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A B S T R A C T

Light scalar fields are frequently used in modern physics, for example, as candidates for dark energy or dark
matter. Open quantum dynamical effects, like frequency shifts, induced by such fields in probe particles used
in interferometry experiments might open up new perspectives for constraining such models. In this article,
we consider a probe scalar particle as a rough approximation for an atom in matter wave interferometry
and discuss the frequency shifts induced by interactions with an environment comprising either one of two
screened scalar field models: chameleons or symmetrons. For the 𝑛 = −4 chameleon, we revise a previously
obtained expression for the induced frequency shift, but confirm that it can likely not be used to obtain new
constraints. However, for symmetrons, we find that induced frequency shifts have the potential to tightly
constrain previously unreachable parts of the parameter space.
. Introduction

In order to address striking issues in modern cosmology, for ex-
mple, the natures of dark matter and dark energy, modifications of
eneral relativity like scalar–tensor theories have been devised [1–
]. Many of these theories introduce additional scalar fields, which
ften couple universally to other matter. The resulting gravity-like fifth
orces that we would expect to see from such couplings have already
een tightly constrained within our Solar System [4–6]. However,
calar field models with screening mechanisms (screened scalar fields),
or example, the well-known chameleons [7,8] and symmetrons [9–
6], can circumvent such constraints by rendering their fifth forces
eeble in environments at least as dense as our Solar System. Conse-
uently, they are of particular phenomenological interest and actively
earched for in a variety of experiments; see Refs. [17,18] for current
onstraints. Examples for particularly interesting aspects of these mod-
ls that motivate the search for them are the facts that chameleons
aturally appear in reinterpretations of 𝑓 (𝑅)-gravity as scalar–tensor
heories [19], and symmetron fifth forces have recently been discussed
s promising alternatives to particle dark matter [20–23].

Matter wave interferometry is one of the most successful ways of
onstraining screened scalar fields. However, as of yet, interferomet-
ic experiments have been treating the scalar fields only as classical
ackgrounds; see, e.g., Refs. [24–33]. For this reason, such experiments
ould not harness the potential of open quantum dynamical effects, like
ecoherence or frequency shifts, induced by interactions between the
atter waves and an environment comprising screened scalar fields.
onsequently, Refs. [34,35] have initiated a theoretical discussion of
ow light scalar fields could influence the quantum dynamics of cold

E-mail address: christian.kaeding@tuwien.ac.at.

atoms in interferometry experiments. However, while Ref. [34] has a
strong focus on developing the necessary mathematical framework, it
discusses only one exemplary point in the 𝑛 = −4 chameleon parameter
space, and Ref. [35] deals solely with the environment-dependent
dilaton model [11,36–42]. In both articles, frequency shifts turned out
to be the dominant induced open quantum dynamical effects.

In this article, we complement the investigations of Refs. [34,35] by
extending and correcting the discussion about frequency shifts induced
by 𝑛 = −4 chameleons, and by investigating symmetrons for the very
first time in this context. At first, we recapitulate the definitions and
essential properties of these two models. Subsequently, we employ the
methods developed in Ref. [43] in order to predict frequency shifts
induced by those models. For the 𝑛 = −4 chameleon model, we obtain
a new expression for the frequency shift that differs from the one in
Ref. [34], and explain that the old result was not correct because its
time dependence was not properly taken into account when deriving
it. We then find that it could be possible to constrain this chameleon
model by looking at its induced frequency shifts, but such constraints
would only be on parts of the parameter space that have already been
covered by other experiments. Finally, we look at the symmetron model
that has, as of yet, not been discussed in this context. Interestingly,
we find that symmetron-induced frequency shifts have the potential
to actually constrain regions of the model’s parameter space that have
never been reached before.
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2. Chameleons and symmetrons

In this article, we focus on two particular screened scalar field
odels: 𝑛 = −4 chameleons and symmetrons. In the Einstein frame [1],

both models can be described by the action [44]

𝑆 = ∫ 𝑑4𝑥
√

−𝑔

(

𝑚2
Pl
2
𝑅 − 1

2
(𝜕 𝜑𝛼)2 − 𝑉𝛼(𝜑𝛼)

