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A B S T R A C T

Finite element software is nowadays an essential part of a structural engineer’s modeling process. The
simulations range from trivial linear elastic models to highly non-linear ones, accounting for contact, plasticity,
viscoelasticity, or fracture. Though fired clay blocks are an excellent and widely used building material, little
effort has been made to extend available failure surfaces for simulating vertically perforated clay block masonry
in modern FE Software. Therefore, developing reliable and efficient ways to predict the effective strength of
vertically perforated clay block masonry subjected to different loading states is critical. In this study, we aim
to qualitatively analyze the failure surface of vertically perforated clay block masonry under in-plane loading,
using numerical simulations. Using a previously validated unit cell FE model, we derived the peak stresses from
471 simulations. Subsequently, we compared these results with two failure surfaces from the literature and
identified qualitative differences. Taking these differences into account, we propose a concept for numerically
calibrating the parameters of the Rankine–Hill failure surface proposed by Lourenço (1997).
1. Introduction

Clay block masonry is one of the oldest building materials in human
history and has been used for many centuries. Especially in Central
Europe, it is still a popular building material for its low thermal conduc-
tivity, durability, fire resistance, and ease of construction. Additionally,
mainly abundant natural materials are used for the production of clay
blocks, which makes them a sustainable building material (Pohl, 2020).
Today, mostly vertically perforated clay blocks are used for structural
clay block masonry. A typical vertically perforated clay block design
consists of a network of slender, plate-like webs, which are mostly
oriented orthogonal to each other (see Fig. 1). These webs can be
categorized by their orientation: longitudinal webs are oriented parallel
to the wall surface and transversal webs are oriented perpendicular to
the wall surface.

In the last decades, masonry has fallen behind other building ma-
terials like concrete or steel. This has several reasons: (i) Fired clay
fails very brittle and the material properties show large fluctuations
since the raw material is a natural product and the production process
is not fully controllable. Additionally, the combination of clay blocks
and mortar results in a heterogeneous material system, which requires
sophisticated homogenization strategies for macroscale simulations. (ii)
Block designs, joint types, and bond types are extremely diverse, which
makes it difficult to find a general approach for the calculation of clay
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block masonry. (iii) The maximum strength properties of vertically per-
forated clay block masonry are typically smaller than those of concrete
and steel. Hence, the use of vertically perforated clay block masonry
is out of question for high-rise buildings. (iv) The structural system
of clay block masonry is very different from the structural systems
of other building materials. While steel and concrete structures, can
be deconstructed into beams, pillars, and trusses, clay block masonry
structures typically consist of plates. A structure’s behavior consisting
of many plates is harder to grasp than the behavior of beam-and-pillar
structures. Thus, although used for so long, masonry has nowadays a
subordinate role when thinking of larger buildings.

Modern FE software is massively simplifying the calculation of com-
plex buildings and a rapidly growing number of structural engineers
rely on numerical simulations in the design process. In these numerical
simulations, the structural components are considered homogeneous
continua with effective material properties. Therefore, reliable macro-
scopic failure surfaces are necessary for assessing the load-bearing
capacity of a structure. While failure criteria for concrete and steel are
well established in FE software, this is not the case for masonry. Thus,
the implementation of a reliable failure surface for masonry is necessary
to keep up with other building materials.

In the last five decades, many studies on different macroscopic
material models for masonry were published (Hegemier et al., 1978;
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Fig. 1. Parts of a vertically perforated clay block and material orientation represented
by the L-T-Z coordinate system.
Source: From Reismüller et al. (2023a).

Hendry, 1978; Hamid and Drysdale, 1981; Page, 1981; Mann and
Müller, 1982; Ganz, 1985; Essawy and Drysdale, 1986; Wan and Yi,
1986; Dialer, 1990; Vratsanou, 1992; Seim, 1995; Andreaus, 1996;
Lourenço, 1996; Lourenço et al., 1997; Schlegel and Rautenstrauch,
2000; Zilch and Schermer, 2003; Mojsilović, 2011). Two of these
models became established in the scientific community for their unique
prediction qualities and their applicability for vertically perforated clay
block masonry: the multi-surface criterion developed by Ganz (1985)
and the Rankine–Hill surface proposed by Lourenço et al. (1996, 1997).
Examples for their application can be found in Rudisch et al. (2017),
Lang and Bachmann (2003), Mistler et al. (2006), Seim and Pfeiffer
(2011), Kotze et al. (2019), Netzel and Van Zijl (2004), Grande et al.
(2013, 2008), Van Den Heever et al. (2021) and Da Porto et al. (2010).
Especially the Rankine–Hill surface is well suited for implementation
in FE software and some developers already implemented it into their
software (e. g. Dlubal Software GmbH, 2020) Thus, the problem is not
the lack of failure surfaces, but the calibration of these surfaces for a
specific masonry product.

Typically, three different experimental series are carried out for
deriving the strength parameters of a masonry product: uniaxial ver-
tical compression tests on single blocks (EN 772-1, 2016), uniaxial
vertical compression tests on larger wall specimens (EN 1052-1, 1998),
and shear tests on specimens consisting of two or three blocks (EN
1052-3, 2002). Since the failure mechanism of a single block under
compression is very different from the failure mechanism of a wall
specimen under vertical compression (Suda et al., 2021; Reismüller
et al., 2023b), the strength parameters from single block tests cannot
be used for calibrating macroscopic material properties. Hence, only
two different experimental series are generally available for calibrat-
ing a macroscopic failure surface without doing any additional tests,
whereas Lourenço et al. suggests at least seven experiments on wall
specimens (refer to Section 2.2). Additionally, uniaxial tensile tests
on wall specimens are typically not carried out, since these tests are
difficult to perform (see e. g. Ganz and Thürlimann (1982)) and the ten-
sile strength is very low compared to the compressive strength (Page,
1983). Therefore, the tensile strength of masonry is often neglected,
which is a very critical assumption, since it can be crucial under shear
loading e. g. in earthquake regions.

Using computational methods for predicting the behavior of ma-
sonry is getting more and more attention (Leonetti et al., 2018; Bošnjak
et al., 2020; Scacco et al., 2020; Segura et al., 2021; Suda et al., 2021;
Gaetano et al., 2022; Scacco et al., 2022; Zhou et al., 2022). Since
the computational effort is much lower than for experimental tests,
numerical simulations are a good alternative for calibrating a macro-
scopic failure surface. Thus, we developed and validated a numerical
model for the simulation of vertically perforated clay block masonry
under arbitrary in-plane loading (Reismüller et al., 2023b). Using a unit
2

cell model with periodic boundary conditions (PBC) in combination
with the eXtended Finite Element Method (XFEM) (Belytschko and
Black, 1999) and the orthotropic Hoffman criterion (Hoffman, 1967)
we were able to replicate the failure mechanisms of seven experiments
on vertically perforated clay block walls (Bitterli, 2014; Salmanpour,
2017).

Although the surfaces were recently implemented in FE software, a
critical gap in the research is still the lack of comprehensive validation
for modern vertically perforated clay block masonry. This is primarily
due to the sparse availability of experimental data in the literature,
which also fails to encompass the full spectrum of loading conditions.
This is understandable, considering the substantial effort associated
with conducting biaxial experiments on vertically perforated block
masonry. Consequently, this lack of empirical validation underscores
the pressing need for an alternative approach to comprehensively assess
the failure behavior of these modern masonry structures.

Thus, the main aim of the present work is to qualitatively ana-
lyze the failure surface of vertically perforated clay block masonry
over the entire domain of loading conditions, using the previously
validated model. Building on this qualitative analysis, we also aim
to provide a concept for calibrating the Rankine–Hill surface for any
vertically perforated clay block design. Therefore, we simulate 150
different loading combinations for three different head joint types. To
keep the computational effort manageable, we use a simplified block
design, which is still able to replicate the typical failure mechanisms of
vertically perforated clay block masonry. In doing so, we compare the
numerical results to existing failure surfaces to work out similarities,
emphasize differences, and provide a concept for using our numerical
approach to generate a failure surface for any vertically perforated clay
block design.

