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Strain-tuned incompatible magnetic
exchange-interaction in La2NiO4
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Simon Jöhr1, Jaewon Choi 5, Mirian Garcia-Fernandez 5, Stefano Agrestini 5, Ke-Jin Zhou 5,
Kurt Kummer 6, Nicholas B. Brookes 6, Luo Guo7, Anthony Edgeton7, Chang B. Eom7,
Jan M. Tomczak 4,8, Karsten Held 4, Marta Gibert4, Qisi Wang 1,9 & Johan Chang 1

Magnetic frustration is a route for novel ground states, including spin liquids and spin ices. Such
frustration can be introduced through either lattice geometry or incompatible exchange interactions.
Here,we find that epitaxial strain is an effective tool for tuning antiferromagnetic exchange interactions
in a square-lattice system. By studying the magnon excitations in La2NiO4 films using resonant
inelastic x-ray scattering, we show that the magnon displays substantial dispersion along the
antiferromagnetic zone boundary, at energies that depend on the lattice of the film’s substrate. Using
first principles simulations and an effective spin model, we demonstrate that the antiferromagnetic
next-nearest neighbour coupling is a consequenceof the two-orbital nature of La2NiO4. Altogether,we
illustrate that compressive epitaxial strain enhances this coupling and, as a result, increases the level
of incompatibility between exchange interactions within a model square-lattice system.

The square-latticeHeisenbergmodel is the subject of intense numerical and
experimental investigations. In spin-1/2 systems—such as cuprates1 and
copper deuteroformate tetradeurate (CFTD)2—higher-order exchange
interactions are inferred fromobservations ofmagnondispersions along the
magnetic zone boundary3,4. While a detailed magnon characterization is
useful to understand quantum-fluctuation effects5, exchange incompat-
ibility is typically avoided in these systems. Indeed, the antiferromagnetic
(AF) nearest-neighbor (NN) exchange interaction (J1 > 0) and the ferro-
magnetic next-nearest-neighbor (NNN) interaction (J2 < 0) in these systems
stabilize the classical AF Néel order. Instead, magnetic exchange incom-
patibility requires both J1 > 0 and J2 > 0. This regime of the J1–J2model is the
subject of extensive computational investigations for both spin S = 1/26–10

and S = 111,12 systems. In a narrow range near J2=J1 ~
1/2, magnetic frus-

tration is found to dominate, and exotic quantum phases such as the spin-
liquid state13 are predicted. Several calculations show that the Néel order is
destroyed there and the ground state has a valence-bond character13–15,
although its exact nature is still the subject of debate8,16. However, only very
few square-lattice systems exhibit substantial magnetic frustration17,18, and
even fewer display tunablemagnetic interactions19. As a result, approaching
the interesting parameter regime in realmaterials remains an ongoing issue.

In this article, we provide a high-resolution resonant inelastic X-ray
scattering (RIXS) study of magnetic excitations in epitaxial thin films of the
canonical S = 1 systemLa2NiO4, grown on different substrates.We discover
a marked, upward dispersion along the AF zone boundary
ð1=2; 0Þ ! ð1=4;1=4Þ, which reveals the presence of AF NNN interactions
that partly frustrate the NN ones. By employing ab initio calculations, we
demonstrate that these results can only be explained by including themulti-
orbital nature of 3d8-Ni systems. Furthermore, we observe a correlation
between the relative strength of the magnetic interactions and the strain
applied to the films. Our results demonstrate that 214-type nickelates are a
promising class of materials for the study of the AF square-lattice Heisen-
bergmodel.Moreover, the use of thinfilms provides a clear route to tune the
magnetic frustration and explore so far inaccessible regions of themagnetic-
phase diagram.

Results
Our thin films of La2NiO4 (LNO) on SrTiO3 (STO), LaAlO3 (LAO),
(LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT), and NdGaO3 (NGO) substrates are
characterized by atomic force microscopy, X-ray diffraction, and X-ray
absorption spectroscopy (see Fig. 1). The atomic force microscopy images
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display a step-like morphology indicating an excellent layer-by-layer
growth. Diffraction patterns probing the (0, 0, ℓ) reciprocal direction
demonstrate good single crystallinity and allowus to extract the c-axis lattice
parameters of the films. The epitaxial strain applied by the substrates is
supported by the film c-axis and in-plane lattice-parameter dependence
(Fig. 1b). X-ray absorption spectra recorded on the LNO/STO and LNO/
NGO, shown in Fig. 1c, are consistent with observations on related
nickelates20–23. The Ni L-edge features on the tail of the LaM-edge.