)

+∫ 𝑑4𝑥
√

−�̃�𝛼 SM(�̃�𝛼𝜇 𝜈 , 𝜓) ,

(1)

where 𝑚Pl is the reduced Planck mass; 𝜑𝛼 denotes the screened scalar
ield; 𝛼 ∈ {𝐶 , 𝑆} labels the particular model, i.e., chameleon (𝐶) or
ymmetron (𝑆); 𝑉𝛼(𝜑𝛼) is the self-interaction potential of model 𝛼;
nd SM represents the Lagrangian for the Standard Model field 𝜓 .
or brevity’s sake, the Jordan frame metric �̃�𝛼𝜇 𝜈 = 𝐴2

𝛼(𝜑𝛼)𝑔𝜇 𝜈 with
onformal factor 𝐴𝛼(𝜑𝛼) was kept in Eq. (1). Note that Eq. (1) can also

describe other scalar-tensor theories with light scalar fields, including
the environment-dependent dilaton [11,36–42]. The universal coupling
to the matter sector induces a fifth force that must be screened in envi-
ronments at least as dense as our Solar System in order to circumvent
current constraints. Chameleons and symmetrons each have their own
way of realizing such a screening. However, in both cases, Eq. (1) gives
rise to effective potentials that are key to the fifth force screening:

𝑉𝛼;eff(𝜑𝛼) ∶= 𝑉𝛼(𝜑𝛼) − 𝐴𝛼(𝜑𝛼)𝑇 𝜈𝜈 , (2)

where 𝑇 𝜈𝜈 is the trace of the stress–energy tensor of 𝜓 .
While there are infinitely many possible self-interaction potentials

𝑉𝐶 ∼ 𝜑−𝑛
𝐶 with 𝑛 ∈ Z+ ∪ 2Z− ⧵ {−2} for chameleons, we follow

Ref. [34] and consider the 𝑛 = −4 chameleon since it is one of the
two most popular models (the other one is 𝑛 = 1)1 and does not give
ise to an inverse potential, which would otherwise cause intricacies
n the quantum field theoretical treatment. It is specified by; see,
.g., Ref. [44];

𝑉𝐶 =
𝜆𝐶
4!
𝜑4
𝐶 , 𝐴𝐶 (𝜑𝐶 ) = exp

(

𝜑𝐶
𝐶

)

≈ 1 + 𝜑𝐶
𝐶

+ 1
2
𝜑2
𝐶

2
𝐶

, (3)

where 𝜆𝐶 is a dimensionless self-coupling constant; the mass scale 𝐶
etermines the coupling strength to matter; and 𝜑𝐶 ≪ 𝐶 is usually
ssumed. Its effective potential, cf. Eq. (2), leads to a non-vanishing
acuum expectation value (VEV) and a 𝑇 𝜈𝜈 -dependent effective mass:

⟨𝜑𝐶 ⟩ =
(

6
𝜆𝐶

𝑇 𝜈𝜈
𝐶

)1∕3

, 𝑚2
𝐶 =

[

9
2
𝜆𝐶

( 𝑇 𝜈𝜈
𝐶

)2
]1∕3

. (4)

Clearly, a chameleon field is the more massive the larger the magnitude
f 𝑇 𝜈𝜈 . In non-relativistic environments, 𝑇 𝜈𝜈 ≈ −𝜎 with the density 𝜎.
onsequently, a chameleon fifth force is short-ranged, i.e., screened, in
ufficiently dense matter.

