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Abstract
This thesis studies the mathematical and numerical analysis of macroscopic models for
multispecies systems. The derivation of a new model will also be part of the manuscript.

Multispecies systems describe real world phenomena in which several entities of different
species interact. Importantly, the interactions among species are crucial in determining the
behaviour of each species and the system as a whole.

The thesis begins with a study of mixtures of finite-size ions species immersed in a polar
solvent. They move through channels or nanopores. The evolution of the ion concentrations is
described by systems of partial differential equations of modified Poisson-Nernst-Planck type
with mixed Dirichlet-Neumann boundary conditions. Since the ion size is not significantly
smaller than the channel diameter, size exclusion effects must be taken into account in the
model. The so-called "size exclusion" or "volume filling" constraint is imposed, implying
that the sum of the ion and solvent concentrations is constant. This saturation introduces
cross-diffusion effects into the system of PDEs. In addition, a drift term, accounting for
electrostatic interactions, is contained in the equations’ fluxes. It can be expressed in terms
of the electric potential gradient, which is coupled to the concentrations via a Poisson-type
equation.

This thesis’ first work presents two finite volume approaches for a degenerate Poisson-
Nernst-Planck system. Both methods employ a two-point flux approximation and belong
to the exponentially fitted scheme framework. The two approaches differ in the use of the
Stolarsky mean for describing the drift term, derived from a self-consistent electric potential.
The first method (SQRA) uses a geometric mean, extending the square-root approximation.
In contrast, the second method (SG) employs an inverse logarithmic mean, generalizing the
Scharfetter-Gummel scheme. Both approaches ensure the decay of some discrete free energy.
Classical numerical analysis results follow, investigating the scheme’s long-time behaviour.
Numerical simulations show that both schemes are effective for moderate Debye lengths. The
SG scheme demonstrates greater robustness in the small Debye length limit. Nevertheless,
simulations also point to a possible slow convergence to equilibrium.

The thesis’s second work analyses a Poisson–Nernst–Planck–Fermi system. The concentra-
tions solve cross-diffusion equations, which are thermodynamically consistent. In particular,
the correlated electric potential depends nonlocally on the electric potential and solves the
fourth-order Poisson–Fermi equation. The existence of global bounded weak solutions is
proved using the boundedness-by-entropy method. This work’s novelty lies in proving the
weak–strong uniqueness property. In contrast to the existence proof, the solvent concentration
is included in the cross-diffusion system, leading to a diffusion matrix with nontrivial kernel.
The proof is based on the relative entropy method for the extended cross-diffusion system and
the positive definiteness property of a related diffusion matrix on a subspace.

The final part of the manuscript explores aerosols mixtures. It proposes a non-isothermal
kinetic model of the interactions between dust particles and gas molecules. Gas-dust collisions
follow a diffuse reflection mechanism on the surface of dust particles. The surface temperature
of the particles is treated as a function of time and space, satisfying a transport-like equation.



The main novelty of this approach lies in two aspects. First, the model allows for the
conservation of the total energy of the system. Secondly, the work presents a derivation of
an explicit expression for entropy. After an appropriate scaling of the equations, a formal
diffusive asymptotics to a two-species Maxwell-Stefan model is carried out. In particular,
the case of vanishing mass and velocity ratios between gas and dust, as well as the Knudsen
number, are analysed.

Keywords: Ions mixtures; Aerosol mixtures; Cross-diffusion; Boundedness-by-entropy meth-
ods; Weak-strong uniqueness; Finite Volume schemes; Exponential fitting; Kinetic theory;
Boltzmann equation; Diffusive asymptotic.



Kurzfassung
Diese Dissertation untersucht die mathematische und numerische Analyse makroskopischer
Modelle für Multispezies-Systeme. Die Ableitung eines neuen Modells wird ebenfalls Teil des
Manuskripts sein.

Diese Systeme beschreiben reale Phänomene, bei denen mehrere Entitäten verschiedener
Spezies interagieren. Wichtig ist, dass die Interaktionen zwischen den Spezies entscheidend für
das Verhalten jeder Spezies und des gesamten Systems sind.

Die Dissertation beginnt mit einer Studie über Mischungen von Ionen endlicher Größe,
die in einem polaren Lösungsmittel eingetaucht sind. Sie bewegen sich durch Kanäle oder
Nanoporen. Die Entwicklung der Ionenkonzentrationen wird durch Systeme von partiellen
Differentialgleichungen vom modifizierten Poisson-Nernst-Planck-Typ mit gemischten Dirichlet-
Neumann-Randbedingungen beschrieben. Da die Ionengröße nicht wesentlich kleiner als der
Kanaldurchmesser ist, müssen Größenausschlusseffekte im Modell berücksichtigt werden. Die
sogenannte ’Größenausschluss’ oder ’Volumenfüllungs’ Beschränkung wird auferlegt, was
bedeutet, dass die Summe der Ionenkonzentrationen und der Lösungsmittelkonzentrationen
konstant ist. Diese Sättigung führt zu Kreuzdiffusionseffekten im System der PDEs. Zusätzlich
ist ein Drifterm enthalten, der elektrostatische Wechselwirkungen berücksichtigt. Dieser kann in
Form des elektrischen Potentialgradienten ausgedrückt werden, der über eine Poisson-Gleichung
mit den Konzentrationen gekoppelt ist.

Die erste Arbeit dieser Dissertation stellt zwei Finite-Volumen-Ansätze für ein degenerier-
tes Poisson-Nernst-Planck-System vor. Beide Methoden verwenden eine Zwei-Punkt-Fluss-
Approximation und gehören zum Rahmen exponentiell angepasster Schemata. Die Ansätze
unterscheiden sich in der Verwendung des Stolarsky-Mittels zur Beschreibung des Drifterms,
der aus einem selbstkonsistenten elektrischen Potential abgeleitet wird. Die erste Methode
(SQRA) verwendet ein geometrisches Mittel und erweitert die Quadratwurzel-Approximation.
Im Gegensatz dazu verwendet die zweite Methode (SG) ein inverses logarithmisches Mittel
und verallgemeinert das Scharfetter-Gummel-Schema. Beide Ansätze gewährleisten den Abfall
einer diskreten freien Energie. Es folgen klassische numerische Analyseergebnisse, und das
Langzeitverhalten des Schemas wird ebenfalls untersucht. Numerische Simulationen zeigen,
dass beide Schemata für moderate Debye-Längen effektiv sind, aber auch auf eine möglicher-
weise sehr langsame Konvergenz zum Gleichgewicht hinweisen. Doch das SG-Schema zeigt
eine größere Robustheit im Fall kleiner Debye-Längen.

Die zweite Arbeit der Dissertation analysiert ein Poisson-Nernst-Planck-Fermi-System. Die
Konzentrationen lösen thermodynamisch konsistente Kreuzdiffusionsgleichungen. Insbesondere
hängt das korrelierte elektrische Potential nichtlokal vom elektrischen Potential ab und löst
die Poisson-Fermi-Gleichung vierter Ordnung. Die Existenz global beschränkter schwacher Lö-
sungen wird mit der Entropie-Methode bewiesen. Die Neuheit dieser Arbeit liegt im Nachweis
der schwach-starken Eindeutigkeit. Im Gegensatz zum Existenzbeweis wird die Lösungsmit-
telkonzentration in das Kreuzdiffusionssystem einbezogen, was zu einer Diffusionsmatrix mit
nichttrivialem Kern führt. Der Beweis basiert auf der relativen Entropie-Methode für das er-



weiterte Kreuzdiffusionssystem und der Eigenschaft der positiven Definitheit einer zugehörigen
Diffusionsmatrix auf einem Unterraum.

Der letzte Teil des Manuskripts untersucht Aerosolmischungen. Es wird ein nichtisother-
mes kinetisches Modell der Wechselwirkungen zwischen Staubpartikeln und Gasmolekülen
vorgeschlagen. Die Arbeit geht davon aus, dass Kollisionen zwischen Gas und Staub an der
Stauboberfläche einer diffusen Reflexion folgen. Die Oberflächentemperatur der Partikel wird
als Funktion der Zeit und des Raums behandelt und erfüllt eine transportähnliche Gleichung.
Die Hauptneuheit dieses Ansatzes liegt in zwei Aspekten: Zum einen ermöglicht das Modell
die Erhaltung der Gesamtenergie des Systems. Zum anderen wird eine explizite Entropieformel
abgeleitet. Nach einer geeigneten Skalierung der Gleichungen wird eine formale diffusive
Asymptotik zu einem zweispezifischen Maxwell-Stefan-Modell durchgeführt. Insbesondere
werden die Fälle verschwindender Massen- und Geschwindigkeitsverhältnisse zwischen Gas
und Staub sowie die Knudsen-Zahl analysiert.

Schlüsselwörter: Ionenmischungen; Aerosolmischungen; Kreuzdiffusion; Boundedness-by-
Entropy-Methoden; Schwach-starke Eindeutigkeit; Finite-Volumen-Schemata; Exponentiale
Anpassung; Kinetische Theorie; Boltzmann-Gleichung; Diffusive Asymptotik.



Résumé
Cette thèse étudie l’analyse mathématique et numérique des modèles macroscopiques pour les
systèmes multi-espèces, y compris la dérivation d’un nouveau modèle.

Ces systèmes décrivent des phénomènes réels où différentes espèces interagissent, et ces
interactions sont cruciales pour déterminer le comportement de chaque espèce et du système
dans son ensemble.

La thèse commence par une étude des mélanges d’ions de taille finie dans un solvant polaire,
se déplaçant à travers des canaux ou nanopores. L’évolution des concentrations d’ions est
décrite par des équations aux dérivées partielles de type Poisson-Nernst-Planck modifié avec
des conditions aux limites mixtes de Dirichlet-Neumann. Comme la taille des ions n’est pas
beaucoup plus petite que le diamètre du canal, les effets d’exclusion par taille doivent être
modélisés. La contrainte "d’exclusion par taille" ou "de remplissage de volume" est imposée,
signifiant que la somme des concentrations d’ions et de solvant est constante, introduisant
des effets de diffusion croisée. Un terme de dérive pour les interactions électrostatiques est
également présent dans les flux, exprimé en termes de gradient du potentiel électrique, couplé
aux concentrations via une équation de type Poisson.

Le premier travail présente deux approches de volume fini pour un système de Poisson-
Nernst-Planck dégénéré. Les deux méthodes utilisent une approximation de flux à deux points
et appartiennent au cadre des schémas exponentiellement ajustés, différant par l’utilisation de
la moyenne de Stolarsky pour le terme de dérive dérivé d’un potentiel électrique auto-cohérent.
La première méthode (SQRA) utilise une moyenne géométrique, étendant l’approximation
par racine carrée, tandis que la seconde (SG) emploie une moyenne logarithmique inverse,
généralisant le schéma de Scharfetter-Gummel. Les deux approches assurent la décroissance
de l’énergie libre discrète. Les résultats classiques de l’analyse numérique suivent, et le
comportement à long terme est étudié. Les simulations montrent que les deux schémas sont
efficaces pour des longueurs de Debye modérées, mais signalent une convergence possiblement
lente vers l’équilibre, le schéma SG montrant une plus grande robustesse pour de petites
longueurs de Debye.

Le deuxième travail analyse un système de Poisson-Nernst-Planck-Fermi où les concentrations
résolvent des équations de diffusion croisée thermodynamiquement cohérentes. Le potentiel
électrique corrélé dépend non localement du potentiel électrique et résout l’équation de Poisson-
Fermi du quatrième ordre. L’existence de solutions faibles globales bornées est prouvée en
utilisant la méthode de la bornitude par l’entropie. La nouveauté réside dans la preuve de
l’unicité faible-forte. Contrairement à la preuve d’existence, la concentration de solvant est
incluse dans le système de diffusion croisée, conduisant à une matrice de diffusion avec un
noyau non trivial. La preuve repose sur la méthode de l’entropie relative pour le système
de diffusion croisée étendu et la positivité définie d’une matrice de diffusion associée sur un
sous-espace.

La dernière partie explore les mélanges d’aérosols et propose un modèle cinétique non
isotherme des interactions entre particules de poussière et molécules de gaz. Le travail suppose
une réflexion diffuse pour les collisions gaz-poussière. La température de surface des particules



est traitée comme une fonction du temps et de l’espace, satisfaisant une équation de type
transport. La principale nouveauté réside en deux aspects : le modèle permet la conservation
de l’énergie totale et présente une dérivation explicite de l’entropie. Après une mise à l’échelle
des équations, une asymptotique diffusive formelle vers un modèle de Maxwell-Stefan à deux
espèces est réalisée, analysant les rapports de masse et de vitesse nuls entre gaz et poussière,
ainsi que le nombre de Knudsen.

Mots-clés: Mélanges d’ions ; Aérosols ; Diffusion croisée ; Méthodes d’entropie; Unicité
faible-forte ; Schémas de volumes finis ; Exponential fitting ; Théorie cinétique ; Équation de
Boltzmann ; Asymptotique diffusive.
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Part I

Introduction



Summary of Part I - Introduction
This introduction provides the non-mathematical motivations as well as the mathematical
tools for the study of multicomponent systems.

Chapter 1 introduces multicomponent systems, focusing on how interactions between species
determine their behaviour. Special attention is given to the role of diffusion, which in multi-
component systems does not follow the conventional rule of diffusion ’against the gradient’.
Examples will then be presented from the fields of chemistry and physics where there is
evidence for such diffusive ’anomalies’. Particular emphasis is placed on the dynamics of gases
and ions. This is the main subject of the thesis.

Having provided a framework for the main subject of study, Having provided a framework
for the main subject of study, an explanation of the mathematical techniques used to study
multicomponent systems is given. In Chapter 2 I will explain what is meant by cross-diffusion
systems and the mathematical difficulties encountered in their analysis. Then the boundedness-
by-entropy method and the finite volume schemes discretisation will be explored.

The kinetic description of such mixtures is reserved for Chapter 4. I will discuss the concept
of the diffusive limit, moving from the mesoscopic to the macroscopic scale of description.

Finally, Chapter 5 will discuss the outlines of the thesis.



Chapter 1

General Introduction

1.1 Multi-component systems: the role of interactions
Multispecies systems frequently appear in biology and sociology, as well as in engineering.
These systems consist of many types of interacting entities, such as communities of organisms
including plants, insects, animals or humans. At the microscopic level, they consist in
mixtures of gas particles, colonies of bacteria, populations of cells. As one might expect, the
individual behaviour of each species changes when considering the species embedded in a
community of different entities. Inter-species relationships play a crucial role in determining
how species behave. In population dynamics, resource consumption, movement, and inter-
species aggression introduce behavioural patterns that are not a priori included in the individual
strategies [146], [152], [162]. In a closed market, capital and labour can influence their spatial
distribution [15]. Moreover, the so-called "Ouzo effect", observed when water is added to an
aniseed-based alcohol, results from the involvement of all the driving forces of the constituents
(water, ethanol, trans-anethol) in determining the flux of each constituent species [130].
Therefore, modelling interactions is important.

1.2 Diffusion in multi-component systems
Section 1.1 illustrated how important the role of inter-species interaction in determining the
behavior of entities in multicomponent systems is. Explaining more precisely what happens
and trying to translate it into mathematical language is the aim of this section.

1.2.1 What does "diffusion" mean?
Diffusion is the tendency of particles, initially concentrated close to a point in space, to spread
out over time, gradually covering a larger area around their origin [146], [168]. However, this
definition is likely to lead to confusion. Particles in uniform rectilinear motion, that is each
with its own constant speed and direction, move away from their original point, occupying
larger and larger areas. This, however, is not the result of diffusion. Diffusion is a macroscopic
phenomenon that results from the irregular motion of each particle at the microscopic level.
Thus is related to the concept of randomness. The irregular microscopic motion of each
particle gives rise to regularity in the motion of the total group of particles. The phenomenon
of diffusion describes this regularity and thus pertains to the macroscopic level.

Diffusion quantities are not confined to particles. In fact, the first studies of diffusion
concerned heat, diffusing from hot to cold areas. Spreading quantities can be concentrations,
momentum, information, ideas, prices. Every such process can diffuse and its evolution may
be governed by mathematical analysis.
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1.2.2 Different scales to describe the problem
As emerged from the previous section, the scale of observation of the interaction between
entities plays a crucial role in the observation and study of the phenomenon itself. Consider a
flock of birds, the trajectory of each bird may be described. However, it is only when zooming
out that one observes the flocking motion of the whole crowd [16] [1] [73]. Depending on the
phenomenon of study, one must therefore choose the correct ‘position’ of observation.

The microscopic description

The microscopic approach uses ordinary differential equations to track the movement of
individual particles based on interactions and external forces. In a system of N particles,
denoted by (xi(t))N

i=1 and (vi(t))N
i=1 their positions and velocities, respectively, Newton’s law

[145] describes their evolution by {︄
d
dtxi(t) = vi(t),
d
dtvi(t) = Fi(t),

(1.1)

where Fi represents the force acting on the i-th particle. Hence, given the initial position of
each particle, the dynamics of the system is described by 6N (if in R3) coupled first-order
ordinary differential equations. Although conceptually simple and extremely detailed, this
method is computationally demanding for large particle numbers N . In addition, observing
the behaviour of particles at the microscopic level does not capture interesting phenomena
such as diffusion. This scale is only suitable for describing the dynamics of a system with a
few entities. An example is the planets in the Solar System. This approach is not suitable for
the motion of fluids or rarefied gases.

The macroscopic description

In this situation, particles are observed from far away. From this reference point, the set of
particles appears as a fluid, whose evolution in space and time can thus be described through
the concentration variable u(x, t). The evolution of the latter will be dictated by partial
differential equations. One of the most basic and classical example of macroscopic model, the
main model for diffusion, is the (linear) heat equation

∂tu − Δu = 0. (1.2)

It was first proposed by Fourier in 1822 [95] to mathematically model the propagation of heat,
described here by the space-time function u. This family of equations also includes the Euler
and the Navier-Stokes equations.

The mesoscopic description

The kinetic or mesoscopic description of a particle system, proposed by Boltzmann in the late
19th century, is placed between the micro and macro ones. In this approach, a distribution
function F = F (t, x, v) gives the probability of finding a particle with velocity v in the space
position x at the time t. In particular the integral∫︂

X×V
F (t, x, v)dxdv
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gives the number of particles at the time t in the space-velocity domain X × V . The system’s
degrees of freedom are significantly reduced compared to the microscopic description, as
it focuses on "typical" displacements rather than exact positions and velocities of particles.
This approach retains molecular interaction information, that are lost in the macroscopic
description. Moreover, it allows physical observables like matter, velocity, and temperature
to be interpreted through probabilistic measures on the F density (mass, expectation, and
variance).

The kinetic description holds for rarefied particle systems, where the mean free path of a
molecule is comparable to a length scale of the problem, i.e. the ratio between the mean free
path and the characteristic length (called Knudsen number (K n)) is near or greater than one.
The free transport equation, Vlasov and Boltzmann-type equations are classical examples of
kinetic equations (see Chapter 4 for an in-depth discussion).

Collisions between particles are usually described by means of an operator, which is usually
non-linear and an integral term in velocity. Such collisional kernels, for non-trivial collisional
mechanisms are difficult to treat from a mathematically. This is especially true in multi-species
dynamics, where multi-species kernels are involved. A macroscopic model is hence preferable
to study in this case.

The change of scaling

In many situations, the macroscopic description is the most appropriate scale to capture
interesting observable phenomena. It is also the easiest to handle numerically. Unlike the
microscopic description, it describes collective behavior without requiring a large number of
unknowns. Unlike the mesoscopic description, it does not involve non-trivial collision kernels.

However, it is difficult to write a macroscopic equation at a glance that takes into account
observable large-scale effects. One would have to add ad hoc terms without knowing whether
these result from the microscopic interaction between the particles. Consequently, the formal
way to obtain macroscopic models is to start at the microscopic or mesoscopic level. To pass
from the microscopic to the macroscopic scale, one idea is that as N → ∞, the particles behave
as "one" and become independent in the limit. Hence, from a microscopic system of ordinary
(stochastic) differential equations, we obtain a PDE (mean-field limits). Moreover, we can
transition from the mesoscopic to the macroscopic scale by performing a proper dimensionless
analysis and then passing to the limit in the Knudsen number (K n → 0). In this way, "cost
effects" can be added to the macroscopic model without altering the macroscopic equations
themselves. Instead, one simply analyzes the relationship between particle interactions and
the working scale (diffusive limit, hydrodynamic limit, etc.). Furthermore, depending on
which parameter we neglect, we obtain different equations in the limit. Thus, the relationship
between the kinetic level and the macroscopic description also specifies the range of validity
of the target equations as well as the relationship within the model hierarchy. An in-depth
discussion of kinetic equations, particularly the passage from the mesoscopic to the macroscopic
scale via the diffusive limit, can be found in Chapter 4.

Another way to deduce macroscopic equations is to start working on a discrete equidistant
spatial grid of mesh size h (lattice model). One divides the space into discrete sites and models
the movement of the population based on the probability that an individual jumps from its
current location to a neighboring site [10, 149, 167]. Here, u(x, t) represents the probability of
finding a particle at node x at time t. This description is often referred to as a microscopic
description because the pattern of movement of the population emerges from individual-level



4 1 General Introduction

assumptions. By refining the spatial discretization (h → 0), one can obtain, in the limit, a
partial differential equation for u. This scaling via a hopping process will be discussed again
in Chapter 6. Here the hopping process introduced in [38] will be used as a starting point for
the definition of a numerical scheme for the limit (macroscopic) equation.



Chapter 2

Macroscopic description of multi-species
systems
The concept of diffusion, a common denominator throughout this thesis, is the focus of this
chapter. The following sections provide a mathematical understanding of mass diffusion at
the macroscopic level. Starting with Adolf Fick’s first model, experimental data and model
inaccuracies when dealing with multi-species systems will be discussed. Then, diffusion will
be outlined in a more general sense (not just of matter). Lastly, this chapter presents an
explanation of diffusion in thermodynamic terms.

2.1 Fick’s laws of mass diffusion
The first qualitative understandings of mass diffusion date back to the first half of the 19th
century, when the foundations of cell theory were laid, and the new concept of the atom
emerged in the scientific community. Chemist Thomas Graham, while studying gases [110,
111], discovered that the effusion rate of a gas1 is inversely proportional to the square root
of its molecular weight (heavier gases diffuse more slowly). Ten years later, physician and
physiologist Ernst Wilhelm von Brücke focused on experiments involving liquids passing
through a membrane. Graham deduced that

"the flux caused by diffusion is proportional to the concentration difference of the salt."

Flux Ji

High Concentration Low Concentration

Fig. 2.1: Diffusion of matter

1The process in which a gas escapes from a container through a hole of diameter considerably smaller than
the mean free path of the molecules.
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However, it was not until 1855 that Adolf Fick [91] translated these experimental results
into a mathematical formulation. He stated that diffusion can be described on the same
mathematical basis as Fourier’s law of heat conductance:

Q = −k∇T , (2.1)

where Q is the heat flux, k is the thermal conductivity, and T is the temperature. Similarly,
diffusion can also be described analogously to Ohm’s law for electrical conduction:

j = −σ∇Φ, (2.2)

where j is the electric current, σ is the electric conductivity, and Φ is the electric potential
[71].

If Ω×(0, T ) corresponds to the spatio-temporal domain, let ui(x, t) denote the concentrations
or volume fractions of I particle species. In his first law, Fick predicted a linear relationship
between the flux of any species and its own concentration gradient. More precisely, species
move down their concentration gradient, in a process called downhill diffusion (as illustrated
in Figure 2.2). Hence, the flux Ji of the i-th species satisfies the equation:

Ji = −Di∇ui, (2.3)

where Di denotes the diffusion coefficient specific to the i-th species.

dui
dx

Ji = −Di
dui
dx

Distance (x)

C
on

ce
nt

ra
tio

n 
(u

i)

Fig. 2.2: Illustration of the first Fick’s law of diffusion in 1D .

Moreover, with Fick’s second law, better known as conservation of mass equation in absence
of chemical reactions, he describes the evolution in time and space of ui:

∂tui + div Ji = ri(u), i = 1, . . . , I , (2.4)

with ri(u) representing the reaction rates. If the matrix A = A(u) ∈ RI×I such that Aii = Di

and the vector u = (u1, · · · , uI) are introduced, then

Ji = −Aii∇ui, i = 1, . . . , I . (2.5)

The system (2.4) can be rewritten in the vector form as

∂tu − div (A∇u) = r(u), (2.6)
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with r being a vector of all the reaction terms. The matrix A is called diffusion matrix and it
is diagonal in this case.

Such laws, which work well for single-component problems, encounter inaccuracies when
more than one species is involved. The following example is intended to demonstrate the
inadequacy of Fick’s law to describe multi-component phenomena in gas mixtures.

2.2 Diffusion in gas mixtures: A first experiment highlighting the
fallacies of Fick’s law

In 1962, Ducan and Toor [84] considered a ternary gas mixture made of hydrogen, nitrogen,
and carbon dioxide. Their experiment involves two bulbs connected by a capillary tube with
a tap. The latter, when opened, allows the two bulbs to communicate (see Figure 2.3). At
the beginning of the experiment, the tap on the capillary is closed. The bulb A contains an
equimolar mixture of nitrogen and carbon dioxide, while the bulb B an equimolar mixture
of nitrogen and hydrogen. The level of nitrogen in both bulbs is the same. According to

Bulb A Bulb B

H2 ––0.0
N2 ––0.501

CO2 ––0.499

H2 ––0.501
N2 ––0.499
CO2 ––0.0

Fig. 2.3: Initial composition of the bulbs

Fick’s first law of diffusion (2.3), there should be diffusion of CO2 from bulb A to bulb B
and diffusion of H2 from B to A. In addition, the nitrogen should not move as its gradient
concentration is zero. However, by letting the gases free of moving between the bulbs, one
observes that, not only hydrogen and carbon dioxide diffuse till the level of the two gases
reaches a plateau, but also nitrogen does. In contrast to the Fickian expectations, the nitrogen
composition of bulb A decreases, while the one of bulb B increases (uphill diffusion). The
nitrogen diffusion continues till the plateau is reached again.

This phenomenon is not unique to hydrogen-nitrogen-carbon dioxide. It usually occurs in
any multi-component context, especially when dealing with entities of different sizes: Larger
molecules, as in a crowd of people, push smaller ones to move even though they are already in
equilibrium. A better understanding of uphill diffusion is relevant in several applied contexts,
such as in medicine, where helium is used to facilitate the diffusion of oxygen in patients with
chronic obstructive bronchopneumopathy [29, 55, 118]. Further examples can be found in [129,
131].
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2.2.1 The Maxwell-Stefan diffusion
James Maxwell in 1866 [140] and Josef Stefan in 1871 [164] independently suggested a
modification of the Fick’s laws to account cross-diffusivity effects. Together with the set of
equations (2.4), they added the equations

∇ui = −
∑︂
j ̸=i

ujJi − uiJj

Dij
, i = 1, · · · , I , (2.7)

where also ∑︁I
i=1 ui = 1, and Dij represents the diffusion coefficient of the species i respect to

the j-th one. The linear dependence between flux Ji and concentration gradient ∇ui for the
same species i is broken. The proposed equation (2.7) describes a nonlinear relation between
fluxes and concentration gradients. The flux Ji depends not only on ∇ui, but also on the
gradients of the other species, namely ∇uj with j ≠ i. In terms of the diffusion matrix A
which appears in the vector form of the system (2.4), i.e. in equation (2.6),

A(u) = 1
a(u)

(︄
d2 + (d0 − d2)u1 (d0 − d1)u1

(d0 − d2)u2 d1 + (d0 − d1)u2

)︄
, (2.8)

for a mixture of I = 3 components, where u3 and di+j−2 are expressed as u3 = 1−u1 −u2, and
di+j−2 = Dij , and a(u) = d1d2(1 − u1 − u2) + d0(d1u1 + d2u2) [121]. The first thing to observe
is that the off-diagonal elements of the matrix A are no longer zero. The diffusion matrix has
lost the diagonal structure predicted by Fick’s law (2.6). Note also that A is not symmetric
either. Before presenting a second example, a more detailed discussion of the structure of A is
given. It is not peculiar to the Maxwell-Stefan system, but common to many other situations
of multi-component interactions. Such interactions give rise to cross-diffusion effects, which
are well described by cross-diffusion systems of equations.

2.3 Cross-diffusion effects and systems
As the previous example shows, in multi-species contexts, entities influence each other’s
diffusion process. This phenomenon goes by the name of cross-diffusion, precisely to emphasise
how the diffusion of one component also leads the others to spread. This shows the inadequacy
of first Fick’s law, which postulates diffusion of each species as non-interacting. Mathematically,
cross-diffusion implies that the flux Ji of each species depends not only on ∇ui, but also on
the concentration gradients of all other species ∇uj , for j ≠ i. As a consequence, although
the structure of these systems is similar to (2.4) or (2.6), the diffusion matrix A, as in
Maxwell-Stefan, no longer has a diagonal structure: Non-zero off-diagonal terms represent the
cross-diffusivity coefficients. Thus Ji will have a more complicated structure than in (2.5):

Ji = −
I∑︂

j=1
Aij∇uj . (2.9)
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More broadly, given the spatial (bounded) domain Ω ⊂ Rd, with Lipschitz boundary, and the
time domain [0, +∞), the general structure of cross-diffusion systems corresponds to

∂tui −
I∑︂

j=1

d∑︂
k ,ℓ=1

∂

∂ xk

(︃
Ak ℓ

ij (x, u)∂ uj

∂ xℓ

)︃
= ri(u), i = 1, · · · , I , (2.10)

where u(x, t) = (u1(x, t), · · · , uI(x, t)) are the unknowns, Ak ℓ
ij are the diffusion coefficients, and

ri(u) the reaction terms. Hence, cross-diffusion equations are quasilinear parabolic equations.
To study the system (2.10), we need to provide additional information of the behavior of the
solutions on the boundary of Ω and at the initial time. Here, we assume no-flux boundary
conditions on the entire boundary to have an easier weak formulation of (2.10) which does
not involve boundary integrals. Called ν = (ν1, · · · , νd) the exterior unit normal vector to the
boundary ∂Ω, on ∂Ω, for t > 0, they correspond to

I∑︂
j=1

d∑︂
k ,ℓ=1

νk

(︃
Ak ℓ

ij (x, u)∂ uj

∂ xℓ

)︃
= 0, i = 1, · · · , I . (2.11)

Moreover, for x ∈ Ω, we take

ui(x, 0) = u0
i (x), i = 1, · · · , I . (2.12)

Usually, the matrix A is not symmetric, nor positive-definite. These characteristics make
cross-diffusion systems highly nonlinear and entail coupled partial differential equations, posing
significant challenges for study, particularly complicating mathematical and numerical analysis,
as will be discussed in Chapter 3.

2.4 Diffusion in ion mixtures: A second experiment highlighting the
fallacies of Fick’s law

A second example [172] of cross-diffusion is now presented by a new particle behaviour. Let us
consider a box that is divided into two parts by a membrane, permeable to cations (negative
ions) but not to anions (positive ions). A dilute electrolyte solution of sodium chloride (Na+

and Cl– plus water) is placed in the right part of the compartment. The left side contains a
much more concentrated electrolyte solution of hydrochloric acid (H+ and Cl– plus water).

2.4.1 Volume filling constraint: The advection effect of water
The first thing to notice is that the ionic particles of the electrolyte solution are surrounded
by a solvent.The solvent, which is not stationary, transports the suspended components
(advection). In doing so, it modifies their motion. Therefore, when modifying the fluxes, a
drift term due to the water must be included. In dilute solution, this term is relatively easy
to define: It will be of the form uiv, where v refers to the velocity of the solvent, which can
be assumed to be independent of the ion’s motion. However, this velocity becomes more
difficult to express when dealing with concentrated solutions or narrow geometries, such as
the membrane, or general biological channels or nanopores. If the diameter of the channel and
that of the ions are of comparable order of magnitude, ions can no longer be considered points.
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Ions occupy a no-negligible volume, and so the mixture is saturated (volume filling constraint).
Mathematically, if the volume available is normalised as unity, then the constraint reads

u0 := 1 −
I∑︂

i=1
ui, (2.13)

namely the volume fraction of the solvent u0 corresponds to the remaining volume not occupied
by ions. Since the solvent speed v is usually a function of ∇u0, due to the volume filling
constraint (2.13), Ji will also depend on all the ∇uj , where j ̸= i, with an expression similar
to (2.9). The expression of the diffusion matrix A for this model will hence be similar to the
Maxwell-Stefan one (2.8). Modelling concentrated dilute solutions is an active field of research
in mathematical modelling. Indeed, such solutions have many applications in physiology, for
example to describe the motion of ions through protein channels such as cellular channels,
or in electrochemistry modelling batteries. Therefore, several models have been developed,
trying to improve the theory or taking into account new phenomena. A significant example,
used in [38], is reported. For I = 2, the matrix corresponds to

A(u) =
(︄

D1(1 − u2) D1u1
D2u2 D2(1 − u1)

)︄
. (2.14)

Again non-diagonal and non-symmetric matrix, encoding cross-interactions is obtained.

For the time being, only the effect of the solvent on the particles has been considered.
However, the particles are charged. This influences the definition of the flux, as explained in
the next section.

2.4.2 The electromigration effect and the Nernst–Planck equation
Returning to the experiment, at the beginning of the diffusion process, the highly mobile
H+ diffuses ahead of Na+, creating a positive excess charge in the right compartment. This
induces an electrical gradient that maintains electrical neutrality in the box. Consequently,
Na+ diffuses from right to left, but does not stop when its gradient concentration becomes
zero. The electrical gradient forces the sodium ions to the left and limits the amount of
hydrogen that can be transferred. Thus the Na+ - attracted by the negative Cl– on the left -
can continue to move until its concentration in the left compartment is many times greater
than that in the right (see Figure 2.4). As a result, the transport of ionic species is invariably

H+

Cl–

Na+

Fig. 2.4: Ions’ movement due to electro-neutrality effect.

coupled with partner ions due to electro-neutrality constraints. This in turn accelerates or
decelerates a specific ion. Between 1888 and 1890, Nernst [143, 144] and Planck [156, 157]
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refined a new model of Fick’s equations to include the effects of charged interactions: The
Nernst-Planck equation. Given Φ the electrostatic potential, and zi ∈ Z the ionic valences (+1
for Na+ and H+, −1 for Cl– ) the expression of the flux results

Ji = −Di (∇ui + ziui∇Φ) . (2.15)

This allows to obtain a new drift term describing electromigration. Typically, the electric
potential Φ is not provided, as its value over time and space depends on the ions themselves.
To close the system, a Poisson-type equation is usually added, as outlined later on.

Considering the two effects together, electromigration and volume filling constraint, the
flow becomes cross-diffusion, with an electrical drift term. In the example with the diffusion
matrix (2.14), Ji becomes

Ji = −
 2∑︂

i,j=1
Aij∇uj + ziDiui∇Φ

 ,

where Φ usually satisfies a Poisson-type equation. This family of new models is called
generalised Poisson-Nernst-Planck. They better capture phenomena such as current saturation
in crowded channels [68]. Generalised Poisson-Nernst-Planck equations will be the argument
of Part II of this thesis.

2.5 Thermodynamic definition of diffusion: Onsager’s generalisation
of Fick’s law

Section 2.4 gave an example of the strong correlation between diffusion-type phenomena,
such as how matter transport can cause an electromotive force and vice versa. In general,
when several irreversible transport processes (e.g. heat conduction, electrical conduction,
diffusion) occur in a system, they often interact with each other. One process typically induces
others, resulting in ’coupled’ transport. For example, a temperature gradient in a solution can
create a composition gradient, leading to thermal diffusion and its reverse effect, among other
interactions [147]. These considerations illustrate the interdependence of heat, electricity, and
matter transport. Without interaction, individual flows follow empirical laws such as Fourier’s
(2.1), Ohm’s (2.2), and Fick’s laws (2.3). When interactions are significant, phenomenological
relations describe currents as linear combinations of all gradients. For instance, diffusion J
and heat flux Q can be expressed as:

J = −(D∇u + DT ∇T ),
Q = −(k∇T + ku∇u),

where D, DT , and k are diffusion, thermal diffusion, and thermal conductivity coefficients,
respectively. More often, these relationships are expressed in terms of the forces producing
such currents. If µ represents the chemical potential, namely the energy absorbed or released
when the particle number of a given species changes, then J and Q can be rewritten in terms
of ∇µ and ∇(1/T ), where ∇µ represents the force of diffusion. Moreover, as discussed in
Sections 2.2 and 2.3, in multi-component solutions, there is also mutual interaction among



12 2 Macroscopic description of multi-species systems

solute transports (cross-diffusion effects). The question of how to interpret and define diffusion
in general therefore arises.

Generally speaking, diffusion is an irreversible process, in which energy dissipates and
entropy grows. It was Lars Onsager [147, 148] who laid the foundations for a rigorous theory
of diffusion. For a general flux (of matter, heat, electricity, etc.) Jα, where α encodes the
transport phenomenon under consideration, it holds

Jα =
∑︂

β

Lαβ∇fβ ,

where Lαβ encodes the Onsager matrix of transport coefficients, linking the driving forces
∇fβ to the fluxes Jα. The Onsager matrix is symmetric, meaning that

Lαβ = Lβ α.

Moreover, the entropy production or dissipation associated to the system, can be written in
terms of the Onsager matrix as ∑︁

α

∑︁
β(∇fα)T Lαβ∇fβ . Since the entropy production cannot

be negative, the Onsager matrix is hence positive semi-definite.
Hence, if µi represents the potential of the i-th species, which includes all the possible

diffusive effects, the flux Ji of the i-th species can be expressed as

Ji = −Diui∇µi.

Explicitly, µi reads
µi = µdif f

i + µel
i + · · · = log ui + ziΦ + · · · ,

and depends on the diffusive phenomena involved. In this reformulations of the fluxes, Fick’s
and Nernst-Planck laws are included. In concentrated solutions, as in the example of Section
2.4, when the finite size of the ions needs to be taken into account, an excess chemical
potential µex

i must be included in the definition of µi. Bikerman [25] suggested the choice
µex

i = − log(1 − ∑︁n
i=1 ui) = − log u0. I find these last remarks extremely interesting, as they

seem to bridge the diffusion theory with the boundedness-by-entropy method which will be
discussed in the next chapter. Here the entropy variables are strongly related to the potentials
µi arising in thermodynamics (see [121, Remark 4.1]).



Chapter 3

Mathematical and numerical study of
cross-diffusion systems
In Section 2.3 the general structure of quasilinear parabolic cross-diffusion systems was shown
(Equation (2.10)). In this chapter, and in the rest of the thesis, the focus will be on a simpler
structure of the diffusion matrix A. The framework is the same as in Section 2.3. Thus, given
the spatial (bounded) domain Ω ⊂ Rd with Lipschitz boundary and the time domain [0, +∞),
the matrix A satisfies

Ak ℓ
ij (x, u) = Aij(u)δk ℓ, i, j = 1, · · · , I

where I is the total number of species. In the examples (2.8) and (2.14) the diffusion matrix
has this structure. Hence, being Ji as in (2.9), the cross-diffusion system (2.10) reads

∂tui − div

 I∑︂
j=1

Aij(u)∇uj

 = ri(u), i = 1, · · · , I , (3.1)

or, written in vector form,
∂tu − div (A(u)∇u) = r(u). (3.2)

For the sake of simplicity, no-flux boundary conditions are imposed on ∂Ω. Initial conditions
are also given. The vector r(u) = (r1(u), · · · , rI(u)) encodes the reaction terms. For the cases
analysed in this thesis, the unknowns u(t) = (u1, · · · , uI)(·, t) : Ω → RI have the meaning
of concentrations or volume fractions of the components. If u represents the vector of con-
centrations, it is expected to take values in an open set D ⊂ (0, +∞)I . If it represents the
vector of volume fractions, it should take value in D ⊂ (0, 1)I . While in the first case the
unknowns ui should only be positive, in the second case they should be positive and bounded
(not exceeding the maximum available volume, i.e. 1).

The equations studied in Part II include both cross diffusion and drift term. Moreover,
an additional unknown is included in the system. This unknown will be called u0 and will
satisfy the volume filling constraint (2.13), namely

u0 := 1 −
I∑︂

i=1
ui.

The systems considered, with both cross-diffusion and drift, can be summarised by the formula

∂tui − div

 I∑︂
j=1

(Aij(u)∇uj + Qij(u)∇Φ)

 = ri(u), i = 1, · · · , I ,
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where Φ represents the electric potential satisfying a Poisson or Poisson–Fermi equation. In
the following, the drift coefficients Qij of the I × I matrix Q(u) will take the form

Qij = uiδij or Qij = u0uiδij .

However, for simplicity sake, this chapter will focus on cross-diffusion system of type (3.1).
Yet the case involving a drift term is treated similarly. A more in depth treatment can be
found in Part II.

The mathematical analysis of cross-diffusion systems is very difficult. The main difficul-
ties arise from the strong coupling of the equations and their nonlinearity. A standard tool
such as the maximum/minimum principle is generally not applicable to show bounds on
solutions. Moreover, the fact that the diffusion matrix A is often neither symmetric nor
positive semidefinite has made the study of the global-in-time existence of weak solutions a
challenge for mathematical research. General regularity results do not apply in this context,
so solutions can develop singularities in finite time.

Amann has shown [6] the existence of a unique local-in-time classical solution to quasi-linear
parabolic cross-diffusion systems under restrictions on the regularity of the spatial domain Ω
and on the spectrum of the diffusion matrix.

Ladyženskaya et al. [132] proved that L∞ bounds on the local solution u and its gradient,
under some growth conditions on the nonlinearities of the model, are enough to obtain global-
in-time existence of classical solutions. Amann in [7] formulated the concept of W 1,p weak
solutions and he showed that, if the local solution u with maximal existence time T satisfies

sup
0≤t≤T

||u(t)||W 1,p(Ω) < ∞, for p > d,

then the local solution u can be continued globally in time. However, such conditions are
often not fulfilled, in particular when d ≥ 2. Starà and John in [163] and Pierre and Schmitt
in [155] found some examples of parabolic systems with solutions that exhibit blow-up in finite
time. In general, therefore, it is not possible to show global solvability for general systems of
the cross-diffusion type. Additional conditions are needed to prove that local-in-time weak
solutions are bounded and can be continued globally in time. Le and Nguyen in [134] discovered
that structural assumptions on the diffusion matrix A are required.

In the next section the existence of global solutions for cross-diffusion systems with an
entropy structure is discussed. The boundedness-by-entropy method is explored to show the
global-in-time existence of weak solutions of the system (3.1). Bounds on the solutions can
also be derived.

3.1 Boundedness-by-entropy method
The boundedness-by-entropy method is a useful tool to show the global-in-time existence of
bounded solutions. It is applicable to a large class of physically relevant, strongly coupled
parabolic systems such as (3.2), which have a formal gradient flow structure or entropy
structure. To illustrate the method, the concept of (mathematical) entropy is first introduced.
This discussion is based on the works [46, 121, 123].
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Entropy structure An entropy density associated with the system (3.2) is a function h : D ⊂
Rd → R satisfying the following hypotheses:

- It is convex and C2(D);

- Its first derivative h′ : D → RI and the Hessian h′′ : D → RI × RI are invertible,

- The matrix h′′(u)A(u) is positive semidefinite for all u ∈ D.

The functional H(u) =
∫︂

Ω
h(u)dx is its corresponding entropy. If we identify the variational

derivative of H, namely δ H(u)
δ u , with its Riesz representative w := h′(u) (entropy variable), we

can formally rewrite a system (3.2) with an entropy functional in the vector form

∂tu − div (B(w)∇w) = r(u), (3.3)

where B = B(w) = A(u)h′′(u)−1 is the mobility matrix. Structure (3.3) is called entropy or
gradient flow, and has been observed in many cross-diffusion systems.

Remark 3.1 (How to determine if a system has an entropy structure?). For models coming
from physics or chemistry, the existence of entropy often follows from physical considerations.
However, there seems to be no general strategy for determining whether a cross-diffusion
system has an entropy structure or not. In [64] the authors showed that every cross-diffusion
system with an entropy structure has a normally elliptic diffusion matrix. This means that
the real parts of all its eigenvalues are positive. Therefore, if A(u) is not normally elliptic,
then such an entropy structure cannot exist. If A(u) is normally elliptic for all u ∈ D and
furthermore h′′(u)A(u) is symmetric for some convex function h(u), then the system has an
entropy structure. However, the last result does not give an explicit expression of an entropy
associated with the system.

Global-in-time existence and boundedness One of the consequences of the gradient flow
structure is represented by the following entropy inequality. Thanks to (3.3), integration by
parts and homogeneous Neumann boundary conditions, the time derivative of the entropy
becomes

d

dt

∫︂
Ω

h(u)dx =
∫︂

Ω
∂tu · h′(u)dx =

∫︂
Ω

∂tu · w dx = −
∫︂

Ω
∇w : B(w)∇w dx +

∫︂
Ω

r(u) · w dx,

(3.4)

where “:” denotes the Frobenius matrix product. For simplicity, the assumption r(u) · w ≤ 0 is
imposed. Thanks to the positive semidefiniteness of h′′(u)A(u), and thus of the matrix B(w),
the inequality

dH

dt
≤ 0 (3.5)

is derived. The functional H is consequently a Lyapunov functional, decreasing in time along
the solutions of the system. It is therefore a mathematical entropy. The latter is the same as
the physical one, but with the opposite sign.
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The term
∫︁

Ω ∇w : B(w)∇w dx is called entropy dissipation. Under certain conditions on
the matrix h′′(u)A(u), the entropy dissipation is crucial to deduce uniform estimates on the
gradient of u. Indeed, for example, if h′′(u)A(u) is positive definite uniformly in u, then∫︂

Ω
∇w : B(w)∇w dx =

∫︂
Ω

∇u : h′′(u)A(u)∇udx ≥ c

∫︂
Ω

|∇u|2dx, (3.6)

holds, for some c > 0. The positive definiteness of h′′(u)A(u), which implies (3.6), can be
weakened. Having a positive definite matrix h′′(u)A(u) with a constant depending on u ∈ D
is enough: There exist m1, · · · , mI ≥ 0 and c > 0 such that

zT h′′(u)A(u)z ≥
I∑︂

i=1
u

2(mi−1)
i z2

i , ∀z ∈ RI , u ∈ D. (3.7)

The key idea of the proof is to work with the reformulation (3.3), in the entropy variable w.
In particular, the existence proof combines the study of the existence for an approximated
problem with compactness result. The main points of the existence proof for the approximated
problem are summarised:

- First, the time derivative ∂tu(w) is replaced by its implicit Euler discretisation to avoid
problems with time regularity and to work only with elliptic equations. This introduces
a time discretisation parameter τ > 0..