First, we developed a simplified block design and defined the in-
terface parameters for three typical head joint types: mortared joints,
frictional contact, and no contact. Next, we randomly generated 150
different loading combinations using Latin Hypercube Sampling (LHS)
(McKay et al., 1979) and simulated them for each head joint type,
using the previously validated numerical model. From each of these
simulations, we obtained a peak stress state and a governing failure
mechanism. Combining this data, we were able to derive a failure
surface for each head joint type and define regions with similar fail-
ure mechanisms. Afterwards, we compared the results to the failure
surfaces proposed by Ganz (1985) and Lourenço et al. (1996, 1997).
By doing so, we were able to pinpoint differences between the failure
surfaces and the numerical results. For assessing these differences,
we next applied the approach to two real block designs. Finally, we
gathered the obtained insights to provide a concept for generating a
failure surface for any vertically perforated clay block design using our
numerical model.

In Section 2, we provide a brief summary of the two most common
failure surfaces for fired clay block masonry. Section 3 contains an
overview of the applied modeling strategies and the numerical model.
Afterward, we explain and discuss the results in Section 4, followed by
our conclusions in Section 5.

2. Failure surfaces for vertically perforated clay block masonry

As stated in the introduction, for the simulation of entire masonry
buildings in FE software we need the homogenized elastic properties of
masonry and a homogenized failure surface. We refer to the homoge-
nized properties of the wall as macroscopic properties. In this manner,
we distinguish between two scales of observation: the macroscopic
scale and the mesoscopic scale. On the mesoscopic scale both the clay
blocks and the mortar joints are considered separately, while on the
macroscopic scale, the masonry wall is considered as a homogeneous
continuum (see Fig. 2).

Within this work we focus on the in-plane behavior of masonry,
assuming a plane stress state, and considering only axial and shear
loading as a simplification.
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Fig. 2. Meso-to-macro homogenization.
Macroscopic in-plane failure surfaces describe failure under a given
tress state �̄�𝑥𝑥, �̄�𝑧𝑧, and �̄�𝑥𝑧. We define the 𝑥-axis as horizontal, the
𝑧-axis as vertical, and the 𝑦-axis as perpendicular to the wall surface
(see Figs. 1 and 2).

The two most commonly used macroscopic in-plane failure surfaces,
which are also suitable for modern vertically perforated clay block
masonry, are the failure surface proposed by Ganz (1985) and the
Rankine–Hill surface proposed by Lourenço et al. (1996, 1997). For
clarifying the differences between these two failure surfaces, we briefly
summarize them in the following sections. While the failure surface
of Ganz (1985) consists of twelve criteria (shown in Appendix A),
derived from different failure mechanisms observed in block masonry,
the Rankine–Hill surface (Lourenço, 1996; Lourenço et al., 1997) has
only two criteria (shown in Appendix B), which do not depict any
failure mechanisms, but they qualitatively describe the overall shape of
the in-plane failure envelope. To carve out similarities and differences
between these models, they are briefly summarized in the following
sections.

2.1. Failure surface according to Ganz

Ganz (1985) examined three different cases: masonry without ten-
sile strength, reinforced masonry, and masonry with tensile strength.
For transferring shear loads under low vertical compression the tensile
strength of the mortar joints is crucial. Thus, to utilize the whole po-
tential of the material and to compete with modern building materials,
we focused on masonry with tensile strength.

Based on mechanical considerations and typical failure mechanisms,
Ganz (1985) formulated a macroscopic failure surface from a combina-
tion of mesoscopic material parameters and geometric parameters as
well as macroscopic material strengths. Considering both block failure
and joint failure, Ganz (1985) derived twelve failure criteria, resulting
in a complex failure surface with many intersections (see Fig. 3a). The
failure surface is uniquely capable of predicting the governing failure
mechanism for different in-plane stress states, however, the post-peak
behavior is not accounted for.
3

For calibrating the failure surface, the following ten parameters
are necessary: the horizontal compressive masonry strength 𝑓m,𝑥, the
vertical compressive masonry strength 𝑓m,𝑧, the vertical tensile ma-
sonry strength 𝑓t,𝑧, the ratio of the fired clay’s tensile strength to its
compressive strength 𝜔m, the tensile mortar strength 𝑓 ′

t,𝑧, a parameter
𝜇 for defining the horizontal uniaxial compressive strength considering
joint failure, the joint’s cohesion stress 𝑐, the joint’s angle of friction
𝜑, the head joint distance 𝑎S, and the bed joint distance 𝑎L. For a
detailed description of the parameters, we refer to the original publi-
cation (Ganz, 1985). The definition of the failure surface can be found
in Appendix A.

2.2. Rankine–hill failure surface according to Lourenço

The anisotropic Rankine–Hill failure surface, proposed by Lourenço
et al. (1996, 1997), consists of two different yield surfaces: a Rankine-
type yield surface for tensile failure and a Hill-type yield surface for
compressive failure (see Fig. 3b). Instead of deriving failure criteria
from failure mechanisms as Ganz (1985) did, Lourenço et al. (1996,
1997) defined phenomenological surfaces for the in-plane failure en-
velope of masonry. Thus, the model is not capable of distinguishing
different failure mechanisms. However, it is much easier to implement
into FE software and can account for post-peak behavior. Thereby,
an exponential softening is used for the Rankine-type surface and a
combination of a parabolic hardening with an exponential softening
for the Hill-type surface, which was experimentally shown by Van der
Pluijm (1999) for tension and, e. g., Jafari et al. (2019) for compression.

In this work, we only focused on computing the peak stress. Thus,
while Lourenço et al. often refers to the equivalent compressive yield
stress �̄�c,𝑖

(

𝜅c
)

and the equivalent tensile yield stresses �̄�t,𝑖
(

𝜅t
)

, depend-
ing on the compressive and tensile softening parameters 𝜅c and 𝜅t, we
substitute these terms with the corresponding material strengths 𝑓m,𝑖
and 𝑓t,𝑖, considering the softening parameters to be 𝜅c = 0 and 𝜅t = 0.
The definition of the Rankine–Hill surface can be found in Appendix B.

The Rankine–Hill surface is calibrated for a specific masonry by the
following seven parameters: (i) the horizontal tensile masonry strength
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Fig. 3. Most commonly used macroscopic in-plane failure surfaces for masonry: (a) Failure Surface proposed by Ganz (1985) and (b) Rankine–Hill surface proposed by Lourenço
et al. (1996, 1997). The numbers in (a) refer to the failure criteria in Appendix A.
Fig. 4. Loading states proposed by Lourenço et al. (1996, 1997). The red dashed line represents the outline of the chosen repeating unit cell described in Section 3.2.
t,𝑥, (ii) the vertical tensile masonry strength 𝑓t,𝑧, (iii) the horizontal
compressive masonry strength 𝑓m,𝑥, (iv) the vertical compressive ma-
sonry strength 𝑓m,𝑧, (v) a parameter 𝛼 for defining the shear strength
mount under small axial compressive stresses, (vi) a parameter 𝛽

for defining the biaxial compressive strength, and (vii) a parameter 𝛾
or defining the shear strength amount under large axial compressive
tresses. Lourenço et al. (1996, 1997) suggests an ideal set of seven
ifferent loading states (see Fig. 4) to obtain the parameter values
y a least squares regression. Additional loading states improve the
uality of the fit, especially in regions of transitions between failure
echanisms.

. Numerical model and simulation program

This study mainly focuses on an FE simulation-based characteriza-
ion of a macroscopic in-plane failure surface for clay block masonry,
hich also captures the occurring failure mechanisms. This process

equires simulating a vast amount of different model configurations.
hus, we designed a simplified but computationally efficient FE model,
4

which can still realistically predict the failure mechanisms and the
ultimate strength of clay block masonry. We derived our numerical
model from Kiefer et al. (2017) and Suda et al. (2021) and extended it
to account for joint failure. We already used and validated the model
for different in-plane loading combinations in Reismüller et al. (2023b).
Using a unit cell approach with PBCs and a simplified block geometry
allowed us to use computationally demanding non-linear models like
XFEM for modeling cracks in the fired clay and a cohesive interface
damage model for considering joint failure. In the following sections,
these modeling strategies are explained in detail, beginning with the
geometric definition of the FE model, followed by a discussion of the
chosen material behavior and simulation techniques.

3.1. Simplified geometry

Since detailed and sophisticated modeling techniques result in long
simulation times (for real block geometries up to 24 h per simulation
with 8 CPUs), we developed a simplified geometry, which is still able
to reproduce the typical failure mechanisms of vertically perforated
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Fig. 5. Simplified geometry of a vertically perforated clay block.
clay blocks. The simplified block geometry consists of two longitudinal
as well as two transversal webs (see Fig. 5) and has a void ratio of
35%. Each block is 93mm long, 75mm wide, and 100mm high. Using
this design, the simulation times could be reduced to approximately
one-tenth of the larger simulations.

