Figure 5.9: Resulting GradCAM for defective sample using ResNet18, before and after
applying a threshold of 0.4.

EfficientNet

For the EfficientNet architecture, features.6.0.block.0 with a threshold of 0.4 was used.
This is the first architecture to detect all of the three defects originally annotated on the
image.

62

5.3. Attention Maps on Transformers

(a) GradCAM for EfficientNetV2 (b) Thresholded GradCAM
Figure 5.10: Resulting GradCAM for defective sample using EfficientNetV2, before and
after applying a threshold of 0.4.

ConvNeXt

For the ConvNeXt architecture, the features.5.7.block.6 layer was used with a threshold
of 0.4.

(a) GradCAM for ConvNeXt (b) Thresholded GradCAM
Figure 5.11: Resulting GradCAM for defective sample using ConvNext, before and after
applying a threshold of 0.4.

5.3 Attention Maps on Transformers
Raghu et al. [67] compare Vision Transformers to Convolutional Neural Networks in
order to determine if they "see" similarly. Through the use of representational similarity
techniques, they come to significant differences between the models, while also concluding
that Vision Transformers do share some CNN properties. Among these similarities lies
the importance of local information aggregation at lower layers.

Caron et al. [68] extended on the Vision Transformer by proposing a model trained
through self supervised learning, which they denote as self-distillation with no labels
(DINO). In this paper they analyze the performance of the model by selecting the self-
attention of the [CLS] Token with respect to the patches on the heads of the last encoder
block from a Vision Transformer.

The result can be seen in Figure 5.12. Here, the architecture learned to extract the
relevant features from the image without the use of labels. This exact same technique of

63

5. EVALUATION: INTERPRETING THE PREDICTIONS OF DEFECTIVE IMAGES

accessing the attention map can be used with any architecture that has an attention layer,
such as ViT and Swin-Transformer.

Figure 5.12: Self-attention of the [CLS] Token on the heads of the last layer of a Vision
Transformer trained with no supervision[68]

The way their training was done was by using a teacher and a student network as shown
in Figure 5.13. Here, both networks are presented with different augmented variations of
the same image and the loss is computed according to the difference in the prediction in
both networks. Only the students parameters are updated through back propagation. The
new student parameters are then used to update the parameters of the teacher using an
exponential moving average to make it more robust.

Figure 5.13: Self distillation with no labels[68]

They then proceeded to compare the results with other models trained with supervised
data and found a significant improvement.

This process, can also be used to plot how any model using self-attention behaves.
This can be used to select any block of said architectures, and even select single heads if
needed in order to determine where the architecture is focusing given an input image.

5.3.1 Extracting the Attention Maps
In this section, the different attention maps from the three Transformer architectures used
were accessed and plotted.

64

5.3. Attention Maps on Transformers

ViT
In order to get the attention maps from architectures such as ViT and Swin Transformer,
pytorch provides a feature extractor functionality, which allows to get intermediate results
from the network during the forward pass. Since the predefined architecture for ViT in
pytorch does not return the attention maps, the intermediate result before the attention
mapping can be extracted to get the self-attention with the corresponding attention maps.

Since the architecture counts with twelve blocks, the feature extraction followed by the
self-attention was done with everyone to see if any of them shows patterns of recognizing
the defects on the images. As Figure 5.14 shows, the seventh encoder block (Encoder
Block 6, due to zero indexing) is the one which focuses on the errors the most.

Figure 5.14: ViT: Self-Attention in every Encoder Block for image with defects.

In order to further inspect these results, each individual Head from this specific
Encoder Block was plotted. As Figure 5.15 shows, there are many heads that might be
focusing on the errors, such as heads 2, 3, 7 and 9. Some of these were used to compute
the IoU to see the performances, but the mean of all the heads yielded the best results,
which corresponds to the image of the Encoder Block 6 in Figure 5.14.

Figure 5.15: ViT: Self-Attention Heads for Encoder Block 6 for image with defects.

65

5. EVALUATION: INTERPRETING THE PREDICTIONS OF DEFECTIVE IMAGES

Swin Transformer
For the Swin Transformer, there were more steps to take than for the Vision Transformer.
Here the same procedure as for the ViT was done. First get the values prior to the attention
layer in each block. Then the result is passed through the attention function, but the
attention is also returned.

The attention used was the one from Stage 3, block 2. For this, the layer fea-
tures.5.2.norm1 was computed via the feature extractor and then passed through the
attention mechanism. The resulting shape will depend on the stage used. In every stage
the windows have a size of 7𝑥7, however, in earlier stages these windows encompass less
pixels and in later stages the field of view grows. What this means is that in later stages
there are less patches and in earlier, more. Thus, if there are multiple patches, they have
to be concatenated to get the attention of the full image.

DINO
For the DINO model, since the original paper [68] focused on extracting the attention
to analyze these maps, the architecture comes with a built-in function to extract the
self-attention for any given block or even a specific head of the blocks such as it was
manually done in the previous models. This means that with a simple line of code the
attention map is available to analyze.

Here, the self-attention corresponding to the last block was used, using the mean of
every head inside of this block. The threshold used was 0.4.