- Since the operator
w ↦→ div(B(w)∇w)

is not uniformly elliptic, a higher-order regularisation term ϵ((−Δ)mw + w), where
m > d/2, ϵ > 0 must be added in (3.3). The new operator is thus uniformly elliptic, which
guarantees global solvability in w ∈ Hm(Ω). The second advantage of this regularisation
lies in the choice of m > d/2. Indeed, for such m the embedding Hm(Ω) ↪→ L∞(Ω) holds,
and the boundedness of w ensues. As a consequence, the relation w = h′(w) can be
inverted, and the inverse u(w) = (h′)−1(w) is well defined. Since h′ : D → RI , then

u(w) = (h′)−1(w) ∈ D.

Therefore, if D is bounded, the bound on u follows automatically, without using tools
like the maximum principle.

- The global-in-time existence of the variable w for the discretised and regularised system
is proven by a standard fixed-point argument. Thus, one should linearise the system by
"freezing" the non-linearity; show that the linearised problem is well defined (e.g. using
Lax-Milgram theorem); prove that the resulting solution operator associated with the
linearised equation admits at least one fixed point, namely a solution to the non-linear
problem.

At this point, if w(τ) denotes the constant-time interpolation of the discrete solutions, the
goal is to show convergence for u(w(τ)) as (ϵ, τ) → 0. Compactness estimates are needed
to identify the limit with a weak solution of (3.2). They follow from the lower bounds on
entropy dissipation (3.7). The main tool for carrying out this limit is a discrete version of the
Aubin-Lions lemma as written in [80]. It provides the almost everywhere convergence of the
sequence of discrete solutions (up to subsequences), which allows to identify the nonlinearities.
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Moreover, when passing into the limit (τ , ϵ) → 0, the solution varies in D̄. If the latter is
bounded, so is u(w).

An illustrative example is the Maxwell-Stefan system discussed in Section 2.2.1, with I = 3
species. In the following discussion, u = (u1, u2) actually denotes a discrete solution of the
approximated problem. The concentration of the third species can be expressed in terms of u1
and u2, namely u3 = 1 − u1 − u2, then

D := {u = (u1, u2) ∈ (0, 1)2 : u1 + u2 < 1}.

Furthermore, the entropy density for the system is defined as:

h(u) =
2∑︂

i=1
ui(log ui − 1) + (1 − u1 − u2)(log(1 − u1 − u2) − 1), u ∈ D.

Therefore,
w1 = ∂ h

∂ u1
= log u1

u3
and w2 = ∂ h

∂ u2
= log u2

u3
,

implying
ui(w) = ewi

1 + ∑︁2
i=1 ewi

,

for i = 1, 2, which is a function with image D. Therefore, ui are automatically bounded.
Remark 3.2. As shown in [77], the regularising term (−Δ)m + I d) can be avoided for systems
of the form

∂tu − Δa(u) = r(u),

with a : RI → RI invertible function, by using instead the operator (M − Δ)−1 : Lm(Ω) →
L∞(Ω), with m > d/2 and M > 0. The procedure allows to prove strict positive lower bounds
for the solutions and also the study of the limit τ → 0 only.

3.2 Uniqueness of weak solutions
For strong solutions of cross-diffusion systems, uniqueness follows from standard L2 estimates.
However, the uniqueness of weak solutions remains largely unresolved. From the entropy
method presented above, it is usually not possible to deduce the uniqueness of the solution.
The fixed point operator defined by the solution of the linearised problem usually only fulfils the
assumptions of the Leray-Schauder fixed point theorem. This allows to deduce the existence
but not the uniqueness of solutions of the (approximated) nonlinear problem. And even if one
could prove uniqueness for the approximate problem, this would not imply uniqueness for the
continuous problem. In fact, compactness provides only one convergent subsequence. There
may be another that converges to a different limit.

The main problems in proving uniqueness arise from the coupling of the system equations
and their nonlinearities. To the best of our knowledge, there is no general uniqueness result
for cross-diffusion systems, and only a few partial results have been obtained for specific cases.
The first result for diffusive systems was given by Alt and Luckhaus in [5]. They showed
uniqueness in the class of weak solutions under the integrability assumption on ∂tui and the
linearity of the elliptic operator. A relaxation of these hypotheses can be found in [151] by
Otto and in [2] by Agueh. However, both results are only valid for scalar equations. Results
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for cross-diffusion systems can be found for example in [174], for cross-diffusion systems with
volume filling, under simplifying assumptions on the nonlinearities, or in [37] and [106] for
initial data sufficiently close to the constant steady states.

Another discussion for cross-diffusion equations with drift term is in [64] where they used
the H−1 method, combined with a Gajewski method, to improve the results of [126] and
[174]. The mentioned methods are presented hereafter. Even in the linear diffusion case of the
one-species Fokker-Planck equation

∂tu − div(∇u + u∇Φ) = 0,

strong assumptions on the data are required (see [123]). The electric potential Φ should be
such that ∇Φ ∈ L∞(0, T ; Ld(Ω)).

The method of Gajewski and H−1 method will be discussed, and later the concept of weak-
strong uniqueness will be introduced. The latter is more appropriate to show the uniqueness
result in the context of cross-diffusion.

The method of Gajewski Gajewski in [97] developed a method, again based on an entropy
method, to obtain uniqueness of weak solutions of drift-diffusion models for semiconductor
devices. For the Fokker-Plank equation, this technique allows to obtain uniqueness under a
weaker regularity assumption on the potential Φ (namely Φ ∈ L2(0, T ; H1(Ω))).

The idea of the Gajewski’s method is to use a semimetric to compare two bounded solutions
u and v. Such semimetric is defined in terms of the entropy density h, namely

d(u, v) =
∫︂

Ω

(︃
h(u) + h(v) − 2h

(︃
u + v

2

)︃)︃
dx.

The main idea of the method is to show that t ↦→ d(u(t), v(t)) is decreasing in time. If u
and v are two solutions of the same Cauchy problem, they have the same initial data, i.e.
u(0) = v(0). Therefore, d(u(t), v(t)) ≤ d(u(0), v(0)) = 0. Since the semimetric can usually be
bounded from below by the difference of u and v in the squared L2(Ω)-norm, the equality
u(t) = v(t) follows for t > 0, i.e. in Ω.

Gajewski’s method can also be applied in the context of cross-diffusion. For example, in
[102] it was used to show the uniqueness of a generalised Poisson-Nernst-Planck model with
volume filling constraint (2.13). However, strong assumptions on the diffusion coefficients
are needed to rewrite the system in Fokker-Planck form and thus prove uniqueness. Another
application in the context of cross-diffusion can be found in[174].

H−1 method The H−1 method [79, 122, 141, 154] is another technique often applied in
this context. This method is a dual approach, which involves choosing a test function χ that
satisfies an appropriate elliptic problem. Consequently, uniqueness is reduced to the existence
of χ ∈ L2(0, T ; H1(Ω)) for the Poisson problem:

−Δχ = u − v , (3.8)
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with homogeneous Neumann boundary conditions on ∂Ω, where u and v are solutions of the
cross-diffusion system (3.2), starting from the same initial data. If it can be shown that

d

dt

∫︂
Ω

|∇χ|2 dx ≤ 0, (3.9)

then χ must be constant, leading to the conclusion that u = v. However, deriving an inequality
like (3.9) typically requires strong assumptions on A(u)∇u =: Ψ(u). Specifically, we have:

d

dt

∫︂
Ω

|∇χ|2 dx = ⟨∂t(−Δχ), χ⟩
= ⟨∂t(u − v), χ⟩
= ⟨∇ · (∇Ψ(u) − ∇Ψ(v)), χ⟩
= −⟨Ψ(u) − Ψ(v), Δχ⟩.

Since χ solves (3.8), we need to assume the monotonicity of Ψ to get:

−⟨Ψ(u) − Ψ(v), Δχ⟩ = −⟨Ψ(u) − Ψ(v), u − v⟩ ≤ 0.

The monotonicity assumption on Ψ can often be weakened. However, the new conditions that
replace it are still quite restrictive in practice.

Weak-strong uniqueness Many recent works have demonstrated that establishing weak-
strong uniqueness appears more feasible. For instance, weak-strong uniqueness has been
proven for the compressible Navier-Stokes system [88], the Fourier-Navier-Stokes system [89],
and for the (isentropic) Euler equations [34, 112]. For hyperbolic-parabolic systems the result
has been shown in [66],whereas [35] and [105] proved it for the Navier-Stokes-Korteweg and
Euler-Korteweg systems, respectively. Additionally, this approach has been successful for the
Navier-Stokes equation with surface tension [94], reaction-cross-diffusion systems [65, 116, 125,
133], entropy-dissipating reaction-diffusion equations [94], energy-reaction-diffusion systems
[115], and Maxwell-Stefan systems [119]. These studies illustrate that weak-strong uniqueness
is a viable approach for various complex systems.

The method consists in comparing strong and weak solutions. Strong solutions are weak
solutions that are more regular. Weak-strong uniqueness states that if both a weak solution
u and a strong solution v exist for the same initial-boundary value problem with the same
initial data, the weak solution must coincide with the strong solution for as long as the strong
solution exists. Hence, given a strong solution, it coincides with any weak solution. Thus the
two classes of solutions coincide. The approach discussed ensures that every strong solution
coincides with every weak solution, leading to the uniqueness of solutions in both categories.
However, this approach typically involves complex calculations. Additionally, establishing the
existence of a strong solution is required.

Sometimes, the comparison between the two kind of solutions can be achieved by working
directly with the weak formulation, thanks to linear energy estimates [20]. More often, the
weak-strong uniqueness approach relies on employing the relative entropy

H(u|v) =
∫︂

Ω

(︁
h(u) − h(v) − h′(v)(u − v)

)︁
dx,
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where h signifies the entropy density, to compare u and v. Indeed, typically, H(u|v) acts as an
upper bound for the L2(Ω)-distance between the two solutions, and it is better adapted to the
equation in consideration. By using a right test function in the weak formulation, a bound like

dH

dt
(u|v) ≤ C(v)H(u|v),

with C(v) > 0 depending on the strong solution only can be established. This enables the
application of Gronwall’s lemma, leading to the conclusion H(u(t)|v(t)) = 0 and consequently
u(t) = v(t), for t ≥ 0.

Note that the relative entropy has similarities to the Gajewski semimetric. The transition
from one expression to the other is still not fully understood. The link between the two
expressions is that they are both "nonlinear formulations" of |u − v|2. Some comments are
made in [64, Remark 4].

3.3 Finite Volume schemes
The numerical approximation of cross-diffusion systems is also complex due to the non-linearity
of the fluxes. Since cross-diffusion systems of parabolic type are studied in this thesis, it is
essential to introduce discretization both in time and space.

In the cross-diffusion community, the implicit Euler method is commonly used to discretize
the time derivative. For the explicit Euler method, the entropy decay, which provides stability
estimates, is subject to a stability constraint (see [92]). Additionally, when physical parameters
are considered, this stability condition depends on those parameters. It can happen that these
parameters are small, leading to an inefficient scheme (see inequality (2.14) of [17] for the time
step, where the bound is proportional to the square of the Debye length parameter ≈ 10−6).
On the other hand, implicit Euler guarantees unconditional stability with respect to the time
step.

Regarding space discretization, finite volume and finite element methods are the most
popular in the literature on numerical studies of cross-diffusion systems. The main goal is
to define schemes that preserve the structure of the continuous problem as much as possible,
namely the non-negativity or bounds on the solutions, and the decay of the entropy. Moreover,
accurate schemes are sought.

The advantage of finite element methods is that they search for solutions in a finite
dimensional subspace of the space where weak solutions of the continuous problem lie. However,
these schemes do not encode the physics of the problem and they restrict the space of usable
test functions to show properties on the discrete solutions. They are therefore unable to prove
important properties such as the non-negativity of solutions.

On the contrary, finite volume approximations are more suitable and attractive methods
when dealing with conservation laws, like (3.1) in absence of reactions. They guarantee local
and global mass conservation, positivity/bounds of solutions, thermodynamic consistency,
which are not always possible to show in the finite element context. On the space-time domain
Ω × [0, +∞), a general conservation law reads as

∂tu + div J(u, ∇u) = 0, (3.10)
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where the initial condition is set as u(·, 0) := u0(·), and boundary conditions are specified on
∂Ω. For simplicity, no-flux boundary conditions are adopted. It is first noticed that cross-
diffusion equations are part of this category. After introducing a partition T of Ω in polytopes
(call control volumes or cells), the principle of the finite volume method is to approximate the
mean value of the fluxes on the edges of each control volume. The scheme is hence based on

K

σ = K|L

L

xK xL

dσ

mσ

Fig. 3.1: Example of neighbouring cells satisfying the orthogonality condition

local balanced laws. Denoting by EK the set of edges of K ∈ T , one can apply the divergence
theorem to obtain: ∫︂

K
∂tudx +

∑︂
σ∈EK

∫︂
σ

J(u, ∇u) · νσds = 0, (3.11)

where νσ denotes the exterior unit normal vector to the edge σ. As initial data for (3.11), one
takes

u0
K := 1

mK

∫︂
K

u0(x)dx, ∀K ∈ T ,

with mK the Lebesgue measure of K. Moreover, since (3.10) involves also a time derivative, a
time discretisation (tn)n≥0 of [0, +∞) is also introduced and the approach proceeds via the
implicit Euler method. Consequently, the following finite volume scheme for the unknowns
un

K is derived: 
mK
Δt (un

K − un−1
K ) + ∑︁

σ∈EK
F n

K σ = 0, ∀K ∈ T , ∀n ≥ 1,

u0
K := 1

mK

∫︁
K u0(x)dx, ∀K ∈ T ,

where Δt is the time step and F n
K σ is the numerical flux.

How to define the numerical flux F n
K σ? It should be consistent, namely it should be an

approximation of
∫︁

σ J(u, ∇u) · νσds. Moreover, it has to be conservative:

F n
K σ = −F n

Lσ, ∀K , L ∈ T , ∀n ∈ N.

This property is important to conserve the total discrete mass, in absence of reactions. Finally,
the flux approximation should ensure that the resulting scheme retains, at the discrete level,
several important properties from the continuous level, such as the positivity of concentrations,
bounds for volume fractions, decay of free energy, preservation of thermodynamic equilibrium,
and long-time behavior of the solutions. Some of these properties are also crucial for proving
the convergence of the scheme. The interesting thing to note is that there is no systematic way
to define the numerical fluxes for a given equation or system. There may be several definitions
of F n

K σ that satisfy the above properties. Among these definitions, the choice falls on the flux
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with the highest order of convergence or the one that best suits the properties one wants to
study.

In this thesis, the focus is on the two-point flux discretisation method, where, for an edge
σ = K|L, the numerical flux F n

K σ depends solely on the discrete values of the variables in
the cells K and L. If the flux J(u, ∇u) is linear, like for example in the case of Fick’s law
J(u, ∇u) = −∇u, then a good approximation of it is provided by finite-difference discretisation
of the gradient:

F n
K σ := mσ

dσ
(un

K − un
L),

where mσ is the Rd−1−Hausdorff measure of σ, and dσ := d(xK , xL) denotes the distance
between the cell centers xK and xL. Under the orthogonality condition of the mesh, i.e. the
vector connecting the center xK of the cell K to the one of the neighbour cell L, namely xL, is
orthogonal to the shared edge σ, this approximation of the flux is consistent [87]. However, when
the flux J(u, ∇u) includes an advective effect, the numerical fluxes are no longer straightforward
to define. For example, consider the drift-diffusion flux J(u, ∇u) = −∇u − u∇Φ, where Φ is a
given electric potential. The drift term poses the challenge of approximating the value of u
over σ. Since the approximation un

K is constant over K, and the approximation un
L is constant

over L, a priori, the value of u over σ = K|L is not well defined. Several schemes have been
developed in this regard. A simple definition consists in taking un

σ as the average between the
value of the unknown on both sides of σ, namely un

K and un
L (centred scheme):

F n
K σ := mσ

dσ
(un

K − un
L) − mσ

dσ

un
K + un

L

2 (ΦK − ΦL), (3.12)

where ΦK represents the discretisation of the electric potential over K. This scheme introduces
very little numerical diffusion in the discretization of the drift term, but it is therefore also not
very stable if the convection is much stronger than the natural diffusion. When advection is
predominant, one of the most natural choice would be the upwind scheme. The latter consists
in choosing as un

σ either un
K or un

L, depending on the sign of the approximated gradient, namely
the versus of the speed flux related to u:

F n
K σ := mσ

dσ
(un

K − un
L) − mσ

dσ

 un
K(ΦK − ΦL), if (ΦK − ΦL) ≥ 0,

un
L(ΦK − ΦL), if (ΦK − ΦL) ≤ 0.

(3.13)

The resulting scheme is more stable than the centered one, but additional numerical diffusion
is introduced.

Both the upwind and centered schemes reproduce a discrete version of the entropy inequality
[52]. However, they do not preserve the form of the thermal equilibrium at the discrete level.
This means that by substituting the discrete version of the thermal equilibrium u = eΦ in the
discrete flux of the scheme, one does not obtain F n

K σ = 0. An interesting scheme that preserve
the thermal equilibrium is the Scharfetter-Gummel scheme (SG). First proposed in [159] to
discretised one-dimensional drift-diffusion equations, it makes use of the Bernoulli function
B(x) = x

ex−1 to discretise the fluxes:

F n
K σ := mσ

dσ
(B(ΦL − ΦK)un

K − B(ΦK − ΦL)un
L)) . (3.14)
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The latter can be seen as an "interpolation" of the upwind and centered scheme, inheriting the
good properties of both schemes. The latter are obtained in the cases of very large or very
small advection. In general, both the fluxes (3.12) and (3.13) can be written in the form (3.14)
by using an appropriate B-function, see the work [51]. Here the authors proposed a way to
unify and simplify the notation. Inspired by the Scharfetter-Gummel scheme, they suggested
to write the numerical fluxes via a Lipschitz continuous function B, such that B(0) = 1,
B(x) ≥ 0, and B(x) − B(−x) = −x, for all x ∈ R.

An alternative flux discretisation, which preserves the thermal equilibrium, is the squareroot
approximation scheme (SQRA), which can be written in the form (3.14) using the function
B(s) = es/2. This choice, however, does not fit the definition of B-functions of [51], as
B(x) − B(−x) ̸= −x. In [114], a generalisation of the B-functions was proposed (see Table 1
of [114]). Such function do not have to fulfil the equality B(x) − B(−x) = −x. The scheme,
which is part of exponentially fitted schemes, is based on flux reformulation via the Slotboom
variable w := ueΦ:

J(u, ∇u) = e−Φ∇w .

Finite difference is employed to discretise the gradient, whereas different Stolarsky mean
weight functions on the edges, denoted by M in Part II, can be used to approximate e−Φ. This
family includes both the SG and SQRA schemes. The convergence order mainly depends on
mesh quality and, to a lesser extent, on Stolarsky weights. The Scharfetter–Gummel scheme
has the best analytical convergence properties, but a range of Stolarsky means offers similar
quality.

Thanks to its good properties, the Scharfetter–Gummel method has spread from the
semiconductor field into the numerical community to simulate other equations as well. See for
example the work [137] for the Keller-Segal equation in 2D and the work [4] for the Keller-Segal
and Fokker-Planck equations. The flow is reformulated with the variable Slotboom and the SG
scheme is used. Recent progresses have been done in the application of the Scharfetter-Gummel
scheme for drift-diffusion problems with nonlinear diffusion [23]. The extension to nonlinear
diffusive systems with drift term was developed in [39].

In cross-diffusion systems, with pure diffusion, the flux is given by J(u, ∇u) = −A(u)∇u.
Approximating the diffusion part alone is inherently tricky, even without considering advection.
Since u is no longer scalar, the term A(u)∇u = ∑︁

i,j Aij(u)∇uj requires careful handling.
Specifically, one needs to understand how to approximate A(u) on σ. Reformulation of the
flux are sometimes useful in this regard.

The upwind method has been widely employed to express numerical fluxes in terms of
A(un

K) and A(un
L) only, depending on the sign of the discrete gradient of u [3, 14, 45]. As in

the discretization of convection, the main limitation is that upwind methods only provide
first-order accuracy in space. To achieve second-order accuracy, a natural approach would
be to reformulate the flux and use the arithmetic mean to approximate the values on the
edges. Hence values on σ are defined as the mean between their values on the cells K and L
(centered scheme) [72].

However, this choice may not preserve the entropy inequality at the discrete level when
the volume filling constraint (2.13) is enforced. Using the arithmetic mean to define the
values over σ does not lead to this deduction. Some studies have utilized the logarithmic
mean, as discussed in [44, 127]. With this approximation, the chain rule for entropy density is
preserved at the discrete level, allowing for deduction of stability properties while maintaining
second-order accuracy.
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This thesis analyses numerical schemes for cross-diffusion systems, with finite volume
constraint, that also include a drift term. The first complete study of a nonlinear drift-diffusion
system for two species can be found in [50, 53]. The main focus of the thesis is on the definition
of good approximations of the flux J(u, ∇u) = −(A(u)∇u + u∇Φ), where both the difficulties
of cross-diffusion and advection are involved. The discussion is postponed to Chapter 6.



Chapter 4

The formal diffusive limit to derive macroscopic
systems
As mentioned in Section 1.2.2, writing equations that describe the macroscopic dynamics
of a system of interacting agents often involves adding terms that are not justified by the
microscopic dynamics of the entities. The derivation of multicomponent equations from
a system of Boltzmann equations represents a significant bridge between the microscopic
dynamics of molecules and the macroscopic behavior of mixtures. This derivation provides a
theoretical framework that explains how interactions at the molecular level lead to observable
diffusion phenomena in multicomponent systems.

In this chapter, an overview of the Boltzmann equation for single and multiple species will
be given. Then, a general explanation of the hydrodynamic limit in general, and the diffusion
limit in particular, will be provided. The main focus will be on deriving diffusion partial
differential equations from the Boltzmann equation.

4.1 General introduction to kinetic theory
As already discussed in Section 1.2.2, in this approach, a distribution function F = F (t, x, v)
gives the probability of finding a molecule with velocity v at the spatial position x at time t.
The integral ∫︂

X×V
F (t, x, v) dx dv

gives the number of molecules at time t in the space-velocity domain X × V .
The basic equation of kinetic theory is the free transport equation

∂tF + v · ∇xF = 0, (4.1)

which is satisfied by F when no forces are involved. Thus, in the absence of forces, given the
initial distribution of the molecules, F0(x, v), the distribution at time t at position x with
velocity v will be the translation of F0:

F (t, x, v) = F0(x − tv , v).

When forces are involved, the motion of molecules is no longer rectilinear, and equation (4.1)
needs to be modified accordingly. One type of force that can be involved is those occurring on
non-negligible spatial scales relative to the spatial scale of the model. For example, this is the
case with the gravitational potential of Saturn acting on the "dust" composing its rings [61].
Other examples include the mutual interaction between the dust molecules themselves or the
mutual electric attraction or repulsion between ions in an ion mixture [107].
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Since the force is external, or many entities are involved in determining it, it can be
represented via F = F(x, v). In the second case, F will be an average field accounting for the
effect of all the entities. This leads to the so-called Vlasov-type equations, where an additional
term like F · ∇vF is added to equation (4.1):

∂tF + v · ∇xF + F · ∇vF = 0. (4.2)

When molecules interact via forces that occur on spatial scales negligible compared to the
spatial scales of these models, the interactions are referred to as collisions. In this case, forces
are not modeled by a mean field but are localized. At each instant t and at each fixed point
in space x, these interactions depend only on the statistical distribution of velocities at this
instant t and at this point in space x, not on those at another point x′. These interactions are
encoded in the equation (4.1) via an operator C, and the resulting equation is:

∂tF + v · ∇xF = C(F (t, x, ·))(v). (4.3)

The expression of the operator C depends on the assumptions made for the collisions. In the
next section, the Boltzmann collisional operator will be considered and discussed [104, 108].

4.2 The mono-species Boltzmann equation
The Boltzmann equation

∂tF + v · ∇xF = Q(F , F ), (4.4)

has the objective to describe a rarefied monoatomic gas, where only binary collisions happen.
Such collisions, encoded in the operator Q(F , F ), are also assumed to be elastic, localised in
time and space, and micro-reversible (reversible when modelled on a microscopic scale: during
a collision, the probability that the velocities of the two molecules (v′, v′∗) are exchanged in
(v , v∗) is equal to the probability of observing the inverse transformation). Moreover, only
decorrelated molecules collide (molecular chaos assumptions: the collision process contains
a past-future asymmetry that allows correlations between molecules to increase over time).
At the microscopic level, if one molecule with velocity v′ ∈ R3 collides with another one with
velocity v′∗, they change their velocities according to

(v′, v′
∗) = (v − [(v − v∗) · n] n, v∗ + [(v − v∗) · n] n) . (4.5)

In this parametrisation, the post-collisional velocities (v , v∗) are completely determined by the
pre-collisional ones and the parameter n ∈ S2. In particular, from (4.5), the momentum and
the kinetic energy conservation at each collision follow:v′ + v′

∗ = v + v∗

|v′|2 + |v∗|2 = |v|2 + |v′
∗|2.
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The operator Q(F , F ) represents the variation of the number of molecules with velocity v. For
elastic, localised, micro-reversible collisions of decorrelated molecules, Q is non-linear and can
be defined [49] as

Q(F , F )(v) :=
∫︂
R3

∫︂
S2

(F (v′
∗)F (v′) − F (v∗)F (v))B(v − v∗, n)dndv∗, (4.6)

where B(v − v∗, n) is the collisional kernel. It encodes, heuristically, the probability that a
collision between a molecule with velocity v and one with velocity v∗ happens, keeping track
of the microscopic interaction. It has the classical form [108]:

B(v − v∗, n) = cpp|v − v∗|b
(︃

|v − v∗|,
⃓⃓⃓⃓
n · v − v∗

|v − v∗|
⃓⃓⃓⃓)︃

, (4.7)

where b ≥ 0 is the specific differential cross-section, which has unit area over mass, and cpp is
the scattering cross-section between two colliding molecules.

Hard-sphere kernel For the simplified case of hard sphere collisional kernel, the collision
kernel (hard-sphere kernel) corresponds to pairwise elastic collisions between such hard spheres:

B(v − v∗, n) = cpp|(v − v∗) · n|. (4.8)

The reader should note that such an approximation do not account for electrostatic interaction
between the constituents.

Maxwell kernel Another particular case of collision kernel is the Maxwell kernel. Here, the
collision kernel does not depend on the relative velocity, but only on the deviation angle. The
Maxwellian kernel is widely used as it simplifies the expression of the collisional operator.
However, it does not have a physical justification. It consists in:

B(v − v∗, n) = cppb̂

(︃⃓⃓⃓⃓
n · v − v∗

|v − v∗|
⃓⃓⃓⃓)︃

, (4.9)

with b̂ an integrable and nonnegative function.
In the next section the attention is shifted to mixtures. A kinetic description of them will

be given in two different circumstances.

4.3 The Boltzmann equations for mixtures
In this section, two cases are treated. The first discussed model is ideal to treat mixtures that
collide without exchanging energy. The second one fits more for aerosol mixtures. In this
case, indeed, the big difference in size and mass between the species causes exchange of energy
between them.

Boltzmann equations for multi-species mixtures of ideal gases To describe multi-species
mixtures of ideal monoatomic gases, a Boltzmann-type model was proposed in [33], for a
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mixture of I gases, each described via a distribution Fi = Fi(t, x, v), for i = 1, · · · , I. The
system of equations satisfied by the unknowns is hence

∂tFi + v · ∇xFi = Qi(Fi, Fi) +
∑︂
j ̸=i

Qij(Fi, Fj), i = 1, · · · , I . (4.10)

The latter is a generalisation of (4.4) for the multi-species case. The operator Qi accounts for
collisions among the i-th species:

Qi(F , F )(v) :=
∫︂
R3

∫︂
S2

(F (v′
∗)F (v′) − F (v∗)F (v))Bi(v − v∗, n)dndv∗. (4.11)

Here, the pre and post collisional velocities still obey (4.5) and Bi represents the collision
kernel of the i-th species. On the other hand, the operator Qij describes collisions between
molecules of the species i and j ̸= i. For two different functions F = F (v) and G = G(v∗), it
can be written as:

Qij(F , G)(v) :=
∫︂
R3

∫︂
S2

(G(v′
∗)F (v′) − G(v∗)F (v))Bij(v − v∗, n)dndv∗, (4.12)

where Bij contains information about the cross collisions between a molecule of the species i,
with mass mi and velocity v′ and one with velocity v′∗ of the species j, with mass mj . The
relation between the pre-collisional velocities and the post collisional one (v , v∗) is����

v′ = miv + mjv∗
mi + mj

+ mj

mi + mj
Tn(v − v∗),

v′
∗ = miv + mjv∗

mi + mj
− mi

mi + mj
Tn(v − v∗).

where Tn(z) = z − 2(n · z)n, ∀z ∈ R3 [31].

Boltzmann equations for aerosol mixtures The collision operators (4.12) do not account
for internal energy or chemical reactions among the different species. When dealing with an
aerosol, i.e., a gas in which solid or liquid microscopic particles are suspended, the nature
of the dust cannot be considered solely by introducing different masses for the species. In
[59], a novel model for the case of I = 2 species was proposed. It has the same structure as
(4.10), but with different collision operators. The collisions between dust particles (with mass
mp) and gas molecules (with mass mg) are assumed to be inelastic and described by a diffuse
reflection mechanism (at a fixed temperature) on the surface of dust particles.

This collision mechanism accounts for the macroscopic character of dust particles compared
to gas molecules. According to diffuse reflection, gas particles that strike a microscopically
rough wall get reflected at some random angle that is uncorrelated with their angle of incidence.
This is due to particle-wall interaction, which imparts some information from the wall to the
reflected particles. In a collision between a particle and a molecule, the post-collisional relative
velocity is picked from a half-Maxwellian distribution at the temperature of the particle surface
Tp. The collision mechanism between dust and gas thus introduces, for n ∈ S2, the probability
density hn of post-collisional relative velocities, given by:

hn(z) = 1
2π

m2
g

k2
BT 2

p

(n · z) e
− mg |z|2

2kBTp 1{z·n≥0},
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where kB denotes the Boltzmann constant.
The collision operators to describe this mechanism have been derived in [57] for the case of

a fixed surface temperature Tp of particles (independent of time and space). Here, hard-sphere
kernels ς(v − w , n) = |(v − w) · n|, where cg p is the scattering cross-section between the
two colliding species, were considered. If F1 = F1(t, x, v) represents the distribution of dust
particles and F2 = F2(t, x, w) represents the distribution of gas molecules, then

Q12 (F1, F2) (t, x, v) = cg p
∫︂
R3

∫︂
R3

∫︂
S2

[︄
F2

(︁
w′)︁ F

(︁
v′)︁ e

mg |v′−w′|2
2kBTp − F2(w)F1(v)e

mg |v−w|2
2kBTp

]︄

× ς(v − w , n)e− mg |v−w|2
2kBTp hn(t, x, z)dzdndw

and

Q21(F1, F2)(t, x, w) = cg p
∫︂
R3

∫︂
R3

∫︂
S2

[︄
F2

(︁
w′)︁ F1

(︁
v′)︁ e

mg |v′−w′|2
2kBTp − F2(w)F1(v)e

mg |v−w|2
2kBTp

]︄

× ς(v − w , n)e− mg |v−w|2
2kBTp hn(t, x, z)dzdndv ,

where ����
v′ = mpv + mgw

mp + mg
− mg

mg + mp
z ,

w′ = mpv + mgw

mp + mg
+ mp

mg + mp
z .

Now that the kinetic setting is introduced, the main topic of the chapter can be discussed.

4.4 The hydrodynamic limits of the Boltzmann equation
The problem of the hydrodynamic limit can be described as the transition from the Boltzmann
description of dilute gases to a hydrodynamic description on large spatial and temporal scales.
Reviews addressing this topic are available in [170] and [108]. Before delving into the subject
of hydrodynamic limits, the Boltzmann equation in dimensionless variables is introduced.
Subsequently, the attention shifts to the method of moments, the Hilbert expansion, and the
Chapman-Enskog expansion.

Collision invariants and conservation laws The connection between kinetic and macroscopic
theory relies on local macroscopic quantities such as density, mean velocity, and temperature
(referred to as physical observables). As noted in Section 1.2.2, these quantities can be
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interpreted as the mass, expectation, and variance of the particle distribution F . For a single
species, these quantities are defined as:

ρ(t, x) =
∫︂
R3

F (t, x, v) dv ,

u(t, x) = 1
ρ(t, x)

∫︂
R3

F (t, x, v) v dv ,

θ(t, x) = mp

3kBρ(t, x)

∫︂
R3

F (t, x, v) |v − u(t, x)|2 dv ,

(4.13)

where kB is the Boltzmann constant and mp is the particle mass.
In the case of multiple species, local macroscopic quantities extend to a family of densities

(ρi)1≤i≤I , velocities (ui)1≤i≤I , and temperatures (θi)1≤i≤I , each associated with their respective
distribution functions (Fi)1≤i≤I . For a detailed discussion on mixtures, readers can refer to [26].
The following discussion, for the sake of simplicity and readability, focus on the mono-species
case. Similar considerations hold for mixtures, where the procedure needs to be repeated for
each species.

The conservation laws (8.4) are expected to have counterparts at the macroscopic level.
One would expect to deduce conservation laws for the macroscopic quantities in (4.13) by
integrating the Boltzmann equation (4.4) over velocity, suitably test function φ(v). These
functions are φ(v) = 1, vℓ,

|v|2
2 for ℓ = 1, 2, 3. The first good news is that φ(v) = 1, vℓ,

|v|2
2 for

ℓ = 1, 2, 3 are collisional invariants for (4.6). This means:

φ(v′) + φ(v′
∗) = φ(v) + φ(v∗),

for every (v , v∗, n) ∈ R3 × R3 × S2. Consequently, these invariants imply:∫︂
R3

Q(F , F )(v)φ(v) dv = 0, (4.14)

where Q(F , F ) represents the collision operator. This equality is derived by using the weak
formulation:∫︂

R3
Q(F , F )(v)φ(v) dv = 1

2

∫︂
R3

∫︂
R3

∫︂
S2

F F∗(φ′ + φ′
∗ − φ − φ∗)B(v − v∗, n) dv dv∗ dn,

where the notation F = F (v), F∗ = F (v∗), F ′ = F (v′), and F ′∗ = F (v′∗) (and similarly for φ)
is adopted. This notation will be used throughout the rest of the thesis. While integrating the
Boltzmann equation (4.4) with these invariants yields local conservation laws for (4.13), the
resulting system is not closed. Each equation for the time derivative of a moment involves
higher-order moments such as ∇x · (

∫︁
R3 F v ⊗ v dv) and ∇x · (︁∫︁

R3 F |v|2v dv
)︁
, which are not

expressible solely in terms of ρ, u, and θ.
Each equation for the time derivative of a moment involves higher-order moments such as

∇x · (
∫︁
R3 F v ⊗ v dv) and ∇x · (︁∫︁

R3 F |v|2v dv
)︁
, which are not expressible solely in terms of ρ, u,

and θ.
Thus, the central challenge in transitioning from the Boltzmann equation (4.4) to a system

of local conservation laws for ρ, u, and θ is: How can this conservation law system be closed?
One approach is to specify a functional form for the distribution function F , tailored to the
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specific regime of interest. This choice is crucial for accurately closing the conservation laws
for the primary variables (ρ, u, θ).

The dimensionless Boltzmann equation To facilitate the closure of the conservation laws,
it is necessary to rescale the problem. Let L, t◦, T ◦, and V ◦ the macroscopic length scale, time
scale, reference temperature, and reference velocity of the particles. The latter corresponds
to the thermal speed of the particles with energy 3

2kBT ◦, being kB the Boltzmann constant.
Hence

V ◦ =
√︄

5
3

kBT ◦

mp
,

where mp corresponds to the particle’s mass. One then defines the dimensionless variables

x̂ = x

L
t̂ = t

t◦ , v̂ = v

V ◦ ,

and the dimensionless unknown:

F̂ (t̂, x̂, v̂) = F (t, x, v)
F ◦ , with F ◦ = Np

(V ◦)3

where Np is the density of particles in a volume L3. The collisional kernel, being the relative
velocity times the scattering cross-section of the particles, is rescaled as

B̂(ẑ, n) = 1
V ◦ B(z , n), where ẑ = z

V 0 .

Introducing the Strouhal number γ and the Knudsen number δp (mean free path over charac-
teristic length)

γ = L

t0V 0 , and δp = 1
NpσppL

,

the dimensionless Boltzmann equation takes the form:

γ ∂t̂F̂ + v̂ · ∇x̂F̂ = 1
δp

Q̂(F̂ , F̂ ), (4.15)

where
Q̂(F̂ , F̂ ) =

∫︂
R3

∫︂
S2

(F̂ (v̂′
∗)F̂ (v̂′) − F̂ (v̂∗)F̂ (v̂))B̂(v̂ − v̂∗, n)dndv̂∗.

One needs to clarify what happens when the parameters get small. When δp approaches
zero, the distance between two collisions will be negligible compared with the spatial scale.
Hence the gas can be thought as a fluid. Moreover if the Strouhal number γ is constant, or
approaches zero as well, then from (4.15), one can deduce that in the limit also the collisional
operator becomes null. Let’s try to interpret what Q(F , F ) = 0 means. The starting point to
do so is the H-theorem and the notion of entropy.

Entropy and equilibrium The functional

H(F )(t) :=
∫︂
R3

∫︂
R3

F (t, x, v) log F (t, x, v)dv dx, (4.16)
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is called (mathematical) entropy associated to (4.4). The H-theorem shows that

d

dt
H(F )(t) ≤ 0, (4.17)

meaning that the entropy decreases in time along the solutions of the Boltzmann equation.
Indeed, by defining the dissipation as the functional

D(F )(t, x) :=
∫︂
R3

Q(F , F )(t, x, v) log F (t, x, v)dv , (4.18)

then
d

dt
H(F )(t) = −

∫︂
R3

D(F )(t, x)dx ≤ 0,

thank to the weak formulation∫︂
R3

Q(F , F )(v)φ(v)dv = 1
4

∫︂
R3

∫︂
R3

∫︂
S2

(F F∗ − F ′F ′
∗)(φ′ + φ′

∗ − φ − φ∗)B(v − v∗, n)dv dv∗dn,(4.19)

of the collisional operator Q(F , F ). Moreover, another important result stated in this theorem
is that [107]∫︂
R3

D(F )(t, x)dx = 0 ⇐⇒ F (t, x, v) = ρ(t, x)
(2π θ(t, x))3/2 exp

(︄
−|v − u(t, x)|2

2θ(t, x)

)︄
=: M(ρ,u,θ)(t, x, v)

⇐⇒ Q(F , F ) = 0.

Therefore, even though it is not a solution to the Boltzmann equation, the local Maxwellian is
an equilibrium for the Boltzmann equation, in the sense that it is a minimum of the entropy
functional. Saying that Q(F , F ) = 0 is equivalent to say that F is a local Maxwellian. When
δp approaches zero, F approaches a local Maxwellian in the parameters (4.13).

Hydrodynamic limits As mentioned in previous discussions, closing the system of local
conservation laws requires choosing an expression for F in an appropriate regime. In the fluid
regime, i.e., δp → 0, the distribution function approaches the local Maxwellian M(ρ,u,θ)(t, x, v).
Hence, a proper approximation of F is a perturbation of the local Maxwellian.

Such an approximation is valid when the size of the system and the time scale of interest
are large compared with the typical space and time scales of collisions, i.e., the mean free path
and the mean time between collisions. In this regime, the role of collisions is considerably
enhanced, as their effect is to bring F closer and closer to a local Maxwellian. Moreover, a
physical regime with frequent collisions is also where the set of particles can be considered a
fluid.

From the previous discussion, it emerges that changing the time-space scale of the problem
is necessary to approximate F as a local Maxwellian M(ρ,u,θ). This change allows for closing
the conservation law system for the primary variables (ρ, u, θ).

One way to perform such a limit is to directly pass into the limit in the conservation laws
for the perturbation. Such a method is called method of moments. An example will explain
better how it works. For example, the compressible Euler equations are obtained in the limit
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δp =: ϵ ≪ 1, when γ = 1. By omitting the hats on the rescaled variables and underling the
dependence of the unknown on ϵ, we have that F ϵ = F ϵ(t, x, v) satisfies

∂tF
ϵ + v · ∇xF ϵ = 1

ϵ
Q(F ϵ, F ϵ). (4.20)

In the limit ϵ → 0, the distance between two collisions will be negligible compared with the
spatial scale considered. The gas can be hence be thought as a fluid. Obviously, one expect
that

F ϵ → F , while Q(F ϵ, F ϵ) → 0 = Q(F , F ),

in the limit ϵ → 0. This justifies the assumption of Fϵ being close to the local Maxwellian
M(ρ, u, θ). Indeed, as a consequence of the H-Theorem, Q(F , F ) = 0 implies that the limit F
is a local Maxwellian. Hence, under some assumptions on the initial distribution F ϵ|t=0, we
can pass into the limit in the local conservation laws for F ϵ and obtain the Euler equations
satisfied by the Maxwellian’s parameters (ρ, u, θ) in the limit.

Another approach to pass to the macroscopic description is to use asymptotic expansions
of the function F ϵ. Namely, one seek solutions of the equation (4.15), with ϵ = δp, as formal
power series in ϵ:

F ϵ(t, x, v) =
∑︂
n≥0

ϵnFn(t, x, v).

The leading order F0 is expected to be the hydrodynamic limit, while the successive corrections
account for the finite Knudsen effect. Hence, in this way, higher order hydrodynamic corrections
to the compressible Euler equation are taken into account.

The diffusive scaling The set of the scaling is relevant to the phenomena one wants to
observed. By taking γ = 1 and δp = ϵ ≪ 1, we have seen that hydrodynamics equations can
be deduced in the limit. What about diffusion equations? Another example consists in setting
ϵ := 1/L = F ◦, V ◦ = 1, and t◦ = ϵ2. This scaling is part of the so-called diffusive scaling. It
consists in taking a time scaling much bigger than the spatial one. Indeed, diffusion occurs
on time scales much larger than transport phenomena. Hence the adimensionalised equation
becomes

ϵ∂tF
ϵ + v · ∇xF ϵ = 1

ϵ
Q(F ϵ, F ϵ). (4.21)

In this situation, when ϵ → 0, on the one hand, the penalisation of the collision term forces
the solution F ϵ to be an equilibrium state. On the other hand, the diffusive scaling allows to
obtain a diffusion equation for the macroscopic quantities in the limit. A diffusion equation
for equation (4.21) can be obtained by performing a formal expansion of F ϵ as explained in
detail, for example, in [74]. An additional scaling has to be imposed in order to generate
velocities of order ϵ. This is achieved by considering initial distributions close to a uniform
Maxwellian. Then the moments of F ϵ converge to the ones of the local Maxwellian. Moreover,
under suitable assumptions on the initial (scaled) distributions, it is proved that a similar
perturbation of the local Maxwellian, taken for the initial distribution, holds true also for the
solution F ϵ [153].

The convergence in the macroscopic limit to a drift-diffusion model can be found in [54].
Recently, there has also been a strong interest in performing the diffusive limit for multi-

species systems of type (4.10). The multispecies interaction would indeed lead to Maxwell-
Stefan type systems in the limit [26, 33], which include cross-diffusion (see Section 2.2.1). The



34 4 The formal diffusive limit to derive macroscopic systems

method used in this context is usually the method of moments. The choice of the perturbation
F ϵ is detailed and discussed in Part III of this thesis.



Chapter 5

Outlines of the thesis

5.1 Numerics for a generalised Poisson–Nernst–Planck model,
Chapter 6

This chapter proposes two finite volume schemes for a generalised Poisson-Nernst-Planck
model. The latter is used to describe the evolution of ion mixtures in biological channels or
nanopores. As mentioned in Section 2.4, the modelling of ions in narrow geometries requires
the size exclusion effect and electrostatic interactions to be taken into account.

The model setting
In this model, I species, the volume fractions of which being denoted by U = (ui)1≤i≤I ,
are subject to diffusion as well as to electric forces induced by a self-consistent electrostatic
potential. Denote by Ω ⊂ Rd a bounded connected polyhedral domain, then the conservation
of the volume occupied by the species i writes

∂tui + div Fi = 0, Fi = −Di (u0∇ui − ui∇u0 + u0uizi∇φ) , (5.1)

−λ2Δφ =
I∑︂

i=1
ziui + f , in Ω, t > 0, i = 1, . . . , I , (5.2)

In the above expression Di > 0 denotes the diffusion coefficient and zi∈ Z the charge of
the species i. The (scaled) Debye length is denoted by λ > 0. The function f is given
and represents a prescribed background charge density. The unknown φ is the electrostatic
potential, which solves the Poisson equation (5.2). The quantity

u0 = 1 −
I∑︂

i=1
ui (5.3)

shall be thought as the volume fraction of available space for the ions, possibly occupied by a
motile and electro-neutral solvent. The quantity u0 is then required to remain nonnegative,
leading to size exclusion for the other species ui, i = 1, . . . , I. Equality (5.3) is called volume
filling or size exclusion constraint. It transforms (5.1) in cross-diffusion equations, where
Fi stays for the i-th flux. Boundary conditions of mixed type for the electric potential are
considered, whereas no-flux boundary conditions are taken for the conservation laws (5.1).
The system is finally complemented with initial conditions ui(t = 0) = u0

i . The latter satisfy
the volume filling constraint (5.3) and have a strict positive total mass on Ω.

The main advantage of the model (5.1)-(5.2) is its entropy (or formal gradient flow) structure,
as defined in Section 3.1. From an analytical point of view, this allows to show existence of
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global-in-time bounded weak solutions [102]. The gradient flow structure of the model can be
also used to rewrite the fluxes as

Fi = −Diu
2
0e−ziφ∇wi, i = 1, . . . , I , (5.4)

where wi = ui
u0

eziφ are the Slotboom variables. As discussed in Section 3.3, this reformulation
is also useful in defining finite volume schemes which preserve the thermal equilibrium.

