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Kurzfassung

Mit zunehmender Komplexität moderner Softwaresysteme und deren Entwicklung, entsteht
der Bedarf nach einem effizienteren Einsatz von Modellierungssprachen. In den letzten
Jahren haben Modellierungstools begonnen, sich vom traditionellen Rich-Client Ansatz
in Richtung leichterer und entkoppelter Systeme zu entwickeln, und damit modernere
Technologie-Stacks wie die des Webs zu verwenden. Eine dieser Systeme ist die Eclipse
Graphical Language Server Platform, welche das Konzept des Language Server Protocol
nutzt, um eine Modellierungsumgebung in Client und Server zu unterteilen. Trotz dieser
modernen Ansätze ist das Arbeiten mit räumlich großen Models oft umständlich und
unproduktiv. Selbst die meisten modernen Tools bieten nur wenige Mittel, um große
Models effektiv zu visualisieren oder mit ihnen zu interagieren.

Diese Arbeit befasst sich mit diesen Problemen in zwei Schritten. Der erste Schritt war,
geeignete Mittel zu finden, um die Produktivität beim Arbeiten mit großen Models zu
steigern. Um dies zu erreichen, haben wir uns Features und bestehende Forschungsergebnisse
angesehen, die sich mit der Visualisierung und Interaktion von Informationen befassen.
Darüber hinaus wird in dieser Arbeit eine Taxonomie vorgestellt, welche benutzt werden
kann, um Visualisierungsfeatures zu klassifizieren und damit ihre Beurteilung zu erleichtern.
Basierend auf den daraus gemachten Erkenntnissen, wurden zwei Features ausgewählt,
die dann im zweiten Schritt konzipiert und in eine Graphical-Language-Server-Platform
integriert wurden. Das erste Feature, Semantic Zooming, befasst sich mit der dynamischen
Anpassung sichtbarer Informationen basierend auf dem vorherrschenden Zoom-Level.
Das zweite Feature, Visualisierung von Off-Screen-Elementen, sorgt hauptsächlich für
eine effizientere Interaktion mit Elementen die sich außerhalb des sichtbaren Teils des
Bildschirmbereichs befinden. Mit Abschluss des zweiten Schrittes liefert diese Arbeit ein
Konzept zur Integration beider Features in eine GLSP-basierte Umgebung. Darüber hinaus
validiert es beide Konzepte, indem es eine erfolgreiche Umsetzung ihrer Integration in die
Eclipse-GLSP in Form von zwei Prototypen bereitstellt.
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Abstract

With an increasing complexity level of modern software systems and their development
comes a need for a more efficient use of modeling languages. In the recent years, modeling
tools have started to shift from the traditional rich client approach to lighter and more
decoupled systems, and with that, use more modern technology stacks, such as that of
the web. One of such environments is the Eclipse Graphical Language Server Platform,
which utilizes the concept of the language server protocol to divide a modeling environment
into client and server. Nevertheless, working with spatially large models is still often
inconvenient and cumbersome. Even most modern tools offer few means to effectively
visualize and interact with large models.

This work addresses these problems in two major steps. The first step was to find
appropriate means that are able to increase the productivity while working with large
models. In order to achieve that, we looked at features and existing research that deal
with the visualization and interaction of large information. Furthermore, it presents a
taxonomy which aids in the classification and evaluation of such features among three
meta-characteristics. Based on these findings, two features were picked that were then
conceptualized and integrated into a graphical language server platform in the second step.
The first feature, semantic zooming, deals with the dynamic graphical adjustment of visible
information based on the current zoom level. The second feature, visualizing off-screen
elements, mainly provides a more efficient interaction with elements that are currently
off screen. With the conclusion of the second step, this work provides a concept for the
integration of both features into a GLSP-based environment. Additionally, it validates both
concepts by providing a successful realization of their integration into the Eclipse-GLSP in
the form of two prototypes.
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CHAPTER 1
Introduction

This chapter describes the problem that this work will be dealing with in more detail. It
introduces the domain of this work and gives a short description of recent developments
that provide help in solving the problem. Secondly, two research questions are given which
is followed by an explanation of the methodological approach that we took to answer
them. Lastly, it gives an overview about the remaining part of this work by giving a short
description about the following chapters.

1.1 Motivation & Problem Statement
In the field of model engineering, the visualization of models and the interaction with them
has always been an important aspect that allows for an effective communication between
multiple stakeholders. Visual representation has a great impact on the ability of our brain
to efficiently process information [Moo09], and good interaction methods allow for fast and
efficient execution of work tasks. For this reason, a variety of different modeling tools have
been developed in the past, like the Eclipse-based Sirius [VMP14] or Graphiti [eclb] tools.
Because of their focus on the visualization aspect, they allow users, even those that do
not have a lot of knowledge in the computer science field, to create and edit models in
all kinds of domains. Regardless of how popular and widespread they are, they all lack
in the following areas: (i) visualization of large models, and (ii) interaction with large
models. One of the main reasons for that, is the technologies that they are based on. Many
modeling tools that are used nowadays are built upon old technologies that only allow for
simple interaction methods like basic zooming and panning. On top of that, only very few
research publications can be found about user interface design for modeling tools [TRS21]
and visualization techniques used in conceptual modeling have barely evolved in the last
years [GRGS15, Gul16]. Part of this work will be to provide an overview of advanced
visualization and interaction methods that can be used to improve the usability when
working with large models.
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1. Introduction

In order to overcome the problem of having a foundation that is based on old technology,
new approaches have to be developed that are built upon more recent technology stacks.
Examples for this are systems that utilize the very recent language server protocol (LSP).
LSP is a client-server approach that replaces today’s mostly monolithic IDEs that are
used in the field of software development. It has mainly been developed to counteract the
n-to-m complexity of having to individually integrate every programming language into
every code editor by decoupling the language-specific logic from the usability-centric text
editor and therefore lowering the complexity to n-plus-m instead [Bün19].

The idea of a language server is not only restricted to programming languages, it can also
be applied to the field of model engineering in the form of a graphical language server. A
graphical language server protocol (GLSP) follows the same concept as LSP, but instead of
focusing on lines of code, graphical representations of models like ERD or UML are edited
on the client and transferred to the server to change the underlying models. Because of the
modern technology stack, namely HTML5, that can be utilized in combination with GLSP,
a lot of improvements to the user interface and interaction methods can be made that
are not easily possible in traditional model engineering tools. HTML in combination with
CSS and JavaScript has been used to power the web for multiple decades now. For that
reason, it has become one of the best systems to easily and efficiently implement advanced
interaction methods. Another major part of this work will be to provide an idea of how to
integrate advanced interaction methods into the graphical language server protocol. This
will be realized in the form of a prototype based on an environment that utilizes HTML,
CSS, and JavaScript.

1.2 Aim of the Work
The general aim of this work is to combine advanced interaction methods with the graphical
language server protocol (GLSP). The interaction methods that this work will focus on,
are methods based on zooming in combination with level-of-detail functionalities. This
combination is also known under the term semantic zooming [SKA94, MS95, Spe14]. A
significant part of this work will be to, on the one hand, give a broad overview of relevant
methods in other fields of work, and on the other hand, document what interaction
functionalities exist and have already been evaluated in scientific environments. In order
to get a broader view, this work will also look at and evaluate comparable tools outside of
the scientific world. This information will then be used to create a taxonomy, which can be
used to classify advanced information visualization features. This taxonomy is supposed
to be of great benefit for researchers by providing a common frame to position their works,
and for method engineers and modeling tool developers by sparking innovation in future
modeling tools. All the functionalities and methods that were found, will then be evaluated
and categorized into the taxonomy of this work. With this gained knowledge, they will
then be evaluated based on how well they fit into and can be applied to a GLSP-based
environment, and how much a user would benefit from them.

A set of features will then be selected and implemented in a GLSP solution as a prototype.
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1.3. Methodological Approach

The GLSP implementation that this prototype will be implemented in, is the Eclipse
Graphical Language Server Platform (Eclipse-GLSP) [ecla]. The initial step of this
implementation will be to develop a concept to integrate the selected feature into the
GLSP workflow. Because a wide range of different language servers are supposed to
be implemented and supported in the future, a focus during the implementation of the
prototype will be a good integration into the system. This means that the result should
be a generic solution that enables efficient future use with arbitrary modeling languages.
After the implementation of the prototype is finished, it will be evaluated once again. This
evaluation will try to give answers to the following questions:

1. What is an appropriate means to improve the visualization of large models and
interaction with them in GLSP-based modeling tools.

2. How to generalize the concept/solution towards being applicable for other modeling
languages/GLSP-based modeling tools.

These topics should give an overview about whether the features should be implemented
on a larger scale in existing solutions like the Eclipse Graphical Language Server Platform.
Finally, general insight, related to problems, limitations, new ideas, and future work will
be given.

1.3 Methodological Approach
This work mainly follows the approach of the Design Science research methodology [HMPR04]
and consists of the following steps:

1. Literature Review
The current state and existing knowledge related to the topic of this thesis will be
established and documented. The initial step will be to find domains that deal with
large information spaces and document the techniques that they apply and why they
are required. This will be followed by a review of existing modeling tools and a
documentation about how well they support the visualization of large models. Finally,
because it will be a major part of this work, a review of the graphical language server
protocol will be given, which will establish the current state of the protocol.

2. Exploratory Study
An exploratory study will be conducted to create an overview of visualization- and
interaction-based features in tools that are being used today and concepts that
were found in past literature. The scientific contribution of this study will be a
taxonomy. The goal of this taxonomy is to define classes which can be used to
categorize advanced interaction features that are relevant to language server protocol
based environments.

3. Taxonomy Development
In order to create a taxonomy that meets today’s standards, it will follow the
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guidelines of Nickerson et al. [NVM13] and their recent extensions by Kundisch et
al. [KMO+21]. The main steps of the development of this taxonomy will be: (i)
definition of ending conditions, (ii) definition of meta-characteristics, (iii) multiple
empirical-to-conceptual or conceptual-to-empirical iterations, (iv) ex ante and ex
post evaluation.

4. Analyzing Study Results
The collected data will be categorized, analyzed, and interpreted. Key points of
this analysis will be the ability to implement and use these features in a GLSP
environment and also the estimated gain for a user in areas like usability, efficiency
and productivity. This analysis will be done in the form of a descriptive evaluation
based on informed arguments, as described in [HMPR04].

5. Designing new Artifact
Based on the analyzed data, a prototype will be implemented that demonstrates state-
of-the-art interaction methods in the Eclipse Graphical Language Server Platform.

6. Artifact Evaluation
The prototype will be analyzed and evaluated based on the questions that have been
given in Section 1.2. This will be done in the form of a descriptive evaluation based
on informed arguments and scenarios, as described in [HMPR04].

1.4 Structure of the Work
This thesis consists of four further chapters.

Chapter 2 describes the state of the art. It gives an overview of the current state of relevant
domains, such as conceptual modeling and the language server protocol. Furthermore, it
summarizes Eclipse-GLSP, and relevant features of existing modeling tools.

Chapter 3 presents the taxonomy that has been conducted in the course of this work. It
describes the approach that has been used to develop it, all its characteristics, and its
evaluation. It also summarizes all features that have been used during the evaluation.

Chapter 4 goes into detail about the developed prototypes. It describes the theoretical
concept of both prototypes, followed by technical details about each one. Finally, a
descriptive evaluation will be given, which addresses their strengths, weaknesses, and
limitations.

Chapter 5 concludes this work with a summary and a short overview about potential future
work.
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CHAPTER 2
State of the Art

The purpose of this section is to describe relevant domains that this work deals with in more
detail. Among them are conceptual modeling, the language server protocol, the Eclipse
Graphical Language Server Platform, and semantic zooming. The second part of this
section deals with state-of-the-art modeling tools, and their interaction and visualization
features. Finally, it provides a summary of observed features and categorizes them into
groups of similar functionalities.

2.1 Conceptual Modeling
The usage of data models to abstract implementation details has been a long-known
concept. It has been revolutionized in the 1970s, mainly by using it to hide implementation
details of the definition of a database [Myl92]. Since then, it has gone through many
adaptations and improvements, and has been used in a wide range of other domains as
well. A widely agreed on definition of the term conceptual modeling is defined as "...the
activity of formally describing some aspects of the physical and social world around us
for purposes of understanding and communication." [Myl92, p. 3] in 1992. Its purpose is
to abstractly describe certain real-world domains by graphical means, so that all relevant
aspects of this domain can easily be understood by all stakeholders. Stakeholders are all
people that are somehow involved in the described aspects, which includes people that
already have a large knowledge base of the domain, but also those that are new to it with
very little or even no knowledge.

Another more recent definition of a conceptual model in the domain of simulation studies
is: "The conceptual model is a non-software specific description of the computer simulation
model (that will be, is or has been developed), describing the objectives, inputs, outputs,
content, assumptions and simplifications of the model." [Rob08, p. 283]. To further
understand the process of conceptual modeling, they define three artifacts [Rob08, KR08,
Rob13]: (i) System description, (ii) Conceptual model, (iii) Computer model. The system
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2. State of the Art

description describes the problem and the system that it resides in. Through abstraction,
the conceptual model is created, which helps all stakeholders understand this problem and
its system. Finally, the computer model is designed and developed, which represents the
conceptual model in the form of a software specific model.

One of the main reasons why conceptual modeling is rising in relevancy and going through
many re-definitions, is that most real-world problems become increasingly complex over
time, which causes the systems that are developed to solve them to become more complex
as well. More difficult problems call for more efficient solution processes to keep the relation
between increasing problem complexity and cost of time/money close to linear. On top
of that, the larger a project is, the more errors are committed during the requirements-
and design-phase [McC04]. Errors during the early phases of a project can be very costly,
depending on the phase that they are discovered in (by average about 2-4 times more
expensive than errors committed in later stages [McC04]). The usage of models for the
communication between stakeholders helps to detect such errors early on.

In order to achieve this, complex systems are modeled in an abstract and simplified form,
which ideally helps all stakeholders understand the system better. Conceptual models
should aid in replacing some cognitive tasks (understanding) with simpler perceptual ones
(seeing), and thus cause a form of computational offloading in our minds [BR21]. This is
done by utilizing visual notations, which can be processed much more efficiently by our
brains than text-based information [Moo09]. In his work, Moody [Moo09] raises awareness
about the importance of visual representation issues in notation design, and defines certain
principles for effective visual notations. All in all, little research has been conducted in the
past years in the area of visualization of conceptual models. This is also reflected by the
fact that many visualized models today still look very similar to their versions of decades
ago [BKP18]. While this does usually not pose big problems for domain experts, because
they are generally able to understand even poorly laid out diagrams [RM10], it will likely
prevent people in non-technical domains from understanding them. In order to overcome
that, it has been suggested to systematically combine conceptual and visual thinking by
examining and picking up knowledge from other scientific fields, such as graphic design,
interaction design, cognitive science, gestalt psychology, and philosophy of mind [GRGS15].
Besides the visual aspect, other factors that have a large impact on the understandability
of models are their size, density, and average connector degree [RM10].

In the recent years, the idea of having models only be used by humans, as originally stated
by Mylopoulos [Myl92], has shifted towards both, usage by humans and machines. Instead
of using models purely for their representative means, they are also used as a formalized
knowledge base that enables automated processing [BR21]. Model-driven engineering
describes the integration of models into the process of developing software systems. This
is accomplished by transforming models into first-class citizens [BCW17] in the software
development processes and using them for more than just the purpose of communication
between stakeholders. In combination with the correct tools, formally defined models can
be transformed into other software artifacts. Bork and Fill refer to a formal model as
one that is intersubjectively understandable and enables machine processing [BF14]. To
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2.2. Language Server Protocol

formally and precisely describe models, usually multiple meta-models are required [BKP20],
which add another level of abstraction. This abstraction aids in, e.g., making the extension
of existing languages possible, or allowing for the re-usability of certain transformation
tools. Examples for the application of model transformation are the automatic generation
of Java classes or SQL schemas from abstract models.

2.2 Language Server Protocol
Even though the traditional client-server architecture has started to gain acceptance in
the late 1980’s [Sch95] and has since then been applied to many major developments such
as the web, only recently has it reached the world of software development in the form of
language servers. The language server protocol is a very recent scientific topic that was
introduced by Microsoft, RedHat, and Codeenvy in 2016 [Bün19]. The idea behind it, is
to be able to split up today’s heavy-weight monolithic IDE approaches into a server and a
client. Between these two components, the language server protocol acts as a standardized
way of communication to synchronize client and server. Currently, version 3.17 of the
protocol describes about 40 different messages and has an implementation for over 100
different programming languages/technologies. [mica, micb]

Initially, the language server protocol has only been defined and used for text-based
languages, but it was quickly discovered that this concept can also be applied to other
areas. One of them is the area of model-driven engineering. Here, representations of models
are often designed and expressed by graphical elements. Instead of specifying a protocol
based on writing and editing text, a new protocol has to be created which is designed to
handle graphical representations. There is currently no standardized protocol for graphical
representations and the question whether LSP can and should be extended to support
them does still not have a concrete answer. There exist theoretical ideas, concepts and
even implementations for graphical language server protocols. Rodriguez-Echeverria et
al. [REIWC18] describe how the concept of the text-based LSP can be applied to graphical-
based languages. Furthermore, examples for web-based modeling tools that follow a similar
concept to that of LSP have been created in the past, e.g., [LCP16], [HHFN13], [RKP12] or
[TSS09]. There also exist first implementations that try to make the concept of a language
server work on graphical representations. Examples are a protocol [obe], developed by the
French company Obeo and the Eclipse Graphical Language Server Platform [ecla].

2.2.1 Eclipse Graphical Language Server Platform
The Eclipse Graphical Language Server Platform (Eclipse-GLSP) is an open-source frame-
work which uses an LSP-like protocol to enable diagram editing via a client-server archi-
tecture. The server is responsible for model management, the model logic, validation, and
supplies changes to the model(s). In order to do this, it supports and uses the Eclipse
Modeling Framework (EMF), which already has many languages and their language-specific
logic implemented. The server is mainly written in the programming language Java, and
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2. State of the Art

exposes an inter-process communication interface, either via WebSockets or TCP socket
connection.

The client is mainly responsible for rendering the graphical representation of a model and
handling user interactions. Graphical elements are rendered as an SVG element inside
a browser. This is done with the help of the Sprotty framework1. Sprotty is written
in TypeScript and its main responsibilities are rendering graphical elements, playing
animations between state changes, and handling and dispatching actions. Actions are used
to perform certain operations and are either handled by the client itself, or the model
source. The model source is responsible for modifying the model and can either be a locally
instantiated class, or a remote server. Actions could, for example, be an UpdateModelAction
to update a model at the client, or a CenterAction to move the viewport so that a specific
object is centered.

The communication between server and client utilizes a protocol similar to Microsoft’s
LSP. As mentioned above, the communication between both entities is based on actions.
While many actions are reused from the Sprotty framework, e.g., for model transfer and
client-local actions, many new ones are added as well. They include model-specific actions,
such as CreateNodeOperation which adds a node to the current model, as well as editor-
specific actions, such as SetClipboardDataAction which copies data to the clipboard, and
UndoOperation/RedoOperation. A full list of operations can be found in the GLSP protocol
specification2. A more detailed description of the Eclipse-GLSP can be found in Section
4.1.2.

2.3 Level-of-Detail
The level of detail forms an integral part of advanced visualization features and will be a
main topic in this work. Levels of detail can be described as multiple different representation
of one or more objects. Often, depending on various factors, such as, e.g., the current zoom
level, the distance, or the importance of an object, a different representation is displayed.
This can help reduce the complexity of the displayed information in certain situations and
help make their processing easier, not only for our brains but also for machines.

The utilization of multiple levels of detail goes back into the 1970s with works like Donelson’s
"Spatial Management of Information" [Don78], which describes an information management
system with multiple displays. One display shows specific information of the information
space and another shows a shrunken version of those information to help with navigation.
Another influential work is the interface model "Pad" [PF93] from 1993. Pad is an interface
shared among multiple users, which shows information in multiple levels of detail. It uses
different views - or what they call portals - to show more details about specific parts of
an information source. For example, instead of showing an entire text paragraph that is
too small to be read, only the title is shown in a readable size. Based on these concepts,

1https://github.com/eclipse/sprotty (Accessed: 06.03.2022)
2https://github.com/eclipse-glsp/glsp/blob/master/PROTOCOL.md (Accessed:

06.03.2022)
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2.3. Level-of-Detail

many other ideas were brought up. Among them are fisheye views [Fur86, BHDH95,
RMG07], semantic zooming [PF93, FDB08, Kal08, LMC+02, OBEL10], or concepts like
lenses [TAVHS06] and off-screen object visualization [ZMG+03].

The utilization of levels of detail is not only used in the domain of interface design. Other
areas that heavily rely on multiple detail levels are computer graphics and geographic
systems.

2.3.1 Level-of-Detail in Computer Graphics
Level-of-detail has always been a big topic in the field of computer graphics. The idea is
to create 3D-models, mainly in domains such as video games, geographical information
systems (GIS), and city modeling, in different complexity levels. A model’s complexity
is usually measured by the number of polygons that it consists of and the main benefits
of having models with a low number of polygons are the reduced storage requirements,
the reduced computational complexity, and faster transmission over the network [HD04].
One challenge with that is to find the correct balance between model complexity and
realism, which becomes easier with the improving computational power that our systems
displays. Besides increasing a system’s performance, there are other techniques to make
models look realistic but still perform well. Such techniques can usually be applied to
meshes of 3D-objects and are, for example [LRC+03], vertex-pair collapse (connecting
two unconnected vertices), triangle collapse (collapsing a triangle to a single vertex), or
vertex removal (removal of vertexes and its edges, and triangulation of the resulting hole).
Furthermore, they define four different level-of-detail frameworks [HD04, LRC+03]:

• Discrete level of detail: Multiple versions of an object are created in multiple
different levels of detail prior to run-time. At run-time, the appropriate level is
chosen and displayed.

• Continuous level of detail: A data structure is created which allows to dynamically
extract versions of an object in different levels of detail during run-time.

• View-dependent level of detail: It extends the continuous level of detail. Instead
of seeing an object as one single entity, different parts of an object are rendered
differently. E.g., nearby parts of an object are rendered in more detail while distant
parts are rendered in less detail, which is especially useful for large objects.

• Hierarchical level of detail: It allows to create clusters of multiple, usually small,
objects. These clusters are then treated as one single object and can, e.g., be replaced
all at once at a specific distance.

In order to efficiently use those frameworks, they have to be applied at the correct time.
While this can be done by applying different settings and making that decision manually,
for larger projects, an algorithm has to be used. Such algorithms often depend on various
properties, such as [HD04]: object size, object eccentricity, object velocity, target frame
rate, human eye limitation, environmental conditions, or visual importance.
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2.3.2 Level-of-Detail in Geographic Information Systems
The term geographic information system has many definitions, one of them being "in-
formation technology which stores, analyzes, and displays both spatial and non-spatial
data" [CC88, p. 1547]. Level-of-detail is also very relevant in this area. Mainly to render
and show the terrain of the world’s surface in different levels of detail. Especially in the
past, this has been necessary because computers were not powerful enough to render the
surface with a lot of detail. Although not at the same scale, this problem still persists
today and will likely stay with us for a long time because of how large and detailed the
earth is. Tools like Google Maps and Bing Maps still apply techniques that involve multiple
levels of detail to significantly simplify the earth’s surface.