(a) GradCAM for DINO (b) Thresholded GradCAM
Figure 5.16: Resulting GradCAM for defective sample using DINO, before and after
applying a threshold of 0.4.

5.4 Performances
For the CNN models, the GradCAM was extracted for every image with defects in the
Test subset (). These maps where then passed through a threshold and compared with
the manually annotated masks. With this information, the intersection and union where
computed to get the IoU metric.

For the Transformer models, the same process was done, using the attention maps
instead of the GradCAM.

As a way to compare these models to some ground truth, the same process was done
using the frozen and partially frozen fine tuned models. Figure 5.17 shows the comparison

66

5.4. Performances

for all models, depicting IoU for the fully frozen backbone in light orange, the partially
frozen in light blue and the unfrozen in green2. This figure clearly shows improvement
for every architecture, meaning the models learned to focus more on the defects on the
images.

0 2 4 6 8 10 12 14

DINO
Swin
ViT

ConvNeXt
EfficientNet

ResNet
AlexNet

Luna

Average Intersection over Union in %

Frozen pretrained weights
Partially frozen pretrained weights
Fine tuned weights

Figure 5.17: Intersection over Union frozen vs. unfrozen weights

As it can be seen, every model indirectly learned to focus on the defects, even though
this was not a metric used during training. Using the baseline of frozen pretrained weights
as comparison, we can see that every model improved greatly. The values were taken on
the same layer for each model for the different training strategies.

The only model that showed better performance when freezing a third of the layers
was DINO. All other models benefited from leaving the parameters unfrozen.

To measure the precision of the locations, the Intersection over Prediction was also
done. Here, the intersection is compared to what the model is predicting to be the most
important features to classify the image. Thus, it can be interpreted as a metric comparing
the intersection to the prediction where the defects are, since the defects should be the
defining features of the classification. It must be mentioned that this metric was created
by the author of this thesis.

Once again, the frozen pretrained weights are taken as a baseline to see how the fine
tuning of the parameters affects the location of the defects. Figure 5.19 shows how the
different models behave.

2As mentioned before, the Luna architecture does not count with pretrained weights, since the archi-
tecture was modified from the original source from 3D CT-scans analysis to 2D image analysis.

67

5. EVALUATION: INTERPRETING THE PREDICTIONS OF DEFECTIVE IMAGES

0 10 20 30 40 50

DINO
Swin
ViT

ConvNeXt
EfficientNet

ResNet
AlexNet

Luna

Average Intersection over Prediction in %

Frozen pretrained weights
Partially frozen pretrained weights
Fine tuned weights

Figure 5.18: Intersection over Prediction frozen vs. unfrozen weights

What Figure 5.19 shows is the percentage of the predicted region of interest that
intercepts with the ground truth. The improvement from the last figure to this one means
that, although not all of the defects on the image are detected, a big part of the region
of interest is located where part of the defects are. This can be specially appreciated
for EfficientNet and DINO, where 40% of the region of interest lies inside the annotated
defects.

This metric shows the clear improvement of the models output lying inside of the
ground truth. This metric is analogous to computing the precision of the model, where
the intersection between ground truth and prediction is the true positive, and the sections
predicted as being relevant for the classification that do not belong to the annotation of a
defect corresponds to the false positive.

Lastly, the Intersection over Ground Truth was computed. This is also a new metric
that helps understand what happened during the fine tuning of the different models with
the different training strategies. While IoP is the analogous to precision, IoGT is the
analogous to recall. Here, false negative is the area of the manually annotated defects
that does not show up on the activation maps.

68

5.4. Performances

0 5 10 15 20 25 30

DINO
Swin
ViT

ConvNeXt
EfficientNet

ResNet
AlexNet

Luna

Average Intersection over Ground Truth in %

Frozen pretrained weights
Partially frozen pretrained weights
Fine tuned weights

Figure 5.19: Intersection over Ground Truth frozen vs. unfrozen weights

Using both metrics (IoP and IoGT), it can be appreciated how certain models like
DINO and EfficientNet learned to detect the defects and were satisfied with encountering
some part of them. The predictions made by these models were very precise in comparison
to the other models. On the other hand, they covered less area from the ground truth.

It must be mentioned that these results have to be taken with a pinch of salt, since
the ground truth annotations are not perfect and are very subjective to what was deemed
relevant to mark as a defect at the time of annotation. However, even though the results
may vary when revising the ground truth annotations, every model has shown a clear
improvement when detecting where the defects are located.

Almost every model followed the same pattern, showing the worst results with the
fully frozen models and improving gradually towards the fully unfrozen ones.

69

6 Conclusion

The increasing automation of the manufacturing industry has led to a higher acquisition of
data. This data can be in the form of various sensors measuring different variables during
the process. Part of these variables can be observed using cameras on the production line.
These images can be then used to detect defects that might be present on the products,
leading not only the rejection of imperfect products, but also to the possible correction of
the course of action in order to avoid more defects.

However, in order to successfully achieve the classification of images during produc-
tion, a dataset containing all of the classes is needed. For the purpose of defect detection,
it will fall into the category of binary classification, with images with and without defect.
The bigger and the more detail this dataset has (i.e. labeling, annotation, location of
the defects), the more expensive it will be. In production environments there is a high
emphasis on costs, thus having a curated dataset with perfectly annotated defects will
most likely not be the priority.