3.2. Unit cell concept

The unit cell concept used for the meso-to-macro homogenization
utilizes repeating patterns in structures, the so-called repeating unit
cell. In masonry with a regular running bond, the smallest possible
repeating unit cell, without considering symmetric properties, is two
blocks high and one block wide with two-dimensional periodicity in 𝑥-
and 𝑧-direction (see Fig. 6a). As long as the unit cell is large enough
to capture the characteristic failure mechanisms of the material, the
results are representative for the entire structure. Although the results
do not depend on the unit cell geometry, choosing a cuboid unit cell
considerably simplifies the meshing process and the application of
PBCs. We refer to the surfaces of the repeating unit cell as 𝑁𝑜𝑟𝑡ℎ, 𝑆𝑜𝑢𝑡ℎ,
𝐸𝑎𝑠𝑡, 𝑊 𝑒𝑠𝑡, 𝑇 𝑜𝑝, and 𝐵𝑜𝑡𝑡𝑜𝑚, and to the eight vertices according to the
surfaces intersecting in this corner (e. g., 𝑁𝑊𝐵 or 𝑆𝐸𝑇 ).

In combination with PBCs, the repeating unit cell behaves as if
it was part of an infinitely large wall. Thus, the unit cell concept
drastically reduces the numerical effort, compared to simulating a
larger structure. The PBCs are linear equations, which couple the
displacements of each node on a periodic surface to the displacements
of a corresponding node on the opposing surface (i. e., surfaces 𝐸𝑎𝑠𝑡–
𝑊 𝑒𝑠𝑡 and 𝑁𝑜𝑟𝑡ℎ–𝑆𝑜𝑢𝑡ℎ), and to the displacements of the primary nodes
located in the corners of the repeating unit cell. These equations are
shown in detail in Suda et al. (2021).

Since each node pair is coupled to the deformation difference of
the primary nodes, we can impose different macroscopic strain states
by simply imposing displacements on the primary nodes. We derived
these primary node displacements by superposition of the three load
cases in Table 1.

3.3. FE model and mesh

Now that we have defined the geometric boundary conditions, we
will move on to the modeling in the FE program Abaqus Version
2022HF2. We used a simplified micro-modeling approach, meaning,
that the blocks are modeled in full detail, while the joints are reduced
to an interface with no thickness (Lourenço, 1996; Lourenço et al.,
5

Table 1
Primary node displacements for imposing effective macroscopic strain states.
Source: From Reismüller et al. (2023b).

Strain state Primary node displacement

LC1
[

�̄�𝑥𝑥 0
0 0

] Horizontal uniaxial strain
𝑢𝑆𝐸𝐵
𝑥 = �̄�𝑥𝑥 ⋅ 𝑙𝑥 , 𝑢𝑆𝐸𝑇

𝑥 = �̄�𝑥𝑥 ⋅ 𝑙𝑥

LC2
[

0 0
0 �̄�𝑧𝑧

] Vertical uniaxial strain
𝑢𝑁𝑊𝐵
𝑧 = �̄�𝑧𝑧 ⋅ 𝑙𝑧 , 𝑢𝑁𝑊 𝑇

𝑧 = �̄�𝑧𝑧 ⋅ 𝑙𝑧

LC3
[

0 �̄�𝑥𝑧
�̄�𝑥𝑧 0

] Pure shear strain
𝑢𝑆𝐸𝐵
𝑧 = �̄�𝑥𝑧 ⋅ 𝑙𝑥 , 𝑢𝑆𝐸𝑇

𝑧 = �̄�𝑥𝑧 ⋅ 𝑙𝑥
𝑢𝑁𝑊𝐵
𝑥 = �̄�𝑥𝑧 ⋅𝑙𝑧 , 𝑢𝑁𝑊 𝑇

𝑥 = �̄�𝑥𝑧 ⋅𝑙𝑧

The following primary node displacements were imposed in each case:
𝑢𝑆𝑊 𝐵
𝑥 = 𝑢𝑆𝑊 𝐵

𝑦 = 𝑢𝑆𝑊 𝐵
𝑧 = 0, 𝑢𝑆𝑊 𝑇

𝑥 = 𝑢𝑆𝑊 𝑇
𝑧 = 0, 𝑢𝑆𝐸𝐵

𝑦 = 0, 𝑢𝑁𝑊𝐵
𝑦 = 0.

1997). Thus, the FE model only consists of six fired clay parts, which
are connected by interface couplings in the head joint and the bed
joint. We distributed the thickness of the mortar joints to the adjacent
blocks to maintain the overall dimensions of the repeating unit cell. The
mesh consists of 23 978 nodes and 18 540 C3D8 elements and is shown
in Fig. 6a. We derived the displacement boundary conditions for each
loading combination from the equations in Table 1.

3.4. Material properties

We next discuss the material models used for the fired clay and mor-
tar joints, based on the two governing failure mechanisms in masonry:
block failure and joint failure.

Block failure is typically governed by tensile cracks. We discretely
modeled these cracks using XFEM, with a linear elastic material behav-
ior for the solid. The orthotropic material strength of extruded fired clay
was accounted for by using the orthotropic Hoffman criterion (Hoff-
man, 1967) for crack initiation. The onset of a crack was controlled by
the Virtual Crack Closure Technique (VCCT). Considering the findings
of Bocca et al. (1989), Eis and Vassilev (2013), and Hannawald (2006),
we chose the mode-I fracture energy as 𝐺max

I,c = 0.025 J∕mm2. Following
Kiefer et al. (2017), we defined the fracture energy for modes II and III
as 20 times larger. In the framework of XFEM, cracks were allowed to
form anywhere in the model, with one restriction: no crack was allowed
to initiate within a radius of 20mm from an existing crack tip. This was
done to avoid the formation of multiple cracks in a small area, within
the same loading step.

We used both transversally isotropic stiffness behavior (see Table 2)
and transversally isotropic strengths (see Table 3), which is a good
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Fig. 6. Composition and geometry of the chosen repeating unit cell as part of the entire structure (a) and the FE model (b). The naming convention in (a) is based on the
uggestions from Böhm (2023).
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Table 2
Transversally isotropic stiffness parameters for fired clay.

Fired clay

𝐸LL = 𝐸ZZ 𝐸TT 𝜈TZ = 𝜈LZ = 𝜈LT 𝐺TZ = 𝐺LT 𝐺TZ

13 500MPa 8738MPa 0.2 3500MPa 5500MPa

Table 3
Transversally isotropic strength parameters for fired clay in MPa.

Tension Compression Shear

𝜎t,L 𝜎t,T 𝜎t,Z 𝜎c,L 𝜎c,T 𝜎c,Z 𝜎s,TZ 𝜎s,LZ 𝜎s,LT

7.009 4.834 7.009 24.17 18.61 24.17 8.308 9.547 8.308

approximation of the orthotropic behavior of extruded fired clay ac-
cording to Buchner et al. (2022). We derived the stiffness parameters
and the material strengths from Kiefer et al. (2017) and Suda et al.
(2021) considering this transversal isotropy. Thereby, the material
direction follows the locally varying 𝐿-𝑇 -𝑍 coordinate system shown
in Fig. 5.

Joint failure manifests either in tensile or shear failure of the mortar,
or tensile or shear failure of the interface (Van der Pluijm, 1999). Since
we reduced the mortar joints to an interface with no thickness, both
failure mechanisms were considered in one criterion. Thus, the weaker
link (either the interface or the mortar itself) is relevant for failure. For
modeling the interface behavior, we used cohesive behavior combined
with a quadratic stress interaction criterion for identifying failure
(

⟨𝜎⟂⟩
𝜎f,⟂

)2
+
(

𝜏
𝜏m,ini − 𝜇m ⋅ 𝜎⟂

)2
= 1, (1)

with the stress component perpendicular to the joint 𝜎⟂, the shear
stress 𝜏, the tensile strength perpendicular to the joint 𝜎f,⟂, the initial
value of the shear strength 𝜏m,ini, and the friction coefficient 𝜇m. Note,
that the stress component perpendicular to the joint is nested within
Macauley brackets (i. e., ⟨⋅⟩); thus, only tensile stresses are considered.
Using cohesive behavior for interfaces in Abaqus results in a linear
traction-separation law in tension, but a hard contact in compression
(see the Abaqus documentation Dassault Systèmes, 2022). Since the
6

mortar joints also show compressive deformations in reality, we used i
Table 4
Stiffness and damage properties for the mortar interface.