When rendering terrain, the detail of the surface almost always depends on the view that
a user has. For example, when the world is rendered and shown in its entirety in a digital
setting (at a scale of approximately 1:40 million), its terrain can be rendered on a flat
surface because differences in terrain height will barely be visible at that point. The further
the user zooms in, the more details would become noticeable and should be rendered. It
does not only depend on the zoom level but also on the angle that information is displayed.
For example, a top-down view (90°) of the earth does not necessarily need to have the
terrain rendered, because, similarly to a 2D map, it cannot be seen. When the user changes
the view to be angled (< 90° or > 90°), terrain becomes visible and could therefore be
rendered in more detail.

Google Maps

Google Maps is a mapping tool meant to be ran inside browsers. Because of its relevancy
to this work - mainly because of the fact that it works with multiple levels of detail and is
ran inside a browser - we looked at it in more detail. Besides many other features, Google
Maps offers to show a satellite view of the world. The user has the ability to interact with
the map by scrolling and zooming. Because of how big the world is, LoD methods are
necessary to deliver map tiles to the client in a manageable fashion. Without splitting
up images into different levels of detail, not only would sending the images be a problem,
the client/browser would also have troubles displaying them. The bandwidth needed to
send/receive images would be too high for today’s standards and browsers would run into
performance issues trying to display all of them.

In order to show the map, Google Maps serves map tiles in the form of 256x256 pixel JPEG
images. Depending on the client’s current zoom level and position, they serve images in
different levels of detail. There are about 22 different zoom levels available 3. The exact
number depends on the position that is currently viewed. Cities, for example, usually
have a higher level of detail than the sea or generally unpopulated areas. Zoom level 0
(LOD0), although it cannot be accessed through the Google Maps interface directly, shows
the entire planet on one 256x256 pixel tile and zoom level 21 (LOD21) shows the surface
accurate enough to easily make out cars. Every additional zoom level n is four times as

3https://medium.com/google-design/google-maps-cb0326d165f5 (Accessed: 06.03.2022)
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detailed as the previous level n − 1. A 256x256 pixel tile of, e.g., LOD10 can be split up
into four 256x256 pixel tiles of LOD11. While there is only one tile available at zoom level
0, theoretically, there are exactly 421 = 4 398 046 511 104 tiles available at zoom level
21. This can be visualized as a pyramid of images4. LOD0 makes out the top, followed
by LOD1 which is four times as big as LOD0 all the way down to LOD21. This so-called
pyramid image is not only used by Google but in a lot of other areas related to machine
vision or image processing in general [AAB+84].

The data structure used to save those images is called a quadtree, or more specifically,
a region quadtree. Quadtrees describe a class of hierarchical data structures which are
based on the principle of recursive decomposition of space. Besides region data, they are
also commonly used for point data, curves, surfaces and volumes [Sam84]. The idea is to
recursively split data into four quadrants. This can be visualized as a tree where every
node, except the leaf nodes, has four children. In case of a region quadtree, every node
represents an image, and the zoom levels are represented by the depth of the tree. E.g.,
images of LOD4, which are at zoom level 4, are located at nodes with depth 4 in the tree.

In order to retrieve images inside a quadtree, different approaches can be used. The Google
Maps client uses simple HTTP GET requests to download the images. These requests
consist of three main parameters:

• z: It is used to define the depth of the tree and therefore the zoom level.
• x: It represents the x coordinate of a tile at a specific zoom level.
• y: It represents the y coordinate of a tile at a specific zoom level.

If all tiles of a zoom level are represented inside a two-dimensional cartesian coordinate
system, these positive coordinates reference one specific image on that zoom level. The
deeper the zoom level, the higher these coordinates can be. E.g., x = 0, y = 0, z = 0
requests the first image of zoom level 0. Because zoom level 0 is the very top of the
pyramid, a request with these parameters serves the only image that exists for this level,
which is a 256x256 pixel image that contains earth in its entirety. x = 3, y = 2, z = 2
would request a tile of zoom level 2. The third zoom level displays earth on 4*4=16 images.
Therefore, coordinates x = 3 and y = 2 serve the image in the bottom right part of the
world map, which shows Australia and the area around it.

On top of the surface tiles, metadata is added at each zoom level, if requested. Metadata
can, for example, include street names, names of popular places or marker for restaurants.
Served metadata also depends on the zoom level. It makes no sense and would not be
feasible to, e.g., display names of all streets that are theoretically visible on LOD0 because
there are simply too many of them. On LOD21 on the other hand, it makes sense to even
display house numbers without cluttering the view for the user. In the recent years, Google
also added 3D models that are added on specific zoom levels. Table 2.1 roughly shows
what elements are added at which level of detail.

The client is responsible to request the correct tiles according to the zoom level and display
them seemingly next to each other to make it look like one big map. The scene consists of

4https://developers.google.com/earth-engine/guides/scale (Accessed: 06.03.2022)
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Level of Detail Newly visible objects
LOD1 Country borders
LOD4 Country names, Oceans names
LOD6 Names of big cities
LOD7 Names of highways and other big roads
LOD9 Names of rivers
LOD10 Names of medium roads, Landscape names (forests, lakes, ...)
LOD13 Names of smaller areas (golf courses, famous buildings, ...)
LOD14 Street names
LOD15 Restaurant and other POIs
LOD19 House numbers

Table 2.1: Newly added metadata in different levels of detail in Google Maps. May differ
depending on the area that is displayed.

an HTML5 Canvas object. Downloading a lot of images, as it is necessary with Google
Maps, requires a lot of bandwidth. The user is able to zoom in, zoom out, and scroll the
map on the same zoom level. Different techniques are used to increase the user experience
and avoid a popping effect.

Zooming in: When the user zooms in, the new images are requested via an HTTP GET
Request. While the new images are sent, the client keeps the current images visible and
increases their size according to the new zoom level. Although this can make the map
seem blurry, it stops the scene from going blanc for the duration until the new images are
loaded. Once they arrived, the old images are replaced with the new ones. To avoid a
popping effect between images, a quick transition effect is applied.

Zooming out: Zooming out follows the same strategy as zooming in does. When the
user zooms out, the current images are kept until the new images are loaded. The difference
is that the old images are already at a better quality than the new images because they
are at a higher level of detail. This means that, unlike the blurry map that is shown
when the user zooms in, the map stays at high detail level for the entire duration of the
transition. Because of that, the popping effect of the map tiles is almost nonexistent, only
the adjustment of metadata (e.g., the removal of street names) is clearly visible. This also
comes with a disadvantage. It is possible that the client now has to display an area which
it does not have any map tiles for because the area has not been visible so far. Here, the
client has no choice but to display a blanc stage until the map tiles are fully loaded from
the server. The client always loads some additional map tiles for the areas that are just
outside of the viewport of the client which is the reason why this only happens when the
user zooms out a significant amount.
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Scrolling: When the user scrolls through the map, new areas have to be displayed by the
client. As mentioned above, the client always requests additional map tiles for the border
around the current viewport. This means that when the user scrolls only a small amount
into a direction, the tiles are already available and can be displayed immediately without
any transitions or popping effects. In the background, and ideally not noticeable for the
user, new tiles are requested that cover the new border around the current viewport.

When the user scrolls further, to a point where no tiles of the current zoom level are
loaded anymore, the client shows tiles of two levels below the current level. On initial
page load, or when the user zooms/scrolls the map, additionally to the tiles of the current
zoom level, the client also requests tiles of level n − 2, where n is the current level. These
tiles are not displayed immediately and therefore are of low priority. Because of that,
they are only requested once all the tiles that have to be displayed immediately have
finished downloading. If the user now scrolls outside of the border region for which tiles
are available on the client, these tiles are shown instead, They are only shown temporary
until the images of the current zoom level have arrived. Because these temporary tiles are
of a lower zoom level, they also look blurry. If the user scrolls a significant amount outside
of the viewport, to a point that even the images of a lower zoom level are not available
anymore, the client has again no choice but to display a blanc map until the tiles have
arrived.

2.4 Panning & Zooming
Panning and zooming are interaction techniques that have been around for a long time.
Over the years it has become the norm to integrate them into almost all applications
that display information which are too large to be shown all at once on a screen. For
that reason, users understand their concept well and are able to instinctively apply them.
Panning was one of the earliest navigation techniques. It describes techniques that are
used to move the viewport around to get a different view onto a document. This can
be done with the help of, e.g., scrollbars, the mouse wheel, or touch gestures. Zooming
describes the magnification or demagnification of information and is often done when basic
panning becomes too tedious or information is too small to be read. Zooming is normally
also performed with either the mouse wheel, simple buttons, or touch gestures.

An extension of the ordinary zooming interaction is the concept of a semantic zoom.
Semantic zoom describes the adjustment of the level of detail of visual object representations,
based on certain conditions, such as the importance of an object or its current zoom level.
The concept of semantic zoom has been around since the 1990s. The authors of the already
mentioned Pad [PF93] and Pad++ [BH94] have been one of the first to integrate semantic
zooming into an application. Their application consists of "portals" that can be used to
see certain parts of information differently. Different portals show information at different
magnification levels. The term semantic zoom has been defined numerous times in past
literature. For example, the definition by Sengupta et al. [SKA94, p. 133], "Semantic
zooming increases or decreases the level of detail by methods that depend on the function,
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or semantics of programming objects", or a more recent one by Spence [Spe14, p. 141-142],
"With semantic zoom, objects – or, more generally, representations of data – are now
not constrained to change only their size. They can change in colour, shape, presence
and texture, and they can offer a new selection and/or structure of represented data...".
Over the years, the concept has also been applied in many different areas, not only in
the field of model engineering with examples based on UML [FDB08], but also in various
other fields like software development [SFA+11, YM15], parallel computing [Kal08], video
editing [LMC+02], text documents [OBEL10, Dun09], or the medical field [KBRCn02].

2.5 Tools & Features
The last part of our state-of-the-art analysis was to explore today’s modeling tools to
obtain an overview about the visualization and interaction features that they offer. During
this analysis, we looked at tools and libraries that can be used to create visual models and
can be ran either inside a browser, or as a native desktop application. A list of all tools
that were looked at can be found in Appendix 1 (all tools in the categories drawing tools,
modeling tools, and meta-modeling tools). A summary of their features will be given at
the end of this section. Most tools offer only the basic and widely known features, such
as simple scrolling/panning/zooming, and only very few provide advanced functionalities.
The most advanced one that we could find were tools provided by yWorks5, a company
that focuses on data visualization. Of all tools that we looked at, they provided the best
explanations and examples on how to integrate advanced interaction and visualization
features based on level-of-detail and zooming. Because of the relevancy that it has to this
work, the following section will go into more detail.

2.5.1 yFiles
yFiles is a multi-platform software library, designed to create graphs. Besides just creating
graphs, they also offer functionality and algorithms to analyze, view, export, and edit
graphs. It is available for five different technologies, HTML, Java, JavaFX, WPF, and
.NET, and is used as the underlaying layer of tools like yEd and yEd live. This section
will focus on the HTML library because HTML is also utilized in GLSP.

yFiles for HTML is based on JavaScript and it is recommended to be used in combination
with TypeScript. Entire diagrams can be created with either predefined or completely
customized styles. It uses the SVG format by default, but it is also able to render diagrams
on an HTML5 Canvas elements or even WebGL, which is recommended for larger and
complex diagrams or diagrams that need special effects or graphics. It is also possible to
customize or develop special user interaction methods. Besides common user interactions
like zooming, panning or scrolling, other methods like adding/editing labels or drag-and-
drop are supported out of the box. Interaction methods that are not available can be
added by either customizing existing methods or developing their own.

5https://www.yworks.com/ (Accessed: 06.03.2022)

14

https://www.yworks.com/


2.5. Tools & Features

Unlike many other libraries, yFiles for HTML comes with examples and sample source code
that demonstrates level of detail features. They give three examples of applications that
implement such features, along with their source code: Organization Chart6, Hierarchic
Grouping7 and Collapsible Tree8.

These features can be summarized as:

Showing additional information based on zoom level Multiple different zoom
levels can be defined. For example, a detail level, an intermediate level, and an overview
level. All three levels consist of a threshold and a style. The style defines the looks of the
SVG element that will be rendered. The threshold defines the maximum zoom level until
which the corresponding style will be applied. When the user zooms in or out, the zoom
level changes and is compared to all defined thresholds, starting from the lowest. In case
the current zoom level is below or equal a threshold, the corresponding style is applied
and the element is rendered on the stage. An example can be seen in Figure 2.1.

Figure 2.1: Semantic zooming in yFiles. The same object is represented in three different
levels of detail. They are rendered depending on the current zoom level.
Source: https://github.com/yWorks/yfiles-for-html-demos/tree/maste
r/demos/03-tutorial-application-features/level-of-detail-style
(Accessed: 06.03.2022)

Grouping Elements Elements can be added to groups. These groups can then be
collapsed and expanded, which hides/shows all elements inside them. Expanding and
collapsing groups is a built-in feature in yFiles. This feature can be used out-of-the-box,

6https://live.yworks.com/demos/complete/interactiveorgchart/ (Accessed:
06.02.2022)

7https://live.yworks.com/demos/complete/hierarchicgrouping/ (Accessed: 06.03.2022)
8https://live.yworks.com/demos/complete/collapse/ (Accessed: 06.03.2022)
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but it is often not behaving in the exact way as expected. Depending on the model that it is
used on, additional logic has to be added. This logic may include, for example, visual styles
of groups, user interactions with a group, or the movement and position adjustment of
elements inside a group. In the example given in their documentation, the logic makes sure
to preserve information about edges that are visible when inside an expanded group but
hidden when collapsed. Once a group is expanded from a collapsed state, this information
will be used to restore the state and position of those edges and make the diagram look
similar to its original state. An example can be seen in Figure 2.2.

(a) Group one expanded. Group five
and two visible but collapsed. All other
groups invisible.

(b) Group one, five, and two expanded. Group
six and three visible but collapsed. Group four
invisible.

Figure 2.2: Example for grouping elements. This diagram consists of six groups. Collapsing
a group hides the elements inside it but preserves the relationships by changing their
origin/destination to the group itself.
Source: https://live.yworks.com/demos/complete/hierarchicgrouping/
(Accessed: 10.07.2021)

Expanding/collapsing branches This feature is similar to the grouping of elements
and is implemented in a similar way. Instead of defining a group, all children of an element
can be hidden by the click of a button which is part of the parent element. Every parent
element and its children can be seen as one group that can be expanded or collapsed. The
difference between this feature and the grouping feature is that here, the group is not
directly visible on the stage. It is implemented by adding an event-listener to the click
event of the expand/collapse button. Once the listener is triggered, the visibility states
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of all children are toggled between true and false, and the style of the parent element is
changed to display the collapsed or expanded state. On top of that, every time an element
is expanded or collapsed, all other elements inside the diagram are updated and moved to
a new position to keep the current layout small and without huge gaps in between. An
example can be seen in Figure 2.3.

Figure 2.3: Tree-view in yFiles which can be expanded/collapsed by a user. Clicking on a
plus sign expands the current node and clicking on a minus sign collapses it.
Source: https://live.yworks.com/demos/complete/collapse/ (Accessed:
06.03.2022)

2.5.2 Summary of Zooming & Panning features
This section gives a summary of the features related to zooming and panning that were
found during the evaluation of the modeling tools. A list of all tools that were looked at
can be found in Appendix 1 (marked with *).

Grid and Ruler

A simple feature, which is available in almost all diagram software solutions, is the ruler
and grid system. The grid splits the workspace into discrete pieces which makes it easier
to consistently position shapes and forms. When the user changes the size of an element
with their mouse by dragging its borders, the cursor is usually locked onto or snaps to the
lines of the grid. The interval in which the workspace is split up is different from tool to
tool and, in some implementation, is also dependent on the current zoom level.

The ruler is represented by a small bar which is positioned around the stage. It shows
measurements, usually in pixel, that can help the user to accurately position or size an
object on the stage. It is also helpful to measure distances between objects or simply get
a better feeling for the scale that the stage is currently in. Selecting an element on the
stage adds small indicators to the ruler. These indicators represent the edges of an element
and can be used to accurately measure the element. It is directly dependent on what the
viewport currently displays. Panning or zooming is directly reflected on the ruler.
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(a) Grid feature. The empty space on the stage
is represented by a grid. This makes positioning
and aligning elements easier. One small square
represents 10 pixels.

(b) Ruler feature. The Ruler can be seen on
the left and top side of the stage.

Figure 2.4: Examples for grid and ruler features in the diagramming tool on https:
//app.diagrams.net (Accessed: 06.03.2022)

Size Adjustments of Elements

A feature that is not often seen in diagram/modeling software. Elements, especially text,
are kept at a size that is relative to the viewport instead of the zoom level. This has the
effect of, e.g., text staying at a constant size, no matter how much a user zooms in or out.
It can increase the readability of elements that would otherwise become too small to be
read.

This feature is essentially the opposite of the usual and expected zooming functionality,
which is the increase or decrease in size of elements. Because of that, it is not often seen
or only in very few parts of an application. It is relatively common in areas that are not
directly part of the model or diagram, for example, buttons or metadata. It is also possible
to combine the normal zooming functionality and this feature. For example, the title of
a shape can stay at a constant size in a specific zoom level interval. Below or above the
limits of that interval, the text increases/decreases relative to the zoom level.

Minimap

This feature is often seen in diagram/modeling software and is also popular in other
domains. While the main view only displays a specific part of a document, the minimap
displays the entire document inside an additional view which is usually positioned in the
bottom right or left corner of the user interface. The information that is displayed is often
the same as what is shown inside the main view but zoomed out by a large factor until it
fits the size of the minimap view. Sometimes, minimaps also show information in a lower
level of detail because showing all information would clutter the available space. Another
valuable piece of information that this feature often provides is data about the area that
is currently visible inside the main view in relation to the entire model. This is usually
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indicated by a square that is rendered on top of the visible information inside the minimap.
Borders of the square represent the edges of the viewport.

It also supports interaction by the user. Similar to a scrollbar, clicking and dragging the
square to a certain location inside the document is reflected by moving the viewport of
the main stage to the exact same location. Its goal is to allow for quick navigation in a
document, give spatial orientation to the user by rendering the square which shows what
is currently displayed, and give information about the viewport’s surrounding data.

An example for a minimap can be seen in Figure 2.5.

Figure 2.5: Example for a minimap in the Eclipse IDE. The main view shows only a part
of a class diagram. The minimap in the bottom left shows the entire diagram with a much
smaller zoom factor. The blue square indicates what is currently visible inside the main
view.

Zooming to Saved Frames

This feature can be found in slightly different ways in many modeling tools (e.g., Prezi
and Miro) The user can select and name specific parts of the stage. These parts are then
saved in the form of frames. Frames do not save their contents but merely the zoom level
and position. These frames can be seen as anchor points to specific parts of the diagram.
Anchor points can then get referenced by, e.g., buttons to let the user go to parts of the
diagram much faster.
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Scripting

This feature is usually not only meant to be used to create special zooming functionality.
Depending on how much functionality the scripting language/engine offers, this can go
from simple mathematical operations to providing a turing-complete and completely
customizable environment. This can be used to create all kinds of special zooming features
like adjusting size/color/font of text or forms when zooming in our out, changing zoom
levels/navigating with the click of a button and much more. The drawback is that it is
usually much more complex to use because it has to be written and implemented first
which requires knowledge of the scripting language and usually also general experience
in software development. An example for such scripting capabilities is Visual Basic for
Applications (VBA), which can be used in combination with Microsoft Visio.

2.5.3 Summary of Level-of-Detail Features
This section gives a summary of all features that were found during the evaluation of the
modeling tools that show objects in multiple levels of detail or could be used to achieve
such a behavior. It includes all features that effectively hide or show specific information
about objects. A list of all tools that were looked at can be found in Appendix 1 (marked
with *).

Showing Additional Information on Button Click

This feature is seen in many tools. The basic idea is to show additional information (change
the level of detail) by the click of a button. It can be additional text, additional forms,
shapes, or even complete models. This can be implemented in many different ways:

1. Links: A simple but still customizable way can be seen in tools like diagrams.net.
They use links to change the content on the stage. Usually, button elements exist
that reference links. When clicking on such a button, depending on what kind of link
is referenced, a certain behavior is triggered. Besides the behavior that most users
are already familiar with from other software like web browsers, e.g., simply opening
a web link, they can lead to different positions inside a diagram, zoom in or out,
highlight certain information, or even show a completely new version of a diagram
that may hold additional information. Links that a button can lead to have to be
defined by the user first. This can be done in different ways. Usually, the software
allows to create links to one or many of the following:

a) Pages: Different pages can be created by the user. They can hold more
generalized or more detailed versions of a diagram.

b) Layers: A diagram can consist of multiple layers. Each layer can hold a different
version of a diagram with more or less details.

c) Frames: Frames can be defined by the user. Frames save a position and zoom
level inside a diagram.
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d) Diagram elements: All elements that can be used inside a diagram. E.g.,
shapes, forms or text.

e) Diagrams: Entire independent diagrams can be linked. This can be seen in
form of a built-in feature in Visual Paradigm. Instead of creating a link to
another diagram, shapes can be right-clicked and decomposed. This creates
a new diagram with the selected shape in it. It can then be used to add new
shapes and forms, and model this part of the diagram in more detail.

2. Expand/collapse: Built-in LoD functionality for buttons. This can be found in
many tools and is, for example, part of libraries such as yFiles, or diagram tools such
as diagrams.net and yEd Live. Here, the level-of-detail functionality is directly part
of the forms and shapes that are available to the user in the form of a button. There
exist many different variations how this can be implemented and they are usually
all optional to use. An example is a drop-down menu that can be triggered by a
button inside a shape. Clicking on the button shows or hides content or information.
Other examples are showing/hiding all descendants of a parent in a tree view or
showing/hiding all properties of a class in a UML class diagram.

3. Scripting language: A fully customizable way of achieving specific behavior, for
example, with VBA in Microsoft Visio. This is by far the most powerful approach
but also the hardest to use. Depending on how powerful the scripting language is
and how well it works together with the overlying system, the possibilities are almost
endless. Usually, listeners can be registered to the ‘click’ event on buttons. Once they
are triggered, functions can be called that are able to modify the current state of a
model. All the functionalities above could, for example, be implemented in Microsoft
Visio through VBA.

Showing Additional Information on Zoom

The zoom functionality goes hand in hand with different levels of detail. For additional
information, usually in form of text, additional space is required. Zooming in increases the
size of individual elements which creates more space for additional text. Unfortunately, the
zoom event is not used a lot in any tools as a built-in feature in combination with LoD. It is
used quite often for performance reasons and to hide elements that are not relevant to the
user anymore. Good examples for this are hiding elements that are outside of the current
viewport or replacing text that is too small to be read with something that is simple to
render, as is done by Miro and Microsoft Visio. The objective of this is to increase the
framerate during the rendering process, all while keeping the user from noticing any visual
differences to the original and fully detailed diagram.

Showing Additional Information on other Events

Although the click of a button is the most common event, other events exist that can also
be used to add or remove details. This is not only used much less frequently by users but
also implemented less often by developers for that reason. Other events can, for example,
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be scrolling, hovering or typing. An example of a tool with such a feature is Lucidchart,
which is able to show additional data when hovering over a shape or form through the
‘hover’ event. While scripting languages usually allow a lot more events to be used than
just the click event, almost no built-in functional can be found in any tools related to
events other than clicking.