This thesis looked at existing alternatives to train neural networks with a small dataset
which is weakly annotated. Meaning only the labels are present to determine if the images
belong to the defective or non-defective class. For this purpose, one architecture was
trained from scratch, while many others where fine tuned from pretrained models. The
models with pretrained weights available were trained using three different strategies,
freezing everything except the classifier, freezing the first third of the layers and not
freezing any parameter.

In this work we proposed the use of transfer learning instead of designing an architec-
ture for every new ZDM task. It was also proposed to fine tune the entire model, even if
the data to analyze is dissimilar to the data used for pretraining the weights.

Looking only at the metrics during training, validation and testing it can be seen that
the model trained from scratch performed well and could compare to the other models.
This model achieved results over 90% for every metric during training, validation and
testing, whereas the fine tuned models had results above 97%. However, this requires more
work during designing the architecture and more computational power for training, as it
needs to train for longer time in order to achieve comparable results to the ones achieved
by fine tuning. A bigger architecture and more training time would be needed to close
the gap even further, along with more regularization and testing different approaches.

Among the different strategies for fine tuning, there was no significant difference
between the partially frozen pretrained weights and the unfrozen pretrained weights.
Computing the average of the different metrics along the models, resulted in a difference
below 0.2% between partially frozen and unfrozen. Both of these strategies yielded

70

significantly better results than using the frozen pretrained weights.
Computing the average metrics between every model gives an overview of how the

models benefit from allowing the model to adjust its parameters to the specific dataset.
Even when sharing a 96.41% cosine similarity between the parameters of the unfrozen
and fully frozen models, the unfrozen showed significant improvement. For accuracy
during training it went up from 78.45% to 97.78%, for validation from 82.39% to 99.12%
and testing from 90.40% to 99.80%. Precision, recall and F1 score showed similar results.

When analyzing the activation maps of the different architectures, it could be de-
termined that the defects do play a significant role for the correct classification of the
images. It was also shown that leaving all of the parameters unfrozen leads to a better
interpretability of the decisions made by the models. This is a key feature when auditing
or justifying the decisions of a model. Although the partially frozen and unfrozen models
have a cosine similarity of 98.95% among their parameters, the unfrozen managed to get
better results for IoU, IoP and IoGT than the partially frozen. These differences varied
greatly among the models, ranging from a 10% IoU increase for AlexNet up to a 60%
IoU increase for EfficientNet.

It was also noted during visual inspection that the activation maps do not work
properly on every image, especially when the image has many defects. For future work it
is recommended to explore different algorithms to show the key features for the decisions1.
However, this does not impact the results shown here, as every model and training strategy
was measured with the same standard and the improvement is demonstrated regardless of
the finesse of the activation maps.

1One possible algorithm to explore would be GradCAM++, which can deal better with multiple objects
in an image.

71

List of Figures

1.1 Defect detection with Machine Learning 1
1.2 Example of the key features on a class activation map before and after fine

tuning. 2
1.3 Proposed fine tuning strategy for small datasets that are dissimilar to the

pretrained backbone’s original dataset. 3
2.1 (A) Representation of a mathematical artificial neuron model (left). (B)

Simplified representation, depicting only the key elements. [7] 7
2.2 Convolutional Layer: Multiplying an input by a kernel. 2 8
2.3 Dropout . 9
2.4 MaxPool . 10
2.5 Sigmoid . 10
2.6 ReLU . 11
2.7 GeLU . 11
2.8 Luna Model architecture [24] . 12
2.9 Algorithms that won the ILSVRC between 2010-2017. [25] 13
2.10 AlexNet architecture [16] . 14
2.11 ResNet skip connection [30] . 14
2.12 ResNet architecture compared to plain architecture without identity mappings

and VGG-19 [30] . 15
2.13 EfficientNetV1: Model Scaling [31] . 15
2.14 ConvNeXt: Approaches taken to create the architecture [33]. 16
2.15 The Transformer - model architecture [35] 17
2.16 (left) Scaled Dot-Product Attention. (right) Multi-Head Attention [35] . . 18
2.17 Example of two dimensional vectors . 19
2.18 Confusion matrix for both sentences. 19
2.19 Head 2 of Multi-Head Attention: Attention matrix focused on the word not

for both example sentences. 21
2.20 Vision Transformer - model architecture [41] 22
2.21 Dividing images into patches. 23
2.22 14x14 Patches with random kernel . 23
2.23 Split image using bigger patches . 24
2.24 First 5 dimensions for 10 words, where 𝑑𝑚𝑜𝑑𝑒𝑙 = 512 25
2.25 Positional embeddings of models trained with different hyperparameters [41] 26
2.26 Vision Transformer Encoder (Block) [41] 26
2.27 Vision Transformer Encoder (Block) [41] 28
2.28 Swin Transformer [43] . 30