After introducing a partition T of Ω in polytopes (control volumes or cells), and a time
discretisation (tn)n≥0 of [0, +∞), the two finite volume schemes are defined. The discretisation
of the Poisson equation (5.2) relies on a classical two-point flux approximation. The equa-
tion (5.1) is discretized using a backward Euler method in time and finite volume in space, as
in Section 3.3. Keeping the same notation of Section 3.3, where subscript i refers to the i-th
species, for σ = K|L an internal edge, the numerical fluxes of the i-th species are defined as

F n
i,K σ = mσ

dσ
Di

(︂
un

i,Kun
0,LB (zi(φn

L − φn
K)) − un

i,Lun
0,KB (zi(φn

K − φn
L))

)︂
, (5.5)

with

un
0,K = 1 −

I∑︂
i=1

un
i,K , K ∈ T . (5.6)

Formula (5.5) involves a function B ∈ C1(R;R) which is (strictly) positive and satisfies
B(0) = 1 and B′(0) = −1/2. In the first proposed scheme, the function B is defined as:

B(y) = e−y /2. (SQRA)

The resulting scheme corresponds to the SQRA scheme. The design of this scheme take direct
inspiration in the hopping process described in [38] (see also [37]). Although this scheme
behaves well in many situations, it suffers from robustness issues in the small Debye length
regime. This drawback is overcome by mixing some ideas of the SQRA scheme with some
features of the Scharfetter-Gummel (SG) scheme [159], for which B is the Bernoulli function:

B(y) = y

ey − 1 . (SG)

The SG scheme shows a better behavior (accuracy and robustness) with respect to the SQRA
scheme.

Main results
After having proven the existence of bounded discrete solutions (Theorem 6.1), Chapter 6 will
be devoted to rigorously establish the convergence of the SG and SQRA schemes towards a
weak solution (Theorem 6.2). The convergence’s result is based on the free-energy diminishing
character of the SG and SQRA schemes.

Other numerical approaches can be found in the literature to simulate the system (5.1)-(5.2).
A finite volume scheme was studied in [40], demonstrating practical effectiveness but limited
mathematical analysis. The scheme, using upwind for mobilities, shows only first-order spatial
convergence. An alternative finite element method using electrochemical potentials, analyzed
in [103], diminishes free energy without physical parameter restrictions and converges to a
weak solution as the mesh size and time step approach zero. It achieves second-order spatial
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convergence but results in a stiffer nonlinear system compared to the finite volume scheme,
offering no clear advantage. The finite volume scheme in [14] also results in singular numerical
flux expressions.

The schemes developed in Chapter 6 aim combining the best aspects of previous approaches,
ensuring free energy decay, unconditional convergence, second-order spatial accuracy, and a
well-behaved nonlinear system for moderately small Debye length.

5.2 Analysis for a Poisson–Nernst–Planck–Fermi model, Chapter 7
Chapter 7 is devoted to the analysis of a new model to describe the evolution of ion mixtures
in narrow channels. This model is consistent with the one proposed in [81]. In developing
the model, the authors’ aim was to improve the predictive capabilities and accuracy of
electrolyte modelling, which is crucial for applications in battery technology, fuel cells and
other electrochemical systems.

The model setting
The evolution of n ionic species, immersed in a solvent, is assumed to be given by the
Poisson–Nernst–Planck–Fermi system

∂tui + div Ji = ri(u), Ji = −Di(∇ui − ui∇ log u0 + uizi∇Φ), (5.7)

λ2(ℓ2Δ − 1)ΔΦ =
n∑︂

j=1
zjuj + f(x) in Ω, t > 0, i = 1, . . . , n, (5.8)

where Ω ⊂ Rd (d ≥ 1) is a bounded Lipschitz domain, u = (u1, . . . , un) is the concentration
vector, supplemented with initial and mixed Dirichlet–Neumann boundary conditions.

The unknowns are the ion concentrations (or volume fractions) ui(x, t) of the ith ion species
and the correlated electric potential Φ(x, t). The solvent concentration (or volume fraction)
u0(x, t) is given by the volume filling constraint (5.3). Equations (5.7) are cross-diffusion
equations with the fluxes Ji and the reaction rates ri(u). The parameters are the diffusivities
Di > 0 and the valences zi ∈ Z. Equation (5.8) is the Poisson–Fermi equation with the scaled
Debye length λ > 0, the correlation length ℓ > 0, and the given background charge density
f(x). A derivation of (5.7)–(5.8) using an averaging procedure of a Langevin model can be
found in [161].

The model (5.7)-(5.8) has the advantage of being consistent with the thermodynamical
model [81]

Ji = −
n∑︂

j=1
Dijuj∇(µj − µ0), where µi = log ui + ziΦ, µ0 = log u0 + z0Φ,

assuming that the diffusion matrix is diagonal, Dij = Diδij , and that the solvent is neutral,
z0 = 0.

Main results
The first main result of this chapter concern the proofs of existence of global-in-time bounded
weak solutions (Theorem 7.1). Under suitable hypotheses, detailed at the beginning of the
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chapter, a bounded weak solution u1, . . . , un to (5.7)–(5.8), with mixed Dirichlet-Neumann
boundary conditions, satisfying ui(x, t) ∈ D for a.e. (x, t) ∈ ΩT , i = 1, . . . , n,

√
ui ∈ L2(0, T ; H1(Ω)), ui ∈ H1(0, T ; H1

D(Ω)′) ∩ C0([0, T ]; L2(Ω)),
Φ ∈ L2(0, T ; H2(Ω)), log u0 ∈ L2(0, T ; H1(Ω)).

Moreover, the solutions satisfy a free energy inequality. The proof uses the boundedness-by-
entropy method, following a similar procedure as the one explained in Section 3.1.

The main novelty of this work is actually the second result: The weak-strong uniqueness
result (Theorem 7.2). The weak–strong uniqueness property means that any weak solution to
system coincides with a strong solution emanating from the same initial conditions as long as
the latter exists. A weak solution (ū, Φ̄) is a strong solution if moreover

ūi ≥ c > 0 in ΩT , ūi, Φ ∈ L∞(0, T ; W 1,∞(Ω)) for all i = 1, . . . , n.

Let (u, Φ) be a weak solution and (ū, Φ̄) be a strong solution to (5.7)–(5.8). Then, under suitable
assumptions on the boundary data and the reaction terms, u(x, t) = ū(x, t), Φ(x, t) = Φ̄(x, t)
for a.e. x ∈ Ω and t ∈ (0, T ). While the existence proof relies on standard entropy methods,
a new idea is needed to prove the weak–strong uniqueness result. The key idea of the proof
of Theorem 7.2 is to consider the solvent concentration u0 as an independent variable and
to formulate the cross-diffusion system for the extended concentration vector (u0, u1, . . . , un).
This leads to a diffusion matrix with nontrivial kernel. Then the proof is based on the relative
entropy method for the extended cross-diffusion system and the positive definiteness of a
related diffusion matrix on a subspace.

5.3 A non-isothermal model for aerosol mixtures, Chapter 8
Aerosol mixtures of gas and dust will be the focus of Chapter 8. The key characteristic to
examine is the significant difference in mass between the two species composing the aerosol.
Both dust particles and gas molecules are assumed to be identical within their respective
categories. However, dust particles are considered to be much larger and more massive than
the gas molecules.

The modelling setting
At the kinetic level, both species are supposed to be described by suitable density functions.
In what follows, the function F = F (t, x, v) represents the density of particles, whereas
f = f(t, x, w) is a function representing the density of gaseous molecules. The gas-dust
dynamics satisfies the following system of Boltzmann-like equations ∂tF + v · ∇xF = D(F , f) + P(F )

∂tf + w · ∇xf = R(F , f) + C(f).
(5.9)

The collisional operators C and P encode mono-species collisions, represented by classical
Boltzmann operators with a structure similar to (4.6). Conversely, the operators D and R
describe bi-species interactions.
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As discussed in Section 4.3, a diffuse reflection mechanism at the particle surface temperature
is more accurate for describing collisions between dust and gas. This is especially true when
considering energy exchange between the species. This model accounts for the macroscopic
nature of dust particles and assumes that gas molecules thermalize almost instantaneously
upon contact with the particle’s surface.

Collision operators for this mechanism, with a fixed particle surface temperature Tp, were
derived in [57]. These operators were introduced in Section 4.3. However, despite having an
explicit expression for entropy, this model does not conserve the system’s total energy. An
improved model in [60] adjusts the particle’s temperature during collisions. This model treats
the surface temperature as a variable in the density function F and derives modified collision
operators. Nonetheless, deriving an entropy for this improved model remains complex and
unresolved.

Main results
The first aim of the work discussed in Chapter 8 is describing non-isothermal dust-gas mixtures
via a new kinetic model. Collisions between entities of the same species are assumed elastic,
with generic collision kernels. Gas-dust collisions are treated with a diffuse reflection mechanism
as in [57], but inspired by porous media literature, the surface temperature is taken as a
macroscopic function of time and space Tp(t, x). The latter satisfies a transport-like equation

∂tTp

∫︂
R3

F (v) dv + ∇xTp ·
∫︂
R3

v F (t, x, v) dv = C2I2(F , f) − C1I1(F , f)Tp,

ensuring total energy conservation. The dependence of Tp, F , and f on (t, x) is omitted.
The positive constants C1 and C2 depend on the dust and gas mass, on the Boltzmann
constant and on the particle’s mass heat capacity only. The terms I1(F , f) = I1(F , f)(t, x)
and I2(F , f) = I2(F , f)(t, x) are integrals in v and w of F and f . Their expressions depend on
the considered collision kernels. The main novelty is thus proposing a model that, in the case
of hard-sphere kernels for the bi-species collisions, possesses an explicit entropy structure and
also preserves the total energy of the system.

The second aim of Chapter 8 is to perform a formal asymptotic diffusive limit, as discussed
in 4.4, to obtain a Maxwell-Stefan-like system. After performing a proper adimensionalisation
of the system and introducing small parameters, macroscopic equations for the macroscopic
scaled quantities associated to gas and dust are derived. Then a formal macroscopic limit,
where all the parameters tend to zero, is carried out. The idea is to take the point of view
of the particles. Particles perceive the molecules of the gas as much faster than themselves,
but much lighter and smaller. In particular, a fluid model is considered in the limit, since the
Knudsen numbers of the gas and the dust go to zero. The Strouhal numbers also vanish in
the diffusive asymptotic.

At the time of writing, complete explicit calculations have been performed to obtain a
macroscopic model in the case of Maxwell kernels in collisions between different species.
Calculations for hard-sphere kernels are currently only partially completed and reported. They
will be concluded in a future work.



Part II

Two cross-diffusion models for
ion-mixtures



Chapter 6

Finite volumes for a Poisson–Nernst–Planck
system
This chapter is an extension of the article "Finite volumes for a generalized Poisson-Nernst-
Planck system with cross-diffusion and size exclusion" [42], joint work with Clément Cancès
and Maxime Herda and published in International Conference on Finite Volumes for Complex
Applications, 57-73 (2023).

6.1 Presentation of the problem
6.1.1 The continuous generalized Poisson-Nernst-Planck model
Motivated by the transfer of ions in confined geometries, Burger et al. introduced in [37]
a model accounting for cross-diffusion and size-exclusion effects. The model [38] further
incorporated self-consistent electric interaction. In this model, I species, the volume fractions
of which being denoted by U = (ui)1≤i≤I , are subject to diffusion as well as to electric forces
induced by a self-consistent electrostatic potential. Denote by Ω ⊂ Rd a bounded connected
polyhedral domain, then the conservation of the volume occupied by the species i writes

∂tui + div Fi = 0, i = 1, . . . , I , (6.1)

with the flux of the species i being (formally) given by

Fi = −Di (u0∇ui − ui∇u0 + u0uizi∇φ) = −Diuiu0∇
(︃

log
(︃

ui

u0

)︃
+ ziφ

)︃
. (6.2)

In the above expression, Di > 0 denotes the diffusion coefficient of the species i. The quantity

u0 = 1 −
I∑︂

i=1
ui (6.3)

shall be thought as the volume fraction of available space for the ions, possibly occupied by a
motile and electro-neutral solvent. The quantity u0 is then required to remain nonnegative,
leading to size exclusion for the other species ui, i = 1, . . . , I. Denoting by zi∈ Z the charge
of species i and by λ > 0 the (scaled) Debye length, then the electrostatic potential solves the
Poisson equation

−λ2Δφ =
I∑︂

i=1
ziui + f (6.4)
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for some prescribed background charge density f . We consider boundary conditions of mixed
type for the electric potential. More precisely, we assume that the boundary ∂Ω of the domain
can be split into a insulator part ΓN and its complement ΓD on which Dirichlet boundary
condition is imposed:

∇φ · n = 0 on ΓN and φ = φD on ΓD. (6.5)

Throughout this paper, we will assume that f ∈ L∞(Ω) and that φD is the trace of an
L∞ ∩ H1(Ω) function (which we also denote by φD). Neither f nor φD depend on time.
Boundary conditions of various types can be considered for the conservation laws (6.1)–(6.2),
like for instance Robin type boundary condition modeling electrochemical reaction thanks to
Butler-Volmer type formula, see for instance [41], or boundary conditions of mixed Dirichlet-
Neumann type as in [102]. In the presentation of the scheme, we assume for simplicity that
the system is isolated, in the sense that

Fi · n = 0 on ∂Ω, i = 1, . . . , I . (6.6)

The system is finally complemented with initial conditions ui(t = 0) = u0
i with

u0
i ≥ 0 and

∫︂
Ω

u0
i > 0 for i = 0, . . . , I and

I∑︂
i=0

u0
i = 1. (6.7)

We then denote by

A =
{︄

U = (ui)1≤i≤I ∈ RI
+

⃓⃓⃓⃓
⃓

I∑︂
i=1

ui ≤ 1
}︄

the set in which the volume fractions have to take their values.

6.1.2 Entropy structure of the model
Let us now described the entropy (or formal gradient flow) structure of the model. Introduce
the Slotboom variables wi = ui

u0
eziφ, then the fluxes (6.2) rewrite as

Fi = −Diu
2
0e−ziφ∇wi, i = 1, . . . , I . (6.8)

Multiplying (6.1) by the so-called electrochemical potentials µi = log wi = log ui
u0

+ ziφ,
integrating over Ω and summing over i = 1, . . . , I yields

d
dt

H + 4
∫︂

Ω

I∑︂
i=1

Diu
2
0e−ziφ|∇√

wi|2 = 0, (6.9)

where, denoting the mixing (neg)entropy density function H : A → [− log(I + 1), +∞) by

H(U) = u0 log(u0) +
I∑︂

i=1
ui log(ui), (6.10)
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with u0 seen as a function of U , the free energy H is given by

H =
∫︂

Ω
H(U) + λ2

2

∫︂
Ω

|∇φ|2 − λ2
∫︂

ΓD
φD∇φ · n. (6.11)

Assume that the ui are positive for i = 0, . . . , I (as proved in the discrete case later on), then
the second term in (6.9) is well-defined and non-negative. As a consequence, the free energy
decays along time, as a manifestation of the second principle of thermodynamics. Observe
that H need not be non-negative but may be bounded uniformly from below by a constant
depending only on λ, f and φD.

6.1.3 Weak solution
As we aim to prove rigorously the convergence of the scheme to be presented in Section 6.2, we
need a proper notion of solution for the continuous problem (6.1)–(6.7). The volume fractions
we seek are such that

0 ≤ ui ≤ 1 for 0 ≤ i ≤ 1 and a.e. (t, x) ∈ R+ × Ω. (6.12)

The electric potential φ then solves the Poisson equation (6.4) with a bounded right-hand side
and boundary condition, so it satisfies

∥φ∥L∞(R+×Ω) + ∥φ − φD∥L∞(R+;V ) ≤ C(λ, z , Ω, f), (6.13)

where
V =

{︂
v ∈ H1(Ω)

⃓⃓⃓
v|ΓD

= 0
}︂

is equipped with the H1(Ω) semi-norm ∥∇v∥L2 , which is a norm thanks to Poincaré inequality.
We have emphasised in the right-hand side of (6.13) the dependence of the bound on the data,
especially on the Debye length λ. The estimate (6.9) is the other main estimate on which our
study will rely. It provides enough control to define a proper notion of weak solutions, but at
the price of a suitable reformulation of the fluxes (6.2). Let us first remark that, since the free
energy H is bounded (see Lemma 6.2), integrating (6.9) over t ∈ R+ provides

∫︂ ∫︂
R+×Ω

I∑︂
i=1

Diu
2
0e−ziφ|∇√

wi|2 ≤ C . (6.14)

As already noticed in [102], the above control yields a control in L2
loc(R+; H1(Ω)) on √

u0 and
on u0 itself, as well as some control on some product terms involving u0 and ui for i ≥ 1. From
the numerical analysis exposed hereafter, we derive a L2

loc(R+; H1(Ω)) estimate on ui
√

u0,
which, together with (6.12) provides a L2

loc(R+; H1(Ω)) control on uiu0 too. Hence, all the
terms in the following expression of the fluxes

Fi = −Di (∇(u0ui) − 4ui
√

u0∇√
u0 + uiu0zi∇φ) , 1 ≤ i ≤ I , (6.15)

have a clear mathematical sense, motivating the following notion of weak solution.

Definition 6.1 (Weak solution). (U, φ) is said to be a weak solution to (6.1)–(6.7) if
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• ui ∈ L∞(R+ × Ω) with U ∈ A a.e. in R+ × Ω, with moreover √
u0 and ui

√
u0 belonging

to L2
loc(R+; H1(Ω)) for u0 defined as in (6.3);

• φ ∈ L∞(R+ × Ω) with φ − φD ∈ L∞(R+; V ) satisfies

∫︂
Ω

λ2∇φ(t, x) · ∇ψ(x)dx =
∫︂

Ω

(︄
I∑︂

i=1
ziui(t, x) + f(x)

)︄
ψ(x)dx (6.16)

for all ψ ∈ C1
c (Ω ∪ ΓN) and a.e. t ≥ 0;

• for all ϕ ∈ C1
c (R+ × Ω) and all i = 1, . . . , I, there holds∫︂ ∫︂

R+×Ω
ui∂tϕ+

∫︂
Ω

u0
i ϕ(0, ·)−

∫︂ ∫︂
R+×Ω

Di
(︁∇(u0ui)−4ui

√
u0∇√

u0 +uiu0zi∇φ
)︁ · ∇ϕ = 0.

(6.17)

6.1.4 Goal and positioning of the paper
Because of their applications in biology, chemistry and physics, and of their mathematical
complexity, cross-diffusion systems for describing mixtures of ions in fluids have been a very
active area of research in recent years. The first models to describe ion species in an electro-
neutral solvent in the self-consistent field were proposed by Nernst [143, 144] and Planck [156,
157]. Their fluxes Fi obey the first Fick’s law in the diffusive part and the Planck’s law in
the drift. The equations have been derived in [142] from a microscopic particle model via the
mean-field limit approach. However, as pointed out in [131], Fick’s law, which postulates a
linear relationship between the flux of any species and its concentration gradient, is incorrect
for describing diffusion in multi-component mixtures in a wide variety of situations. Often the
diffusion flux of one species is strongly coupled to that of the partner species, giving rise to
what is known as ’uphill diffusion’. This phenomenon occurs when, for example, considering
mixtures of ions immersed in a solvent in a very narrow geometry such as that of biological and
synthetic channels. In [38], the Poisson–Nernst–Planck model (6.1)-(6.4) has been formally
derived from an on-lattice model, including size-exclusion effects. By doing so, it results that
the flux of each ion component is induced by the gradient of another component, leading to
parabolic cross-diffusion equations.

The mathematical analysis of cross-diffusion systems is very tricky. A standard tool like the
maximum principle is in general not applicable to show bounds on the solutions. Moreover also
the study of global-existence-in-time weak solutions has been a challenge for the mathematical
community. Amann has shown in [6] the existence of a unique local-in-time classical solution to
quasi-linear parabolic cross-diffusion systems under restriction on the regularity of the spatial
domain Ω and on the spectrum of the diffusion matrix. To conclude global solvability, he has
shown in [7] that additional regularity conditions on the solutions in W 1,p, with p > d, are
required. However, such conditions are often not fulfilled, in particular when d ≥ 2. And Starà
and John in [163] and Pierre and Schmitt in [155] found some examples of parabolic systems
with solutions that exhibit blow-up in finite time. Therefore, one expects that for a general
cross-diffusion system it is not possible to show global solvability. Additional conditions are
needed to prove that local-in-time weak solutions are bounded and can be continued globally
in time. Le and Nguyen in [134] discovered that structural assumption on the diffusion matrix
are required.



6.1 Presentation of the problem 45

It has been observed that many cross-diffusion systems possess an entropic structure. This
means that it is possible to define an entropy functional H that decreases in time along the
solutions of the system, i.e. it is a Lyapunov functional. The focus has therefore been on
such cross-diffusion systems. In fact, it turned out that thanks to entropy, on one hand, it is
possible to perform a change of variables that makes the system’s diffusion matrix positive
semi-definite. This allows to deduce global-in-time existence of weak solutions. On the other
hand, the fact that H is a Lypaunov functional yields a priori estimates on the solutions. The
idea of using the entropy to deduce bounds on the solutions go back to the work [37]. The
first mathematical use of such a method can be found in [78], where they applied the method
for a triangular reaction cross diffusion system. A general theory to show global existence of
bounded weak solutions for a bigger class of cross-diffusion systems was proposed in [123].

In [102], the boundedness-by-entropy method is used to show the existence of a global-in-time
bounded weak solution to the system (6.1)-(6.4), with mixed Dirichlet–Neumann boundary
conditions (6.6)-(6.5), in the sense of Definition (6.1). They then proved the uniqueness of the
weak solutions under moderate regularity assumptions thanks to the uniqueness technique of
Gajewski [96, 98].

A different thermodynamical consistent model, hence with different Fi, of Poisson–Nernst–
Planck type was proposed in [81]. In [124], the authors coupled such a system with a
Poisson–Fermi equation for the electric potential, accounting for polarisation correlations
among the polar solvent molecules (see also [139] for more details on the Poisson–Nernst–
Planck–Fermi theory). The novelty of the paper is the proof of the weak–strong uniqueness
property.

The numerical analysis of cross-diffusion systems is also complex, due to the non-linearity
of the fluxes Fi. When dealing with conservation laws like (6.1), finite volume methods are
suitable and attractive methods to use, as they guarantees the local conservativity of the
fluxes. The application to cross-diffusion system is quite recent. A first work on it can be
found in [9]. A discrete counterpart of the boundedness-by-entropy method for finite-volume
approximations of cross-diffusion systems was recently developed in [128].

Regarding the discretisation of (6.1)-(6.5), a finite volume scheme has been studied in [40].
Even though the scheme mainly behaves well in practice, its mathematical study is very
partial since requiring strong assumptions such as constant diffusion coefficients Di = D for
all i, or no charge zi = 0. Moreover, since the scheme proposed in [40] uses upwinding for
the mobilities, numerical experiments exhibit a mere first order convergence in space. An
alternative finite element method using the electrochemical potentials µi rather than the ui as
primary variables has been analyzed in [103]. This latter scheme is by construction free energy
diminishing without further restriction on the physical parameters, and is shown to converge
towards a weak solution as the mesh size and the time step tend to 0 (up to quadrature error
terms). Second order convergence w.r.t. the mesh size is observed, but the nonlinear system
to be solved at each time step is stiffer than for the finite volume scheme because of the use of
the electrochemical potentials as variables, so that no clear gain was observed in comparison
with the upstream mobility finite volumes. The finite volume scheme proposed in [14], in
which the fluxes Fi are approximated thanks to the second expression of (6.2) also leads to
singular numerical fluxes expressions.

The first aim of this work [42] is to propose and analyse two schemes for approximating the
solutions of the problem. The schemes share the best with the aforementioned approaches
present in the literature: decay of the free energy and unconditional convergence are established,
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second order accuracy in space and well-behaved nonlinear system for moderately small Debye
length.

The first scheme extended to our setting is the so-called square-root approximation (SQRA)
finite volume schemes initially proposed in [135] and further studied for steady Fokker-Planck
equations in [113] before being extended to transient non-linear convection diffusion in [43].
The design of this scheme took direct inspiration in the hopping process described in [38]
(see also [37]). An explanation of this link can be found in Appendix 6.5.2. Although this
scheme behaves well in many situations, it suffers from robustness issues in the small Debye
length regime (see Appendix 6.5.2). This drawback was overcome by mixing some ideas of
our SQRA scheme with some features of the Scharfetter-Gummel (SG) scheme [159], with the
introduction of the Bernoulli function.

After showing the existence of discrete solutions, our goal is to rigorously establish the
convergence of the SG and SQRA schemes towards a weak solution. The proof relies on
compactness arguments. The key estimate here is the free energy decay at the discrete level,
and its consequences following the lines sketched in the continuous setting in Section 6.1.3.

In the following, the convergence proof is reported for the SG scheme only. The one for the
SQRA scheme is very similar and can be fully adapted without additional difficulties.

6.2 The finite volume scheme and main results
First, we introduce the time discretization and the spatial mesh of the domain Ω.

6.2.1 Space and time discretizations
The mesh will be assumed to be admissible in the sense of [87], namely it fulfils the so-called
orthogonality condition, which is usual for two-point flux approximation finite volumes.

Let T denote a family of non-empty, disjointed, convex, open and polygonal control volumes
K ∈ T , whose Lebesgue measure is denoted by mK . We also assume that control volumes
partition the domain in the sense that Ω = ⋃︁

K∈T K. Further, we call E a family of edges/faces,
where σ ∈ E is a closed subset of Ω contained in a hyperplane of Rd. Each σ has a strictly
positive (d − 1)-dimensional Hausdorff (or Lebesgue) measure, denoted by mσ. We use the
abbreviation K|L = ∂ K ∩ ∂ L for the intersection between two distinct control volumes which
is either empty or reduces to a face contained in E . The subset of all interior faces is denoted
by

Eint = {σ ∈ E s. t. σ = K|L for some K , L ∈ T }.

For any K ∈ T , we assume that there exists a subset EK of distinct elements of E such that
the boundary of a control volume can be described by ∂ K = ⋃︁

σ∈EK
σ and, consequently, it

follows that E = ⋃︁
K∈T EK . Additionally, we assume that boundary edges Eext = E \ Eint are

either subsets of ΓD or ΓN . To each control volume K ∈ T we assign a cell center xK ∈ K
which satisfies the orthogonality condition: If K , L share a face σ = K|L, then the vector
xKxL is orthogonal to σ = K|L. The triplet (T , E , {xK}K∈T ) is called an admissible mesh.

We introduce the notation dσ for the Euclidean distance between xK and xL if σ = K|L
or between xK and the affine hyperplane spanned by σ if σ ⊂ ∂Ω. We also denote by
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dK σ = dist(xK , σ), so that dσ = dK σ + dLσ if σ = K|L ∈ Eint and dσ = dK σ if σ ∈ EK ∩ Eext.
The transmittivity of the edge σ ∈ E is defined by aσ = mσ

dσ
. The size of the mesh is

hT = max
K∈T

diam(K)

where diam(K) denotes the diameter of the cell K. The regularity of the mesh is defined by

ζT = max
K∈T

(︃
card EK ; max

σ∈EK

diam(K)
dK σ

)︃
.

For the time discretization we decompose the time interval R+ := [0, +∞) into an unbounded
increasing sequence (tn)n≥0 with t0 = 0 and possibly non-uniform time steps

τn = tn − tn−1 > 0, n > 0.

We finally introduce Δt = supn∈N\{0} τn, which we assume to be finite.

6.2.2 The finite volume schemes
We are now in position to define the finite volume scheme. Let us start with the discretization
of the Poisson equation (6.4)–(6.5), which relies on a classical two-point flux approximation

λ2 ∑︂
σ∈EK

aσ(φn
K − φn

K σ) = mK

(︄
fK +

I∑︂
i=1

ziu
n
i,K

)︄
, K ∈ T , (6.18)

where fK is (possibly an approximation of) the mean value of f on the cell K, and where

φn
K σ =

����
φn

L if σ = K|L ∈ Eint,

φn
K if σ ⊂ ΓN ,

φD
σ = 1

mσ

∫︁
σ φD if σ ⊂ ΓD.

The equation (6.1) is discretized using a backward Euler method in time and finite volumes in
space, leading to

un
i,K − un−1

i,K

τn
mK +

∑︂
σ∈EK

F n
i,K σ = 0, i = 1, . . . , I , K ∈ T . (6.19)

In accordance with (6.6), we set F n
i,K σ = 0 if σ ⊂ ∂Ω. For σ = K|L an internal edge, then we

define
F n

i,K σ = aσDi

(︂
un

i,Kun
0,LB (zi(φn

L − φn
K)) − un

i,Lun
0,KB (zi(φn

K − φn
L))

)︂
, (6.20)

with

un
0,K = 1 −

I∑︂
i=1

un
i,K , K ∈ T . (6.21)
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Formula (6.20) involves a function B ∈ C1(R;R) which is (strictly) positive and satisfies
B(0) = 1 and B′(0) = −1/2. The continuous system (6.1)–(6.2) was originally derived in [38]
thanks to a hopping process, suggesting the choice

B(y) = e−y /2, (SQRA)

leading to a scheme referred to as the square-root approximation (SQRA) scheme in what
follows, in reference to [43, 113, 135]. An explanation of how to interpret the scheme in terms
of the hopping process can be found in the Appendix 6.5.2. Another natural choice for the
function B is the Bernoulli function

B(y) = y

ey − 1 . (SG)

The corresponding scheme will be referred to as the Scharfetter-Gummel (SG) scheme.

Remark 6.1. We would like to underline the fact that the construction of the SG scheme is
not based on the original idea of [159]. We rather take advantage of the free-energy diminishing
character of the SG scheme highlighted in [62] and exploited in [22, 160].

The introduction of the second method lies in its greater robustness for small values of the
Debye length, as revealed by numerical simulations. A deeper understanding of the greater
robustness of the SG scheme can be found in the Appendix 6.5.2.

In order to close the system, it remains to define the discrete counterpart to u0 as follows:

u0
i,K = 1

mK

∫︂
K

u0
i , K ∈ T , i = 0, . . . , I . (6.23)

Then we infer from (6.7) that

I∑︂
i=0

u0
i,K = 1 for all K ∈ T , and

∑︂
K∈T

u0
i,KmK =

∫︂
Ω

u0
i > 0 for i = 0, . . . , I . (6.24)

In what follows, we denote by Un
K =

(︂
un

i,K

)︂
i=0,...,I

for K ∈ T and n ≥ 0.
The consistency of the discrete fluxes (6.20) with the continuous ones (6.2) might not look

completely obvious. It follows from the identity

F n
i,K σ = aσ Di un

0,K un
0,LM(e−ziφ

n
K , e−ziφ

n
L)

(︂
wn

i,K − wn
i,L

)︂
(6.25)

where wn
i,K = un

i,K

un
0,K

eziφ
n
K are the discrete counterpart of the Slotboom variables and Un

K ∈ (0, 1)I

for assumption (later on, in Proposition 6.1, it will be proven rigorously). The mean function
M appearing in (6.25) is defined by

M(a, b) =
√

ab for (SQRA), and M(a, b) = log(1/a) − log(1/b)
1/a − 1/b

for (SG),

for a, b > 0 with a ̸= b, and M(a, a) = a.
We refer to [114] for an extensive discussion on the influence of the choice of the Stolarsky

mean M on the scheme behavior. The consistency of the formula (6.25) with the expression
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(6.8) of the continuous flux is now clear, and assuming the existence of a regular solution to
the continuous problem, inserting it in the scheme and performing Taylor expansions as in [43]
shows the second order accuracy in space of our scheme on uniform Cartesian grids.

6.2.3 Main results and organisation of the paper
We provide here a simple presentation of our main results, which will be detailed and proven
in the following sections.

The first aim of this paper is to show that the nonlinear system corresponding to the
scheme (6.18)–(6.21) admits at least one solution, and that beyond local conservativity, this
solution preserves at the discrete level some key features of the model, namely the positivity
of the volume fractions and the decay of the free energy.

Then, the convergence of the SG scheme is rigorously proven. Numerical results show the
second order convergence in space of the two methods and the long-time behavior.

Theorem 6.1 states that, for fixed mesh and time steps, the numerical schemes admit a
positive solution and preserves the L∞ bounds. Furthermore, the discrete version Hn

T of the
free energy functional (6.11) - rigorously defined in the formula (6.34) - decays with time.

Theorem 6.1. Given an admissible mesh (T , E , (xK)K∈T ) of Ω an a sequence of time steps
(τn)n≥0 as in Section 6.2.1, then there exists (at least) one solution to the scheme (6.18)–(6.23)
which satisfies

un
i,K > 0 ∀i = 0, . . . , I , K ∈ T , n ≥ 1.

Moreover, the discrete free energy Hn
T defined later on in (6.34) is decaying along the time

iterations
Hn

T + τnDn
T ≤ Hn−1

T , n ≥ 1, (6.26)

for some dissipation rate Dn
T ≥ 0 vanishing if and only if

(︂
(Un

K)K∈T , (φn
K)K∈T

)︂
is the

stationary solution to the scheme.

The inequality (6.26) should be thought as a discrete counterpart to (6.9). Schemes
verifying (6.26) in addition to more classical properties like mass conservation or positivity
preservation are often referred to as thermodynamically consistent or structure preserving in
the literature. Our schemes thus enter this class of schemes.

Theorem 6.1 allows to define the so-called approximate solution to the problem, which
consists in piecewise constants functions UT ,τ = (ui,T ,τ )1≤i≤I and φT ,τ defined by

ui,T ,τ (t, x) = un
i,K and φT ,τ (t, x) = φn

K if (t, x) ∈ K × (tn−1, tn]. (6.27)

Here again, we reconstruct u0,T ,τ from UT ,τ by setting

u0,T ,τ = 1 −
I∑︂

i=1
ui,T ,τ . (6.28)

Now, let (Tℓ, Eℓ, {xK}K∈Tℓ
)ℓ≥1 and (τℓ)ℓ≥1 =

(︂
(τn

ℓ )n≥1

)︂
ℓ≥1

be respectively a sequence of
admissible meshes and a sequence of time steps, in the sense of Section 6.2.1, such that

lim
ℓ→∞

hTℓ
= lim

ℓ→∞
Δtℓ = 0, Δtℓ = max

n
τn

ℓ ,
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while the mesh regularity factor ζTℓ
remains uniformly bounded w.r.t. ℓ, i.e. ζTℓ

≤ ζ⋆ < +∞.
The convergence of our schemes can be stated in a very simplified way as follows:

Theorem 6.2. There exists a weak solution (U, φ) in the sense of Definition 6.1 such that,
up to the extraction of a subsequence,

φTℓ,τℓ
−→

ℓ→+∞
φ and u0,Tℓ,τℓ

−→
ℓ→+∞

u0 in Lp
loc(R+; Lp(Ω)) ∀p ∈ [1, +∞),

and
UTℓ,τℓ

−→
ℓ→+∞

U in the L∞(R+ × Ω)I weak-⋆ sense.

More convergence properties have to be established to prove Theorem 6.2. They are detailed
in Section 6.4, complementing the sketchy presentation of [42].

The rest of the paper is organized as follows. Section 6.3 is devoted to the proof of
Theorem 6.1, as well as to some post-treatment of the energy / energy dissipation inequality
(6.26) in order to derive some uniform bounds on quantities to be used in the convergence
analysis carried out in Section 6.4, where the proof of Theorem 6.2 is detailed. The numerical
results presented in Section 6.5 contain some numerical evidence of the convergence of the
schemes. It also illustrates the long-time behavior of the schemes. This first result does not
actually cover the behaviour for all Debye lengths and all initial values. The situation is
more complex and is currently under investigation. Some comments are made at the end of
Section 6.5.

6.3 Uniform a priori bounds and existence of a discrete solution
The goal of this section is to prove Theorem 6.1, i.e. to show that the nonlinear system
corresponding to the scheme (6.18)–(6.21) admits at least one solution, and that beyond local
conservativity, this solution preserves at the discrete level some key features of the model,
namely the positivity of the volume fractions, as well as uniform L∞ bounds for them, and the
decay of the free energy. Furthermore, in this part, precise quantification of the dissipated total
free energy supplies enough uniform estimates, in the mesh size hT and time steps (τn)n≥1,
to perform the convergence analysis in Section 6.4. The grid T and the time steps (τn)n≥1
remain fixed throughout this section.

6.3.1 Uniform a priori bounds and existence of a discrete solution
The first Lemma regards the discrete counterpart of the conservation of the total mass of the
system.

Lemma 6.1. It holds that∑︂
K∈T

un
i,KmK =

∑︂
K∈T

un−1
i,K mK =

∑︂
K∈T

u0
i,KmK =

∫︂
Ω

u0
i > 0, 0 ≤ i ≤ I . (6.29)

Proof. Since our schemes are locally conservative, i.e., F n
K σ + F n

Lσ = 0 for all σ = K|L ∈ Eint,
then summing (6.19) over K shows by induction and thanks to (6.23) the result.
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Since we are interested in discrete solutions with positive volume fractions un
i,K , we perform

an eventually harmless modification of the flux formula (6.20) into

F n
i,K σ = aσDi

(︃(︂
un

i,K

)︂+(︂
un

0,L

)︂+
B (zi(φn

L − φn
K)) −

(︂
un

i,L

)︂+(︂
un

0,K

)︂+
B (zi(φn

K − φn
L))

)︃
.

(6.30)

Proposition 6.1. Let n ≥ 1, and let
(︂
Un−1

K

)︂
K∈T be such that

un−1
i,K ≥ 0,

I∑︂
i=0

un−1
i,K = 1 ∀ K ∈ T , and

∑︂
K∈T

un−1
i,K mK > 0. (6.31)

Then any solution (Un
K , φn

K)K∈T ,n≥1 to the modified scheme with (6.30) instead of (6.20)
satisfies un

i,K > 0 for all i = 0, . . . , I and all K ∈ T .

Proof. Let us start by establishing the positivity of un
0,K . Assume for contradiction that there

exists a cell K ∈ T such that un
0,K ≤ 0. Then we deduce from formula (6.30) that F n

i,K σ ≥ 0
for all σ ∈ EK and all i = 1, . . . , I. Because of (6.21) and (6.31), this implies that

0 ≥ un
0,K = un−1

0,K + τn

mK

I∑︂
i=1

∑︂
σ∈EK

F n
i,K σ ≥ 0.

In particular, all the fluxes F n
i,K σ, i = 1, . . . , I and σ ∈ EK are equal to 0. In view of

formula (6.30) and of the strict positivity of B, this implies either that un
i,K ≤ 0 for all i, which

yields a contradiction with (6.21), or that un
0,L ≤ 0 for all the cells L sharing an edge σ = K|L

with K. Since Ω is connected, one would obtain that un
0,K = 0 for all K ∈ T and thus that∑︁

K∈T un
0,KmK = 0. This contradicts (6.29), and thus we necessarily have that un

0,K > 0 for
all K ∈ T .

With the positivity of un
0,K , K ∈ T , at hand, let us focus on the un

i,K for an arbitrary
i = 1, . . . , I. Similarly, we assume that there exists some K ∈ T such that un

i,K ≤ 0. Then
owing to (6.30), we infer that F n

i,K σ ≤ 0 for all σ ∈ EK , and then that

0 ≥ un
i,K = un−1

i,K − τn

mK

∑︂
σ∈EK

F n
i,K σ ≥ 0.

This leads to un
i,K = 0 and to F n

i,K σ = 0 for all σ ∈ EK . Since we already know that un
0,K > 0,

we deduce from (6.30) that un
i,L ≤ 0 for all cell L sharing a cell σ = K|L with K. As above,

this implies as un
0,K = 0 for all K ∈ T , which contradicts (6.29). Then un

i,K > 0 for all K ∈ T ,
concluding the proof of Proposition 6.1.

A consequence of previous proposition is that a solution to the modified scheme with (6.30)
instead of (6.20) is also a solution to the original scheme (6.18)–(6.21).

As we did assume that the background charge density f and thus its discrete counterpart
(fK)K∈T are uniformly bounded, and that φD belongs to L∞ ∩H1/2(ΓD), we deduce a uniform
bound for the electric potential.
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Proposition 6.2. There exists C = C(φD, Ω, λ, f , (zi)i, ζT ) such that

max
K∈T

|φn
K | +

(︄∑︂
σ∈E

aσ (φn
K − φn

K σ)2
)︄1/2

≤ C , n ≥ 1. (6.32)

The proof of this result can be found in [39, Proposition A.1] and is a consequence of the
uniform boundedness of the right-hand side of the discrete Poisson equation (6.18).

These a priori estimates are sufficient to prove the existence of a solution to the scheme.
We end up with the following proposition.

Proposition 6.3. There exists at least one solution to the numerical scheme (6.18)–(6.21)
such that un

i,K > 0 for all i = 0, . . . , I, for all K ∈ T and all n ≥ 1.

Proof. The proof is based on an inductive procedure in time. At each time step n ≥ 1, we use
a topological degree argument to show the existence of a solution (Un

K , φn
K)K∈T ∈ (0, 1)I×T ×

[−C , C]T to (6.18)-(6.19), with the fluxes defined as in (6.30). In fact, the Proposition 6.1,
ensures the existence for the scheme (6.18)-(6.20).

Let n ≥ 1 be such that (Un−1
K , φn−1

K )K∈T ∈ [0, 1]I×T × [−C , C]T is given (that is the case for
n = 1, thanks to (6.23) and (6.7)). The idea is to deform our non-linear system continuously
until it is transformed into a linear one with known solutions. Therefore, let introduce a
parameter s ∈ [0, τn] and define, for every K ∈ T ,��

mK

(︂
u

(s)
i,K − un−1

i,K

)︂
+ s

∑︁
σ∈EK

F
(s)
i,K σ = 0, i = 1, . . . , I ,

λ2 ∑︁
σ∈EK

aσ

(︂
φ

(s)
K − φ

(s)
K σ

)︂
= mK

(︂
fK + ∑︁I

i=1 ziu
(s)
i,K

)︂
,

(6.33)

with F
(s)
i,K σ defined by (6.30), which corresponds to the original schemes when s = τn. For

s = 0, the two equations can be decoupled and the first one can be rewritten in matrix form

M(U (0) − Un−1) = 0,

where U (s) =
(︂
U

(s)
K

)︂
K∈T , for s ∈ [0, τn], Un−1 =

(︂
Un−1

K

)︂
K∈T and M = diag ((mK)K∈T ) is a

positive definite matrix. Therefore, there exists a unique solution U (0) = Un−1 ∈ [0, 1]I×T .
Via the Proposition 6.2, there also exists a unique φ(s) =

(︂
φ

(s)
K

)︂
K∈T ∈ [−C , C]T . Moreover,

thanks to the continuity of the discrete fluxes, the functional

H :
{︄

[0, τn] × [−2, 2]I×T × [−C − 1, C + 1]T → RT × RT

(s, U, φ) ↦→ H(s, U, φ)

whose zeros (s, U (s), φ(s)) are the solutions of (6.33), is hence an homotopy. Furthermore, all
along it, its zeros (U (s), φ(s)) remain inside the compact subset [0, 1]I×T × [−C , C]T .

Thus, the topological degree corresponding to H(s, U, φ) = 0 is equal to one, all along the
homotopy, and hence in particular for s = τn. That implies the existence of a solution to the
scheme, for both the B function (SQRA) and (SG) (but it does not guarantee uniqueness).

We note that the proof proposed here is simpler than that found in, for example, [39,
Proposition 3.2]. The reason lies in the fact that we did not use entropic inequality to derive
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the uniform estimates on volume fractions and, therefore, we do not have to guarantee the
validity of it during the homotopy.

6.3.2 Energy dissipation at the discrete level
Next proposition is about the thermodynamical consistency of our schemes and the decay of a
discrete counterpart of the free energy.

Proposition 6.4. Let (Un
K , φn

K)K∈T ,n≥1 be a solution to the scheme (6.18)–(6.21) as in
Proposition 6.3, then define for n ≥ 0 the discrete free energy at the nth time step

Hn
T =

∑︂
K∈T

mKH(Un
K) + λ2

2
∑︂
σ∈E

aσ(φn
K − φn

K σ)2 + λ2 ∑︂
σ∈ED

aσφD
σ (φn

K − φD
σ ), (6.34)

the discrete electrochemical potentials µn
i,K = log

(︃
un

i,K

un
0,K

)︃
+ ziφ

n
K of species i, and

Dn
T =

I∑︂
i=1

∑︂
σ∈Eint

F n
i,K σ(µn

i,K − µn
i,L)

the discrete dissipation, which vanishes if and only if (µn
i,K)

K∈T is constant for all i = 1, . . . , I.
Then there holds

Hn
T + τnDn

T ≤ Hn−1
T , n ≥ 1. (6.35)

Proof. As a consequence of the positivity of un
0,K and of the monotonicity of the exponential

function, one then easily infers from reformulation (6.25) of the discrete fluxes that

Dn
i,σ := F n

i,K σ(µn
i,K − µn

i,L) ≥ 0, ∀i = 1, . . . , I , σ = K|L ∈ Eint, (6.36)

whence the nonnegativity of Dn. As un
0,K > 0 for all K ∈ T and n ≥ 1, and as y ↦→ ey is

strictly increasing, one gets that Dn
i,σ = 0 iff µn

i,K = µn
i,L.

Define by µn
i,K = log

(︃
un

i,K

un
0,K

)︃
+ ziφ

n
K = log(wn

i,K) the electrochemical potential of species i,
then multiplying the discrete conservation law (6.19) by τnµn

i,K , and summing over i = 1, . . . , I
and K ∈ T provides thanks to discrete integration by parts

An
T + Bn

T + τnDn
T = 0, (6.37)

where we have set

An
T =

I∑︂
i=1

∑︂
K∈T

(︂
un

i,K − un−1
i,K

)︂
log

(︄
un

i,K

un
0,K

)︄
mK

(6.21)=
I∑︂

i=0

∑︂
K∈T

(︂
un

i,K − un−1
i,K

)︂
log

(︂
un

i,K

)︂
mK ,

and

Bn
T =

I∑︂
i=1

∑︂
K∈T

(︂
un

i,K − un−1
i,K

)︂
ziφ

n
KmK
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(6.18)= λ2 ∑︂
K∈T

φn
K

∑︂
σ∈EK

aσ

(︂
φn

K − φn−1
K − (φn

K σ − φn−1
K σ )

)︂
.

Then we deduce from the convexity of H that

An
T ≥

∑︂
K∈T

(︂
H(Un

K) − H(Un−1
K )

)︂
mK , (6.38)

while reorganizing the term Bn gives

Bn
T = λ2 ∑︂

σ∈E
aσ

(︂
φn

K − φn−1
K − (φn

K σ − φn−1
K σ )

)︂
(φn

K − φn
K σ)

+ λ2 ∑︂
σ∈ED

aσφD
σ (φn

K − φn−1
K ).

Then using the elementary convexity inequality a(a − b) ≥ (a2 − b2)/2 in the above term and
combining the result with (6.38) in (6.37) provides the desired result (6.35).

Proposition 6.4 allows us to completes the proof of Theorem 6.1, but it also contains
important information for proving the convergence of the schemes. Their extraction is the
purpose of next section.