Grouping of Elements

Another feature that can be found in diagram tools is the ability to group elements together
and be able to show or hide them. Grouping elements together can usually be done by first
creating a new group which is then visible on the stage. After a group has been created,
new elements can be added to it by dragging them into this group. The reason why we
see this as a feature related to LoD is because groups can be expanded and collapsed.
This adds or removes details about a diagram which effectively changes the level of detail.
Expanding or collapsing a group can, for example, be done with the click of a button
which can be found next to the title of the group as seen in yFiles (Section 2.5.1). It can
technically also be based on other events like zooming or scrolling but we could not find
this behavior in any tools.
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CHAPTER 3
Taxonomy1

The purpose of this section is to identify, name, and describe characteristics which are
fitting for user interaction and visualization features. Although the topic of this work
is about features related to the navigation of large information spaces in GLSP-based
modeling tools, the categorization in this taxonomy will be kept more abstract so that it
can be used in combination with other domains as well. Another reason why it makes
sense for this work to look at visualization features in a broader range is, because with the
introduction of modern GLSP environments, the technology stack has advanced to a point
that all kinds of new features can be integrated and used, even those that have not been
seen before in the domain of model engineering.

The goal of creating this taxonomy is to find similarities and to classify similar objects
into the same category. This should ultimately lead to a better understanding of possible
features that could be implemented in a (graphical) language server platform and should
help developers of such features during the conceptualization and integration process.
Because it is kept abstract, this taxonomy can also be used to achieve this goal in other
domains which utilize visualization features. It will lean on relevant and existing taxonomies
and complement them with extra dimensions that are fitting to the domain of this work.
In order to do this, features in the general domain of information visualization and user
interaction, that can be found in literature, will be looked at. This is accompanied by an
evaluation of existing tools and their visualization features.

3.1 Relevant Taxonomies
The first step here is to look at existing taxonomies that could be used and applied to
this work. Although we could not find any existing taxonomy that is perfectly fitting, the
subsequently described works partly align with our goal.

1A concise version of this chapter will be published at the ER conference [DCPB22b].
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Shneiderman [Shn03] proposes a task by data type taxonomy with seven data types for
applications with advanced graphical user interfaces. These tasks are: Overview, Zoom,
Filter, Details-on-demand, Relate, History, and Extract. The data types are: 1-dimensional,
2-dimensional, 3-dimensional, temporal, multi-dimensional, tree and network. Shapes and
forms of a GLSP client can be classified as 2-dimensional data type. Relevant tasks are
mainly overview, zoom, filter and details-on-demand. The remaining data types and tasks
are not directly related to this work.

Similar to Shneiderman’s approach, Silva et al. [SC00] categorize temporal-data features
by visualization and interaction features. Visualization features describe visual techniques
of a system, as in their example, Snapshot view or Multiple Calendars. Interaction features
are defined and categorized, similarly to Shneiderman’s approach, into: Overview, 3D
Navigation, Time Navigation, Zooming, Filtering, Temporal Filtering, Details on demand.

Tory et al. [TM04] categorize visualization techniques based on their design model instead
of their data. They propose to categorize design models into two higher level groups:
discrete and continuous. Continuous models assume that data can be interpolated, and
discrete models assume that they cannot. Data can often be visualized in multiple ways
and therefore it is possible to present the same data with continuous models as well as
discrete models. They also propose to add the category constrained to the spatialization
categorization. They argue that spatialization cannot only be given or chosen but also
partially given or chosen. This is represented by the constrained class.

Cockburn et al. [CKB09] categorize graphical user interfaces into four categories: overview-
plus-detail, zooming, focus-plus-context and cue-based. Overview-plus-detail represents
the spatial separation of information. It splits up information into two separate views:
overview-view and detail-view. Zooming represents the temporal separation of information.
It allows magnification and demagnification of information. Focus-plus-context seamlessly
combines a focused representation of information with its context. Cue-based techniques
change how an object is displayed and rendered, and are often combined with search-criteria
or off-screen elements.

3.2 Research Approach
Nickerson et al. [NVM13] propose a method to create taxonomies for information systems.
They define a taxonomy as a set of n dimensions Di(i = 1, ..., n) each consisting of ki(ki 2)
mutually exclusive and collectively exhaustive characteristics Cij(j = 1, ..., ki) such that
each object under consideration has one and only one Cij for each Di.

In order to create a valid taxonomy, they propose an iterative approach which is applied
until all ending conditions are met. One iteration can either consist of an empirical-to-
conceptual step, or a conceptual-to-empirical step. To make the correct choice between
the two, one has to look at the knowledge of the researcher and the available data. An
empirical-to-conceptual iteration should be chosen, when there are many objects available
and the researcher is familiar with them. It consists of looking at these objects and
identifying characteristics based on their qualities. A conceptual-to-empirical iteration
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should be chosen when there do not exist a lot of objects and the researcher has a broad
understanding and knowledge base of the relevant domain. Instead of primarily looking at
objects, the researcher will identify characteristics merely based on their knowledge.

Problem Identification and Motivation

Kundisch et al. [KMO+21] provide further guidance on taxonomy development and evalua-
tion by following up on the methods of the work of Nickerson et al. [NVM13]. They argue
that most taxonomies of the past display an inconsistent adoption of existing methods
and a non-transparent reporting of relevant design decision. In order to overcome this
limitation, they present an extended taxonomy design process (ETDP) and give examples
of well-written taxonomies for each step in their process. The additional steps in their
ETDP focus mainly on problem identification and motivation, and taxonomy evaluation.
More accurately, they add three initial steps which should be conducted before the tax-
onomy is designed and developed. These steps consist of specifying: (i) the observed
phenomenon, (ii) the target user group(s), and (iii) the intended purpose of the taxonomy.
The definition of these three specifications has a high influence on the evaluation of the
taxonomy. Additional evaluation steps, which were added to the model by Kundisch et
al., are conducted after finishing the original method steps defined by Nickerson et al.
They mainly deal with configuring and performing an ex post (after the building process
has been terminated) evaluation which should evaluate how useful the taxonomy is in
achieving the defined goals for its targeted user group. This can, for example, be done
with interviews, focus groups, or experiments which could be performed with the help of
people of the target user group(s).

The phenomenon that will be observed in this taxonomy are visualization and interaction
features. More accurately, concrete examples, or theoretical concepts of software compo-
nents (features) that allow users to modify underlying data by utilizing interaction-methods
via a graphical user interface. The target user groups are researchers and developers of novel
visualization features. This taxonomy is supposed to help identify defining characteristics
of such features and with that, provide aid during the conceptualization and integration of
them into new systems or platforms. It helps understand how features can be structured
and what the defining characteristics are from the perspective of a user. Furthermore,
it should give a basic understanding about requirements and limitations of the chosen
characteristics, which should help make correct decision when designing new features.

Solution Objectives

Two very important qualities of a valid taxonomy were already mentioned: mutually
exclusiveness and collectively exhaustiveness. This means that every object has to have
exactly one characteristic in each taxonomy dimension. These two qualities form two of ten
objective ending conditions [KMO+21, NVM13], which, together with five subjective ending
conditions, are used to determine when a taxonomy is considered complete. Consequently,
these ending conditions need to be applied during the iterative application of either an
empirical-to-conceptual or conceptual-to-empirical step until the ending conditions are met.
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The ending conditions we chose to adept from Nickerson et al. [NVM13]. They define
subjective ending conditions as follows:

• Concise: Does the number of dimensions allow the taxonomy to be meaningful
without being unwieldy or overwhelming?

• Robust: Do the dimensions and characteristics provide for differentiation among
objects sufficient to be of interest? Given the characteristics of sample objects, what
can we say about the objects?

• Comprehensive: Can all objects or a (random) sample of objects within the domain
of interest be classified? Are all dimensions of the objects of interest identified?

• Extendible: Can a new dimension or a new characteristic of an existing dimension
be easily added?

• Explanatory: What do the dimensions and characteristic explain about an object?

Objective ending conditions are the following:

• All objects or a representative sample of objects have been examined
• No object was merged with a similar object or split into multiple objects in the last

iteration
• At least one object is classified under every characteristic of every dimension
• No new dimensions or characteristics were added in the last iteration
• No dimensions or characteristics were merged or split in the last iteration
• Every dimension is unique and not repeated (i.e., there is no dimension duplication)
• Every characteristic is unique within its dimension (i.e., there is no characteristic

duplication within a dimension)
• Each cell (combination of characteristics) is unique and is not repeated (i.e., there is

no cell duplication)

Both types of ending conditions, subjective and objective, are important to determine
when the iterative process can be stopped and the taxonomy holds enough characteristics
to classify the phenomenon it is supposed to describe. For this reason, they are both used
as an ex ante (before the building process has been terminated) evaluation.

Design and Development

As already mentioned and specified in the previous sections, according to Kundisch et
al. [KMO+21], the first three steps are: (i) Specify the observed phenomenon, (ii) Specify
target user group(s), and (iii) Specify intended purpose(s).

Following Nickerson et al. [NVM13], the next step is to define the meta-characteristic
which will serve as the basis for the classification. For this taxonomy, we chose three meta-
characteristics: (i) Presentation, (ii) Interaction, (iii) Data. A more detailed definition of
these characteristics will follow in Section 3.4.

The next step is to look at the currently defined characteristics and iteratively apply, either
an empirical-to-conceptual or conceptual-to-empirical step, until the ending conditions are
met. The first iteration for this taxonomy was a conceptual-to-empirical one. In order to
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get the knowledge which is necessary to apply the iteration, we looked at taxonomies and
literature of the past that dealt with similar phenomena (Section 3.1). This was followed
by multiple empirical-to-conceptual iterations. Initially, we looked at features of commonly
used software that displays a graphical user interface and allows users to interact with
it. Most of the tools we looked at were used by many people over a long period of time.
They receive constant feedback and are being maintained and improved by long standing
companies. For that reason, they set a good baseline for this taxonomy. Examples for such
tools are: Google Maps, Microsoft PowerPoint or JetBrains IntelliJ IDEA. A summary of
their features is described in more detail in Section 2. A full list can be found in Appendix 1
of this work. The derived dimensions and characteristics were then re-evaluated again with
another empirical-to-conceptual iteration which considered visualization and interaction
features of past literature. This iteration did not only consist of concrete examples, but
also conceptual designs of features. For this reason, this iteration could also be considered
a conceptual-to-empirical one.

Unlike the features of commercial tools of the previous iteration, these features provided
more insight about reasoning behind design decisions and technical conditions. Examples
are City Lights [ZMG+03], EdgeRadar [GI07] and Onion graphs [KM07] (explained in
more detail in Section 3.5).

Demonstration and Evaluation

While it is not possible to consider all existing features of today’s tools and literature, the
sample of features which was picked was expanded until all subjective and objective ending
conditions were met. The resulting dimensions and characteristics can be seen in Figure
3.1 and read up upon in Section 3.4.

It is to note that, ideally, this taxonomy should only be used to categorize concrete examples
of features. During the development, we realized that conceptual designs of features can
often be interpreted and implemented in many different ways. E.g., the concept of a
magnifying glass feature can be implemented in a separate and independent view, or by
magnifying the current view. In the first case, it would be classified as an overview-plus-
detail interface, but in the second case, it would be classified under focus-plus-context.
When classifying conceptual designs of features that have not been implemented yet, one
has to be aware that it may include a subjective bias. Often, it is not immediately obvious
how such features operate, which is why it is even more important to accurately describe
them.

3.3 Terminology
Before the definition and evaluation of this taxonomy is given, it is important to define
terms that are being used during it. This should prevent any miss-interpretations and
confusion in the following sections.
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Figure 3.1: Taxonomy visualized

3.3.1 View
A view represents a certain perspective onto the information inside an application. Usually,
the interface of an application consists of multiple views which all represent information in
a different way. For example, a PDF reader usually always shows the PDF file contents
(e.g., text or images) inside an isolated view. Besides that, there almost always exists
a scrollbar, which can also be considered a separate view because it shows information
in a different and isolated way. Instead of rendering text and images, it shows spatial
information about the current position of another view. It is not always easy to define
where the boundaries of a view lie. In case it is not immediately noticeable by a visualized
spatial separation when looking at the user interface of an application, two different views
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can be separated from each other by looking at the following three properties:

1. What data they represent: Two different views often represent different kind of
information.

2. How they represent data: The data does not always have to be different, it can
also simply be represented in a different way. E.g., Microsoft PowerPoint generally
shows the same information inside the overview-view as in the detail-view in Figure
3.3 but prepared in a different way.

3. What interaction methods they offer: Usually, interaction methods are isolated
to one view. Different views also often offer different interaction methods. But,
although they are separated, they can affect other views. For example, moving the
scrollbar in a PDF reader affects what information is currently shown inside the view
which shows text and images of the PDF file.

3.3.2 Stage
The stage represents the area in which the main content of the application is displayed. In
diagramming tools, that would be the area in which forms and shapes are displayed. New
elements can usually be added by dragging and dropping them onto the stage from the
tool palette. The stage is almost always part of the main view and takes up a large portion
of it. In comparison to the viewport, the stage can be seen as a lower level of abstraction.
The stage contains all subjects of the current workspace but only a portion of it is usually
shown through the viewport.

3.3.3 Viewport
The Viewport is the area in which the stage is displayed inside an application. It acts as
the layer between stage and the user and can be seen as a camera that has a specific view
onto the stage. In contrast to the stage, which can technically be unlimited in size, the
viewport is limited and can usually only display a fraction of the stage. It usually allows
the user to interact with the content on it. Good examples are zooming and panning and
figuratively “moving the camera around” to change the view of the stage. It also allows for
other events, for example, drag-and-dropping new elements or modifying elements with
keyboard inputs.

3.3.4 Zoom level
It represents the scale at which the stage is viewed and affects the size of the objects on it.
Zoom level is usually specified in a percentage-based number. There exists a default zoom
level (usually 100%) which is a defined value that shows the stage in a specific perspective.
Some applications do not allow to change the zoom level or do not have the functionality
to do so. Usually, this perspective is a good combination between element size and general
overview. It shows and displays specific elements of a subject in a readable way but also
tries to give a good overview about the entire subject. If the zoom level is changed, the
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perspective that a user has onto the stage changes, and elements are rendered in a bigger
or smaller way.

While it is usually the case that there exists only one global zoom level which is relevant
for the entire stage, it can also be defined in a smaller scope. For example, every subject
on the stage can have its own zoom level. This makes it possible to change the size of each
subject individually. Defining the scope of a zoom level is often not a trivial task. We
propose three broad scopes sorted from high to low:

1. Global scope: A zoom level that is applied to every element on the stage. This is
practically the norm in most of today’s application. It is used to increase or decrease
the view of all subjects on the stage at the same time and with the same granularity.

2. Subject scope: Every subject has its own zoom level. This means that the size
of each subject on the stage can be changed individually without directly affecting
other subjects. This also means that the size of different subjects can be inconsistent
and out of sync. Two subjects with the same semantics can have different sizes.

3. Property scope: Each property of a subject has its own zoom level. This means
that zoom can be applied to subjects in more detail by being able to increase or
decrease only specific parts of a subject.

Usage of zooming scopes is not mutually exclusive and multiple scopes can easily be used
together. In fact, a more detailed scope level is usually always used in combination with all
less detailed ones. It is important to note that the lower scopes do not implicitly include
higher ones. It could be assumed that changing the zoom level of all elements of a scope at
the same time has the same effect as changing only one level on scope above. This is not
the case because of an important difference related to the way zooming works on different
levels. An element’s change in size only affects the element itself and nothing else. This
means that if all elements at, for example, the subject scope will be increased at the same
time and with the same rate, in theory they will eventually become too large and will
overlap with each other. This would not happen if the global zoom level was increased
instead because that would also increase the gaps between subjects.

It is not always easy to apply the scopes defined here to real examples. Sometimes it is not
clear how subjects are defined or if subjects hold properties. Often subjects can hold other
subjects, in which case the given zoom level scopes have to be adjusted. There is also no
clear definition how other subjects should react to the change of zoom level of one specific
subject. The most basic reaction is none at all which often leads to an undesired outcome
for a user and therefore a bad usability. In fact, it is difficult to find a good solution for
this problem and they often heavily depend on the nature of the subjects.

3.3.5 Zooming
Zooming is the change of zoom level. This effectively changes the size of the displayed
objects. Increasing the size can be compared to looking through magnifying glasses or
moving a camera closer or further away from a subject. Changing the zoom level in
its simplest form, is often done by moving the mouse wheel up or down which steadily
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increases or decreases the zoom level. It can also be implemented in a more complex way
as in combination with fisheye zooming as explained in Section 3.5.3. This requires there
to be more than just a global zoom level. In order to implement a fisheye-based zooming
feature, often every subject needs to have its own zoom level to be able to change them
individually.

3.3.6 Level of Detail
The level of detail describes the amount of information of an object that are displayed
on the stage. Objects can be represented in different (usually discrete) levels of detail.
The lowest level shows the least amount of information while the highest level shows
the most information. Information can be directly part of the object, e.g., properties, or
meta-information, like the number of relationships or dimensions of an object. Its goal
is often to simplify the currently visible information and give the user an easier time to
comprehend them. Other times, it is used to make elements smaller and save space, or to
remove information which have become too small to be read.

A switch between levels of detail is usually directly or indirectly triggered by the user. An
example for triggering a switch directly is explained in Section 3.5.3. It is done by the click
of a button which shows additional information about an object. Often the level of detail
is connected to other interaction methods such as zooming. A zoom event, for example,
can indirectly trigger a change of details to remove elements that are now too small.

Level-of-detail-related functionalities often cannot be easily added. This is especially true
in a universal setting. Every language has different properties and is represented in a
different way, which makes it hard to find a universal solution. For this reason, not many
features exist and they are also not often seen in existing tools.

3.3.7 Information Space
The information space is the set of abstract information that a language represents.
This can also include abstract syntax or semantics of a language. Related to graphical
representation, it includes only abstract and no concrete information about them. The
information space of Google Maps, for example, consists, in its basic form, of information
about landscapes, countries, cities, oceans, and other entities of our planet. Information
about abstract graphical representations includes, e.g.: where is a country located, what
are its dimensions, and what are its neighbors. It does not include information about
concrete graphical representations, as for example: The color which it is represented in, the
thickness of its lines which represent the border, or the font in which the country name is
written. Concrete instances of an information space are usually represented and contained
inside concrete files, often in a universal format as, for example, XML.

Important for this work is the abstract size of an information space, and more importantly,
the size of concrete instances of an information space (workspace). While it is generally
easy to determine how large an information space is, doing the same for concrete instances
is often not. Technically, most instances can be infinite in size, which is why this work
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will try to assume the average use case when talking about the general size of a language.
It will mostly differentiate between small (e.g., Java code enumeration file), intermediate
(e.g., most PDF files) and large (e.g., Google Maps).

3.4 Taxonomy Definition
As already mentioned above, this taxonomy consists of three meta-characteristics: Pre-
sentation, Interaction, and Data. The first meta-characteristic, Presentation, describes
the interface type that is used by a feature, and how the information is coupled to either
the main view or additional views. The second meta-characteristic, Interaction, gives
information about those parts of a feature that directly or indirectly affect the user experi-
ence and their ability to use it. The third meta-characteristic, Data, focuses on the data
that a feature utilizes or manipulates. Combined, these characteristics are supposed to
help developers identify important conditions of a feature. This section will go over all
characteristics in more detail.

3.4.1 Presentation
This dimension mainly describes if and how a feature utilizes one or multiple views.
Additionally, it describes the dependency between views and how they represent information.
It is split into Interface Type and Interface Coupling.

Interface Type

It describes how features use the space that is available to them, how they represent
information to the user, and generally how a user is able to interact with them. It
consists of four categories, which are based on Cockburn et al.’s work [CKB09]: overview-
plus-detail, zooming, focus-plus-context, and cue-based. This categorization is thus
not new and can be found frequently when browsing past literature which deals with
information visualization. For this reason, the decision was made to include them in this
taxonomy. It is important to note that sometimes it can be hard to categorize features
into this meta-characteristic without breaking the mutual exclusivity. Some features have
characteristics of multiple interface types and could therefore be assigned to multiple
categories. To keep the mutual exclusivity intact, we added more constraints to some
of those categories to make the categorization clearer. If, even with these additional
constraints, it is still not clear where to place a specific feature, it may help to split it up
into sub-features and categorize each sub-feature individually. It is also not unlikely that
this category needs additional characterizations in the future to fit new interaction types
and features.

Overview-plus-detail: It represents the spatial separation of the information space.
The overview-plus-detail interface scheme is a widely used concept that is present in almost
all applications nowadays. It splits the information space into two physically separated
views. One shows information at an overview level, the other shows similar or even the same
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information in greater detail. Although they are physically separated, they do semantically
depend on each other and actions in one view are usually immediately reflected inside the
other view. The important characteristic about the dependency between both views is
that they are usually not spatially dependent on each other. If one or even both of the
views were to be moved to a different location, no issues would arise. Sometimes it can
be hard to make the differentiation between overview-plus-detail and focus-plus-context
interfaces in which case it may help to think about this property.

An overview-plus-detail interface has usually two main purposes. Firstly, it should give
the user a better feeling about what subset of information they are currently looking at
in relation to the entire workspace. Secondly, they should give the user an easy way of
navigating the workspace by letting them interact with the overview interface. Usually,
they operate on the x- and y-axis and utilize interaction methods such as panning or
scrolling. Features that work with the z-coordinate usually make use of the zooming
interaction method and therefore often overlap with the zooming category. Nevertheless,
features exist that can be categorized as overview-plus-detail but utilize the z-axis, for
example, magnifying glasses as explained in Section 3.5.3.

A good example for a feature in this category is shown in Figure 2.5. On the stage, an
UML diagram is shown in detail while in the bottom left corner, an overview is displayed
which shows the entire diagram in one view. Actions like the panning or zooming inside
one view are directly reflected inside the other view.

The overview interface does not always have to show the same type of information as
the detail-view, it may also provide a completely different type of data, e.g., spatial
information. An example for spatial information is the scrollbar. Scrollbars can be seen
as the overview interface that give one-dimensional information about what the viewport
currently displays in relation to the entire workspace. There also exist concepts that show
more than just spatial data. For example, the text editor Sublime Text 3 which has a
widened vertical scrollbar that shows additional information about the current document
(shown in Figure 3.2b). It shows the content of the current document at an overview-level
and even adds syntax highlighting.

Another good example for more than just spatial data representation in the overview
interface can be seen in Microsoft PowerPoint in Figure 3.3. Inside the overview-view,
a smaller version of the slide that is currently displayed inside the detail-view is shown,
along with following and preceding slides.

Zooming: Zooming represents the temporal separation of the information space. It is
similar to overview-plus-detail with the difference that only one view is provided instead
of two or more. Another difference is that the user has to utilize the zooming interaction
method to change the size in which information is displayed. As already explained in
Section 3.3.5, the user is given the ability to change the scale (zoom level) of the view with
certain actions such as a button click. Other, not so well known, ways of zooming in or
out are the usage of the key-binds CTRL+mousewheel or CTRL+"+". This represents the
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(a) Normal view (without overview-scrollbar) in Sublime Text 3

(b) View in Sublime Text 3 with overview-scrollbar enabled. A small additional view is added at the
right of the main view which shows the content of the entire file and acts exactly like a scrollbar.

Figure 3.2: Comparison of a view with overview-scrollbar to one without in Sublime Text 3

basic concept of zooming but it can be combined with other techniques, such as fisheye
zoom or semantic zoom, to make it more advanced.