72

2.29 Swin Transformer [43] . 30
2.30 Swin Transformer: Two Successive Swin Transformer Blocks[43] 30
2.31 Swin Transformer Architecture [43] . 31
3.1 Top view of Pump Impellers . 32
3.2 Dataset Folder Structure . 33
3.3 Grayscale Histogram for training subset of the Casting Dataset 37
3.4 Typical positional transformations . 38
4.1 Stochastic Gradient Descent vs Gradient Descent 43
4.2 Optimizers comparison with neural networks using dropout stochastic regu-

larization on the MNIST dataset. [51] 46
4.3 Training strategies for transfer learning [58]. 48
4.4 Decision map for fine tuning pretrained models [58]. 48
4.5 Visualization of the F1 score . 54
5.1 Defective iron casting and its corresponding annotated mask. Image (cast_def_0_221.jpeg)

taken from the test subset (). 56
5.2 CNN with global average pooling at the end for Class Activation Mapping

[66]. 57
5.3 GradCAM architecture [5]. 58
5.4 Defective iron casting and its corresponding annotated mask. 59
5.5 Resulting GradCAM for a defective sample using Luna, before and after

applying a threshold of 0.4. 60
5.6 Resulting GradCAM for defective sample using AlexNet, before and after

applying a threshold of 0.4. 60
5.7 Iron casting without defect and its resulting GradCAM for AlexNet. . . . 61
5.8 GradCAM of defective iron casting using AlexNet with frozen weights and

the thresholded result. 62
5.9 Resulting GradCAM for defective sample using ResNet18, before and after

applying a threshold of 0.4. 62
5.10 Resulting GradCAM for defective sample using EfficientNetV2, before and

after applying a threshold of 0.4. 63
5.11 Resulting GradCAM for defective sample using ConvNext, before and after

applying a threshold of 0.4. 63
5.12 Self-attention of the [CLS] Token on the heads of the last layer of a Vision

Transformer trained with no supervision[68] 64
5.13 Self distillation with no labels[68] . 64
5.14 ViT: Self-Attention in every Encoder Block for image with defects. 65
5.15 ViT: Self-Attention Heads for Encoder Block 6 for image with defects. . . 65
5.16 Resulting GradCAM for defective sample using DINO, before and after

applying a threshold of 0.4. 66
5.17 Intersection over Union frozen vs. unfrozen weights 67
5.18 Intersection over Prediction frozen vs. unfrozen weights 68
5.19 Intersection over Ground Truth frozen vs. unfrozen weights 69

73

List of Tables

2.1 Architecture parameters for the different Swin Transformer sizes [43]. . . 31
3.1 Images provided in the dataset . 33
4.1 Number of parameters per model . 40
4.2 Training metrics . 50
4.3 Training time . 50
4.4 Cosine Similarity between unfrozen fine tuned weights and 50
4.5 Validation metrics . 51
4.6 Test metrics . 52
4.7 Relation between atcual labels and predicted ones 52
1 Training metrics for AlexNet using fully frozen , partially frozen and

unfrozen pretrained weights. 83
2 Training metrics for ResNet using fully frozen , partially frozen and

unfrozen pretrained weights. 83
3 Training metrics for EfficientNet using fully frozen , partially frozen

and unfrozen pretrained weights. 84
4 Training metrics for ConvNeXt using fully frozen , partially frozen and

unfrozen pretrained weights. 84
5 Training metrics for ViT using fully frozen , partially frozen and un-

frozen pretrained weights. 84
6 Training metrics for Swin Transformer using fully frozen , partially frozen

and unfrozen pretrained weights. 84
7 Training metrics for DINO using fully frozen , partially frozen and

unfrozen pretrained weights. 84
8 Validating metrics for AlexNet using fully frozen , partially frozen and

unfrozen pretrained weights. 85
9 Validating metrics for ResNet using fully frozen , partially frozen and

unfrozen pretrained weights. 85
10 Validating metrics for EfficientNet using fully frozen , partially frozen

and unfrozen pretrained weights. 85
11 Validating metrics for ConvNeXt using fully frozen , partially frozen

and unfrozen pretrained weights. 85
12 Validating metrics for ViT using fully frozen , partially frozen and

unfrozen pretrained weights. 86
13 Validating metrics for Swin Transformer using fully frozen , partially

frozen and unfrozen pretrained weights. 86

74

14 Validating metrics for DINO using fully frozen , partially frozen and
unfrozen pretrained weights. 86

15 Testing metrics for AlexNet using fully frozen , partially frozen and
unfrozen pretrained weights. 86

16 Testing metrics for ResNet using fully frozen , partially frozen and
unfrozen pretrained weights. 87

17 Testing metrics for EfficientNet using fully frozen , partially frozen and
unfrozen pretrained weights. 87

18 Testing metrics for ConvNeXt using fully frozen , partially frozen and
unfrozen pretrained weights. 87

19 Testing metrics for ViT using fully frozen , partially frozen and unfrozen
pretrained weights. 87

20 Testing metrics for Swin Transformer using fully frozen , partially frozen
and unfrozen pretrained weights. 87

21 Testing metrics for DINO using fully frozen , partially frozen and
unfrozen pretrained weights. 88

75

List of Algorithms

1 Batch Normalization [19] . 9
2 Batch Normalization [19] . 36
3 Gradient Descent [52] . 42
4 Adagrad [56, 53] . 44
5 Adadelta [57, 53] . 44

76

Bibliography

[1] F. Psarommatis, G. May, P.A. Dreyfus, and D. Kiritsis. Zero defect manufacturing:
state-of-the-art review, shortcomings and future directions in research. International
Journal of Production Research, 2019. doi: 10.1080/00207543.2019.1605228. URL
https://doi.org/10.1080/00207543.2019.1605228.