The RIXS spectra of La2NiO4 films were measured at the Ni L3 edge
(853 eV). These spectra exhibit key RIXS excitations, including high-energy
dd-excitations (at ~0.5–3 eV), an elastic scattering contribution at 0 eV, as
well as phononandmagnon excitations in between.Thedd-excitationshave
a multi-peak structure, qualitatively similar to other 3d8 systems, such as
NiO20–22,24. As shown in Fig. 2a, the relative intensities of the peaks are
different in the three samples, due to the different crystal-fields acting on the
Ni atoms (see Fig. S1, Supplementary Note 1). However, all our La2NiO4

films display themost intense dd-excitation around 1.1 eV and a second less
intense excitation just below 1.6 eV. This is consistent with what is reported
in bulk La2NiO4

25 (see Fig. S2, Supplementary Note 1). The subtraction of
the elastic peak clearly highlights the presence of multiple low-energy fea-
tures (see Fig. 2b, c).

To extract the dispersion of magnetic excitations, we assumed a two-
mode model with the addition of a high-energy continuum “background"
(Fig. 2b, c). Each of these components is represented by a Gaussian profile.
This provides an effective fitting model of excitations for all measured film
systems and momenta. Our interpretation of the proposed model is based
on the hypothesis that the lower-energy mode (~40meV) stems from an
optical phonon,while the higher-energymode (strongly dispersing between
60 and 120meV) is a magnon. This assignment is supported by previous
neutron scatteringmeasurements that identified thephononpart via anout-
of-plane oxygen bucklingmode26,27. The interpretation of the higher-energy
mode as amagnon is consistent with earlier RIXS25 and neutron studies28 of
bulk La2NiO4. The resulting magnon dispersions are shown in Fig. 3.

Due to lower-energy resolution, the previous RIXS study25 did not
resolve any phonon excitations. The unresolved phonon excitation implied
that the phonon and magnon spectral weights were merged. This, in turn
influences the extraction of the magnon dispersion. Having access, in this
work, to a higher-energy resolution, we can distinguish between the nearly
momentum-independent phononmode and the dispersivemagnon branch
along the three measured high-symmetry directions. In all the film systems
explored, the magnon energy reaches its maximum at the AF zone
boundary, at theΣ point ð1=4; 1=4Þ, referred to as EΣ, while it displays a local
minimum at the X point ð1=2; 0Þ, referred to as EX. This evidently

anisotropic shape of magnon dispersion was not reported in earlier
studies25,28, except for a recent inelastic neutron scattering experiment29.
Furthermore, the energy EΣ is different for all three substrates. In particular,
it increases as a function of compressive strain, with an enhancement of
18 ± 4 meV (~20%) from LNO/STO to LNO/LAO.

Discussion
By resolving both the phonon and magnon modes, we find that all
samples exhibit a substantial dispersion ofmagnetic excitations along the
AF zone boundary. This directly implies the presence of higher-order
effective magnetic exchange interactions. In La2CuO4 and related Mott
insulating cuprates, the zone-boundary dispersion has been interpreted
in terms of a positive ring-exchange interaction that emerges naturally
from a single-orbital Hubbard model30–32. There is, however, an impor-
tant difference between the zone-boundary dispersion of La2CuO4 and
La2NiO4: in contrast to La2CuO4, the zone- boundary dispersion of
La2NiO4 has itsmaximumat theAF zone boundaryΣ point rather than at
the X point. As such, the magnon dispersion of La2NiO4 is (as could be
expected) inconsistent with a single-band Hubbard model in the strong
coupling limit (where the projection onto aHeisenberg spinHamiltonian
is viable).