A precondition to make zoomable interfaces possible, is to have information that can be
magnified and demagnified. The magnification process can be categorized into continuous
and discrete zooming. Continuous zooming takes place when the subject does not have a
countable amount of zoom levels. The simplest form of magnification is to simply increase
the size of the subject. This can be done on every subject that has some form of visual
representation. Since there is no clear separation of zoom levels, and the subject can
theoretically be rendered in any size, this can be considered continuous zooming. An
example for discrete zooming takes place in Google Maps. When the user zooms in far
enough, the level of detail is changed and a different set of tiles is served. There exists
only a limited number of sets of tiles/levels as explained in Section 2.3.2 and therefore this
can be considered discrete zooming. In the example of Google Maps, it is to mention that
they use both, discrete and continuous zooming. Between going from one discrete level to
the next, tiles are simply increased in size which is a form of continuous zooming.
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Figure 3.3: Example for an overview-plus-detail interface in Microsoft PowerPoint. The
detail-view shows the current slide and covers about 80% of the interface (right side), and
the overview-view additionally also shows the neighboring slides and roughly covers the
remaining 20% of the interface (left side).

Focus-plus-context: It represents the distortion of the information space. The basic
concept of this scheme is to let a user see specific parts of the information space in more
or full detail while also getting an overview of the information around it. Unlike overview-
plus-detail, both parts (overview and detail) are displayed inside the same view which is
often accomplished by distorting the information space to fit the user’s needs. Information
that the user is interested in, the focus, is shown in greater detail and at the same time,
information around it, the context, is preserved and also made visible to the user but in
less detail.

The level of distortion that is applied, differs from implementation to implementation. It
goes from no/infinite distortion, for example, by using the Windows 10 Magnifier app
(Figure 3.5), to distortion that affects the entire view, as seen in Google Street View (Figure
3.4). The aspect of distortion is an important feature of focus-plus-context interfaces which
differentiates features of this category from others. Without any form of distortion, as
with the Windows 10 Magnifier app, a feature can often be categorized as a basic zooming
feature or an overview-plus-detail feature instead.

Another aspect which defines focus-plus-context interfaces are the seamless integration of
one view into the other. An example for this is the scrollbar. Scrollbars could be considered
to be part of the focus-view, but, because they are not seamlessly integrated into it, they
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are considered to be a separate view.

Figure 3.4: Google Street View shows a distorted view of St. Stephen’s Cathedral and its
surroundings. The focus lies on St. Stephen’s Cathedral while surrounding buildings are
visible as well. The photo is showing a very unrealistic perspective, especially noticeable by
looking at and comparing parallels of the buildings to the left and right of the cathedral,
which makes the distortion aspect clearly visible.

Figure 3.5: The Windows 10 Magnifier app magnifies specific parts of the view. Instead
of distorting information and using, for example, fisheye techniques, the magnified part
covers and effectively hides other parts of the image. Because of this, the Magnifier app is
categorized as a zoom interface instead of a focus-plus-context interface.

An advantage of having only one view instead of two or more, is that the user does not
have to switch focus between multiple views and can instead keep focusing on one and
the same view. In a field study conducted by Baudisch et al. [BGBS02], which compares
overview-plus-detail, focus-plus-context and zooming-plus-panning, all chosen tasks could

36



3.4. Taxonomy Definition

be performed faster on the focus-plus-context interface by a margin of 21-36%. They
attribute the performance differences to the context switches that do not have to be made
on a focus-plus-context interface, and the consistent scale that the focus-plus-context
interface offers.

Cue-based: Cue-based techniques give cues that lead to other information in the in-
formation space. They often show alternative graphical representations of objects on the
stage. These alternative representations, often in the form of simple labels, can then be
used to offer additional functionalities, as, for example, leading to the actual object, or
simply notifying the user that the object exists. Cue-based techniques are often used
in combination with approaches of other interface methods. An example for cue-based
techniques is the visualization of off-screen objects with, for example, lenses as seen in
Section 3.5.3. They are also often used in combination with search criteria. An example
for that can be seen in Figure 3.6, which shows clickable search results in Google Maps.
Clicking on them pans and zooms the map to the position of the search result.

Figure 3.6: Google Maps shows search results at the left side of the view. Results act as a
proxy and clicking on one zooms and scrolls the map to the position of the search result.

Interface Coupling

This category distinguishes features that require additional views from those operating
inside the main view. This is an important aspect as it impacts not only how a user uses
a feature, but also its implementation. From an implementation perspective, having to add
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another view can become complicated, because, depending on the size and significance of
the implemented feature, new space has to be found on the user interface, and, instead of
managing just one view, multiple views have to be managed and be held in sync. From the
perspective of a user, having more than one view available means that there are multiple
separated points of interest that a user can shift their focus to. Usually, it is not possible
to concentrate our focus on multiple views at once and a focus switch is required when
switching between them. This focus switch does not only cost time, but also requires mental
effort which can become exhausting over time. For this reason, it is often better to combine
information into one view instead of separating them into multiple views. As Baudisch
et al. [BGBS02] showed, tasks could be performed faster on focus-plus-context interfaces
(one-view) than on overview-plus-detail (two views). This is even more important, when
the user has to interact with multiple views, e.g., with a mouse. This was also confirmed
by Hornbæk et al. [HBP02]. They state: "...switching between the detail and the overview
window required mental effort and time moving the mouse."[HBP02, p. 382]

3.4.2 Interaction
This dimension focuses on characteristics of a feature that the user directly interacts with.
The attributes in this dimension have a big impact on how a feature is being used by
the target group and therefore its usability. It should give an insight about important
user-related aspects of a feature and help in making design-related decisions. This section
will describe the characteristics in this dimension in more detail and also give some basic
guidelines on why and when certain properties are important.

Interaction Type

This characterization gives information about if and what kind of interaction a feature offers.
While this category can be further extended by going more into detail and considering
all kinds of interaction types and events, this taxonomy remains on a more abstract level
with only three main categorizations: visual only, indirect interaction, and direct
interaction.

Visual Only: Features which are classified as visual only do not give a user the ability
to interact with it, and only add visual benefits. An example for a feature that does not
require interactions is the grid system as explained in Section 2.5.2. A grid system is a
visual feature, which helps positioning elements, but a user cannot interact with it.

Direct Interaction: Features with direct interactions are the most common. Direct
interaction means that, with the addition of a feature, additional new interactions are
added to the already existing ones of that tool. They are specific to a feature and would
have no real use without it. They are usually intentionally performed by a user and their
main purpose is to directly manipulate feature-specific data. An example for this is the
peek definition feature explained in Section 3.5.3. To get a peek into the implementation
of a function, the user has to directly interact with certain elements of the user interface,
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by selecting a specific context menu. This interaction process is specific to the feature and
the context menu would have no use if this feature did not exist.

Indirect Interaction: Indirect interactions, on the other hand, are not specific to
a feature. Actions of a feature with indirect interactions can usually be triggered by
performing interactions which are not part of the feature itself. Interactions, whose main
purpose has nothing to do with the feature itself and could still be performed even if the
feature did not exist. Actions which are controlled by indirect interactions are usually
triggered either concurrently alongside actions of other features, or as a side effect of
such. An example for a feature with indirect interactions is the ruler, which is visible in
many text or diagram editors (Section 2.5.2). The basic functionality of a ruler is to take
measurements of elements on the stage. It does not offer any direct interactions but adds
small indicators, which represent edges of selected elements. Selecting an element on the
stage is not an interaction method, which is specific to the ruler. Therefore, the action of
adding those indicators to the ruler are performed by an indirect interaction.

Direct and Indirect Interaction: Some features offer both, direct and indirect, inter-
actions. An example for such would be the basic scrollbar as explained in Section 3.5.3. A
direct interaction would be to click and move the scrollbar. An indirect interaction would
be to move the position of the current viewport by different means (e.g., with the mouse
wheel). This would indirectly trigger the scrollbar to move as well.

Animation

This categorization gives an overview about the types of animations that a feature uses.
Animations are important to help users understand what visual changes have just been
made on the screen. The right use of animations prevents users from getting confused
about these changes and increases their sense of orientation. In past literature a time span
of 0.3 to 1.0 seconds has been suggested in which the animation should be played [CRM91]
but it can vary depending on the type of information that is displayed.

Here, it is important to understand the difference between a separate animation that is
played alongside a feature, and the feature’s functionality itself. In this category, animations
are considered visual techniques that physically move visual objects and are triggered by
the user but not directly controlled by them. Most of the time, they are played right
after the user’s interaction has finished. What is not considered an animation, is physical
movements of visual objects that are directly controlled by the user. For example, grabbing
and moving a basic scrollbar is a continuous interaction process that can theoretically even
be done in infinite detail. Practically, it is limited by the minimum amount of pixel that it
can be moved in one movement, but, and this is the important aspect, it is fully controlled
by the user. Although, during the interaction with the scrollbar, objects are moving, which
may seem like an animation, it is considered the features functionality that is continuously
executed and fully controlled by the user.
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This dimension will consist of five categories: No Animation, Informational Anima-
tion, Continuous Animation, Structural Animation, and Multiple Animation.

No Animation: Features that do not utilize animations in any form. The basic scrollbar
is an example for a feature which does not use any animations.

Informational Animation: Features, which utilize animations only in an informational
way. Animations, which give the user additional information (often in the form of text),
but do not directly interfere with elements on the stage. An example for this is given by
Igarashi and Hinckley in [IH00, p. 142]: "..., when the user presses the mouse button, a
pink slider appears." This slider gives information about the current position and scale
level, but does not interfere with any data on the stage. Another example would be a
small label which is transitioned in and out during a zooming interaction which shows the
current zoom level. This could be done with discrete zoom levels (as demonstrated by
yFiles in Section 2.5.1), or with continuous zooming actions which show the current zoom
level as a percentage-based value.

Continuous Animation: Animations that take existing elements on the stage and
change the way they are represented in a continuous process. An important property of
those type of animations is that during the animation process, no additional information
is added or removed. Examples would be a simple magnification of an element (basic
zooming), or triggering a smooth transition by clicking on a proxy element (Section 3.5.3).

Structural Animation: This type of animation is used when the structure of elements
or the stage is changed. Unlike continuous animations, here, new information is added,
old are removed, or existing are changed. This new information could, for example, be
entire elements or just properties of elements. An example for such an animation is the
peek definition feature (Section 3.5.3). A transition is played, which gradually opens a box
which shows information about a selected function.

Multiple Animations: Sometimes, a feature utilizes a combination of informational,
continuous, and structural animations. In that case, features can be placed inside this
category. Multiple is defined as any combination of Informational Animation, Continuous
Animation, and Structural Animation. An example would be the already mentioned feature
Speed-dependent Automatic Zooming [IH00]. It does not only utilize an informational
animation in the form of a pink slider, but also a continuous animation: "When the user
releases the mouse button, an animated transition gradually returns the document to the
original base scale." [IH00]

Information Structure

Many tools, especially modeling tools, give the user the option to adjust the structure of
the workspace. The user is able to personalize the workspace by adjusting the position of
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objects inside it. Positions are saved and upon re-opening a file, objects are positioned at
the same spot as the user remembered it. Not having to re-create the mental map of the
workspace every time a file is opened ultimately saves a lot of the user’s time and effort.
Because of that, this characteristic is very valuable and should not be carelessly taken
away. The larger an information space is, the more time a user requires to get used to a
new structure, and therefore, the more important it is to keep the structure intact.
Nevertheless, preserving the structure is not always easily possible. For example, and,
as explained in Section 3.3.4, a lot of problems arise when dealing with magnification
or demagnification of individual objects. Another common cause for a change of the
information structure is the automatic process of rearranging elements. E.g., some modeling
tools offer a "center all elements" functionality, which automatically adjusts and centers
the position of all elements. Such a functionality can be a dangerous game and finding a
good algorithm that prevents the user from having to re-create the mental map of their
workspace is a hard task. Because of that, it is often the best solution to stay away from
implementing features that frequently change the layout of a user’s workspace.
This dimension can be split up into four categories: Structure Preserving, Structure
Changing, Temporary Changing, and Hybrid.

Structure Preserving: This category includes all features that do not change the
structure at all, or only change it ever so slightly that the user’s mental image is not
destroyed. The key point of features in this category is that users do not have to re-create
the mental map of their workspace. An example for such a feature is the semantic zoom in
yFiles (Section 2.5.1). Zooming in adds additional information, but does not adjust the
structure.

Structure Changing: Features in this category are changing the structure. This is
essentially the direct opposite of structure preserving. Features in this category adjust the
structure to a point that users are forced to having to re-create their mental map. An
example is the grouping feature as demonstrated by yFiles (Section 2.5.1). Unlike their
semantic zooming implementation, closing or opening groups automatically adjusts the
structure. When opening a group, the position of elements inside the group are adjusted.
When closing a group, the position of elements outside the group are changed to utilize
the space that was previously populated by the expanded group.

Temporary Changing: Between structure preserving and structure changing, there
exists a middle ground that only temporary changes the structure. Often, features visually
change the structure, only for a limited amount of time, in order to execute a specific
functionality (e.g., the peek definition feature, shown in Section 3.5.3). Such features do
not persistently change the structure but merely temporally adjust it. Nevertheless, they
can still destroy the mental map that a user has built over time, especially when layout
changes are displayed over a long period of time. Whether it is a good idea to implement
such a temporary change, or try to simply avoid it, has to be determined on a per-instance
basis.

41



3. Taxonomy

3.4.3 Data
This dimension describes the data that is used by a feature. Here, the feature-specific
data is meant, which can usually be distinguished from the tool-specific data. If we use
the scrollbar of a PDF reader software as an example, the tool-specific data would be
the PDF itself, and the feature-specific data would be the x- and y-coordinates of the
viewport. The scrollbar feature does not manipulate the PDF at all, instead it just moves
the viewport to different locations by changing its coordinates. Unlike the tool-specific
data, the feature-specific data is often independent of the tool itself which helps to keep
this taxonomy more abstract.

This data can be split into input and output data. The input data is the data that is read
by a feature in order to perform an action. The output data is the data that is modified or
returned by an action of a feature. It can be compared to input and output parameter
of a function in a programming language. Often, the main difficulty of this dimension
is to define and understand what this data is, especially when the feature only exists in
the form of a concept and has not been implemented yet. Both sub-dimensions, Input
Data Type and Output Data Type, consist of the same characteristics: Qualitative,
Quantitative/Discrete, Quantitative/Continuous, and Mixed.

Qualitative data is semi-structured data, such as labels, attributes, or entire domain model
elements. Quantitative data can be counted or measured and is expressed as numbers.
Furthermore, quantitative data exists in two variations, i.e., quantitative/discrete and
quantitative/continuous. Quantitative/discrete data is countable and can only take on
certain values. Continuous data, on the other hand, is measurable and can be split up
into smaller parts. Some features work with more than just one data set. Such features
should be classified as Mixed. Most of the time, it is ideal for a feature to work with
quantitative/continuous data. This is because continuous data reflect user interactions
more directly and responsively. It is easier to visually follow continuously rendered changes
than discretely rendered ones. This is also reflected by Cockburn and Savage in [CS04].
They state: "The abrupt transitions between discrete zooming levels ... meant that the
participants had to reorient themselves with each zoom action." [CS04, p. 97] For that
reason, features that work with continuous data often do not require additional animations,
unlike discrete data.

3.5 Taxonomy Evaluation
For the evaluation of the taxonomy, we followed a twofold descriptive evaluation strategy:
First, we theoretically evaluated the contents of the taxonomy. Secondly, we implemented
a prototype of one advanced information visualization feature of our taxonomy to show
the practical relevance as well.
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3.5.1 Theoretical Evaluation
Both of these strategies follow the "Illustrative Scenario" methods mentioned by Kundisch
et al. [KMO+21]. More accurately, it follows both, the "Illustrative scenario with existing
research" and the "Illustrative scenario with real-world objects" methods. Existing research
is represented by utilizing novel features and implementations of past literature, such as
Onion-graphs [KM07] or City Lights [ZMG+03]. Real-world objects are represented by
features found in widely used tools, such as the Eclipse IDE or Microsoft PowerPoint.
Even though, developers usually have a deep insight into the architecture of their features,
we think that this taxonomy is abstract enough, so that this additional knowledge is not
needed.

Appendix 2 shows a list of all evaluated features in the course of the ex post evaluation.

3.5.2 Practical Evaluation
For the practical evaluation, we realized a prototype that demonstrates an advanced
visualization feature realized in the Eclipse Graphical Language Server Protocol Platform2.
At the time of writing, the Eclipse-GLSP is the most advanced and a highly maintained
graphical language server platform, built on a modern technology stack which serves as a
very good base for new and advanced features. Further details about this prototype can be
found in Section 4. During the conceptualization of both developed features, characteristics
of this taxonomy have been used to identify important aspects related to its presented user
interface. Furthermore, both prototypes have been classified and added to the taxonomy,
which can be found in Appendix 2.

3.5.3 Evaluated Features
The remaining part of this section will describe and give short summaries of evaluated
features. These features originate either from past literature or existing software products.
Some of these features were already explained in Section 2.5.2 and Section 2.5.3. Addi-
tionally, these features will be categorized and grouped into the classes of this taxonomy.
While the categorization of some features was simple and straightforward, some others
required more time and interpretation. Appendix 2 shows all evaluated features and their
categorization Additionally, it will briefly describe what we considered to be their input
and output data.

Basic Scrollbar

The basic scrollbar is a rather old feature which is used by interfaces that need to show
information that do not fit on the screen all at once. It is usually represented by a
small vertical or horizontal bar which represents the full vertical or horizontal space
of the entire workspace. The vertical or horizontal space which is visible inside the
viewport is represented by a second bar ("handle" or "slider"). The relation between the

2https://www.eclipse.org/glsp/, last visited: 14.11.2021
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vertical/horizontal space of the workspace and the vertical/horizontal space of information
currently represented inside the viewport is the same as relation between the length of the
entire scrollbar and the length of the handle. Because of that, a scrollbar gives a quick and
accurate hint about how long a document is and where the currently visible information is
located. The handle can be moved around by clicking and dragging it. Interactions with
the scrollbar instantaneously affect the information represented inside the viewport and
vice-versa.
Today, the basic scrollbar is a very widely used tool that is present in almost all graphical
user interfaces on all kinds of devices. As long as some basic concepts are followed, the
idea of a scrollbar is immediately recognizable by a user and they are able to use them
without issues. An example for such a basic concept is the location of the scrollbar. A
study by Devine and Andre [DA05] showed that users made much more cursor movement
errors when the scrollbar was located at the left side of the interface instead of the right
side. Besides that, scrollbars sometimes also offer additional functionality and show more
than just spatial information, which can be seen in features such as the overview scrollbar.

Overview Scrollbar

The overview scrollbar follows the same concept as the basic scrollbar (explained in Section
3.5.3). The important difference is that it shows more than just spatial information. This
extra information is usually first-class information directly part of the information space.
An example can be seen in the text editor Sublime Text 3 (Figure 3.2b) which additionally
shows the entire workspace in much smaller size.
Even though this type of scrollbar is not often seen, it is still quickly understood and easy
to use because of how widely known the concept of a scrollbar is. Despite being easy to
use, the negative aspect of having to switch focus often between multiple views is amplified
in comparison the basic scrollbars because of extra information that is given.

Lens on Scrollbar Hover

This type of scrollbar is a mixture of a basic scrollbar and an overview scrollbar. Instead
of continuously showing an overview of the workspace, like an overview scrollbar, it is only
shown when the user hovers the cursor above the scrollbar. Another difference is that
the overview is shown inside a pop-up window instead of continuously on the side. The
pop-up window is part of the scrollbar view, because it is spatially connected to it when it
is shown. In comparison to the overview scrollbar, this saves a lot of space that can be
utilized by the main view instead.
An example of this type of scrollbar is present in the software development IDE Webstorm
(Figure 3.7).

Magnifying Glasses

This feature is a prime example for an overview-plus-detail interface. Besides the infor-
mation that is shown inside the main view, a magnified version of them is also shown
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Figure 3.7: The software development IDE Webstorm opens up a pop-up window when
the user hovers their cursor above the scrollbar which shows code of the corresponding
location inside a document.

inside a secondary view. The magnification process usually consists of a simple zoom
implementation which just increases the size of displayed information. This could also be
combined with a level-of-detail functionality which shows different versions of information
depending on the magnification factor.

The position of the secondary view is not defined and can be different from implementation
to implementation. The two most common strategies are, either, movable and attached
to the cursor, or not movable and positioned somewhere at a fixed location. Inside the
Magnifier app on Windows 10, it can be switched between both of them. An example
for the movable lens can be seen in Figure 3.5. The unmovable version of magnifying
glasses is very similar to the minimap feature (Section 3.5.3) which is commonly seen in
modeling tools with the main difference that the minimap demagnifies information instead
of magnifying them.

Thumbnail Overview

The thumbnail overview follows a similar concept to the overview scrollbar. They both
show similar information and give the user the option to quickly navigate to specific
areas of the workspace. Inside a smaller secondary view, thumbnails of elements of the
information space are shown which are linked to discrete areas inside the main view. It
is often used in an information space that consists of self-contained elements. Elements
of which thumbnails can easily be created. The key difference to overview scrollbars is
that thumbnail overviews are usually completely independent of the main view and do not
give any spatial information about it. Most of the time, these separate views of thumbnail
overviews even have their own scrollbars. An Example is given in Figure 3.3 which shows
thumbnails of the workspace inside a small vertical view to the left of the main view.

Another version of this feature is present in most modern operating systems, for example,
Windows 10. With the click of a specific combination of keys (ALT+TAB in Windows
10), thumbnails of all programs that are currently open are displayed on the screen. This
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can be used to get a quick overview of all open programs, and helps to quickly navigate
between different programs. Unlike the other variant of this feature, this is done in the
current view and is therefore classified as a focus-plus-context feature.

User-controlled View Definition

This feature can be found in some way in many diagramming tools, as explained in Section
2.5.3 1. The idea is to give the user the ability to define a specific view onto the workspace.
These views are to differentiate from the more physical interface-specific views, which are
used when talking about interface schemes like overview-plus-detail or focus-plus-context.
The views that are definable by this feature are usually called pages, layers or frames. One
of their purposes is to quickly navigate the workspace in a way that can be defined by the
user. Some even add more functionality, such as grouping elements together.

An example for pages can be seen in Figure 3.8

(a) First page selected. (b) Second page selected, which shows a new
canvas with a different element.

Figure 3.8: The diagramming tool on https://app.diagrams.net allows to create
new pages via a small view which is displayed underneath the stage. A new page creates a
new empty canvas to work with.

Minimap

Minimap feature as explained on Section 2.5.2.

Basic Continuous Zoom

This feature is present in almost all user interfaces of today and is considered the basic
"zoom" feature. It allows to magnify and demagnify information in a continuous way. This
is usually done by figuratively moving the camera closer to, or further away from the stage.
Elements appear larger or smaller which creates the magnification effect. A problem that
sometimes arises with this technique is that objects on the stage are not perfectly scalable
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which causes them to look poorly. In order to get the full benefit from a continuous zoom,
it is best to use it with a scalable data structure as, for example, SVG.

Zoom events can be triggered in various ways. Usually, they are triggered by the user
directly by either the press of buttons directly part of the user interface, such as a dedicated
"zoom in" or "zoom out" button or a slider, or common gestures like a double click or the
mouse wheel. Gestures are often not immediately intuitive to the user and, as mentioned
in [CKB09], sometimes never even discovered by them. Besides being directly triggered by
users, they are often also triggered and used by other features. For example, cue-based
techniques like proxies can utilize them to lead users to specific parts of the workspace.

An example for a basic zoom feature can be seen in Figure 3.9.

(a) The full document is visible showing
the whole sentence (zoomed out).

(b) Only the last letter is visible (zoomed
in).

Figure 3.9: Example of a basic zooming event performed in Microsoft Word. Applied via
the slider which can be seen at the bottom right of the user interface.

Basic Discrete Zoom

This feature is almost the same as basic continuous zooming explained in Section 3.5.3.
The key difference is, as the name already tells, it works stepwise and therefore in a discrete
way. This technique is often applied to discrete data that cannot be interpolated.