[2] H. Ahuett-Garza and T. Kurfess. A brief discussion on the trends of habilitating
technologies for industry 4.0 and smart manufacturing. Manufacturing Letters,
2018. doi: https://doi.org/10.1016/j.mfglet.2018.02.011. URL www.elsevier.
com/locate/mfglet.

[3] Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. Interpretable Ma-
chine Learning – A Brief History, State-of-the-Art and Challenges, pages 417–431.
Springer, 01 2020. ISBN 978-3-030-65964-6. doi: 10.1007/978-3-030-65965-3_
28.

[4] Eu Wern Teh, Mrigank Rochan, and Yang Wang. Attention networks for weakly
supervised object localization. In BMVC, 2016.

[5] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual explanations from deep
networks via gradient-based localization. International Journal of Computer
Vision, 128(2):336–359, oct 2019. doi: 10.1007/s11263-019-01228-7. URL
https://doi.org/10.1007%2Fs11263-019-01228-7.

[6] Md Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Pa-
heding Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S. Awwal, and
Vijayan K. Asari. The history began from alexnet: A comprehensive survey on deep
learning approaches, 2018. URL https://arxiv.org/abs/1803.01164.

[7] Frank Emmert-Streib, Zhen Yang, Han Feng, Shailesh Tripathi, and Matthias
Dehmer. An introductory review of deep learning for prediction models with big
data. Frontiers in Artificial Intelligence, 3:4, 02 2020. doi: 10.3389/frai.2020.00004.

[8] Warren Mcculloch and Walter Pitts. A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:127–147, 1943.

[9] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958. ISSN

77

https://doi.org/10.1080/00207543.2019.1605228
www.elsevier.com/locate/mfglet
www.elsevier.com/locate/mfglet
https://doi.org/10.1007%2Fs11263-019-01228-7
https://arxiv.org/abs/1803.01164

0033-295X. doi: 10.1037/h0042519. URL http://dx.doi.org/10.1037/
h0042519.

[10] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computa-
tional Geometry. MIT Press, Cambridge, MA, USA, 1969.

[11] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning
algorithm for Boltzmann machines. Cognitive Science, 9:147–169, 1985.

[12] Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of
visual pattern recognition. Neural Networks, 1(2):119–130, 1988. URL http://
dblp.uni-trier.de/db/journals/nn/nn1.html#Fukushima88.

[13] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

[14] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural Computation, 18(7):1527–1554, 2006.

[15] G E Hinton and R R Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, July 2006. doi: 10.1126/science.
1127647. URL http://www.ncbi.nlm.nih.gov/sites/entrez?db=
pubmed&uid=16873662&cmd=showdetailview&indexed=google.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. 25, 2012.
URL https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[17] F. Rosenblatt. The perceptron, a perceiving and recognizing automaton. Cor-
nell Aeronautical Laboratory, 1957. URL https://blogs.umass.edu/
brain-wars/files/2016/03/rosenblatt-1957.pdf.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016. http://www.deeplearningbook.org.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. 3 2015. doi: 1502.03167. URL
https://arxiv.org/pdf/1502.03167.pdf.

[20] Zhe Li, Boqing Gong, and Tianbao Yang. Improved dropout for shallow and deep
learning, 2016. URL https://arxiv.org/abs/1602.02220.

[21] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recog-
nition in cortex. 11 1999.

[22] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltz-
mann machines. null, 2010. doi: null.

[23] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv:
Learning, 2016. doi: null.

78

http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://dblp.uni-trier.de/db/journals/nn/nn1.html#Fukushima88
http://dblp.uni-trier.de/db/journals/nn/nn1.html#Fukushima88
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&uid=16873662&cmd=showdetailview&indexed=google
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&uid=16873662&cmd=showdetailview&indexed=google
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
http://www.deeplearningbook.org
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/abs/1602.02220

[24] Eli Stevens, Luca Antiga, and Thomas Viehmann. Deep Learning with
PyTorch. Manning, 2020. URL https://pytorch.org/assets/
deep-learning/Deep-Learning-with-PyTorch.pdf.

[25] Dae-Young Kang, Hieu Duong, and Jung-Chul Park. Application of deep learning
in dentistry and implantology. The Korean Academy of Oral and Maxillofacial
Implantology, 24:148–181, 09 2020. doi: 10.32542/implantology.202015.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

[27] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition, 2014. URL https://arxiv.org/abs/1409.
1556.

[28] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166,
1994. doi: 10.1109/72.279181.

[29] Sunitha Basodi, Chunyan Ji, Haiping Zhang, and Yi Pan. Gradient amplification:
An efficient way to train deep neural networks. Big Data Mining and Analytics, 3
(3):196–207, 2020. doi: 10.26599/BDMA.2020.9020004.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. pages 770–778, 06 2016. doi: 10.1109/CVPR.2016.90.

[31] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for con-
volutional neural networks. 2019. doi: 10.48550/ARXIV.1905.11946. URL
https://arxiv.org/abs/1905.11946.