Interface stiffness Damage properties

𝐾𝑛𝑛 𝐾𝑠𝑠 = 𝐾𝑡𝑡 𝜎f,⟂ 𝜏m,ini 𝜇m

5000N∕mm 2083N∕mm 0.3MPa 1.4MPa 0.3

Table 5
Head joint interface properties used for each joint type.

HJM HJC HJG
mortar contact gap

Cohesive behavior ✓ – –
Friction ✓ ✓ –
Interface damage ✓ – –
Pressure-overclosure ✓ – –

an additional tabular pressure-overclosure definition from Reismüller
et al. (2023b). Using this definition, the coupled interfaces can overlap,
while linearly building up pressure, accounting for the stiffness of the
mortar. Additionally, we allowed for a small compressive stress at zero
overclosure to overcome numerical instabilities at the beginning of the
simulations.

The softening behavior of the joint was modeled exponentially on
a displacement basis with a maximum displacement 𝑢pl = 0.15mm and
an exponent 𝑎 = 5 (for the equations refer to the Abaqus documenta-
ion Dassault Systèmes, 2022). We considered the mortar to be isotropic
nd used the material properties from a previous study (Reismüller
t al., 2023b), where we derived the material properties by simulating
hear tests on masonry triplets (see Table 4).

While we considered one type of bed joint, i. e., a 1mm thick mortar
ayer, we wanted to compare three common types of head joints: a
ortared head joint (HJM), frictional contact (HJC) in the head joint,

nd no contact in the head joint (HJG). For considering these three
ypes, we altered the interface properties of the head joint. Table 5
hows the interface properties for each specific joint type.

.5. Load application and sampling procedure

As discussed in Section 3.2, we can simulate arbitrary macroscopic

n-plane strain states via imposing displacements at the primary nodes
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Fig. 7. (a) Spherical coordinates for the stress components and the intersection of the load path with the failure surface. (b) Example for loading combinations randomly sampled
with LHS. The sample density in the darker area was chosen five times as large as in the lighter area. Red capital letters denote the loading regime (C . . . Compression, T . . . Tension).
Each circle shows one sampled loading combination, the triangles mark the seven loading combinations proposed by Lourenço et al. (1996, 1997). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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of the repeating unit cell. However, for deriving a failure surface, we
require macroscopic stress states. Thus, we used the unit cell concept
o calculate the macroscopic stiffness tensor of the repeating unit
ell (Anthoine, 1995) and derived the macroscopic strains from the
acroscopic stresses via Hooke’s law.

For numerically deriving a failure surface, a representative set of
oading states needs to be considered. This failure surface characterizes
he material failure due to interacting axial stresses �̄�𝑥𝑥 and �̄�𝑧𝑧 and the
hear stress �̄�𝑥𝑧. Expressing this loading state in spherical coordinates,
y two angles, �̄� and �̄�, and the stress resultant �̄�𝑟 (see Fig. 7(a)), the
oad level can be easily controlled for a fixed loading direction. The
tresses can be transformed into cartesian coordinates in the following
ay:

�̄�𝑥𝑥 = �̄�𝑟 ⋅ cos �̄� ⋅ cos �̄�, (2)
�̄�𝑧𝑧 = �̄�𝑟 ⋅ sin �̄� ⋅ cos �̄� and (3)
�̄�𝑥𝑧 = �̄�𝑟 ⋅ sin �̄�. (4)

The three variables �̄�, �̄�, and �̄�𝑟 define the sampling domain for
eriving the failure surface. By an adaptive load incrementation in the
E simulation, a given orientation (�̄�, �̄�) is assessed for material failure
or all stress resultants. Therefore, we considered only the two angles
n the sampling procedure.

The next step was to define a sampling range. While reasonable
alues for �̄� reach from 0 to 2𝜋, �̄� was sampled from 0 to 𝜋∕2, describing
hemisphere. To ensure an even distribution of the samples over this

omain, LHS (McKay et al., 1979) was used for choosing a reasonable
et of loading paths. For 𝑛 samples, the sample domain is evenly divided
nto 𝑛 columns and 𝑛 rows. The samples are randomly placed inside this
omain, such that there is exactly one sample in each column and row,
eading to a set of samples, which is evenly distributed over the given
omain.

Considering the failure surfaces found by Ganz (1985) and Lourenço
t al. (1996, 1997), the compressive strengths are expected to be sig-
ificantly larger than the tensile strengths. This implies that the failure
urface is further from the coordinate origin in the compressive loading
egime. Since the LHS creates samples evenly distributed over the given
omain, the distance between the calculated points on the surface is
arger in the compressive than in the tensile loading regime. Therefore,
he sample density in the compressive loading regime was chosen five
imes as large as in the tensile loading regime (see Fig. 7(b)).

With a stress resultant of 𝑟 = 15MPa (large enough to cause material
ailure for any combination of �̄� and �̄�), we randomly generated 150
amples for each head joint type, resulting in 450 simulations (see
lso Fig. 8). Additionally, we added the seven loading states proposed
y Lourenço et al. (1996, 1997), which are marked by green triangles
7

n Fig. 7(b).
.6. Computational aspects

The simulations were performed on a high-performance computing
luster with 168 CPUs in total. Using eight CPU cores in parallel,
ne simulation took approximately 144 min on average to finish. For
vercoming numerical instabilities related to the initiation of contact
etween two surfaces, an additional step was introduced at the be-
inning of the calculation. In this step, the displacements of each
rimary node were set to zero. Due to the chosen pressure-overclosure
ormulation with an insignificant compressive contact stress at zero
istance between the surfaces, contact could be ensured in each rel-
vant point, before the displacement-controlled loading was applied
n the following step. To prevent numerical instabilities when solving
he interface damage conditions, damage stabilization was used for the
ohesive interfaces.

.7. Postprocessing

After the simulations were completed, we extracted the results by
sing the postprocessing procedure described in the following sections
see Fig. 8). Two different results were most interesting to us: the effec-
ive stresses and strains on the macroscopic level, which are essential
or defining a macroscopic failure surface, and the failure mechanism
n the mesoscopic scale, which gives insights into the overall behavior
nd helps define the exact point of failure.

At first, we derived the macroscopic stresses and strains by ho-
ogenizing the stresses and strains on the mesoscopic scale over the

epeating unit cell. Afterward, we used the macroscopic stress–strain
elation and indicators on the mesoscopic scale to specify a failure
oint. These procedures are discussed next.

.7.1. Obtaining macroscopic stresses and strains
For homogenizing the behavior from the mesoscopic to the macro-

copic scale, we assume that the behavior of the smallest possible
epeating unit cell in the wall is representative for each point in the
omogenized macroscopic wall. The unit cell concept is well suited for
eso-to-macro homogenization since the displacements and reaction

orces of the total structure are concentrated in the primary nodes of
he unit cell. Thus, the stresses and strains can be easily calculated from
he extracted reaction forces 𝑅𝐹𝑖 and displacements 𝑢𝑖 by considering
he dimensions 𝑙𝑖 of the repeating unit cell as follows:

̄𝑥𝑥 =
𝑅𝐹𝑥𝑥
𝑙𝑦 ⋅ 𝑙𝑧

, �̄�𝑧𝑧 =
𝑅𝐹𝑧𝑧
𝑙𝑥 ⋅ 𝑙𝑦

, and �̄�𝑥𝑧 =
1
2
⋅
(

𝑅𝐹𝑥𝑧
𝑙𝑦 ⋅ 𝑙𝑧

+
𝑅𝐹𝑧𝑥
𝑙𝑦 ⋅ 𝑙𝑧

)

as well as

(5)

�̄�𝑥𝑥 =
𝑢𝑥𝑥 , �̄�𝑧𝑧 =

𝑢𝑧𝑧 , and �̄�𝑥𝑧 =
1
⋅
(

𝑢𝑥𝑧 +
𝑢𝑧𝑥

)

. (6)

𝑙𝑥 𝑙𝑧 2 𝑙𝑥 𝑙𝑧
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Fig. 8. Overview of the simulation procedure.
𝜎

3.7.2. Detecting failure
For defining the macroscopic failure stress state for each simulation

we considered the same two-part failure criterion as we used in Reis-
müller et al. (2023b). At the macroscopic scale, the largest stress before
the first significant decrease of a stress component was considered the
peak stress. This criterion was relevant, especially for joint failure,
which occurs much more ductile than block failure. Furthermore, a
second criterion considering the first crack within the blocks was
defined to capture block failure. This was necessary, since some of
the simulations, where block failure was relevant, did not produce a
significant drop in stresses. Instead, these simulations aborted when the
first crack opened. Considering the findings of Kiefer et al. (2017) and
Suda et al. (2021), this is a good approximation, since there, the first
crack also occurred just before the peak stress was reached.