Symmetrons are defined by; see, e.g., Ref. [44];

𝑉𝑆 = −𝜇
2

2
𝜑2
𝑆 +

𝜆𝑆
4
𝜑4
𝑆 , 𝐴𝑆 (𝜑𝑆 ) = 1 +

𝜑2
𝑆

22
𝑆

, (5)

where 𝜇 is a tachyonic mass; 𝜆𝑆 is a dimensionless constant; and 𝑆 is
the mass scale that quantifies the coupling to matter. From the resulting
effective potential, cf. Eq. (2), we can derive

⟨𝜑𝑆⟩ =

⎧

⎪

⎨

⎪

⎩

0 , −𝑇 𝜈𝜈 ≥ 𝜇22
𝑆

±

√

1
𝜆𝑆

(

𝜇2 + 𝑇 𝜈𝜈
2

𝑆

)

, −𝑇 𝜈𝜈 < 𝜇22
𝑆

,

2
𝑆 =

⎧

⎪

⎨

⎪

⎩

− 𝑇 𝜈𝜈
2

𝑆
− 𝜇2 , −𝑇 𝜈𝜈 ≥ 𝜇22

𝑆

2
(

𝜇2 + 𝑇 𝜈𝜈
2

𝑆

)

, −𝑇 𝜈𝜈 < 𝜇22
𝑆

. (6)

1 The cases 𝑛 = 1 and 𝑛 = −4 are the most popular models since they have
the smallest possible values of |𝑛| for the positive and negative 𝑛 chameleon
models, respectively.
2 
At leading order, the symmetron fifth force is proportional to ⟨𝜑𝑆⟩,
which implies a fifth force-screening for situations in which −𝑇 𝜈𝜈 ≥
𝜇22

𝑆 , i.e., in sufficiently dense environments.

3. Frequency shifts

We are interested in studying frequency shifts induced in an atom
interferometer by interactions with an environment comprising hy-
pothetical chameleon or symmetron fields. The most natural way of
describing quantum effects induced by fields is quantum field theory.
For this reason, we want to employ the quantum field theoretical
method presented in Ref. [43]. However, since complex composite
objects like atoms are difficult to discuss in such a framework, we make
a rough approximation by considering a real scalar field 𝜙 as a proxy for
a cold atom. Such a strong simplification will of course not allow us to
make predictions that we can fully compare to real experimental data.
However, when considering screened scalar fields as an environment,
pproximating an atom by a scalar field is not as far-fetched as it might
nitially seem. This is due to the fact that, for a screened scalar field, the

atom is simply a blob of mass mostly concentrated in the atom’s nucleus
since screened scalar fields only couple to the trace of the atom’s stress–
energy tensor. Any other properties of atoms or their nuclei like spin
or charge are negligible for screened scalar fields. Consequently, and
since a nucleus contains the by far largest part of an atom’s mass but is
much smaller than the atomic radius, a cold atom or rather its nucleus
can be considered as a real scalar particle as a first approximation.
n this way, we will be able to at least get an idea of the parts of

the screened scalar field parameter spaces that could be constrained
by looking at induced frequency shift. The same approximation was
successfully employed in Refs. [34,35]. In order to make this a more
realistic approximation, we consider only parts of the model parameter
spaces that leave the screened scalar fields unaffected by the presence
of the atom, and restrict our discussion to the single-particle state of
the atom, i.e., the atom is neither annihilated nor are additional atoms
and anti-atoms being produced.

We can expand the reduced density matrix that describes the open
quantum dynamics of 𝜙 under the influence of another scalar field 𝜑𝛼
n a momentum basis restricted to the single-particle subspace of Fock

space:

̂𝜙(𝑡) = ∫
𝑑3𝑝𝑑3𝑝′

(2𝜋)64𝐸𝜙𝐩𝐸
𝜙
𝐩′
𝜌(𝐩;𝐩′; 𝑡)|𝐩; 𝑡⟩⟨𝐩′; 𝑡| , (7)

where 𝐸𝜙𝐩 =
√

𝑀2 + 𝐩2 is the atom’s energy with atom mass 𝑀 , and
𝜌(𝐩;𝐩′; 𝑡) = ⟨𝐩; 𝑡|�̂�𝜙(𝑡)|𝐩′; 𝑡⟩ are the density matrix elements at time 𝑡.
Note that 𝑀 is the mass that we assume to have been determined using
experimental setups in which any corrections due to the hypothetical
resence of screened scalar fields can be neglected.