[32] Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training.
2021. doi: 10.48550/ARXIV.2104.00298. URL https://arxiv.org/abs/
2104.00298.

[33] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. A convnet for the 2020s, 2022. URL https://arxiv.org/
abs/2201.03545.

[34] Dzmitry Bahdanau, Kyunghyun Cho, and Y. Bengio. Neural machine translation
by jointly learning to align and translate. ArXiv, 1409, 09 2014.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Kaiser Lukasz, and Illia Polosukhin. Attention is all you need. 31st
Conference on Neural Information Processing Systems (NIPS 2017), Long Beach,
CA, USA, 12 2017. doi: 1706.03762v5.

[36] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. null, 2019.
doi: null.

79

https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf
https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2104.00298
https://arxiv.org/abs/2104.00298
https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/2201.03545

[37] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite,
Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural lan-
guage processing. In Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demonstrations, pages 38–45, On-
line, October 2020. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/2020.emnlp-demos.6.

[38] Jesse Vig. A multiscale visualization of attention in the transformer model. In
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 37–42, Florence, Italy, July 2019.
Association for Computational Linguistics. doi: 10.18653/v1/P19-3007. URL
https://www.aclweb.org/anthology/P19-3007.

[39] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers.
2020. doi: 10.1007/978-3-030-58452-8_13. URLhttps://arxiv.org/abs/
2005.12872.

[40] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Zitnick. Microsoft coco: Common objects in context.
05 2014.

[41] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. 10 2020. doi: 2010.11929v2.

[42] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
Convolutional sequence to sequence learning. ICML, 2017. doi: 1705.03122. URL
https://arxiv.org/abs/1705.03122.

[43] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows. 03 2021. doi: 2103.14030v2. URL https://arxiv.org/abs/
2103.14030.

[44] Karl B. Rundman. METAL CASTING: Quickest and Least Expensive Route to a
Near Shape Product. Michigan Tech. University, 01 2005. URL https://www.
refcoat.com/pdf/book-on-metal-casting.pdf. Reference Book for
MY4130, Dept. of Materials Science and Engineering Michigan Tech. University.

[45] Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[46] Shachar Kaufman, Saharon Rosset, and Claudia Perlich. Leakage in data mining:
Formulation, detection, and avoidance. Proceedings of the 17th ACM SIGKDD

80

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/P19-3007
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/1705.03122
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://www.refcoat.com/pdf/book-on-metal-casting.pdf
https://www.refcoat.com/pdf/book-on-metal-casting.pdf

international conference on Knowledge discovery and data mining, pages 556–563,
08 2011. doi: 10.1145/2020408.2020496.

[47] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

[48] Benyamin Ghojogh and Mark Crowley. The theory behind overfitting, cross valida-
tion, regularization, bagging, and boosting: Tutorial. 5 2019. doi: 1905.12787v1.

[49] Xue Ying. An overview of overfitting and its solutions. J. Phys.: Conf. Ser. 1168
022022, 2019. doi: 10.1088/1742-6596/1168/2/022022.

[50] Sebastien C. Wong, Adam Gatt, and Victor Stamatescu. Understanding data aug-
mentation for classification: when to warp? 11 2016. doi: 1609.08764.

[51] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization.
30 2017. doi: 1412.6980v9. URL https://arxiv.org/pdf/1412.6980.
pdf.

[52] David W. Jacobs. Lecture notes on gradient descent. URL http://www.cs.
umd.edu/~djacobs/CMSC426/GradientDescent.pdf.

[53] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016. URL https://arxiv.org/pdf/1609.
04747.pdf.

[54] Tom Schaul, Sixin Zhang, and Yann LeCunn. No more pesky learning rates.
Proceedings of the 30 th International Conference on Machine Learning, Atlanta,
Georgia, USA, 2013. JMLR: W&CP volume 28. URL http://yann.lecun.
com/exdb/publis/pdf/schaul-icml-13.pdf.

[55] Herbert Robbins and Sutton Monro. A stochastic approximation method. The
Annals of Mathematical Statistics, 22(3):400–407, 1951. URL http://www.
columbia.edu/~ww2040/8100F16/RM51.pdf.

[56] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning Research,
12:2121–2159, 2011. URLhttps://www.jmlr.org/papers/volume12/
duchi11a/duchi11a.pdf.

[57] Matthew D. Zeiler. Adadelta: An adaptive learning rate method. 2012. doi:
arXiv:1212.5701. URL https://arxiv.org/pdf/1212.5701.pdf.

[58] Ashik Mohammed Sali, Harish Thampy, Immanuel S Vadakedam, and Sunitha S
Pillai. Waste classification using convolutional neural network on edge de-
vices. International Journal of Innovative Science and Research Technol-
ogy, 5, 11 2020. URL https://ijisrt.com/assets/upload/files/
IJISRT20NOV654.pdf.