As a first step, we parameterize the magnon dispersion of La2NiO4

using a phenomenological spin-wave model that includes effective NN and
NNN exchange interactions, respectively, J1 and J2 (Fig. 3), plus an easy-
plane anisotropy K, already reported by previous measurements28,29. As a
starting point, we employ the AF structure of the bulk La2NiO4 determined
by neutron diffraction33–35, with the spin direction parallel to the crystal-
lographic a-axis. The model is solved in a linear spin-wave (large-S) limit,
and the calculated dispersion is fitted to themeasured one (see “Methods”).
Fitting the experimental (exp) data yields an effective NN exchange inter-
action Jexp1 ∼ 30meV consistent with previous neutron andRIXS results25,36.
Due to the demonstrated finite zone-boundary dispersion, our spin-wave
model fitting also yields a moderate NNN exchange interaction Jexp2 .
Importantly, Jexp2 is positive and enhanced by compressive strain3,4. In what
follows, we wish to extract the frustration parameter G ¼ Jexp2 =Jexp1 with the
highest precision. Within our spin-wave model, EX = 4SZc(J1− 2J2) and
EΣ = 4SZc(J1− J2), whereZc is the quantum renormalization factor for spin-
wave energies,which is taken asZc = 1.0937. This givesG�1 ¼ 1þEΣ=ðEΣ�EX Þ.
The frustration parameter G is thus derived directly from the experimental
data, with high precision (EΣ and EX are extracted with error lower than 5
meV) and plotted as a function of the c lattice parameter in Fig. 4 (see also
Table S1, Supplementary Note 2). Due to the Poisson effect, the c lattice
parameter undergoes a proportional shrinkage when the in-plane

Fig. 1 | Characterization measurements on thin films of La2NiO4. a X-ray dif-
fraction (at 300 K) probing the (0, 0, ℓ) direction of 12-nm thin films of La2NiO4 on
substrates as indicated. The inset represents the atomic force microscopy image
showing the step-like morphology of the films (here for the NGO substrate). The
color scale corresponds to film thickness. b c-axis lattice parameter versus in-plane
epitaxial strain (at 300 K) calculated for La2NiO4 (purple dots) and La2CuO4

32 (gray

dots) films grown on different substrates as a relative change of in-plane parameters
in reference to bulk (diamonds) with a = 3.868Å and c = 12.679Å for an isomorphic
La2NiO4 structure

59 and a = 3.803Å and c = 13.156Å for La2CuO4
60. The errorbar

correspond to the spread of in-plane parameters measured by X-ray diffraction.
cX-ray absorption spectra around theNi L-edge. The dominant peak corresponds to
the La M-edge. b, c Dashed lines are guides to the eye.
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parameters expand. Our X-ray diffraction measurements confirm this
relationship (Fig. 1b), indicating that the c-axis lattice parameter can serve as
an indirect probe of the in-plane strain. Therefore, ourfindings demonstrate
a nearly linear correlation between magnetic frustrations and epitaxial
strain.

We stress that, for interaction strengths and hoppings that are realistic
for cuprates and nickelates, J2 > 0 is hard to reconcile with a single-band
Hubbard model. A positive J2 implies an effective AF NNN exchange
interaction, at oddswithwhat is observed in cuprates4,30 and d9 infinite-layer
nickelates38,39. Both systems have indeed been successfully described using a
single d-orbital framework3,4,40,41. Therefore, we argue that the magnon
zone-boundary dispersion in LNO signals physics beyond the single-orbital
Hubbard model. We propose that the multi-orbital (dx2�y2 , dz2 ) nature of
nickelates42–44 must be explicitly considered. Already in La2CuO4, due to the
short apical oxygen distance, a small but significant orbital hybridization
between dz2 and dx2�y2 has been reported45. In La2NiO4 the apical oxygen

distance is even shorter, as exemplified by the reduced c lattice parameter
(see Fig. 1b), andhencean evenmore pronouncedhybridization is expected.