6.3.3 Further uniform estimates on the discrete solution
To pass to the limit in the schemes and to identify the limit as a weak solution, we need to
extract some further uniform estimates, as in particular the discrete L2

loc(H1) estimates on
the discrete counterparts of u0 and √

uiu0. We prove these estimates in Lemma 6.3. As an
intermediate result we need a uniform bound on the discrete free energy.

Lemma 6.2. There exists C > 0 depending only on Ω, φD, λ, f , (zi)i, and ζT such that, for
all N ≥ 1, there holds |HN

T | ≤ C.

Proof. Because of the bound 0 ≤ un
i,K ≤ 1 for all i and K, it is clear that the first two contri-

butions of (6.34) remain uniformly bounded by a constant depending only on Ω. Concerning
the last contribution observe that if one defines φD

K and φD
σ as the averages of φD on K ∈ T

and σ ∈ E respectively, then a suitable reorganization of the sum shows that∑︂
σ∈ED

aσφD
σ (φn

K − φD
σ ) =

∑︂
σ∈E

aσ(φD
σ − φD

K)(φn
K − φn

K σ) +
∑︂

K∈T
φD

K

∑︂
σ∈EK

aσ(φn
K − φn

K σ)

(6.18)=
∑︂
σ∈E

aσ(φD
σ − φD

K)(φn
K − φn

K σ) + 1
λ2

∑︂
K∈T

mKφD
K

(︄
fK +

I∑︂
i=1

ziu
n
i,K

)︄
. (6.39)

Using Young’s inequality and ED ⊂ E for the first term in the above right-hand side gives
∑︂

K∈T

∑︂
σ∈ED

aσ(φD
σ − φD

K)(φn
K − φn

K σ) ≤
∑︂
σ∈E

aσ(φD
σ − φD

K)2 + 1
4

∑︂
σ∈E

aσ(φn
K − φn

K σ)2.
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Then Lemma 9.4 of [87] shows that∑︂
K∈T

∑︂
σ∈ED

aσ(φD
σ − φD

K)2 ≤ C(ζT )∥∇φD∥2
L2(Ω).

Then since f and U are bounded, we deduce from (6.39) that there exists C depending only
on ∥f∥∞, maxi |zi|, Ω, ∥φD∥H1 , λ and ζT such that∑︂

σ∈ED

aσφD
σ (φn

K − φD
σ ) ≤ C .

The result of the lemma follows.

Next lemma shows that the control of the energy dissipation ∑︁
n≥1 τnDn

T inferred from
Proposition 6.4 gives some L2

loc(H1) type control on the discrete counterparts of u0, √
u0 and√

uiu0.

Lemma 6.3. There exists C > 0 depending only on Ω, φD, λ, f , (zi)i, (Di)i and ζT such
that, for all N ≥ 1, there holds

N∑︂
n=1

τn
I∑︂

i=1

∑︂
σ∈Eint

aσ

(︂√︂
un

i,Kun
0,K −

√︂
un

i,Lun
0,L

)︂2

+
N∑︂

n=1
τn

∑︂
σ∈Eint

aσ

(︂√︂
un

0,K −
√︂

un
0,L

)︂2

+
N∑︂

n=1
τn

∑︂
σ∈Eint

aσ

(︂
un

0,K − un
0,L

)︂2 ≤ C(1 + tN ). (6.40)

As a consequence, one also has

N∑︂
n=1

τn
I∑︂

i=1

∑︂
σ∈Eint

aσ

(︂
un

i,K

√︂
un

0,K − un
i,L

√︂
un

0,L

)︂2 ≤ C(1 + tN ) (6.41)

and
N∑︂

n=1
τn

I∑︂
i=1

∑︂
σ∈Eint

aσ

(︂
un

i,Kun
0,K − un

i,Lun
0,L

)︂2 ≤ C(1 + tN ). (6.42)

Proof. One gets from the elementary inequality (a − b)(log(a) − log(b)) ≥ 4(
√

a − √
b)2 applied

to (6.36) that

Dn
i,σ ≥ 4aσDiR(e−ziφ

n
K , e−ziφ

n
L)

(︂√︂
un

i,Kun
0,Le

zi
4 (φn

K−φn
L) −

√︂
un

i,Lun
0,Ke

zi
4 (φn

L−φn
K)

)︂2

with R(e−ziφ
n
K , e−ziφ

n
L) = M(e−ziφ

n
K , e−ziφ

n
L)e

zi
2 (φn

K+φn
L) being equal to 1 for the choice (SQRA)

of B but not for (SG). However, thanks to (6.32) and since Di > 0 for all i, there holds

2DiR(e−ziφ
n
K , e−ziφ

n
L) ≥ κ
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for some κ > 0 uniform w.r.t. K, i and n. As a consequence, using furthermore that
(a + b)2 ≥ 1

2a2 − b2,

Dn
i,σ ≥ κaσ cosh2

(︃
zi

4 (φn
K − φn

L)
)︃ (︂√︂

un
i,Kun

0,L −
√︂

un
i,Lun

0,K

)︂2

− κaσ

(︂√︂
un

i,Kun
0,L +

√︂
un

i,Lun
0,K

)︂2
sinh2

(︃
zi

4 (φn
K − φn

L)
)︃

.

Since |φn
K | ≤ C owing to (6.32), one has sinh2 (︁ zi

4 (φn
K − φn

L)
)︁ ≤ C(φn

K − φn
L)2. Using moreover

that 0 < un
i,K , un

0,K < 1 and that cosh(a) ≥ 1, one gets that

Dn
i,σ ≥ aσκ

(︂√︂
un

i,Kun
0,L −

√︂
un

i,Lun
0,K

)︂2 − C aσ(φn
K − φn

L)2.

Since(︂√︂
un

i,Kun
0,L −

√︂
un

i,Lun
0,K

)︂2
=

(︂√︂
un

i,Kun
0,K −

√︂
un

i,Lun
0,L

)︂2 − (un
i,K − un

i,L)(un
0,K − un

0,L), (6.43)

then summing over i = 1, . . . , I and σ = K|L and using (6.21) leads to

Dn
T ≥ κ

I∑︂
i=1

∑︂
σ∈Eint

aσ

(︂√︂
un

i,Kun
0,K −

√︂
un

i,Lun
0,L

)︂2

+ κ
∑︂

σ∈Eint

aσ

(︂
un

0,K − un
0,L

)︂2 − C
∑︂

σ∈Eint

aσ(φn
K − φn

K σ)2.

Bearing in mind Proposition 6.2, we obtain that

Dn
T ≥ κ

I∑︂
i=1

∑︂
σ∈Eint

aσ

(︂√︂
un

i,Kun
0,K −

√︂
un

i,Lun
0,L

)︂2
+ κ

∑︂
σ∈Eint

aσ

(︂
un

0,K − un
0,L

)︂2 − C . (6.44)

Moreover, the inequality ∑︁I
i=0

√︂
un

i,Kun
i,L ≤ 1 gives that

I∑︂
i=1

∑︂
σ∈Eint

aσ

(︂√︂
un

i,Kun
0,K −

√︂
un

i,Lun
0,L

)︂2

≥
∑︂

σ∈Eint

aσ

(︂
(1 − un

0,K)un
0,K + (1 − un

0,L)un
0,L − 2(1 −

√︂
un

0,Kun
0,L)

√︂
un

0,Kun
0,L

)︂
=

∑︂
σ∈Eint

aσ

(︂√︂
un

0,K −
√︂

un
0,L

)︂2 −
∑︂

σ∈Eint

aσ

(︂
un

0,K − un
0,L

)︂2
,

whence we also deduce that

Dn
T ≥ κ

∑︂
σ∈Eint

aσ

(︂√︂
un

0,K −
√︂

un
0,L

)︂2 − C .
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To conclude the proof, it eventually remains to remark from (6.35) and Lemma 6.2 that there
exists C depending neither on h, Δt, N nor on the initial data U0 =

(︁
u0

i

)︁
0≤i≤I (provided it

fulfills (6.7)) such that ∑︁N
n=1 τnDn

T ≤ C . Combining this with (6.44) yields (6.40).
To recover estimate (6.41), remark that

(︂√︂
un

0,Kun
i,K −

√︂
un

0,Lun
i,L

)︂
=

[︄√︂
un

i,K

(︂√︂
un

0,Kun
i,K −

√︂
un

0,Lun
i,L

)︂
+ un

i,L

(︂√︂
un

0,K −
√︂

un
0,L

)︂
+

√︂
un

i,L

(︂√︂
un

0,Lun
i,K −

√︂
un

0,Kun
i,L

)︂]︄
.

As (a + b + c)2 ≤ 3(a2 + b2 + c2), and since 0 ≤ un
i,K ≤ 1, one gets that

1
3

(︂√︂
un

0,Kun
i,K −

√︂
un

0,Lun
i,L

)︂2 ≤
(︂√︂

un
0,Kun

i,K −
√︂

un
0,Lun

i,L

)︂2

+
(︂√︂

un
0,K −

√︂
un

0,L

)︂2

+
(︂√︂

un
0,Lun

i,K −
√︂

un
0,Kun

i,L

)︂2
.

The two first terms in the right-hand side are controlled thanks to (6.40), while, bearing in
mind (6.43), the third term can be overestimated as follows:

(︂√︂
un

0,Lun
i,K −

√︂
un

0,Kun
i,L

)︂2 ≤
I∑︂

i=1

(︂√︂
un

0,Lun
i,K −

√︂
un

0,Kun
i,L

)︂2

≤
I∑︂

i=1

(︂√︂
un

0,Kun
i,K −

√︂
un

0,Lun
i,L

)︂2
+ (un

0,K − un
0,L)2,

which again, after summation on n = 1, . . . , N and σ ∈ Eint, can be controlled thanks to (6.40).
Finally, to establish (6.42), remark that

un
i,Kun

0,K − un
i,Lun

0,L =
(︂√︂

un
i,Kun

0,K −
√︂

un
i,Lun

0,L

)︂ (︂√︂
un

i,Kun
0,K +

√︂
un

i,Lun
0,L

)︂
.

Since 0 ≤ un
0,K , un

i,K ≤ 1, one gets that
(︂
un

i,Kun
0,K − un

i,Lun
0,L

)︂2 ≤ 4
(︂√︂

un
i,Kun

0,K −
√︂

un
i,Lun

0,L

)︂2
.

Summing over n = 1, . . . , N and σ ∈ Eint and using (6.40) gives the desired result.

One also deduces the following discrete L2
loc(L2)d estimates on the fluxes, which amount to

some discrete L2
loc(H1)′ estimate on time increments of the discrete counterpart to ∂tui.

Lemma 6.4. There exists C depending only on Ω, φD, λ, f , (zi)i, (Di)i and ζT such that

I∑︂
i=1

N∑︂
n=1

τn
∑︂

σ∈Eint

dσ

mσ

⃓⃓⃓
F n

i,K σ
⃓⃓⃓2 ≤ C(1 + tN ). (6.45)
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Proof. To obtain discrete L2
loc(L2)d estimates on the fluxes, we need to exploit the discrete

uniform estimates we have for (Un
K , φn

K)K∈T ,n≥1. In this regard, we rewrite the fluxes in a
different way, so that we can employ what we know on the function B, both for (SG) and
for (SQRA). One splits the flux (6.2) into two parts corresponding to convection and diffusion
respectively:

F n
i,K σ = F conv,n

i,K σ + F diff,n
i,K σ ,

with

F conv,n
i,K σ = aσDi

un
i,Kun

0,L + un
i,Lun

0,K

2
[︁
B

(︁
zi(φn

L − φn
K)

)︁ − B
(︁
zi(φn

K − φn
L)

)︁]︁
,

F diff,n
i,K σ = aσDi

un
i,Kun

0,L − un
i,Lun

0,K

2
[︁
B

(︁
zi(φn

L − φn
K)

)︁
+ B

(︁
zi(φn

K − φn
L)

)︁]︁
.

The flux (F n
i,K σ)σ,n is bounded in L2

loc(L2)d in the sense of (6.45) if both (F conv,n
i,K σ )σ,n and

(F diff,n
i,K σ )σ,n are.
For the choice (SG) of the function B, then B(−y) − B(y) = y, while B(−y) − B(y) =

y + O(y2) for (SQRA), so that

F conv,n
i,K σ = aσDi

un
i,Kun

0,L + un
i,Lun

0,K

2 zi(φn
K − φn

L), (6.46)

the remainder term being null for (SG). The L2
loc(L2)d character of the above expression

directly follows from the uniform bound on un
i,K , 0 ≤ i ≤ I and from the discrete L∞(H1)

bound on (φn
K)K ,n stated in Proposition 6.2. Therefore,

I∑︂
i=1

N∑︂
n=1

τn
∑︂

σ∈Eint

dσ

mσ

⃓⃓⃓
F conv,n

i,K σ
⃓⃓⃓2 ≤ C tN .

Concerning the diffusive term, one has for both choices (SQRA) and (SG) of the function
B that

1 ≤ 1
2

[︁
B

(︁
zi(φn

L − φn
K)

)︁
+ B

(︁
zi(φn

K − φn
L)

)︁]︁ ≤ 1 + z2
i

12 (φn
K − φn

L)2 .

Therefore, one gets that

F diff,n
i,K σ = aσDi

(︂
un

i,Kun
0,L − un

i,Lun
0,K

)︂ (︂
1 + O

(︂
(φn

K − φn
L)2

)︂)︂
. (6.47)

From the discrete L∞(H1) bound on (φn
K)K ,n, one can uniformly estimate the reminder. For

the other term, since un
i,Kun

0,L − un
i,Lun

0,K = un
i,Kun

0,K − un
i,Lun

0,L + (un
i,K + un

i,L)(un
0,L − un

0,K),
then

|un
i,Kun

0,L − un
i,Lun

0,K |2 ≤ C
(︂
|un

i,Kun
0,K − un

i,Lun
0,L|2 + |(un

i,K + un
i,L)(un

0,L − un
0,K)|2

)︂
≤ C

(︃⃓⃓⃓√︂
un

i,Kun
0,K −

√︂
un

i,Lun
0,L

⃓⃓⃓2
+ |un

0,L − un
0,K |2

)︃
,
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so that we obtain
I∑︂

i=1

N∑︂
n=1

τn
∑︂

σ∈Eint

dσ

mσ

⃓⃓⃓
F diff,n

i,K σ
⃓⃓⃓2 ≤ C

I∑︂
i=1

N∑︂
n=1

τn
∑︂

σ∈Eint

aσ

⃓⃓⃓√︂
un

i,Kun
0,K −

√︂
un

i,Lun
0,L

⃓⃓⃓2
+C

I∑︂
i=1

N∑︂
n=1

τn
∑︂

σ∈Eint

aσ|un
0,L − un

0,K |2,

thanks to the uniform bounds on (Un
K)K∈T ,n≤1. Lemma 6.3 provides the desired L2

loc(L2)
bound on F diff,n

i,K σ , concluding the proof of Lemma 6.4.

From Lemma 6.4, we deduce the following discrete L2
loc((H1)′) estimate:

Corollary 6.1. There exists C depending only on Ω, φD, λ, f , (zi)i, (Di)i and ζT such that,
for all i = 0, . . . , I and all ϕT ,τ = ∑︁

K∈T
∑︁N

n=1 ϕn
K✶(tn−1,tn]×K , one has

N∑︂
n=1

∑︂
K∈T

(un
i,K − un−1

i,K )ϕn
K ≤ C

(︂
1 + tN

)︂1/2
 N∑︂

n=1
τn

∑︂
σ∈Eint

aσ (ϕn
K − ϕn

K σ)2

1/2

. (6.48)

Proof. Let us first establish (6.48) for i ≥ 1. Multiplying (6.19) by τnϕn
K , summing over

K ∈ T and n ∈ {1, . . . , N}, and performing a discrete integration by parts on the contribution
of the fluxes provides

N∑︂
n=1

∑︂
K∈T

mK(un
i,K − un−1

i,K )ϕn
K =

N∑︂
n=1

τn
∑︂

σ∈Eint

F n
i,K σ(ϕn

K σ − ϕn
K). (6.49)

Applying Cauchy-Schwarz inequality to the right-hand side then using Lemma 6.4 provides
the desired result. The recovery of the estimate for i = 0 then directly follows from the
definition (6.21) of un

0,K and from (6.48) for i ≥ 1.

6.4 Convergence of the schemes
This section is devoted to the proof of Theorem 6.2, which relies on compactness arguments.
Given sequences (Tℓ, Eℓ, {xK}K∈Tℓ

)ℓ≥1 and (τℓ)ℓ≥1 =
(︂
(τn

ℓ )n≥1

)︂
ℓ≥1

of admissible meshes and
a sequence of time steps in the sense of Section 6.2.1, with

lim
ℓ→∞

hTℓ
= lim

ℓ→∞
Δtℓ = 0 and ζTℓ

≤ ζ⋆ < +∞, (6.50)

we define the sequences (ui,Tℓ,τℓ
)ℓ≥1 and (φTℓ,τℓ

)ℓ≥1 as in (6.27)&(6.28). For legibility, the
index ℓ will be removed as soon as it does harm comprehension.

As usual in the analysis of finite volume schemes, we also need to handle quantities attaches
to the faces σ ∈ E . To this end, we introduce the so-called diamond mesh of Ω by associating
a diamond cell ωσ to all σ ∈ E . More precisely, ωσ is the convex hull of {xK , xL, σ} if
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σ = K|L ∈ Eint, and ωσ = conv{xK , σ} if σ ∈ Eext ∩ EK , see Figure 6.1 for an illustration. The
Lebesgue measure mωσ of ωσ is then given by

mωσ = mσdσ

d
, σ ∈ E , (6.51)

where d is the ambiant space dimension.
Among other quantities attached to faces, one defines the inflated fluxes (Fi,E,τ )1≤i≤I as

the piecewise constant in space and time vector fields defined by

Fi,E,τ (t, x) = d

mσ
F n

i,K σnK σ if (t, x) ∈ (tn−1, tn] × ωσ,

with nK σ the normal to σ outward with respect to K. A major part of the analysis carried
out in this section consists in showing that, up to the extraction of a subsequence,

Fi,Eℓ,τℓ
(t, x) −→

ℓ→+∞
Fi weakly in L2

loc(R+ × Ω)d.

where we make use of the definition (6.2) of the continuous fluxes.

•

•xK

xL

σ =
K|L

ωσ

σ
′ ⊂ ∂Ω

ωσ′

Fig. 6.1: Examples of diamond cells ωσ, ωσ′ for inner and external faces σ and σ′.

Following [50, 86], to a piecewise constant in space function vT (x) = ∑︁
K∈T vK✶K(x), we

associate the inflated gradient ∇T vT : Ω → Rd defined by

∇T vT (x) = d
vK σ − vK

dσ
nK σ if x ∈ ωσ. (6.52a)

This operator straightforwardly extends to piecewise constant functions in space and time:

∇T vT ,τ (t, x) = d
vn

K σ − vn
K

dσ
nK σ if (t, x) ∈ (tn−1, tn] × ωσ. (6.52b)

This section is organized as follows. The needed compactness properties are established
in Section 6.4.1, allowing to claim for the existence of (at least) a limit point (U, φ) to the
sequence (UTℓ,τℓ

, φTm,Δtℓ
)ℓ≥1. Section 6.4.2 concludes the proof of Theorem 6.2 by showing
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that the limit value (U, φ) is a weak solution of the continuous problem (6.1)–(6.7) in the
sense of Definition 6.1.

6.4.1 Compactness of the approximate solutions
We establish here enough compactness properties to pass to the limit in the schemes.

Proposition 6.5 (Compactness results). There exist functions u0 ∈ L∞(R+ × Ω) with√
u0 ∈ L2

loc(R+; H1(Ω)), u1, . . . , un ∈ L∞(R+ × Ω) with ui
√

u0 ∈ L2
loc(R+; H1(Ω)), and

φ ∈ L∞(R+ × Ω) with φ − φD ∈ L∞(R+; V ) such that, up to a subsequence, as ℓ → +∞, there
holds

ui,T ,τ → ui in the L∞(R+ × Ω)-weak-⋆ sense, 1 ≤ i ≤ I , (6.53)
u0,T ,τ → u0 in the L∞(R+ × Ω)-weak-⋆ sense and a.e. in R+ × Ω, (6.54)

φT ,τ → φ in the L∞(R+ × Ω)-weak-⋆ sense and a.e. in R+ × Ω. (6.55)

Moreover, for 1 ≤ i ≤ I, one has

ui,T ,τ
√

u0,T ,τ → ui
√

u0 a.e. in R+ × Ω, (6.56)
u0,T ,τ ui,T ,τ → u0ui a.e. in R+ × Ω, (6.57)

and also

∇T ,τ
√

u0,T ,τ ⇀ ∇√
u0 weakly in L2

loc(R+; L2(Ω)d), (6.58)
∇T ,τ [u0,T ,τ ui,T ,τ ] ⇀ ∇[u0ui] weakly in L2

loc(R+; L2(Ω)), (6.59)
∇T ,τ φT ,τ ⇀ ∇φ weakly in L2

loc(R+; L2(Ω)), (6.60)

Proof. The L∞(R+×Ω)-weak-⋆ convergences (6.53)–(6.55) are the consequences of the uniform
bounds on ui,T ,τ and φT ,τ in L∞(R+ ×Ω), thanks to the Banach-Alaoglu Theorem. The strong
convergence (6.54) follow directly from the discrete Aubin-Lions lemma, see [99] for a general
presentation of the lemma, and [40, Lemma 9] for its application in our context, which can be
applied thanks to the uniform estimates of Lemma 6.3 and Corollary 6.1. Furthermore, one
obtains the weak convergence in L2

loc(R+; L2(Ω)) of ∇T ,τ u0,T ,τ towards ∇u0. Concerning the
point-wise convergence of φT ,τ towards φ, it can be proven by using the discrete L2

loc((H1)′)
estimate on time increments of the right-hand side of the discrete Poisson equation (6.18) that
follows from Corollary 6.1. As the proof is fully similar to the one of [39, Proposition 4.2], we
do not provide details here. The weak compactness property (6.60) is also established in [39,
Proposition 4.2].

In order to prove (6.58), one can either make use of the nonlinear Aubin Simon theorem of [8],
or directly remark that, thanks to Lemma 6.3, the vector field ∇T

√
u0,T ,τ is uniformly bounded

in L2
loc(R+; L2(Ω)d). We deduce from this boundedness that there exists G0 ∈ L2

loc(R+; L2(Ω)d)
such that, up to a subsequence, ∇T

√
u0,T ,τ tends to G0 weakly. As √

u0,T ,τ converges point-
wise (and thus in L1

loc(R+ × Ω)) towards √
u0 owing to (6.54), the weak consistency of the

inflated gradient ∇T , see for instance [50, 82], allows to show that G0 = ∇√
u0.

Regarding the point-wise convergences (6.56) and (6.57), of ui,T ,τ
√

u0,T ,τ , respectively, we
can conclude by applying the discrete Aubin-Lions lemma of "degenerate" type ([40, Lemma
10]). To prove (6.56), we use it with yℓ = √

u0,Tℓ,τℓ
and zℓ = ui,Tℓ,τℓ

, making advantages of the
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uniform estimate (6.48), (6.40) and (6.41). Whereas, with yℓ = u0,Tℓ,τℓ
and zℓ = ui,Tℓ,τℓ

, we
conclude (6.57) similarly, replacing (6.41) by (6.42).

It finally remains to prove (6.59) for i = 1, . . . , I. As a consequence of (6.42), ∇T [ui,T ,τ u0,T ,τ ]
is uniformly bounded in L2

loc(R+ × Ω)d. Hence there exists Gi such that, up to a subsequence,

∇T [ui,T ,τ u0,T ,τ ] ⇀ Gi weakly in L2
loc(R+ × Ω)d.

As ui,T ,τ u0,T ,τ converges towards uiu0 thanks to (6.57), we can invoke again the weak consis-
tency of the inflated gradient to conclude that Gi = ∇[uiu0].

6.4.2 Identification of the limit
In this section, we conclude the proof of Theorem 6.2 by showing the following proposition.

Proposition 6.6. Let (U, φ) be as in Proposition 6.5, then it is a weak solution of the
problem (6.1)–(6.7) in the sense of Definition 6.1.

Proof. The regularity requirements on U and φ have already been checked in Proposition 6.5.
Therefore it only remains to verify that the weak formulations (6.16) and (6.17) hold true.
The case of Poisson equation is classical. It will not be detailed here, and we refer to [39,
Proposition 4.2] for a synthetic proof. We rather focus our attention on the derivation of (6.17).

Let ϕ ∈ C∞
c (R+ × Ω), then, for some admissible mesh (Tℓ, Eℓ, (xK)K∈Tℓ

) (we remove the
subscript ℓ when possible for legibility), denote by ϕn

K = ϕ(tn, xK). Multiplying (6.19) by
τnϕn−1

K and summing over n ≥ 1 and K ∈ T yields, as for (6.49):

N∑︂
n=1

∑︂
K∈T

mK (un
i,K − un−1

i,K )ϕn−1
K =

N∑︂
n=1

τn
∑︂

σ∈Eint

F n
i,K σ(ϕn−1

K σ − ϕn−1
K ). (6.61)

Since ϕ is compactly supported in time, ϕn
K = 0 for n large enough. Therefore, the left-hand

side of (6.61) rewrites

N∑︂
n=1

∑︂
K∈T

mK (un
i,K − un−1

i,K )ϕn−1
K =

N∑︂
n=1

τn
∑︂

K∈T
mKun

i,K

ϕn−1
K − ϕn

K

τn
−

∑︂
K∈T

mKu0
i,Kϕ0

K .

Since ϕ is smooth, the approximate time derivative δτ ϕT ,τ of ϕ defined by

δτ ϕT ,τ (t, x) = ϕn
K − ϕn−1

K

τn
if (t, x) ∈ (tn−1, tn] × K

converges in L1(R+ × Ω) towards ∂tϕ. Therefore, using (6.53), we get that

N∑︂
n=1

τn
∑︂

K∈T
mKun

i,K

ϕn−1
K − ϕn

K

τn
−→

ℓ→+∞
−

∫︂ ∫︂
R+×Ω

ui∂tϕ. (6.62)

The function u0
i,T = ∑︁

K∈T u0
i,K✶K converges strongly in L1(Ω) towards u0

i , while ϕ0
T =∑︁

K∈T ϕ0
K✶K converges uniformly towards ϕ(0, ·) thanks to the regularity of ϕ. Therefore,

−
∑︂

K∈T
mKu0

i,Kϕ0
K −→

ℓ→+∞
−

∫︂
Ω

u0
i ϕ(0, ·), (6.63)
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so we can pass to the limit in the left-hand side of (6.61).
Let us now focus on its right-hand side. Define ϕ̃T ,τ by

ϕ̃T ,τ (t, x) = ϕ(tn−1, xK) if (t, x) ∈ [tn−1, tn) × K .

Following [83] (see [69] for a practical example), one can reconstruct a second approximate
gradient operator ˆ︁∇T mapping the set of piecewise constant functions in space and time to
Rd such that

ˆ︁∇T ϕ̃T ,τ (t, x) · nK σ = ϕn
L − ϕn

K

dσ
if (t, x) ∈ [tn−1, tn) × ωσ, σ = K|L ∈ Eint,

and which is strongly consistent, i.e.,

ˆ︁∇T ϕ̃T ,τ −→
ℓ→+∞

∇ϕ strongly in L2(R+ × Ω)d.

The right-had side of (6.61) then simply boils down to

N∑︂
n=1

τn
∑︂

σ∈Eint

F n
i,K σ(ϕn−1

K σ − ϕn−1
K ) =

∫︂ ∫︂
R+×Ω

Fi,E,τ · ˆ︁∇T ϕ̃T ,τ .

We have shown in Lemma 6.4 that (Fi,Eℓ,τℓ
)ℓ≥1 is uniformly bounded in L2

loc(R+ × Ω)d.
Therefore, it converges (up to a subsequence) towards some vector field Fi weakly in L2

loc(R+ ×
Ω). We can then pass to the limit in the right-hand side of (6.61) to obtain

N∑︂
n=1

τn
∑︂

σ∈Eint

F n
i,K σ(ϕn−1

K σ − ϕn−1
K ) −→

ℓ→+∞

∫︂ ∫︂
R+×Ω

Fi · ∇ϕ. (6.64)

To conclude the proof of Proposition 6.6, we still have to identify the limiting flux Fi under
the form (6.15). To this end, we split the inflated fluxes into a convective and diffusive part,

F conv
i,E,τ (t, x) = d

mσ
F conv,n

i,K σ nK σ if (t, x) ∈ (tn−1, tn] × ωσ,

F diff
i,E,τ (t, x) = d

mσ
F diff,n

i,K σ nK σ if (t, x) ∈ (tn−1, tn] × ωσ,

where F conv,n
i,K σ and F diff,n

i,K σ are as in the proof of Lemma 6.4. As both F conv
i,E,τ and F text

i,E,τ have
been shown to be bounded in L2

loc(R+ × Ω)d, one has, up to a subsequence,

F diff
i,E,τ −→

ℓ→+∞
F diff

i and F conv
i,E,τ −→

ℓ→+∞
F conv

i weakly in L2
loc(R+ × Ω)d. (6.65)

Let us first focus on the convective part F conv
i,E,τ . For i = 1, . . . , I, σ ∈ E and n ≥ 1, define

ηn
i,σ =


un

i,Kun
0,L+un

i,Lun
0,K

2 if σ = K|L ∈ Eint,

un
i,Kun

0,K if σ ∈ EK ∩ Eext,
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and

η̃n
i,σ =


un

i,Kun
0,K+un

i,Lun
0,L

2 if σ = K|L ∈ Eint,

un
i,Kun

0,K if σ ∈ EK ∩ Eext,

and then ηi,E,τ (t, x) = ηn
i,σ and η̃i,E,τ (t, x) = ηn

i,σ if (t, x) ∈ (tn−1, tn]×ωσ. In view of (6.46) and
of the definition (6.52) of the inflated gradient, the convective part of the inflated approximate
flux rewrites

F conv
i,E,τ = −Di ηi,E,τ zi ∇T φT ,τ . (6.66)

Thanks to (6.57), proving that

ηi,E,τ − η̃i,E,τ −→
ℓ→+∞

0 a.e. in R+ × Ω (6.67)

and
η̃i,E,τ − u0,T ,τ ui,T ,τ −→

ℓ→+∞
0 a.e. in R+ × Ω (6.68)

is equivalent to showing that

ηi,E,τ −→
ℓ→+∞

u0ui a.e. in R+ × Ω,

and thus strongly in L2
loc(R+ × Ω) thanks to the uniform bound 0 ≤ ui,T ,τ ≤ 1. Bearing in

mind (6.60), this allows to pass to the weak limit in (6.66) and to recover that

F conv
i = −Di u0ui zi ∇φ. (6.69)

To establish (6.67), remark that

⃦⃦⃦
ηi,E,τ − η̃i,E,τ

⃦⃦⃦2

L2((0,tN )×Ω)
= 1

4

N∑︂
n=1

τn
∑︂

σ∈Eint

mωσ (un
i,K − un

i,L)2(un
0,K − un

0,L)2.

Since 0 ≤ un
i,K ≤ 1, owing to (6.51), and since dσ ≤ 2hT this gives

⃦⃦⃦
ηi,E,τ − η̃i,E,τ

⃦⃦⃦2

L2((0,tN )×Ω)
≤ h2

T
d

N∑︂
n=1

τn
∑︂

σ∈Eint

aσ(un
0,K − un

0,L)2.

We can make use of estimate (6.40) to get that ηi,E,τ − η̃i,E,τ tends to 0 in L2
loc(R+ × Ω), hence

almost everywhere up to the extraction of yet another subsequence, whence (6.67).
Concerning (6.68), we can proceed similarly to obtain

⃦⃦⃦
η̃i,E,τ − u0,T ,τ ui,T ,τ

⃦⃦⃦2

L2((0,tN )×Ω)
= h2

T
d

N∑︂
n=1

τn
∑︂

σ∈Eint

aσ

(︂
un

0,Kun
i,K − un

0,Lun
i,L

)︂2

which tends to 0 thanks to (6.42).
It finally remains to identify the limit of F diff

i,E,τ as F diff
i . To this end, remark first that, for

σ = K|L ∈ Eint and n ≥ 1, one has

un
i,Kun

0,L − un
i,Lun

0,K = T n
1,σ + T n

2,σ + T n
3,σ



6.4 Convergence of the schemes 65

with

T n
1,σ = un

i,Kun
0,K − un

i,Lun
0,L,

T n
2,σ = 2

(︂
un

i,K

√︂
un

0,K + un
i,L

√︂
un

0,L

)︂ (︂√︂
un

0,K −
√︂

un
0,L

)︂
,

T n
2,σ =

(︂
un

i,K − un
i,L

)︂ (︂√︂
un

0,K −
√︂

un
0,L

)︂2
.

Therefore, in view of (6.47), we can split

F diff
i,E,τ = −Di∇T [ui,T ,τ u0,T ,τ ] − 4Diγi,E,τ ∇T

√
u0,T ,τ + Ri,E,τ + Si,E,τ , (6.70)

where we have set

γi,E,τ (t, x) =

��
1
2

(︃
un

i,K

√︂
un

0,K + un
i,L

√︂
un

0,L

)︃
if (t, x) ∈ (tn−1, tn] × ωσ, σ = K|L ∈ Eint,

un
i,K

√︂
un

0,K if (t, x) ∈ (tn−1, tn] × ωσ, σ ∈ EK ∩ Eext,

and where, for (t, x) ∈ (tn−1, tn] × ωσ, σ = K|L ∈ Eint,

Ri,E,τ (t, x) = d Di (un
i,K − un

i,L)
(︂√︂

un
0,K −

√︂
un

0,L

)︂2
nK σ,

and, in view of (6.47),
|Si,E,τ (t, x)| ≤ C

dσ
(φn

K − φn
L)2 .

Both Ri,E,τ and Si,E,τ are assumed to vanish on R+ × ωσ for all σ ∈ Eext. Then thanks to
Proposition 6.2, one has

∥Si,E,τ ∥L1((0,tN )×Ω)d ≤ C
N∑︂

n=1
τn

∑︂
σ∈Eint

mσ (φn
K − φn

L)2 ≤ C hT tN .

On the other hand, since 0 ≤ un
i,K ≤ 1, we deduce from (6.40) that

∥Ri,E,τ ∥L1((0,tN )×Ω)d ≤ Di

N∑︂
n=1

τn
∑︂

σ∈Eint

mσ

(︂√︂
un

0,K −
√︂

un
0,L

)︂2 ≤ C hT (1 + tN ).

The two last terms in (6.70) then tend to 0, while the first term tends to −Di∇[u0ui] thanks
to (6.59). In view of the weak L2

loc(L2) convergence of ∇T
√

u0,T ,τ towards ∇√
u0, cf. (6.58),

then it suffices to show that

γi,E,τ −→
ℓ→+∞

ui
√

u0 strongly in L2
loc(R+ × Ω)

to pass to the limit in (6.70). As ui,T ,τ
√

u0,T ,τ converges strongly towards ui
√

u0, see (6.56),
then

∥γi,E,τ − ui,T ,τ
√

u0,T ,τ ∥2
L2((0,tN )×Ω) = 1

2

N∑︂
n=1

τn
∑︂

σ∈Eint

mωσ

(︂
un

i,K

√︂
un

0,K − un
i,L

√︂
un

0,L

)︂2
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≤ h2
T
d

N∑︂
n=1

τn
∑︂

σ∈Eint

aσ

(︂
un

i,K

√︂
un

0,K − un
i,L

√︂
un

0,L

)︂2

(6.41)
≤ h2

T
d

(1 + tN ) −→
ℓ→+∞

0.

This completes the proof of (6.65), thus the ones of Proposition 6.6 and Theorem 6.2.

6.5 Numerical results
The nonlinear system corresponding to the schemes is solved thanks to a Newton-Raphson
method with stopping criterion ∥Fn

T ((Un
K)K∈T , (φn

K)K∈T )∥∞ ≤ 10−8, the components of Fn
T

being given by the left-hand side of (6.19).

6.5.1 Convergence under grid refinement
The goal of our first numerical test is to show that both schemes corresponding to (SQRA)
and (SG) are second order accurate w.r.t. the mesh size. To this end, we consider the
one-dimensional domain Ω = (0, 1), in which I = 2 different ions evolve, both with the same
diffusion coefficient D1 = D2 = 1. Their (normalized) charge is set to z1 = 2 and z2 = 1,
yielding repulsive interaction. No background charge is considered, i.e. f = 0, whereas Dirichlet
boundary conditions are imposed for the electric potentiel on both sides of the interval, that
are φD(t, 0) = 10 and φD(t, 1) = 0. We consider a moderately small Debye length λ2 = 10−2.
We start at initial time t = 0 with the following configurations: u0

1(x) = 0.2 + 0.1(x − 1) and
u0

2 ≡ 0.4.
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Fig. 6.2: Concentration profiles u1(T , x), u2(T , x) and u0(T , x) at time T = 1, λ2 = 10−2.

A reference solution is computed on a grid made of 1638400 cells and with a constant time
step τ = 10−3, to which we compare solutions computed on successively refined grids but



6.5 Numerical results 67

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Space variable x

C
on

ce
nt

ra
tio

n

u1
u2
u0

Fig. 6.3: Concentration profiles at time T = 5000 for λ2 = 10−2.
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Fig. 6.4: Electric potential profile at times T = 1 (solid) and T = 5000 (dashed)for λ2 = 10−2.

with the same constant time step. The profile of the solution at times T = 1 and T = 5000 is
depicted on Figures 6.2, 6.3 and 6.4 . The relative space-time L1 error is plotted as a function
of the number of cells on Figure 6.5, showing some second order accuracy in space, as specified
in the introductory discussion. For such a moderately small value of λ2 = 10−2, both schemes
exhibit a very similar behavior in terms of accuracy, but also in terms of nonlinear resolution.
More precisely, the number of Newton iterations required to solve a time step remains between
6 for the very first iterations and 2 for larger times is mainly insensitive to the mesh size.
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Fig. 6.5: Convergence of the schemes under space grid refinement,(λ2 = 10−2).

Nevertheless, there is an important difference in the numerical behavior of the two schemes
in the small Debye length regime. Indeed, when λ2 become small, then excepted for very
particular values of the data, the variations of φT ,τ across the interfaces E become very large
because of (6.18). Therefore, the drift becomes too large to evaluate its exponential, making
the computation with the (SQRA) scheme fail. Since B(y) ∼ −y as y tends to −∞, the
situation is much less problematic with the (SG) scheme, for which computation of the solution
corresponding to λ = 10−6 is feasible without any specific treatment. However, since the drift
becomes large, the use of a reduce time step is required to ensure the convergence of Newton’s
methods.

6.5.2 Long-time behavior of the schemes
We now focus on the long-time behavior of the schemes. The long-time limit of the continuous
model has been exhibited in [38]. The model reduces to a nonlinear elliptic equation on
the electric potential φ, from which one deduces the concentration profiles. However, no
quantitative estimate concerning the convergence towards equilibrium. We then perform a
numerical study still with the same parameters as previsously (in particular with λ2 = 10−2).
The steady solution is computed by choosing a very large final time T∞ = 5.105 in the
simulation. We denote by H∞

T the corresponding discrete free energy. The relative energy
a time tn is the defined as Hrel,n

T = Hn
T − H∞

T . The energy decay stated in Proposition 6.4
ensures that Hrel,n

T ≥ 0 up to numerical errors related to the resolution of the nonlinear
systems. One observes on Figure 6.6 that the (SQRA) scheme dissipates faster energy than the
(SG) scheme, the latter exhibiting an almost perfect but rather slow exponential convergence
towards the steady state as long as the numerical precision has not been reached. The rigorous
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proof of such an exponential convergence in the continuous setting can be deduced from [174].
Its discrete counterpart should be investigated in future works building on the methodology
presented in [21].
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Fig. 6.6: Convergence towards the steady long-time behavior in terms of relative energy
Hrel,n

T for λ2 = 10−2.
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Appendix A
The continuous model (6.1)–(6.7) was originally derived thanks to a hopping process [38],
suggesting the choice

F n
i,K σ = aσDi

(︂
un

i,Kun
0,Le

1
2 zi(φn

K−φn
L) − un

i,Lun
0,Ke

1
2 zi(φn

L−φn
K)

)︂
, (6.71)

in the paper [42]. This lead to the square-root approximation scheme (SQRA) [43, 113, 135],
as introduced in Section 3.3. The flux can be interpreted as a Butler-Volmer law located at
the interface between the cells K and L. The probability that a particle of the i-th species
jumps from K to L is proportional to the number un

i,K of candidates in K for a jump as well
as to the number of available sites un

0,L to host the particle in cell L. Whereas the probability
that a i−particle jumps from L to K is proportional to un

i,Lun
0,K , namely the product between

the number of candidates in L for a jump and the number of available sites to host the particle
of the i-th species in the cell K. The drift φK − φL appears in an exponential with balanced
prefactors 1/2, which is natural since K and L play symmetric roles in the formula (see
Figure 6.7).

K

σ = K|L

L

xK xL

un
i,Kun

0,L

un
i,Lun

0,K

Fig. 6.7: Interpretation of the SQRA scheme (6.71) via the hopping process [38].

The scheme (6.71) appears to be quite intuitive. Nevertheless, as λ2 diminishes, an analysis
of the discretization of the Poisson equation (6.18) reveals a significant amplification in the
discrete gradient of the electric potential:

∑︂
σ∈EK

mσ

dσ
(φn

K − φn
K σ) = 1

λ2 mK

I∑︂
i=1

ziu
n
i,K ,

This substantial growth in the drift term corresponds to an exponential increase e
1
2 zi(φn

K−φn
L).

Therefore, instead of using the function

B(y) = e−y /2,

another natural choice for the drift term is the Bernoulli function

B(y) = y

ey − 1 .

The main advantage of using the Bernoulli function lies in its behaviour for large negative
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Fig. 6.8: Comparison between the two B functions.

values, as one can observe in Figure 6.8. The Bernoulli function B leads to the Scharfetter-
Gummel scheme, with fluxes:

F n
i,K σ = aσDi

(︃
un

i,Kun
0,L

zi(φn
L − φn

K)
ezi(φn

L−φn
K) − 1

− un
i,Lun

0,K

zi(φn
K − φn

L)
ezi(φn

K−φn
L) − 1

)︃
,

as defined in Section 6.2.2.



Chapter 7

Analysis for a Poisson-Nernst-Planck-Fermi
system
This chapter is taken from the article "Analysis of a Poisson–Nernst–Planck–Fermi system
for charge transport in ion channels" [124], joint work with Ansgar Jüngel and published in
Journal of Differential Equations 395, 38-68 (2024).

7.1 Introduction
The modeling of the transport of ions through biological channels is of fundamental importance
in cell biology. Several strategies have been developed in past decades, using molecular or
Brownian dynamics or the Poisson–Nernst–Planck theory. This theory relies on the assumptions
that the dynamics of ion transport is based on diffusion and electrostatic interaction only and
that the solution is dilute. However, the presence of narrow channel pores requires a more
sophisticated modeling. In particular, the ion size is not small compared to the biological
channel diameter, and many-particle interactions due to the confined geometry need to be
taken into account. In this paper, we analyze a modified Poisson–Nernst–Planck system
modeling ion–water interactions and finite ion size constraints. We prove the existence of
global weak solutions and, as the main novelty, the weak–strong uniqueness property using
entropy methods.

7.1.1 The model setting
The evolution of n ionic species, immersed in a solvent (like water), is assumed to be given by
the equations

∂tui + div Ji = ri(u), Ji = −Di(∇ui − ui∇ log u0 + uizi∇Φ), (7.1)

λ2(ℓ2Δ − 1)ΔΦ =
n∑︂

j=1
zjuj + f(x) in Ω, t > 0, i = 1, . . . , n, (7.2)

where Ω ⊂ Rd (d ≥ 1) is a bounded Lipschitz domain, u = (u1, . . . , un) is the concentration
vector, supplemented with initial and mixed Dirichlet–Neumann boundary conditions,

ui(·, 0) = u0
i in Ω, i = 1, . . . , n, (7.3)

Ji · ν = 0 on ΓN , ui = uD
i on ΓD, t > 0, (7.4)

∇Φ · ν = ∇ΔΦ · ν = 0 on ΓN , Φ = ΦD, ΔΦ = 0 on ΓD, t > 0, (7.5)

where ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, and ν is the exterior unit normal vector to ∂Ω.
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The unknowns are the ion concentrations (or volume fractions) ui(x, t) of the ith ion
species and the correlated electric potential Φ(x, t). The solvent concentration (or volume
fraction) u0(x, t) is given by u0 = 1 − ∑︁n

i=1 ui, which means that the mixture is saturated.
Equations (7.1) are cross-diffusion equations with the fluxes Ji and the reaction rates ri(u).
The parameters are the diffusivities Di > 0 and the valences zi ∈ Z. Equation (7.2) is the
Poisson–Fermi equation with the scaled Debye length λ > 0, the correlation length ℓ > 0,
and the given background charge density f(x). We assume that the domain is isolated on
the Neumann boundary, while the concentrations and the electric potential are prescribed on
the Dirichlet boundary. We refer to [161] for a derivation of (7.1)–(7.2) using an averaging
procedure of a Langevin model.

In the following, we discuss definition (7.1) of the fluxes and equation (7.2) for the correlated
electric potential. We recover the classical Poisson–Nernst–Planck equations if u0 = const.
and ℓ = 0. In this situation, we can write J id

i = −Diui∇µid
i with the electrochemical potential

µid
i = log ui + ziΦ of an ideal dilute solution. In concentrated solutions, the finite size of the

ions needs to be taken into account, expressed by the excess chemical potential µex
i , so that

the electrochemical potential becomes µi = µid
i + µex

i . Bikerman [25] suggested the choice
µex

i = − log(1 − ∑︁n
i=1 ui) = − log u0; also see [18, Sec. 3.1.2]. Then Ji = −Diui∇µi coincides

with the flux adopted in our model (7.1). Note that solving µi = log(ui/u0) + ziΦ for the
concentrations, we find that the ion profiles obey the Fermi–Dirac statistics

ui = exp(µi − ziΦ)
1 + ∑︁n

j=1 exp(µj − zjΦ) , i = 1, . . . , n.

Then, given µi and Φ, the bounds 0 ≤ ui ≤ 1 are automatically satisfied. Other choices of the
excess chemical potential were suggested in [24, Sec. 2.1].