81

https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://www.cs.umd.edu/~djacobs/CMSC426/GradientDescent.pdf
http://www.cs.umd.edu/~djacobs/CMSC426/GradientDescent.pdf
https://arxiv.org/pdf/1609.04747.pdf
https://arxiv.org/pdf/1609.04747.pdf
http://yann.lecun.com/exdb/publis/pdf/schaul-icml-13.pdf
http://yann.lecun.com/exdb/publis/pdf/schaul-icml-13.pdf
http://www.columbia.edu/~ww2040/8100F16/RM51.pdf
http://www.columbia.edu/~ww2040/8100F16/RM51.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://arxiv.org/pdf/1212.5701.pdf
https://ijisrt.com/assets/upload/files/IJISRT20NOV654.pdf
https://ijisrt.com/assets/upload/files/IJISRT20NOV654.pdf

[59] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, 2nd edition,
1979.

[60] C Molnar. Interpretable Machine Learning - A guide for making black box models
explainable. Leanpub, 2019.

[61] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust
you?": Explaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016, pages 1135–1144, 2016.

[62] Chuang Gan, Naiyan Wang, Yi Yang, Dit-Yan Yeung, and Alexander Hauptmann.
Devnet: A deep event network for multimedia event detection and evidence
recounting. pages 2568–2577, 06 2015. doi: 10.1109/CVPR.2015.7298872. URL
https://www.cv-foundation.org/openaccess/content_cvpr_
2015/papers/Gan_DevNet_A_Deep_2015_CVPR_paper.pdf.

[63] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolu-
tional networks: Visualising image classification models and saliency maps, 2013.
URL https://arxiv.org/abs/1312.6034.

[64] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
Striving for simplicity: The all convolutional net, 2014. URL https://arxiv.
org/abs/1412.6806.

[65] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks, 2013. URL https://arxiv.org/abs/1311.2901.

[66] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning deep features for discriminative localization, 2015. URL https://
arxiv.org/abs/1512.04150.

[67] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey
Dosovitskiy. Do vision transformers see like convolutional neural networks?, 2021.
URL https://arxiv.org/abs/2108.08810.

[68] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision
transformers, 2021. URL https://arxiv.org/abs/2104.14294.

82

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Gan_DevNet_A_Deep_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Gan_DevNet_A_Deep_2015_CVPR_paper.pdf
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1512.04150
https://arxiv.org/abs/1512.04150
https://arxiv.org/abs/2108.08810
https://arxiv.org/abs/2104.14294

Metric Comparison: Frozen vs Partially
Frozen vs Unfrozen

All of the hyperparameters were kept consistent throughout all of the training strategies
and models. For all of them, six epochs were used, with the same learning rate, weight
decay, optimizer and loss function. The only thing that changes between the different
training strategies are the amount of parameters frozen.

The fully frozen models are shown here with two snowflakes () to the right side of
the name of the model. The partially frozen models have only one snowflake (). The
fully unfrozen model, which corresponds to the proposed method here, does not have any
snowflakes.

Training

Training -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

AlexNet 70.02 71.54 70.02 70.25 0.5223000
AlexNet 97.16 97.10 97.16 97.10 0.0018365
AlexNet 97.87 97.81 97.87 97.84 0.3308000

Table 1: Training metrics for AlexNet using fully frozen , partially frozen and
unfrozen pretrained weights.

Training -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

ResNet 73.68 75.69 73.68 74.03 0.4180000
ResNet 98.63 98.61 98.63 98.62 0.0009694
ResNet 98.76 98.63 98.76 98.69 0.0004860

Table 2: Training metrics for ResNet using fully frozen , partially frozen and
unfrozen pretrained weights.

83

Training -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

EfficientNet 72.52 75.51 72.52 72.85 0.4986000
EfficientNet 97.99 97.95 97.99 97.97 0.0023332
EfficientNet 98.23 98.21 98.23 98.22 0.0012940

Table 3: Training metrics for EfficientNet using fully frozen , partially frozen and
unfrozen pretrained weights.

Training -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

ConvNeXt 73.55 80.54 73.55 73.81 0.4085000
ConvNeXt 98.80 98.76 98.80 98.78 0.0004571
ConvNeXt 98.98 98.94 98.98 98.96 0.0001970

Table 4: Training metrics for ConvNeXt using fully frozen , partially frozen and
unfrozen pretrained weights.

Training -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

ViT 83.62 86.10 83.62 84.24 0.2476000
ViT 99.21 99.13 99.21 99.17 0.0000855
ViT 98.97 98.90 98.97 98.93 0.0002120

Table 5: Training metrics for ViT using fully frozen , partially frozen and unfrozen
pretrained weights.

Training -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

Swin 76.71 78.70 76.71 77.13 0.4249000
Swin 98.63 98.57 98.63 98.60 0.0074219
Swin 98.60 98.57 98.60 98.58 0.0001920

Table 6: Training metrics for Swin Transformer using fully frozen , partially frozen
and unfrozen pretrained weights.

Training -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

DINO 99.06 99.02 99.06 99.04 0.0003808
DINO 99.11 99.06 99.11 99.09 0.0000017
DINO 99.07 99.01 99.07 99.04 0.0051910

Table 7: Training metrics for DINO using fully frozen , partially frozen and unfrozen
pretrained weights.

84

Validating

Validating -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

AlexNet 77.98 80.41 77.98 78.62 0.4569000
AlexNet 98.40 98.27 98.40 98.33 0.0103500
AlexNet 98.17 97.62 98.17 97.86 0.0083800

Table 8: Validating metrics for AlexNet using fully frozen , partially frozen and
unfrozen pretrained weights.

