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ORIGINAL ARTICLE

Analytical beam model revealing bone stresses in femur-implant compound 
structure

Lukas Pirchera, Tilman A. Gr€unewaldb, Helga C. Lichteneggerc, and Christian Hellmicha 

aInstitute for Mechanics of Materials and Structures, TU Wien (Vienna University of Technology), Vienna, Austria; bAix-Marseille University, 
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ABSTRACT 
We here introduce an analytical model for a preclinical femur-implant compound structure. This 
model extends standard Euler-Bernoulli-Saint-Venant theory by closed-form expressions for such 
shear stresses in thin-walled components, which arise from elastic material properties changing at 
the interfaces between bone and implant materials. Particularly noteworthy are stress singularities 
occurring at the generators of the cylindrical implants, which intersect the long axis of the bone 
shaft. This is fully consistent with observed major reorientations of bone fibrils following the 
implantation event, so that our novel mechanical model clearly indicates a case of micro- 
mechanobiology.

ARTICLE HISTORY 
Received 18 October 2024 
Accepted 18 October 2024 

KEYWORDS 
Analytical mechanics; 
composite beam theory; 
shear stress; local 3D 
equilibrium; magnesium 
implants; bone remodeling   

1. Introduction

Pre-clinical studies are an indispensable element of biomed-
ical research, and animal studies remain an indispensable 
part of preclinical research. However, as ethical concerns call 
for reduction of animal studies, the latter need to be very 
carefully designed [1], together with a maximized degree of 
evaluation and understanding of the outcome of correspond-
ing investigations. In this context, mathematical modeling 
plays an ever increasing role [2], and the present contribution 
tackles the clearly needed improvement of corresponding 
mathematical models. More specifically, we focus on struc-
tural mechanics models for bone-implant structures occurring 
in standard animal models, more precisely on murine fem-
oral shafts penetrated transcortically by magnesium implants 
[3, 4], see Figure 1. In this context, mathematical models 
have typically dealt with the degradation and corrosion pro-
cess of the magnesium implants [6–8]—whereby Stefan prob-
lems, when cast into a rigorous mass conservation frame, 
play a central role [9, 10]. However, we here set a different 
focus, one on the mechanical behavior of the magnesium 
implant and the surrounding bone. This is motivated by a 
more recent discovery made possible through synchroton 
small-angle scattering tomography [5]: significant changes in 
the bone microstructure evolve in the weeks and months 
after implantation; and this is so presumably because of a 
dramatically changed mechanical environment. In more 
detail, the implant causes the originally dominant orienta-
tion direction of fibrils along the long bone axis to shift 
toward a vortex-type (or “wrapping”) pattern around the 

circumference of the implant [5]. Upon progressive implant 
resorption, however, the fibril orientation pattern transforms 
back toward the original configuration [5]. While noting 
that the 3D solid Finite Element Method (FEM) [11] is the 
current gold standard for mechanical organ-implant simula-
tions [12], the current paper deals with a different approach, 
due to two main challenges faced by state-of-the-art finite 
element models constructed from microcomputed tomo-
grams: (i) they do not allow for direct study of different 
design parameters such as implant shape or size, as any cor-
responding changes necessitate repeated, generally quite 
expensive numerical studies; and (ii) when tested on numer-
ical convergence, large Finite element models of bony 
objects have been shown to actually fail [13], so that quanti-
tatively relevant stress estimations obtained from the FEM 
are not assured, or rather, remain out of reach in many cir-
cumstances. In order to effectively tackle these open chal-
lenges, we here introduce an analytical bone-implant model, 
along the following lines: After geometrical representation 
of the femur-implant structure as two interpenetrating cylin-
ders, one hollow and one filled, we recall the standard 
expressions for the normal stresses encountered in compos-
ite beams with cross-sections reflecting the aforementioned 
bone-implant compound structure. We continue Section 2
by re-calling the theory of shear stresses in thin-walled beams 
undergoing torsion and bending, before proposing corre-
sponding extensions for composite beams of the aforemen-
tioned type, along with new expressions for shear stresses in 
such beams loaded by axial forces and bending moments. In 
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Section 3, these expressions are then evaluated for practically 
relevant geometrical and material properties, and illustrated 
in terms of corresponding stress distributions. Finally, Section 
4 contains a discussion in view of tomograms elucidating 
microstructural changes in bone tissue in the vicinity of the 
implant, followed by the limitations of the present approach 
and corresponding potential future activities. 

2. Mathematical formulation

2.1. Geometrical system, elastic properties, as well as 
mechanical forces and stresses

We consider two penetrating cylinders, one hollow and one 
filled, with the first representing a cortical bone shaft and 
the second representing an implant, see Figures 2 and 3. 

The axes of these cylinders intersect, while lying perpendicu-
lar to each other. This geometrical system is defined through 
the outer radius of the hollow cylinder, Rbone, by the thick-
ness of this cylindrical shell, tbone, and by the radius of the 
filled implant cylinder, Rimp, see Figure 2 and Table 1.

The axis of the first cylinder is regarded as beam axis with 
orientation ex, and the corresponding composite beam, which 
consists of two materials, cortical bone and magnesium with 
elastic properties according to Table 1, is subjected to second- 
order tensorial Cauchy stress states r of the form [15]. 

r ¼ rxxex � ex þ rxyðex � ey þ ey � exÞ

þ rxzðex � ez þ ez � exÞ (1) 

with rxx, rxy, and rxz as the non-vanishing components of the 
stress tensor; and with ex, ey, and ez as the unit vectors forming 

Figure 1. Preclinical trial of magnesium implants in murine femora: (a) skeleton of rat with right hindlimp; (b) position of magnesium pin in right femoral shaft, (c) 
microCT slice depicting implant one month after implantation, image reproduced from [5], under license CC by 4.0.

Figure 2. Definition of system geometry, by means of bone radius Rbone, bone thickness tbone, and implant radius Rimp; implant thickness timp and interface-related 
polar angle cint depend on axial distance x from the implant axis; positions on the bone profile curve are given in terms of the polar angle c and the arc length s.
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the orthonormal basis depicted in Figure 3. These stress states are 
associated with internal forces, namely axial forces N, shear forces 
Sy and Sz, torsional moments Mx, as well as bending moments 
My and Mz: Such internal forces can be obtained from ground 
reaction forces [16] in combination with an inverse dynamics 
model for the overall musculoskeletal system [17]. The latter refer-
ence provides, at the center of the femoral shaft of a rat, the tem-
poral evolution of the aforementioned internal forces over a single 
trotting stride. Temporal averaging over this stride yields the fol-
lowing values,

N ¼ −8:03 N Sy ¼ −1:15 N
Sz ¼ −0:16 N Mx ¼ −1:15 Nmm
Myðx ¼ 0Þ ¼ 12:78 Nmm Mzðx ¼ 0Þ ¼ −1:20 Nmm

(2) 

While the forces and the torsional moments will be con-
sidered as constant along the beam axis in the vicinity of 
implant, the standard equilibrium conditions for slender 
beams undergoing bending, see e.g. [15, 18] and Appendix,

dMy

dx
¼ Sz

dMz

dx
¼ −Sy (3) 

entail correspondingly linear trends of the bending moments,

MyðxÞ ¼ Myðx ¼ 0Þ þ SzxMzðxÞ ¼ Myðx ¼ 0Þ − Syx (4) 