An example for this would be the map tiles in Google Maps as explained in Section 2.3.2.
Map tiles exist in about 21 different level and interpolation between them is not easily
possible. A zooming interface which only switches between these 21 levels would be a
discrete zooming interface. Google utilizes a combination of a discrete and continuous
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zoom in their interfaces. Between the discrete switch of levels, they simply continuously
increase the size of individual tiles. Once they become too large, a discrete switch to tiles
of the next level is made.

Speed-dependent Automatic Zooming

This navigation technique is proposed by Igarashi and Hinckley in [IH00]. The goal is to
make navigation through large documents more efficient for a user. This is achieved by
incorporating a semantic zoom into the scrolling process. The view of the document is
zoomed out when a user increases their scrolling speed and zoomed back in when it is
decreased again. Instead of adjusting the speed at which a document is moved through
the screen, the zoom level is adjusted, and the speed stays constant. This leads to less
distortion and makes it easier to locate specific parts of a document during the scrolling
process.

They tested their idea on a web browser, a map viewer, an image browser, a dictionary
viewer, and a sound editor, and conducted a usability study on the web browser and the map
viewer. Especially the web browser yielded good results with six out of seven participants
preferring automatic zooming over the traditional scrolling technique with a basic scrollbar.
In another study, conducted by Cockburn and Savage [CS04], participants were observed to
complete basic scrolling tasks on average 22% faster for document browsing and 43% faster
for map browsing. Negative aspects are user study participants getting dizzy from the
constant flow of text, the fact that it needs some time to get used to, and the requirement
of a relatively good hand-eye coordination to efficiently control the zooming event.

The browser prototype used section headings and images as subjects for a semantic zoom.
Headings and images are important for a user to not lose spatial orientation during a zoom
event and - as can be seen in Figure 3.10 - are increased in size when the document is
zoomed out. Igarashi and Hinckley suggest in their work that automatic zooming is best
used on an information space of intermediate size with spatially organized information.

Adding Objects of Different Information Space on Zoom

This feature forms the basic concept of semantic zooming. Semantic zoom transforms the
visual representation of objects during a zoom event. This can mean that information is
added, removed, or simply changed. In this category, elements of a different information
space (often of different documents or files) are seamlessly added during the zoom-in
process and removed during the zoom-out process. This is often done to provide additional
information to the user and save them from navigating through multiple documents in
parallel. Different levels of detail are defined and their visibility is usually dependent on the
current zoom factor or the remaining space. The number of existing levels is dependent on
the information domain and could theoretically even be infinite with recursive detail-levels.

An example for such a feature is explained by Frisch et al. in [FDB08]. They propose to
nest different UML diagrams into each other to allow for quicker navigation. They are
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Figure 3.10: Example for speed-dependent automatic zooming in a web browser. The
faster a user scrolls, the further the document is zoomed out. A semantic zoom is applied
to section headings and images.
Image source: [IH00]

then seamlessly added and removed during zoom events. This can be seen in Figure 3.11
which shows a UML activity diagram nested into a use-case diagram.
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Figure 3.11: Example for semantic zooming applied to UML diagrams. In b), an activity
diagram is added to the use-case diagram of a) (different information space). In c), more
details are added to the diagram of b).
Image source: [FDB08]

Adding Objects of Current Information Space on Zoom

As already explained in the previous section, this feature represents the basic concept
of semantic zooming. Conceptually, it is very similar to the previous section, with the
difference that information which are added, changed, or removed come from the same
information space. This is mainly done to effectively use the space that is available by only
showing the most important information that fit onto the stage. It gives users an easier
time to comprehend information by keeping the workspace clear. Besides that, this feature
is sometimes also applied with the main purpose of simply increasing performance. Often,
very small elements that cannot be read anymore are removed from the stage to allow for
faster rendering.

An example for such a feature is explained by Frisch et al. in [FDB08]. Besides nesting
different diagrams, they also propose to split up different UML diagrams into multiple
levels of detail. They are then seamlessly added when there is enough space available
during a zoom event. This can be seen in Figure 3.11 which shows a UML activity diagram
in two different levels of detail.

Adding Details on Click

This feature hides and shows details about an object by the click of a button and is
explained in more detail in Section 2.5.3 2. It is present in many graphical user interfaces
nowadays, especially code editors. An example for this feature inside a modeling tool can
be seen in Figure 3.12.

Traditional Fisheye Zoom

The fundamental goal of a fisheye zoom goes hand in hand with the concept of focus-plus-
context interfaces. Its goal is to provide a balance between local detail and global context
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(a) expanded (b) collapsed

Figure 3.12: Example for showing additional information on button click in diagramming
tool https://app.diagrams.net. A user is able to expand/collapse the object by
pressing the button on the top left.

[Fur86] and they are suggested to be used in combination with large information spaces
[SZG+96]. Unlike simple magnifying glasses, the space and information between detail and
context is usually distorted in some way (as can be seen in Figure 3.4).

Over the years, fisheye zoom interfaces have been implemented in many different ways and
domains. Furnas describes a generalized fisheye view in [Fur86], which calculates a degree
of interest based on the a priori importance of an element and the distance to the current
focus. Elements with a high degree of interest are then shown in focus while elements with
a low degree are only shown in context or not at all.

Bartram and Dill describe an algorithm in [BHDH95] with the goal to automate sizing of
notes in large information spaces. Their algorithm is also based on a degree of interest and
is applied recursively to consider neighboring notes and efficiently utilize leftover space.

Reinhard et al. improve that algorithm in [RMG07] by specifically considering zoom-in and
zoom-out actions. Besides that, they also made sure that a model can be edited without
putting the structure of it into an unstable state.

While the algorithms mentioned above apply a fisheye zoom in a more generalized way, there
also exist a lot of concrete implementations or ideas. For example, fisheye menus [Bed00],
a collaborative fisheye text editor [Gre96] or the typical dock of Apple’s operating system
macOS which can be seen in Figure 3.13.

City Lights

City Lights is a focus-plus-context technique by Zellweger et al. [ZMG+03]. They give
information about the context of the focused view and are placed at the border of it. More
specifically, they are able to show multiple types of information about unseen objects, e.g,
existence, physical properties, positional properties, and abstract information. One goal
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Figure 3.13: Example for a fisheye implementation in Apple’s operating system macOS.
Hovering over the dock creates a focus on that particular icon by increasing its size.
Neighboring icons are distorted by only slightly increasing their size.

of City Lights is to show those types of information in minimal space. Because seeing all
information inside this minimal space can be overwhelming, they suggest adding a user
interface that lets users decide which type of information they want to see.

Categorizing this feature is not a simple task. Although it is very similar to scrollbars,
which are a overview-plus-detail interface, City Lights are classified as a focus-plus-context
interface here, because of the spatial dependency between focus- and context-view. Neither
view can be repositioned without affecting the other. On top of that, it can also be classified
as a cue-based technique because it gives cues about off-screen elements, just like halos or
wedges do. Another reason why it is listed under focus-plus-context instead is also because
Zellweger et al. in their original work speak of it as giving context to a focused view.

Figure 3.14 shows and explains concepts of City Lights. It also shows how enabling or
disabling different types of information would look like.

EdgeRadar

EdgeRadar is a visualization technique by Gustafson and Irani [GI07]. It works in a similar
way as City Lights, explained in the previous section, and displays off-screen elements
around the border of the focus-view. Key differences are that EdgeRadar displays elements
in a more simplified way and with less information, and EdgeRadar is specifically designed
to support moving targets. While City Lights is also able to display physical properties and
abstract information, EdgeRadar merely shows information about existence and distance
of objects. The advantage of EdgeRadar is that it is easier to understand, especially for
new users.

An experiment was conducted by Gustafson and Irani to determine the effectiveness of
tracking off-screen elements with EdgeRadar in contrast to halos. Tracking off-screen
elements yielded a better result for their solution, with an 16.67% error-rate for EdgeRadar
and 21.53% for halos.

Figure 3.15 shows and explains the concept of EdgeRadar.
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(a) "Dark/light fills indicate the near/far re-
gions of unseen populated space around a
focused view. Points show radial direction
(see dotted line). Grays/colors show near/far
distance." [ZMG+03, p. 4]

(b) "Points show orthographic direction.
Gray/color shows near/far distance. Markers
in the corners of the focused view indicate
the number of unseen objects in the corre-
sponding corner of unseen populated space
(see dashed corner region)." [ZMG+03, p. 4]

(c) "Lines show radial direction. Distance
is also shown if the object size is known.
Grays/colors show near/far distance. Line
positions inside and outside the border show
near/far distance, which also reduces line
overlap." [ZMG+03, p. 4]

(d) "Redundant points and lines show the or-
thographic direction of objects and clusters.
Positions and grays/colors show near/far dis-
tance." [ZMG+03, p. 4]

Figure 3.14: Example for the focus-plus-context feature City Lights by Zellweger et
al. [ZMG+03]
Image source: [ZMG+03]

Visualizing Off-Screen Elements of Node-Link Diagrams

This feature is very similar to City Lights and EdgeRadar, and is presented in [FD13]
by Frisch and Dachselt. Their goal is to replace time consuming panning and zooming
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Figure 3.15: Example for focus-plus-context feature EdgeRadar by Gustafson and
Irani [GI07].
Image source: [GI07]

actions in large diagrams with methods such as proxies and advanced navigation techniques.
Although it is very similar to other implementations and restricted to node-link diagrams,
their paper is mentioned here because of how relevant their methods are to this work.

They use proxies to display off-screen elements in an interactive border region which is
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located at the edge of the viewport. They provide spatial, structural and topological
information about off-screen elements which are tailored for UML diagrams. Because their
work is specific to node-link diagrams such as UML, they are able to provide a better
integrated environment with more features in comparison to City Lights or EdgeRadar.

Visualization of off-screen elements with the help of proxies is done with small colored
indicators inside the interactive border view (Figure 3.16). Relationships from off-screen
elements to on-screen elements are preserved by re-routing them to proxies. They explore
many different techniques and give information about advantages and drawbacks. These
techniques consist of, for example, coloring proxies without edges differently, different
positioning for proxies (orthogonal and radial projection), coloring re-routed edges in
different colors than original routes, different edge routing methods, and different methods
for edge cases such as one off-screen node having edges to multiple on-screen nodes.

Furthermore, they create clusters of proxy elements. This is especially useful for large
diagrams. These clusters are created, for example, for off-screen elements inside the corner
areas, and for off-screen elements that would create overlapping proxy elements. They
present two methods for clustering: Geometric and structural clustering.

For very large diagrams, they suggest defining an area of influence. This area of influence is
part of the off-screen area around the viewport. To reduce cluttering, only elements which
are positioned inside the area of influence are represented as proxies. This area moves with
panning actions, grows/shrinks with zooming actions, and can also be dependent on the
number of surrounding off-screen elements.

Besides visualization, they also mention interaction methods. This includes: Automatic
panning and zooming to an off-screen element by clicking a proxy, being able to open
more detailed previews of elements by hovering over a proxy, being able to edit properties
of off-screen elements via their proxies, and being able to add edges from on-screen to
off-screen elements.

To test their prototype, Frisch and Dachselt also conducted a pilot study. Besides being
asked about opinions and comprehensibility of individual features, participants were asked
to perform other tasks such as estimate directions of off-screen elements or navigate
to certain classes. Following the comments and suggestions of participants, Frisch and
Dachselt adjusted individual features and methods. This was then followed by another
controlled experiment which showed that the exploration of relationships in their approach
outperformed state-of-the-art interfaces.

An example of their proposed approach can be seen in Figure 3.16

Peek Definition

This feature is often seen in code editors, for example, Visual Studio Code and most
JetBrains IDEs. It allows users to quickly navigate and see the definition of, e.g., a
function. Instead of switching to the file and line number which holds this definition, it
is shown inside a smaller window which is part of the main view. In the context of a
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Figure 3.16: Example for off-screen element visualization by Frisch and Dachselt [FD13].
"Principle of our solution: The viewport of our UML class diagram editor with off-screen
visualization (center). Classes clipped from the viewport (shown outside in gray) are
represented by proxy elements located within the interactive border region." [FD13, p. 135]
Image source: [FD13]

focus-plus-context interface, this small window becomes the focus-view, while the file that
is currently viewed becomes the context-view. This extra window effectively creates a gap
in the current file and is placed between the line which shows the function and the next
line. It usually acts as its own, from the current file independent, file editor which only
shows the selected function by default. The user is able to scroll further to the top or
bottom to see additional content of the file. The entire file can also be changed and edited.

Independent of whether the definition is located in the current file or a different file, the
behavior of this feature is always the same. It can usually be triggered via the context
menu of a function or by pressing a hotkey while a function is marked.

An example is shown in Figure 3.17
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Figure 3.17: Example for the peek definition feature in Visual Studio Code. It shows the
focus-view at the center, while the context-view is visible at the top and bottom. The
focus-view shows the definition of the function editableLabel() and the context-view shows
the area at which this function is called.

Grouping Elements

This feature is explained in more detail in Section 2.5.1 and Section 2.5.3.

An example can be seen in Figure 2.2.

Onion Graphs

Onion graphs are a technique presented by Kagdi and Maletic in [KM07]. It evolves around
the problem of visualizing large UML models and abstracts contextual information by
utilizing the hicon onion notation [SGJ93]. The goal of their work is to abstract visual
elements of a UML diagram at various levels of detail and represent them in different
notations. Their proposed notations are designed to reduce edges which originates from
the problem of having too many crossing edges in large information spaces.

They try to preserve semantic and structural information with their notations to help users
keep their mental model of their workspace. Semantics are preserved by using a notation
that is already present in UML, e.g., classes, generalizations, or associations. Structural
information is preserved by ordering notations and adjusting their width and height. The
width of a notation, for example, indicates how many siblings the original note has, and
the height represents how many children it has.
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This allows to reduce a UML graph as it can be seen in Figure 3.18. They also mention
that semantic zooming and incremental exploration is often used in combination with
onion notations and could therefore be applied here as well.

Figure 3.18: Example for onion graph notations by [KM07]. Blue elements indicate
the focus-view while yellow indicate the context-view. Nodes 3 and 5 represent single
abstracted individual classes. Node 2 represents multiple similar generalizations. Note 4
represents a combination of multiple generalizations with different levels and one individual
generalization.
Image source: [KM07]

Grid

Grid feature as explained on Section 2.5.2.

Ruler

Ruler feature as explained on Section 2.5.2.

Semantic Depth-of-Field Technique

This technique is explained by Miksch and Hauser in [MH01]. The general idea is to
adjust the sharpness of elements in relation to their relevance to the user. Blur is used to
de-emphasize elements and therefore make them be part of the context while un-blurred
objects represent the focus. This technique is often used in the field of photography by
blurring parts of an image based on their distance to the camera. Blurred parts of an
image are discarded by our brains in a very short time (within about 10 milliseconds)
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which allows us to quickly shift the focus to the sharp parts [MH01]. In comparison to
photography, here it is mainly used to make it easy to quickly differentiate between more
important and less important parts of an information space.

In their paper, they define two functions: a relevance function and a blur function. The
relevance function is used to define how relevant an object is and is based on the fulfillment
of certain criteria. The blur function is used to map relevance values to blur levels and
defines how sharp elements with a specific relevance are.

Miksch et al. distinguish between three different classes of the semantic depth-of-field
technique: 2D SDOF, layered 2D SDOF and 3D SDOF. As the names already reveal, 2D
SDOF blurs independent 2-dimensional objects (e.g., a 2D chess board), layered 2D SDOF
blurs entire 2-dimensional layers (e.g., layers on a map), and 3D SDOF blurs 3-dimensional
objects (e.g., a 3D chess board). Examples for 2D and 3D chess board and the application
of SDOF can be seen in Figure 3.19.

(a) 2-dimensional semantic depth-of-
field (b) 3-dimensional semantic depth-of-field

Figure 3.19: Example for the application of 2D and 3D semantic depth-of-field technique.
The focus lies on the white knight on e3 and all black pieces which threaten it. All other
pieces are blurred.
Image sources: [MH01]

Lenses

Lenses provide a better way to navigate and explore cluttered graphs. They follow a similar
concept as magnifying glasses (Section 3.5.3), but, instead of simply magnifying information,
they can add additional interactive behavior and only show relevant information. They can
interactively be moved around as well and can therefore easily be combined with fisheye
techniques. Most of the time, the area which is displayed inside the lens is considered the
focus area, while everything outside it is considered the context area.
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Examples for lenses are explained by Tominski et al. in [TAVHS06]. They propose multiple
types of lenses, combined with fisheye techniques, to support users in exploring unfamiliar
and cluttered graph layouts. They propose three types of lenses: Local Edge Lens, Bring
Neighbors Lens, and Composite Lens.

The Local Edge Lens is supposed to help users identify edges which are connected to
objects inside the focus area. It does this by only showing those edges that are connected
to vertices inside the focus area. The context area still shows all edges. An example can
be seen in Figure 3.20b.

The Bring Neighbors Lens is designed to not only help identify edges, but vertices as well.
This is done by moving all off-screen objects, which have a neighbor with a specific vertex
of interest, into the focus area. In comparison to the Local Edge Lens, this lens adjusts
the layout of the information and is therefore not structure preserving. An example can
be seen in Figure 3.20c.

The Composite Lens is a combination of the previous two lenses and a fisheye lens. It
applies the Bring Neighbors Lens first, the Local Edge Lens second, and a fisheye lens last.
The fisheye lens is added to counter a problem of the Bring Neighbors Lens by further
spreading neighbors. The problem arises when one neighbor from far away and multiple
neighbors from close by are brought into the focus area. This leads to neighbors being
indistinguishable from each other as seen in Figure 3.20c. An example for the Composite
Lens can be seen in Figure 3.20d.

Another implementation of lenses is presented by Karnick et al. in [KCJ+09]. They
propose "detail lenses" to make following static route maps easier. Besides only a textual
description of routes, they added lenses that show points of interest along the path in a
more detailed way. In comparison to lenses described above, they do not follow the cursor.
Instead, multiple lenses are placed along the edges of the main view. An example can be
seen in Figure 3.21.

Halos

Halos are proposed by Baudisch and Rosenholtz in [BR03]. They are a visualization
technique that is used to show off-screen elements. Relevant elements which are outside
the viewport are marked with a circle around them. This circle is then expanded equally
into all directions until it reaches the edge of the currently visible area. A small portion
of those circles can then be seen by the user inside the viewport. Elements that are far
away produce a larger arc than elements that are close by. This property allows users to
roughly determine the distance between the off-screen elements and the currently visible
area. This is the main advantage of this technique, in comparison to arrow-based solutions
such as City Lights. They provide information about both, distance and location, without
additional annotations. To better illustrate the functionality of halos, an example can be
seen in Figure 3.22.

This technique works very well when only a few off-screen elements are displayed. Showing
a lot of elements quickly leads to a cluttered and confusing view. In order to mitigate
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(a) No lens (b) Local Edge Lens

(c) Bring Neighbors Lens (d) Composite Lens

Figure 3.20: Example for lenses proposed by Tominski et al. in [TAVHS06].
Image sources: [TAVHS06]

this, overlapping arcs which have a similar size are combined into a single multi-arc.
Multi-arcs are represented by multiple thinner lines which originate from their average
origin. Furthermore, groups of four or more elements are combined and represented by
thicker arcs.

In a user study conducted by Baudisch and Rosenholtz in the same paper, they compared
their halo approach to an arrow-based solution. Users were supposed to complete tasks
such as, selecting the closest objects or finding the shortest path, as fast as possible while
maintaining reasonable accuracy. Users were able to complete tasks 16-33% faster without
a significant difference in error rate.

Wedges

Wedges follow the same concept as halos of the previous section. They are proposed by
Gustafson et al. in [GBGI08] and, just like wedges, provide information about location and
distance. The difference to halos is that wedges have a better way of dealing with clutter
and overlapping. Instead of circles, triangles are used to point to off-screen elements. One
corner is placed at the origin of the off-screen element while the other two are extended
and placed at the edge of the viewport. An example can be seen in Figure 3.23.
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Figure 3.21: Example for detail lenses by Karnick et al. [KCJ+09]. Lenses around the
edges of the main view show points of interest along the generated path.
Image source: [KCJ+09]

Wedges possess three degrees of freedom: rotation, aperture (width), and intrusion (length).
All three of them are used to convey specific information about an element, or deal with
clutter or overlap. Although, they can also be used for different purposes, in their algorithm,
they adjust the rotation to keep wedges from overlapping, and the intrusion plus aperture
to indicate distance.

An example of wedges with additional information is displayed by Gladisch et al. in [GST13].
They give additional information about why a specific off-screen element is relevant by
adding a bar chart to the wedge. The bar chart represents individual parameters of their
degree-of-interest function and is directly displayed inside the wedge. An example, along
with a good comparison of different off-screen visualization techniques, can be seen in the
form of an image in their work (Figure 3.24).

Gustafson et al. also conducted a user study which compares wedges with halos. Par-
ticipants had to perform the same tasks as those of the user study that was conducted
in [BR03]. The result showed that wedges significantly increase the accuracy of judging
where an off-screen element is located. All other tasks did not yield significant differences.
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(a) Red arcs around the edges of the viewport indicate
locations of off-screen elements.

(b) The center of each circle is located outside
of the viewport and determines the exact
position of off-screen elements.

Figure 3.22: Example for halos. A visualization technique by Baudisch and Rosen-
holtz [BR03] for off-screen element visualization.
Image sources: [BR03]

Proxies

Proxies are a cue-based technique which are often used in combination with Halos or Wedges.
A proxy is an alternative visual representation of an actual object of the information space.
Usually, they are simplified versions of the actual object and not tied to a specific location.
They provide a quick way to navigate to a specific object, usually by simply clicking on
the proxy.

An example for a proxy-based technique is explained by Irani et al. [IGY06]. In their
paper, they present a technique they call "hop", which combines halos and proxies. They
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Figure 3.23: Example for wedges. A visualization technique by Gustafson et al. [GBGI08]
for off-screen element visualization. Red triangles indicate existence of off-screen elements.
Visible legs of triangles give information about distance.
Image source: [GBGI08]

Figure 3.24: Example for enriched wedges in comparison to other off-screen visualization
techniques by Gladisch et al. [GST13]
Image source: [GST13]

use halos to make users aware of off-screen elements, proxies to bring targets closer to the
cursor, and a teleportation mechanism to move the view to these elements. In order to
do that, they thought of a new interaction method which they call the "laser beam". The
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laser beam can be triggered by the user by clicking and holding at some point inside the
current view. Now the user is able to move their cursor around which creates the laser
beam, starting from the original clicking position and going through the current mouse
position towards the edge of the viewport. Elements of halos that intersect with this laser
beam are now moved closer to the user’s cursor in the form of a proxy. If the user releases
the mouse button while having a proxy selected, an animation is played, which moves the
view to the element represented by that proxy. To better illustrate how hop works, they
provide an image in their paper which can be seen in Figure 3.25.

They also conducted a user study which compared their hop technique with standard
panning and two-level zooming. Users were able to select off-screen elements about twice
as fast as with the standard interaction methods.

Figure 3.25: Example for proxy-based technique "hop" by Irani et al. [IGY06]. "Invoking
proxies with the laser beam: a) beam is created; b) beam intersects halo; c) proxy
created." [IGY06, p. 302]
Image source: [IGY06]

Scrollbar with Indicators

This feature is closely related to other scrollbar features and could also be classified
as an overview-plus-detail feature. Here, the scrollbar is not only used to let the user
navigate the workspace more quickly, but also to give cues about off-screen elements or
meta-information about those elements. These cues are often simple indicators in the form
of colored stripes which are rendered on top of the scrollbar but underneath the slider.
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Colors of the indicators are used as an additional degree of freedom. Often they convey
information that lets a user differentiate between specific elements of the information space.