In the literature, there exist also other approaches to define the fluxes Ji under finite
size constraints. The diffusion limit of an on-lattice model, which takes into account that
neighboring sites may be occupied (modeling size exclusion), was performed in [38], analyzed
in [102], and numerically solved in [42], resulting to

J
(1)
i = −Di(u0∇ui − ui∇u0 + u0uizi∇Φ), i = 1, . . . , n. (7.6)

This model avoids the singular term ∇ log u0, which is delicate near u0 = 0, but it introduces
the diffusion term u0∇ui, which degenerates at u0 = 0. Another flux definition was suggested
in [109],

J
(2)
i = −Di

(︃
∇ui + uizi∇Φ −

n∑︂
j=1

zjuj∇Φ
)︃

, i = 1, . . . , n.

The additional term − ∑︁n
j=1 zjuj∇Φ comes from the force balance in the Euler momentum

equation for zero fluid velocity. The ion–water interaction is described in [63] by

J
(3)
i = −Di

(︃
∇ui + uizi∇Φ − ∂ ε0

∂ ui
|∇Φ|2

)︃
, i = 1, . . . , n,

where the dielectricity ε0 = λ2, instead of being constant, depends on u. This assumption
is based on the experimental observation that the dielectric response of water decreases as
ion concentrations increase [63]. Thus, ∂ ε0/∂ ui < 0, showing that the ion–water interaction
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energy is always nonnegative. Finite ion size effects are modeled in [136] by including an
approximation of the Lennard–Jones potential in the energy functional, leading to

J
(4)
i = −Di

(︃
∇ui + ui∇

n∑︂
j=1

aijui + zi∇Φ
)︃

, i = 1, . . . , n.

Assuming that (aij) is positive definite, the global existence of weak solutions for two species
was proved in [117]. For the analysis of the stationary equations, see [101]. Finally, excluded
volume effects can be included by considering nonlinear diffusivities Di(ui) = 1 + α ui, where
α > 0 is a measure of the volume exclusion interactions [36].

Our model has the advantage of being consistent with the thermodynamical model [81]

Ji = −
n∑︂

j=1
Dijuj∇(µj − µ0), where µi = log ui + ziΦ, µ0 = log u0 + z0Φ,

assuming that the diffusion matrix is diagonal, Dij = Diδij , and that the solvent is neutral,
z0 = 0.

The interaction of the ions with polar solvents like water is modeled by the potential in
(7.2). Indeed, let φ be the electric potential of free ions, given by −λ2Δφ = ρ, where ρ is the
total charge density. Then the correlated potential Φ = ℓ−2Yℓ ∗ φ is the convolution between
the Yukawa potential Yℓ(x) = (|x|/ℓ)−1 exp(−|x|/ℓ) [138] and the electric potential, where
ℓ > 0 is the correlation length of the screening by ions and water [173]. As this potential
satisfies −ℓ2ΔΦ + Φ = φ, we recover (7.2) with ρ = ∑︁n

j=1 zjuj + f(x). Thus, the Poisson–
Fermi equation (7.2) includes finite ion size effects and polarization correlations among water
molecules. It generalizes the fourth-order differential permittivity operator of [158] and the
nonlocal permittivity in ionic liquids of [19]. If there are no correlation and polarization effects
(ℓ = 0), we recover the standard Poisson equation for the electric potential. The expression
ε0 = λ2(ℓ2Δ − 1) can be interpreted as a dielectric differential operator.

7.1.2 Entropy structure
System (7.1) can be written as a cross-diffusion system with a diffusion matrix which is
neither symmetric nor positive definite. This issue is overcome by exploiting the entropy (or
free energy) structure and using the boundedness-by-entropy method [123]. The free energy
associated to (7.1)–(7.2) is given by [19, 139]

H(u) =
∫︂

Ω
h(u)dx, where (7.7)

h(u) =
n∑︂

i=0

∫︂ ui

uD
i

log s

uD
i

ds + λ2

2 |∇(Φ − ΦD)|2 + (λℓ)2

2 |Δ(Φ − ΦD)|2.

The energy density h(u) consists of the internal, free-ion electric, and correlation electric
energies. The free energy allows us to formulate equations (7.1) as a diffusion system with a
positive semidefinite diffusion matrix. Indeed, we introduce the electrochemical potentials

˜︁µi = ∂ h
∂ ui

= log ui

u0
− log uD

i

uD
0

+ zi(Φ − ΦD), i = 1, . . . , n,
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where ∂ h/∂ ui denotes the variational derivative of h with respect to ui (see [102, Lemma 7])
and uD

0 = 1 − ∑︁n
i=1 uD

i . As in [102], we split the electrochemical potentials into the entropy
variables wi and the boundary contributions wD

i by

wi := log ui

u0
+ ziΦ, wD

i := log uD
i

uD
0

+ ziΦD. (7.8)

Then equations (7.1) can be written as

∂tui − div
n∑︂

j=1
Bij(w , Φ)∇wj = ri(u), i = 1, . . . , n, (7.9)

where Bij = Diuiδij and ui = ui(w , Φ) is interpreted as a function of w = (w1, . . . , wn) and Φ
according to

ui(w , Φ) = exp(wi − ziΦ)
1 + ∑︁n

j=1 exp(wi − zjΦ) . (7.10)

The advantage of formulation (7.9) is that the new diffusion matrix B = (Bij) is symmetric
and positive semidefinite. Observe that system (7.9) is of degenerate type since ui = 0 is
possible, and det B = 0 in this case. The formulation in terms of entropy variables has the
further advantage that the ion concentrations ui, defined by (7.10), are nonnegative and satisfy∑︁n

i=1 ui ≤ 1, thus fulfilling the saturation assumption.

7.1.3 Main results
We introduce the simplex D = {u = (u1, . . . , un) ∈ (0, 1)n : ∑︁n

i=1 ui < 1} and set ΩT =
Ω × (0, T ). The following hypotheses are imposed:

(H1) Domain: Ω ⊂ Rd (1 ≤ d ≤ 3) is a bounded Lipschitz domain with ∂Ω = ΓD ∪ ΓN ,
ΓD ∩ ΓN = ∅, ΓN is open in ∂Ω, and meas(ΓD) > 0.

(H2) Data: T > 0, Di > 0, zi ∈ R for i = 1, . . . , n, f ∈ L2(Ω).

(H3) Initial data: u0 = (u0
1, . . . , u0

n) ∈ L1(Ω;Rn) satisfies u0(x) ∈ D for a.e. x ∈ Ω.

(H4) Boundary data: uD = (uD
1 , . . . , uD

n ) ∈ H1(Ω;Rn) satisfies uD(x) ∈ D for x ∈ Ω,
log uD

0 ∈ L2(Ω), and ΦD ∈ H2(Ω) solves

λ2(ℓ2Δ − 1)ΔΦD = f(x) in Ω, (7.11)
∇ΦD · ν = ∇ΔΦD · ν = 0 on ΓN , ΔΦD = 0 on ΓD.

(H5) Reaction rates: ri ∈ C0([0, 1]n;R) for i = 1, . . . , n, and there exists Cr > 0 such that for
all u ∈ L∞(ΩT ; D) and Φ, given by (7.2) and (7.5),∫︂

Ω

n∑︂
i=1

ri(u) ∂ h
∂ ui

dx ≤ Cr(1 + H(u)). (7.12)

The restriction to three space dimensions in Hypothesis (H1) is not needed. It can be
removed by regularizing the Poisson–Fermi equation (7.2) to ensure that Φ ∈ L∞(Ω); see
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Remark 7.1 below. In Hypothesis (H4), it is sufficient to define the boundary data on ΓD. We
have extended them to Ω with the special extention of ΦD, fulfilling the fourth-order elliptic
problem (7.11). This extension is needed to be consistent with the definition of the free energy
and the entropy variables; see [102, Lemma 7]. The bound in Hypothesis (H5) is needed to
derive gradient bounds on the concentrations from the free energy inequality; see (7.16) below.
Since ∂ h/∂ ui contains the logarithm, ri(u) needs to cancel the singularity in ∂ h/∂ ui at ui = 0.
It is sufficient to require Hypothesis (H5) for the logarithmic part of ∂ h/∂ ui. Indeed, since ri

is continuous, ri(u) is bounded for u ∈ [0, 1]n, and we infer from Poincaré’s inequality that∫︂
Ω

n∑︂
i=1

ri(u)(Φ − ΦD)dx ≤ C∥Φ − ΦD∥L1(Ω)

≤ C + C∥∇(Φ − ΦD)∥2
l2(Ω) ≤ C(1 + H(u)).

Therefore, we need the integrated version (7.12) instead of the pointwise inequality assumed
in [123, Sec. 1.4].

We introduce the test spaces

H1
D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD},

H2
D ,N (Ω) = {v ∈ H2(Ω) : v = 0 on ΓD, ∇v · ν = 0 on ΓN }.

Our first main result is as follows.

Theorem 7.1 (Global existence of solutions). Let Hypotheses (H1)–(H5) hold and let T > 0 be
an arbitrary time end point. Then there exists a bounded weak solution u1, . . . , un to (7.1)–(7.5)
satisfying ui(x, t) ∈ D for a.e. (x, t) ∈ ΩT , i = 1, . . . , n,

√
ui ∈ L2(0, T ; H1(Ω)), ui ∈ H1(0, T ; H1

D(Ω)′) ∩ C0([0, T ]; L2(Ω)),
Φ ∈ L2(0, T ; H2(Ω)), log u0 ∈ L2(0, T ; H1(Ω)),

the weak formulation∫︂ T

0
⟨∂tui, φi⟩dt −

∫︂ T

0

∫︂
Ω

Ji · ∇φidxdt =
∫︂ T

0

∫︂
Ω

ri(u)φidxdt, (7.13)

λ2
∫︂ T

0

∫︂
Ω

(ℓ2ΔΦΔθ + ∇Φ · ∇θ)dxdt =
∫︂ T

0

∫︂
Ω

(︃ n∑︂
i=1

ziui + f

)︃
θ dxdt (7.14)

for all φi ∈ L2(0, T ; H1
D(Ω)) and θ ∈ L2(0, T ; H2

D ,N (Ω)), where Ji is given by (7.1) and ⟨·, ·⟩
is the dual product between H1

D(Ω)′ and H1
D(Ω). The initial conditions (7.3) are satisfied a.e.

in Ω, and the Dirichlet boundary conditions are fulfilled in the sense of traces in L2(ΓD).
Furthermore, if ri(u) = 0 for all i = 1, . . . , n and the Dirichlet boundary conditions are in
thermal equilibrium (e.g. wD

i := log(uD
i /uD

0 ) + ziΦD = const. in Ω), the solution satisfies for
0 < s < t < T the free energy inequality

H(u(t)) +
∫︂ t

s

∫︂
Ω

n∑︂
i=1

Diui

⃓⃓⃓⃓
∇

(︃
log ui

u0
+ ziΦ

)︃⃓⃓⃓⃓2
dxdσ ≤ H(u(s)). (7.15)
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The energy dissipation is understood in the sense

ui

⃓⃓⃓⃓
∇

(︃
log ui

u0
+ ziΦ

)︃⃓⃓⃓⃓2
=

⃓⃓
2∇√

ui − √
ui∇ log u0 + √

uizi∇Φ
⃓⃓2

.

We stress the fact that the solutions are nonnegative, have an upper bound, and conserve
mass in the absence of reactions. More precisely, the solution of Theorem 7.1 satisfies:

• u0(x, t), u1(x, t), . . . , un(x, t) ∈ [0, 1] and ∑︁n
i=0 ui(x, t) = 1 for a.e. x ∈ Ω, t > 0;

• the solvent concentration u0 is positive a.e. in Ω × (0, ∞);

• if ri(u) = 0 then
∫︁

Ω ui(x, t)dx =
∫︁

Ω u0
i (x)dx for t > 0, i = 1, . . . , n.

The second point is a consequence of the integrability of log u0 ensured in Theorem 7.1.
The assumption of thermal equilibrium at the Dirichlet boundary, also required in [102], is

needed to avoid expressions involving ∇wD
i in the free energy inequality. Thus, this condition,

together with vanishing reactions, is natural to obtain the monotonicity of the free energy.
The hypothesis of vanishing reactions is only required to derive the entropy inequality (7.15)
and can be weakened. In fact, we may allow for nonnegative and quasipositive reaction terms;
see Remark 7.4 for details. In Remark 7.3, we explain how the uniqueness of weak solutions
can be proved under restrictive conditions on the parameters. Moreover, we refer to Remark
7.2 for the extension of the free energy inequality (7.15) to the case of nonzero reaction terms
ri.

The proof of Theorem 7.1 is, similarly as in [102], based on an approximation procedure,
where we regularize (7.9) by an implicit Euler approximation and higher-order terms in the
entropy variables. The uniform estimates that are needed to perform the de-regularization
limit are derived from the free energy inequality, which (without regularization) reads as

dH

dt
+

∫︂
Ω

n∑︂
i=1

Diui|∇wi|2dx ≤
∫︂

Ω

n∑︂
i=1

ri(u) · ∂ h
∂ ui

dx ≤ Cr(1 + H(u)), (7.16)

recalling definition (7.8) of wi, and we can conclude by Gronwall’s lemma. The free energy
dissipation term on the left-hand side can be estimated from above by (see Lemma 7.3)∫︂

Ω
ui|∇wi|2dx ≥ 1

2

∫︂
Ω

(︁|∇√
ui|2 + |∇ log u0|2 + |∇u0|2)︁

dx − C

∫︂
Ω

|∇Φ|2dx.

The last term is bounded by the electric energy part in H(u), thus giving H1(Ω) bounds for
ui for i = 0, . . . , n and log u0. Compared to [102], we obtain gradient estimates for all the
ion concentrations, but we have to deal with the singular term ∇ log u0 in (7.1). Moreover,
compared to [100], where a similar Nernst–Planck system (with ℓ = 0) was investigated, we
do not need any positivity condition on the initial solvent concentration.

While the existence proof relies on standard entropy methods, we need a new idea to prove
the weak–strong uniqueness result. The uniqueness of weak solutions is an intricate problem.
A uniqueness result for (7.1) with the fluxes (7.6) was shown in [102] for the case Di = D
and zi = z for all i. In this simplified situation, the solvent concentration solves a Poisson–
Nernst–Planck system for which the uniqueness of bounded weak solutions can be proved by
a combination of L2(Ω) estimates and Gajewski’s entropy method. This strategy cannot be
used for our system; see Remark 7.3 in Section 7.4. In fact, we need the H−1(Ω) method and
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a strong regularity condition for ∇Φ, which restricts the geometry of the Dirichlet–Neumann
boundary conditions. Therefore, we do not aim to prove the uniqueness of weak solutions but
the weak–strong uniqueness property only, which has the advantage that we may allow for
different coefficients Di and zi. The weak–strong uniqueness property means that any weak
solution to system (7.1)–(7.5) coincides with a strong solution emanating from the same initial
conditions as long as the latter exists. We say that (ū, Φ̄) is a strong solution to (7.1)–(7.5) if
it is a weak solution and

ūi ≥ c > 0 in ΩT , ūi, Φ ∈ L∞(0, T ; W 1,∞(Ω)) for all i = 1, . . . , n.

Our second main result is contained in the following theorem.

Theorem 7.2 (Weak–strong uniqueness). Let the Dirichlet boundary data be in thermal
equilibrium in the sense of Theorem 7.1 and let ri = 0 for i = 1, . . . , n. Let (u, Φ) be a weak
solution and (ū, Φ̄) be a strong solution to (7.1)–(7.5). Then u(x, t) = ū(x, t), Φ(x, t) = Φ̄(x, t)
for a.e. x ∈ Ω and t ∈ (0, T ).

If the reaction rates are Lipschitz continuous and satisfy some sign conditions, Theorem 7.2
still holds. An exhaustive discussion on this point can be found in Remark 7.4. The condition
that the Dirichlet boundary data are in thermal equilibrium is actually not needed, since in
contrast to (7.15), the terms involving ∇wD

i cancel out in the computations for the relative
free energy

H(u, Φ|ū, Φ̄) =
∫︂

Ω

(︁
h1(u|ū) + h2(Φ|Φ̄)

)︁
dx, where

h1(u|ū) =
n∑︂

i=0

(︃
ui log ui

ūi
− (ui − ūi)

)︃
,

h2(Φ|Φ̄) = λ2

2
(︁|∇(Φ − Φ̄)|2 + ℓ2|Δ(Φ − Φ̄)|2)︁

,

which can be identified as the Bregman distance of the free energy. The key idea of the proof
of Theorem 7.2 is to consider the solvent concentration u0 as an independent variable and to
formulate the parabolic equations for the extended concentration vector U = (u0, u1, . . . , un),
leading to

∂tui = div
n∑︂

j=0
(Aij(U)∇ log uj + Qij(U)∇Φ), i = 0, . . . , n,

where Aij(U) and Qij(U) depend linearly on U and

A = (Aij) =

����
∑︁n

i=1 Diui −D1u1 · · · −Dnun

−D1u1 D1u1 0
... 0 . . . 0

−Dnun 0 Dnun

"""" ,

Q = (Qij) =

����
− ∑︁n

i=1 Diziui 0 · · · 0
0 D1z1u1 0
... 0 . . . 0
0 0 Dnznun

"""" ,

(7.17)
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setting z0 := 0. The matrix (Aij/
√

uiuj) ∈ R(n+1)×(n+1) is positive definite only on the
subspace L = {y ∈ Rn+1 : ∑︁n

i=0
√

uiyi = 0}; see Lemma 7.6. This situation is similar to the
Maxwell–Stefan system; see [119]. The time derivative of the relative free energy equals

dH

dt
(u, Φ|ū, Φ̄) = K1 + K2, where K1 = −

∫︂
Ω

n∑︂
j=0

Aij∇ log ui

ūi
· ∇ log uj

ūj
dx,

and K2 contains differences like Ui − Ū i and Φ − Φ̄. The properties of the matrices (Aij) and
(Qij) imply that

K1 ≤ − min
i=1,...,n

Di

∫︂
Ω

(︃ 1
u0

|(PLY )0|2 +
n∑︂

i=1
|(PLY )i|2

)︃
dx,

where PL is the projection on L and Yi = √
ui∇ log(ui/ūi), as well as for any δ > 0,

K2 ≤ δ

∫︂
Ω

(︃ 1
u0

|(PLY )0|2 +
n∑︂

i=1
|(PLY )i|2

)︃
dx

+ C(δ)
(︃ n∑︂

i=0
∥ui − ūi∥2

L2(Ω) + ∥∇(Φ − Φ̄)∥2
L2(Ω)

)︃
.

Consequently, choosing δ > 0 sufficiently small,

dH

dt
(u, Φ|ū, Φ̄) ≤ C

(︃ n∑︂
i=0

∥ui − ūi∥2
L2(Ω) + ∥∇(Φ − Φ̄)∥2

L2(Ω)

)︃
≤ C H(u, Φ|ū, Φ̄)

for some constant C > 0. Since the initial data of u and ū coincide, we have H((u, Φ)(t)|
(ū, Φ̄)(t)) = 0 and finally u(t) = ū(t) and Φ(t) = Φ̄(t) for all t > 0. The idea to consider the
parabolic system for the extended solution vector U = (u0, . . . , un) instead of u = (u1, . . . , un)
is the main novelty of this paper. The Maxwell–Stefan equations can also be written as an
extended system for U [119], but we are not aware of further volume-filling models with such
a property. The understanding of volume-filling systems and mobility matrices with nontrivial
kernels is a current field of research.

The article is organized as follows. The proof of Theorem 7.1 is presented in Section 7.2,
while Section 7.3 contains the proof of Theorem 7.2. We make some remarks on the uniqueness
of solutions in Section 7.4.

7.2 Proof of Theorem 7.1
We assume throughout this section that Hypotheses (H1)–(H5) hold.

7.2.1 Solution of an approximate system
We define the approximate problem by the implicit Euler scheme and using a higher-order
regularization. Let T > 0, N ∈ N, τ = T /N , and m ∈ N with m > d/2. We assume that
uD

i ≥ η > 0 for i = 0, . . . , n. Then wD
i = log(uD

i /uD
0 ) + ziΦD ∈ H1(Ω;Rn) ∩ L∞(Ω;Rn).

Since the entropy variables are not needed in the weak formulation (7.13)–(7.14), we can
pass to the limit η → 0 at the end of the proof, thus requiring only uD

i > 0. Let k ≥ 1 and
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let uk−1 − uD ∈ H1
D(Ω;Rn) ∩ L∞(Ω;Rn) and Φk−1 − ΦD ∈ H2

D ,N (Ω) be given. If k = 1,
Φ0 ∈ H2(Ω) is the unique solution to (7.2) with u0

j instead of uj on the right-hand side and
satisfying the corresponding boundary conditions in (7.4)–(7.5). We wish to find a solution
vk ∈ X := Hm(Ω;Rn) ∩ H1

D(Ω;Rn) and Φk − ΦD ∈ H2
D ,N (Ω) to

1
τ

∫︂
Ω

(uk − uk−1) · φdx +
∫︂

Ω
∇φ : B(vk + wD, Φk)∇(vk + wD)dx (7.18)

+ ε

∫︂
Ω

(︃ ∑︂
|α|=m

Dαvk · Dαφ + vk · φ

)︃
dx =

∫︂
Ω

r(uk) · φdx,

λ2
∫︂

Ω

(︁
ℓ2ΔΦkΔθ + ∇Φk · ∇θ

)︁
dx =

∫︂
Ω

(︃ n∑︂
i=1

ziu
k
i + f

)︃
θ dx (7.19)

for all φ ∈ X and θ ∈ H2
D ,N (Ω). Here, we have set uk := u(vk + wD, Φk), where u(w , Φ) is de-

fined by (7.10), Bij(w , Φ) = Diui(w , Φ)δij , r(u) = (r1(u), . . . , rn(u)), and Dα = ∂|α|/∂ xα1
1 · · · ∂ xαd

d

is a partial derivative of order |α| = α1 + · · · + αd. Thanks to the higher-order regularization,
we obtain approximate solutions wk := vk + wD ∈ Hm(Ω;Rn) ↪→ L∞(Ω;Rn). Moreover, since
d ≤ 3, we have Φk ∈ H2(Ω) ↪→ L∞(Ω). Hence, ui(wk, Φk) is well defined and integrable.

Remark 7.1. Adding a higher-order regularization to the Poisson–Fermi equation (7.19),
we may obtain Φk ∈ L∞(Ω) by a Sobolev embedding similarly as for wk. This allows us to
remove the restriction d ≤ 3 in Hypothesis (H1).

Lemma 7.1. There exists a unique solution vk ∈ Hm(Ω;Rn) ∩ H1
D(Ω;Rn) and Φk − ΦD ∈

H2
D ,N (Ω) to (7.18)–(7.19).

Proof. The proof is similar to that one of Lemma 5 in [102], therefore we give a sketch only.
Let y ∈ L∞(Ω;Rn) and σ ∈ [0, 1]. Let Φk ∈ H2(Ω) be the unique solution to

λ2(ℓ2Δ − 1)ΔΦk =
n∑︂

i=1
ziui(y + wD, Φk) + f(x) in Ω

subject to the boundary conditions (7.5). This follows from the fact that the function
(x, Φ) ↦→ ui(w(x), Φ) is bounded with values in (0, 1) and Lipschitz continuous in Φ. By the
Lax–Milgram lemma, there exists a unique solution v ∈ X to the linear problem

ε

∫︂
Ω

(︃ ∑︂
|α|=m

Dαv · Dαφ + v · φ

)︃
ds +

∫︂
Ω

∇φ : B(y + wD, Φk)∇v dx (7.20)

= δ

∫︂
Ω

r(u(y + wD, Φk)) · φdx − δ

∫︂
Ω

∇φ : B(y + wD, Φk)∇wDdx

− δ

τ

∫︂
Ω

(︁
u(y + wD, Φk) − uk−1)︁ · φdx.

Indeed, as B is positive semidefinite, the left-hand side is coercive in Hm(Ω;Rn).
This defines the fixed-point operator S : L∞(Ω;Rn) × [0, 1] → L∞(Ω;Rn), S(y , δ) = v.

Then S(y , 0) = 0, S is continuous and, because of the compact embedding Hm(Ω;Rn) ↪→
L∞(Ω;Rn), also compact. Using φ = v as a test function in (7.20), standard estimates lead
to ε∥v∥2

Hm(Ω) ≤ C(τ)∥v∥Hm(Ω), giving a bound for v in Hm(Ω;Rn) uniform in δ. Hence, all
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fixed points of S(·, δ) are uniformly bounded in L∞(Ω;Rn). We infer from the Leray–Schauder
fixed-point theorem that there exists vk ∈ X such that S(vk, 1) = vk. Then (vk, Φk) is a
solution to (7.18)–(7.19).

7.2.2 Uniform estimates
We deduce estimates uniform in (ε, τ) from the following free energy inequality.

Lemma 7.2 (Discrete free energy inequality). Let (vk, Φk) be a solution to (7.18)–(7.19) and
set wk := vk + wD and uk := u(wk, Φk). Then

H(uk) − H(uk−1) + τ

2

∫︂
Ω

n∑︂
i=1

Diu
k
i |∇wk

i |2dx + ετ∥wk − wD∥2
Hm(Ω) (7.21)

≤ τ Cr(1 + H(uk)) + τ

2

∫︂
Ω

n∑︂
i=1

Di|∇wD
i |2dx,

where H is defined in (7.7) and Cr > 0 is introduced in Hypothesis (H5).

Proof. We choose φ = τ vk = τ(wk−wD) ∈ X as a test function in (7.18). Using the generalized
Poincaré inequality to estimate the ε-regularization and Hypothesis (H5) to estimate the
reaction rates, we find that∫︂

Ω
(uk − uk−1) · (wk − wD)dx + τ

∫︂
Ω

∇(wk − wD) : B(wk, Φk)∇wkdx

+ ετ C∥wk − wD∥2
Hm(Ω) ≤ τ Cr(1 + H(uk)).

It follows from the convexity of the function g(u) = ∑︁n
i=0

∫︁ ui

uD
i

log(s/uD
i )ds and the Poisson–

Fermi equation (7.2) as in [102, Section 2] that∫︂
Ω

(uk − uk−1) · (wk − wD)dx =
∫︂

Ω

n∑︂
i=1

(uk
i − uk−1

i )
(︃

log uk
i

uk
0

− log uD
i

uD
0

)︃
dx

+
∫︂

Ω

n∑︂
i=1

zi(uk
i − uk−1

i )(Φk − ΦD)dx

≥
∫︂

Ω

(︁
g(uk) − g(uk−1)

)︁
dx + λ2

2

∫︂
Ω

(︁
ℓ2|Δ(Φk − ΦD)|2 + |∇(Φk − ΦD)|2)︁

dx

− λ2

2

∫︂
Ω

(︁
ℓ2|Δ(Φk−1 − ΦD)|2 + |∇(Φk−1 − ΦD)|2)︁

dx = H(uk) − H(uk−1).

Inserting the definition Bij(wk, Φk) = Diu
k
i δij , we infer from Young’s inequality that

∇(wk − wD) : B(wk, Φk)∇wk =
n∑︂

i=1
Diu

k
i ∇(wk

i − wD
i ) · ∇wk

i

≥ 1
2

n∑︂
i=1

Diu
k
i |∇wk

i |2 − 1
2

n∑︂
i=1

Diu
k
i |∇wD

i |2.

Collecting these estimates and observing that uk
i ≤ 1 concludes the proof.
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We sum (7.21) over k = 1, . . . , j,

(1 − τ Cr)H(uj) + τ

2

j∑︂
k=1

∫︂
Ω

n∑︂
i=1

Diu
k
i |∇wk

i |2dx + ετ
j∑︂

k=1
∥wk − wD∥2

Hm(Ω)

≤ τ Cr

j−1∑︂
k=1

H(uk) + H(u0) + j τ Cr + τ

2

j∑︂
k=1

∫︂
Ω

n∑︂
i=1

Di|∇wD
i |2dx,

and, assuming τ < 1/Cr, apply the discrete Gronwall inequality [67]:

H(uj) + τ

2

(︃
min

i=1,...,n
Di

)︃ j∑︂
k=1

∫︂
Ω

n∑︂
i=1

uk
i |∇wk

i |2dx + ετ
j∑︂

k=1
∥wk − wD∥2

Hm(Ω) ≤ C(T ),

where C(T ) > 0 does not depend on (ε, τ). We still need to bound the second term on the
left-hand side from below.

Lemma 7.3. It holds that
N∑︂

k=1
τ

∫︂
Ω

n∑︂
i=1

uk
i |∇wk

i |2dx ≥ 1
2

N∑︂
k=1

τ

∫︂
Ω

(︃ n∑︂
i=1

|∇(uk
i )1/2|2 + |∇ log uk

0|2 + |∇uk
0|2

)︃
dx

− C
N∑︂

k=1
τ

∫︂
Ω

|∇Φk|2dx,

where C > 0 depends on (Di) and (zi).

Proof. We infer from Young’s inequality and the bound uk
i ≤ 1 that

uk
i |∇wk

i |2 = uk
i

⃓⃓⃓⃓
∇ log uk

i

uk
0

+ zi∇Φk

⃓⃓⃓⃓2
≥ 1

2uk
i

⃓⃓⃓⃓
∇ log uk

i

uk
0

⃓⃓⃓⃓2
− |zi∇Φk|2.

The first term on the right-hand side is rewritten as

1
2uk

i

⃓⃓⃓⃓
∇ log uk

i

uk
0

⃓⃓⃓⃓2
= 1

2

n∑︂
i=1

|∇uk
i |2

uk
i

+ 1
2

n∑︂
i=1

uk
i |∇ log uk

0|2 −
n∑︂

i=1
∇uk

i · ∇ log uk
0

= 1
2

n∑︂
i=1

|∇uk
i |2

uk
i

+ 1
2(1 − uk

0)|∇ log uk
0|2 − ∇(1 − uk

0) · ∇ log uk
0

= 1
2

n∑︂
i=1

|∇uk
i |2

uk
i

+ 1
2 |∇ log uk

0|2 + |∇uk
0|2

2uk
0

≥ 2
n∑︂

i=1
|∇(uk

i )1/2|2 + 1
2 |∇ log uk

0|2 + 1
2 |∇uk

0|2,

using uk
0 ≤ 1 in the last step.

Since the free energy is bounded from below, we conclude the following uniform bounds.
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Lemma 7.4. There exists C > 0 not depending on (ε, τ) such that for i = 1, . . . , n,

N∑︂
k=1

τ
(︁∥(uk

i )1/2∥2
H1(Ω) + ∥uk

i ∥2
H1(Ω) + ∥uk

0∥2
H1(Ω) + ∥ log uk

0∥2
H1(Ω)

)︁ ≤ C ,

ε
N∑︂

k=1
τ∥wk

i ∥2
Hm(Ω) +

N∑︂
k=1

τ∥Φk∥2
H2(Ω) ≤ C .

Proof. The inequality

∥∇uk
i ∥L2(Ω) ≤ 2∥(uk

i )1/2∥L∞(Ω)∥∇(uk
i )1/2∥L2(Ω) ≤ 2∥∇(uk

i )1/2∥L2(Ω)

shows that ∑︁N
k=1 τ∥∇uk

i ∥2
L2(Ω) ≤ C. The H2(Ω) bound for Φk follows immediately from the

Poisson–Fermi equation as its right-hand side is bounded in L2(Ω). The H1(Ω) bound for
log uk

0 is a consequence of the L2(Ω) bound for ∇ log uk
0 and the Poincaré inequality, using the

fact that log uD
0 ∈ L2(Ω) by Hypothesis (H4).

7.2.3 Limit (ε, τ) → 0

We introduce the piecewise constant in time functions u
(τ)
i (x, t) = uk

i (x), w
(τ)
i (x, t) = wk

i (x),
and Φ(τ)(x, t) = Φk(x) for x ∈ Ω, t ∈ ((k − 1)τ , k τ ]. At time t = 0, we set w(τ)(·, 0) = h′(u0)
and u

(τ)
i (·, 0) = u0

i . Furthermore, we introduce the shift operator (στ u(τ))(·, t) = uk−1 for
t ∈ ((k − 1)τ , k τ ]. Then, summing (7.18)–(7.19) over k = 1, . . . , N , we see that (u(τ), Φ(τ))
solves

1
τ

∫︂ T

0

∫︂
Ω

(u(τ) − στ u(τ)) · φdxdt +
∫︂ T

0

∫︂
Ω

∇φ : B(w(τ), Φ(τ))∇w(τ)dxdt (7.22)

+ ε

∫︂ T

0

∫︂
Ω

(︃ ∑︂
|α|=m

Dα(w(τ) − wD) · Dαφ + (w(τ) − wD) · φ

)︃
dxdt

=
∫︂ T

0

∫︂
Ω

r(u(τ)) · φdxdt,

λ2
∫︂ T

0

∫︂
Ω

(︁
ℓ2ΔΦ(τ)Δθ + ∇Φ(τ) · ∇θ

)︁
dxdt =

∫︂ T

0

∫︂
Ω

(︃ n∑︂
i=1

ziu
(τ)
i + f

)︃
θ dxdt (7.23)

for piecewise constant in time functions φ : (0, T ) → X and θ : (0, T ) → H2
D ,N (Ω), recalling

that X = Hm(Ω;Rn) ∩ H1
D(Ω;Rn). Lemma 7.4 and the L∞(Ω) estimate of uk

i imply the
uniform bounds

∥(u(τ)
i )1/2∥L2(0,T ;H1(Ω)) + ∥u

(τ)
i ∥L2(0,T ;H1(Ω)) + ∥u

(τ)
i ∥L∞(ΩT ) ≤ C , (7.24)

∥u
(τ)
0 ∥L2(0,T ;H1(Ω)) + ∥u

(τ)
0 ∥L∞(ΩT ) + ∥ log u

(τ)
0 ∥L2(0,T ;H1(Ω)) ≤ C , (7.25)

√
ε∥w

(τ)
i ∥L2(0,T ;Hm(Ω)) + ∥Φ(τ)∥L2(0,T ;H2(Ω)) ≤ C , (7.26)

where i = 1, . . . , n. We also need a uniform bound for the discrete time derivative.
Lemma 7.5. There exists a constant C > 0 independent of (ε, τ) such that for all i = 1, . . . , n,

τ−1∥u
(τ)
i − στ u

(τ)
i ∥L2(0,T ;X′) + τ−1∥u

(τ)
0 − στ u

(τ)
0 ∥L2(0,T ;X′) ≤ C .
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Proof. Let φ : (0, T ) → X be piecewise constant. Since∫︂ T

0

∫︂
Ω

∇φ : B(u(τ), Φ(τ))∇w(τ)dxdt

=
n∑︂

i=1
Di

∫︂ T

0

∫︂
Ω

(︁∇u
(τ)
i − u

(τ)
i ∇ log u

(τ)
0 + ziu

(τ)
i ∇Φ(τ))︁ · ∇φidxdt,

we find that

1
τ

⃓⃓⃓⃓ ∫︂ T

0

∫︂
Ω

(u(τ)
i − στ u

(τ)
i )φidxdt

⃓⃓⃓⃓
≤ ε∥w

(τ)
i − wD

i ∥L2(0,T ;Hm(Ω))∥φi∥L2(0,T ;Hm(Ω))

+ C
(︁∥∇u

(τ)
i ∥L2(ΩT ) + ∥∇ log u

(τ)
0 ∥L2(ΩT ) + ∥∇Φ(τ)∥L2(ΩT )

)︁∥∇φi∥L2(ΩT )

+ ∥ri(u(τ))∥L2(ΩT )∥φi∥L2(ΩT )

≤ C∥φi∥L2(0,T ;Hm(Ω)).

By a density argument, this inequality holds for all φi ∈ L2(0, T ; X), showing the desired
bound for the discrete time derivative of u

(τ)
i . Summing the bounds over i = 1, . . . , n yields

the bound for u
(τ)
0 .

Estimates (7.24)–(7.25) and Lemma 7.5 allow us to apply the Aubin–Lions lemma in the
version of [80] to conclude the existence of a subsequence, which is not relabeled, such that for
i = 1, . . . , n, as (ε, τ) → 0,

u
(τ)
i → ui, u

(τ)
0 → u0 strongly in L2(ΩT ).

In view of the uniform L∞(ΩT ) bound for u
(τ)
i and u

(τ)
0 , these convergences hold in Lp(ΩT )

for all p < ∞. Moreover, by (7.26) and Lemma 7.5, up to a subsequence,

εw
(τ)
i → 0 strongly in L2(0, T ; Hm(Ω)),

Φ(τ) ⇀ Φ weakly in L2(0, T ; H2(Ω)),

τ−1(u(τ)
i − στ u

(τ)
i ) ⇀ ∂tui weakly in L2(0, T ; X ′), i = 1, . . . , n.

We claim that ∇ log u
(τ)
0 ⇀ ∇ log u0 weakly in L2(ΩT ). It follows from (7.25) that (for a

subsequence) ∇ log u
(τ)
0 ⇀ v weakly in L2(ΩT ). We need to identify v = ∇ log u0. We know

that (again for a subsequence) u
(τ)
0 → u0 a.e. in ΩT . Therefore log u

(τ)
0 → log u0 a.e. in ΩT ,

since u0 can vanish at most on a set of measure zero. The L2(ΩT ) bound for log u
(τ)
0 shows

that log u
(τ)
0 → log u0 strongly in L2(ΩT ). Hence, we conclude that v = ∇ log u0, proving the

claim.
These convergences are sufficient to pass to the limit (ε, τ) → 0 in (7.22)–(7.23) to find that

(u, Φ) solves (7.13)–(7.14) for smooth test functions. By a density argument, we may choose
test functions from L2(0, T ; H1

D(Ω)) and L2(0, T ; H2
D ,N (Ω)), respectively. The validity of the

initial and Dirichlet boundary conditions is shown as in [102]. Estimates similar as in the
proof of Lemma 7.5 (with ε = 0) show that ∂tui ∈ L2(0, T ; H1

D(Ω)′) for i = 1, . . . , n. Then
we conclude from ui ∈ L2(0, T ; H1(Ω)) that ui ∈ C0([0, T ]; L2(Ω)). Thus, the initial datum is
satisfied in the sense of L2(Ω).
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It remains to verify the free energy inequality (7.15) under the assumptions ri(u) = 0 and
log(uD

i /uD
0 ) + ziΦD = ci ∈ R for i = 1, . . . , n. By definition of wD

i , this implies that ∇wD
i = 0.

Then (7.21) becomes

H(uk) − H(uk−1) + τ

∫︂
Ω

n∑︂
i=1

Diu
k
i

⃓⃓⃓⃓
∇

(︃
log uk

i

uk
0

+ ziΦk
)︃⃓⃓⃓⃓2

dx + ετ∥wk − wD∥2
Hm(Ω) ≤ 0.

A summation over k = j , . . . , J gives

H(u(τ)(t)) − H(u(τ)(s)) +
∫︂ t

s

∫︂
Ω

n∑︂
i=1

Diu
(τ)
i

⃓⃓⃓⃓
∇

(︃
log u

(τ)
i

u
(τ)
0

+ ziΦ(τ)
)︃⃓⃓⃓⃓2

dxdσ (7.27)

+ ε

∫︂ t

s
∥w(τ) − wD∥2

Hm(Ω)dσ ≤ 0,

where s ∈ ((j − 1)τ , j τ ] and t ∈ ((J − 1)τ , J τ ]. We wish to pass to the limit (ε, τ) → 0 in this
inequality.

The a.e. convergence of u
(τ)
i implies that H(u(τ)(t)) → H(u(t)) for a.e. t ∈ (0, T ) and,

since ui ∈ C0([0, T ]; L2(Ω)), this convergence holds in fact for all t ∈ [0, T ]. Moreover,
ε(w(τ) − wD) → 0 strongly L2(0, T ; Hm(Ω)). It follows from the strong convergence of u

(τ)
i in

L2(ΩT ) that (u(τ)
i )1/2 → √

ui strongly in L4(ΩT ). Hence, together with the weak convergence
of ∇Φ(τ) in L2(ΩT ), we have

(u(τ)
i )1/2∇Φ(τ) ⇀

√
ui∇Φ weakly in L4/3(ΩT ).

Furthermore, since ∇ log u
(τ)
0 ⇀ ∇ log u0 weakly in L2(ΩT ),

(u(τ)
i )1/2∇ log u

(τ)
i

u
(τ)
0

= 2∇(u(τ)
i )1/2 − (u(τ)

i )1/2∇ log u
(τ)
0 (7.28)

⇀ 2∇√
ui − √

ui∇ log u0 =: √
ui∇ log ui

u0
weakly in L4/3(ΩT ).

On the other hand, the sequences ∇(u(τ)
i )1/2 and (u(τ)

i )1/2∇ log u
(τ)
0 are uniformly bounded in

L2(ΩT ). Therefore, convergence (7.28) also holds in L2(ΩT ). Consequently,
∫︂

Ω
ui

⃓⃓⃓⃓
∇

(︃
log ui

u0
+ ziΦ

)︃⃓⃓⃓⃓2
dx =

∫︂
Ω

⃓⃓
2∇√

ui − √
ui∇ log u0 + √

uizi∇Φ
⃓⃓2

dx

≤ lim inf
(ε,τ)→0

∫︂
Ω

u
(τ)
i

⃓⃓⃓⃓
∇

(︃
log u

(τ)
i

u
(τ)
0

+ ziΦ(τ)
)︃⃓⃓⃓⃓2

dx.

Then (7.15) follows after passing to the limit inferior (ε, τ) → 0 in (7.27), completing the proof
of Theorem 7.1.

Remark 7.2. Let the reaction rates ri : D → R be Lipschitz continuous and quasi-positive,
i.e. ri(u) ≥ 0 for all u ∈ D with ui = 0. We assume that the total reaction rate is nonnegative,
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i.e. ∑︁n
i=1 ri(u) ≤ 0 for all u ∈ D, and that ri(u) log ui = 0 if ui = 0. This assumption is only

needed to derive the free energy inequality. We claim that it becomes

H(u(t)) +
∫︂ t

s

∫︂
Ω

n∑︂
i=1

Diui|∇wi|2dxdσ ≤ H(u(s)) +
∫︂ t

s

∫︂
Ω

n∑︂
i=1

ri(u)(wi − wD
i )dxdσ. (7.29)

This inequality follows from (7.27) after including the reaction rates and taking the limit (ε, τ)
in ∫︂ t

s

∫︂
Ω

n∑︂
i=1

ri(u(τ))(w(τ)
i − wD

i )dxdσ

=
∫︂ t

s

∫︂
Ω

n∑︂
i=1

ri(u(τ))
(︁

log u
(τ)
i − log u

(τ)
0 + ziΦ(τ) − wD

i

)︁
dxdσ.

Indeed, the strong limit u
(τ)
i → ui in L2(ΩT ) shows that ri(u(τ))wD

i → ri(u)wD
i strongly

in L1(ΩT ) as (ε, τ) → 0. Moreover, since log u
(τ)
0 → log u0 strongly in L2(Ω), we have

ri(u(τ)) log u
(τ)
0 → ri(u) log u0 strongly in L1(ΩT ). It remains to show that ri(u(τ)) log u

(τ)
i →

ri(u) log ui strongly in L1(ΩT ). We have ri(u(τ)) log u
(τ)
i → ri(u) log ui a.e. in ΩT if ui > 0. If

ui = 0, by assumption, we have ri(u) log ui = 0 and therefore ri(u(τ)) log u
(τ)
i → ri(u) log ui

a.e. in ΩT as well. Moreover, ri(u) log ui is bounded. Hence, by dominated convergence,
ri(u(τ)) log u

(τ)
i → ri(u) log ui strongly in L1(ΩT ), and the claim follows.

7.3 Proof of Theorem 7.2
Let (u, Φ) be a weak solution and (ū, Φ̄) be a strong solution to (7.1)–(7.5). In this section, we
interpret H(u) and H(ū) as functionals depending on u = (u0, . . . , un) and ū = (ū0, . . . , ūn).
This notation is only needed to determine the variational derivative of H and will not lead to
any confusion in the following computations. We split the lengthy proof in several steps.

Step 1: Calculation of the time derivative of H(u, Φ|ū, Φ̄). In the following, we write

H(u, Φ|ū, Φ̄) = H1(u|ū) + H2(Φ|Φ̄), where
H1(u|ū) = H1(u) − H1(ū) − H ′

1(ū)(u − ū),
H2(Φ|Φ̄) = H2(Φ) − H2(Φ̄) − H ′

2(Φ̄)(Φ − Φ̄),

where H1(u) =
∫︁

Ω h1(u)dx with h1(u) = ∑︁n
i=0

∫︁ ui

uD
i

log(s/uD
i )ds, H2(Φ) = 1

2λ2 ∫︁
Ω(ℓ2|Δ(Φ −

ΦD)|2 + |∇(Φ − ΦD)|2)dx, and H ′
1(ū)(u − ū) is the variational derivative of H1 at ū in

the direction of u − ū (similarly for H ′
2(Φ̄)(Φ − Φ̄)). We compute the time derivative of

H1(u|ū), split the sum over i = 0, . . . , n into i = 0 and the sum over i = 1, . . . , n, and insert
∂tu0 = − ∑︁n

i=1 ∂tui, ∂tū0 = − ∑︁n
i=1 ∂tūi:

dH1
dt

(u|ū) = dH1
dt

(u) − dH1
dt

(ū) − d

dt

∫︂
Ω

n∑︂
i=0

∂ h1
∂ ui

(ū)(ui − ūi)dx

= dH1
dt

(u) −
n∑︂

i=0

(︃⟨︃
∂tui,

∂ h1
∂ ui

(ū)
⟩︃

+
⟨︃

∂tūi,
ui

ūi
− 1

⟩︃)︃



7.3 Proof of Theorem 7.2 87

= dH1
dt

(u) −
n∑︂

i=1

(︃⟨︃
∂tui,

∂ h1
∂ ui

(ū) − ∂ h1
∂ u0

(ū)
⟩︃

+
⟨︃

∂tūi,
ui

ūi
− u0

ū0

⟩︃)︃
.

Next, we insert equation (7.1) for ui and ūi and use (∂ h1/∂ ui)(ū) = log(ūi/uD
i ):

dH1
dt

(u|ū) = dH1
dt

(u) +
∫︂

Ω

n∑︂
i=1

Diui∇wi · ∇
(︃

log ūi

ū0
− log uD

i

uD
0

dx

)︃
dx

+
∫︂

Ω

n∑︂
i=1

Diūi∇w̄i ·
(︃

ui

ūi
∇ log ui

ūi
− u0

ū0
∇ log u0

ū0

)︃
dx.