2.2. Normal stresses according to composite beam 
theory

Following the standard composite beam theory [18–20], 
where the axial normal strains exx are linearly distributed 
throughout the cross sections of the composite beam, the nor-
mal stress distributions over the cross sections of the investi-
gated bone-implant structure are linked to the axial force N 
and the bending moments My and Mz through the relation

rN
xx ¼

Eðx, sÞ
Ebone

N
AboneðxÞ þ

Eimp
Ebone

AimpðxÞ
(5) 

r
My
xx ¼

Eðx, sÞ
Ebone

MyðxÞzðsÞ
Iy, boneðxÞ þ

Eimp
Ebone

Iy, impðxÞ
(6) 

rMz
xx ¼ −

Eðx, sÞ
Ebone

MzðxÞyðsÞ
Iz, boneðxÞ þ

Eimp
Ebone

Iz, impðxÞ
(7) 

In Eqs. (5)–(7), s denotes the arc length labeling positions 
on the midsurface of the bone shell and its extensions into 
the implant. It reads mathematically as

sðcÞ ¼ c Rbone −
tbone

2

� �

$ cðsÞ ¼
s

Rbone − tbone
2

� � (8) 

with the polar angle c as depicted in Figure 2. The arc length 
is related to the Cartesian coordinates y and z through

yðsÞ ¼ cos cðsÞ½ � � Rbone −
tbone

2

� �

¼ cos
s

Rbone − tbone
2

� �
� �

� Rbone −
tbone

2

� �

(9) 

Figure 3. Resultant forces acting on bone-implant compound structure (femoral shaft portion in blue, with axis direction ex ; magnesium implant in red, with axis direction 
ey); quantified in terms of beam theory-related internal force quantities N (axial force), My and Mz (bending moments), Sy and Sz (shear forces), and Mx (torsional moment).

Table 1. Geometrical and mechanical properties encountered in preclinical 
study [5].

Quantity Value Source

(Axial) elastic modulus of cortical bone, Ebone 25 GPa [13]
(Isotropic) elastic modulus of magnesium, Eimp 37 GPa [14]
Radius of femoral shaft, Rbone 2.45 mm [5]
Thickness of cortical shell, tbone 1.0 mm [5]
Radius of implant cylinder, Rimp 0.8 mm [5]
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and

zðsÞ ¼ sin cðsÞ½ � � Rbone −
tbone

2

� �

¼ sin
s

Rbone − tbone
2

� �
� �

� Rbone −
tbone

2

� �

(10) 

Furthermore, in Eqs. (5)–(7), Abone denotes the cross-sec-
tional area of bone; Aimp denotes the area of implant replac-
ing former bone; Iy, bone and Iz, bone, respectively, are the 
second-order area moments around the y-axis and the z-axis 
of the bone portion within a cross-section through the 
bone-implant compound; and Iy, imp and Iz, imp, respectively, 
are the second-order area moments around the y-axis and 
the z-axis of the implant portion within a cross-section 
through the bone-implant compound. We explicitly note 
that the geometrical properties of the cross-sections, such as 
areas and area moments, explicitly depend on the coordinate 
of the beam axis, x. In this context, the cross-sectional areas 
and area moments are quantified in terms of the cross-sec-
tion-specific polar angle of the bone-implant interface, 
which we denote as cint: It can be given in terms of the sec-
tion-specific implant thickness timp and the outer radius of 
the femoral shaft, Rbone, through

cintðxÞ ¼ arcsin
timpðxÞ

2
Rbone − tbone

2

 !

(11) 

The thickness timp of the cross-sectional portion made up 
by the implant can, in turn, be expressed through the axial 
distance from the cylindrical axes intersection point, denoted 
as x, and the implant radius, via

timpðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRimpÞ
2 − x2

q

(12) 

see Figure 2. The cross sectional properties of the hollow 
bone cylinder without implant, occurring at x � Rimp and 
x � Rimp, read as

Abone ¼ 2p Rbone −
tbone

2

� �

tbone (13) 

Iy, bone ¼
1
4
p ðRboneÞ

4 − ðRbone − tboneÞ
4� �

(14) 

Iz, bone ¼
1
4
p ðRboneÞ

4 − ðRbone − tboneÞ
4� �

(15) 

Aimp ¼ Iy, imp ¼ Iz, imp ¼ 0 (16) 

The cross sectional properties of cross sections compris-
ing both bone and implant, occurring at −Rimp < x < Rimp, 
read as

AboneðxÞ ¼ ð2p − 4cintðxÞÞ Rbone −
tbone

2

� �

tbone (17) 

Iy, boneðxÞ ¼
1
4
ðp − 2cintðxÞ þ sin 2cintðxÞ½ �Þ �

� ðRboneÞ
4 − ðRbone − tboneÞ

4� � (18) 

Iz, boneðxÞ ¼
1
4
ðp − 2cintðxÞ − 2 cos cintðxÞ½ � sin cintðxÞ½ �Þ�

� ðRboneÞ
4 − ðRbone − tboneÞ

4� � (19) 

AimpðxÞ ¼ 4cintðxÞ Rbone −
tbone

2

� �

tbone (20) 

Iy, impðxÞ ¼
1
2
ðcintðxÞ − cos cintðxÞ½ � sin cintðxÞ½ �Þ�

� ðRboneÞ
4 − ðRbone − tboneÞ

4� � (21) 

Iz, impðxÞ ¼
1
2
ðcintðxÞ þ cos cintðxÞ½ � sin cintðxÞ½ �Þ�

� ðRboneÞ
4 − ðRbone − tboneÞ

4� � (22) 

The cross-sectional compartments hosting bone- and 
implant-related axial Young’s modulus values, Ebone and 
Eimp, are characterized through of the following function of 
axial position x and arc length s 

Eðx, sÞ ¼ Eimp − ðEimp − EboneÞ�

(

H s − cintðxÞ � Rbone −
tbone

2

� �� �

−H s − p − cintðxÞ½ � � Rbone −
tbone

2

� �� �

þH s − pþ cintðxÞ½ � � Rbone −
tbone

2

� �� �

−H s − 2p − cintðxÞ½ � � Rbone −
tbone

2

� �� �)

(23) 

with H denoting the Heaviside step function; Hðn < 0Þ ¼ 0 
and Hðn > 0Þ ¼ 1: This function allows for an elegant rep-
resentation of the jump encountered in the elastic modulus 
when moving from the bone to the implant portion of the 
considered compound structure.

2.3. Axial gradients of normal stresses occurring in local 
3D equilibrium conditions

2.3.1. Motivation
As a starting point, we follow the classical beam theory 
approaches [15, 18] where gradients in axial forces arise 
from shear tractions on the beam surfaces (for the present 
application, the latter may be realized in terms of point 
loads associated with muscle attachments), and where shear 
stresses are due to torsional moments as well as to gradients 
in bending moments. In the present application, the thick-
ness tbone of the cylindrical shell is always constant, and the 
axial-circumferential shear stresses rxs are considered as not 
significantly varying over this thickness, so that rxs is 
uniquely related to the shear flow Fxs, via

Fxs ¼ tbonerxs, (24) 

whereby the suffix “s” relates to the arc length running 
along the midsurface of the cylindrical shell of thickness 
tbone, see Figure 2. Such shear stresses may arise from tor-
sional loading, as described further below in Section 2.5, 
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and from gradients in axial normal stresses, which in the 
present case stem from various sources, as described in 
Sections 2.3.2–2.3.4. The coupling between shear stresses 
and axial normal stresses results from the following special-
ized form of the 3D local equilibrium condition [15] 

@rxx

@x
þ
@rxs

@s
¼ 0 (25) 

where the shear stress component along the cylindrical circle 
is related to the Cartesian shear stress components via

rxy ¼ −rxs sin c (26) 

rxz ¼ rxs cos c (27) 

and where the gradients of the axial normal stresses will be, 
in the following, determined from Eqs. (5)–(7). These gra-
dients arise from changes of internal forces, from changes of 
cross-sectional geometrical properties (areas and area 
moments), as well as from changes of mechanical properties 
(values for Young’s modulus).