The interaction-free atom has the unitary dynamics

𝜌free(𝐩;𝐩′; 𝑡) = 𝑒−i𝑢(𝐩,𝐩
′)𝑡𝜌free(𝐩;𝐩′; 0) , (8)

from time 0 to time 𝑡, with the frequency 𝑢(𝐩,𝐩′) ∶= 𝐸𝜙𝐩 − 𝐸𝜙𝐩′ . From
interactions with an environment comprising a scalar field 𝜑𝛼 , we
expect to find frequency shifts 𝛥𝑢𝛼(𝐩,𝐩′), such that

𝜌(𝐩;𝐩′; 𝑡) = 𝑒−i[𝑢(𝐩,𝐩
′)+𝛥𝑢𝛼 (𝐩,𝐩′)]𝑡𝜌free(𝐩;𝐩′; 0) . (9)

Of course there could and likely will be decoherence terms, but we do
not consider them in our discussion since they are usually subleading
compared to the frequency shift terms; see Refs. [34,35]. Note that, on
he right-hand side of Eq. (9), we have the free density matrix element

at time 0. This results from requiring no initial correlations between
system and environment, which is usually necessary when employing
methods from the theory of open quantum systems [45].

Following Ref. [34], we split a screened scalar field into a back-
ground ⟨𝜑𝛼⟩ ≠ 0 and a small fluctuation 𝜒𝛼 , such that 𝜑𝛼 = ⟨𝜑𝛼⟩ + 𝜒𝛼 ,
and define the following Einstein frame actions
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𝑆𝜙[𝜙] ∶= ∫𝑥

[

−1
2
𝑔𝜇 𝜈𝜕𝜇𝜙𝜕𝜈𝜙 − 1

2
𝐴2
𝛼(⟨𝜑𝛼⟩)𝑀

2𝜙2
]

, (10)

𝑆𝜒𝛼 [𝜒𝛼] ∶= ∫𝑥

[

−1
2
𝑔𝜇 𝜈𝜕𝜇𝜒𝛼𝜕𝜈𝜒𝛼 − 1

2
𝑚2
𝛼𝜒

2
𝛼

]

, (11)

𝑆self[𝜒𝛼] ∶= ∫𝑥∈𝛺𝑡

[

−
𝜆𝛼
4!

(

𝜒4
𝛼 + 4⟨𝜑𝛼⟩𝜒3

𝛼

)

]

, (12)

int[𝜙, 𝜒𝛼] ∶= ∫𝑥∈𝛺𝑡

[

−1
2
𝛽𝛼𝑀 𝜒𝛼𝜙2 − 1

4
𝛾𝛼𝜒

2
𝛼𝜙

2
]

, (13)

where

∫𝑥
∶= ∫ 𝑑4𝑥 , (14)

𝛺𝑡 ∶= [0, 𝑡] × R3, 𝛽𝛼 , 𝛾𝛼 ≪ 1 are dimensionless coupling constants,
and the conformal factor in the mass term of the otherwise free atom
action results from the presence of a conformally coupling scalar field;
see Ref. [34] for more details. Due this mass rescaling, we introduce
a modified energy 𝐸𝜙,𝛼𝐩 =

√

𝐴2
𝛼(⟨𝜑𝛼⟩)𝑀2 + 𝐩2. Note that Eqs. (10)–

(13) are valid for both screened scalar field models considered in
this article. While we have seen in Section 2 that chameleons and
ymmetrons have 𝑇 𝜈𝜈 -dependent VEVs and masses, we again follow
efs. [34,35] and assume that the experiment takes place in a suf-

ficiently small region in the center of a vacuum chamber, such that
⟨𝜑𝛼⟩ and 𝑚𝛼 are approximately constant. Such an assumption is needed
in order to practically employ the path integral techniques presented
in Refs. [34,43], and it assures that the conformal factor in Eq. (10)
eads to only a constant rescaling of the atom mass. Furthermore, we

follow Refs. [34,35,44] and assume that the screened scalar field had
sufficient time to thermalize with the experimental setup, in particular,
the vacuum chamber walls. Consequently, we must consider the 𝜒𝛼-
propagators with thermal corrections. For example, for the Feynman
propagator we use (see, e.g., Ref. [46])