Validating -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

ResNet 75.31 79.44 75.31 76.03 0.4583000
ResNet 99.00 99.10 99.00 99.05 0.0114200
ResNet 99.13 98.98 99.13 99.05 0.0097900

Table 9: Validating metrics for ResNet using fully frozen , partially frozen and
unfrozen pretrained weights.

Validating -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

EfficientNet 79.42 80.10 79.42 79.69 0.4957000
EfficientNet 99.33 99.29 99.33 99.31 0.0090118
EfficientNet 99.51 99.32 99.51 99.41 0.0085900

Table 10: Validating metrics for EfficientNet using fully frozen , partially frozen
and unfrozen pretrained weights.

Validating -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

ConvNeXt 76.35 84.38 76.35 77.27 0.4195000
ConvNeXt 99.21 98.96 99.21 99.08 0.0070286
ConvNeXt 99.19 99.32 99.19 99.25 0.0045500

Table 11: Validating metrics for ConvNeXt using fully frozen , partially frozen and
unfrozen pretrained weights.

85

Validating -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

ViT 85.38 87.30 85.38 86.03 0.3327000
ViT 99.19 99.07 99.19 99.13 0.0072708
ViT 99.39 99.18 99.39 99.28 0.0030700

Table 12: Validating metrics for ViT using fully frozen , partially frozen and
unfrozen pretrained weights.

Validating -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

Swin 83.64 85.79 83.64 84.32 0.3850000
Swin 99.38 99.19 99.38 99.28 0.0088647
Swin 99.21 99.05 99.21 99.13 0.0109500

Table 13: Validating metrics for Swin Transformer using fully frozen , partially frozen
and unfrozen pretrained weights.

Validating -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

DINO 98.63 98.50 98.63 98.56 0.0071965
DINO 98.02 98.51 98.02 98.25 0.0055777
DINO 99.21 99.89 99.21 99.08 0.0066000

Table 14: Validating metrics for DINO using fully frozen , partially frozen and
unfrozen pretrained weights.

Testing

Testing -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

AlexNet 89.17 88.70 89.17 88.22 0.4423965
AlexNet 99.80 99.59 99.81 99.67 0.0112395
AlexNet 99.80 99.58 99.80 99.67 0.0073700

Table 15: Testing metrics for AlexNet using fully frozen , partially frozen and
unfrozen pretrained weights.

86

Testing -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

ResNet 91.00 91.64 91.00 90.47 0.4223104
ResNet 99.70 99.40 99.70 99.52 0.0119450
ResNet 99.80 99.59 99.80 99.67 0.0104700

Table 16: Testing metrics for ResNet using fully frozen , partially frozen and
unfrozen pretrained weights.

Testing -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

EfficientNet 79.82 78.21 79.82 73.74 0.5610808
EfficientNet 99.81 99.56 99.81 99.67 0.0098640
EfficientNet 99.80 99.59 99.80 99.67 0.0105800

Table 17: Testing metrics for EfficientNet using fully frozen , partially frozen and
unfrozen pretrained weights.

Testing -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

ConvNeXt 88.08 85.50 88.08 83.73 0.4445168
ConvNeXt 99.81 99.56 99.81 99.67 0.0076704
ConvNeXt 99.89 99.81 99.89 99.84 0.0063800

Table 18: Testing metrics for ConvNeXt using fully frozen , partially frozen and
unfrozen pretrained weights.

Testing -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

ViT 92.57 89.80 92.57 90.11 0.3293909
ViT 99.81 99.56 99.81 99.67 0.0094821
ViT 99.80 99.59 99.80 99.67 0.0082000

Table 19: Testing metrics for ViT using fully frozen , partially frozen and unfrozen
pretrained weights.

Testing -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

Swin 92.36 90.27 92.36 90.20 0.3950927
Swin 99.81 99.56 99.81 99.67 0.0126511
Swin 99.80 99.59 99.80 99.67 0.0125000

Table 20: Testing metrics for Swin Transformer using fully frozen , partially frozen
and unfrozen pretrained weights.

87

Testing -
Accuracy (%) Precision (%) Recall (%) F1 Score (%) Loss (%)

DINO 99.81 99.59 99.81 99.67 0.0078960
DINO 99.81 99.56 99.81 99.67 0.0100199
DINO 99.70 99.40 99.70 99.52 0.0135200

Table 21: Testing metrics for DINO using fully frozen , partially frozen and unfrozen
pretrained weights.

88

	Kurzfassung
	Abstract
	Contents
	Introduction
	Challenge
	Contribution
	Results
	Thesis Outline

	Related Work
	Layers used
	Convolutional Neural Network
	Transformers

	Dataset: Images of Pump Impellers
	Preprocessing
	Data Augmentation

	Training and Fine Tuning the Models for Image Classification
	Creating/Loading the models
	Loss
	Optimizer
	Training Steps
	Metrics

	Evaluation: Interpreting the predictions of defective images
	Annotation of defects
	CNN
	Attention Maps on Transformers
	Performances

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Metric Comparison: Frozen vs Partially Frozen vs Unfrozen
	Training
	Validating
	Testing