2.3.2. Axial gradients of normal stresses due to bending 
around y-axis

As regards the gradients of axial normal stress due to bending 
around the y-axis, Eq. (6), together with Eq. (3), implies that

@r
My
xx

@x
¼

@r
My
xx

@x

 !dMy

þ
@r

My
xx

@x

 !dA

þ
@r

My
xx

@x

 !dE

(28) 

where new expressions for axial normal stress gradients arising 
from a gradient of the bending moment around the y-axis, 
from gradients of bone- and implant-specific cross-sectional 
areas and area moments, and from a gradient in the elastic 
modulus have been introduced. In more detail, in Eq. (28), the 
normal stress gradients arising from a change in the bending 
moment are given by the following mathematical expression

@r
My
xx

@x

 !dMy

¼
Eðx, sÞ
Ebone

zðsÞSz

Iy, boneðxÞ þ Iy, impðxÞðEimp=EboneÞ
(29) 

with Eðx, sÞ according to Eq. (23). Moreover, in Eq. (28), the 
normal stress gradients arising from changes in the cross- 
sectional geometrical properties are given by the following 
mathematical expression 

@r
My
xx

@x

 !dA

¼ −
Eðx, sÞ
Ebone

zðsÞMyðxÞ
Iy, boneðxÞ þ Iy, impðxÞðEimp=EboneÞ
� �2�

�
dIy, boneðxÞ

dx
1 −

Eimp

Ebone

� �

(30) 
with the gradient of the second-order area moment reading as

dIy, boneðxÞ
dx

¼ −
dIy, impðxÞ

dx
¼

x
2
ðRboneÞ

4 − ðRbone − tboneÞ
4� �
�

�

1 − cos 2arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRimpÞ

2−x2
p

Rbone− tbone
2

� �

� �� �

Rbone − tbone
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRimpÞ
2 − x2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðRimpÞ
2−x2

Rbone−tbone
2ð Þ

2

r

0

B
B
B
@

1

C
C
C
A

(31) 

Finally, in Eq. (28), the normal stress gradients arising 
from a change in the elastic modulus are given by the fol-
lowing mathematical expression

@r
My
xx

@x

 !dE

¼
@Eðx, sÞ
@x

1
Ebone

zðsÞMyðxÞ
Iy, boneðxÞ þ

Eimp
Ebone

Iy, impðxÞ
(32) 

whereby the gradient of the mechanical properties follows 
from Eq. (23), and consequently, it reads as

@Eðx, sÞ
@x

¼
dcintðxÞ

dx
Rbone −

tbone

2

� �

ðEimp − EboneÞ�

(

d s − cintðxÞ � Rbone −
tbone

2

� �� �

þd s − p − cintðxÞ½ � � Rbone −
tbone

2

� �� �

þd s − pþ cintðxÞ½ � � Rbone −
tbone

2

� �� �

þd s − 2p − cintðxÞ½ � � Rbone −
tbone

2

� �� �)

(33) 

In Eq. (33), d denotes the Dirac delta function, which is the 
derivative of the Heaviside function; dðn ¼ 0Þ ¼ þ1, dðn 6¼

0Þ ¼ 0 and 
Ð1

−1 dðnÞds ¼ 1: Moreover, in Eq. (33), it was 
also considered that

dcintðxÞ
dx

¼ −
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRimpÞ
2 − x2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðRimpÞ
2−x2

Rbone−tbone
2ð Þ

2

r (34) 

2.3.3. Axial gradients of normal stresses due to bending 
around z-axis

As regards the gradients of axial normal stress due to bending 
around the z-axis, Eq. (7), together with Eq. (3), implies that

@rMz
xx
@x
¼

@rMz
xx
@x

� �dMy

þ
@rMz

xx
@x

� �dA

þ
@rMz

xx
@x

� �dE

(35) 

with new expressions analogous to those introduced below 
Eq. (28). In more detail, in Eq. (35), the normal stress gra-
dients arising from a change of the bending moment are 
given by the following mathematical expression

@rMz
xx
@x

� �dMz

¼
Eðx, sÞ
Ebone

yðsÞSy

Iz, boneðxÞ þ Iz, impðxÞðEimp=EboneÞ
(36) 

with Eðx, sÞ according to Eq. (23). Moreover, in Eq. (35), the 
normal stress gradients arising from changes in the cross- 
sectional geometrical properties are given by the following 
mathematical expression

@rMz
xx
@x

� �dA

¼
Eðx, sÞ
Ebone

yðsÞMzðxÞ
Iz, boneðxÞ þ Iz, impðxÞðEimp=EboneÞ
� �2�

�
dIz, boneðxÞ

dx
1 −

Eimp

Ebone

� �

(37) 

with the gradient of the second-order area moment reading as

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 5



dIz, boneðxÞ
dx

¼ −
dIz, impðxÞ

dx
¼

x
2
ðRboneÞ

4 − ðRbone − tboneÞ
4� �
�

� Rbone − tbone
2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðRimpÞ
2−x2

Rbone−tbone
2ð Þ

2

r" #−1

�

�

2 − ðRimpÞ
2−x2

Rbone−tbone
2ð Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRimpÞ
2 − x2

q −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRimpÞ
2 − x2

q

Rbone − tbone
2

� �2

0

B
B
@

1

C
C
A

(38) 

Finally, in Eq. (35), the normal stress gradients arising 
from a change in the elastic modulus are given by the fol-
lowing mathematical expression

@rMz
xx
@x

� �dE

¼ −
@Eðx, sÞ
@x

1
Ebone

yðsÞMzðxÞ
Iz, boneðxÞ þ

Eimp
Ebone

Iz, impðxÞ
(39) 

with the gradient of the mechanical properties as shown in 
Eq. (33), together with Eq. (34).

2.3.4. Axial gradients of normal stresses due to axial 
loading

As regards the gradients of axial normal stress due to axial 
force, Eq. (5) implies that

@rN
xx

@x

� �

¼
@rN

xx
@x

� �dA

þ
@rN

xx
@x

� �dE

(40) 

with the new expression analogous to those introduced below Eqs. 
(28) and (35). In Eq. (40), the normal stress gradients arising from 
changes in the cross-sectional geometrical properties are given by 
the following mathematical expression

@rN
xx

@x

� �dA

¼ −
Eðx, sÞ
Ebone

NðxÞ
AboneðxÞ þ AimpðxÞðEimp=EboneÞ
� �2�

�
dAboneðxÞ

dx
1 −

Eimp

Ebone

� �

(41) 

with the gradient of the area with x reading as

dAboneðxÞ
dx

¼ −
dAimpðxÞ

dx

¼
4 tbone x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRimpÞ
2 − x2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðRimpÞ
2−x2

Rbone−tbone
2ð Þ

2

r
(42) 

Moreover, in Eq. (40), the normal stress gradients arising 
from a change in the elastic modulus are given by the fol-
lowing mathematical expression

@rN
xx

@x

� �dE

¼
@Eðx, sÞ
@x

1
Ebone

NðxÞ
AboneðxÞ þ AimpðxÞðEimp=EboneÞ

(43) 

with the gradient of the mechanical properties as shown in 
Eq. (33), together with Eq. (34).