This feature is often used in text-based languages. For example, the software development
IDE Webstorm which displays information about errors or warnings via the scrollbar.
Hovering over an indicator brings up a context menu with more details about an indicator.
An example can be seen in Figure 3.26.

Figure 3.26: Example for a scrollbar with indicators in software development IDE Webstorm.
Horizontal red/yellow lines indicate errors/warnings. Hovering over them opens up a context
menu with additional information (indicated by the box with a gray background). Vertical
green/blue lines indicate added/modified lines.
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CHAPTER 4
Prototype1

The goal of this prototype is to add features to a graphical language server platform
that help reading and navigating large information spaces. Although, such features exist
already in other domains, they have not been used in combination with a GLS platform yet.
The initial step, which has been done during the writing of the taxonomy, is to find and
evaluate features that could be integrated into the GLS protocol. The graphical language
server platform which was chosen to implement this prototype in, is the Eclipse Graphical
Language Server Platform. At the time of writing, the Eclipse-GLSP is the most advanced
and a highly maintained graphical language server platform. Because of its recency, it is
built on a modern technology stack which serves as a very good base for such features.

The difficulty in implementing new features in a GLS platform, compared to implementing
it in other environments, is the clear separation of concerns (server and client) that a GLS
platform displays. In GLSP, a new feature can usually not only be implemented on the
client side, it has to be able to understand data which is coming from the server in some
sort of data interchange format (e.g., JSON), and send data back in a format that can be
understood by the server. This is not always possible and often, dealing only with the data
formats that are already part of the GLS platform is not sufficient. New feature-specific
data is required which means that, in order for the server to understand this data, new
feature-specific logic has to be added to it. This shows that, even though a feature is
labeled as a client-side feature, it often requires additional functionality on the server-side
as well.

This chapter will describe the implemented features in more detail.

Section 4.1, Theory, will go over its concept and the reasoning behind the selection
of the features that will be implemented. Furthermore, it will describe theoretical aspects
of its functionalities and details about its integration into the Eclipse-GLSP. Section 4.2

1A concise version of this chapter will be published at the MODELS conference [DCPB22a].
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will be the practical counterpart to Section 4.1 and will be dealing with details about its
implementation and its architecture. Section 4.3 will go into detail about encountered
problems during its conceptualization and implementation, and strengths and weaknesses
of the feature.

4.1 Theory
Currently, the Eclipse-GLSP offers very little features that make the navigation and
comprehension of large models easier. The first step of the prototype development is
to determine what feature(s) should be implemented. In order to do this, we used the
knowledge that we gained during the State-of-the-Art research, and during the development
of the presented taxonomy. Especially during the ex-post evaluation, a lot of related features
were looked at and categorized which ultimately helped make this decision. The following
section will give a general descriptive evaluation of relevant features and give insight about
the decision-making process that led to the concept of the prototype.

4.1.1 Feature Evaluation
The performed State-of-the-Art research helped to get a general idea of where current
modeling tools stand in terms of visualization and navigation of large models. It clearly
shows that most modeling tools currently do not have good support for it. Related features
were only found in very few modeling tools and mostly only in very basic or abstract ways.
Other modeling tools, like yEd or Microsoft Visio, give ways of adding related features
by means of their integrated scripting languages or frameworks. While this offers great
flexibility, it is not very convenient for users that do not have the required experience to
implement them.

Even though this prototype will be part of a modeling tool, limiting the research of related
features to only other modeling tools did not lead to satisfying results. We expanded
our search to the much more abstract domain of general information visualization. In
this domain we looked at tools that work with large information spaces, such as mapping
platforms or software development IDEs. Tools like Google Maps use many relevant
features, for example, proxies and different levels of detail. Although, in this broadened
domain, we could find more related features than just in the model engineering domain,
most of them were tailored to specific use cases and could not be applied to modeling
tools in the exact same fashion. Many of them are so tightly coupled with the underlying
software tool or domain that it would not make sense to use the same feature in the domain
of model engineering. For example, overview scrollbars (Section 3.5.3) which are used in
the domain of software development. They rely on the fact that text files holding source
code usually require a lot of vertical space and relatively little horizontal space. Because of
that, the vertical scrollbar can be used very well to display contextual information without
them becoming too small to be useful. In visual model engineering tools, this would usually
not be the case because models are often expanded in all directions equally.
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The third step was to look at research that has been done in the area of visualizing and
navigating large information spaces. While this led to very interesting ideas and concepts,
such as City Lights [ZMG+03], and speed-dependent automatic zooming [IH00], it had
similar problems as most tools: features were too specific to certain domains.
When comparing objects of those three steps to each other, it becomes clear that many of
these features follow similar ideas and concepts. For example, the Windows 10 Magnifier
app (Figure 3.5) is comparable to the minimap feature (Section 3.5.3). Both follow the
same concept of magnifying information with the difference that one can be moved around
while the other one is stationary. Another example is the scrollbar with indicators (Section
3.5.3) of Visual Studio Code or JetBrains’ WebStorm. This is a very similar concept to
EdgeRadar [GI07] (Section 3.5.3). Both visualize off-screen elements with very simple
geometric graphical elements, such as dots or squares.
Looking at all the tools and research, the two most common concepts related to large
information spaces were the following: Adjusting the visual representation of objects
and visualizing off-screen elements. They can not only be found in existing modeling
tools/frameworks, like yFiles, but also in other tools, such as Google Maps or the JetBrains’
IntelliJ IDEA Java IDE, and research, e.g., [BR03]. Considering tools that do not offer any
such features yet but want to add them, these two concepts represent a good starting point.
They portray a good mixture between genericity, development complexity, and added
usability. They are generic enough to be used in some way in a wide range of different tools,
but can also be made more specific by tailoring them to specific use cases and domains.
This is a very valuable characteristic for the development of a prototype, because it can
be developed in iterative steps. The early steps can be kept simple, and complexity can
be added gradually after successful evaluation of previous steps. At the same time, even
if they are kept simple and generic, we think that they improve the usability immensely.
They are self-explanatory and easy to understand, not very intrusive or dependent on other
features, but still very customizable. For these reasons, these two concepts will also form
the foundation of the prototypes developed in the course of this work.
To cover both of the explained concepts, we decided to split up the implementation into two
independent prototypes. Prototype 1 will be dealing with the adjustment of visual object
representations. More accurately, it will introduce the ability to define multiple global
discrete levels of detail. Objects can have different visual representations, depending on the
level that is currently active. Each level of detail is active at specific zoom levels. In other
words, the currently active level of detail can be switched by zooming in or out (semantic
zooming). This concept is very closely related to the ideas of Frisch et al. [FDB08].
Prototype 2 will add indicators for off-screen elements. Similarly to [FD13], these indicators
will be rendered at the border of the stage. Ideally, they will act as proxies of the original
element. This means that they can be used as a replacement for the original elements for
all interactions. For example, edges leading to the original element should be leading to
the proxy element instead. Additionally, graphical representations of indicator elements
should be customizable for each model element.
Both prototypes have been implemented with universality in mind and they are supposed to
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be able to be used with multiple languages. Adding and using the proposed functionalities
in combination with other languages should be able to be done with only small modifications
to the existing code. These necessary code changes are manly language-specific information,
such as information about the visualization of elements of a language.

4.1.2 Eclipse Graphical Language Server Platform
In order to understand the concept and the implementation details of the prototypes, one
has to have a basic understanding of the underlying system. While Section 2.2.1 gives a
brief overview of the general concept of the Eclipse Graphical Language Server, this section
will describe the architecture of it in more detail. Bear in mind that the system is still in
active development and the current version may differ from the version that is used and
explained here. Furthermore, since the complete source-code is open-source, it may also
be the case that different language servers use different architectures and implementations.
This work uses the relatively simple Workflow example language server, which is described
in more detail in Section 4.1.3. For a more accurate explanation, please visit the official
website2 or code repository3.

Server

The main responsibility of the server is to manage the model. It uses the powerful and
established Eclipse Modeling Framework (EMF) to do this. With EMF, a meta-model
(Ecore) can be created which can be used to describe models. With elements, such as
EClass or EAttribute, entire models can be defined. Once all objects of a model have been
described, EMF can be used to translate these meta-models into models in the form of
interfaces and classes with the included code-generator. The resulting Java-code is then
used throughout the language server to manipulate and save models.

Besides the model which describes the language itself, there exists another model (GModel),
which describes the graphical representation of a language. Before a model is sent to
the client, it is transformed into its GModel representation. This GModel representation
is then sent to the client in the form of JSON objects. Most languages require similar
graphical representations, such as edges, nodes, or icons. While the model which describes
the language is specific to the language, elements of the GModel can usually be reused by
many languages. Some important and relevant GModel elements are:

• GModelElement: Describes an element of a language with a unique id and a type.
Furthermore, it can have a parent, children, and CSS classes.

• GShapeElement: Descendent of GModelElement. Describes a visible element,
which has a size and a position.

• GNode: Descendent of GShapeElement. Describes a node-like element, which can
have edges connected to it.

• GLabel: Descendent of GShapeElement. Describes a text label.
2https://www.eclipse.org/glsp/ (Accessed: 19.12.2021)
3https://github.com/eclipse-glsp/glsp (Accessed: 19.12.2021)
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• GEdge: Descendent of GModelElement. Describes an edge with a source and target
element.

As already mentioned, the communication between server and client is done via actions.
Most of these actions are initiated by the client and answered by the server, but there also
exist situations, where the initiation of an action comes from the server. Important and
relevant actions are:

• RequestModelAction: It is usually the first action which is sent from the client to
the server. It requests the graphical representation of a model. It is answered by the
server with either an SetModelAction, or an UpdateModelAction.

• SetModelAction: It is sent from the server to the client. It sends a graphical model
to the client. The old model, if one exists, is discarded.

• UpdateModelAction: It is sent from the server to the client. It updates the
graphical representation of a model on the client.

• SaveModelAction: It is sent from the client to the server. It signals the server to
persist the current model.

• RequestBoundsAction: It is sent from the server to the client. It signals the client
to pre-compute the layout which can then be used by the server to compute the
finalized layout. This pre-computed layout is necessary, if the layout process of the
graphical representation also depends on the client. E.g., if the client has font-size
settings, which indirectly affect the sizes of GModel elements. It is rendered by the
client invisibly and its results are then sent back to the server in a ComputedBounds-
Action. This can be enabled or disabled with the needsClientLayout setting on the
client.

• ComputedBoundsAction: It is sent from the client to the server, as a response to
a RequestBoundsAction. It is usually followed by a SetModelAction or an Update-
ModelAction.

• CreateNodeAction: It is sent from the client to the server. It signals the server to
add a new node to the model. Once this action was performed successfully by the
server, an UpdateModelAction is triggered, which is sent from the server to the client
to update the model on the client as well.

• CreateEdgeAction: It is sent from the client to the server. It signals the server to
add an edge to the model and, similarly to CreateNodeAction, indirectly triggers an
UpdateModelAction.

Client

The client is responsible for rendering the supplied GModel. This is done with the help of
the Sprotty framework. Sprotty handles the rendering and dispatching of events/actions.
The model that Sprotty works with is called the SModel (Sprotty Model). Its design is very
similar to that of the GModel which is generated on the server. This makes the conversion
from the GModel to SModel simple and fast. All JSON elements that were received by
the client are translated into TypeScript objects and represent the SModel.

In order to fully understand and render all graphical elements received by the server, a
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view has to be defined and assigned to all received types. As already mentioned above, all
GModelElements have an assigned type. This type is used by the client to look up its view.
Each view on the client has a render() function, which defines how an element is supposed
to look like, once it is displayed in the browser. While the client has a lot of predefined
views, such as the RectangularNodeView, which simply renders the SVG element rect, new
views can be defined for each language. All that is necessary on the client, is the definition
of a view element with its render() function, and assigning a type to it.

After the translation of the received JSON objects into TypeScript objects, they are
handled by the viewer. The viewer uses the SModel to generate a virtual document object
model (VDOM) from it. Similar to popular frameworks like React or Angular, this virtual
DOM represents a layer above the actual DOM and can easily be accessed and manipulated
by the rest of the application. During the rendering process, this virtual DOM is taken
and converted into real DOM elements that are understood by browsers. Furthermore,
the viewer is also responsible for adding and removing event listeners that are required by
some features.

Another large component of the client is the ActionDispatcher. The ActionDispatcher is
responsible for making sure that actions are handled correctly. These actions can come
from the server, but also other sources, such as the viewer. In order to handle an action,
it has to be dispatched to the correct handler. This can either be the client itself, in
which case it is converted to a command, or the model source, in which case it is sent to
the server. Commands implement an exceute() function that execute the command, and
undo() and redo() functions that are called when the user reverts the last changes (e.g., by
pressing the "CTRL+Z" keys)

A visual representation of the client’s life-cycle can be seen in Figure 4.1.

4.1.3 Workflow Language
Both prototypes have been implemented in the workflow example language server. This
section will briefly describe the workflow language and serve as a base for the following
sections. The workflow language server is similar to a UML activity diagram and is the
implementation that is used to demonstrate the general functionality of Eclipse-GLSP. Its
purpose is to describe the order and flow of activities necessary to finish a specific task.
It is a relatively simple language and, at the time of writing, consisted of the following
objects:

• Automated Task: Represents a task in the workflow that is performed automati-
cally. Has a duration.

• Manual Task: Represents a task in the workflow that has to be performed manually.
Has a duration.

• Fork Node: Splits up the workflow into two or more different paths. All paths are
mandatory and have to be followed.

• Decision Node: Splits up the workflow into two or more different paths. Represents
a point in the workflow where a decision has to be made. Depending on the decision,
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Figure 4.1: Visual representation of the life-cycle and responsibilities of the Eclipse graphical
language server platform client.
Image source: https://github.com/eclipse/sprotty/wiki/Architectural-
Overview (Accessed: 06.03.2022)

some paths are optional and only one has to be followed.
• Join Node: The counterpart to a fork node. It connects multiple mandatory paths.
• Merge Node: The counterpart to a decision node. It connects multiple optional

paths.
• Edge: An edge between two objects which describes the flow of the work. It can

connect tasks and nodes with each other.
• Weighted edge: An edge which additionally has a probability. It can only be used

as an outgoing edge of decision nodes and represents the probability of its occurrence.

An example of a simple workflow diagram can be seen in Figure 4.3a.

4.1.4 Prototype 1 - Semantic Zooming
Prototype 1 features semantic zooming. It allows a user to change the graphical represen-
tation of a model by zooming in or out. Depending on the current zoom level, an object
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can either show more or less details about itself. With semantic zooming, the information
that a specific object exists is not taken away, instead, each object only shows the most
important information about itself. At the lowest level, this could, e.g., only be their
title or outlines. The further the user zooms in, the more details are seamlessly added,
until, at the highest level, all details are shown. An example can be seen in Figure 4.2,
which shows the same model element in four different levels of detail. The goal of this
feature is to make it easier to comprehend large models by showing less information about
objects when zoomed out, and more information when zoomed in. This prototype will only
add/remove details about objects of the current information space (as explained in Section
3.5.3) An addition to this prototype would be to also add details of other information
spaces if applicable (as explained in Section 3.5.3).

(a) overview (b) intermediate (c) intermediate detail (d) detail

Figure 4.2: Screenshots of the developed prototype 1, showing the model at four different
zoom levels with automatically adjusted information visualization.

Level of Detail

This is implemented by giving language server developers the opportunity to define an
arbitrary number of discrete levels of detail on the server. These levels can then be used
throughout the server and the client. They consist of a name (name) and a zoom level
range (from and to) defined as [from, to[. This range is used to determine when a discrete
level of detail is active. Both values, from and to, are optional. If from is omitted, it
is treated as −∞, if to is omitted, it is treated as ∞. Developers are free to use their
own interpretation of a zoom level and these values. However, because the zoom level is
transferred between server and client, both of them have to have the same interpretation
of it. In the implementation of this prototype, the zoom level is a number x > 0 where 1
is considered the default zoom level. Everything above 1 is zoomed out and everything
below 1 is zoomed in. This is done because Sprotty uses the natural exponential function
on the deltaY value of the standardized UI DOM events to calculate the current zoom
level of the viewport. The defined discrete levels of detail (as seen in Figure 4.2) are the
following: detail [0, 0.25[, intermediate detail [0.25, 0.5[, intermediate [0.5, 1.25[, overview
[1.25, ∞]. Developers are responsible for the correct and full coverage of this range. Gaps
or overlapping levels may lead to undefined behavior in the current implementation.

All defined discrete LoDs can be requested by the client with the RequestDiscreteLevel-
OfDetail action. Because they are needed in order to render the model, this action is
usually one of the first that is dispatched to the server. The server responds with a
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SetDiscreteLevelOfDetail action, which includes all discrete LODs in the JSON format.
This information only has to be requested once and can then be cached by the client
because it is not subject to change.

Rules

Level of detail rules are used to trigger specific behavior on certain LoD levels. These rules
describe how specific graphical representations should be adjusted when the client enters a
specific level of detail. All rules consist of at least a type and information about when it is
supposed to be applied. Furthermore, depending on the type of the rule, they can include
additional rule-specific parameters.

Rule types The type of a rule defines the behavior of a rule. It is transferred in the type
field and, currently, there exist three types of rules:

• CssStyleRule: It allows to add certain CSS-styles to objects. Styles can be given
with the additional parameter styles. This rule alone is very powerful and can
accomplish most of the graphical adjustments. It can, for example, be used to
increase the font-size of text when a user zooms out, change the background-color,
or add transparency to elements. An example can be seen when comparing Figure
4.2a to 4.2b, which shows the same information about an object, but Figure 4.2a
has an increased font-size, so that the title of the task is still readable, even when
zoomed out. Additionally, the value of a given CSS-style can include the keyword
’$clevel’. On the client, all occurrences of this keyword are automatically replaced
with the current zoom level. This allows to make values be dynamically dependent
on the current continuous zoom level. This can, for example, be used to increase the
font-size of an element dynamically with every zoom event, instead of just once to a
static value.

• VisibilityRule: It allows to hide specific objects with the additional boolean pa-
rameter setVisibility. This rule is important and used often to completely remove
specific elements of an object. Its most common use case is to add certain details,
e.g., properties, of a model when the user zooms further in. An example can be seen
in Figure 4.2b and 4.2d, where two properties are added.

• LayoutRule: It allows to modify an element’s layout. The layout of an element
is usually defined by the server and can consist of properties such as padding,
horizontal/vertical gap, or a minimal width/height. It can, for example, be used to
increase the padding of certain elements at zoom levels that offer a lot of space. An
example can be seen when comparing Figure 4.2a to 4.2b. Figure 4.2a has a smaller
margin in comparison to Figure 4.2b, so that there is still enough space inside the
object to fit the text which has an increased font-size at that level.

Rule trigger The information about when a rule is supposed to be applied is stored inside
the trigger field. It can hold either a triggerDiscreteLevel, or a triggerContinuousLevel,
depending on whether it should be triggered on a discrete level of detail, or a continuous
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zoom level. Discrete levels of detail are references to the LoDs which were transferred
initially with the SetDiscreteLevelOfDetail action, and continuous levels are two double
values which specify a range in which the rule is supposed to be applied. Most of the time,
rules reference a discrete level of detail. This keeps all rules grouped together under the
label of a discrete LoD, which allows to change settings of multiple rules at once. Triggering
a rule by continuous zoom level should only be used in rare cases. Cases in which it does
not make sense to add an extra discrete LoD, such as when a single element has to be
adjusted in a range between existing discrete LoDs.

Rule application Additionally to the information about the type of a rule and its
trigger, a reference to elements that it is applied to has to be supplied. This can be done
on the server by instantiating rules and assigning them to elements by their type. Each
GModel element type can have zero or more rules which will be applied on their specified
discrete or continuous trigger. Often it is not enough to only use the type of a GModel
element as a reference. For example, the GModel representation of an icon can be used in
automated tasks and manual tasks in the workflow model. Although they have the same
type in both tasks, one may want to assign different rules to icons of automated tasks than
to those of manual tasks. This could not be done if references only consisted of GModel
element types. As a solution, a reference can also consist of a type selector, similar to CSS
selectors. More accurately, three selectors are currently implemented and behave the same
as their equivalent CSS selector: selector group (","), descendant selector (" "), and child
selector (">").

• Selector group (",")": Applies a rule to all selected elements in a group. E.g.:
"task:automated, task:manual" applies the specified rules to all manual and all
automated tasks,

• Descendant selector (" "): Applies a rule to all elements specified on the right-
hand side that are descendants of the elements specified on the left-hand side. E.g.:
"task:automated label:icon" applies the specified rules to all icons inside automated
tasks

• Child selector (">")": Applies a rule to all elements specified on the right-hand
side that are direct descendants (children) of the elements specified on the left-hand
side. E.g.: "task:automated > label:text" applies the specified rules to all text labels
on the first level of all automated tasks.

A further distinction between rules is whether they are applied on the server or the client.
There exist two types of rules, those that are applied to the GModel at server-level, and
those that are applied to the SModel at client-level.

Client-rules Most rules are executed on the client because the client has the information
about the current zoom level, and it is the client’s responsibility to render objects accordingly.
Nevertheless, the assignment of rules is language-specific information which is the reason
why they are defined and stored on the server. Since the client only has information about
how to apply specific rules but not about their assignments, these assignments have to
be transferred to the client, along with the model itself. This is done with a new action,
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right after the discrete LoDs have been transferred, but still before the model is requested.
Similarly to requesting the discrete LoDs, the client requests all level of detail rules and
their assignments with the RequestLevelOfDetailRules action, and the server response with
a SetLevelOfDetailRules action. The response contains a list of all element types that have
rules assigned, along with an array of all the assigned rules. This means that this request
only has to be done once and can then be cached and reused by the client.

Client-rules are applied during the rendering process on the client. The logic of a client-rule
is part of the client itself, the server merely provides information about what rule to apply
and when. This logic can be changed at will by language server developers, and new rules
can easily be added to the client. During the rendering process, the client also has access
to the current continuous zoom level. This means that a rule can integrate the current
zoom level into its logic and continuously adjust certain elements. An example for this
would be to continuously adjust the font-size of a label to the current zoom level. The size
of the font would then be adjusted whenever the user zooms in or out, instead of being
adjusted once by a fixed amount every time the discrete LoD changes.

Server-rules Server-rules are used in cases where a rule has to be applied on the GModel
before it is sent to the client. Cases where decisions made by the server directly affect the
rendering process of the client. Usually, these are fundamental changes to the layout that
cannot be done by the client. One disadvantage of server-rules is that the server does not
have information about the current zoom level of the client. Because of that, the server
does not know when to apply certain server-rules. Only the client knows the current zoom
level and has to provide it to the server. By default, the server assumes a zoom level of 1
because that is also the default zoom level of the client. Additionally, the current zoom
level can be provided by the client as an optional field in the requestModel action, which
makes the server apply all rules for that zoom level in the resulting setModel action. Not
only does the client have to provide the current zoom level, it also has to notify the server
whenever a server-rule is supposed to be applied. For this reason, all server-rules are also
transferred to the client, along with all client-rules. Whenever the client encounters a
server-rule, it has to request the model again to make the server apply the server-rule.
This shows why server-rules should be avoided when possible: They require an additional
server round trip whenever they are triggered.

An example for a situation where a server-rule would be required, is the adjustment of
the layout option resizeContainer. It tells the client whether to resize the parent of an
element, if the element becomes too large. If this was switched from false to true via a
client-rule, the client would not have correct bounds for this element because these are
calculated on the server.