4. Results and discussion

In the following section, the simulation results are presented and
discussed. First, failure mechanisms are identified from the results
of the simulations with the simplified geometry. Then, the Rankine–
Hill surface (Lourenço, 1996; Lourenço et al., 1997) and the failure
surface of Ganz (1985) are calibrated using the simulation results
and compared to the numerically obtained failure surface. Next, the
developed procedure for defining a failure surface is applied to two
real block designs and the results are discussed. Finally, the obtained
results are gathered, to propose a concept for calibrating the Rankine–
Hill surface, taking the differences between the numerically-obtained
failure surfaces and the Rankine–Hill surface into account. For the sake
of brevity, only the model with mortared head joints is discussed in
detail, while the results for the other two models are presented in the
8

supplementary material.
4.1. Numerically obtained failure surface

Fig. 9 shows the numerically obtained failure surface for the model
with mortared head joints. Each point in Fig. 9a represents the peak
stress state of one simulation. The filled areas in the background mark
regions, where we observed similar failure mechanisms in the simula-
tions. In the following, we will discuss the peak stresses starting with
the tensile regime and then moving clockwise around the boundary of
the failure surface.

In the tensile regime, the maximum vertical macroscopic peak
stress was 1.303MPa, while the maximum horizontal macroscopic peak
stress was 0.818MPa. On the right side of the failure surface, the
horizontal macroscopic peak stress stayed constant with increasing
vertical compression until the vertical stress reached −9.157MPa, which
was the maximum vertical compressive peak stress observed in the
simulations. On the bottom side, this maximum vertical compressive
peak stress stayed constant with increasing horizontal compression
until the horizontal stress reached −9.023MPa. On the left side, the
failure surface showed a parabolic shape with a maximum horizontal
compressive peak stress of −10.325MPa. The top side of the failure
surface showed a linear relationship between the horizontal and the
vertical macroscopic stress, with an increasing vertical macroscopic
peak stress for decreasing horizontal compression. The macroscopic
peak shear stress was 3.928MPa occurring at �̄�𝑥𝑥 = −4.992MPa and
̄𝑧𝑧 = −5.286MPa.

Vertically perforated clay block masonry is known to show sig-
nificant strength anisotropies. Typically, the ratio of the macroscopic
peak stress parallel to the bed joints to the macroscopic peak stress
perpendicular to the bed joints is between 0.25 and 0.63, depend-
ing on the block design (Lourenço, 1996; Lourenço et al., 1997).
However, the maximum horizontal macroscopic peak stress in the

simulations was similar to the maximum vertical macroscopic peak
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Fig. 9. Numerically obtained failure surface for the model with mortared head joints (HJM). Each point in (a) represents the peak stress state of one simulation. The filled areas
in (b) mark regions with similar failure mechanisms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Block failure mechanisms observed in the simulations.
stress, which most likely roots in the given block design. Comparable
block designs, such as typical hollow concrete block masonry, tend
to show a less pronounced strength anisotropy (see, e. g., Lourenço
et al. (1996, 1997)). Nevertheless, the simulations did show a signif-
icant anisotropy considering the failure mechanisms, which we will
discuss in the following.

The observed failure mechanisms, labeled 1 to 7, are assigned to
the filled areas in Fig. 9b. Note, that the failure mechanisms are not
necessarily unique to the corresponding area, but are the dominating
ones. While surfaces, where block failure was observed, are filled red
(2, 3, and 4), surfaces, where joint failure was observed, are filled blue
(1, 5, 6, and 7).

Failure mechanism 1 was observed under governing vertical tensile
stresses and is characterized by tensile failure of the bed joints since
the vertical tensile stresses introduce tensile stresses in the bed joints.
With increasing horizontal compression, shear stresses are additionally
introduced in the bed joints, which leads to a decreasing vertical tensile
strength of the bed joints (see Eq. (1)).

Failure mechanism 2 was observed under governing horizontal
compression and is characterized by tensile cracks in the connection
between transversal and longitudinal webs (see Fig. 10(a)). In a previ-
ous numerical study (Reismüller et al., 2023b), we traced back these
cracks to bending moments, introduced to the transversal webs by
deformation differences in the mortar head joints.
9

Failure mechanism 3 was observed under governing vertical com-
pression and is characterized by tensile cracks in the transversal webs
(see Fig. 10(b)) since large vertical compressive stresses lead to tensile
stresses in the transversal web (see Kiefer et al. (2017), Suda et al.
(2021), and Reismüller et al. (2023b)).

Failure mechanism 4 was observed under horizontal tension in
combination with vertical compression and is characterized by tensile
cracks in the longitudinal webs (see Fig. 10(c)). With decreasing ver-
tical compression, the shear strength of the bed joints decreases (see
Eq. (1)), which leads to a change to failure mechanism 7. When the
shear strength of the bed joints falls below a certain value, joint failure
occurs before the failure of the longitudinal webs.

Failure mechanism 5 was observed under governing shear stresses
in combination with low horizontal compression and is characterized
by a stepped shear failure of the bed joints and head joints. The
inhomogeneous nature of masonry leads to a rotation of the blocks
under shear loading (Mojsilović, 1995), introducing bending moments
in the joints. In addition to the shear stresses parallel to the joints,
these bending moments induce stresses perpendicular to the joints.
Depending on the magnitude of the vertical and horizontal macroscopic
stresses, tensile stresses perpendicular to the joints can occur. Thus,
despite failure mechanism 5 being labeled as shear failure, especially
with low vertical compression, a combination of shear and tensile
failure was observed.
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In contrast to the previous mechanism, failure mechanism 6, which
was observed under governing shear stresses in combination with large
horizontal compression, is characterized by a shear failure solely of the
bed joints. This is because the larger horizontal compression leads to
a larger shear strength of the head joints, which prevents joint failure
there.

Failure mechanism 7 was observed in the tensile regime under
governing horizontal tension and is characterized by tensile failure of
the head joints and shear failure in the bed joints. This is because the
horizontal tensile stresses introduce tensile stresses in the head joints
and shear stresses in the bed joints. As discussed for failure mechanism
4, the shear strength of the bed joints increases with increasing vertical
compression. Thus, increasing vertical compression leads to a change in
failure mechanism from joint failure (7) to block failure (4).

Fig. 11 shows the peak stresses and failure mechanisms of the
odels with and without frictional contact in the head joints. Most

f the previously described failure mechanisms were also observed in
hese models. However, some noteworthy differences compared to the
odel with mortar head joints occurred.

Despite showing similar maximum values for the tensile, compres-
ive, and shear stresses, the failure surface of the model with frictional
ontact in the head joints (HJC) shows some differences in the overall
hape, compared to the model with mortar head joints (Fig. 11a). Most
otably, the maximum vertical compressive peak stress decreases with
ncreasing horizontal compression (bottom side of the failure surface).
dditionally, the maximum shear stress is reached at higher horizontal
nd vertical compressive stresses, although showing a similar magni-
ude. Thus, when moving along the hydrostatic axis in the compressive
egime, the increase of the peak shear stress is less steep in the model
ith frictional contact in the head joints.

The failure surface of the model without contact in the head joints
HJG, Fig. 11b) shows a significantly different shape compared to
oth other models. Most notably, failure region 2, which is governed
y block failure under horizontal compression, nearly vanished. In-
tead, under horizontal compression, failure is mainly governed by
shear failure of the bed joints, similar to failure mechanism 7 but

n the opposite direction (region 8). This is because the horizontal
ompressive stresses are being transferred via shear stresses in the bed
oints since no contact in the head joints is present. With the adapted
nterface condition in the joint interfaces, the horizontal compressive
eak stress increases with increasing vertical compression in region
. Hence, the maximum horizontal compressive peak stress is only
.0MPa, which is significantly lower than in the other models. Addi-
ionally, the maximum shear stress 2.5MPa is 50% lower. While the
aximum tensile peak stresses and the maximum vertical peak stress

re similar to the other models, another noteworthy difference is the
ncreasing vertical compressive peak stress with increasing horizontal
ompression in region 3.