A similar computation for H2(Φ|Φ̄) leads to

dH2
dt

(Φ|Φ̄) = λ2⟨︁
(ℓ2Δ − 1)Δ∂t(Φ − Φ̄), Φ − Φ̄

⟩︁
=

n∑︂
i=1

⟨zi∂t(ui − ūi), Φ − Φ̄⟩

= −
∫︂

Ω

n∑︂
i=1

Dizi(ui∇wi − ūi∇w̄i) · ∇(Φ − Φ̄)dx

= dH2
dt

(Φ) +
∫︂

Ω

n∑︂
i=1

Dizi
(︁
ui∇wi · ∇Φ̄ − ui∇wi · ∇ΦD + ūi∇w̄i · ∇(Φ − Φ̄)

)︁
dx,

where we abbreviated w̄i = log(ūi/ū0)+ziΦ̄. As ui is only nonnegative, the expression ∇ log ui

may be not integrable. Therefore, we define ∇ log(ui/u0) := (2∇√
ui − √

ui∇ log u0)/√
ui

if ui > 0 and ∇ log(ui/u0) := 0 else. This expression may be still not integrable, but√
ui∇ log(ui/u0) lies in L2(ΩT ), since ∇√

ui, ∇ log u0 ∈ L2(ΩT ). Thus, the expression√
ui∇wi = ui∇ log(ui/u0) + uizi∇Φ ∈ L2(ΩT ) is well defined. In a similar way, we de-

fine ∇ log(ui/ūi), which is possible since ūi is strictly positive, and we have √
ui∇ log(ui/ūi) ∈

L2(ΩT ).
We insert the free energy inequality (7.15), namely

dH1
dt

(u) + dH2
dt

(Φ) ≤ −
∫︂

Ω

n∑︂
i=1

Diui|∇wi|2dx,

and rearrange the terms,

dH

dt
(u, Φ|ū, Φ̄) = dH1

dt
(u|ū) + dH2

dt
(Φ|Φ̄) (7.30)

≤ −
∫︂

Ω

n∑︂
i=1

Diui∇wi ·
(︃

∇ log ui

ūi
− ∇ log u0

ū0
+ zi∇(Φ − Φ̄)

)︃
dx

+
∫︂

Ω

n∑︂
i=1

Diūi∇w̄i ·
(︃

ui

ūi
∇ log ui

ūi
− u0

ū0
∇ log u0

ū0
+ zi∇(Φ − Φ̄)

)︃
dx.

At this point, we observe that the terms involving ∇wD
i cancel even if ∇wD

i does not vanish,
since they also appear in the free energy inequality (7.15).
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The terms involving the solvent concentrations u0 and ū0 can be integrated into the sum
over i if we interpret system (7.1) as equations for u0, u1, . . . , un. For this, we observe that u0
solves

∂tu0 = − div
n∑︂

i=1
Diui∇wi = − div

{︃ n∑︂
i=1

Diui∇ log ui

u0
+

(︃ n∑︂
i=1

Diziui

)︃
∇Φ

}︃
.

Then (7.1) reads as

∂tui = div
n∑︂

j=0
(Aij∇ log uj + Qij∇Φ), i = 0, . . . , n, (7.31)

where Aij and Qij are defined in (7.17). Recall that z0 := 0. We define in a similar way Ā
and Q̄. With this notation, (7.30) becomes

dH

dt
(u, Φ|ū, Φ̄) ≤ −

∫︂
Ω

n∑︂
i,j=0

(Aij∇ log uj + Qij∇Φ) ·
(︃

∇ log ui

ūi
+ zi∇(Φ − Φ̄)

)︃
dx

+
∫︂

Ω

n∑︂
i,j=0

(Āij∇ log ūj + Q̄ij∇Φ̄) ·
(︃

ui

ūi
∇ log ui

ūi
+ zi∇(Φ − Φ̄)

)︃
dx.

We add and subtract the integral∫︂
Ω

n∑︂
i,j=0

(Aij∇ log ūj + Qij∇Φ̄) ·
(︃

∇ log ui

ūi
+ zi∇(Φ − Φ̄)

)︃
dx

and integrate over (0, t):

H((u, Φ)(t)|(ū, Φ̄)(t)) − H((u, Φ)(0)|(ū, Φ̄)(0)) ≤ I1 + I2 + I3, where (7.32)

I1 = −
∫︂ t

0

∫︂
Ω

n∑︂
i,j=0

(︃
Aij∇ log uj

ūj
+ Qij∇(Φ − Φ̄)

)︃
·
(︃

∇ log ui

ūi
+ zi∇(Φ − Φ̄)

)︃
dxds,

I2 = −
∫︂ t

0

∫︂
Ω

n∑︂
i,j=0

ui

{︃(︃
Aij

ui
− Āij

ūi

)︃
∇ log ūj +

(︃
Qij

ui
− Q̄ij

ūi

)︃
∇Φ̄

}︃
· ∇ log ui

ūi
dxds,

I3 = −
∫︂ t

0

∫︂
Ω

n∑︂
i,j=0

(︁
(Aij − Āij)∇ log ūj + (Qij − Q̄ij)∇Φ̄

)︁ · zi∇(Φ − Φ̄)dxds.

Observe that u(0) = ū(0), implying that H((u, Φ)(0)|(ū, Φ̄)(0)) = 0.
Step 2: Estimation of I3. By Young’s inequality, we have

I3 ≤ C

∫︂ t

0

n∑︂
i=1

(︁∥ui − ūi∥2
L2(Ω) + ∥∇(Φ − Φ̄)∥2

L2(Ω)
)︁
ds, (7.33)

where C > 0 depends on the L∞(ΩT ) norms of ∇ log ūj and ∇Φ̄.
The treatment of I1 and I2 is more delicate.
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Step 3: Estimation of I1. We write I1 = I11 + I12 + I13, where

I11 = −
∫︂ t

0

∫︂
Ω

n∑︂
i,j=0

Aij∇ log uj

ūj
· ∇ log ui

ūi
dxds,

I12 = −
∫︂ t

0

∫︂
Ω

n∑︂
i,j=0

ziQij |∇(Φ − Φ̄)|2dxds,

I13 = −
∫︂ t

0

∫︂
Ω

n∑︂
i,j=0

ziAij∇ log uj

ūj
· ∇(Φ − Φ̄)dxds

−
∫︂ t

0

∫︂
Ω

n∑︂
i,j=0

Qij∇ log ui

ūi
· ∇(Φ − Φ̄)dxds.

It follows from 0 ≤ ui ≤ 1 that |Qij | ≤ C and consequently

I12 ≤ C

∫︂ t

0
∥∇(Φ − Φ̄)∥2

L2(Ω)ds.

The matrix A is not positive definite since ui = 0 is possible. However, a modified matrix is
positive definite on the subspace L, as shown in the following lemma.

Lemma 7.6. The matrix G, defined by

Gij =
{︄

Aij/
√

uiuj if uiuj > 0,

0 else, i, j = 0, . . . , n, (7.34)

is positive definite on the subspace L = {z ∈ Rn+1 : ∑︁n
i=0

√
uizi = 0}, namely

zT Gz ≥ D∗
(︃

z2
0

u0
+

n∑︂
i=1

z2
i

)︃
for every z ∈ L, (7.35)

where D∗ = mini=1,...,n Di > 0.

Proof. We start by considering the matrix

G∗ = D∗

����
u−1

0
∑︁n

i=1 ui −√︁
u1/u0 · · · −√︁

un/u0
−√︁

u1/u0 1 0
... 0 . . . 0

−√︁
un/u0 0 1

"""" ,

where D∗ = mini=1,...,n Di > 0. For every ξ ∈ L, we have ∑︁n
i=1

√
uiξi = −√

u0ξ0. Therefore,
together with the size-exclusion constraint ∑︁n

i=1 ui = 1 − u0, we obtain

ξT G∗ξ = D∗
ξ2

0
u0

n∑︂
i=1

ui − 2D∗
ξ0√
u0

n∑︂
i=1

√
uiξi + D∗

n∑︂
i=1

ξ2
i

= D∗
ξ2

0
u0

(1 − u0) + 2D∗
ξ0√
u0

√
u0ξ0 + D∗

n∑︂
i=1

ξ2
i
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= D∗
{︃(︃ 1

u0
+ 1

)︃
ξ2

0 +
n∑︂

i=1
ξ2

i

}︃
≥ D∗

(︃
ξ2

0
u0

+
n∑︂

i=1
ξ2

i

)︃
.

This implies that

ξT (G − G∗)ξ = ξ2
0

u0

n∑︂
i=1

(Di − D∗)ui − 2 ξ0√
u0

n∑︂
i=1

(Di − D∗)√uiξi +
n∑︂

i=1
(Di − D∗)ξ2

i

=
n∑︂

i=1
(Di − D∗)

(︃
ξ0√
u0

√
ui − ξi

)︃2
≥ 0,

and we infer that ξT Gz ≥ ξT G∗ξ, which ends the proof.

Lemma 7.6 is crucial in the weak–strong uniqueness proof. The corresponding positive
bound helps us to conclude a negative upper estimate for I11, which is used to absorb the
contributions from I13 and I2. We introduce the projections

(PLY )i = Yi − √
ui

n∑︂
j=0

√
ujYj , (PL⊥Y )i = √

ui

n∑︂
j=0

√
ujYj ,

for all i = 0, . . . , n and Y ∈ Rn+1.

Lemma 7.7. Let Yi = √
ui∇ log(ui/ūi) ∈ L2(ΩT ) for i = 0, . . . , n. Then

I11 ≤ −D∗
∫︂ t

0

∫︂
Ω

(︃ |(PLY )0|2
u0

+
n∑︂

i=1
|(PLY )i|2

)︃
dxds,

where D∗ = mini=1,...,n Di > 0.

Proof. Recall that by definition, ∇ log(ui/ūi) = (2∇√
ui − √

ui∇ log ūi)/
√

ui = Yi/
√

ui if
ui > 0. In this case,

Aij∇ log ui

ūi
· ∇ log uj

ūj
= GijYiYj ,

where the matrix G is defined in (7.34). If ui = 0 or uj = 0, either Yi = 0 or Yj = 0 and hence,
the previous expression vanishes. Therefore, we rewrite I11 as

I11 = −
∫︂ t

0

∫︂
Ω

n∑︂
i,j=0

GijYiYjdxds.

A straightforward computation shows that ran G = L, implying that ker G = L⊥. Hence,
for every Y ∈ Rn+1,

Y T GY = (PLY )T G(PLY ),

where (PLY )i = Yi − √
ui

∑︁n
j=0

√
ujYj . Define ξi := (PLY )i = Yi − √

ui
∑︁n

j=0
√

ujYj for
i = 0, . . . , n. Then ξ ∈ L, since

n∑︂
i=0

√
ui(PLY )i =

n∑︂
i=0

√
uiYi −

(︃ n∑︂
i=0

ui

)︃ n∑︂
j=0

√
ujYj = 0.
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The inequality

(PLY )T G(PLY ) ≥ |(PLY )0|2
u0

+
n∑︂

i=1
|(PLY )i|2, (7.36)

follows directly from (7.35), applied to ξ = PLY . Recall that u0 > 0 a.e. in ΩT .
We choose now Yi = √

ui∇ log(ui/ūi). The expression

|(PLY )0|2
u0

=
⃓⃓⃓⃓
∇ log u0

ū0
−

n∑︂
j=0

√
ujYj

⃓⃓⃓⃓2

is integrable in ΩT since ∇ log u0 ∈ L2(ΩT ), and √
ujYj ∈ L2(ΩT ). Therefore, we can integrate

inequality (7.36) to obtain

I11 = −
∫︂ t

0

∫︂
Ω

Y T GY dxds = −
∫︂ t

0

∫︂
Ω

(PLY )T G(PLY )dxds

≤ −D∗
∫︂ t

0

∫︂
Ω

(︃ |(PLY )0|2
u0

+
n∑︂

i=1
|(PLY )i|2

)︃
dxds,

which finishes the proof.

Lemma 7.8. Let Yi = √
ui∇ log(ui/ūi) for i = 0, . . . , n. For any ε > 0, there exists C(ε) > 0

such that

I13 ≤ ε

∫︂ t

0

∫︂
Ω

(︃ |(PLY )0|2
u0

+
n∑︂

i=1
|(PLY )i|2

)︃
dxds + C(ε)

∫︂ t

0
∥∇(Φ − Φ̄)∥2

L2(Ω)ds.

Proof. We take into account the structures of the matrices A and Q:

I13 = −
∫︂ t

0

∫︂
Ω

n∑︂
i=1

zi

(︃
Ai0∇ log u0

ū0
+ Aii∇ log ui

ūi

)︃
· ∇(Φ − Φ̄)dxds

−
∫︂ t

0

∫︂
Ω

(︃
Q00∇ log u0

ū0
+

n∑︂
i=1

Qii∇ log ui

ūi

)︃
· ∇(Φ − Φ̄)dxds.

Since Q00 = − ∑︁n
i=1 Diziui and Qii = Diziui, we have

Q00∇ log u0
ū0

+
n∑︂

i=1
Qii∇ log ui

ūi
= −

n∑︂
i=1

Diziui∇
(︃

log u0
ū0

− log ui

ūi

)︃
dx.

Furthermore, because of Ai0 = −Diui and Aii = Diui,
n∑︂

i=1
zi

(︃
Ai0∇ log u0

ū0
+ Aii∇ log ui

ūi

)︃
= −

n∑︂
i=1

Diziui∇
(︃

log u0
ū0

− log ui

ūi

)︃
dx.

This gives

I13 = 2
∫︂ t

0

∫︂
Ω

n∑︂
i=1

Diziui∇
(︃

log u0
ū0

− log ui

ūi

)︃
· ∇(Φ − Φ̄)dxds
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= 2
∫︂ t

0

∫︂
Ω

n∑︂
i=1

Dizi

(︃
ui

Y0√
u0

− √
uiYi

)︃
· ∇(Φ − Φ̄)dxds.

Next, we calculate for i = 0, . . . , n,

(PL⊥Y )i = √
ui

n∑︂
j=0

uj∇ log uj

ūj
= √

ui

n∑︂
j=0

(∇uj − uj∇ log ūj) (7.37)

= −√
ui

n∑︂
j=0

uj∇ log ūj = √
ui

n∑︂
j=0

(ūj − uj)∇ log ūj ,

where we used the constraint ∑︁n
i=0 ui = 1 to cancel the term ∑︁n

j=0 ∇uj in the third equality
and we added 0 = ∑︁n

j=0 ∇ūj = ∑︁n
j=0 ūj∇ log ūj in the last equality. Hence,

ui
(PL⊥Y )0√

u0
− √

ui(PL⊥Y )i = ui√
u0

(︃√
u0

n∑︂
j=0

(ūj − uj)∇ log ūj

)︃

− √
ui

(︃√
ui

n∑︂
j=0

(ūj − uj)∇ log ūj

)︃
= 0.

We split Yi = (PLY )i + (PL⊥Y )i in I13, which leads to

I13 = 2
∫︂ t

0

∫︂
Ω

n∑︂
i=1

Dizi

(︃
ui

(PLY )0√
u0

− √
ui(PLY )i

)︃
· ∇(Φ − Φ̄)dxds.

An application of Young’s lemma finishes the proof.

The previous lemmas show that

I1 ≤ (ε − D∗)
∫︂ t

0

∫︂
Ω

(︃ |(PLY )0|2
u0

+
n∑︂

i=1
|(PLY )i|2

)︃
dxds + C(ε)

∫︂ t

0
∥∇(Φ − Φ̄)∥2

L2(Ω)ds. (7.38)

Step 4: Estimation of I2. We split I2 = I21 + I22, where

I21 = −
∫︂ t

0

∫︂
Ω

n∑︂
i,j=0

ui

(︃
Aij

ui
− Āij

ūi

)︃
∇ log ūj · ∇ log ui

ūi
dxds,

I22 = −
∫︂ t

0

∫︂
Ω

n∑︂
i,j=0

ui

(︃
Qij

ui
− Q̄ij

ūi

)︃
∇Φ̄ · ∇ log ui

ūi
dxds. (7.39)

Lemma 7.9. For any ε > 0, there exists C(ε) > 0 such that

I21 ≤ ε

∫︂ t

0

∫︂
Ω

|(PLY )0|2
u0

dxds + C(ε)
∫︂ t

0

n∑︂
i=0

∥ui − ūi∥2
L2(Ω)ds.

Proof. Recalling that Yi = √
ui∇ log(ui/ūi), we reformulate I21 as

I21 = −
∫︂ t

0

∫︂
Ω

n∑︂
i,j=0

ui

(︃
Aij

ui
− Āij

ūi

)︃
Yi√
ui

· ∇ log ūjdxds.
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All rows of the matrix (Aij/ui − Āij/ūi) vanish except the first one,

A00
u0

− Ā00
ū0

=
n∑︂

i=1
Di

(︃
ui

u0
− ūi

ū0

)︃
,

A0j

u0
− Ā0j

ū0
= −Di

(︃
uj

u0
− ūj

ū0

)︃
for j = 1, . . . , n.

This shows that

I21 = −
∫︂ t

0

∫︂
Ω

n∑︂
j=0

u0

(︃
A0j

u0
− Ā0j

ū0

)︃
Y0√
u0

· ∇ log ūjdxds (7.40)

= −
∫︂ t

0

∫︂
Ω

M ·
(︃(PLY )0√

u0
+ (PL⊥Y )0√

u0

)︃
dxds,

where

M =
n∑︂

j=0

(︃
A0j − u0

ū0
Ā0j

)︃
∇ log ūj

=
n∑︂

i=1
Di

(︃
ui − u0

ū0
ūi

)︃
∇ log ū0 −

n∑︂
i=1

Di

(︃
ui − u0

ū0
ūi

)︃
∇ log ūi

=
n∑︂

i=1
Di(ui − ūi)∇ log ū0 +

(︃
1 − u0

ū0

)︃ n∑︂
i=1

Diūi∇ log ū0

−
n∑︂

i=1
Di(ui − ūi)∇ log ūi −

(︃
1 − u0

ū0

)︃ n∑︂
i=1

Diūi∇ log ūi

=
n∑︂

i=1
Di(ui − ūi)∇ log ū0

ūi
+ (u0 − ū0)

n∑︂
i=1

Di
ūi

ū0
∇ log ū0

ūi
.

Since ∇ log ūi is bounded in L∞(ΩT ), we can bound the first term in I21:

−
∫︂ t

0

∫︂
Ω

M · (PLY )0√
u0

dxds ≤ C

∫︂ t

0

∫︂
Ω

n∑︂
i=0

|ui − ūi| |(PLY )0|√
u0

dxds (7.41)

≤ ε

∫︂ t

0

∫︂
Ω

|(PLY )0|2
u0

dxds + C(ε)
∫︂ t

0

n∑︂
i=0

∥ui − ūi∥2
L2(Ω)ds,

where ε > 0 is arbitrary. To estimate the second term in I21, we use (7.37) and the elementary
inequality (∑︁n

i=0 |ui − ūi|)2 ≤ (n + 1) ∑︁n
i=0 |ui − ūi|2:

−
∫︂ t

0

∫︂
Ω

M · (PL⊥Y )0√
u0

dxds ≤ C

∫︂ t

0

∫︂
Ω

n∑︂
i=0

|ui − ūi|
n∑︂

j=0
|ūj − uj |dxds (7.42)

≤ C(n + 1)
∫︂ t

0

∫︂
Ω

n∑︂
i=0

|ui − ūi|2dxds.

The lemma follows after inserting (7.41) and (7.42) into (7.40).
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Lemma 7.10. For any ε > 0, there exists C(ε) > 0 such that

I22 ≤ ε

∫︂ t

0

∫︂
Ω

|(PLY )0|2
u0

dxds + C(ε)
∫︂ t

0

n∑︂
i=0

∥ui − ūi∥2
L2(Ω),

recalling definition (7.39) of I22.

Proof. All entries of the matrix (Qij/ui−Q̄ij/ūi) vanish except the element Q00/u0−Q̄00/ū0 =
− ∑︁n

i=1 Dizi(ui/u0 − ūi/ū0). This leads to

I22 =
∫︂ t

0

∫︂
Ω

n∑︂
i=1

Diziu0

(︃
ui

u0
− ūi

ū0

)︃
∇Φ̄ · ∇ log u0

ū0
dxds

=
∫︂ t

0

∫︂
Ω

n∑︂
i=1

Dizi

(︃
(ui − ūi) + ūi

ū0
(ū0 − u0)

)︃
∇Φ̄ · Y0√

u0
dxds

=
∫︂ t

0

∫︂
Ω

n∑︂
i=1

Dizi

(︃
(ui − ūi) + ūi

ū0
(ū0 − u0)

)︃(︃(PLY )0√
u0

+ (PL⊥Y )0√
u0

)︃
· ∇Φ̄dxds

≤ C

∫︂ t

0

∫︂
Ω

n∑︂
j=0

|uj − ūj |
(︃ |(PLY )0|√

u0
+ |(PL⊥Y )0|√

u0

)︃
|∇Φ̄|dsdx.

It follows from (7.37) that

|(PL⊥Y )0|√
u0

=
⃓⃓⃓⃓ ∑︂

j=0
(ūj − uj)∇ log ūj

⃓⃓⃓⃓
≤ C

n∑︂
j=0

|ūj − uj |.

Hence, Young’s inequality completes the proof.

We conclude that

I2 ≤ 2ε

∫︂ t

0

∫︂
Ω

|(PLY )0|2
u0

dxds + C(ε)
∫︂ t

0

n∑︂
i=0

∥ui − ūi∥2
L2(Ω)ds. (7.43)

Step 5: End of the proof. We collect (7.33), (7.38), and (7.43):

I1 + I2 + I3 ≤ (3ε − D∗)
∫︂ t

0

∫︂
Ω

(︃ |(PLY )0|2
u0

+
n∑︂

i=1
|(PLY )i|2

)︃
dxds

+ C(ε)
∫︂ t

0

(︃ n∑︂
i=0

∥ui − ūi∥2
L2(Ω) + ∥∇(Φ − Φ̄)∥2

L2(Ω)

)︃
ds.

Thus, choosing ε ≤ D∗/3, we conclude from (7.32) that

H((u, Φ)(t)|(ū, Φ̄)(t)) ≤ C

∫︂ t

0

(︃ n∑︂
i=0

∥ui − ūi∥2
L2(Ω) + ∥∇(Φ − Φ̄)∥2

L2(Ω)

)︃
ds. (7.44)

The first term on the right-hand side of (7.44) can be bounded by the relative entropy, as
shown in the following lemma.



7.4 Remarks on the uniqueness of solutions 95

Lemma 7.11. It holds for any u, ū ∈ (0, 1) that

u log u

ū
≥ 1

2(u − ū)2.

Proof. The lemma has been proved in [119, Lemma 16]. For the convenience of the reader, we
recall the short proof. Let f(u) = u log u. Then, for u, ū ∈ (0, 1),

u logu

ū
− (u − ū) = f(u) − f(ū) − f ′(ū)(u − ū) = f(θ(u − ū) + ū)

⃓⃓1
θ=0 − f ′(ū)(u − ū)

= (u − ū)
∫︂ t

0

(︁
f ′(θ(u − ū) + ū) − f ′(ū)

)︁
dθ = (u − ū)

∫︂ 1

0
f ′(s(u − ū) + ū)

⃓⃓θ
s=0dθ

= (u − ū)2
∫︂ 1

0

∫︂ θ

0
f ′′(s(u − ū) + ū)dsdθ .

The result follows from the observation f ′′(s(u − ū) + ū) = (s(u − ū) + ū)−1 ≥ 1.

The previous lemma shows that
n∑︂

i=0

∫︂
Ω

ui log ui

ūi
dx ≥ 1

2

n∑︂
i=0

∫︂
Ω

(ui − ūi)2dx (7.45)

and hence,

2H(u, Φ|ū, Φ̄) ≥
n∑︂

i=0
∥ui − ūi∥2

L2(Ω) + λ2∥∇(Φ − Φ̄)∥2
L2(Ω).

Consequently, we obtain from (7.44):

H((u, Φ)(t)|(ū, Φ̄)(t)) ≤ C

∫︂ t

0
H(u, Φ|ū, Φ̄)ds,

and Gronwall’s lemma finishes the proof.

7.4 Remarks on the uniqueness of solutions
Remark 7.3 (Uniqueness of weak solutions). The uniqueness of weak solutions for our model
is more delicate than for the model of [102], even in the case Di = zi = 1 for i = 1, . . . , n.
The reason is that we cannot use simple L2(Ω) estimations. Instead, we use the H−1(Ω)
method under the (restrictive) condition that ∇Φ ∈ L∞(ΩT ). This regularity holds if the
Dirichlet and Neumann boundaries do not intersect and if ∂Ω ∈ C1,1, f ∈ Lp(Ω), and
ΦD ∈ W 2,p(Ω) for some p > 3. Indeed, we conclude from elliptic regularity [166, Theorem
3.17] that Φ ∈ L∞(0, T ; W 2,p(Ω)) ↪→ L∞(0, T ; W 1,∞(Ω)). We also assume that ∑︁n

i=1 ri(u) = 0.
Summing (7.1) over i = 1 . . . , n, the pair (u0, Φ) solves

∂tu0 = div(∇ log u0 − (1 − u0)∇Φ), λ2(ℓ2Δ − 1)ΔΦ = 1 − u0 + f(x) in Ω, (7.46)

together with the corresponding initial and boundary conditions (7.3)–(7.5). We claim that
this system has at most one solution. Let (u0, Φ) and (v0, Ψ) be two weak solutions to this
problem and let χ ∈ L2(0, T ; H1(Ω)) be the unique solution to −Δχ = u0 −v0 in Ω, ∇χ ·ν = 0
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on ∂Ω. This solution exists since
∫︁

Ω(u0 − v0)dx = 0 because of mass conservation. We use χ
as a test function in the first equation of (7.46):

1
2

d

dt

∫︂
Ω

|∇χ|2dx +
∫︂

Ω
(log u0 − log v0)(u0 − v0)dx

=
∫︂

Ω

(︁ − (u0 − v0)∇Φ + (1 − v0)∇(Φ − Ψ)
)︁ · ∇χdx.

Using (log u0 − log v0)(u0 − v0) ≥ 4(√u0 − √
v0)2 and |u0 − v0| = |√u0 + √

v0||√u0 − √
v0| ≤

2|√u0 − √
v0|, we find that

1
2

d

dt

∫︂
Ω

|∇χ|2dx + 4
∫︂

Ω
(√u0 − √

v0)2dx ≤ C∥√
u0 − √

v0∥L2(ΩT )∥∇Φ∥L∞(ΩT )∥∇χ∥L2(ΩT )

+ C∥∇(Φ − Ψ)∥L2(ΩT )∥∇χ∥L2(ΩT )

≤ 2∥√
u0 − √

v0∥2
L2(ΩT ) + C∥∇χ∥2

L2(ΩT ),

where we used the elliptic estimate ∥∇(Φ − Ψ)∥L2(ΩT ) ≤ C∥u0 − v0∥L2(ΩT ) and the assumption
∥∇Φ∥L∞(ΩT ) ≤ C. We conclude from Gronwall’s lemma that ∇χ(t) = 0 and consequently
u0(t) = v0(t) and Φ(t) = Ψ(t) for t > 0. Now, the equation

∂tui = div(∇ui − ui∇(log u0 − Φ)) (7.47)

can be interpreted as a drift-diffusion equation for ui with given (u0, Φ). The regularity
∇ log u0 − Φ ∈ L2(ΩT ) is sufficient for the application of Gajewski’s entropy method; see [102,
Sec. 3]. Thus, there exists at most one solution ui to (7.47) with the corresponding initial and
boundary conditions.

Remark 7.4 (Weak–strong uniqueness in the presence of reaction terms). We claim that
Theorem 7.2 holds for reaction rates ri : D → R, which are Lipschitz continuous and quasi-
positive (i.e. ri(u) ≥ 0 for all u ∈ D with ui = 0) such that the total reaction rate is nonnegative,
i.e. ∑︁n

i=1 ri(u) ≤ 0 for all u ∈ D, and that ri(u) log ui = 0 if ui = 0. Proceeding as in Step 1 of
the proof of Theorem 7.2 and taking into account Remark 7.2, we need to estimate additionally
the expression

R =
∫︂

Ω

n∑︂
i=1

ri(u)(wi − w̄i)dx =: R1 + R2, where

R1 =
∫︂

Ω

n∑︂
i=1

{︃
ri(u)

(︃
log ui

ūi
− log u0

ū0

)︃
− ri(ū)

(︃
ui

ūi
− u0

ū0

)︃}︃
dx,

R2 =
∫︂

Ω

n∑︂
i=1

zi(ri(u) − ri(ū))(Φ − Φ̄)dx.

The assumptions on ri imply that ri(u) log ui is integrable. Therefore, following [93, p. 202f],

R1 =
∫︂

Ω

n∑︂
i=1

{︃
ri(u)

(︃
log ui

ūi
− ui

ūi
+ 1

)︃
− (ri(u) − ri(ū))

(︃
ui

ūi
− 1

)︃

− ri(u)
(︃

log u0
ū0

− u0
ū0

+ 1
)︃

+ (ri(ū) − ri(ū))
(︃

u0
ū0

− 1
)︃}︃

dx.
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We deduce from 0 ≥ log z − z + 1 ≥ −|z − 1|2/ min{1, z} for z > 0 that

R2 ≤
∫︂

Ω

n∑︂
i=1

{︃
CRui

|ui − ūi|2
ūi min{ui, ūi} + C

ūi
|ri(u) − ri(ū)||ui − ūi|

− ri(u)
(︃

log u0
ū0

− u0
ū0

+ 1
)︃

+ C

ū0
|ri(ū) − ri(ū)||u0 − ū0|

}︃
dx

≤ C

∫︂
Ω

n∑︂
i=1

|ui − ūi|2dx −
∫︂

Ω

n∑︂
i=1

ri(u)
(︃

log u0
ū0

− u0
ū0

+ 1
)︃

dx

≤ C

∫︂
Ω

n∑︂
i=1

|ui − ūi|2dx.

where we used in the last step the assumption ∑︁n
i=1 ri(u) ≤ 0. Furthermore, by the Lipschitz

continuity of ri, the Poincaré inequality, and the elliptic estimate for the Poisson–Fermi
equation,

R2 ≤ C
n∑︂

i=1
∥ui − ūi∥L2(Ω)∥∇(Φ − Φ̄)∥L2(Ω) ≤ C

n∑︂
i=1

∥ui − ūi∥2
L2(Ω).

Thus, estimate (7.44) is still valid with another constant, and Theorem 7.2 follows.
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A non-isothermal models for
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Chapter 8

Diffusion asymptotic for a kinetic model for
gas-particle mixtures with energy exchanges
This chapter is a work in progress, resulting from a collaboration with Frédérique Charles and
Francesco Salvarani.

8.1 Introduction
The study of gas-dust mixtures at the mathematical level is fundamentally important in several
fields, such as astrophysics, environmental science and industrial processes. At its core, this
importance stems from the intricate and often nonlinear interactions between gas and dust
particles, which can lead to complex dynamics and phenomena that are critical to understand
the behavior and evolution of various systems.

For example, in astrophysics, gas-dust mixtures play a pivotal role in the formation of stars,
planets, and other celestial bodies. In environmental science, understanding the dynamics of
gas-dust mixtures is essential for modeling atmospheric phenomena, such as the dispersion
of pollutants, sandstorms, and the formation of clouds. These mixtures impact air quality,
weather patterns, and climate change. In various industrial processes, such as pharmaceutical
manufacturing, mining, and chemical processing, controlling the behavior of gas-dust mixtures
is vital for efficiency, safety, and environmental compliance. In reactive gas-dust systems, the
presence of solid particles can catalyze chemical reactions or alter the heat transfer properties
of the gas. This is particularly relevant in combustion processes, where dust can either inhibit
or enhance combustion depending on the conditions. Mathematical modeling of these processes
is essential for the design and optimization of reactors, combustion engines, and pollution
control systems.

When dealing with diffusive phenomena, the basic model in the framework of multicomponent
mixture is given by the Maxwell-Stefan equations. Originating from the foundational works
of James Clerk Maxwell and Josef Stefan in the 19th century [140, 164], these equations
have become instrumental in the study and modeling of diffusion processes. The equations
offer a more detailed and accurate description of mass transport in mixtures than classical
Fickian diffusion models [90, 91], especially when dealing with high concentration gradients
and non-ideal mixtures.

While very popular in the context of chemical engineering [165], the mathematical study of
the Maxwell-Stefan system or of some variants has been studied in the 20th century at the
numerical level [85, 106]. However, starting from [28] and [32], the literature has shown a
renewed interest in these equations in the mathematical community.

In particular, the derivation of multicomponent equations from a system of Boltzmann
equations represents a significant bridge between the microscopic dynamics of particles and the
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macroscopic behavior of gaseous mixtures. This derivation provides a theoretical framework
that explains how interactions at the particle level lead to observable diffusion phenomena
in multicomponent systems. A key assumption in the derivation is that of local equilibrium,
where it is assumed that over small enough scales, the system can be described by a local
Maxwell-Boltzmann distribution. This assumption is justified when the mean free path of the
particles is much smaller than the characteristic length scale over which macroscopic gradients
(e.g., concentration gradients) develop.

The scaling has been extensively studied, for example, in [27, 30, 33, 120] in the case of
non-reacting mixtures, whereas [11], [13] and [12] have considered the reactive case in different
frameworks.

In the case of models for gas-particle mixtures, the starting point is again a system of two
Boltzmann equations (one for the evolution of gas molecules, and one for the evolution of dust
particles). The interaction between the particles and the surrounding gas has to be described
through specific collisional operators, which take into account the macroscopic character of
the particles compared to the gas molecules. In [57], the collisional mechanism is based on the
hypothesis of diffuse reflection (at a fixed and constant temperature) of the molecules on the
surface of the particles. Collisions preserves the total momentum, but not the kinetic energy.
However, the model has an entropy [56] (different from the classical Boltzmann entropy). In
order to take into account heat exchanges between the gas and the dispersed phase, in [60],
the authors modify the model of [57], introducing the surface temperature of the particles as a
variable. The model preserves the total energy of the system, but we do not have an explicit
expression of the entropy anymore.

Asymptotic models can be derived by letting the mass ratio between a gas molecule and a
particle go to 0. They are very interesting for numerical simulation purposes, the discretization
of first model being very costly when the mass ratio is weak [58]. In the asymptotic model
proposed in [59], the evolution of the density of particles is described by the Vlasov equation
with a term which can be interpreted as a drag force exerted by the gas on the particles. This
term has some similarities with existing models of drag force, such as Otterman and Levinet’s
formula [150] (for a two-phase fluid model), or that of [70] which proposes a correction of the
Stokes drag force to extend its validity when the Knudsen number increases. The derivation
of macroscopic models for disparate mass binary mixtures is also studied in [75], which is
devoted to the study of Grad’s epochal relaxation phenomenon. When the gas and dispersed
phase are linked not just through drag force but also via temperature exchange between the
gas and droplets/dust particles, the asymptotic model involves also a term describing the
internal energy exchange between the species [60].

In the case of a porous media, [169] homogenized kinetic equations to derive effective
transport properties (such as permeability, Knudsen diffusivity, and thermal transpiration
ratio) has been investigated. The authors describe the evolution of the gas via a Boltzmann
equation, while the dust is fixed in space and is assume to the part of the spacial domain.
The interaction of the gas with the solid surface is described via diffuse reflection boundary
conditions, where the surface temperature of the dust is consider as a function of time and
space. In particular it satisfies a classical heat equation.

The first aim of our paper is to describe non-isothermal dust-gas mixtures via a model
possessing an explicit entropy structure. As in [57], we treat the gas-dust collisions with a
diffuse reflection mechanism. Instead of proceeding as in [60], we take inspiration from the
porous media literature to treat the surface temperature as a macroscopic quantity. The latter
satisfies a transport-like equation, that guarantees the conservation of the total energy of the
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system. The model posses an explicit entropy structure in the case of hard-sphere kernels
for the bi-species collisional operators. The second aim of our paper is to perform a formal
asymptotic diffusive limit to obtain a Maxwell-Stefan-like system. The technical parts used to
prove the results presented depend strongly on the form of the kernel of the bi-species collision
operators. Having introduced results valid for general collision kernels, we restrict ourselves
to analysing the case of Maxwellian kernels and the hard sphere. Explicit calculations are
shown when the bi-species collision operators have Maxwellian kernels. The diffusive limit in
the case of hard sphere kernels is only partially shown.

In Section 8.2 and 8.3, we introduce the model and detail its properties. In Section 8.4 we
perform the adimensionalisation of the system and introduce small parameters. Macroscopic
equations for the macroscopic scaled quantities can be found in Section 8.5. The main results
of our paper are the following, proved in Section 8.6.

8.2 The model
Consider a binary aerosol mixture consisting of solid dust particles or liquid droplets in a
monatomic carrier gas. Dust particles are assumed to be identical, i.e. all with the same
radius and mass, and to be much larger and more massive than the gas molecules. Both
species are supposed to be described by suitable density functions. In what follows, the
function F = F (t, x, v) represents the density of particles, whereas f = f(t, x, w) is a function
representing the density of gaseous atoms (for example, a noble gas, such has Helium or Neon).

8.2.1 Boltzmann system
At the kinetic level, we describe the gas-particle system by the following system of Boltzmann-
like equations  ∂tF + v · ∇xF = D(F , f) + P(F )

∂tf + w · ∇xf = R(F , f) + C(f),
(8.1)

where the precise form of the four collisional operators P , D, C and R depends on the precise
microscopic behavior of the collisions. It is worth noticing that the form of the collision kernel
may have a main influence in the mathematical properties of the system, even if it does not
modify the bilinear structure of the collisional operator.

8.2.2 Mono-species collision operators
In (8.1), C(f) is the classical Boltzmann operator for monoatomic gases, describing interactions
between molecules [48]:

C(f)(w) = σg g
∫︂
R3

∫︂
S2

[︁
f(w′′)f(w∗′′) − f(w)f (w∗)

]︁
c (w − w∗, n) dndw∗, (8.2)

where σg g is a physical constant of the order of magnitude of r2
g , and the pre-post collisional

velocity rules are the following:

(w′′, w′′
∗) = (w − [(w − w∗) · n] n, w∗ + [(w − w∗) · n] n) . (8.3)
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In particular, we see from (8.3) that the momentum and the kinetic energy are preserved at
each collision: {︄

w′ + w′
∗ = w + w∗

|w′|2 + |w∗|2 = |w|2 + |w′
∗|2.

(8.4)

The nonnegative function c (collision kernel) in (8.2) describes the interactions between
molecules and can be written as

c (w − w∗, n) = |w − w∗| q

(︃
|w − w∗|, w − w∗

|w − w∗| · n

)︃
,

where q is a dimensionless function. This operator have the following weak formulations : for
any test function ψ ∈ L∞(R3), we have (see [48])∫︂

R3
C(f)(w)ψ(w)dw = σg g

∫︂
R3

(ψ(w′) − ψ(w))f(w)f(w∗)c (w − w∗, n) dwdndw∗ (8.5)

and∫︂
R3

C(f)(w)ψ(w)dw = −σg g
2

∫︂
R3

[ψ(w′)−ψ(w)]
[︁
f(w′′)f(w∗′′) − f(w)f (w∗)

]︁
c (w − w∗, n) dwdndw∗

(8.6)
We assume that P(F ) is also a Boltzmann operator with elastic collisions. The expression

of P(F )(v) is similar to (8.2), where we replace σg g by σpp (of order of magnitude r2
p) and q

by another dimensionless function p ; we also have similar weak formulation as (8.5), (8.6).
We recall the properties of C(f) and P(F )(v) concerning the conservation of mass, momentum
and kinetic energy, which are a direct consequence of (8.5) and (8.4):

∫︂
R3

C(f)(w)

� 1
w

|w|2/2

" dw =
∫︂
R3

P(f)(v)

� 1
v

|v|2/2

" dv =

�0
0
0

" , (8.7)

8.2.3 Bi-species collision operators
In gas mixtures, the collision mechanism between two molecules of different masses can be
described, when there is no internal energy or chemical reactions involved, by elastic collisions
(see [47] and [58] for instance). In [59], a novel model was proposed, where collisions between
dust particles and gas molecules are supposed to be inelastic and given by a diffuse reflection
mechanism (at a fixed temperature) on the surface of dust particles. This collision mechanism
allows to take into account the macroscopic character of dust particles compared to gas
molecules. In a collision between a particle and a molecule, the postcollisional relative velocity
was picked from a half-Maxwellian distribution at the temperature of surface of the particle.
This amounts to assume that a molecule touching a particle thermalizes with the molecules
constituting the surface of the particle within a negligible time with respect to the other
characteristic time scales. Then the post-collisional relative velocity is in the half space
delimited by the tangent plane to the surface of the particle (see Figure 8.1).
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n

w

molecule

Dust’s surface at temperature Tp(t, x)

w′

Fig. 8.1: Diffuse reflection mechanism.

Collision operators to describe such mechanism have been derived in [57] for the case of fixed
surface temperature Tp of particles (independent of time and space). However, this model is
not completely satisfactory, because the total energy of the system is not conserved. In [60] an
improvement of the modelling has been proposed, based on the modification of the temperature
of a dust particle during a collision. This was done by introducing the temperature of the
dust surface as a variable in the density function F . Modified collision operators have been
derived according to this mechanism. However, it seems complicated to obtain an entropy for
this model.

Here we propose another model, in which the surface temperature of the dust is this time
considered as a function of t and x, and where the conservation of total energy is ensured by
an equation on this temperature. We assume that at position x and time t the particles have
the same surface temperature Tp(t, x) > 0 and, as in the previous models, the post-collision
relative velocity is given by a diffuse reflection at temperature Tp(t, x). Let mg ∈ R∗

+ and
mp ∈ R∗

+ be the masses of the gas molecules and the particles, respectively. The collision
mechanism between dust and gas thus leads to the introduction, for n ∈ S2, of the probability
density hn of the post-collision relative velocities, given by

hn(t, x, z) = 1
2π

m2
g

k2
BTp(t, x)2 (n · z) e

− mg |z|2
2kBTp(t,x)1{z·n≥0}, (8.8)

where kB denotes the Boltzmann constant.
The expression of the collisional operators derived in [58] can be directly extended to the

context of time- and space-dependent surface temperature for particles. Hence, the operators
D and R can be written in the following form (where we omit the dependence on t and x in f
and F , for simplicity)

D (F , f) (t, x, v) =

σg p

(︄
mg + mp

mg

)︄3 ∫︂
R3

∫︂
R3

∫︂
S2

f (w◦) F (v◦) hn

(︄
t, x,

mg + mp

mg
(vB − v)

)︄
ς(v◦ − w◦, n)dndv◦dw◦

− σg p
∫︂
R3

∫︂
R3

∫︂
S2

f (w) F (v) ς(v − w , n)dndw

(8.9)
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and

R (F , f) (t, x, w) =

σg p

(︄
mg + mp

mp

)︄3 ∫︂
R3

∫︂
R3

∫︂
S2

f (w◦) F (v◦) hn

(︄
t, x,

mg + mp

mp
(vB − w)

)︄
ς(w◦ − v◦, n)dndv◦dw◦

− σg p
∫︂
R3

∫︂
R3

∫︂
S2

f (w) F (v) ς(w − v , n)dndv

(8.10)
where the collision kernel σg p is of order of magnitude (rp + rg)2,

vB = mgw◦ + mpv◦

mg + mp
(8.11)

and ς(·, ·) encodes the inter-species collision kernel. For the general case, this collision kernel
has the following form:

ς(v − w , n) = |v − w|b
(︃

|v − w|, (v − w) · n

|v − w|
)︃

, (8.12)

where b is a dimensionless function. We are particularly interested here in the following two
cases:

• The hard sphere collision kernel, which correspond to the case where the particles collide
like billiard balls:

ς(v − w , n) = [(v − w) · n]+, (8.13)

where we denote s+ = s1{s≥0}.

• The Maxwellian collision kernel, which is a particular case in which the collision kernel
does not depend on the relative velocity, but only on the deviation angle:

ς(v − w , n) = b

(︃(v − w) · n

|v − w|
)︃

. (8.14)

It is a theoretical model rather than a model describing a precise physical situation.
However, it could lead to many explicit calculations that are fairly consistent with
physical observations [170, 171].

In the following, we denote by

Σ(v − w) :=
∫︂
S2

ς(v − w , n)dn (8.15)

the integral of the collision kernel ς(·, n) respect to n.
We have the following weak formulations of operators D(F , f) and R(F , f) [58].

Lemma 8.1. Let ϕ ∈ L∞
loc(R3) and ψ ∈ L∞

loc(R3) test functions, and D(F , f) and R(F , f)
given by (8.9) and (8.10). We have∫︂

R3
D(F , f)ϕ(v)dv = σg p

∫︂ ∫︂ ∫︂ ∫︂ (︁
ϕ(v′) − ϕ(v)

)︁
F (v)f(w)hn(z)ς(v − w , n) dndzdwdv , (8.16)
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where
v′ = mgw + mpv

mg + mp
− mg

mg + mp
z (8.17)

and∫︂
R3

R(F , f)(w)ψ(w)dw = σg p
∫︂ ∫︂ ∫︂ ∫︂ (︁

ψ(w′) − ψ(w)
)︁

F (v)f(w)hn(z)ς(v − w , n) dndzdwdv ,

(8.18)
where

w′ = mgw + mpv

mg + mp
+ mp

mg + mp
z (8.19)

Remark 8.1. Note that the total momentum is conserved during a collision:

mpv′ + mgw′ = mpv + mgw . (8.20)

Proof. Thanks to (8.9) and to the change of variable v → z = mg+mp

mg
(vB − v), where vB is

defined by (8.11) (of Jacobian (mg

mg
)3), we have:∫︂

R3
D(F , f)(t, x, v)ϕ(v)dv

= σg p

(︄
mg + mp

mg

)︄3 ∫︂
R3

∫︂
R3

∫︂
R3

∫︂
S2

f (w◦) F (v◦) hn

(︄
t, x,

mg + mp

mg
(vB − v)

)︄
ς(v◦ − w◦, n)ϕ(v)dndv◦dw◦dv

− σg p
∫︂
R3

∫︂
R3

∫︂
S2

f (w) F (v) ς(v − w , n)ϕ(v)dvdndw

= σg p
∫︂
R3

∫︂
R3

∫︂
R3

∫︂
S2

f (w◦) F (v◦) hn (z) ς(v◦ − w◦, n)ϕ(v′)dndv◦dw◦dz

− σg p
∫︂
R3

∫︂
R3

∫︂
S2

f (w) F (v) ς(v − w , n)hn (t, x, z) ϕ(v)dzdvdndw

using that
∫︁

hn(t, x, z)dz = 1 for the second integral. We then obtain (8.16). Moreover, the
change of variable (w , n) → (z = −mg+mp

mp
(vB − w), n) in the first integral, and n → −n in

the second integral yield∫︂
R3

R (F , f) (t, x, w)ψ(w)dw

= σg p

(︄
mg + mp

mp

)︄3 ∫︂
R3

∫︂
R3

∫︂
R3

∫︂
S2

f (w◦) F (v◦) hn

(︄
mg + mp

mp
(vB − w)

)︄
ς(w◦ − v◦, n)ψ(w)dndv◦dw◦dw

− σg p
∫︂
R3

∫︂
R3

∫︂
S2

f (w) F (v) ς(w − v , n)ψ(w)dndvdw

= σg p
∫︂
R3

∫︂
R3

∫︂
R3

∫︂
S2

f (w◦) F (v◦) h−n (t, x, −z) ς(w◦ − v◦, −n)ψ(w)dndv◦dw◦dw

− σg p
∫︂
R3

∫︂
R3

∫︂
S2

f (w) F (v) ς(w − v , −n)ψ(w)dndvdw

Expression (8.18) is obtained by observing in (8.8) that h−n(t, x, −z) = hn(t, x, z) and ς(w −
v , −n) = ς(v − w , n).
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In [58], other expressions of the operators D and R have been established in the case of a
hard-sphere collision kernel. We extend here these expressions in the case of a general collision
kernel ς(v − w , n).