To rationalize the trend in the exchange interactions obtained from
our spin-wave fits, we derive a two-orbital low-energymodel for La2NiO4

on different substrates from first principles (see the Method section). For
the Ni dz2 and dx2�y2 orbitals (labeled α and β), we compute the (next)
nearest-neighbor hopping parameters tð0Þ, the crystal-field splitting Δeg,
local Coulomb (Hubbard) interaction U and Hund’s exchange JH using
experimental lattice constants from Table 1. Noteworthy46, the hopping
parameters and Coulomb interactions, listed in Table 1, hardly change
under varying in-plane compression. This is different from calculations
for the cuprate family, see ref. 32, and agrees with our experiments, which
show substantially smaller changes in the magnon spectrum than for the
cuprates. What is most affected by strain in Table 1 is the crystal-field
splittingΔeg by which theNi dx2�y2 orbital is higher in energy than the dz2
orbital. When going from the STO to the LAO substrate, in-plane strain

Fig. 3 | Magnon dispersion of La2NiO4 films. a–cMagnon excitation energies
(open dots) along high-symmetry directions for La2NiO4 on substrates as indicated.
Solid lines represent the same spin-wave model evaluated for different exchange
parameters within the confidence intervals of the fitted parameters. The curves

corresponding to the best-fit values (marked in bold in the legend) are reported as
thicker lines. The middle segment, X→ Σ, is part of the antiferromagnetic zone
boundary. The error bars are determined from the fitting uncertainty.

Fig. 2 | Resonant inelastic X-ray scattering spectra of La2NiO4. a Raw spectra
recorded in La2NiO4 films with substrates as indicated. a (inset) Schematics of the
photon-in-photon-out resonant inelastic X-ray scattering (RIXS) geometry with
horizontally polarized light (π) and azimuthal sample rotation angle ϕ. b, c Low-

energy part of the RIXS spectra with momentum transfer and film substrates indi-
cated. The solid red line indicates a three-component fit with phonon, magnon
(shaded), and multi-magnon (continuum) contributions. The elastic scattering
channel is subtracted in (b, c).
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pushes the dx2�y2 orbital further up in energy, as it is pointing towards the
now closer in-plane oxygen sites that are charged negatively.

This crystal-field splitting Δeg enters the calculated (cal) two-orbital
superexchange as follows:

Jcal1 ¼
t2αβ

U þ JH � Δeg
þ

t2αβ
U þ JH þ Δeg

þ
t2αα þ t2ββ
U þ JH

; ð1Þ

where we extend the formula of ref. 47 to finite Δeg (see Supplementary
Note 3). As Δeg appears once with a plus and once with a minus sign in the
denominator, the crystal-field splitting enters Jcal1 in a higher-than-
linear order.

The magnetic exchange couplings Jcal1 determined by Eq. (1) are
displayed in Table 1. They show the same qualitative tendency as in our
experiment, i.e., an increase of both Jexp1 (see Fig. 3) and Jcal1 with com-
pressive strain. Quantitatively, the ab initio calculated Jcal1 is however too
large. This has two major origins: (i) The cRPA interactions are, here,
taken at zero frequency U =U(ω = 0). Additional renormalizations from
the frequency dependence U(ω)48 are often mimicked through an
empirical enhancement of U. Increasing U, we could easily obtain
quantitative agreementwith the experimental J1, but at the cost of a freefit
parameter and most likely only an accidental agreement. (ii) Eq. (1) only
includes terms to second-order perturbation theory in t. For the one-band
Hubbard model, higher-order processes have been calculated and yield a
correction from J1 = 4t2/U to a reduced J1 = 4(t2/U− 16t4/U3)40,49. Higher-
order terms are expected to reduce J1 also in the two-orbital setting.
Here, we estimate these corrections by the one-orbital prescription
t2/U⟶ t2/U− 16t4/U3. Then, e.g., for the NGO substrate, the leading
contribution to Jcal1 , i.e., t2ββ=ðUeff Þ withUeff =U+ JH, reduces from 47 to
37 meV. Applying this substitution to Eq. (1) yields the corrected
exchange couplings Jcal;corr1 listed inTable 1, which are in better agreement
with the measured values (see Fig. 3).