2.4. Shear stresses from circumferential integration of 
normal stress gradients

2.4.1. Local equilibrium conditions fulfilled by different 
stress portions

The local equilibrium conditions according to Eq. (25) are 
not only required to hold for the entire stress state prevail-
ing at a particular location in the bone-implant structure, 
but also for individual stress portions making up the total 
stress, according to Eqs. (28), (35), and (40). As regards the 
stress portions associated with bending around the y-axis 
and changes in the corresponding bending moment, local 
equilibrium according to Eq. (25) implies the following cir-
cumferential gradients of shear stresses.

@r
My
xs

@s

 !dMy

¼ −
@r

My
xx

@x

 !dMy

(44) 

As regards the stress portions associated with bending 
around the z-axis and changes in the corresponding bending 
moment, local equilibrium according to Eq. (25) implies the 
following circumferential gradients of shear stresses.

@rMz
xs
@s

� �dMz

¼ −
@rMz

xx
@x

� �dMz

(45) 

As regards the stress portions associated with geometrical 
and material property changes under bending and axial 
loading, respectively, local equilibrium according to Eq. (25)
implies the following circumferential gradients of shear 
stresses.

@r
My
xs

@s

 !dAþdE

¼ −
@r

My
xx

@x

 !dA

−
@r

My
xx

@x

 !dE

(46) 

@rMz
xs
@s

� �dAþdE

¼ − @r
Mz
xx
@x

� �dA
− @r

Mz
xx
@x

� �dE
(47) 

@rN
xs

@s

� �dAþdE

¼ − @rN
xx

@x

� �dA
− @rN

xx
@x

� �dE
(48) 

2.4.2. Shear stress distribution arising from an axial gradi-
ent of the bending moment around the y-axis

According to Eqs. (44), (29), (23) and (10), the circumferen-
tial gradients of shear stresses arising from an axial gradient 
of the bending moment around the y-axis are given by the 
following mathematical expression.

@r
My
xs

@s

 !dMy

¼ −
Sz

I y
Rbone −

tbone

2

� �

� sin
s

Rbone − tbone
2

� �

�

�
1

Ebone
Eimp − ðEimp − EboneÞ�
�

�fHðn1Þ − Hðn2Þ þHðn3Þ − Hðn4Þg
�

(49) 

where we introduced the following abbreviations for the 
arguments of the Heaviside function
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n1 ¼ s − cintðxÞ � Rbone −
tbone

2

� �

(50) 

n2 ¼ s − p − cintðxÞo � Rbone −
tbone

2

� �� �

(51) 

n3 ¼ s − pþ cintðxÞ � Rbone −
tbone

2

� �� �

(52) 

n4 ¼ 2p − cintðxÞ � Rbone −
tbone

2

� �

(53) 

as well as a “composite second-order area moment around 
the y-axis” of the form

I yðxÞ ¼ Iy, boneðxÞ þ Iy, impðxÞ
Eimp

Ebone
(54) 

Integration of the shear stress gradients of Eq. (49), together 
with Eqs. (50)–(54), over the circumferential line of the 
thin-walled bone profile and its extensions into the implant 
portion of the cross section, yields the shear stresses arising 
from the axial gradient of the bending moment around the 
y-axis, in the following form,

r
My
xs

� �dMy
ðx, sÞ ¼

ðs

0

@r
My
xs

@~s

 !dMy

ðx,~sÞd~s þ CMyð Þ
dMy
ðxÞ (55) 

Thereby, the integral expression occurring in Eq. (55) reads as

Ð s
0

@r
My
xs
@~s

� �dMy

d~s

� �

ðx, sÞ ¼
−Sz

I yðxÞ
�

1
Ebone

Rbone −
tbone

2

� �2

�

� Eimp 1 − cos cðsÞ½ �ð Þ þ ðEimp − EboneÞ�
�

� cos cðsÞ½ � − cos cintðxÞ½ �ð Þ � Hðn1Þ − Hðn4Þ½ ��
�

� cos cðsÞ½ � þ cos cintðxÞ½ �ð Þ � −Hðn2Þ þHðn3Þ½ �g�

(56) 

with cðsÞ according to Eq. (8), cintðxÞ according to Eq. (11), n1 to 
n4 according to Eqs. (50)–(53), and I y according to Eq. (54). The 
integration constant CMyð Þ

dMy
ðxÞ occurring in Eq. (55) follows 

from the condition that shear stresses arising from an axial gradi-
ent of the bending moment around the y-axis do not result in a 
torsional moment (around the x-axis), i.e. from

MMy
x

� �dMy
¼

ð

A
− z ðrMy

xy Þ
dMy þ yðrMy

xz Þ
dMy dA

� tbone Rbone −
tbone

2

� �ððRbone−tbone=2Þ

s¼0
ðr

My
xs Þ

dMy ds ¼ 0

(57) 

yielding

CMyð Þ
dMy
ðxÞ ¼

Sz

I yðxÞ
Rbone − tbone

2

� �2

Ebone
Eimp − ðEimp − EboneÞ cos cintðxÞ½ �
� �

(58) 

The shear stresses according to Eqs. (55), (56), and (58) also 
fulfill two conditions in line with Eq. (3), namely that shear 
stresses arising from bending gradients around the y-axis do 
not result in shear forces in the y-direction,

SMy
y

� �dMy

¼
Ð

Aðr
My
xy Þ

dMy dA

� −tbone
Ð 2pðRbone−tbone=2Þ

s¼0 sin cðsÞ½ � � ðr
My
xs Þ

dMy ds ¼ 0
(59) 

and that the integration, over the cross section, of shear 
stresses arising from a gradient in the bending moment 
around the y-axis, yields the shear force in z-direction, i.e.

SMy
z

� �dMy
¼
Ð

Aðr
My
xz Þ

dMy dA

� tbone
Ð 2pðRbone−tbone=2Þ

s¼0 cos cðsÞ½ � � ðr
My
xs Þ

dMy ds � Sz

(60) 

2.4.3. Shear stress distribution arising from an axial gradi-
ent of the bending moment around the z-axis

According to Eqs. (45), (36), (23) and (9), the circumferen-
tial gradients of shear stresses arising from an axial gradient 
of the bending moment around the z-axis are given in the 
following mathematical form

@rMz
xs
@s

� �dMz

¼
−Sy

I zðxÞ
Rbone −

tbone

2

� �

� cos
s

Rbone − tbone
2

� �

�

�
1

Ebone
Eimp − ðEimp − EboneÞ�
�

�fHðn1Þ − Hðn2Þ þHðn3Þ − Hðn4Þg�

(61) 

where the abbreviations for the arguments of the Heaviside 
function still follow Eqs. (50)–(53) and where we introduced 
a “composite second-order area moment around the z-axis” 
of the form

I zðxÞ ¼ Iz, boneðxÞ þ Iz, impðxÞ
Eimp

Ebone
(62) 

Integration of the shear stress gradients according to Eq. 
(61), together with Eq. (62), over the circumferential line of 
the thin-walled bone profile and its extensions into the 
implant portion of the cross section, yields the shear stresses 
arising from the axial gradient of the bending moment 
around z, in the following form,

rMz
xs

� �dMz
ðx, sÞ ¼

ðs

0

@rMz
xs
@~s

� �dMz

ðx,~sÞd~s þ CMzð Þ
dMz
ðxÞ (63) 