.2. Comparison to available failure surfaces

In the following, the numerically obtained failure surface of the
odel with mortar head joints (HJM) is compared to the failure sur-

aces of Ganz (1985) and Lourenço et al. (1996, 1997). A similar
omparison for the models with frictional contact in the head joints and
ithout any contact in the head joints is given in the supplementary
aterial.

.2.1. Failure surface according to Ganz
The failure surface of Ganz (1985) was calibrated to the simulations

y adjusting the ten parameters of the failure criteria (see Appendix A)
s follows: We obtained the uniaxial compressive masonry strengths
m,𝑥 and 𝑓m,𝑧, the vertical uniaxial tensile strength 𝑓t,𝑧, and the ratio of
he horizontal tensile masonry strength to its compressive counterpart,
m, from the simulation results. The distance of the head joints, 𝑎S,
nd the distance of the bed joints, 𝑎 , are defined by the model’s
10

L

eometry. The remaining parameters, the cohesion shear stress 𝑐, the
riction angle of the joints, 𝜑, and the additional parameter 𝜇, were

calibrated to the simulations by minimizing the mean squared error
between the numerically obtained peak stresses and the failure surface.
The resulting failure surface and the chosen values for the parameters
are shown in Fig. 12(a). The mean absolute error (MAE) between the
numerically obtained peak stresses and the calibrated failure surface is
0.708MPa.

The most noticeable difference between the numerically obtained
peak stresses and the calibrated failure surface can be found under
horizontal tension in combination with vertical compression (right side
of the failure surface). Here, the failure surface predicts a decreasing
horizontal tensile peak stress with increasing vertical compression,
while staying constant in the simulations. Regarding the shear behav-
ior, the calibrated failure surface predicts a 23% larger maximum shear
stress than the simulations. Additionally, this peak occurs at a lower
horizontal compression than in the simulations, leading to significant
shear stress deviations in this region compared to the simulations.

4.2.2. Rankine–Hill failure surface
Next, we will compare the numerically obtained results to the

Rankine–Hill surface (Lourenço, 1996; Lourenço et al., 1997). We
calibrated the seven parameters of the Rankine–Hill surface in two
different ways: (i) By determining the parameters from the seven
simulations of ideal loading states and (ii) by minimizing the mean
squared error between the numerically obtained peak stresses and the
failure surface (“Opt”).

First, we derived the parameters by simulating the seven loading
combinations proposed by Lourenço et al. (1996, 1997) (see Fig. 4).
The resulting failure surface and the chosen values for the parameters
are shown in Fig. 12(b). Therein, the seven simulations used for the
calibration are marked with squares.

Using the seven suggested loading combinations results in signifi-
cant differences between the Rankine–Hill surface and the numerically
obtained peak stresses, which is reflected by a large MAE of 2.395MPa.
The Rankine–Hill surface predicts a 49.8% higher maximum vertical
compressive stress and a 46.5% lower maximum horizontal compres-
sive stress than the simulations. Given that only seven loading states
were considered, the Rankine-type criterion shows good agreement
with the simulations, and the maximum shear stress has a similar
magnitude, as the numerically obtained results.

In the second step, we optimized the parameters of the Rankine–Hill
surface by minimizing the mean squared error between the numerically
obtained peak stresses and the failure surface. While Lourenço et al.
suggests the seven loading combinations as a good option for mini-
mizing the effort and maximizing the accuracy of the calibration, he
also states that the mean error optimization is better, if enough data
is available. The resulting failure surface and the chosen values for the
parameters are shown in Fig. 13. The MAE between the numerically ob-
tained peak stresses and the calibrated failure surface is 0.832MPa. The
mean error optimization delivers a significantly better fit than calibra-
tion with the seven loading combinations. However, the Rankine–Hill
surface still shows differences compared to the numerically obtained
peak stresses. The vertical uniaxial compressive strength is predicted
to be 21.0% lower than in the simulations and the vertical uniaxial
tensile strength is predicted to be 62.5% lower, whereas the horizontal
uniaxial compressive strength is predicted to be 37.3% higher. Addi-
tionally, some simulations with large horizontal compressive stresses
are not captured by the failure surface. Furthermore, the peak shear
stress is predicted to be 17.0% lower than in the simulations.

The most noticeable differences can be found under vertical tension
in combination with horizontal compression (top part of the failure
surface) and under large vertical compression in combination with
horizontal compression (bottom side of the failure surface), where
the calibrated Rankine–Hill surface predicts significantly smaller peak

stresses than the simulations. In general, the linearly decreasing vertical
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Fig. 11. Numerically obtained failure surface for (a) the model with frictional contact in the head joints (HJC) and (b) the model without any contact in the head joints (HJG).
Each point represents the peak stress state of one simulation. The filled areas mark regions with similar failure mechanisms. The numbers refer to the failure mechanisms in
Fig. 9b.
Fig. 12. Calibrated failure surfaces using the numerically-obtained peak stresses from the simplified model with mortared head joint: (a) failure surface after Ganz (1985) and (b)
Rankine–Hill surface after Lourenço et al. (1996, 1997). The seven peak stress states used for calibrating the Rankine–Hill surface are marked with squares.
Fig. 13. Calibrated Rankine–Hill surface for the simplified model with mortared head
joints using mean squared error optimization (Opt). The seven peak stress states used
for calibrating the Rankine–Hill surface in Fig. 12(b) are marked with squares.
11
tensile peak stress with increasing horizontal compression (top part of
the simulated peak stresses, Failure Mechanism 1) cannot be replicated
by the Rankine–Hill surface, since it predicts a constant vertical tensile
peak stress. Furthermore, the Rankine–Hill surface is smooth in the
compressive regime, while the simulation results show a distinct edge,
where the failure mechanism changes from horizontal compressive
block failure (Region 2) to vertical compressive block failure (Region
3).

Removing the simulations where failure mechanisms 1 and 3 were
governing from the set of peak stress states and applying the mean
squared error optimization leads to the failure surface shown in Fig. 14.
The obtained Rankine–Hill surface shows good agreement with the
simulations and the vertical uniaxial compressive and tensile peak
stresses are predicted similarly to the simulations, while the maximum
shear stress is predicted to be 21% lower than in the simulations.
The MAE between the numerically obtained peak stresses and the
calibrated Rankine–Hill surface is 0.867MPa, which is only 4.2% larger
than the MAE using all the simulations. This shows that the Rankine–
Hill surface can capture the majority of the simulations. However, we
could identify some regions, where the simulations show a qualitatively
different behavior than the Rankine–Hill surface, suggesting a more
complex failure envelope of vertically perforated clay block masonry
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Fig. 14. Calibrated Rankine–Hill surface for the simplified model with mortared head
joints using mean squared error optimization (Opt) without the simulations where
Failure Mechanisms 1 and 3 were governing. The seven peak stress states used for
calibrating the Rankine–Hill surface in Fig. 12(b) are marked with squares.

than the Rankine–Hill surface can provide. While the differences in
failure region 1 can also be seen, when Lourenço et al. (1996, 1997)
fitted the Rankine–Hill surface to the experimental data from Page
(1983), the differences under large vertical compression are most likely
a phenomenon of vertically perforated clay block masonry, since the
change in failure mechanism leading to this difference is caused by the
perforations.

In conclusion, the mean squared error optimization on all peak
stress states leads to a good representation of the results, assuming that
the numerically obtained peak stresses resemble the real behavior of
vertically perforated clay block masonry. However, the optimization
procedure also leads to a significant underestimation of the vertical
compressive peak stress and the vertical tensile peak stress. Adapting
the set of peak stress state showed that the Rankine–Hill surface can
capture the majority of the simulations, while still showing some
discrepancies. Thus, a slightly more complex failure surface is needed
to fully utilize the strength of the masonry. Although the failure surface
from Ganz shows a better agreement with the simulations, the Rankine–
Hill surface will be used for the following discussion, since it is better
suited for use within finite element software.