Table 1 also lists the next-nearest-neighbor exchange Jcal2 that can be
obtained with the same second-order formula Eq. (1), except now using the
hoppings t0 insteadof t (see SupplementaryNote3 fordetails).Crucially, our

Fig. 4 | Strain-dependent magnetic frustration. The frustration parameter G ¼
Jexp2 =Jexp1 derived from the experimental data (squares; left axis) is presented as a
function of the c-axis lattice parameter. The error bars for the experimental data are
calculated as a propagation of standard deviations extracted from the fits. The results
for films are combined with data for bulk La2NiO4 from ref. 29. The experimental
frustration G is compared to the ratio Jcal2 =Jcal;corr1 derived from the DFT and cRPA
calculations (diamonds; right axis). Note that the calculated Jcal2 only contains a
contribution to the full next-nearest-neighbor coupling J2. Therefore, the compar-
isonmerely highlights a similar trend of the frustration under in-plane compression.
The dashed line is a guide-to-the-eye.

T
ab

le
1
|P

ar
am

et
er
s
o
ft
he

tw
o
-o

rb
it
al

H
ub

b
ar
d
m
o
d
el

S
ys

te
m

a
c

Δ
e
g

t α
α

t β
β

t α
β

t0 α
α

t0 ββ
U
α
α

U
β
β

U
α
β

J H
Jc

al 1
Jc

al 2
Jc

al
;c
o
rr

1

[Å
]

[Å
]

[e
V
]

[e
V
]

[e
V
]

[e
V
]

[m
eV

]
[m

eV
]

[e
V
]

[e
V
]

[e
V
]

[e
V
]

[m
eV

]
[m

eV
]

[m
eV

]

La
2
N
iO

4
3.
89

0
12

.5
5

0.
48

−
0.
07

0
−
0.
40

3
−
0.
16

1
−
8.
6

74
.9

3.
06

3.
15

1.
97

0.
52

60
.7

1.
57

51
.0

LN
O
/S
TO

3.
90

5
12

.6
2

0.
48

−
0.
06

7
−
0.
39

5
−
0.
15

6
−
8.
3

74
.5

3.
01

3.
14

1.
94

0.
52

59
.5

1.
56

49
.7

LN
O
/L
S
A
T

3.
86

8
12

.6
9

0.
55

−
0.
06

5
−
0.
41

0
−
0.
15

6
−
7.
4

76
.3

3.
00

3.
11

1.
92

0.
51

62
.2

1.
65

51
.8

LN
O
/N

G
O

3.
85

9
12

.7
1

0.
58

−
0.
06

4
−
0.
41

4
−
0.
15

5
−
7.
1

76
.7

3.
03

3.
16

1.
97

0.
51

62
.3

1.
65

51
.9

LN
O
/L
A
O

3.
79

3
12

.7
8

0.
74

−
0.
06

0
−
0.
44

7
−
0.
15

6
−
5.
5

80
.5

3.
02

3.
08

1.
93

0.
50

71
.6

1.
83

56
.8

C
ry
st
al
-fi
el
d
sp

lit
tin

g
Δ
e
g
,(
ne

xt
-)
ne

ar
es

t-
ne

ig
hb

or
ho

p
p
in
g
tð0

Þ
ij
b
et
w
ee

n
ith

an
d
jth

N
io
rb
ita

ls
(α
an

d
β
he

re
d
en

ot
e
th
e
z2
an

d
x2

−
y2
or
b
ita

l,
re
sp

ec
tiv

el
y)
,t
he

in
te
r-
an

d
in
tr
a-
or
b
ita

lC
ou

lo
m
b
in
te
ra
ct
io
n
U
ij,
an

d
H
un

d
’s
ex

ch
an

ge
J H

b
et
w
ee

n
th
e
tw

o
or
b
ita

la
s
ca

lc
ul
at
ed

b
y
D
FT

an
d
cR

P
A
w
ith

th
e
in
-p
la
ne

la
tt
ic
e
co

ns
ta
nt

a
of

th
e
th
re
e
su

b
st
ra
te
s;
no

te
th
at

t0 α
β
¼

0
b
y
sy
m
m
et
ry
.F

ro
m

th
es

e
ab

in
iti
o
ca

lc
ul
at
ed

p
ar
am

et
er
s,
th
e
sp

in
co

up
lin
gs

J 1
an

d
J 2

ar
e
ca

lc
ul
at
ed

fr
om

su
p
er
ex

ch
an

ge
(s
ec

on
d-
or
d
er

p
er
tu
rb
at
io
n
th
eo

ry
),
i.e

.,
fr
om

E
q
.(
1)
w
ith

ta
nd

t0
,

re
sp

ec
tiv

el
y.