Thereby, the integral expression occurring in Eq. (63) reads as

Ð s
0

@r
Mz
xs
@~s

� �dMz

d~s

� �

ðx, sÞ ¼
−Sy

I zðxÞ
1

Ebone
Rbone −

tbone

2

� �2

�

� Eimp sin cðsÞ½ � þ ðEimp − EboneÞ�
�

�fð sin cðsÞ½ � − sin cintðxÞ½ �Þ � −Hðn1Þ þHðn2Þ½ ��

�ð sin cðsÞ½ � þ sin cintðxÞ½ �Þ � −Hðn3Þ þ Hðn4Þ½ �g�

(64) 

with cðsÞ according to Eq. (8), cintðxÞ according to Eq. (11), n1 to 
n4 according to Eqs. (50)–(53), and I z according to Eq. (62). The 
integration constant ðCMzÞ

dMzðxÞ follows from the condition that 
shear stresses arising from bending changes around the z-axis do 
not result in a torsional moment (around the x-axis), i.e. from
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MMz
x

� �dMz
¼

ð

A
− z ðrMz

xy Þ
dMz þ yðrMz

xz Þ
dMz dA

� tbone Rbone −
tbone

2

� �ððRbone−tbone=2Þ

0
ðrMz

xs Þ
dMz ds ¼ 0

(65) 

yielding

CMzð Þ
dMz
ðxÞ ¼ 0 (66) 

The shear stresses according to Eq. (63), together with Eq. 
(64) and (66), also fulfill two conditions in line with Eq. (3), 
namely that shear stresses arising from an axial gradient of 
the bending moment around the z-axis do not result in 
shear forces in the z-direction,

SMz
z

� �dMz
¼

ð

A
rMz

xz
� �dMz dA

� −tbone

ð2pðRbone−tbone=2Þ

0
sin cðsÞ½ � rMz

xs
� �dMz ds ¼ 0

(67) 

and that the integration, over the cross section, of the shear 
stresses arising from an axial gradient of the bending 
moment around the z-axis yields the shear force in y-direc-
tion, i.e.

SMz
y

� �dMz
¼

ð

A
rMz

xy

� �dMz
dA

� tbone

ð2pðRbone−tbone=2Þ

0
cos cðsÞ½ � rMz

xs
� �dMz ds ¼ Sy

(68) 

2.4.4. Shear stress distribution arising from axial gradients 
of cross-sectional properties under bending around 
the y-axis

According to Eqs. (46), (30), (32), and (10), the circumfer-
ential gradients of shear stresses arising from axial gradients 
of the cross-sectional geometrical properties and of the 
mechanical properties of a bone-implant compound cross 
section loaded by a bending moment around the y-axis are 
given by the following mathematical expression

@r
My
xs

@s

 !dAþdE

ðx, sÞ ¼
1

Ebone

MyðxÞzðsÞ
I yðxÞ

�

�
1
I yðxÞ

dIy, boneðxÞ
dx

1 −
Eimp

Ebone

� �

� Eðx, sÞ −
@Eðx, sÞ
@x

" #

¼

¼
1

Ebone

MyðxÞ
I yðxÞ

Rbone −
tbone

2

� �

sin
s

Rbone − tbone
2

� �

�

�
1
I yðxÞ

dIy, boneðxÞ
dx

1 −
Eimp

Ebone

� �

Eimp − ðEimp − EboneÞ�
�

"

�fHðn1Þ − Hðn2Þ þ Hðn3Þ − Hðn4Þg�

−
dcintðxÞ

dx
Rbone −

tbone

2

� �

ðEimp − EboneÞ�

�fdðn1Þ þ dðn2Þ þ dðn3Þ þ dðn4Þg� (69) 

with the composite second-order area moment I y being given by 
Eq. (54). Integration of the shear gradients according to Eq. (69), 
over the circumferential line of the bone profile and its extensions 
into the implant portions of the cross section, yields the shear 
stresses arising from the axial gradients of the cross-sectional geo-
metrical properties and of the mechanical properties of a bone- 
implant compound cross-section loaded by a bending moment 
around the y-axis as 

r
My
xs

� �dAþdE
ðx, sÞ ¼ CMyð Þ

dAþdE
ðxÞ þ

ðs

0

@r
My
xs

@~s

 !dAþdE

ðx,~sÞd~s

(70) 
Thereby, the integral expression in Eq. (70) reads as

Ð s
0

@r
My
xs
@~s

� �dAþdE
d~s

� �

ðx, sÞ ¼
My

I yðxÞ
1

Ebone
Rbone −

tbone

2

� �2

�

�

 
1
I yðxÞ

dIy, boneðxÞ
dx

1 −
Eimp

Ebone

� �

�

� −Eimp cos cðsÞ½ � þ ðEimp − EboneÞ�
�

� cos cðsÞ½ � − cos cintðxÞ½ �ð Þ Hðn1Þ − Hðn4Þ½ �
�

þ cos cðsÞ½ � þ cos cintðxÞ½ �ð Þ Hðn2Þ − Hðn3Þ½ �g�

þðEimp − EboneÞ sin cintðxÞ½ �
dcintðxÞ

dx
�

�f−Hðn1Þ − Hðn2Þ þ Hðn3Þ þHðn4Þg

�

(71) 

with cðsÞ according to Eq. (8), cintðxÞ according to Eq. (11), n1 to 
n4 according to Eqs. (50)–(53), and I y according to Eq. (54). The 
integration constant ðCMyÞ

dAþdE
ðxÞ follows from the condition 

that shear stresses arising from axial gradients of the cross-sec-
tional geometrical properties and of the mechanical properties of 
a bone-implant compound cross section loaded by a bending 
moment around the z-axis do neither result in a torsional moment 
(around the x-axis), i.e. from

MMy
x

� �dAþdE
¼
Ð

A − z r
My
xy

� �dAþdE
þ y r

My
xz

� �dAþdE
dA

� tbone Rbone −
tbone

2

� �
Ð 2pðRbone−tbone=2Þ

0 r
My
xs

� �dAþdE
dA ¼ 0

(72) 
nor in shear forces in y- and z-direction

SMy
y

� �dAþdE
¼
Ð

Aðr
My
xy Þ

dAþdEdA

� tbone
Ð 2pðRbone−tbone=2Þ

0 cos cðsÞ½ � r
My
xs

� �dAþdE
ds ¼ 0

(73) 

SMy
z

� �dAþdE
¼
Ð

A r
My
xz

� �dAþdE
dA

� tbone
Ð 2pðRbone−tbone=2Þ

0 − sin cðsÞ½ � r
My
xs

� �dAþdE
ds ¼ 0

(74) 

yielding

CMyð Þ
dAþdE

ðxÞ ¼
My

I yðxÞ
1

Ebone
Rbone −

tbone

2

� �2

1 −
Eimp

Ebone

� �

�

Eimp − Ebone

I yðxÞ
dIy, boneðxÞ

dx
cos cintðxÞ½ � − Ebone

dcintðxÞ
dx

sin cintðxÞ½ �

" #

(75) 
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2.4.5. Shear stress distribution arising from axial gradients 
of cross-sectional properties under bending around 
the z-axis

According to Eqs. (47), (37), (39) and (9), the circumferential gra-
dients of shear stresses arising from axial gradients of the cross- 
sectional geometrical properties and of the mechanical properties 
of a bone-implant compound cross section loaded by a bending 
moment around the z-axis are given by the following mathemat-
ical expression

@rMz
xs
@s

� �dAþdE

ðx, sÞ ¼ −
1

Ebone

MzðxÞyðsÞ
I zðxÞ

�

�
1
I zðxÞ

dIz, boneðxÞ
dx

1 −
Eimp

Ebone

� �

Eðx, sÞ −
@Eðx, sÞ
@x

" #

¼ −
MzðxÞ
I zðxÞ

1
Ebone

Rbone −
tbone

2

� �

cos
s

Rbone − tbone
2

� �

�

�
1
I zðxÞ

dIz, boneðxÞ
dx

1 −
Eimp

Ebone

� �

Eimp − ðEimp − EboneÞ�
�

"