4.3. Application to real block designs

To further verify our model, we used the developed procedure to
calibrate the Rankine–Hill surface for two different real block designs,
the SwissModul 15 (Zürcher Ziegeleien, 2023) used in the experiments
from Bitterli and Salmanpour (2014, 2017), and an insulation-filled
block from Wienerberger (2023).

The SwissModul 15 is a vertically perforated clay block with a
height of 190mm, a length of 290mm, and a width of 150mm. The
blocks are used in conjunction with 10mm thick mortar bed joints
and mortar-filled head joints with similar thickness. For calibrating
the failure surfaces, we used the 34 simulations from our previously
published study (Reismüller et al., 2023b). In that study, we used the
numerical unit cell model to simulate the experiments from Bitterli
and Salmanpour (2014, 2017).

Simulating the loading states suggested by Lourenço et al. (1996,
1997), we obtained the failure surface shown in Fig. 15(a) with an MAE
of 0.868MPa. Using the mean squared error optimization procedure, we
obtained the failure surface shown in Fig. 15(b). The obtained Rankine–
Hill surface is in good agreement with the simulations. However, a
similar discrepancy between the surface and the numerically obtained
12
peak stresses can be found under vertical compression, when failure
mechanism 3 is relevant. In this region, the calibrated Rankine–Hill
surface predicts up to 9.2% larger peak stresses than obtained in the
simulations. Considering the second region with discrepancies identi-
fied with the simplified model (i. e., where Failure Mechanism 1 was
governing), we cannot make a statement for this block design, since
we did not simulate enough loading combinations in this region. The
MAE of the Rankine–Hill surface calibrated for the SwissModul 15 is
0.417MPa using all simulations. Thus, the optimization procedure leads
to a better, yet more conservative fit of the Rankine–Hill surface with
the numerically obtained peak stresses.

The second block design we used for calibrating the Rankine–Hill
surface is an insulation-filled block from Wienerberger (2023), which
is 248mm long, 249 mm high, and 365mm wide. It is typically used in
conjunction with 1mm thin bed mortar joints and dry head joints. Thus,
frictional contact was used in the head joints in the simulations. We
calibrated the Rankine–Hill surface shown in Fig. 16 to 31 simulations.
The model was created using the same modeling strategies as used for
the previous simulations.

Notably, the results of the simulations predict a much more
anisotropic behavior than with the SwissModul 15 and the simpli-
fied block design with a ratio of the horizontal compressive peak
stress to the vertical compressive peak stress of 0.35. This is also
reflected in the calibrated Rankine–Hill surface, which is in good
agreement with the simulations. Using the loading states suggested
by Lourenço et al. (1996, 1997), we obtained the failure surface shown
in Fig. 16(a) with an MAE of 0.446MPa. The failure surface obtained
with the optimization procedure is presented in Fig. 16(b). With this
geometry, the optimized Rankine–Hill surface predicts up to 4.2%
smaller peak stresses than obtained in the simulations in the region,
where failure mechanism 3 is relevant. Additionally, we observed a
similar discrepancy under vertical tension combined with horizontal
compression, as identified with the simplified model. The MAE of
the calibrated Rankine–Hill surface is 0.372MPa using all simulation.
Similar to the SwissModul 15, the optimization procedure yielded a
better, yet slightly more conservative fit of the Rankine–Hill surface.

4.4. Concept for deriving a numerically calibrated failure surface

Considering all the results presented in the previous sections, we
propose the following concept for deriving a numerically calibrated
failure surface for masonry. Since the Rankine–Hill surface depicts the
numerically obtained peak stresses very well in most regions and can
easily be implemented into FE software, we recommend using it for
macroscopic simulations of vertically perforated clay block masonry.
Simulating the loading states proposed by Lourenço et al. (1996, 1997)
for the calibration of the Rankine type surface (i. e. parameters 𝑓t,𝑥, 𝑓t,𝑧,
and 𝑓𝛼) led to a good agreement with the numerically obtained peak
stresses in each case. Hence, we suggest using these three simulations
for the calibration of this part of the surface (see Fig. 17). However,
using the suggested loading states for the calibration of the Hill type
surface (i. e. parameters 𝑓m,𝑥, 𝑓m,𝑧, 𝑓𝛽 , and 𝑓𝛾 ) did not always lead to a
good agreement with the numerically obtained peak stresses. While we
obtained good agreement for the real block geometries, we observed
significant deviations for the simplified block design. Thus, we suggest
simulating seven additional loading states for the calibration of the
Hill-type surface (see Fig. 17b). We chose these such that the loading
path is directed towards the regions, where we observed the largest
discrepancies between the numerically obtained peak stresses and the
calibrated Hill-type surface. Using these additional peak stresses, we
can derive the parameters for the Hill-type surface using a mean error
optimization procedure. Therefore, the resulting failure surface will
underestimate some of the peak stresses in failure region 2, but also
show fewer differences to the simulations in failure region 3.
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Fig. 15. Calibrated Rankine–Hill surfaces for SwissModul 15 with mortared head joints: (a) was calibrated using the loading states suggested by Lourenço et al. (1996, 1997) and
(b) was calibrated using the mean squared error optimization procedure. The seven peak stress states used for calibrating the Rankine–Hill surface in (a) are marked with squares.
Fig. 16. Calibrated Rankine–Hill surfaces for the Wienerberger block with contact in the head joints: (a) was calibrated using the loading states suggested by Lourenço et al. (1996,
1997) and (b) was calibrated using the mean squared error optimization procedure. The seven peak stress states used for calibrating the Rankine–Hill surface in (a) are marked
with squares.
5. Conclusion and outlook

Within this work, we presented a new approach to develop failure
surfaces for vertically perforated clay block masonry under in-plane
loading using numerical simulations. Using a previously published unit
cell FE model (Kiefer et al., 2017; Reismüller et al., 2023b) and a sim-
plified block design, we derived the peak stresses from 450 simulations
in total, with 150 arbitrarily generated loading states. Additionally,
we investigated the influence of the head joint, by considering three
different types, i. e., a mortared head joint, frictional contact in the
head joint, and no contact in the head joint. Hence, we were able to
numerically derive failure surfaces for the three different head joint
types. For each type, we also identified seven different realistic failure
mechanisms and assigned these mechanisms to regions of the failure
surface.

After the rigorous discussion of the numerically-obtained failure
surfaces, we compared them to the failure surfaces proposed by Ganz
(1985) and Lourenço et al. (1996, 1997), by calibrating the necessary
parameters to the simulation results. The failure surface of Ganz was
found to be in good agreement with the numerically-obtained failure
surfaces, with the most significant difference under horizontal tension.
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Additionally, the maximum shear stress was found to be 23% higher
than in the numerically-obtained failure surface. The quality of the fit
of the failure surface after Lourenço et al. depends on the chosen cal-
ibration procedure. While calibrating the failure surface by simulating
the seven loading combinations suggested by Lourenço et al. (1996,
1997) resulted in a poor agreement with the numerically-obtained
peak stresses, a mean squared error optimization procedure yielded a
good agreement. Thereby, two regions with significant differences were
identified, i. e., the region of vertical tension and the region of vertical
compression.

To assess this difference in more detail, we used the developed
procedure to calibrate the Rankine–Hill surface for two real block de-
signs. The results showed, that the differences also occur for real block
designs, although the differences are less significant. Nevertheless, the
Rankine–Hill surface overestimated the peak stress of the numerical
model up to 12.8%, suggesting a more complex failure surface.

Finally, we proposed a concept to numerically calibrate the pa-
rameters of the Rankine–Hill surface, taking the differences between
the numerically-obtained failure surfaces and the Rankine–Hill surface
into account. Therefore, we suggested simulating the seven loading
combinations proposed by Lourenço et al. (1996, 1997) for calibrating
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Fig. 17. Concept for deriving a numerically calibrated Rankine–Hill surface. (a) Calibration with the loading states suggested by Lourenço et al. (1996, 1997), and (b) mean
rror optimization of 𝑓m,𝑥, 𝑓m,𝑧, 𝛽, and 𝛾 using 11 simulations. Peak stresses used for calibration of the Rankine-type surface are filled green, and those used for calibration of the

Hill-type surface are filled red. Simulations used for mean error optimization are marked with squares. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
s
t
t

the surface, and to simulate two additional loading combinations with
governing vertical compressive stresses to assess the quality of the fit
and to adjust the parameters accordingly.