E
st
im

at
in
g
hi
gh

er
-o
rd
er

te
rm

s
us

in
g
a
on

e-
or
b
ita

la
na

lo
gy

,y
ie
ld
s
th
e
re
d
uc

ed
Jc

al
;c
or
r

1
co

up
lin
gs

—
se

e
te
xt
.T

he
b
ul
k
la
tt
ic
e
p
ar
am

et
er
s
re
fe
rt
o
th
e
lo
w
-t
em

p
er
at
ur
e
te
tr
ag

on
al

p
ol
ym

or
p
h
of

La
2
N
iO

4
,a

ft
er

re
f.
29

.

https://doi.org/10.1038/s42005-024-01701-x Article

Communications Physics |           (2024) 7:230 4



calculations predict a positive J2, in agreement with the experiment.
Moreover, Jcal2 shows the samequalitative tendency as in the experiment as a
function of epitaxial strain. On a quantitative level, the calculated values are,
however, a factor ~3–5 lower than the experimental results. The reason is
that contributions to J2 fromhigher-order exchange processes, of order t4/U3

and t0t2=U2, become (relatively) more important for Jcal2 , as the second-
order terms are now based on the much smaller t0.

The key difference between themulti-orbital case of LNOand the one-
orbital cuprates is the larger U (UcRPA ≈ 3.1 eV for two-orbitals while
UcRPA ≈ 1.9 eV for a one Ni dx2�y2 orbital setup) and the additional Hund’s
JH ≈ 0.5 eV in the denominator of Eq. (1). As a consequence, the balance for
the NNN exchange coupling shifts from a ferromagnetic ring exchange
J2 ∼ �t4=U3

eff < 0, that overpowers the AF second-order exchange
J2 ∼ t02=Ueff > 0 in the one-orbital cuprates, toward dominance of the latter
in the multi-orbital LNO. This change in hierarchy explains the main
qualitative differences in magnon dispersion between LNO and cuprates:
the opposite sign of the effective J2. For LNO, with a positive J2, the zone-
boundary dispersion shows a notable minimum at ð1=2; 0Þ, see Fig. 3,
whereas a maximum occurs for the negative J2 in cuprates.

Conclusions
The ab initio calculations indicate that the magnetic frustration in La2NiO4

is causedby themulti-orbital natureof 3d8 nickelates.More importantly, our
results demonstrate that the degree of frustration is amplified by com-
pressive strain (see Fig. 4), with a pivotal role played by the crystal-field
splitting. Indeed,with the substratesused, themagnetic frustration increases
four-fold with respect to the bulk, bridging half the way toward the exotic
realm anticipated for J2/J1 ~

1/2. Thus, our study suggests an effective tool for
tuning antiferromagnetic interactions within square-lattice systems. We
speculate that the approach is applicable beyond La2NiO4 andmay offer an
experimental route to reach so far unexplored regionsof themagnetic-phase
diagram, potentially allowing to investigate exotic states induced by mag-
netic frustration.

Methods
Film growth and characterization
Thin films of La2NiO4 were grown by RHEED-equipped Radio-frequency
off-axis magnetron sputtering50 on (001) STO, (001) LAO, (001) LSAT and
(110) NGO substrates. These films were grown in an argon atmosphere at
700 °C. Their qualities were confirmed by atomic force microscopy and
x-ray diffraction. Their insulating character was confirmed by resistivity
measurements of the LNO/STO film (see Fig. S3, Supplementary Note 4).