�fH1ðx, sÞ − H2ðx, sÞ þH3ðx, sÞ − H4ðx, sÞg�

−
dcintðxÞ

dx
Rbone −

tbone

2

� �

ðEimp − EboneÞ�

�fd1ðx, sÞ þ d2ðx, sÞ þ d3ðx, sÞ þ d4ðx, sÞg� (76) 

with the composite second-order area moment I z being given 
by Eq. (62). Integration of the shear stress gradients according 
to Eq. (76), over the circumferential line of the bone profile 
and its extensions into the implant portion of the cross sec-
tion, yields the shear stresses arising from the axial gradients 
of the cross-sectional geometrical properties and of the mech-
anical properties of a bone-implant compound cross-section 
loaded by a bending moment around the z-axis as 

rMz
xs

� �dAþdE
ðx, sÞ ¼ CMzð Þ

dAþdE
ðxÞ þ

ðs

0

@rMz
xs
@~s

� �dAþdE

ðx,~sÞd~s

(77) 

Thereby, the integral expression in Eq. (77) reads as

Ð s
0

@r
Mz
xs
@~s

� �dAþdE
d~s

� �

ðx, sÞ ¼
MzðxÞ
I zðxÞ

1
Ebone

Rbone −
tbone

2

� �2

�

�

�
1
I zðxÞ

dIz, boneðxÞ
dx

1 −
Eimp

Ebone

� �

�

� −Eimp sin cðsÞ½ � þ ðEimp − EboneÞ�
�

� sin cðsÞ½ � − sin cintðxÞ½ �ð Þ Hðn1Þ − Hðn2Þ½ �
�

�þ sin cðsÞ½ � þ sin cintðxÞ½ �ð Þ Hðn3Þ − Hðn4Þ½ �g�

þðEimp − EboneÞ cos cintðxÞ½ �
dcintðxÞ

dx
�

� Hðn1Þ − Hðn2Þ − Hðn3Þ þHðn4Þ½ �

�

(78) 

with cðsÞ according to Eq. (8), cintðxÞ according to Eq. (11), n1 to 
n4 according to Eqs. (50)–(53), and I y according to Eq. (54). The 
integration constant ðCMzÞ

dAþdE
ðxÞ follows from the condition 

that shear stresses arising from axial gradients in the cross-sec-
tional geometrical properties and of the mechanical properties of 

a bone-implant compound cross-section loaded by a bending 
moment around the z-axis do neither result in a torsional moment 
(around the x-axis), mathematically reading as

MMz
x

� �dAþdE
¼

ð

A
− z ðrMz

xy Þ
dAþdE

þ yðrMz
xz Þ

dAþdEdA

� tbone Rbone −
tbone

2

� �ð2pðRbone−tbone=2Þ

0
ðrMz

xs Þ
dAþdEds ¼ 0

(79) 

nor in shear forces in y- and z-direction, mathematically reading 
as

SMz
y

� �dAþdE
¼

ð

A
rMz

xy

� �dAþdE
dA

� tbone

ð

A
cos cðsÞ½ � rMz

xs
� �dAþdEds ¼ 0

(80) 

ðSMz
z Þ

dAþdE
¼

ð

A
ðrMz

xz Þ
dAþdEdA

� tbone

ð2pðRbone−tbone=2Þ

0
− sin cðsÞ½ � rMz

xs
� �dAþdEds ¼ 0

(81) 

yielding

CMzð Þ
dAþdE

ðxÞ ¼ 0 (82) 

2.4.6. Shear stress distribution arising from axial gradients 
of cross-sectional properties under axial loading

According to Eqs. (48), (41) and (43), the circumferential gra-
dients of shear stresses arising from axial gradients of the cross- 
sectional geometrical properties and of the mechanical properties 
of a bone-implant compound cross section loaded by a constant 
axial force are given by the following mathematical expression

@rN
xs

@s

� �dAþdE

ðx, sÞ ¼
1

Ebone

NðxÞ
AðxÞ

�

�

�
1
AðxÞ

dAboneðxÞ
dx

1 −
Eimp

Ebone

� �

Eimp − ðEimp − EboneÞ�
�

�fHðn1Þ − Hðn2Þ þHðn3Þ − H4ðn4Þg�

� −
dcintðxÞ

dx
Rbone −

tbone

2

� �

ðEimp − EboneÞ�

�fdðn1Þ þ dðn2Þ þ dðn3Þ þ dðn4Þg

�

(83) 

where we introduced a “composite area” of the form

AðxÞ ¼ AboneðxÞ þ AimpðxÞ
Eimp

Ebone
(84) 

Integration of the shear gradients according to Eq. (83), over 
the circumferential line of the bone profile and its extensions into 
the implant portion of the cross section, yields the shear stresses 
arising from the changes in the cross-sectional geometrical prop-
erties and in the mechanical properties of a bone-implant com-
pound cross-section loaded by a constant axial force as

rN
xs

� �dAþdE
ðx, sÞ ¼ CNð Þ

dAþdE
ðxÞ þ

ðs

0

@rN
xs

@~s

� �dAþdE

ðx,~sÞd~s

(85) 
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Thereby, the integral expression occurring in Eq. (85) reads as

Ð s
0

@rN
xs

@~s

� �dAþdE
d~s

� �

ðx, sÞ ¼
NðxÞ
AðxÞ

1
Ebone

�

�

�
1
AðxÞ

dAboneðxÞ
dx

1 −
Eimp

Ebone

� �

�

� Eimp � sþ ðEimp − EboneÞ�
�

�f−n1Hðn1Þ þ n2Hðn2Þ − n3Hðn3Þ þ n4Hðn4Þg�

−
dcintðxÞ

dx
Rbone −

tbone

2

� �

ðEimp − EboneÞ�

�fHðn1Þ þ Hðn2Þ þ Hðn3Þ þHðn4Þg

�

(86) 

with cðsÞ according to Eq. (8), cintðxÞ according to Eq. (11), n1 to 
n4 according to Eqs. (50)–(53), and A according to (84). The inte-
gration constant ðCNÞ

dAþdE
ðxÞ follows from the condition that 

shear stresses arising from axial gradients in the cross-sectional 
geometrical properties and of the mechanical properties of a 
bone-implant compound cross-section loaded by a bending 
moment around the z-axis do neither result in a torsional moment 
(around the x-axis), mathematically reading as

MN
x

� �dAþdE
¼
Ð

A − z ðrN
xyÞ

dAþdE
þ yðrN

xzÞ
dAþdEdA

� tbone Rbone −
tbone

2

� �
Ð 2pðRbone−tbone=2Þ

0 rN
xs

� �dAþdEds ¼ 0

(87) 

nor in shear forces in y- and z-direction, mathematically 
reading as

SN
y

� �dAþdE
¼
Ð

Aðr
N
xyÞ

dAþdEdA

� tbone
Ð 2pðRbone−tbone=2Þ

0 cos cðsÞ½ �ðrN
xsÞ

dAþdEds ¼ 0
(88) 

ðSzÞ
N, dAþdE

¼
Ð

Aðr
N
xzÞ

dAþdEdA

�
Ð 2pðRbone−tbone=2Þ

0 − sin cðsÞ½ �ðrN
xsÞ

dAþdEdA ¼ 0
(89) 

yielding

CNð Þ
dAþdE

ðxÞ ¼
−N
AðxÞ

1
Ebone

�
Ebone pþ 2ðEimp − EboneÞcintðxÞ

AðxÞ
dAboneðxÞ

dx

"