In future research, we could improve the proposed concept by
considering the following aspects: Since the model is restricted to
in-plane loading, the next step would be to extend the model to out-
of-plane loading, like Mojsilović (1995) did for the failure surface of
Ganz (1985). Additionally, the model is not yet reasonably validated for
horizontal and vertical tension, since no experimental data is available
for vertically perforated clay block masonry. Thus, an experimental
campaign would be necessary to validate the model for these loading
states. Another interesting modification to consider is the use of the
phase field method (see, e. g., Miehe et al. (2010)), as a substitute
for the XFEM approach. The phase field method is known to be very
stable, even for complex crack topologies, as, e. g., Pech et al. (2022a,b)
showed for wood, and could therefore enable the investigation of
the post-peak behavior of vertically perforated clay block masonry in
more detail. Finally, the model could also be validated for masonry
glued with polyurethane adhesive in the bed joints, since this is a
rising technology in the field of masonry construction and could be
considered in the presented model with only minor adaptions.
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Appendix A. Failure criteria after Ganz

In the following, the 12 failure criteria after Ganz (1985) are pre-
ented. Note, that the indices are different than in the original publica-
ion. While Ganz (1985) refers to the vertical direction with 𝑥 and to
he horizontal direction with 𝑦, we use 𝑥 for the horizontal direction

and 𝑧 for the vertical direction.

A.1. Block failure

𝛷1a = 𝜏2𝑥𝑧 −
(

𝜔m ⋅ 𝑓m,𝑥 − 𝜎𝑥𝑥
) (

2𝜔m ⋅ 𝑓m,𝑧 − 𝜎𝑧𝑧
)

≤ 0. (A.1)

𝛷1b =
(

1 + 𝜔m
)2

⋅ 𝜏2𝑥𝑧 +
[

𝜔m ⋅
(

𝜎𝑧𝑧 + 𝑓m,𝑧
)

− 𝜎𝑥𝑥
]

×
[

𝜎𝑧𝑧 + 𝑓m,𝑧 − 𝑓m,𝑥 − 𝜔m ⋅
(

𝜎𝑥𝑥 + 𝑓m,𝑥
)]

≤ 0. (A.2)
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𝛼

𝛷1c =
(

1 + 𝜔m
)2

⋅ �̄�2
𝑥𝑧+

[

𝜔m ⋅
(

�̄�𝑧𝑧 − 2𝜔m ⋅ 𝑓m,𝑧 + 𝑓m,𝑥 ⋅
(

1 + 𝜔m
))

− �̄�𝑥𝑥
]

⋅

⋅
[

�̄�𝑧𝑧 − 2𝜔m ⋅ 𝑓m,𝑧 − 𝜔m ⋅ 𝑓m,𝑥
]

≤ 0.

(A.3)

2 = 𝜏2𝑥𝑧 −
(

𝜎𝑥𝑥 + 𝑓m,𝑥
)

⋅
(

𝜎𝑧𝑧 + 𝑓m,𝑧
)

≤ 0. (A.4)

𝛷3ab = 𝜏2𝑥𝑧 + 𝜎𝑥𝑥 ⋅
(

𝜎𝑥𝑥 + 𝑓m,𝑥
)

≤ 0. (A.5)

𝛷3c = 𝜏2𝑥𝑧 +
(

𝜎𝑥𝑥 − 𝜔m ⋅ 𝑓m,𝑥 + 𝑅a
)2 − 𝑅2

a ≤ 0. (A.6)

𝑅a = 𝑑 ⋅ tan
(

𝜋
4
−

tan−1 (𝑘)
2

)

− 𝑓m,𝑥 ⋅
1 − 𝜔m

2

where 𝑑 =
𝜔m ⋅ 𝑓m,𝑥

2 ⋅
√

𝜔m
and 𝑘 =

𝜔m − 1
2 ⋅

√

𝜔m
(A.7)

𝛷3d = 4𝜔m ⋅ 𝜏2𝑥𝑧 −
[

𝜔m ⋅ 𝑓m,𝑥 − 𝜎𝑥𝑥 ⋅
(

1 − 𝜔m
)]2 ≤ 0. (A.8)

A.2. Mortar joint failure

𝛷4a = 𝜏2𝑥𝑧 −
(

𝑐 − 𝜎𝑧𝑧 ⋅ tan (𝜑)
)2 ≤ 0. (A.9)

𝛷4b = 𝜏2𝑥𝑧 +
(

𝜎𝑧𝑧 − 𝑓t,𝑧 + 𝑅b
)2 − 𝑅2

b ≤ 0. (A.10)

𝛷4c = 𝜏2𝑥𝑧 +
[

𝜎𝑧𝑧 − 𝑓 ′
t,𝑧 ⋅

(

𝜎𝑥𝑥
𝜇 ⋅ 𝑓m,𝑥

+ 1
)

+ 𝑅c

]2
− 𝑅2

c ≤ 0. (A.11)

𝛷4d = 𝜏2𝑥𝑧 ⋅
(

1 +
2 ⋅ 𝑎L
𝑎S

⋅ tan (𝜑)
)2

−
(

𝜎𝑧𝑧 ⋅ tan (𝜑) + 𝜎𝑥𝑥 ⋅
2 ⋅ 𝑎L
𝑎s

− 𝑐
)2

≤ 0.

(A.12)

4e =
(

|

|

𝜏𝑥𝑧|| +
2𝑎L
𝑎S

⋅ 𝜎𝑥𝑥

)2
+
(

𝜎𝑧𝑧 + |𝜏𝑥𝑧| ⋅
2𝑎L
𝑎S

− 𝑓t,𝑧 + 𝑅b

)2
− 𝑅2

b ≤ 0.

(A.13)

𝑅b = 𝑐 ⋅ tan
(𝜋
4
+

𝜑
2

)

− 𝑓t,𝑧 ⋅
sin (𝜑)

1 − sin (𝜑)
(A.14)

𝑅c = 𝑐 ⋅ tan
(𝜋
4
+

𝜑
2

)

− 𝑓 ′
t,𝑧 ⋅

(

𝜎𝑥𝑥
𝜇 ⋅ 𝑓m,𝑥

+ 1
)

⋅
sin (𝜑)

1 − sin (𝜑)
(A.15)

Note, that the equation for failure criterion 3c in the original pub-
ication seems to be wrong, since it always indicates failure at 𝜎𝑥𝑥 ≥ 0,
lthough horizontal tensile stresses should be possible. Using the verbal
escription of Ganz (1985), a new criterion was defined, assuming the
urface to describe a cylinder (see Eq. (A.6)). The original equation in
he publication is the following:

3c,o = 𝜏2𝑥𝑧 + 𝜎𝑥𝑥 ⋅
(

𝜎𝑥𝑥 − 𝜔m ⋅ 𝑓m,𝑥
)

≤ 0. (A.16)

Appendix B. Rankine–Hill surface

The Rankine-type surface is defined in the following manner:

𝑓1 =
(𝜎𝑥 − 𝑓t,𝑥) + (𝜎𝑧 − 𝑓t,𝑧)

2
+

√

( (𝜎𝑥 − 𝑓t,𝑥) − (𝜎𝑧 − 𝑓t,𝑧)
2

)2

+ 𝛼𝜏2𝑥𝑧 = 0,

(B.1)
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ith the parameter 𝛼, which is derived from the uniaxial tensile
trengths, 𝑓t,𝑥 and 𝑓t,𝑧, as well as the pure shear strength of the
aterial, 𝜏u as follows:

=
𝑓t,𝑥 ⋅ 𝑓t,𝑧

𝜏u
. (B.2)

The Hill-type surface forms a rotated centered ellipsoid, which reads
as

𝑓2 = 𝐴 ⋅ 𝜎2𝑥 + 𝐵 ⋅ 𝜎𝑥 ⋅ 𝜎𝑧 + 𝐶 ⋅ 𝜎2𝑧 +𝐷 ⋅ 𝜏2𝑥𝑧 − 1 = 0. (B.3)

The four parameters 𝐴, 𝐵, 𝐶, and 𝐷 can be derived from the material
strengths an equivalent yield stresses in the following way:

𝐴 = 1
(

𝑓m,𝑥
)2

, 𝐵 =
𝛽

𝑓m,𝑥 ⋅ 𝑓m,𝑧
, 𝐶 = 1

(

𝑓m,𝑧
)2

, and 𝐷 =
𝛾

𝑓m,𝑥 ⋅ 𝑓m,𝑧
. (B.4)

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.euromechsol.2024.105295.
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