RIXS experiments
Ni L-edge RIXS experiments for STO, LAO and NGO substrates were
carried out at the I21beamline51 at theDIAMONDLight Source. All spectra
were collected in the grazing exit geometry using linear horizontal polarized
incident light with the scattering angle fixed to 2θ = 154°. The energy
resolution was estimated from the elastic scattering on amorphous carbon
tape and was between 37 and 41meV (full-width-at-half-maximum,
FWHM). All films weremeasured at base temperature T = 16 K.We define
the reciprocal space (qx, qy, qz) in reciprocal lattice units (h, k, ℓ) = (qxa/
2π, qyb/2π, qzc/2π) where a, b, and c are the pseudo-tetragonal lattice
parameters. RIXS spectra were acquired along three in-plane paths:
(0, 0)→ (0, 1/2), ð0; 0Þ ! ð1=4; 1=4Þ and ð0; 1=2Þ ! ð1=4; 1=4Þ. Extraction
of low-energy excitations around (0, 0) is limited by energy resolution. Due
to kinematic constraints Γ points at higher zones cannot be reached, as well.
RIXS intensities are normalized to the weight of the dd-excitations52. The
data for the LSAT substrate were collected at the ID32 beamline at the
European Synchrotron Radiation Facility (ESRF) (see description in Sup-
plementary Note 5, Fig. S4).

Phenomenological spin-wave model
The effective superexchange parameters were extracted from the measured
dispersion using a linear spin-wave model. We included effective couplings

between the first and second nearest neighbors, plus an easy-plane aniso-
tropy K, with the resulting Hamiltonian:

H ¼ J1
X

hi;ji
Si � Sj þ J2

X

hhi;jii
Si � Sj þ K

X
i
Szi
� �2

ð2Þ

where 〈i, j〉 and 〈〈i, j〉〉 denote pairs of first and second nearest neighbors Ni
atoms, respectively. The fitting procedure has been carried out using the
SpinW package53. As an input we have used the AF structure of the bulk
La2NiO4 determined by neutron diffraction33–35, with the spin direction
parallel to the crystallographic a-axis. The dispersion in the approximation
of the linear spin-wave theory is represented by4,29:

_ω ¼Zc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
q � B2

q

� �r

Aq ¼ 4S
K
4
þ J1 � J2ð1� νhνkÞ

� �

Bq ¼ 4S J1
νh þ νk

2
� K

4

� �
ð3Þ

where νx ¼ cosð2πxÞ. The quantum renormalization factor for spin-wave
velocity isfixed toZc = 1.09, as usual for S = 1 systems37. The value of the easy-
plane anisotropyKmostly controls the size of themagnon gap at the Γ point.
Since this value is very hard to obtain from RIXS spectra, we have fixed
K= 0.5meV in agreement with previous inelastic neutron scattering data28.
We have also neglected other interactions <10−1 meV, such as easy-axis
anisotropy, inter-layer coupling, andDzyaloshinskii–Moriya interactions29,34.

Ab initio calculations
Electronic structure calculations were performed with density functional
theory in the local density approximation using a full-potential linearized
muffin-tin orbital (FPLMTO) code54, after the structures were optimized
withWIEN2k55 using the PBE functional. We mimicked the influence of
the substrates by simulating bulk La2NiO4 using the experimental lattice
constants of the thin films. The reference calculation for the bulk uses
lattice constants from ref. 29. All calculations assume the space group I4/
mmm and are paramagnetic. The resulting band structures are displayed
in Fig. S5, Supplementary Note 6. The FPLMTO calculations were con-
verged using 123 reducible k-points and include local orbitals for the Ni-
3p and La-5p states. The internal atomic positions were relaxed with
WIEN2k using 63 reducible k-points, a cutoff parameter RMTKMAX= 7
and partial waves inside the atomic spheres up to l = 5, until the forces
were below 1mRy per Bohr radius (for details of the relaxed structures,
see Supplementary Note 7, Table S2). The tight-binding hopping and
crystal-field parameters have been extracted from a projection onto
maximally localized Wannier orbitals56,57 of Ni 3dx2�y2 and 3dz2 char-
acter. Matrix elements of the static (ω = 0) and local screened Coulomb
interaction (Hubbard U and Hund’s JH) have been estimated from cal-
culations in the constrained random phase approximation (cRPA)48 for
entangled band structures58 in the Wannier basis57 using 6 × 6 × 6 redu-
cible momentum-points in the Brillouin zone. For the two-particle pro-
duct basis, states are kept up to an angular cutoff of l = 4 and down to an
overlap eigenvalue of 10−4.

Data availability
Data supporting the findings of this study are available from corresponding
authors upon reasonable request.

Code availability
Code supporting the data processing of this study is available from corre-
sponding authors upon reasonable request.
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