� 1 −
Eimp

Ebone

� �

− 2ðEimp − EboneÞ
dcintðxÞ

dx

�

¼ 0

(90) 

2.5. Shear stresses arising from torsional loading

As regards shear stresses arising from torsional loading, we 
adopt the classical modeling approach [18]. Accordingly, the 
local equilibrium condition for shear stresses rMx

xs arising 
from a torsional moment Mx reads as

@rMx
xs
@s
¼ 0! rMx

xs ðs, x ¼ const:Þ ¼ const: (91) 

and these shear stresses obey the classical relation ([18], 
2011, page 414)

rMx
xs ¼

Mx Rbone − tbone
2

� �

Ip
(92) 

with the second polar moment of area reading as

Ip ¼
p

2
ðRboneÞ

4 − ðRbone − tboneÞ
4� �

(93) 

2.6. Higher-order stress average as measure for implant 
and bone loading

In order to study the effect of design parameter changes, 
such as the radius or the elastic modulus of the implant, on 
the stress levels encountered in the bone and implant por-
tions of the femur-implant compound structure, we resort 
to the concept of higher-order stress averages [21, 22], 
which have turned out as very useful measures in the con-
text of strength upscaling in micromechanics [23], with 
applications to bone biomaterials [24], metallic implant 
materials [25], wood [26, 27], and concrete [28–30]. As con-
cerns appropriate measures for the load bearing capacity, 
the stress deviator rd is a particularly popular choice,

rd ¼ r −
1
3

trr (94) 

with the corresponding higher-order stress average over the 
bone and implant portions in a cross section of the organ- 
implant compound structure being given as [22, 26, 28, 31] 

sbone ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Abone

ð

Abone

1
2
rd : rddA

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2p − 4cint

ðp−cint

cint

ðrxsÞ
2
þ
ðrxxÞ

2

3

� �

dcþ

ð2p−cint

pþcint

ðrxsÞ
2
þ
ðrxxÞ

2

3

� �

dc

0

B
@

1

C
A

v
u
u
u
u
t

(95) 

simp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Aimp

ð

Aimp

1
2
rd : rddA

s

�



1
4cint

ðcint

0

ðrxsÞ
2
þ
ðrxxÞ

2

3

� �

dc þ

ðpþcint

p−cint

ðrxsÞ
2
þ
ðrxxÞ

2

3

� �

dcþ

ð2p

2p−cint

ðrxsÞ
2
þ
ðrxxÞ

2

3

� �

dc

0

B
@

1

C
A

v
u
u
u
u
t

(96) 
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with the stress deviator according to Eq. (94) and the tress tensor 
following Eq. (1), together with Eqs. (26) and (27), whereby the 
normal and shear stress components result from summing up 
contributions from normal forces, bending and torsional 
moments, and those from changes in bending moments and 
cross-sectional as well as material properties

rxx ¼ rN
xx þ r

My
xx þ rMz

xx (97) 

rxs ¼ rN
xs

� �dAþdE
þ r

My
xs

� �dAþdE
þ rMz

xs
� �dAþdE

þ r
My
xs

� �dMy
þ rMz

xs
� �dMz

þ rMx
xs

(98) 

3. Illustration of geometrical properties and 
characteristic stress states

While the second-order area moment around the y-axis, of 
the bone portions of the composite cross sections is hardly 
influenced by the presence of the implant, see Figure 4(c), 
this presence reduces the cross-sectional bone area by up to 
25 %, see Figure 4(a), and the second-order bone area 
moment around the z-axis by around 50 %, see Figure 4(e). 
According to Eqs. (5)–(7), we therefore expect only slight to 
moderate effects of the presence of the implant on the axial 

Figure 4. Typical trends of cross-sectional area A and area moments Iy and Iz along bone shaft axis around the magnesium implant; i.e. for the geometrical conditions encoun-
tered in [5], see Table 1: Distributions of (a) cross-sectional area, (b) axial gradient of cross-sectional area, (c) second-order area moment around y-axis, (d) axial gradient of second- 
order area moment around y-axis, (e) second-order area moment around z-axis, and (f) axial gradient of second-order area moment around z-axis.
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normal stresses, as compared to the situation without 
implant, illustrated in Figure 5. At the same time, the axial 
gradients of the cross-sectional area and of the second-order 
area moment around the z-axis exhibit singularities at the 
positions x ¼ 6Rimp, see Figure 4(b,f). According to Eqs. 
(5)–(7), together with Eq. (25), this lets us expect shear 
stresses which tend toward infinity at these very locations, 
to be discussed in more detail in the next paragraph.

In quantitative and illustrative terms, the stress distribu-
tions across the femur-implant structure can be described as 
follows: The normal stresses arising from axial loading are 
scaled by the ratio of the elastic moduli of bone and 
implant, respectively, irrespective of the thickness of the 
implant portion in the composite cross sections, see the 
stress distributions in the third column of Figure 6, as an 
illustration of the evaluation of Eq. (5) for the loading 
defined by Eq. (2). A similar scaling is observed for the nor-
mal stresses due to bending moments around y- and z-axis, 
respectively. These bending moments, however, do not only 
scale with the modulus ratio, but also with the distance 
from the geometrical center of the composite cross section, 
see stress distributions in the fourth and fifth column of 
Figure 6, as illustrations of Eqs. (6) and (7) for the loading 
defined by Eq. (2). In quantitative terms, the loading given 
through Eq. (2) results in normal stresses due to bending 
around the y-axis, i.e. the axis parallel to the implant axis, 
which dominate in the bone portion of the compound struc-
ture, while the normal stresses due to (compressive) axial 
normal force dominate in the implant portion. By compari-
son, the normal stresses due to bending around the z-axis 

are significantly smaller. However, gradients of the bending 
moment around the z-axis along the long axis of the bone 
shaft, i.e. along the x-axis, result in significant axial-circum-
ferential shear stresses, see the stress distributions in the 
fifth column of Figure 7, as an illustration of Eq. (63), 
together with Eqs. (64) and (66), for the loading defined by 
Eq. (2). These shear stresses are much larger in magnitude 
than those arising from torsional loading, see the stress dis-
tributions in the third column of Figure 7, as an illustration 
of Eq. (92), together with Eq. (93), for the loading defined 
by Eq. (2). The shear stresses due to changing bending 
moments around the z axis are also much larger than those 
arising from the change of bending moments around the y- 
axis along the long axis of the bone shaft, see the stress dis-
tributions in the fourth column of Figure 7, as an illustra-
tion of Eq. (55), together with Eqs. (56) and (58), for the 
loading defined by Eq. (2). Still, along the implant-bone 
interface in the periphery of the implant, i.e. where x �
6Rimp, the absolute value of all these shear stresses is sig-
nificantly exceeded by the magnitude of the shear stresses 
arising from changes along the bone shaft axis, in area, in 
area moment, as well as in elastic modulus, of the bone- 
and implant-specific cross-sectional portions, respectively; 
see the first and second column of Figure 8. These shear 
stresses are mainly triggered by the axial normal force, see 
third column of Figure 8, and they are also due to bending 
around the z-axis, see fifth column of Figure 8, while bend-
ing around the y-axis plays a subordinate role, see fourth 
column of Figure 8. Being zero at the implant center, x ¼ 0, 
these cross-sectional-property-driven shear stresses build up 

Figure 5. Normal and shear stresses arising from the loading given in Eq. (2), for the “classical case” of a hollow cylindrical beam without implant (Rimp¼0).
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fairly quickly when following the bone-implant interface at 
the bone side, along the x-axis, see Figure 9. Concerning the 
influence of design parameters on the stress levels in the 
implant-compound strcture as quantified in terms of Eqs. 
(95) and (96), the implant-to-bone radius ratio plays an 
only minor role (see Figure 10), while deviations of the 
implant-to-bone modulus ratio from the value of one are of 
primary importance (see Figure 11).