4.1.5 Prototype 2 - Visualizing Off-screen Elements
Prototype 2 features the visualization of off-screen elements. It allows a user to see elements,
even when they are not positioned inside the viewport anymore. This is especially useful
when working with larger models or models that show a lot of details about its elements,
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as users tend to zoom in further. Zooming in narrows the view that a user has on a model,
which effectively pushes elements off-screen. By showing small indicators around the border,
similarly to the solution of Frisch and Dachselt [FD13], the context around an element in
focus is kept visible. As soon as an element becomes completely invisible because of, e.g.,
a zooming or panning event, they are replaced by smaller indicator elements which are
pinned to the border of the viewport. This increases the sense of orientation of users, even
with larger models or while zoomed in.

(a) Zoomed out version of the model as reference,
showing three automated tasks and two manual
tasks.

(b) Visualization of three off-screen tasks in the
form of off-screen indicators. The color of the
indicators gives information about their type (au-
tomated or manual).

(c) Visualization of off-screen elements with edges
connected to on-screen elements.

(d) Visualization of multiple off-screen elements
merged into one indicator to reduce cluttering.
The number represents the amount of combined
off-screen element indicators.

Figure 4.3: Screenshots of the second developed prototype

Nodes All nodes (tasks) that are moved off screen are replaced by smaller indicators
that are pinned to the border of the viewport. As soon as the original elements become
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visible again, its indicator is removed, and the original element is shown instead. Each
type of GModel element can have its own individually designed indicator. This can be
used to encode additional information into the indicators by, e.g., changing their form or
color accordingly. A visual example of three off-screen indicators can be seen in Figure
4.3b. The color of each indicator is used to encode the information about whether it is an
automated or manual task.

Multiple indicators at the same place can be merged together. This stops the border of the
viewport from getting cluttered and prevents multiple indicators from overlapping. The
visual representation of merged indicators differs from the others. An example can be seen
in Figure 4.3d. Instead of the colors of their original elements, they are painted in white
and include the number of merged indicators in their center. Being able to differentiate
between normal and merged indicators is an important aspect. This will prevent users
from looking for certain elements and thinking they disappeared even though they were
only merged with another indicator.

Edges Nodes in diagrams are not only identified by their name, but also by their position
and relationships that they have. For this reason, edges between elements play an important
role in combination with off-screen element visualization. They are vital to identifying
certain elements and keeping the mental map of a workspace intact. Although edges
are also considered elements of a model, they do not have off-screen indicators. In this
prototype, when an element disappears from the viewport, its indicator element serves as
the new port for all incoming and outgoing edges. In combination with their position, this
helps the user to quickly identify an off-screen element, even without the visualization of
their name. An example can be seen in Figure 4.3c, which shows two edges connected to
off-screen indicators.

Proxies All indicators also act as proxies for the elements they represent. Ideally, all
actions that can be performed on the original elements should also be able to be performed
on their proxy representations. For example, connecting an edge from an on-screen element
to a proxy of an off-screen element, should create an edge from the on-screen element to
the off-screen element that is represented by the proxy. This decreases the number of
actions that have to be performed to achieve a specific goal in many cases. In the above
example, a user would not have to zoom out first to make both elements visible to connect
them with an edge.

Navigation All indicators do not only act as a visual aid, they also help navigate the
model. Clicking on an indicator will automatically move the viewport to the element that
is represented by the indicator and center it. Additionally, the element that was clicked on
will also be selected. This does not only let the user start working with it immediately, it
also gives it a slightly different look which helps identifying it after the zooming/panning
event. This makes traversing a model much easier and faster because the user does not
have to manually perform zooming and panning actions. This functionality can also be
applied on merged indicators. When the user clicks on a merged indicator, all elements are
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selected, and the client automatically calculates and sets the zoom level of the viewport to
a value, in which all selected elements are visible.

4.2 Conception
This section will go over implementation details of both prototypes. It will describe each
added functionality and the files they are in. Furthermore, it will go into further detail
about the design, and it will bring up limitations and problems that were encountered
during the implementation.

4.2.1 Prototype 1 - Semantic Zooming
Prototype 1 required adjustments on the server-side and the client-side. It also required
additions to the protocol in the form of new actions. A sequence diagram of its most
important operations can be seen in Figure 4.4.

Server

The server is built exclusively in Java. Because of it being a prototype, the goal was not
to end up with a production-ready implementation. Nevertheless, during its conception
and implementation care was taken to allow for easy additions, e.g., in the form of new
rules. The following section will give an overview of the most relevant modules, interfaces
and classes on the server.

Discrete Levels of Detail All discrete levels of detail are defined in the file: Dis-
creteLevelOfDetailEnum.java, which holds a Java enumeration file. Each enumeration
entry consists of an LoD name (enumeration name), and two double values from and to,
Additionally, the static function getDiscreteLevelForContinuousLevel exists, which can
be used to convert a continuous zoom level to a discrete level of detail. This function is
needed to apply server-rules to the GModel and is used to convert the discrete zoom level,
which is sent by the client, to a discrete one.

Actions As already mentioned and explained in Section 4.1.4, this prototype intro-
duces two new actions that are handled by the server: RequestDiscreteLevelOfDetail, and
RequestLevelOfDetailRules. Both actions are handled by their respective handler class:

• RequestDiscreteLevelOfDetailActionHandler: It fetches all discrete LoDs that
were defined and converts them into a JSON object. This object is then sent to the
client in an SetDiscreteLevelOfDetail action.

• RequestLevelOfDetailRulesActionHandler: It fetches all registered rules, along
with the ids or selectors of the model elements that they were assigned to, and
converts them into a JSON object. This object is then sent to the client in an
SetLevelOfDetailRules action.
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Figure 4.4: Most important operations of prototype 1 visualized in the form of a sequence
diagram. It shows the initialization process of the client which requests all required
information from the server, followed by operations performed during the rendering process
of a model.

Rule Registry Before the server can send rules to the client, they have to be registered.
The file where this is done, is called WorkflowLevelOfDetailRuleRegistry.java. It includes a
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class which inherits from the default rule registry DefaultLevelOfDetailRuleRegistry. The
default rule registry exposes a function registerRule that has to be used to register new rules.
As a parameter, it takes the type of a GModel element or a selector as explained in Section
4.1.4, and an instance of a rule. An example of a rule registration can be seen in Listing
4.1. Calling the registerRule function assigns a rule to the specified element, which is then
transferred to the client with the SetDiscreteLevelOfDetail action. By using selectors, this
JSON object, and therefore the response, can be kept relatively small, because even if
the GModel consists of, e.g., 100 automated tasks, each rule is only included once in the
response. Another solution would have been, to reference each GModel element by its
unique id instead of with selectors. While this causes the response to increase in size by a
lot in certain cases, it would allow two elements of the same type to have two completely
different rules. Usually, all elements of a type are supposed to behave the same which is
why there is no need to assign different rules to the same model types. The advantage of
this solution would be that the client does not have to evaluate any selectors.

Currently, only child (">") and descendants (" ") selectors are supported. These two are
already sufficient to cover most use cases. In cases where these two selectors are not enough,
a new GModel type has to be defined for just those elements that need additional rules.
While the logic of these selectors is currently part of the code of this prototype itself, in
the future, the support for more selectors could be added by integrating entire selector
engines, similarly to a CSS selector engine.

1 LayoutRule rule = new LayoutRule(
2 new GLayoutOptions()
3 .paddingBottom(3D)
4 .paddingTop(3D)
5 );
6
7 rule.addLevelOfDetailRuleTrigger(
8 new LevelOfDetailRuleTriggerDiscrete()
9 .addDiscreteLevelOfDetail(DiscreteLevelOfDetailEnum.OVERVIEW)

10 );
11
12 registerRule(
13 ModelTypes.AUTOMATED_TASK + "," + ModelTypes.MANUAL_TASK,
14 rule
15 );

Listing 4.1: Java code that shows the registration of a new rule which changes the size of
the bottom and top border. The rule is registered for all automated and manual tasks of
the workflow language by using the "," selector. Furthermore, a trigger is added to the
rule which activates it when the client enters the discrete level of detail "Overview".

Rules As already mentioned in Section 4.1.4, three concrete rules currently exist:
CssStyleRule, VisiblityRule, and LayoutRule. Each rule is a descendant of the interface
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LevelOfDetailRuleInterface and the abstract class LevelOfDetailRule.

• LevelOfDetailRuleInterface: Each rule, independent of whether it is applied on
the server or client, inherits from this interface. It exposes functions that are required
by all rules, namely getter and setter functions for the trigger information.

• LevelOfDetailRule: It implements all functions of the LevelOfDetailRuleInterface
interface. Concrete rule classes inherit from this class.

Information about when a rule is supposed to be applied is stored inside either a Level-
OfDetailRuleTriggerContinuous or a LevelOfDetailRuleTriggerDiscrete object. Both classes
inherit from the LevelOfDetailRuleTrigger interface and new concrete trigger classes could
easily be added.

• LevelOfDetailRuleTrigger: It has a type, which is used to identify the concrete
trigger class. It exposes a function isTriggered(double continuousLevel), which returns
a boolean that can be used to check whether a trigger is currently active. It has to
be implemented by all concrete rule trigger classes.

• LevelOfDetailRuleTriggerContinuous: A concrete implementation of a trigger
for a continuous level of detail. It requires two parameters from and to and is
considered active when the current zoom level is between from and to.

• LevelOfDetailRuleTriggerDiscrete: A concrete implementation of a trigger for
a discrete level of detail. It requires one parameter of the type DiscreteLevelOfDe-
tailEnum and is considered active, when the current zoom level is between the defined
from and to values of the given discrete LoD.

Classes that inherit from the abstract LevelOfDetailRule class can be used as client-rules.
Their structure is understood by the RequestLevelOfDetailRulesActionHandler and, once
registered in the registry, they are sent to the client if requested. The client interprets
them as a normal client-rule.

Server-rules require a slightly different treatment. Not only does the server require
additional logic to apply them, they also have to be transferred to the client in a different
form than client-rules. Unlike client-rules, all the client needs to know about a server-rule
is the fact that is a server-rule, and its trigger information. No additional rule-specific
parameters are needed, because the client does not have to execute any rule-specific logic.
On the server, there exist two additional classes for server-rules:

• LevelOfDetailServerRule: It is an interface that inherits from the LevelOfDetail-
RuleInterface. It exposes a function handle(GModelElement element) which takes a
GModel element as parameter and applies the logic of a concrete server-rule to the
element. All server-rules have to implement this function.

• LevelOfDetailServerRuleTransfer: It is used as an envelope to transfer server-
rules to the client and exposes nothing but the type of a rule and its trigger information.
When the client requests all rules, the RequestLevelOfDetailRulesActionHandler
automatically creates new instances of this class for each registered server-rule and
converts them into JSON objects.
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Server-rules are handled inside the already existing ModelSubmissionHandler. It is respon-
sible for sending setModel and updateModel actions to the client. Before this is done, a
call to the function applyLevelOfDetailRules() of the class LevelOfDetailHandler is done.

• LevelOfDetailHandler: It exposes a function applyLevelOfDetailRules() and is
responsible for applying server-rules to the current GModel. The function traverses
the entire GModel tree and checks each element for referenced rules. If rules exist
for an element, it is checked whether the rule is currently triggered. In case it is
triggered, the handle() function is called and the rule is applied to the element.

Changes to the Language Besides changes to the protocol, the workflow language
had to be changed as well. This was mainly necessary to add additional compartments for
properties that can then be enabled and disabled with rules depending on the zoom level.
Two labels have been added: One to display the duration and one to display the type of
the task. Both of them are hidden on the default zoom level and displayed when the user
zooms in. All other defined rules are applied to graphical elements that already existed in
the original workflow language.

Client

The architecture of the client is very similar to that of the server. Most classes and
interfaces defined on the server can also be found on the client.

Discrete Levels of Detail Discrete levels of detail are fetched via an action and then
stored on the client for the entire remaining session. Each discrete LoD is stored inside an
instance of the class DiscreteLevelOfDetail:

• DiscreteLevelOfDetail: It consists of three variables: from, to, and name. Just as
on the server, from, and to are used to store the range in which a level is supposed
to be applied. The variable name is used to store the name of a level.

Actions Two new actions were added that are handled by the client: SetDiscreteLevel-
OfDetail and SetLevelOfDetailRules. Both actions are handled by their respective handler
classes:

• SetDiscreteLevelOfDetailActionHandler: It takes the received JSON object
and converts all discrete LoDs into DiscreteLevelOfDetail TypeScript class objects.
These objects are then stored inside the LevelOfDetail class object, which has to
access and use them throughout the remaining session. Furthermore, when this
action is received, the current discrete level of detail is determined and stored by
fetching the current continuous level of detail of the stage and converting it into a
discrete one.

• SetLevelOfDetailRulesActionHandler: It takes the received JSON list of all
rules that are defined on the server, and converts them into their respective TypeScript
classes. Just as the discrete LoDs, they are then stored inside the LevelOfDetail class
object, which needs to access them throughout the remaining session.
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Rules In order for the client to understand all rules that were received during the SetLevel-
OfDetailRules action, they have to have an implementation on the client. All rules inherit
from the interface LevelOfDetailRuleInterface and the abstract class LevelOfDetailRule:

• LevelOfDetailRuleInterface: It exposes the basic fields which are required in all
rules. Namely trigger, which holds information about when this rule is supposed to
be applied, type, which holds the unique type of the rule, and isServerRule, which is
used to tell if a rule is a server-rule.

• LevelOfDetailRule: Each rule inherits from this abstract class. It inherits from
LevelOfDetailRuleInterface and adds additional logic that is required by every rule.
Among them are implementations for two functions: isTriggered(), which is used to
determine if the rule is currently active, and isNewlyTriggered(), which is used to
determine if a rule has become active in the most recent zoom event.

Just as on the server, information about when a rule is supposed to be applied is stored
inside either a LevelOfDetailRuleTriggerContinuous or a LevelOfDetailRuleTriggerDiscrete
class. Both of them inherit from the abstract class LevelOfDetailRuleTrigger, possess the
same fields, and have the same function implementations as their equivalent class on the
server.

All concrete rules on the client require an implementation of the handle() function. This
function takes a graphical element that is about to be rendered on stage as an argument.
Rule-specific logic can then be applied on the model inside this function, before it is
returned and rendered. Currently, the following logic is applied on existing rules:

• CssStyleRule: It appends all CSS styles of the rule to the received graphical
element.

• VisibilityRule: Depending on whether the rule-specific parameter setVisibility is
true or false, this rule adds or removes the CSS class hidden to the graphical element.
This CSS class sets the CSS display property to none, which removes the element
from the stage.

• LayoutRule: It appends all layout options of a rule to the received graphical
element.

Each type of rule or rule-trigger has to be registered in order for the client to understand
and use it. This can be done with the registerLevelOfDetailRule(), and registerLevelOfDe-
tailRuleTrigger() function. Unlike the rule registry on the server, registering a rule on the
client only makes the client aware that a rule exists by creating a connection between a
unique type and its concrete class. It does not create connections between rules and model
elements. This is done only on the server and then fetched by the client. Once a rule or
rule-trigger is registered on the client, the client is able to initialize instances of it when
necessary.

The class LevelOfDetail is another important class related to rules which is injected into
many other classes throughout the client.

• LevelOfDetail: It is a singleton instance which is instantiated during the initializa-
tion of the client. Among its responsibilities are the conversion of rule JSON objects
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to TypeScript objects, conversion of continuous levels of detail to discrete levels,
storing rules and their assignments, and looking up and returning all assigned rules
for an object id which involves the evaluation of selectors.

Zoom Listener The zoom listener (class ZoomListener) is another new addition of this
prototype. It inherits from the already existing MouseListener and is an event-listener
that listens to the standard "wheel" DOM event. Every time, a wheel event is triggered,
the listener fetches the current zoom level of the viewport. In the current implementation,
the zoom level is calculated with the event’s deltaY value, which represents the vertical
scroll amount of the performed event. The zoom listener keeps a copy of the last zoom
level in memory. This copy always represents the current zoom level of the viewport and
can be fetched by other modules in case they need it. Currently, only the mouse wheel can
be used to increase or decrease the zoom level.

Rendering Once the client has all information about LoDs, rules, and rule assignments,
they can be applied to the SModel. This is done during the rendering process of the elements
in the class LevelOfDetailModelRenderer, which inherits from the class ModelRenderer.
Furthermore, the class LevelOfDetailRenderer is used to apply rules.

• ModelRenderer: It is the default implementation which is used to render model
elements. It consists of two functions renderChildren() and renderElement(). The
renderChildren() function is used to call renderElement() on all children of an element,
and renderElement() calls the render() function of the given view-element.

• LevelOfDetailModelRenderer: It overwrites the default renderElement() function
and adds additional functionality. In the function, when the root element is about
to be rendered, it is checked if a new server round trip has to be made. This can
occur on two occasions: (i) the client encountered a server-rule which has to be
applied, and (ii) the client encountered a rule which requires the server to re-create
the layout of the model. (ii) occurs when the server is responsible for sizes of objects
and the client tries to apply a rule which changes this size. In both cases, the client
sends a new RequestModel action to the server. The server applies all server-rules,
recalculates the sizes with the help of a RequestBounds action, and sends the model
back to the client. Currently, a switch between discrete levels of detail always triggers
a new server round trip to recalculate sizes. Another new functionality added by
the LevelOfDetailModelRenderer is a call to the class LevelOfDetailRenderer, which
applies all relevant rules to model elements.

• LevelOfDetailRenderer: This renderer consists of two functions checkForReren-
der(), and prepareNode(). The function checkForRerender() is used to check if a new
server round trip is required. It does this by using the isNewlyTriggered() function
of all rule instances. If any of the rules have become active since the last time this
was checked, this function returns true. The prepareNode() function is used to apply
all relevant rules on an SModel element by calling the handle() function of each rule.
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4.2.2 Prototype 2 - Visualizing Off-screen Elements
Unlike the first prototype, this prototype only consists of client-side functionalities. For
this reason, no additions or changes to the server were needed. With the exception of small
additions in HTML and CSS, the prototype is built entirely in TypeScript. The following
section will give an overview of the most relevant algorithms, interfaces and classes of the
implementation. A sequence diagram of its most important operations can be seen in
Figure 4.5.

Figure 4.5: Most important operations of prototype 2 visualized in the form of a sequence
diagram. It shows operations performed during the rendering process of a model.
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Indicators Each original model element, which is supposed to have off-screen indicators,
needs to have a defined model and view. The model is defined in the file models.ts
and acts as the SModel element which is going to be displayed. The view is used to
render the SModel element and is defined in the file off-screen-views.tsx. Each model
then has to be registered for the client to be aware of it. This is done by calling the
public registerOffScreenModelElement() function. It creates a connection between the
original SModel type, the SModel indicator element, and the indicator view definition.
Each registration tells the client to replace all elements of that type with the specified
off-screen indicator once they are moved off screen.

Positioning Indicators Indicators are always positioned at the border of the viewport.
To not cause confusion when an element disappears from the viewport and the indicator
element becomes visible, the indicator has to be at a position close to the element it
represents. The algorithm calculates the position by checking on which side of the viewport
the invisible element currently is. Here it differentiates between, either left or right, and
top or bottom. If the element is at the left or the right, the y-coordinate of the indicator is
set to the same value as the y-coordinate of the element. If it is at the top or bottom, the
x-coordinate is set instead. Furthermore, they will be restricted from going below or above
the bounds of the viewport. This will prevent the indicator from disappearing off-screen,
which can happen when an element is at a corner of the off-screen area (e.g., both, top
and left of the viewport). The remaining coordinate will be set to the same value as that
of the viewport’s border at the respective side. E.g., if the off-screen element is to the
left of the viewport, the indicators x-coordinate will be set to the x-coordinate of the left
border of the viewport, and its y-coordinate will be set to that of the element. With this
algorithm, the indicator is always rendered at the position on the border of the viewport
that is closest to the element that it represents.

Overlapping Indicators As already mentioned, indicators that overlap with other
indicators are merged into one. The merging algorithm is kept simple and just checks
for groups of overlapping indicator elements and combines them. A group of overlaps is
considered two or more indicator elements that do not have empty space between them. If
a group is formed, the average position of all represented elements is calculated, which is
going to be used to calculate the position of the new merged indicator element.

During manual tests of the overlapping implementation, we realized that, while moving the
viewport around, elements were popping in and out a lot. This led to confusion and loss of
track of off-screen elements. The reason for this behavior was that during panning events,
the calculated position of the indicator elements is constantly adjusted. The adjustment
of an indicators position could cause new overlaps to appear or old ones to disappear.
In many situations where a lot of indicators are close together, this adjustment causes
them to merge and separate often. To mitigate this behavior, a configuration variable
OVERLAP_SIZE_MULTIPLIER was added, which can be used to increase or decrease the
size of an indicator element only during the calculation of existing overlaps. For example,
a value of 2 would cause all indicators to appear twice as large to the algorithm during the
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calculation, which causes indicators to form larger groups and be merged together more
easily. A value of 4 seemed to be a good compromise between having less elements pop in
and out, and not having indicators merge too quickly.

Proxies Each registered off-screen indicator acts as a proxy for the original element it
represents. Most interactions that can be carried out on the original elements, such as
connecting edges, context menus, or tooltips, can also be carried out on the indicator
element. This behavior is implemented by taking the original element and changing its
appearance and position to that of the indicator element. Instead of having to re-implement
existing interactions to also work on indicator elements, this keeps most of the original
interactions intact and working out-of-the-box.

Click Listener Additionally to all existing interactions, one new interaction was added
as well. Clicking on an indicator moves the viewport to the original element. This is done
by implementing a new mouse listener in the class OffScreenElementMouseListener.

• OffScreenElementMouseListener: It inherits from the existing MouseListener
class and listens to the mouseUp event on SModel elements. When it is triggered,
it is checked whether the element is an off-screen indicator element or not. Next,
the number of overlapping indicators is counted. In case of only one element, the
action CenterAction is applied, which moves the viewport to center one element
(the original SModel element) on the stage. In case of multiple overlaps, the action
FitToScreenAction is applied, which changes the zoom level and position of the
viewport to a point in which all elements (all SModel element that the overlapping
indicator represent) are visible. Furthermore, it applies a Select action, which selects
all original elements that are represented by the indicators.

Edges Edges are usually represented by arrows pointing from one element to the other.
Even when the source or target element is off screen, these arrows are still rendered and
visible. In this prototype, the origin or end position of an arrow pointing to or from an
off-screen element is adjusted to the position of its off-screen indicator element instead.
This is done in the class WorkflowEdgeView.

• WorkflowEdgeView: It inherits from the existing view implementation of edges
and overwrites them. The difference to the original implementation is that, before
the edge is rendered, the source and target elements are replaced by their indicator
elements, if they currently exist.

Another change to the default implementation of edges is the calculation of the exact
positions of their beginning and end. Because indicator elements are not part of the
main information content of the editor, they are always kept at a relatively small size at
the border of the viewport This is implemented by using the SVG scale transformation
to always stay at the same size, independent of the current zoom level. The existing
implementation of the calculation of their start and end position did not consider the scale
attribute, which resulted in arrows pointing to wrong positions when the current zoom
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level was anything other than 1. For this reason, a new implementation of anchor points
was added inside the class RectangleScaledAnchor.

• RectangleScaledAnchor: It inherits from the class RectangleAnchor which contains
the original implementation and overwrites the function getAnchor(). This function
is used to calculate the position at the border of an element (edge start position)
relative to another point on the stage (edge end position). It reuses the original
implementation but multiplies the height and width of the received element by the
value of its scale attribute.