Lemma 8.2. Operators D(F , f) and R(F , f) given by (8.9) and (8.10) can be written in the
following form (where we omit the t and x variables to simplify)

D (F , f) (v) = σg p
∫︂
R3

∫︂
R3

∫︂
S2

[︁
f

(︁
w′)︁ F

(︁
v′)︁ hn(v − w)ς(z , n) − f(w)F (v)hn(z)ς(v − w , n)

]︁
dzdndw

(8.21)
and

R(F , f)(w) =σg p
∫︂
R3

∫︂
R3

∫︂
S2

[︁
F (v′)f(w′)hn(v − w)ς(z , n) − F (v)f(w)hn(z)ς(v − w , n)

]︁
dzdndw

(8.22)
where v′ and w′ are given by (8.17) and (8.19) respectively.

Proof. We do the change of variable (v , w , z , n) → (v′, w′, u = w − v , −n), where v′ and w′ are
given by (8.17) and (8.19) respectively, in the gain term of (8.16). This transformation is an
involution, since w′ − v′ = z, and has consequently a Jacobian equal to 1.∫︂ ∫︂ ∫︂ ∫︂

ϕ(v′)F (v)f(w)hn(z)ς(v − w , n) dndzdwdv ,

=
∫︂ ∫︂ ∫︂ ∫︂

ϕ(v)F (v′)f(w′)h−n(w − v)ς(−z , −n) dndzdwdv

and we see from (8.12) ς(−z , −n) = ς(z , n) and from (8.8) that h−n(w − v) = hn(v − w). This
allow to obtain (8.21). We then do the change of variable change of variable (v , w , z , n) →
(v′, w′, u = w − v , −n) in in the gain term of (8.18):∫︂ ∫︂ ∫︂ ∫︂

ψ(w′)F (v)f(w)hn(z)ς(v − w , −n) dndzdwdv ,

=
∫︂ ∫︂ ∫︂ ∫︂

ψ(w)F (v′)f(w′)h−n(w − v)ς(−z , −n) dndzdwdv

=
∫︂ ∫︂ ∫︂ ∫︂

ψ(w)F (v′)f(w′)hn(v − w)ς(z , n) dndzdwdv

to get (8.22).

We also have the following weak forms of the operators, that we shall use later to show the
entropy inequality.

Lemma 8.3. Let ϕ ∈ L∞
loc(R3) and ψ ∈ L∞

loc(R3) test functions, and D(F , f) and R(F , f)
given by (8.9) and (8.10). We have∫︂

R3
D(F , f)ϕ(v)dv +

∫︂
R3

R(F , f)ψ(w)dw

= −σg p
2

∫︂ ∫︂ ∫︂ ∫︂ (︁
ϕ(v′) + ψ(w′) − ϕ(v) − ψ(w)

)︁
× [︁

F (v′)f(w′)hn(v − w)ς(z , n) − F (v)f(w)hn(z)ς(v − w , n)
]︁

dndzdwdv ,
(8.23)

where v′ and w′ are given by (8.17) and (8.19) respectively.
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Proof. The proof is a direct consequence of the relationships (8.17) and (8.19).

Lemma 8.4. Let v′ and w′ the post-collision velocities, given by (8.17) and (8.19) respectively.
Then we have the following relation

mp|v′|2 − mp|v|2 + mg|w′|2 − mg|w|2 = mpmg

mp + mg

(︂
|z|2 − |v − w|2

)︂
, (8.24)

Proof. If we replace (m1v1 + m2v2)/(m1 + m2) by vB in (8.17) and (8.19), we get:

m1|v′
1|2 + m2|v′

2|2 = m1

⃓⃓⃓⃓
vB − m2

m1 + m2
z

⃓⃓⃓⃓2
+ m2

⃓⃓⃓⃓
p + m1

m1 + m2
z

⃓⃓⃓⃓2
= (m1 + m2)|vB|2 + m1m2

m1 + m2
|z|2.

(8.25)

Using the involutive character of transformation (v , w , z) → (v′, w′, w−v), and the conservation
of the momentum (8.20), we deduce from (8.25) that

m1|v1|2 + m2|v2|2 = (m1 + m2)|vB|2 + m1m2
m1 + m2

|v2 − v1|2

By subtracting the latter relation and relation (8.25), we obtain (8.24).

Proposition 8.1. In the case of a hard sphere collision kernel, that is ς(v−w , n) = [(v−w)·n]+,
we have the following weak form, for ϕ ∈ L∞

loc(R3) and ψ ∈ L∞
loc(R3) test functions:∫︂

R3
D(F , f)ϕ(v)dv +

∫︂
R3

R(F , f)ψ(w)dw

= −σg p
2

∫︂ ∫︂ ∫︂ ∫︂ [︁
ϕ(v′) + ψ(w′) − ϕ(v) − ψ(w)

]︁
[(v − w) · n]+hn(z)e− µg p

2kBTp
(mp|v|2+mg |w|2)

× [︁
F (v′)e

µg p
2kBTp

mp|v′|2
f(w′)e

µg p
2kBTp

mg |w′|2 − F (v)e
µg p

2kBTp
mp|v|2

f(w)e
µg p

2kBTp
mg |w|2]︁

dndzdwdv
(8.26)

where we denote µg p = (mp + mg)/mp.
Proof. From (8.23) and the definition (8.8) of hn, we get∫︂

R3
D(F , f)ϕ(v)dv

= −σg p
2

∫︂ ∫︂ ∫︂ ∫︂ (︁
ϕ(v′) − ϕ(v)

)︁
[(v − w) · n]+hn(z)

× [︁
F (v′)f(w′)e− mg

2kBTp
|v−w|2

e
mg

2kBTp
|z|2 − F (v)f(w)

]︁
dndzdwdv ,

= −σg p
2

∫︂ ∫︂ ∫︂ ∫︂ (︁
ϕ(v′) − ϕ(v)

)︁
[(v − w) · n]+hn(z)

× [︁
F (v′)f(w′)e

1
2kBTp

mg+mp
mp

(mp|v′|2−mp|v|2+mg |w′|2−mg |w|2) − F (v)f(w)
]︁

dndzdwdv ,

thanks to (8.24). The proof for the part
∫︁
R3 R(F , f)ψ(w)dw is similar. We finally get

(8.26).
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8.2.4 Evolution of the surface temperature
The particles’ surface temperature Tp(t, x) solves the following PDE, which allows the system
to conserve the total energy, as we will show in Proposition 8.2:

2cp

(︃
∂tTp(t, x)

∫︂
R3

F (t, x, v) dv + ∇xTp(t, x) ·
∫︂
R3

v F (t, x, v) dv

)︃
+ 4kb

mp + mg
I1(F , f)(t, x)Tp(t, x)

= mg

mp + mg
I2(F , f)(t, x),

(8.27)
where cp is the particle mass heat capacity, and

I1(F , f)(t, x) := σg p
∫︂
R3

∫︂
R3

F (t, x, v)f(t, x, w)Σ(v − w)dvdw , (8.28)

I2(F , f)(t, x) := σg p
∫︂
R3

∫︂
R3

F (t, x, v)f(t, x, w)Σ(v − w)|v − w|2dvdw . (8.29)

Proposition 8.2. Let (F , f , Tp) satisfy the system (8.1) and (8.27) in R3, with with D(F , f)
and R(F , f) given by (8.9) and (8.10), and lim|x|→+∞ F (t, x, v) = lim|x|→+∞ f(t, x, w) = 0. If
(F , f , Tp) are smooth enough, then, at a formal level, we have conservation of the total energy
of the system

d

dt

∫︂
R3

ET (t, x) dx = 0, (8.30)

where

ET (t, x) = mpcpTp(t, x)
∫︂
R3

F (t, x, v) dv + mp

2

∫︂
R3

F (t, x, v)|v|2 dv + mg

2

∫︂
R3

f(t, x, w)|w|2 dw .

(8.31)

Proof. Let’s write
∂tET (t, x) = A + B ,

where
A = mpcp∂tTp(t, x)

∫︂
R3

F (t, x, v) dv + mpcpTp(t, x)∂t

∫︂
R3

F (t, x, v) dv ,

B = mp

2 ∂t

∫︂
R3

F (t, x, v)|v|2 dv + mg

2 ∂t

∫︂
R3

f(t, x, w)|w|2 dw .

Since 1 is a collisional invariant of P(F ) and D(F , f), F (t, x, v) satisfies the conservation
equation

∂t

∫︂
R3

F (t, x, v) dv + ∇x ·
(︃∫︂

R3
F (t, x, v)v dv

)︃
= 0.

Then ∫︂
R3

Tp(t, x)∂t

∫︂
R3

F (t, x, v) dv dx = −
∫︂
R3

Tp(t, x)∇x ·
(︃∫︂

R3
F (t, x, v)v dv

)︃
dx

=
∫︂
R3

∇xTp(t, x) ·
(︃∫︂

R3
F (t, x, v)v dv

)︃
dx.
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Moreover, since |v|2 is a collisional invariant of P(F ) and C(f) (equation (8.7)) and thanks to
the weak formulations (8.16) and (8.18) of D(F , f) and R(F , f), we deduce that

B =mp

2

∫︂
R3

(−v · ∇xF + D(F , f) + P(F )) |v|2 dv

+ mg

2

∫︂
R3

(−w · ∇xf + R(F , f) + C(f)) |w|2 dw

= − mp

2 ∇x ·
(︃∫︂

R3
v F |v|2 dv

)︃
− mg

2 ∇x ·
(︃∫︂

R3
w f |w|2 dw

)︃
+ 1

2σg p
∫︂ ∫︂ ∫︂ ∫︂

F (t, x, v)f(t, x, w)hn(t, x, z)ς(v − w , n)[︂
mp|v′|2 − mp|v|2 + mg|w′|2 − mg|w|2

]︂
dndzdvdw .

Using (8.24) and∫︂
R3

hn(t, x, z)dz = 1,

∫︂
R3

hn(t, x, z)|z|2dz = 4kb

mg
Tp(t, x), (8.32)

(see Equations (8.116) and (8.118) for hn, with c =
√︂

1
Tp(t,x) in the Appendix), then

B = − mp

2 ∇x ·
(︃∫︂

R3
v F |v|2 dv

)︃
− mg

2 ∇x ·
(︃∫︂

R3
w f |w|2 dw

)︃
+ 2kb

mp

mp + mg
Tp(t, x)σg p

∫︂ ∫︂
F (t, x, v)f(t, x, w)Σ(v − w)dvdw

− 1
2

mpmg

mp + mg
σg p

∫︂ ∫︂
F (t, x, v)f(t, x, w)Σ(v − w)|v − w|2dvdw .

Since, thanks to the hypotheses on the F and f tails, we have∫︂
R3

∇x ·
(︃∫︂

R3
v F |v|2 dv

)︃
dx = 0 and

∫︂
R3

∇x ·
(︃∫︂

R3
w f |w|2 dw

)︃
dx = 0,

we get (8.30).

8.3 Collision invariants and entropy
The goal of the paper is to derive macroscopic equations of diffusive type, starting from the
kinetic system (8.1), using the method of moments, that we are going to detail later on.

8.3.1 Collision invariants
We recall that property (8.7) of conservation of mass, momentum and energy holds for operators
C and P. For operators D and R, the following Lemma hold.

Lemma 8.5. The operators D and R defined by (8.9) and (8.10) satisfy∫︂
R(F , f)(w)

(︄
1

η w

)︄
dw +

∫︂
D(F , f)(v)

(︄
1
v

)︄
dv =

(︄
0
0

)︄
. (8.33)
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Proof. The starting point is given by the weak formulations (8.16) and (8.18) of the operators
D and R, respectively. Thanks to the pre-post interaction rule (8.17) and (8.19), by taking
ϕ = ψ = 1 and ϕ = ψ = v, the thesis of the Lemma immediately follows.

Remark 8.2. The collisions between a gas particle and a dust particle do not conserve the
kinetic energy.

8.3.2 Entropy decay
A key quantity associated to the System (8.1) is the entropy

H(F , f)(t) =
∫︂

h1(t, x)dx +
∫︂

h2(t, x)dx (8.34)

where
h1(t, x) =

∫︂
f(t, x, w) ln f(t, x, w)dw +

∫︂
F (t, x, v) ln F (t, x, v)dv

h2(t, x) = −mg + mp

kB
cp ln Tp(t, x)

∫︂
F (t, x, v)dv

(8.35)

define the entropy density. To show that the functional H(F , f) has the property to be chosen
as an entropy for the System (8.1), i.e. it decreases in time along the solution of the system,
we start by defining the entropy dissipation functional:

D(F , f)(t, x) = Dd(F , f)(t, x) + De(F , f)(t, x), (8.36)

where

Dd(F , f)(t, x) =
∫︂

R(F , f)(t, x, w) ln
(︃

f(t, x, w)e
µg p

2kBTp(t,x) mg |w|2
)︃

dw

+
∫︂

D(F , f)(t, x, v) ln
(︃

F (t, x, v)e
µg p

2kBTp(t,x) mp|v|2
)︃

dv ,

=
∫︂

R(F , f)(t, x, w) ln f(t, x, w)dw +
∫︂

D(F , f)(t, x, v) ln F (t, x, v)dv

+ µg p
2kBTp(t, x)

(︃
mg

∫︂
R(F , f)(t, x, w)|w|2dw + mp

∫︂
D(F , f)(t, x, v)|v|2dv

)︃
(8.37)

and

De(F , f)(t, x) =
∫︂

C(f)(t, x, w) ln f(t, x, w)dw +
∫︂

P(F )(t, x, v) ln F (t, x, v)dv . (8.38)

Lemma 8.6. Assume that ς is given by (8.13). The entropy dissipation (8.36), in the case of
hard-sphere kernels for the bi-species collisional operators, is such that

D(F , f)(t, x) ≤ 0 for all (t, x) ∈ R+ × R3.

Proof. To show that the dissipation functional D(F , f) is negative, we study separately the
sign of De(F , f) and Dd(F , f). The negativity of dissipation functional De(F , f) associated to
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the Boltzmann operators is usual : using ψ(w) = ln(f(w)) and ϕ(v) = ln(F (v)) in the weak
formulation (8.6), we get:

De(F , f)(t, x) = − σg g
4

∫︂ ∫︂ ∫︂ [︁
f ′f ′

∗ − f f∗
]︁ [︁

ln
(︁
f ′f ′

∗
)︁ − ln (f f∗)

]︁
c (w − w∗, n) dndw∗dw

− σpp

4

∫︂ ∫︂ ∫︂ [︁
F ′F ′

∗ − F F∗
]︁ [︁

ln
(︁
F ′F ′

∗
)︁ − ln (F F∗)

]︁
p (v − v∗, n) dndv∗dv .

The algebraic inequality (y1−y2)(ln(y1)−ln(y2) ≥ 0 then show that De(F , f)(t, x) ≥ 0. Then us-
ing ϕ(t, x, v) = ln

(︃
F (t, x, v)e

µg p
2kBTp(t,x) mp|v|2

)︃
and ψ(t, x, w) = ln

(︃
f(t, x, w)e

µg p
2kBTp(t,x) mg |w|2

)︃
in weak formulations (8.26), we get:

Dd(F , f)(t, x)

= −σg p
2

∫︂ ∫︂ ∫︂ ∫︂
[(v − w) · n]+hn(z)e− µg p

2kBTp
(mp|v|2+mg |w|2)

×
[︃
ln

(︃
F (v′)e

µg p
2kBTp

mp|v′|2
f(w′)e

µg p
2kBTp

mg |w′|2
)︃

− ln
(︃

F (v)e
µg p

2kBTp
mp|v|2

f(w)e
µg p

2kBTp
mg |w|2

)︃]︃
× [︁

F (v′)e
µg p

2kBTp
mp|v′|2

f(w′)e
µg p

2kBTp
mg |w′|2 − F (v)e

µg p
2kBTp

mp|v|2
f(w)e

µg p
2kBTp

mg |w|2]︁
dndzdwdv

≤ 0.

We can now state, and prove, the following result:

Proposition 8.3. Let assume that the collision kernel is an hard sphere collision kernel, given
by (8.13). Then the functional H(F , f) defined in (8.34) does not increase in time.

Proof. We start considering h1(t, x), and we will omit the dependence of f and F on (t, x) for
lightning the notation:

∂th1(t, x) =
∫︂

∂tf(w) (ln f(w) + 1) dw +
∫︂

∂tF (v) (ln F (v) + 1) dv

= −∇x ·
∫︂

w f(w) ln f(w)dw − ∇x ·
∫︂

v F (v) ln F (v)dv

+
∫︂

(R(F , f)(w) + C(f)(w)) ln f(w)dw +
∫︂

(D(F , f)(v) + P(F )(v)) ln F (v)dv

where we made use of the Boltzmann system (8.1) and Lemma 8.5. Using the hypothesis on
the F and f tails we have∫︂

∇x ·
∫︂

w f(w) ln f(w)dwdx = 0 and
∫︂

∇x ·
∫︂

v F (v) ln F (v)dvdx = 0.

Moreover, using the second line of (8.37), we deduce the following equality:∫︂
∂th1(t, x)dx

=
∫︂

D(F , f)(t, x)dx − µg p
kB

∫︂ 1
Tp(t, x)

(︃
mg

2

∫︂
R(F , f)|w|2dw + mp

2

∫︂
D(F , f)|v|2dv

)︃
dx.
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If now we use the weak formulations (8.16) and (8.18) for D(F , f) and R(F , f) respectively,
we can proceed in the same way as in the proof of Proposition 8.2. It follows, thanks to (8.24)
and (8.32)

mg

2

∫︂
R(F , f)|w|2dw + mp

2

∫︂
D(F , f)|v|2dv

= σg p
2

∫︂ ∫︂ ∫︂ ∫︂
F (t, x, v)f(t, x, w)hn(t, x, z)ς(v − w , n)

[︂
mp|v′|2 − mp|v|2 + mg|w′|2 − mg|w|2

]︂
dndzdvdw

= σg p
2

mpmg

(mp + mg)

∫︂ ∫︂ ∫︂ ∫︂
F (t, x, v)f(t, x, w)hn(t, x, z)ς(v − w , n)

[︂
|z|2 − |v − w|2

]︂
dndzdvdw

= σg p
2

mpmg

(mp + mg)

(︄
4kBTp(t, x)

mg
I1(F , f)(t, x) − I2(F , f)(t, x)

)︄

where I1(F , f) and I2(F , f) are defined by (8.28) and (8.29) respectively. Then, using that
we have set µg p = (mp + mg)/mp and thanks to the surface temperature equation (8.27), we
obtain∫︂

∂th1(t, x)dx

=
∫︂

D(F , f)(t, x)dx − µg p
2kB

mp

∫︂ 1
Tp(t, x)

(︄
4kBTp(t, x)
mp + mg

I1(F , f)(t, x) − mg

mp + mg
I2(F , f)(t, x)

)︄
dx.

=
∫︂

D(F , f)(t, x)dx + (mg + mp)
kB

cp

∫︂ 1
Tp(t, x)

(︃
∂tTp(t, x)

∫︂
R3

F (t, x, v)dv + ∇xTp(t, x)
∫︂

F (v)vdv

)︃
dx

=
∫︂

D(F , f)(t, x)dx + (mg + mp)
kB

cp

∫︂ (︃
∂t(ln(Tp(t, x))

∫︂
F (v)dv + ∇x(ln(Tp(t, x))) ·

∫︂
F (v)vdv

)︃
dx

Moreover, since 1 is a collision invariant of D(F , f) and P(F , f), we deduce from (8.1) equation∫︂
∂tF (t, x, v)dv +

∫︂
∇x · (F (t, x, v)v)dv = 0

and thus∫︂
∂th2(t, x)dx

= −mg + mp

kB
cp

∫︂
∂t

(︃
ln Tp(t, x)

∫︂
F (t, x, v)

)︃
dvdx

= −mg + mp

kB
cp

∫︂ (︃
∂t (ln Tp(t, x))

∫︂
F (t, x, v)dv − ln Tp(t, x)

∫︂
∇x · (F (t, x, v)v)dv

)︃
dx

= −mg + mp

kB
cp

(︃∫︂
∂t (ln Tp(t, x))

∫︂
F (t, x, v)dvdx +

∫︂
∇x(ln Tp(t, x)) ·

∫︂
F (t, x, v)vdvdx

)︃
from the divergence theorem. We finally obtain∫︂

∂th1(t, x)dx +
∫︂

∂th2(t, x)dx =
∫︂

D(F , f)(t, x)dx,

and so, by Lemma 8.6, the thesis.
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Remark 8.3. For a Maxwellian collision kernel ς, providing an explicit expression for the
entropy of the system looks more complicated. In fact, it is not possible to rewrite Dd, defined
in (8.37), as in the proof of Lemma 8.6. In the case of a Maxwellian kernel, the equality
hn(v − w)ς(z , n) = hn(z)ς(v − w , n) is no longer available as a tool to show the non-negativity
of Dd.

8.3.3 Equilibrium states
We first recall the case of the Boltzmann operator C(f). We have the following Theorem [107]:

Theorem 8.1 (Boltzmann Theorem). Let f : R3 ↦→ R+ be a smooth positive solution of the
functional equation

∀(w , w∗, n) ∈ R3 × R3 × S2, f(w′′)f(w′′
∗) = f(w)f(w∗),

where w′′ and w′′∗ are given by (8.3). Then there exists ng, ug, θg > 0 such that f =
M[ng, ug, θg], where

M[ng, ug, θg](w) := ngm
3/2
g

(2π kBθg)3/2 e
− mg |w−ug |2

2kBθg , (8.39)

It follows that in case of equilibrium∫︂
R3

ln f(w)C(f)(w)dw = 0 ⇔ f = M[ng, ug, θg],

with
ρg(t, x) :=

∫︂
R3

f(t, x, w)dw , ug(t, x) := 1
ng(t, x)

∫︂
R3

f(t, x, w)wdw ,

θg(t, x) := mg

3kBng(t, x)

∫︂
R3

f(t, x, w)|w − ug(t, x)|2dw .

We also have ∫︂
R3

ln F (v)P(F )(v)dv = 0 ⇔ F = M[np, up, θp],

with
ρp(t, x) :=

∫︂
R3

F (t, x, v)dv , up(t, x) := 1
np(t, x)

∫︂
R3

F (t, x, v)vdv ,

θp(t, x) := mp

3kBnp(t, x)

∫︂
R3

F (t, x, v)|v − up(t, x)|2dv .

We now extend this result to the case of operators D(F , f) and R(F , f).

Lemma 8.7. Let F and f in C1(R3) ∩ L1(R3), such that

∀(v , w , z) ∈ R3 × R3 × R3, F (v′)f(w′)ec(mp|v′|2+mg |w′|2) = F (v)f(w)ec(mp|v|2+mg |w|2),
(8.40)
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where v′ and w′ are given by (8.17) and (8.19), where c is a given constant. Then F and f
are Maxwellien states. More precisely there exist u ∈ R3, Nf > 0, NF > 0 such that F (v) = Nf e−c(mp|v−u|2)

f(w) = NF e−c(mg |w−u|2).
(8.41)

Proof. The proof follows the same idea as in [171], but adapted to the particular collision
mechanism that we consider here. We multiply equation (8.40) by hn(z) and integrate over
the parameters z ∈ R3 and n ∈ S. Then we get∫︂

S2

∫︂
R3

F (v)f(w)ec(mp|v|2+mg |w|2)hn(z)dzdn

=
∫︂
S2

∫︂
R3

F (v′)f(w′)ec(mp|v′|2+mg |w′|2)hn(z)dzdn.

Let vB = mpv+mgw
mp+mg

. Thanks to relations (8.17) and (8.19), we have

mp|v′|2 + mg|w′|2 = (mp + mg)|vB|2 + mpmg

mp + mg
|z|2.

Then

4π F (v)f(w)ec(mp|v|2+mg |w|2)

=
∫︂
R3

∫︂
S2

F

(︄
vB − mg

mp + mg
z

)︄
f

(︄
vB + mp

mp + mg
z

)︄
e

c((mp+mg)|vB |2+ mpmg
mp+mg

|z|2)
hn(z)dndz

= 1
2π

m2
g

2k2
BTp

∫︂
S2

[n · z]+dn

×
∫︂
R3

F

(︄
vB − mg

mp + mg
z

)︄
f

(︄
vB + mp

mp + mg
z

)︄
e

c((mp+mg)|vB |2+ mpmg
mp+mg

|z|2
e

− m2
g

2k2
B

Tp
|z|2

dz

1
2π

m2
g

2k2
BTp

∫︂
R3

F

(︄
vB − mg

mp + mg
z

)︄
f

(︄
vB + mp

mp + mg
z

)︄
e

c((mp+mg)|vB |2+ mpmg
mp+mg

|z|2
e

− m2
g

2k2
B

Tp
|z|2 |z|dz

It follows that
Ψ(vB) := F (v)f(w)ec(mp|v|2+mg |w|2)

is a (smooth) function of the only vector only vB. Then, if we denote E = mp|v|2 + mg|w|2,
we have

ln F (v) + ln f(w) = ln Ψ(vB) − cE .

This allows to obtain that

∇v ln F (v) = mp

mg + mp
Ψ′

(︄
mpv + mgw

mp + mg

)︄
− 2mpv

∇w ln f(w) = mp

mg + mp
Ψ′

(︄
mpv + mgw

mp + mg

)︄
− 2mgw
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and then that mg∇v ln F (v) − mp∇w ln f(w) is colinear to v − w :

mg∇v ln F (v) − mp∇w ln f(w) = −2c mpmg(v − w) ∀(v , w) ∈ R3 × R3.

Finally we can conclude that there exist u ∈ R3 such that{︄ ∇v ln F (v) = −2c mp(v − u)
∇w ln f(w) = −2c mg(w − u)

and thus that there exists also λ1 ∈ R, λ ∈ R such that F (v) = e−c(mp|v−u|2+λ1)

f(w) = e−c(mg |w−u|2+λ2).

which proves (8.41).

This lead to the following (formal) characterisation of the equilibrium states of system (8.1).

Proposition 8.4. Let f and F smooth functions that verify (8.1), with ς given by (8.13).
Then

D(F , f)(t, x) = 0 for any (t, x) ∈ R+ × R3

if and only if there exists ueq = ueq(t, x) ∈ R3, Nf = Nf (t, x) ≥ 0 and NF = NF (t, x) ≥ 0 such
that ��������

f(t, x, w) = Nf (t, x) exp
(︄

− µg p
2kBTp(t, x)mg|w − ueq(t, x)|2

)︄
=: f eq(t, x, w),

F (t, x, v) = NF (t, x) exp
(︄

− µg p
2kBTp(t, x)mp|v − ueq(t, x)|2

)︄
=: F eq(t, x, v).

(8.42)

where µg p = mp+mg

mp
.

Proof. The proof is similar to that of [56, Théorème 2.1]. On the one hand, since both De(F , f)
and Dd(F , f) are non-negative, they must both be zero if D(F , f) is zero. Therefore, by
applying Lemma 8.7 with the choice c = µg p/(2kBTp), the expressions for the equilibria (8.42)
follow. On the other hand, if the equilibria are given by (8.42), then Dd(F , f) = 0. Indeed,
substituting the expressions (8.42) into equation (8.37), and using the conservation of mass
and momentum (8.33), leads to the conclusion that Dd(F , f) = 0. Furthermore, De(F , f) = 0
as well, by applying the conservation of mass, momentum, and energy for the monospecies
collisional operators (8.7).

Remark 8.4. We emphasise the importance of considering temperature Tp(t, x) as a time
and space variable, as opposed to as a microscopic variable as done in [60]. In fact, thanks
to this expedient, we are able to provide an expression for the system’s entropy (8.34), which
is fundamental for deriving the system’s equilibria and for the analytical study of the model
itself, which will be the subject of a future work.
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8.4 Adimensionalization
Macroscopic quantities such as density, momentum and energy, for both gases and dust, can
be constructed from integrals of the distribution functions f and F with respect to velocities
v and w, respectively. These quantities are called ’moments’ and their equations can be
derived by directly integrating the first equation of the System (8.1) with respect to w, after
multiplying by 1, w , |w|2, and the second with respect to v, after multiplying by 1, v , |v|2.
However, the resulting system involves integrals of f and F that cannot be expressed in terms
of the macroscopic quantities mass, momentum and energy, unless f and F have a particular
expression, given a priori. In fact, the resulting system is not closed in general. To close it, it is
necessary to specify a form of the distribution functions that depend on the primary variables.
This cannot be done in a completely generic manner, but requires specifying a regime in
which this approximate form of the distribution function is valid. Hence, it is necessary to
adimensionalize the equations through a correct scaling.

8.4.1 Scaling units and main hypothesis
Scaling of variables We first introduce some quantities in Table 8.1.

Scaling unit Meaning
L macroscopic length scale
t◦ macroscopic time scale
V ◦ reference velocity of particles
W ◦ reference velocity of molecules

Vrel = max{V ◦, W ◦} scaling of the relative velocity
Ng order of magnitude of the number density in molecules
Np order of magnitude of the number density in particles
mg mass of the molecules
mp mass of the particles
rg radius of the molecules
rp radius of the particles
T ◦ reference temperature

Tab. 8.1: Scaling units

We then make the following change of space, time, and velocities coordinates

x̂ = x

L
t̂ = t

t◦ , v̂ = v

V ◦ ŵ = w

W ◦ ẑ = z

Vrel
,

and the dimensionless unknowns:

F̂ (t̂, x̂, v̂) = F (t, x, v)
F ◦ , with F ◦ = Np

(V ◦)3
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f̂(t̂, x̂, ŵ) = f(t, x, w)
f◦ , with f◦ = Ng

(W ◦)3 ,

Tp̂(t̂, x̂) = Tp(t, x)
T ◦ .

Small parameters We introduce the following small parameters

• η the mass ratio between a molecule and a particle,

η = mg

mp
, (8.43)

• ν the ratio of gas and dust radius

ν := rg

rp
≪ 1, (8.44)

• δ the Knudsen number related to the gas:

δ = 1
Ngσg gL

,

• γ the Strouhal number of the gas

γ := L

W ◦t◦ .

Remark 8.5. We note that the Knudsen number of the dust δp depends on that of the gas
and the ratio of radii. In fact

δp = 1
NpσppL

∼ δ ν2.

Moreover, we have
σg g
σpp

∼ ν2; σg g
σg p

∼ ν2

(1 + ν)2 ∼ ν2.

Hypothesis on the order of magnitude

Hypothesis 8.1. We assume that

η ≪ 1, ν ≪ 1, δ ≪ 1, γ ≪ 1

Hypothesis 8.2 (Order of magnitude of the kinetic temperatures). We assume that the
velocity scales V ◦ and W ◦ of dust and gas are given by their thermal velocities, and that the
orders of magnitude of the kinetic temperatures of gas and dust are T ◦:

V ◦ =
√︄

2kBT ◦

mp
, W ◦ =

√︄
2kBT ◦

mg
.
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Consequently, these velocities depend only on the masses, and the relation

V ◦

W ◦ ∼ √
η

holds, where η is the mass ratio (8.43).

Remark 8.6. As a consequence, we note that the Strouhal number of the dust is related to
the one of the gas via the equality

γp = L

V ◦t◦ = γ√
η

.

Remark 8.7. Hypothesis 8.2 explains the introduction of two different scales for the dust and
gas velocities, as - from the latter - it follows that

V ◦ = √
η W ◦ ≪ W ◦.

In particular, it follows that
Vrel = W ◦.

Hypothesis 8.3 (Order of magnitude of the number densities). We assume that the quantity

Np

Ng
∼ 1,

meaning that the quotient of the order of magnitude of the number density in particles to that
of the number density in molecules behaves as a constant, independent of the parameter η.

8.4.2 Adimensionalized Boltzmann system
Through considerations of physical dimension [49], the collision kernels c(w−w∗, n), p(v−v∗, n)
and ς(v − w , n) are scaled in the following way:

ς(v − w , n) = W ◦ς̂ (√η v̂ − ŵ, n) ,

c(w − w∗, n) = W ◦ĉ(ŵ − ŵ∗),
p(v − v∗, n) = V ◦p̂(v̂ − v̂∗).

The dimensionless operators are then deduced by means of the following formulas:

D(F , f) = σg pF ◦f◦(W ◦)4D̂(F̂ f̂)

P(F ) = σpp (F ◦)2 (V ◦)4P̂(F̂ )

R(F , f) = σg pF ◦f◦W ◦(V ◦)3R̂(F̂ , f̂)

C(f) = σg g (f◦)2 (W ◦)4Ĉ(f̂)
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where D̂(F̂ , f̂), P̂(F̂ ), R̂(F̂ , f̂), and Ĉ(f̂) are the dimensionless version of C(f), P(F ), D(F , f)
and R(F , f), given by:

Ĉ(f̂)(ŵ) =
∫︂
R3

∫︂
S2

[︂
f̂(ŵ′)f̂(ŵ′

∗) − f̂(ŵ)f̂ (ŵ∗)
]︂

ĉ (ŵ − ŵ∗, n) dndŵ∗, (8.45)

P̂(F̂ )(v̂) =
∫︂
R3

∫︂
S2

[︂
F̂ (v̂′)F̂ (v̂′

∗) − F̂ (v̂)F̂ (v̂∗)
]︂

p̂ (v̂ − v̂∗, n) dndv̂∗, (8.46)

D̂(F̂ , f̂)(t̂, x̂, v̂) =∫︂
R3

∫︂
R3

∫︂
S2

[︂
f̂

(︁
ŵ′)︁ F̂

(︁
v̂′)︁ hn(t̂, x̂,

√
η v̂ − ŵ)ς̂(ẑ, n) − f̂(ŵ)F̂ (v̂)ĥn(t̂, x̂, ẑ)ς̂(√η v̂ − ŵ, n)

]︂
dẑdndŵ,

(8.47)
and

R̂(F̂ , f̂)(t̂, x̂, ŵ) =∫︂
R3

∫︂
R3

∫︂
S2

[︂
f̂

(︁
ŵ′)︁ F̂

(︁
v̂′)︁ hn(t̂, x̂,

√
η v̂ − ŵ)ς̂(ẑ, n) − f̂(ŵ)F̂ (v̂)ĥn(t̂, x̂, ẑ)ς̂(√η v̂ − ŵ, n)

]︂
dẑdndv̂,

(8.48)
with ������

v̂′ =
v̂ + √

η ŵ
1 + η

−
√

η

1 + η
ẑ

ŵ′ =
√

η v̂ + η ŵ
1 + η

+ 1
1 + η

ẑ

(8.49)

and
ĥn(t̂, x̂, ẑ) = 2

π T̂ p(t̂, x̂)2
(n · ẑ) e

− |ẑ|2
T̂ p 1{ẑ·n≥0}.

For the collisional operators D̂ and R̂, we have made the dependence on t̂ and x̂ explicit,
although we have only expressed it in T̂ p and ĥn, and not in F̂ and f̂ . This choice is merely to
remind the reader of the dependence of the surface temperature on the space-time variables.

System (8.1) is then written as����
∂t̂F̂ + V ◦t◦

L
v̂ · ∇x̂F̂ = Ngσg pW ◦t◦D̂(F̂ , f̂) + NpσppV ◦t◦P̂(F̂ )

∂t̂f̂ + W ◦t◦

L
ŵ · ∇x̂f̂ = Npσg pW ◦t◦R̂(F̂ , f̂) + Ngσg gW ◦t◦Ĉ(f̂),

8.4.3 Adimensionalized surface temperature’s equation
Expressions I1(F , f) and I2(F , f) defined by (8.28) and (8.29) are scaled in the following way

I1(F , f) = NpNgσg pW ◦Î1(F̂ , f̂), I2(F , f) = NpNgσg p(W ◦)3Î2(F̂ , f̂)

with ����
Î1(F̂ , f̂) =

∫︂
R3

∫︂
R3

F̂ (v̂)f̂(ŵ)Σ̂(√η v̂ − ŵ)dv̂dŵ,

Î2(F̂ , f̂) =
∫︂
R3

∫︂
R3

F̂ (v̂)f̂(ŵ)Σ̂(√η v̂ − ŵ)|√η v̂ − ŵ|2dv̂dŵ.

(8.50)
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Therefore, the adimensionalised form of (8.27) is

cp
T ◦Np

T ◦

[︄
∂t̂T̂ p

∫︂
R3

F̂ (v̂)dv̂+
√

η

γ
∇x̂T̂ p ·

∫︂
R3

F̂ (v̂)v̂dv̂

]︄
+ 1

2
mg

(mg + mp)2NpNgσg p(W ◦)3T̂ pÎ1(F̂ , f̂)

= 1
2

mg

(mg + mp)NpNgσg p(W ◦)3Î2(F̂ , f̂).

8.4.4 Summary of the dimensionless equations
We now remove all hats in the dimensionless formulas, and thanks to Hypothesis 8.1 (we are
interessed in the limit η , ν → 0) we replace 1 + η and 1 + ν by 1. We then consider the system
made up of the following integro-differential coupled system:����

γ√
η

∂tF + v · ∇xF = 1
δ ν2√

η
D(F , f) + 1

δ ν2 P(F ),

γ ∂tf + w · ∇xf = 1
δ ν2 R(F , f) + 1

δ
C(f),

(8.51)

where D, P, R, and C are the dimensionless operators (8.47), (8.46), (8.48), and (8.45), and
the non-linear transport equation for Tp:

τ
(︂
γ ∂tTp(t, x)

∫︂
F (t, x)dv + √

η∇xTp(t, x) ·
∫︂

v F (t, x)dv
)︂

+ 1
δ ν2

1
1 + η

2I1(F , f)(t, x)Tp(t, x)

= 1
δ ν2

1
1 + η

I2(F , f)(t, x),
(8.52)

with
I1(F , f)(t, x) =

∫︂
R3

∫︂
R3

F (v)f(w)Σ(η v − w)dvdw , (8.53)

I2(F , f)(t, x) =
∫︂
R3

∫︂
R3

F (v)f(w)Σ(η v − w)|η v − w|2dvdw . (8.54)

The constant
τ := 2mpcp

kB
, (8.55)

thanks to Hypothesis 8.2, can be interpreted as the ratio between the order of magnitude of
the internal energy of the dust (mpcpT ◦) and the one of the kinetic temperature of the gas,
i.e. 1

2mg(W ◦)2. It depends only of the gas and the material which constitute the particles
(but not on the size or the quantity of particles) and it has no unit of measure.

8.4.5 Dimensionless equilibrium states and entropy dissipation
With such scaling, also considering that ûeq = W ◦ueq, we obtain the following forms for entropy
dissipation and equilibrium, whose expressions can be derived directly from Lemma 8.6:

Lemma 8.8. The re-scaled equilibrium states have the following shape:��
f eq(t, x, w) = ng(t, x) exp

(︂
− (1+η)

Tp(t,x) |w − ueq(t, x)|2
)︂

,

F eq(t, x, v) = np(t, x) exp
(︂
− (1+η)

Tp(t,x) |v − 1√
η ueq(t, x)|2

)︂
.

(8.56)
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8.5 Diffusive scaling and balance laws
We want to study the diffusion limit of the Boltzmann system (8.51) coupled with equation
(8.52), that is when the small parameters δ and γ tend to 0. In addition, we also simultaneously
consider the asymptotic of the mass and size ratios between the two species towards 0, that is
η → 0 and ν → 0.

We denote ϵ = (γ , ε, δ, η) and we consider (f ϵ, F ϵ, T ϵ
p) solution of (8.51)-(8.52). We introduce

the macroscopic densities of f ϵ and F ϵ defined by.

ρϵ
F (t, x) =

∫︂
F ϵ(t, x, v)dv , ρϵ

f (t, x) =
∫︂

f ϵ(t, x, w)dw , (8.57)

Since we are interested in a diffusive behaviour, we make, as in [33], the following additional
Hypothesis:

Hypothesis 8.4. The bulk velocity is small and it goes to zero in the vanishing Strouhal
number limit.

Taking into account the different speed scaling of two species, Hypothesis 8.4 lead to define

uϵ
F (t, x) =

√
η

γ ρϵ
F (t, x)

∫︂
F ϵ(t, x, v)vdv , uϵ

f (t, x) = 1
γ ρϵ

f (t, x)

∫︂
f ϵ(t, x, w)wdw . (8.58)

Remark 8.8. Note that uϵ
F and uϵ

f do not correspond to the macroscopic velocities as they
are usually defined, but rather to the first-order term in γ√

η (respectively γ) of the asymptotic
expansion of these macroscopic velocities.

We also define the kinetic temperature of the species:

θϵ
F (t, x) = 1

3ρϵ
F

∫︂
F ϵ(v)

⃓⃓⃓⃓
⃓v − γ√

η
uϵ

F

⃓⃓⃓⃓
⃓
2

dv , θϵ
f (t, x) = 1

3ρϵ
f

∫︂
f ϵ(w)|w − γ uϵ

f |2dw , (8.59)

According to definitions (8.57), (8.58) and (8.59), we have for the 0, 1 and 2 moment of F ϵ:

∫︂
R3

F ϵ(t, x, v)

� 1
v

|v|2

" dv =

� ρϵ
F

γ√
η ρϵ

F uϵ
F

3ρϵ
F θϵ

F + γ2

η |uϵ
F |2ρϵ

F

" , (8.60)

and for the 0, 1 and 2 moment of f ϵ:

∫︂
R3

f ϵ(t, x, w)

� 1
w

|w|2

" dw =

� ρϵ
f

γ ρϵ
f uϵ

f

3ρϵ
f θϵ

f + γ2|uϵ
f |2ρϵ

f

" . (8.61)

8.5.1 Ansatz
The main hypothesis of our work is that the initial distributions (f ϵ(0, ·, ·), F ϵ(0, ·, ·)) are
local Maxwellian states, and that the evolution following (8.51) and (8.52) maintains the
distribution functions in local Maxwellian states. From a physical point of view, it corresponds
to assume that the mixtures has reached its global mechanical equilibrium. This approximation
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is justified when the vector parameter ϵ approaches zero, as we will see in the next Section.
We then have

F ϵ(t, x, v) = ρϵ
F (t, x)

(︄
1

2π θϵ
F (t, x)

)︄ 3
2

exp
(︄

− 1
2θϵ

F (t, x) |v − γ√
η

uϵ
F (t, x)|2

)︄
, (8.62)

f ϵ(t, x, w) = ρϵ
f (t, x)

(︄
1

2π θϵ
f (t, x)

)︄ 3
2

exp
(︄

− 1
2θϵ

f (t, x) |w − γ uϵ
f (t, x)|2

)︄
, (8.63)

where ρϵ
F , ρϵ

f , uϵ
F , uϵ

f , θϵ
F , θϵ

f are defined by (8.57), (8.58), (8.59). The choice of ansatz (8.62)
and (8.63) is the usual line of attack to address diffusion limit procedures in the context of
Boltzmann models (see for instance [33] and [120]).

8.5.2 Balance laws
To obtain a macroscopic description of the gas-dust aerosol mixture, we hence start with the
kinetic description (8.51), combined with equation (8.52) for the description of the surface
temperature of the dust, and integrate them with respect to the velocity variables v and w
only.

8.5.2.1 Conservation of mass

Proposition 8.5. Let (f ϵ, F ϵ) solution of system (8.51), and ρϵ
F , ρϵ

f , uϵ
F , uϵ

f defined by (8.57)
and (8.58). We have the mass balance equations:��

∂tρ
ϵ
F + ∇x · (ρϵ

F uϵ
F ) = 0

∂tρ
ϵ
f + ∇x ·

(︂
ρϵ

f uϵ
f

)︂
= 0.

(8.64)

Proof. It follows directly by integrating the first and second equations of (8.51) in v and w
respectively, since 1 is a collision invariant for all D, P, R and C, and we can explicitly compute
the momentum of order 0 and 1 of F ϵ and f ϵ.

8.5.2.2 Balance of momentum

Proposition 8.6. Under the same assumptions of Proposition 8.5, we further have the
momentum balance:����

γ2

η
[∂t (ρϵ

F uϵ
F ) + ∇x · (uϵ

F ⊗ uϵ
F ρϵ

F )] + ∇x (ρϵ
F θϵ

F ) = 1
δ ν2√

η
Θϵ

F

γ2
[︂
∂t

(︂
ρϵ

f uϵ
f

)︂
+ ∇x ·

(︂
uϵ

f ⊗ uϵ
f ρϵ

f

)︂]︂
+ ∇x

(︂
ρϵ

f θϵ
f

)︂
= 1

δ ν2 Θϵ
f ,

(8.65)

where

Θϵ
F (t, x) :=

∫︂
R3

vD(F ϵ, f ϵ)(t, x, v) dv , Θϵ
f (t, x) :=

∫︂
R3

wR(F ϵ, f ϵ)(t, x, w) dw .
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Proof. To deduce (8.65), we first multiply the first and second equations of (8.51) by w(ℓ) and
v(ℓ), respectively, for ℓ = 1, 2, 3, and then we integrate the first equation of (8.51) respect to v
and the second one respect to w. The resulting system is:������

γ2

η
∂t

(︂
ρϵ

F (uϵ
F )(ℓ)

)︂
+ ∇x ·

(︃∫︂
R3

v(ℓ)F
ϵ(v)v dv

)︃
= 1

δ ν2√
η

(Θϵ
F )(ℓ)

γ2∂t

(︂
ρϵ

f (uϵ
f )(ℓ)

)︂
+ ∇x ·

(︃∫︂
R3

w(ℓ)f
ϵ(w)w dw

)︃
= 1

δ ν2 (Θϵ
f )(ℓ),

(8.66)

We first study the divergence term appearing in the equation for the dust. For k = 1, 2, 3, we
have that:

∫︂
R3

v(ℓ)F
ϵ(v)v(k) dv =

(︄
1

2π θϵ
F

)︄ 3
2

ρϵ
F

∫︂
R3

v(ℓ)v(k) exp

− 1
2θϵ

F

⃓⃓⃓⃓
⃓v − γ√

η
uϵ

F

⃓⃓⃓⃓
⃓
2
 dv

=
(︄

1
2π θϵ

F

)︄ 3
2

ρϵ
F

∫︂
R3

(︄
v(ℓ) + γ√

η
(uϵ

F )(ℓ)

)︄ (︄
v(k) + γ√

η
(uϵ

F )(k)

)︄
exp

(︄
− |v|2

2θϵ
F

)︄
dv

=
(︄

1
2π θϵ

F

)︄ 3
2

ρϵ
F

∫︂
R3

(︄
γ2

η
(uϵ

F )(ℓ)(uϵ
F )(k) + v2

(ℓ)δk ℓ

)︄
exp

(︄
− |v|2

2θϵ
F

)︄
dv

= γ2

η
(uϵ

F )(ℓ)(uϵ
F )(k)ρ

ϵ
F + ρϵ

F θϵ
F ,

(8.67)
thanks to the change of variables v ↦→ z := v − γ√

η uϵ
F , and by noticing that the following

integrals are null ��������

∫︂
R3

v(k)v(ℓ) exp
(︄

− |v|2
2θϵ

F

)︄
dv = 0 for all k ̸= ℓ,

∫︂
R3

v(k) exp
(︄

− |v|2
2θϵ

F

)︄
dv = 0 for all k .