4. Discussion

In this paper, we developed a new analytical mechanics 
model for a bone-implant structure consisting of a femoral 

shaft and a cylindrical implant positioned orthogonal to 
the long-bone axis of the femoral shaft: Normal stresses 
following from classical composite beam theory were com-
bined with local equilibrium conditions, so as to derive, 
based on differentiation and integration steps in space, 
closed-form analytical expressions for shear stress fields 
throughout the considered preclinical animal model. The 
most striking feature which distinguishes the results of this 
new model from the results of classical beam theory 
applied to the femoral bone shaft only, are the high shear 
stresses occurring close to the implant surface generators 
intersecting the bone shaft axis. If these stress singularities 
are a realistic reflection of dramatic stress redistributions 

Figure 6. Axial normal stresses rxx arising from normal force (N) and from bending moments around the y- and z-axis (My and Mz), in different cross sections 
through the implant (red) and the adjacent bone portions (blue); −Rþimp refers to the limit of reaching the implant radius from the right.
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due to implantation, then they would – according the 
observations in mechanobiology – cause significant bone 
remodeling and transformation events in the aforemen-
tioned bone regions adjacent to the implant. And indeed, 
such transformation events are clearly evidenced by tensor 
tomograms of the surroundings of magnesium implants in 
murine femora, see Figure 12.

These remodeling processes – namely reorientation of 
bone fibril, away from the bone axis direction, toward a 
direction which is orthogonal to the bone axis – occur 
close to the bone-implant interface regions adjacent to the 
bone axis, and diminish with increasing distance from this 
axis. Hence, the remodeling events are closely related to 

the very high shear stresses proposed by our new model, 
and in this sense, the experimental evidence underlines the 
principal relevance of the modeling approach. In more 
detail, the probable mechanobiological phenomena may be 
sketched as follows: At first, high stress concentrations 
result in “overuse” of bone, and in local demineralization, 
delamination, and disintegration of the extracellular nano- 
composite, i.e. to bone resorption [32], followed by the 
process of new bone formation, which starts with the 
deposition of fibrils in a non-mineralized ground sub-
stance [33]. If such a material system is subjected to shear, 
the fibrils do not only undergo deformations, but also 
rotational rigid body motions, as was shown by dedicated 

Figure 7. Axial-circumferential shear stresses rxs arising from torsional moments (Mx ), and from changes in the bending moments (dMy and dMz), in different cross 
sections through the implant (red) and the adjacent bone portions (blue); −Rþimp refers to the limit of reaching the implant radius from the right.
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micromechanical models based on Eshelby problems for-
mulated in rate form, together with thermodynamically 
consistent hypoelastic material modeling at the phase level 
[34, 35]. These rotated fibrils then undergo the well- 
known vesicle-driven mineralization process [36–38], 
which affects both intrafibrillar and extrafibrillar spaces 
[39, 40]. Thereby, however, the extrafibrillar mineral por-
tion comprises not only the majority of the mineral crys-
tals [41–43], but also appears as key driver of important 
mechanical properties of bone, such as its (visco-)elasticity 
[44–46] and strength [47, 48].

Finally, our approach is naturally characterized by sev-
eral limitations which may motivate further studies in the 

future. This naturally relates to geometrical objects 
exceeding the simple nature of circular cylinders; but, 
probably more interestingly, to more advanced beam the-
ory approaches, as may be motivated in the following 
way: The current differentiation and integration of the 
normal stresses arising from classical composite beam the-
ory result in partially infinitely large shear stresses. While 
the occurrence of “very large” shear stresses makes great 
sense in terms of mechanobiology, as discussed further 
above, these singularities can obviously reflect quantita-
tively these very large stresses, i.e. they cannot provide 
numerical values for these stresses. If such a quantitative 
analysis is desired, the proposed modeling approach needs 

Figure 8. Axial-circumferential shear stresses arising from changes in the cross-section along the beam axis, together with loading in terms of axial force and bending moments, 
in different cross sections through the implant (red) and the adjacent bone portions (blue); −Rþimp refers to the limit of reaching the implant radius from the right.
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further refinement. Actually, the occurrence of very high 
shear stresses, together with very large strain gradients, 
may propose, as an interesting future step, the consider-
ation of corresponding shear strains in the context of for-
mulating equilibrium conditions at the level of the overall 

composite beam. Therefore, the virtual fields as given in 
Eq. (A1), would need to undergo extensions in their 
degrees of freedom, so as to allow for significant virtual 
shear rate gradients [49, 50], which follow the geometrical 
features of the composite cross section. This may lead to 

Figure 9. Distribution along the bone-side of the bone-implant interface, of shear stresses arising from cross-sectional changes together with loading by axial force 
or bendings moments around y- or z-axis.

Figure 10. Higher-order stress averages sbone and simp associated with selected cross-sections, as functions of Rbone, tbone , Eimp , and Ebone according to Table 1.
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additional developments and applications in the field of 
shear-compliant composite beam theories, as they have 
been very successfully developed in the context of light-
weight and aerospace engineering [51, 52].
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Appendix. Bending beam equilibrium derived from 
principle of virtual power  

So as to motivate the equilibrium conditions of Eq. (3), we here resort 
to the principle of virtual power (PVP) [49, 53–55], one of most versa-
tile fundamentals of mechanics with roots going back to ancient times 
[56, 57]. The PVP provides a firm anchorage of beam theory in the 3D 
continuum mechanics framework. Accordingly, we adopt an arbitrary 
virtual rigid body rotational motion of a rigid cross section around the 
y- and z-axes, 

v̂ðx, y, zÞ ¼ x̂yðxÞzex − x̂zðxÞyex 8x̂yðxÞ, x̂zðxÞ 2 R (A1) 

with x̂y and x̂z being the components of virtual angular velocity vec-
tor x̂ ¼ x̂yey þ x̂zez: When considering a situation where this virtual 
velocity field does not produce any power of external forces, then the 
virtual power of the internal forces need to vanish in an equilibrated 
3D classical continuum. This reads mathematically as

Pint ¼ −
ð

V
r : rSv̂dV ¼ 0 (A2) 

with rS standing for the symmetrized nabla (or gradient) operator. 
Insertion of (A1) into (A2) yields

ð l=2

−l=2

ð

A
rxxzdA

dx̂y

dx
dx þ

ð l=2

−l=2

ð

A
rxzdA x̂ydx

−
ð l=2

−l=2

ð

A
rxxydA

dx̂z

dx
dx −

ð l=2

−l=2

ð

A
rxydA x̂zdx ¼ 0

8x̂yðxÞ, x̂zðxÞ 2 R

(A3) 

The quantities performing power on angular velocities and their gradients 
are called shear forces and bending moments, respectively; this yields

My ¼

ð

A
rxxzdA Mz ¼ −

ð

A
rxxydA (A4) 

Sy ¼

ð

A
rxydA Sz ¼

ð

A
rxydA (A5) 

and insertion of (A4) and (A5) into (A3) yields, after integration by 
parts, that 

Myx̂yj
l=2
−l=2 −

ð l=2

−l=2

dMy

dx
− Sz

� �

x̂ydx

þMzx̂zj
l=2
−l=2 −

ð l=2

−l=2

dMz

dx
þ Sy

� �

x̂zdx ¼ 0

8x̂yðxÞ, x̂zðxÞ 2 R

(A6) 

This readily yields the equilibrium conditions (3).
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