Rendering Before all indicator elements can be rendered, they have to be prepared.
This preparation consists of the following steps: (i) instantiating indicator elements for each
element which is currently off screen, (ii) calculating their position around the viewport’s
border (iii) finding overlapping indicators, and (iv) calculating the new position of merged
indicators. All these tasks are triggered every time the stage is rendered inside the root
view of the workflow language, and are performed by the class OffScreenElements.

• OffScreenElements: It stores necessary information related to off-screen elements.
Among them are all registered off-screen views and their models, and the most
recent indicators with all their calculated positions and overlaps. Furthermore, it
provides the most important functions related to off-screen elements. Among them
are functions to calculate indicator border positions and find overlaps. Additionally,
it provides a renderOffScreenElement() function, which looks up the correct view for
the received type, and calls the render() function of it.

Once all indicator elements are instantiated and ready to be used, they are rendered with
the help of the class OffScreenElementRenderer.

• OffScreenElementRenderer: This class inherits, similarly to LevelOfDetailRen-
derer, from the ModelRender, which is explained in more detail in Section 4.2.1. This
renderer adds small changes to the original renderElement() function. Before an
element is rendered, it is checked if it is currently visible. If it is not, the rendering
is delegated to the renderOffScreenElement() function inside the OffScreenElements
class.

4.3 Evaluation & Discussion
Both prototypes have been successfully integrated into the Eclipse Graphical Language
Server Platform, and are fully functional and usable with the current version of the workflow
language. Prototype 1 represents an effective way of condensing visible information based
on the current zoom level. It uses a rule-based approach to define descriptions for the
adaptation of graphical elements that consists of client- and server-rules. Its logic is split
up into rule-definition, rule-assignment, and rule-application, which are either executed
on the server- or client-side. With that, the prototype demonstrates how to integrate
a semantic zooming functionality into a client-server architecture by providing a clear
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separation of concerns. Furthermore, it provides an extendable architecture, e.g., in the
form of interfaces for the definition of new rules, which can be used by developers to easily
add new functionalities. During the conceptualization, care was taken to keep the current
version of the graphical language server protocol intact, and the additions/changes at a
minimum. This was accomplished by adding two new optional actions and their respective
responses, and one change in the form of an additional parameter for the requestModel
action.
Prototype 2 adds the visualization of off-screen elements to the client. It extends the
already existing functionality of the client implementation to demonstrates how to add
cues about off-screen elements at the border of the viewport. This helps users, not only
to create a strong mental image of their workspace, but also to increase the contextual
awareness that they have, by providing contextual information about elements surrounding
the viewport in the form of off-screen indicators. Furthermore, it provides new ways of
navigating the workspace, which decrease the time that is required to reach off-screen
elements. What previously had to be done with potentially multiple zooming and panning
actions can now be done with a simple click on an off-screen indicator. It also eliminates
the need of scrolling and panning actions for other actions, e.g., connecting edges from
on-screen to off-screen elements, by making each indicator act as a proxy for the respective
off-screen element. Unlike prototype 1, it operates entirely on the client and does not
require any new server functionalities. While it is integrated into the workflow language,
its functionality is kept universal, and it can therefore also be used in combination with
other node-like languages.
Ultimately, the goal of the implementation of these prototypes is to answer the research
questions given in Section 1.2. The first question deals with the choice of their functionalities
and tries to answer the following:

1. What is an appropriate means to improve the visualization of large models and
interaction with them in GLSP-based modeling tools.

This question is answered with the help of the taxonomy (Section 3) and the knowledge that
was gained during its development. The reason why these two functionalities were chosen,
was because they represent a good mixture between genericity, development complexity,
and increase in usability. Both chosen features represent functionalities that are generic
enough to act as a good foundation for a prototype in a new environment but are also
specific enough to be used in the domain of modeling tools. More details about the
reasoning can be found in Section 4.1.1.
The second research question deals with the conceptual decisions of both prototypes:

2 How to generalize the concept/solution towards being applicable for other modeling
languages/GLSP-based modeling tools.

With the successful integration of both prototypes into the Eclipse Graphical Language
Server Platform, we provided an exemplary solution for the integration of advanced
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visualization and navigation features in the currently largest GLSP-based modeling tool.
During the conceptualization of both prototypes, a focus was put on keeping it universal
and abstract. The detailed descriptions of their concepts in Section 4.1.4 and Section
4.1.5 are kept mostly independent of any concrete platforms. For this reason, they provide
a good basis for integration of such features into other tools and platforms. Sections
4.2.1 and 4.2.2 describe their implementations in more detail and are therefore specific
to Eclipse-GLSP. Because Eclipse-GLSP currently represents the most advanced GLSP
environment, we believe that the developed concept of the prototypes can also be applied
to other environments, and potentially also to any future versions of Eclipse-GLSP or
other advanced GLSP environments without complex modifications. The main logic of
the prototype implementations can be reused in other language servers that are based on
Eclipse-GLSP without much effort. What cannot be avoided is additional configuration
and adaptation to new graphical elements that may be required in other languages. All in
all, we believe that the given concepts provide a good description for an integration of the
chosen features into GLSP-based modeling tools. Furthermore, the implementations of
both concepts prove their validity and provide a solid foundation for further additions or
improvements in future works.

During the development of both prototypes, many things were learned and new ideas
came up. The remaining parts of this chapter will give insight about limitations and
improvements that could be made.

4.3.1 Limitations & Improvements
While both prototypes are fully functional and usable, they still display some limitations
that ideally have to be addressed before they can be used at a larger scale. The following
sections will go into further detail about limitations and potential solutions to them, and
other improvements that can be made to both prototypes.

Prototype 1 - Semantic Zooming

The first prototype was not only more sophisticated to conceptualize and develop, it was
also the one that more time was invested in. It required a slight adjustment of the existing
protocol (addition of a zoom level parameter in the requestModel action) and two new
server-side actions. Both of these changes are optional and do not have to be called or
used. The same goes for the zoom level parameter, which does not have to be set either.
This means that the server can still be used, even with clients that do not actively use
semantic zooming. Depending on the changes that had to be made to the GModel of a
language, a client without semantic zooming would usually always display the model at
the lowest level of detail.

Animations Each time the discrete level of detail is changed, an animation is played that
transitions elements from one state to the next. A limitation in the current implementation
is that during this animation, no new user interaction events are processed. This is
especially noticeable and problematic when zooming in or out in one continuous motion
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with, e.g., the mouse wheel. During the animation, the zoom event is not recognized, which
causes the continuous zoom event to be stopped for the duration of the animation. This
seems to be a limitation of the Sprotty framework, which is the reason why it was only
solved with a workaround instead of a fix. The workaround was to change the interval in
which animations are played to a smaller amount (∼200ms). This caused the animation to
be played long enough to still be visible, but fast enough to not noticeably disrupt zooming
events.

Server Round Trips Another limitation is the additional server round trips that are
required during every change in discrete level of detail. Because the server is responsible
for the calculation of some values during the rendering process, such as the size of elements,
the client needs to make a request to the server before it can re-render the diagram. While
this is usually not a problem with discrete levels of detail, working with rules that are
triggered continuously would require an extra server round trip every time a zoom action
is performed by the user. This can also be a problem when using the $clevel keyword in
client-rules. If, e.g., the continuous zoom level is used to dynamically change the size of
an element on the client, the server needs to be notified to recalculate the sizes of other
elements that are affected by it. A reduction of required server round trips would increase
the responsiveness of the client and save resources, such as bandwidth and processing
power.

GModel Selection As already mentioned before, sometimes the existing functionality
to select elements that are assigned a rule is too vague. Often, the same element type
is used multiple times in a diagram but different rules depending on where the element
is located are required. In some cases, this cannot be realized properly with the current
solution, even with the implemented child and descendant selectors, and a workaround is
needed. This workaround consists of the type of a specific element having to be replaced
with a unique one, which can then be used to directly reference these elements. This
could be prevented with integration of a full selector engine, similar to the CSS selector
engine. It would allow for a much bigger variety in element selection and greatly reduce
the occurrence of this problem.

Dynamic Size Adjustments Currently, the implementation automatically adjusts the
size of each diagram element to the size of its content. This means that, e.g., whenever a
property is made visible by a rule, the parent’s size is adjusted to fit the new property.
While this is intended behavior in the current implementation, it can, in very rare cases,
be the cause for a structural change which destroys the user’s mental map, as described
in Section 3.4.2. In most cases, an element is only adjusted very slightly, which does not
change the overall structure at all. A potential solution to this problem would be to only
show further elements once there is enough space for it instead of at a fixed zoom level.
E.g., when the user zooms in, the newly created space inside model elements is calculated
and new properties are added if they fit into this space. This would keep all elements at a
constant size instead of making small adjustments on every change of discrete level of detail.
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The problem here is that, in the current implementation, the client cannot calculate the
correct sizes for each element, because part of that responsibility is also on the server-side.
In order to calculate the correct size, the server would have to be asked each time an
element is rendered. This requires some fundamental changes which is why this feature
has not been added in this prototype. Furthermore, this introduces other problems such
as two tasks of the same type adding a property at different zoom levels because one has a
longer value than the other.

Prototype 2 - Visualizing Off-screen Elements

The second prototype is currently only implemented on the client which is why the protocol
has not needed to be adjusted. This brings us to its first limitation.

No Integration of the Server The questions, whether the server is supposed to be
involved in the visualization of off-screen indicators, is not answered easily. On the one
hand, indicator elements are not directly part of the model, do not have to be persisted,
and are directly dependent on information that only the client has (e.g., position and
bounds of the viewport). All of these reasons speak for an implementation of the client
side. On the other hand, being able to control the visualization of off-screen elements from
the server speaks in favor of the goal of LSP, which is to prevent having to implement the
same functionality multiple times for different clients.

With the current workflow of GLSP, it is hard to shift the entire feature to the server-side
for mainly two reasons: (i) the server does not have necessary information that are needed
to determine the position of indicator elements. The positioning of indicators depends on
the position and size of the viewport which have to be sent to the server. (ii) the positions
of all indicators have to be adjusted during all zooming or panning events. If the server is
responsible for the positioning of indicators, this would require a server round trip during
and after every event. This would increase the number of required round trips significantly.

Event though, in this prototype, the complete functionality lies on the client, ideally,
it should be distributed among the server and the client. Because only the client has
all necessary information, the logic which determines the position and size of indicators
should be kept on the client. The server should still be able to have a saying in multiple
configurational matters. Examples are: which elements should have indicators and which
elements do not need any, CSS classes of indicators of different elements, configuration
about when to merge which elements together, or the content inside indicator elements.
All clients can then be implemented to understand the configuration, which is supplied by
the server.

Additional Configuration Parameter Another improvement that can be made is the
addition of configuration parameter to the client. Currently, the only parameter is the
value of OVERLAP_SIZE_MULTIPLIER, which determines how close elements have to
be together for them to merge. Another important parameter that is not implemented
currently, is the maximum distance to the center of the viewport that elements can have,
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before their indicators are not rendered anymore ("area of influence" [FD13, p. 143]).
Elements that are too far away or have no relationship with the currently visible elements
are often not relevant, and only decrease the performance or clutter the workspace. For
this reason, and with the correct algorithm, they could potentially be omitted.

Identification of Indicators Knowing which indicator represents which model element
can often be difficult but is required for an efficient utilization of this prototype. Currently,
there exists three parameters which give information about the model it represents: (i)
its position, (ii) its color, and (iii) its edges. This is often not enough and can be further
improved, e.g., with ideas given in [FD13]. They visually adjust indicators with, e.g., a
stacking effect for multiple indicators at the same location, or 2D representation of off-
screen elements and their relationships to other elements. Furthermore, they also propose
to add specialized interactions for indicators. Among them are tooltips, which show the
full name of all elements represented by indicators, or even a full visual representation of
their layout with relationships.

Positioning of Indicators Originally, we implemented a different algorithm to position
indicator elements. The algorithm can be explained as follows: An imaginary line is drawn
from the center of the element to the center of the viewport. Now, the intersection point of
that line with the border of the viewport is calculated and the indicator is rendered at that
point. While this represents a good alternative strategy to position indicator elements,
we decided to change it to the current algorithm, because it sometimes caused indicator
elements to appear at unexpected locations. For example, when an element with a large
horizontal size is moved off screen at the bottom of the left border of the viewport, its
indicator will appear further above than most would expect. The reason for this is that
the center of the element, which is used as a reference point for the calculation of the
indicator’s position, is already much further off screen than the remaining visible part of
the element, but the indicator is only shown once the original element is completely off
screen. This causes the intersection point with the center of the viewport to be further
above than the position where the element was last seen by the user. As a solution, we
changed the algorithm to the one that is explained in Section 4.2.2, which does not have
this problem.

4.3.2 Performance
For both prototypes, a small internal test has been conducted. The goal of this test was
to find out how the implementation behaves with a diagram which consists of a large
number of elements. The test was conducted by performing simple zooming and panning
interactions on a diagram which consists of a defined number of tasks and edges, and
checking at what point there is a noticeable delay for these interactions. As a reference
point, the original implementation of the original workflow language server has been taken.
Furthermore, the time that the rendering of all elements takes has been measured for each
iteration. The results were as follows:
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Elements Event Render Time
O
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l

10 Tasks/10 Edges Zooming ∼1ms
Panning ∼1ms

100 Tasks/100 Edges Zooming ∼5ms
Panning ∼5ms

500 Tasks/500 Edges Zooming ∼33ms
Panning ∼32ms

P
ro

to
ty

pe
1 10 Tasks/10 Edges Zooming ∼1ms

Panning ∼1ms

100 Tasks/100 Edges Zooming ∼13ms
Panning ∼11ms

500 Tasks/500 Edges Zooming ∼68ms
Panning ∼57ms
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ro
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2

10 Tasks (0 Indicators)/10 Edges Zooming ∼1ms
Panning ∼1ms

100 Tasks (0 Indicators)/100 Edges Zooming ∼7ms
Panning ∼6ms

100 Tasks (99 Indicators)/100 Edges Zooming ∼8ms
Panning ∼6ms

500 Tasks (0 Indicators)/500 Edges Zooming ∼38ms
Panning ∼39ms

500 Tasks (499 Indicators)/500 Edges Zooming ∼57ms
Panning ∼61ms

Table 4.1: Performance test results

Throughout the entire test, both events, zooming and panning, showed very similar
rendering times. Furthermore, the measured times of both prototypes were very similar to
each other, and roughly twice as high than those of the original implementation. This can
be led back to the additional logic that is executed during each iteration of the rendering
function in both prototypes. It is to say that, while the performance aspect was not
completely neglected during the development of the prototypes, a good performance was
not a primary focus. For this reason, the performance can probably be improved in many
parts of the prototypes, especially by caching calculations and reusing them.

For the subjective evaluation, a slight unresponsiveness could be felt during the execution
of the test with 100 Tasks. This delay was barely noticeable and could only be felt when
a direct comparison to a diagram with fewer tasks was given. During the execution of
the test with 500 Tasks, the delay became very noticeable. This could be felt even more

96



4.3. Evaluation & Discussion

during the execution of prototype-specific functionality. For prototype 1, during the switch
between discrete levels of detail, and for prototype 2, while displaying multiple indicators.
Especially the switch between discrete levels of detail added a noticeably long delay to the
interaction, which is not reflected in the rendering times. It can probably be attributed
to the additional server round trip that has to be made in prototype 1. Besides that,
the additional prototype-specific logic of both prototypes also plays a major role in the
differences in responsiveness.

It is to note, that we intend both prototypes to be used in combination with models created
by humans (see definition of conceptual modeling by Mylopoulos [Myl92]). With a large
number of entities, a model often becomes too complex, unmanageable, and difficult to
understand [Moo97]. For this reason, we do not expect the number of entities of models
that utilize either of the two prototypes to go as high as 500 or even 100. This performance
test was merely conducted to get a feeling for the current technical limit of the prototypes.
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CHAPTER 5
Summary & Conclusion

The final goal of this work was to successfully combine language server protocol driven
modeling tools with advanced visualization and interaction tools. Visualization and
interaction features that ultimately provide ways to make the processes of working with
large models more efficient and increase productivity. In order to achieve this, this work
was split up into three major parts: (i) Establishing the current state of such features in
today’s modeling tools and diagramming software, (ii) creating an overview of features
that have the potential to achieve our set goals, and (iii) integrating chosen features into
a suitable environment in the form of a prototype.

Part (i) has been conducted in the course of our state-of-the-art analysis. We looked at
multiple known modeling tools, such as Eclipse Modeling Tools and Microsoft Visio, and
came to the conclusion that only a surprisingly small number of tools offer support for
advanced interaction and visualization features. Most features that we could find, for
example, a basic minimap or simple buttons to show/hide additional information of certain
elements, were still rather basic and known concepts. In order to utilize more advanced
features, such as semantic zooming, they would have to be implemented first in one of
the tools’ supported scripting languages, such as VBA or JavaScript. Even though some
tool providers offer help in that regard with guides and tutorials, this still requires model
engineers to possess knowledge in the field of software development.

Part (ii) has been conducted with the help of a taxonomy that was created in the course
of this work. We presented a generic taxonomy of advanced information visualization with
applications to conceptual modeling. The taxonomy structures visualization features along
the three higher-level dimensions Presentation, Interface, and Data. On lower levels, the
taxonomy further defines seven dimensions, each of which with specific characteristics. We
evaluated the usefulness of the taxonomy with ex-ante and ex-post taxonomy evaluation
methods by relating it to existing research and by applying our taxonomy on real-world
objects, among them a self-developed prototype, respectively. This taxonomy combines
established categorizations with new and original ones. From a scientific viewpoint,
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5. Summary & Conclusion

combining those two forms a novel taxonomy with an expressivity in classifying visualization
features lacking in past literature. From a practical viewpoint, the presented taxonomy
can facilitate a new feature’s ideation and conceptualization phases. The taxonomy can
push method engineers and tool developers towards rethinking model representation, and
designing and implementing advanced information visualization features. Furthermore, we
used the knowledge that we gained during the development and evaluation of the taxonomy
to come up with a set of features that best fulfil our initial goal and are suitable for a
prototype in a graphical language server protocol based environment.

With the help of Part (i) and (ii), our first research question could be answered:

1. What is an appropriate means to improve the visualization of large models and
interaction with them in GLSP-based modeling tools.

We decided on two features, semantic zooming, and visualization of off-screen
elements. Semantic zooming significantly improves the readability of larger models by
only showing information that are relevant to the user based on the current zoom level. The
visualization of off-screen elements increases spatial awareness and improves interaction
processes such as the navigation between model elements. Both features are integrated into
the main view of the user interface, which makes them very space-efficient, and reduces the
amount of focus switches that are required to effectively use them. Another reason why they
were chosen was because they represent a good mixture between genericity, development
complexity, and increase in usability. Both chosen features represent functionalities that
are generic enough to act as a good foundation for a prototype in a new environment but
are also specific enough to add benefits to modeling tools in the field of model engineering.
Further details about both prototypes can be found in the following section and in Chapter
4.

Part (iii) of this work consisted of the prototype conceptualization and development. In the
course of this work, two prototypes were successfully integrated into the Eclipse Graphical
Language Server Platform. The first prototype adds support for semantic zooming to the
server and client. Elements are able to dynamically change their detail level and show
more information when zoomed in, and less when zoomed out. This is implemented by
being able to define rules on the server, which are then triggered on discrete or continuous
zoom levels. When they are triggered, they are executed either on the client or the server,
and are able to, e.g., toggle the visibility or change the size of certain model elements. To
realize prototype 1, only slight modifications and additions had to be made to the existing
protocol. They consisted of, firstly, one additional optional parameter, the current zoom
level, which has to be appended to the requestModel action when sent to the server by the
client. Secondly, two new actions have been added that are both initiated by the client.
The first one requests all discrete levels of detail, and the second one requests all defined
rules for all elements from the server.

The second prototype deals with the visualization of off-screen elements and improves
the process of interacting with them. Elements that are usually not visible because they
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are off-screen are instead rendered in a different graphical representation at the border of
the viewport. To prevent cluttering the available space, these graphical representations
are more compact than their original representation and are combined when there are
too many too close to each other. Additionally, they act as a proxy which represents
the original off-screen element. This allows most interactions that can be performed on
the original elements to also be carried out on their proxy representation. It replaces
the usual zooming and panning that has to be performed to get off-screen elements back
on-screen before they can be interacted with. On top of that, actions like connecting edges
or simple hover effects can be done directly on their proxies. Besides the improved means
of performing interactions, this prototype is also meant to increase the spatial orientation
of users. Because off-screen elements are now permanently visible inside the viewport,
users are constantly and mostly subconsciously reminded of their whereabouts. With
this condition, users should not only be able to create a stronger mental image of their
workspace but also speed up its creation process.

With these prototypes, the second research question can be answered:

2 How to generalize the concept/solution towards being applicable for other modeling
languages/GLSP-based modeling tools.

Both prototypes were successfully integrated into a graphical language server protocol based
environment with minimal changes to the underlying protocol. They provide an exemplary
solution for advanced visualization and interaction features in a GLSP environment. With
the Eclipse-GLSP being the largest GLSP environments, their concept and implementation
serve as a good base for their integration into other platforms as well. We believe that
the developed concept of the prototypes can also be applied to other environments,
and potentially also to any future versions of Eclipse-GLSP or other advanced GLSP
environments without complex modifications. Furthermore, the implementations also
provide a solid foundation for further additions or improvements to these features in the
future. Additional implementation details, evaluation, and limitations of both prototypes
can be found in Chapter 4.

Future Work

This work has provided fully functional prototypes of advanced visualization and interaction
features in the Eclipse-GLS Platform, and with that, has taken the first steps towards
an integration of such features into GLSP-based environments. Nevertheless, it has only
scratched the surface of the never-ending topic of information visualization and interaction.
Regarding the theoretical part of this work, there are too many ideas and concepts of
features out there already to be covered in one master’s thesis, and likely even more to
come in the future. A significant part of future work will be to keep track and find more
features that can be used to improve processes in the field of model engineering. This could
be done by digging even deeper into the nearly endless number of existing information
visualization tools, or even coming up with completely new features by working together
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5. Summary & Conclusion

with experts in other scientific fields, such as, for example, cognitive science. In this search
for more features, the taxonomy that was developed in the course of this work can be of
assistance. Related to the practical part of this work, some individual improvements, such
as reducing the number of required server round trips or adding additional configuration,
can be made, which are described in more detail in Section 4.3.1. Furthermore, a more
extensive evaluation can be performed. The main focus of this work was to successfully
implement specified features into the system. Their evaluation was merely a descriptive one
so far, and can be accommodated with user studies, similarly to those that have already
been performed for other features in past literature. This would bring up strengths and
weaknesses of the designed features which could then be used in a future development
iteration to further improve them. Another future step for both prototypes is to start
the integration process of them into production systems. This would be an excellent
way of finding potential unsolved technical issues and collecting user feedback, similarly
to user studies. Before this can be done, both features would have to be integrated
into language servers of other languages. Both prototypes have been developed with the
workflow language, and currently it is the only supported language. A further goal of
future work would be to integrate the prototype into other language servers as well.

Furthermore, we plan to share our findings with more scientific communities. Parts of
this work have been submitted and accepted at international scientific conferences. Our
taxonomy [DCPB22b] will be presented at the International Conference on Conceptual
Modeling (ER 2022) and our prototypes [DCPB22a] will be part of the International
Conference on Model Driven Engineering Languages and Systems (MODELS 2022). This
should help to reach the target user groups of the taxonomy and the developed prototypes,
and serve as an additional round of feedback for further improvements in future works.
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