Regarding the divergence term appearing in the equation for the gas, following the same
procedure, we deduce that∫︂

R3
w(ℓ)f

ϵ(w)w(k) dw = γ2(uϵ
f )(ℓ)(uϵ

f )(k)ρ
ϵ
f + ρϵ

f θϵ
f . (8.68)

Proposition 8.7. For a general collision kernel, the operators Θϵ
F and Θϵ

f of the momentum
balance System (8.65) can explicitly be written as

Θϵ
F =

−√
η

1 + η

[︄ ∫︂
R3

∫︂
R3

(√η v − w) F ϵ(v)f ϵ(w)Σ(√η v − w)dwdv

+
√

π

2
√︂

T ϵ
p

∫︂
R3

∫︂
R3

F ϵ(v)f ϵ(w)
∫︂
S2

nς(√η v − w , n) dndwdv

]︄
,

(8.69)
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and

Θϵ
f = 1

1 + η

[︄ ∫︂
R3

∫︂
R3

(√η v − w) F ϵ(v)f ϵ(w)Σ(√η v − w)dwdv

+
√

π

2
√︂

T ϵ
p

∫︂
R3

∫︂
R3

F ϵ(v)f ϵ(w)
∫︂
S2

nς(√η v − w , n) dndwdv

]︄
.

(8.70)

Proof. Via the weak formulations (8.16), we can rewrite Θϵ
F as

Θϵ
F =

∫︂
R3

vD(F ϵ, f ϵ) dv =
∫︂
S2

∫︂
R3

∫︂
R3

∫︂
R3

(︁
v′ − v

)︁
F ϵ(v)f ϵ(w)hn(z)ς(√η v − w , n) dndzdwdv ,

while Θϵ
f can be treated in a similar manner, starting by using the weak formulation (8.18)

Θϵ
f =

∫︂
R3

wR(F ϵ, f ϵ) dw =
∫︂
S2

∫︂
R3

∫︂
R3

∫︂
R3

(︁
w′ − w

)︁
F ϵ(v)f ϵ(w)hn(z)ς(√η v−w , n) dndzdwdv .

Thanks to (8.49) we have for the rescaled variables:��
v′ − v = −√

η
1+η

(︁√
η v − w + z

)︁
,

w′ − w = 1
1+η

(︁√
η v − w + z

)︁
.

Hence, the expressions (8.69) and (8.70) follows directly from computations (8.116) and (8.117)
of Lemma B.11, with c =

√︂
1

T ϵ
p(t,x) .

8.5.2.3 Balance of energy

Proposition 8.8. Under the same assumptions of Proposition 8.5, also the energy balance
holds:������

∂t (3ρϵ
F θϵ

F ) + ∇x · (5uϵ
F θϵ

F ρϵ
F ) + γ2

η

(︂
∂t

(︂
|uϵ

f |2ρϵ
F

)︂
+ ∇x ·

(︂
|uϵ

F |2uϵ
F ρϵ

F

)︂)︂
= 1

γ δ ν2 Ξϵ
F ,

∂t

(︂
3ρϵ

f θϵ
f

)︂
+ ∇x ·

(︂
5uϵ

f θϵ
f ρϵ

f

)︂
+ γ2

(︂
∂t

(︂
|uϵ

f |2ρϵ
f

)︂
+ ∇x ·

(︂
|uϵ

f |2uϵ
f ρϵ

f

)︂)︂
= 1

γ δ ν2 Ξϵ
f ,

(8.71)
where

Ξϵ
F :=

∫︂
R3

|v|2D(F ϵ, f ϵ) dv , Ξϵ
f :=

∫︂
R3

|w|2R(F ϵ, f ϵ) dw . (8.72)

Proof. We now integrate the first equation of (8.51) respect to v, after having multiplied it
by |v|2, and the second one respect to w, after having multiplied it by |w|2. The system we
obtain has the form:������

γ√
η

∂t

(︄
3ρϵ

F θϵ
F + γ2

η
|uϵ

f |2ρϵ
F

)︄
+ ∇x ·

(︃∫︂
R3

|v|2F ϵ(v)v dv

)︃
= 1

δ ν2√
η

Ξϵ
F ,

γ ∂t

(︂
3ρϵ

f θϵ
f + γ2|uϵ

f |2ρϵ
f

)︂
+ ∇x ·

(︃∫︂
R3

|w|2f ϵ(w)w dw

)︃
= 1

δ ν2 Ξϵ
f ,

(8.73)
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For every k = 1, 2, 3,

∫︂
R3

|v|2F ϵ(v)v(k) dv =
(︄

1
2π θϵ

F

)︄ 3
2

ρϵ
F

∫︂
R3

|v|2v(k) exp

− 1
2θϵ

F

⃓⃓⃓⃓
⃓v − γ√

η
uϵ

F

⃓⃓⃓⃓
⃓
2
 dv

=
(︄

1
2π θϵ

F

)︄ 3
2

ρϵ
F

∫︂
R3

⃓⃓⃓⃓
⃓v + γ√

η
uϵ

F

⃓⃓⃓⃓
⃓
2 (︄

v(k) + γ√
η

(uϵ
F )(k)

)︄
exp

(︄
− |v|2

2θϵ
F

)︄
dv

=
(︄

1
2π θϵ

F

)︄ 3
2

ρϵ
F

∫︂
R3

|v|2
(︄

v(k) + γ√
η

(uϵ
F )(k)

)︄
exp

(︄
− |v|2

2θϵ
F

)︄
dv

+ γ2

η

(︄
1

2π θϵ
F

)︄ 3
2

ρϵ
F |uϵ

F |2
∫︂
R3

(︄
v(k) + γ√

η
(uϵ

F )(k)

)︄
exp

(︄
− |v|2

2θϵ
F

)︄
dv

+ 2 γ√
η

(︄
1

2π θϵ
F

)︄ 3
2

ρϵ
F

∫︂
R3

3∑︂
ℓ=1

v(ℓ)(uϵ
F )(ℓ)

(︄
v(k) + γ√

η
(uϵ

F )(k)

)︄
exp

(︄
− |v|2

2θϵ
F

)︄
dv

= γ√
η

(uϵ
F )(k)ρ

ϵ
F

(︄
1

2π θϵ
F

)︄ 3
2 ∫︂

R3
|v|2 exp

(︄
− |v|2

2θϵ
F

)︄
dv

+ γ3

η3/2 |uϵ
F |2(uϵ

F )(k)ρ
ϵ
F

(︄
1

2π θϵ
F

)︄ 3
2 ∫︂

R3
exp

(︄
− |v|2

2θϵ
F

)︄
dv

+ 2 γ√
η

(uϵ
F )(ℓ)ρ

ϵ
F

(︄
1

2π θϵ
F

)︄ 3
2 ∫︂

R3
(v(ℓ))2δk ℓ exp

(︄
− |v|2

2θϵ
F

)︄
dv

=5 γ√
η

(uϵ
F )(k)θ

ϵ
F ρϵ

F + γ3

η3/2 |uϵ
F |2(uϵ

F )(k)ρ
ϵ
F ,

where we, first, perform the change of variable z := v − γ√
η uϵ

F , then rename z as v and conclude
by using the properties of the Maxwellian. In a similar way, we can express the divergence
term appearing in the equation for the gas. We conclude by multiplying the first equation of
(8.73) by

√
η

γ and the second one by 1
γ .

Proposition 8.9. For a general collision kernel, we have

Ξϵ
F + Ξϵ

f = 1
1 + η

(︂
2T ϵ

pI1(F ϵ, f ϵ) − I2(F ϵ, f ϵ)
)︂

. (8.74)
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Moreover, the operators Ξϵ
F and Ξϵ

f can explicitly be written as

Ξϵ
F = 1

(1 + η)2

[︄ (︂
−η2 − 2η

)︂ ∫︂
R3

∫︂
R3

|v|2F ϵ(v)f ϵ(w)Σ(√η v − w) dwdv

+η

∫︂
R3

∫︂
R3

|w|2F ϵ(v)f ϵ(w)Σ(√η v − w) dwdv

+2T ϵ
pη

∫︂
R3

∫︂
R3

F ϵ(v)f ϵ(w)Σ(√η v − w) dwdv

+2√
η

∫︂
R3

∫︂
R3

v · w F ϵ(v)f ϵ(w)Σ(√η v − w) dwdv

−
√︂

π T ϵ
p

∫︂
R3

∫︂
R3

(√η v + η w) F ϵ(v)f ϵ(w) ·
∫︂
S2

nς(√η v − w , n) dndwdv

]︄
,

(8.75)

and

Ξϵ
f = 1

(1 + η)2

[︄
(−1 − 2η)

∫︂
R3

∫︂
R3

|w|2F ϵ(v)f ϵ(w)Σ(√η v − w) dwdv

+η

∫︂
R3

∫︂
R3

|v|2F ϵ(v)f ϵ(w)Σ(√η v − w) dwdv

+2T ϵ
p

∫︂
R3

∫︂
R3

F ϵ(v)f ϵ(w)Σ(√η v − w) dwdv

+2η
√

η

∫︂
R3

∫︂
R3

v · w F ϵ(v)f ϵ(w)Σ(√η v − w) dwdv

+
√︂

π T ϵ
p

∫︂
R3

∫︂
R3

(√η v + η w)F ϵ(v)f ϵ(w) ·
∫︂
S2

nς(√η v − w , n) dndwdv

]︄
.

(8.76)

Proof. The operators Ξϵ
F and Ξϵ

f can be rewritten using the weak formulations (8.16) and
(8.18), respectively. In particular,

Ξϵ
F =

∫︂
R3

|v|2D(F ϵ, f ϵ)(v) dv =
∫︂
S2

∫︂
R3

∫︂
R3

∫︂
R3

(︂
|v′|2 − |v|2

)︂
F ϵ(v)f ϵ(w)hn(z)ς(√η v−w , n) dndzdwdv ,

and

Ξϵ
f =

∫︂
R3

|w|2R(F ϵ, f ϵ)(w) dw =
∫︂
S2

∫︂
R3

∫︂
R3

∫︂
R3

(︂
|w′|2 − |w|2

)︂
F ϵ(v)f ϵ(w)hn(z)ς(√η v−w , n) dndzdwdv .

Using the dimensionless version of relation (8.24), which is

|v′|2 + |w′|2 − |v|2 − |w|2 = 1
1 + η

(|z|2 − |√η v − w|2),

we get

Ξϵ
F + Ξϵ

f

= 1
1 + η

∫︂
S2

∫︂
R3

∫︂
R3

∫︂
R3

(|z|2 − |√η v − w|2)F ϵ(v)f ϵ(w)hn(z)ς(√η v − w , n) dndzdwdv ,
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which directly gives (8.74), using (8.118) of Lemma B.11, with c =
√︂

1
T ϵ

p(t,x) .
Via (8.49), we know that for the rescaled variables��
|v′|2 − |v|2 = 1

(1+η)2
(︁
η|w|2 + η|z|2 + 2√

η v · w − 2√
η v · z − 2η w · z

)︁
+

(︂
1

(1+η)2 − 1
)︂

|v|2,

|w′|2 − |w|2 = 1
(1+η)2

(︁
η|v|2 + |z|2 + 2√

η η v · w + 2√
η v · z + 2η w · z

)︁
+

(︂
η2

(1+η)2 − 1
)︂

|w|2.

Hence, thanks to computations (8.116), (8.117) and (8.118) of Lemma B.11, with c =
√︂

1
T ϵ

p(t,x) ,
we can conclude.

8.5.2.4 Surface temperature’s equation

Remark 8.9. If the functions F ϵ and f ϵ are given by the ansatzs (8.62) and (8.63), respectively,
than the dust surface temperature T ϵ

p satisfies the following equation:

ρϵ
F τ γ

(︂
∂tT

ϵ
p + uϵ

F · ∇xT ϵ
p

)︂
+ 1

δ ν2
1

(1 + η)2I1(F ϵ, f ϵ)T ϵ
p = 1

δ ν2
1

(1 + η)I2(F ϵ, f ϵ), (8.77)

where I1(F ϵ, f ϵ) and I2(F ϵ, f ϵ) are given by����
I1(F ϵ, f ϵ) =

∫︂
R3

∫︂
R3

F ϵ(v)f ϵ(w)Σ(√η v − w)dvdw ,

I2(F ϵ, f ϵ) =
∫︂
R3

∫︂
R3

F ϵ(v)f ϵ(w)Σ(√η v − w)|√η v − w|2dvdw .
(8.78)

8.5.3 Maxwellian collision kernel
For a Maxwellian molecule case, the collision kernel ς depends on v, w and n only trough the
deviation angle θ ∈ [0, π] between v − w and n and it does not depend on |v − w|, i.e.

ς(v − w , n) := b

(︃
v − w

|v − w| · n

)︃
= b(cos θ),

where b : [−1, 1] → R+, and we assume b ∈ L1([−1, 1]) and b ≥ 0. Therefore,

Σ(v − w) = 2π∥b∥L1(−1,1), (8.79)

and ∫︂
S2

nς(v − w , n) dn = 0. (8.80)

The proofs of these results can be found for example in [33].

Proposition 8.10. For a Maxwellian collision kernel, the expressions of operators Θϵ
F and

Θϵ
f of Corollary 8.7 become����

Θϵ
F = 2π∥b∥L1

γ
√

η

1 + η
ρϵ

f ρϵ
F (uϵ

f − uϵ
F ),

Θϵ
f = 2π∥b∥L1

γ
1+η ρϵ

f ρϵ
F (uϵ

F − uϵ
f ).

(8.81)
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Moreover, the operators Ξϵ
F and Ξϵ

f , expressed for a general collision kernel in Corollary 8.9,
in the Maxwellian case can be written as

Ξϵ
F = 2π∥b∥L1

(1 + η)2 ρϵ
f ρϵ

F

[︄
η

(︂
2T ϵ

p + 3θϵ
f − 3η θϵ

F

)︂
− 6η θϵ

F

+η γ2
(︂
|uϵ

f |2 − |uϵ
F |2

)︂
+ 2γ2

(︂
uϵ

F · uϵ
f − |uϵ

F |2
)︂ ]︄

,

(8.82)

and

Ξϵ
f = 2π∥b∥L1

(1 + η)2 ρϵ
f ρϵ

F

[︄
− 6η θϵ

f + 2T ϵ
p − 3θϵ

f + 3η θϵ
F

+2η γ2
(︂
uϵ

F · uϵ
f − |uϵ

f |2
)︂

+ γ2
(︂
|uϵ

F |2 − |uϵ
f |2

)︂ ]︄
.

(8.83)

Proof. Expressions (8.81) are direct consequences of the applications of (8.79) and (8.80) to
the general forms (8.69) and (8.70) of Θϵ

F and Θϵ
f . Whereas, (8.82) and (8.83) follow by using

(8.79) and (8.80) in the general expressions (8.75) and (8.76) of Ξϵ
F and Ξϵ

f .

Proposition 8.11. For Maxwellian collision kernel, T ϵ
p solves

γ δ ν2(1 + η)τ̄ ρϵ
F

(︂
∂tT

ϵ
p + uϵ

F · ∇xT ϵ
p

)︂
= ρϵ

F ρϵ
f

(︂
3η θϵ

F + 3θϵ
f − 2T ϵ

p + γ2|uϵ
F − uϵ

f |2
)︂

, (8.84)

where τ̄ := τ
2π∥b∥L1

.

Proof. Thanks to (8.79), I1(F ϵ, f ϵ) and I2(F ϵ, f ϵ) take the form

I1(F ϵ, f ϵ) = 2π∥b∥L1ρϵ
F ρϵ

f , I2(F ϵ, f ϵ) = 2π∥b∥L1ρϵ
F ρϵ

f

(︂
3η θϵ

F + 3θϵ
f + γ2|uϵ

F − uϵ
f |2

)︂
,

hence we can conclude.

8.5.4 Hard-Sphere collision kernel
In a model with hard sphere collision kernel, we consider that a particle moves in a straight
line, until it bounces against another one. In this case:

ς(v − w , n) := [(v − w) · n]+ = ((v − w) · n)1{(v−w)·n≥0},

Therefore, for y ∈ R3 ∫︂
S2

ς(y , n) dn = π|y|,
∫︂
S2

nς(y , n) dn = 2π

3 y . (8.85)

The proofs of these results can be found for example in [58].



8.5 Diffusive scaling and balance laws 129

Proposition 8.12. For a hard-sphere collision kernel, the expressions of operators Θϵ
F and

Θϵ
f of Corollary 8.7 become

Θϵ
F =

√
η

1 + η
π

[︄ ∫︂
R3

∫︂
R3

(w − √
η v) F ϵ(v)f ϵ(w)|√η v − w|dwdv

+ γ

√
π

3
√︂

T ϵ
pρϵ

F ρϵ
f (uϵ

f − uϵ
F )

]︄
,

(8.86)

and

Θϵ
f = 1

1 + η
π

[︄ ∫︂
R3

∫︂
R3

(√η v − w) F ϵ(v)f ϵ(w)|√η v − w|dwdv

+ γ

√
π

3
√︂

T ϵ
pρϵ

F ρϵ
f (uϵ

F − uϵ
f )

]︄
.

(8.87)

Moreover, the operators Ξϵ
F and Ξϵ

f , expressed for a general collision kernel in Corollary 8.9,
in the hard-sphere case can be written as

Ξϵ
F = π

(1 + η)2

[︄ (︂
−2η − η2

)︂ ∫︂
R3

∫︂
R3

|v|2F ϵ(v)f ϵ(w)|√η v − w| dwdv

+η

∫︂
R3

∫︂
R3

|w|2F ϵ(v)f ϵ(w)|√η v − w| dwdv

+2η T ϵ
p

∫︂
R3

∫︂
R3

F ϵ(v)f ϵ(w)|√η v − w| dwdv

+2
∫︂
R3

∫︂
R3

v · w F ϵ(v)f ϵ(w)|√η v − w| dwdv

−2
3

1√
η

√︂
π T ϵ

p

∫︂
R3

∫︂
R3

(√η v + η w) F ϵ(v)f ϵ(w) · (√η v − w) dwdv

]︄
,

(8.88)

and

Ξϵ
f = π

(1 + η)2

[︄
(−1 − 2η)

∫︂
R3

∫︂
R3

|w|2F ϵ(v)f ϵ(w)|√η v − w| dwdv

+η

∫︂
R3

∫︂
R3

|v|2F ϵ(v)f ϵ(w)|√η v − w| dwdv

+2T ϵ
p

∫︂
R3

∫︂
R3

F ϵ(v)f ϵ(w)|√η v − w| dwdv

+2η
√

η

∫︂
R3

∫︂
R3

v · w F ϵ(v)f ϵ(w)|√η v − w| dwdv

+2
3

√︂
π T ϵ

p

∫︂
R3

∫︂
R3

(√η v + η w)F ϵ(v)f ϵ(w) · (√η v − w) dwdv

]︄
.

(8.89)

Proof. It is the direct consequence of the application of (8.85) to the general expressions
(8.69), (8.70), (8.75), and (8.76).
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Proposition 8.13. For hard-sphere collision kernel, the equation for T ϵ
p becomes:

ρϵ
F

τ

π
γ δ ν2(1 + η)

(︂
∂tT

ϵ
p + uϵ

F · ∇xT ϵ
p

)︂
+ 2T ϵ

p

∫︂ ∫︂
F ϵ(v)f ϵ(w)|√η v − w|dvdw

=
∫︂ ∫︂

F ϵ(v)f ϵ(w)|√η v − w|3dvdw .
(8.90)

Proof. It is the direct application of (8.85) to I1(F ϵ, f ϵ) and I2(F ϵ, f ϵ).

8.6 Macroscopic equations and formal asymptotic
At this point, we are able to perform a formal macroscopic limit when all the parameters tend
to zero. We adopt the point of view of the particles. With η → 0 we say that the particles
perceive the molecules of the gas as much faster than themselves, but much lighter and smaller
(ν → 0). In particular, we consider a fluid model in the limit, as the Knudsen number of the
gas δ goes to zero. Moreover, the Strouhal number γ also vanishes as well in the diffusive
asymptotic. We summarise all the limits by saying

ϵ = (γ , ν , δ, η) → 0.

Moreover, we assume that we have the following link between parameters.

Hypothesis 8.5. We assume

δ ν2 ∼ γ and γ2

η
→ 0 when ϵ → 0. (8.91)

Notice that, thanks to Remark 8.5 and Remark 8.6, also the Knudsen number and the
Strouhal number of the dust vanish in the limit.

We assume that all the above assumptions have been verified, and we assume that the
macroscopic quantities (8.57), (8.58), and (8.59) have a limit when ϵ → 0. We denote

ρF (t, x) := lim
ϵ→0

ρϵ
F (t, x), ρf (t, x) := lim

ϵ→0
ρϵ

f (t, x), (8.92)

uF (t, x) := lim
ϵ→0

uϵ
F (t, x), uf (t, x) := lim

ϵ→0
uϵ

f (t, x), (8.93)

θF (t, x) := lim
ϵ→0

θϵ
F (t, x), θf (t, x) := lim

ϵ→0
θϵ

f (t, x). (8.94)

As a consequence f ϵ(t, x) and F ϵ(t, x) have a limit when ϵ → 0, that we denote f(t, x) and
F (t, x) respectively. Moreover, if the previous limits exist also the limit of T ϵ

p exists, thanks
to the following proposition. We will denote it as Tp(t, x).

Proposition 8.14. Assume that ∂tT
ϵ
p and ∇xT ϵ

p are bounded when ϵ → 0. Then

2I1(F ϵ, f ϵ)T ϵ
p − I2(F ϵ, f ϵ) = O(γ2), (8.95)

and thus
T ϵ

p(t, x) → Tp := I2(F , f)
2I1(F , f) when ϵ → 0. (8.96)

Proof. This is a direct consequence of equation (8.77) and Hypothesis 8.91, i.e. δ ν2 ∼ γ.



8.6 Macroscopic equations and formal asymptotic 131

8.6.1 General collision kernel
We start by expressing the equations that can be obtained for any kind of collision kernel.

Theorem 8.2. Let (ρF , uF , θF ), (ρf , uf , θf ) and Tp defined by (8.92), (8.93), (8.94) and
(8.96). For general collision kernel, the macroscopic variables satisfy the conservation of mass
equations  ∂tρF + ∇x · (ρF uF ) = 0,

∂tρf + ∇x · (ρf uf ) = 0,
(8.97)

the equation
∇x (ρF θF ) + ∇x (ρf θf ) = 0, (8.98)

and the conservation of the total energy

3∂t (ρF θF + ρf θf ) + 5∇x · (uF θF ρF + uf θf ρf ) + ρF τ (∂tTp + uF · ∇xTp) = 0. (8.99)

Remark 8.10. We obtain 6 equations for 11 unknowns. We can then see the need to obtain
other relations. Other relations will be obtained for particular choices of collision kernel.

Proof. The system (8.97) is a direct consequence of (8.64). Equation (8.98) follows by summing
up the equations of System (8.65) and then performing the formal limit, after having applied
Hypothesis (8.91). To deduce Equation (8.99), we use (8.74) and (8.77):

Ξϵ
F + Ξϵ

f = 1
1 + η

(︂
2I1(F ϵ, f ϵ)T ϵ

p − I2(F ϵ, f ϵ)
)︂

= −δ ν2γ ρϵ
F τ

(︂
∂tT

ϵ
p + uϵ

F · ∇xT ϵ
p

)︂
.

Then the addition of the two relation of (8.71) gives

∂t (3ρϵ
F θϵ

F ) + ∇x · (5uϵ
F θϵ

F ρϵ
F ) + ∂t

(︂
3ρϵ

f θϵ
f

)︂
+ ∇x ·

(︂
5uϵ

f θϵ
f ρϵ

f

)︂
+ γ2

η

[︂
∂t

(︂
|uϵ

f |2ρϵ
F

)︂
+ ∇x ·

(︂
|uϵ

F |2uϵ
F ρϵ

F

)︂]︂
+ γ2

[︂
∂t

(︂
|uϵ

f |2ρϵ
f

)︂
+ ∇x ·

(︂
|uϵ

f |2uϵ
f ρϵ

f

)︂]︂
= 1

γ δ ν2

(︂
Ξϵ

F + Ξϵ
f

)︂
= −ρϵ

F τ
(︂
∂tT

ϵ
p + uϵ

F · ∇xT ϵ
p

)︂
.

8.6.2 Maxwellian collision kernel
As anticipated earlier, the form of the bi-species collision kernel significantly influences the
computations. In the case of a Maxwellian collision kernel, we can characterize the limits of
the right-hand sides of the momentum equations (8.65) and of the energy equations (8.71).
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Additionally, we can deduce a relationship between the three temperatures in the limit, namely
θf , θF , and Tp. These claims are made explicit in the following proposition.

Proposition 8.15. In the Maxwellian collision kernel case, we have, under the assumptions
(8.91),

lim
ϵ→0

1
δ ν2√

η
Θϵ

F = 2π∥b∥L1ρf ρF (uf − uF ) =: ΘF

lim
ϵ→0

1
δ ν2 Θϵ

f = 2π∥b∥L1ρf ρF (uF − uf ) =: Θf

(8.100)

and
lim
ϵ→0

1
γ δ ν2 Ξϵ

F =: ΞF

lim
ϵ→0

1
γ δ ν2 Ξϵ

f =: Ξf

(8.101)

with
ΞF =2π||b||L1ρf ρF

[︂
K + 2uF · uf − |uF |2

]︂
,

Ξf = − 2π||b||L1ρf ρF

[︂
2uF · uf + 2|uF |2 + K

]︂
− τ ρF (∂tTp + uF · ∇xTp) ,

(8.102)

respectively, where K := 6 limϵ→0
η
γ2

(︂
θϵ

f − θϵ
F

)︂
. Moreover, in the limit

θF = θf = 2
3Tp. (8.103)

Proof. To show (8.100), we apply the Hypothesis 8.5 to the formulas (8.81).
For deducing (8.102), we start considering the expressions (8.82) and (8.83) of Ξϵ

F and Ξϵ
f

for Maxwellian collision kernel. By re-arranging the terms, we can write:

1
γ2 Ξϵ

F = 2π∥b∥L1

(1 + η)2 ρϵ
f ρϵ

F

[︄
η

γ2

(︂
2T ϵ

p − 3θϵ
f − 3η θϵ

F

)︂
+ η

(︂
|uϵ

f |2 − |uϵ
F |2

)︂

+6 η

γ2

(︂
θϵ

f − θϵ
F

)︂
+ 2

(︂
uϵ

F · uϵ
f − |uϵ

F |2
)︂ ]︄

,

where we added and subtracted 3 η
γ2 θϵ

f inside the squared brackets, and

1
γ2 Ξϵ

f = 2π∥b∥L1

(1 + η)2 ρϵ
f ρϵ

F

[︄
1
γ2

(︂
2T ϵ

p − 3θϵ
f − 3η θϵ

F

)︂
+

(︂
|uϵ

F |2 − |uϵ
f |2

)︂

−6 η

γ2

(︂
θϵ

f − θϵ
F

)︂
+ 2η

(︂
uϵ

F · uϵ
f − |uϵ

f |2
)︂ ]︄

,

where we added and subtracted 3 η
γ2 θϵ

F inside the squared brackets. Under the assumptions
that quantities on the left hand side of equations of the system (8.71) are bounded, since
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2T ϵ
p − 3θϵ

f − 3η θϵ
F = O(γ2) (thanks to (8.95)), we get that there exists K ∈ R (possibly equal

to zero) such that
η

γ2

(︂
θϵ

f − θϵ
F

)︂
→ K

and since γ2/η → 0 (hypothesis (8.91)), it also implies θf = θF in the limit. In particular,
from (8.96), we also have that

Tp := lim
ϵ→0

T ϵ
p = lim

ϵ→0

I2(F ϵ, f ϵ)
2I1(F ϵ, f ϵ) = 1

2 lim
ϵ→0

(︂
3η θϵ

F + 3θϵ
f + γ2|uϵ

F − uϵ
f |2

)︂
= 3

2θf

from which we deduce (8.103). Furthermore, from (8.84) and (8.95), we deduce

lim
ϵ→0

2π∥b∥L1

(1 + η)2 ρϵ
f ρϵ

F

[︃ 1
γ2

(︂
2T ϵ

p − 3θϵ
f − 3η θϵ

F

)︂]︃
= 2π||b||L1ρf ρF

(︂
|uF − uf |2

)︂
− τ ρF (∂tTp + uF · ∇xTp) ,

and (8.102) follows.

8.6.3 Hard-Sphere collision kernel
For hard-sphere collision kernel, we can characterize the limits of the right-hand sides of
the momentum equations (8.65). However, the result for the right-hand sides of the energy
equations (8.71) is still a work in progress due to the difficult computations involved with a
hard-sphere collision kernel. Nevertheless, we can deduce a relationship between the three
temperatures in the limit, namely θf , θF , and Tp. The following proposition presents what
has been only summarised here.

Proposition 8.16. In the hard-sphere collision kernel case, the limits (8.100) take the form

ΘF = π
3 ρF ρf

(︁√
π

√︁
Tp − 16

√︁
θf

)︁
(uf − uF ),

Θf = π
3 ρF ρf

(︁√
π

√︁
Tp − 16

√︁
θf

)︁
(uF − uf ).

(8.104)

Moreover, in the limit
θf = 1

2Tp. (8.105)

Since we need to introduce technical tools to prove them, their proofs are postponed at the
end of the Section. Indeed, the study of the limit for the hard-sphere collision kernel case
requires dealing with more difficult integral computations than for the Maxwellian collision
kernel one. For this reason, we introduce the following functions:

q(a) :=
∫︂
R3

(a − y)|a − y|e− |y|2
2

dy

(2π)3/2 , (8.106)

q1(a) :=
∫︂
R3

|a − y|e− |y|2
2

dy

(2π)3/2 , (8.107)

q3(a) :=
∫︂
R3

|a − y|3e− |y|2
2

dy

(2π)3/2 . (8.108)



134 8 Diffusion asymptotics for a kinetic gas-particle model with energy exchange

The relations
q(a) = a q̄(|a|), (8.109)

and
q1(a) = q1(0) + |a|2q̄1(|a|), q3(a) = q3(0) + |a|2q̄3(|a|), (8.110)

with
q1(0) = 2

√︃
2
π

, q3(0) = 4q1(0), (8.111)

are valid. Hence, the following useful formulas hold:∫︂
R3

|z|2 exp −|z|2
2 |z − a| dz

(2π)
3
2

= q3(a) + |a|2q1(a) − aq(a)

= q1(0)
(︂
4 + |a|2

)︂
+ |a|2 (q̄3(a) + q̄1(a) − q̄(a))

(8.112)

and ∫︂
R3

z exp −|z|2
2 |z − a| dz

(2π)
3
2

= aq1(a) − q(a)

= q1(0)a + a
(︂
|a|2q̄1(a) − q̄(a)

)︂
,

(8.113)

Remark 8.11. As shown in Lemma B.13, the functions q̄, q̄1, and q̄3 possess all the necessary
properties to prove the above results in the case of hard-sphere collision kernels. In fact, they
are C2([0, +∞)) and, for every δ > 0, they are bounded over [0, δ], as well as are their first
and second derivatives.

An additional assumption is required to perform the asymptotic analysis for hard-sphere
collision kernel.

Hypothesis 8.6. We take
η3/2

γ
→ 0.

Remark 8.12. Hypothesis 8.6, does not contradict Hypothesis 8.5. Indeed, if γ ∼ ηα, with

α ∈
(︂

1
2 , 3

2

)︂
, then both the limit γ2

η
→ 0 and the limit η3/2

γ
→ 0 hold.

We will now present the two important tools we will use to prove Proposition 8.16. The
first lemma is used to compute the limits of the integral terms appearing in the expressions
(8.86) and (8.87) of Θϵ

F and Θϵ
f for hard-sphere kernels.

Lemma 8.9. For hard-sphere collision kernel it holds that

1
γ

∫︂
R3

∫︂
R3

(w − √
η v) F ϵ(v)f ϵ(w)|w − √

η v|dwdv → −ρF ρf q̄(0)
√︂

θf (uf − uF ). (8.114)

as ϵ → 0, where q̄(0) = 16
3 .
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Proof. By explicitly writing the ansatz F ϵ and f ϵ, we have

1
γ

∫︂
R3

∫︂
R3

(w − √
η v) F ϵ(v)f ϵ(w)|w − √

η v|dwdv

= 1
γ

ρϵ
F ρϵ

f

(︄
1

2π θϵ
F

)︄ 3
2

(︄
1

2π θϵ
f

)︄ 3
2 ∫︂

R3

∫︂
R3

(w − √
η v) exp

− 1
2θϵ

F (t, x)

⃓⃓⃓⃓
⃓v − γ√

η
uϵ

F (t, x)
⃓⃓⃓⃓
⃓
2


× exp
(︄

− 1
2θϵ

f

⃓⃓⃓
w − γ uϵ

f

⃓⃓⃓2)︄
|w − √

η v|dwdv

We can perform the change of variables

z :=
(︂
w − γ uϵ

f

)︂ √︄
1
θϵ

f

, s :=
(︄

v − γ√
η

uϵ
F

)︄ √︄
1

θϵ
F

, (8.115)

so that
1
γ

∫︂
R3

∫︂
R3

(w − √
η v) F ϵ(v)f ϵ(w)|w − √

η v|dwdv

= 1
γ

ρϵ
F ρϵ

f

1
(2π)

3
2

1
(2π)

3
2

∫︂
R3

∫︂
R3

(︂(︂
z
√︂

θϵ
f − √

η s
√︂

θϵ
F

)︂
+ γ(uϵ

f − uϵ
F )

)︂
exp −|s|2

2

× exp −|z|2
2

⃓⃓⃓(︂
z
√︂

θϵ
f − √

η s
√︂

θϵ
F

)︂
+ γ(uϵ

f − uϵ
F )

⃓⃓⃓
dzds

If we define:
aϵ = aϵ(s) :=

√
η s

√︁
θϵ

F − γ(uϵ
f − uϵ

F )√︂
θϵ

f

,

than
1
γ

∫︂
R3

∫︂
R3

(w − √
η v) F ϵ(v)f ϵ(w)|w − √

η v|dwdv

= 1
γ

ρϵ
F ρϵ

f

∫︂
R3

exp −|s|2
2

(︄∫︂
R3

θϵ
f (z − aϵ) exp −|z|2

2 |z − aϵ| dz

(2π)
3
2

)︄
ds

(2π)
3
2

= 1
γ

ρϵ
F ρϵ

f θϵ
f

∫︂
R3

exp −|s|2
2 q(aϵ(s)) ds

(2π)
3
2

,

where we used the Definition 8.106 of the function q. By using the property (8.109) and the
definition of aϵ(s), we deduce that

1
γ

∫︂
R3

∫︂
R3

(w − √
η v)F ϵ(v)f ϵ(w)|w − √

η v|dwdv

= ρϵ
F ρϵ

f

√
η

γ

√︂
θϵ

F

√︂
θϵ

f

∫︂
R3

exp
(︄

−|s|2
2

)︄
sq̄(|aϵ(s)|) ds

(2π)
3
2

− ρϵ
F ρϵ

f

√︂
θϵ

f (uϵ
f − uϵ

F )
∫︂
R3

exp
(︄

−|s|2
2

)︄
q̄(|aϵ(s)|) ds

(2π)
3
2

.
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Since for all δ > 0, q̄ ∈ C2([0, δ]), as detailed in Lemma B.13, we can write q̄ via the Taylor
expansion around zero. Moreover, from Lemma B.13, we also have the boundedness of q̄′ on
[0, δ]. So, by defining M := maxx∈[0,δ] q̄′(x), we deduce that

∫︂
R3

exp −|s|2
2 |q̄(|aϵ(s)|) − q̄(0)| ds ≤ M δ2

2

∫︂
R3

exp −|s|2
2 ds,

thanks to the Taylor’s Theorem. Hence∫︂
R3

exp −|s|2
2 q̄(|aϵ(s)|)ds →

∫︂
R3

exp −|s|2
2 q̄(0)ds = q̄(0)(2π)

3
2 ,

as δ → 0. Moreover, ∀ϵ ≤ ϵ̄:
√

η

γ
|q̄(|aϵ(s)|) − q̄(0)| =

√
η

γ
|R1(|aϵ(s)|)| ≤ M

√
η

γ

|aϵ(s)|2
2 = M

2θϵ
f

⃓⃓⃓⃓
⃓η3/4

γ1/2

√︂
θϵ

F s − η1/4γ1/2(uϵ
f − uϵ

F )
⃓⃓⃓⃓
⃓
2

,

which converges to zero almost everywhere when ϵ → 0, as a consequence of Hypothesis 8.6.
Hence, thanks to the Dominated Convergence Theorem, we deduce

√
η

γ

∫︂
R3

exp −|s|2
2 sq̄(|aϵ(s)|)ds → 0,

since there exists ϵ̃ such that the term
√

η
γ q̄(|aϵ(s)|) is uniformly bounded on [0, δ] and also∫︁

R3 exp − |s|2
2 sds = 0.

This second lemma establishes the limit of the terms I1(F ϵ, f ϵ) and I2(F ϵ, f ϵ) appearing in
the surface’s temperature equation (8.90). Then, from formula (8.96) a relation between the
limit temperature can be deduced.

Lemma 8.10. For hard-sphere collision kernel, the rescaled terms I1(F ϵ, f ϵ) and I2(F ϵ, f ϵ)
in the limit ϵ → 0 behave like

I1(F ϵ, f ϵ) = π

∫︂
R3

∫︂
R3

F ϵf ϵ|√η v − w|dvdw → π q1(0)ρf ρF θ
1/2
f ,

and
I2(F ϵ, f ϵ) = π

∫︂
R3

∫︂
R3

F ϵf ϵ|√η v − w|3dvdw → π q3(0)ρf ρF θ
3/2
f ,

for hard-sphere collision kernel, where q1(0) = 2
√︂

2
π , and q3(0) = 8

√︂
2
π .
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Proof. Let’s consider the adimensionalised expressions (8.50) of I1 and I2 for a general collision
kernel and general functions F and f . By plugging in the hard-sphere collision kernel and by
explicitly writing the ansatz F ϵ and f ϵ, we get

I1(F ϵ, f ϵ) = π ρϵ
F ρϵ

f

∫︂
R3

exp −|s|2
2

(︄∫︂
R3

√︂
θϵ

f exp −|z|2
2 |z − aϵ| dz

(2π)
3
2

)︄
ds

(2π)
3
2

= π ρϵ
F ρϵ

f

√︂
θϵ

f

∫︂
R3

exp −|s|2
2 q1(aϵ(s)) ds

(2π)
3
2

= π ρϵ
F ρϵ

f

√︂
θϵ

f

∫︂
R3

exp −|s|2
2

(︂
q1(0) + |aϵ(s)|2q̄1(|aϵ(s)|)

)︂ ds

(2π)
3
2

= π ρϵ
F ρϵ

f

√︂
θϵ

f q1(0) + π ρϵ
F ρϵ

f

√︂
θϵ

f

∫︂
R3

exp −|s|2
2 |aϵ(s)|2q̄1(|aϵ(s)|) ds

(2π)
3
2

whereas

I2(F ϵ, f ϵ) = π ρϵ
F ρϵ

f

∫︂
R3

exp −|s|2
2

(︄∫︂
R3

(θϵ
f )

3
2 exp −|z|2

2 |z − aϵ|3 dz

(2π)
3
2

)︄
ds

(2π)
3
2

= π ρϵ
F ρϵ

f (θϵ
f )

3
2

∫︂
R3

exp −|s|2
2 q3(aϵ(s)) ds

(2π)
3
2

= π ρϵ
F ρϵ

f (θϵ
f )

3
2

∫︂
R3

exp −|s|2
2

(︂
q3(0) + |aϵ(s)|2q̄3(|aϵ(s)|)

)︂ ds

(2π)
3
2

= π ρϵ
F ρϵ

f (θϵ
f )

3
2 q3(0) + π ρϵ

F ρϵ
f (θϵ

f )
3
2

∫︂
R3

exp −|s|2
2 |aϵ(s)|2q̄3(|aϵ(s)|) ds

(2π)
3
2

,

where we performed the same change of variables as in Lemma 8.9 and we used the same
notation. Thanks to the continuity of the functions q̄1 and q̄3 (see Lemma B.13), as ϵ → 0,

|aϵ(s)|2q̄1(|aϵ(s)|) → 0 and |aϵ(s)|2q̄3(|aϵ(s)|) → 0,

almost everywhere. Moreover,

q̄1(x) = q̄1(0) + R1(x), q̄3(x) = q̄3(0) + R1(x).

Thanks to the properties of q̄1 and q̄3, we can proceed as in Lemma 8.9’s proof and hence
conclude via the dominated convergence theorem.

With these tool results, we are ready to prove Proposition 8.16.

Proof of Proposition 8.16. For hard-sphere collision kernel, we know that

ΘF = lim
ϵ→0

1
γ

√
η

Θϵ
F

= lim
ϵ→0

π

1 + η

[︄
1
γ

∫︂
R3

∫︂
R3

(w − √
η v) F (v)f(w)|√η v − w|dwdv +

√
π

3
√︂

Tpρϵ
F ρϵ

f (uϵ
f − uϵ

F )
]︄
,
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and

Θf = lim
ϵ→0

1
γ

Θϵ
f

= lim
ϵ→0

π

1 + η

[︄
1
γ

∫︂
R3

∫︂
R3

(√η v − w) F (v)f(w)|√η v − w|dwdv +
√

π

3
√︂

Tpρϵ
F ρϵ

f (uϵ
F − uϵ

f )
]︄
.

Thanks to Lemma 8.9, we can hence deduce (8.104). Moreover, thanks to Lemma 8.10, we
have that

2I1(F ϵ, f ϵ)T ϵ
p−I2(F ϵ, f ϵ) → 2π q1(0)ρf ρF θ

1/2
f Tp−π q3(0)ρf ρF θ

3/2
f = 2π q1(0)ρf ρF

√︂
θf (Tp−2θf ).

From formula (8.95) we also know that

2I1(F ϵ, f ϵ)T ϵ
p − I2(F ϵ, f ϵ) → 0,

and hence (8.105) follows.

Appendix B
We detail below some of the calculations used in this paper.

Lemma B.11 (Computations for hn(z)). Given a function

hn(t, x, z) = 2c4

π
(n · z) e−c2|z|21{z·n≥0},

for c = c(t, x) ∈ R constant in n and z, it holds that∫︂
R3

hn(z) dz = 1. (8.116)

Moreover, ∫︂
R3

z hn(z)dz = 1
2

√︃
π

c
n, (8.117)

and ∫︂
R3

|z|2hn(z)dz = 2
c2 . (8.118)

The interested lector can find the proof of these results in [58, Annexe C.]

Lemma B.12 (Expression of q̄, q̄1, and q̄3). For all a ∈ R3,

q(a) :=
∫︂
R3

(a − y)|a − y|e− |y|2
2

dy

(2π)3/2 = a q̄(|a|), (8.119)

where

q̄(|a|) = 1√
2π

{︃
2|a|I2(|a|) + 4

3 |a|−1I4(|a|) − 2
15 |a|−3I6(|a|) + 8

15 |a|2J1(|a|) + 8
3J3(|a|)

}︃
(8.120)
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with, for k ∈ N, x ∈ R+,

Ik(x) =
∫︂ x

0
tke−t2/2 dt, Jk(x) =

∫︂ ∞

x
tke−t2/2 dt.

Moreover,

q1(a) :=
∫︂
R3

|a − y|e− |y|2
2

dy

(2π)3/2

= 1√
2π

(︃
2|a|I2(|a|) + 2

3 |a|−1I4(|a|) + 2J3(|a|) + 2
3 |a|2J1(|a|)

)︃
,

q3(a) :=
∫︂
R3

|a − y|3e− |y|2
2

dy

(2π)3/2

= 1√
2π

(︃
2|a|3I2(|a|) + 4

3 |a|I4(|a|) + 6
15 |a|−1I6(|a|) + 6

15 |a|4J1(|a|) + 10
3 |a|2J3(|a|) + 2J5(|a|).

)︃
Proof. The equalities (8.119) and (8.120) are shown in [76, Lemma A.3]

Lemma B.13 (Properties of q̄, q̄1, and q̄3). The functions q̄(·), q̄1(·), and q̄3(·) are C2([0, +∞)).
Moreover, for all δ > 0, they are bounded on [0, δ], as are their first and second derivatives.

Proof. Via the expression (8.120), thanks to the fundamental theorem of calculus, we deduce
the continuity of q̄ on (0, +∞). Moreover, by applying a first order Taylor expansion of I4 and
I6 around zero, we can show the continuity of q̄ in zero. Indeed, I4(0) = I6(0) = 0 and, from
the fundamental theorem of calculus, we also have that I ′

4(x) = x4e−x2/2 and I ′
6(x) = x6e−x2/2.

Therefore:

lim
x→0+

√
2π q̄(x) = lim

x→0+

{︃4
3I ′

4(x) − 2
45

I ′
6(x)
x2

}︃
+ 8

3J3(0) = 8
3J3(0) = 16

3 ,

and hence the conclusion. To prove the continuity of q̄′ and q̄′′, as well as the one of q̄1, q̄3
and their first and second derivatives, the procedure is analogous.

Given δ > 0, the boundedness of q̄, q̄1, and q̄3, and their derivatives, over [0, δ] is a direct
consequence of their continuity over [0, ∞).
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