𝛥F𝛼(𝑥, 𝑦) = −i∫
𝑑4𝑘
(2𝜋)4

𝑒𝑖𝑘⋅(𝑥−𝑦)
[

1
𝑘2 + 𝑚2

𝛼 − i𝜖 + 2𝜋i𝑓 (|𝑘0|)𝛿(𝑘2 + 𝑚2
𝛼)

]

,

(15)

where

𝑓 (𝑘0) ∶= 1
𝑒𝑘0∕𝑇 − 1

(16)

is the Bose–Einstein distribution with the equilibrium temperature
. When 𝑥 = 𝑦, i.e., in the case of a tadpole diagram, the ther-

mal corrections for all four relevant types of propagators (Feynman,
Dyson, positive and negative frequency Wightman) coincide and are
ultraviolet-finite. They are of the form [34,35]

𝛥(𝑇≠0)𝛼 = ∫
𝑑4𝑘
(2𝜋)3

𝑓 (|𝑘0|)𝛿(𝑘2 + 𝑚2
𝛼) =

𝑇 2

2𝜋2 ∫

∞

𝑚𝛼∕𝑇
𝑑 𝜉

√

𝜉2 − (𝑚𝛼𝑇 )2

𝑒𝜉 − 1 . (17)

In order to determine the coupling constants 𝛽𝛼 and 𝛾𝛼 in Eq. (13)
or the two considered screened scalar field models, we follow the

discussion in Ref. [34]. Ref. [34] considers a general conformal factor
of the form

𝐴2
𝛼(𝜑𝛼) = 𝑎 + 𝑏

𝜑𝛼
𝛼

+ 𝑐
𝜑2
𝛼

2
𝛼
, (18)

and shows that

𝛽𝛼 = 𝐴𝛼(⟨𝜑𝛼⟩)
𝑀
𝛼

[

𝑏
𝑎

(

1 − 𝑏
𝑎
⟨𝜑𝛼⟩
𝛼

)

+ 2 𝑐
𝑎
⟨𝜑𝛼⟩
𝛼

]

, 𝛾𝛼 = 2 𝑐
𝑎
𝐴2
𝛼(⟨𝜑𝛼⟩)

𝑀2

2
𝛼

(19)

must be fulfilled. From Eq. (3) we conclude that, for the chameleon,
= 1 and 𝑏 = 𝑐 = 2. Similarly, for the symmetron, Eq. (5) lets us

conclude that 𝑎 = 𝑐 = 1 and 𝑏 = 0. Consequently, we find

𝛽𝐶 ≈ 2 𝑀
(

1 + ⟨𝜑𝐶⟩
)

, 𝛾𝐶 ≈ 4𝑀
2

2
, 𝛽𝑆 ≈ 2𝑀 ⟨𝜑𝑆⟩

2
, 𝛾𝑆 ≈ 𝑀 𝛽𝑆 ,
𝐶 𝐶 𝐶 𝑆

⟨𝜑𝑆⟩

3 
(20)

where we have assumed 𝑀 , ⟨𝜑𝛼⟩ ≪ 𝛼 and only kept terms up to
second order in 𝑀∕𝛼 and ⟨𝜑𝛼⟩∕𝛼 .

Next, we follow the procedure that is in all detail outlined in
ef. [35]. This means that we want to use [43]

𝜌𝛼(𝐩;𝐩′; 𝑡)

= lim
𝑥0(′) → 𝑡+
𝑦0(′) → 0−

∫
𝑑3𝑘𝑑3𝑘′

(2𝜋)64𝐸𝜙,𝛼𝐤 𝐸𝜙,𝛼𝐤′
𝜌free(𝐤;𝐤′; 0)∫𝐱 𝐱′𝐲 𝐲′

𝑒−i(𝐩⋅𝐱−𝐩
′⋅𝐱′)+i(𝐤⋅𝐲−𝐤′⋅𝐲′)

×
(

𝜕𝑥0 − i𝐸𝜙,𝛼𝐩

) (
𝜕𝑥0′ + i𝐸𝜙,𝛼𝐩′

) (
𝜕𝑦0 + i𝐸𝜙,𝛼𝐤

) (
𝜕𝑦0′ − i𝐸𝜙,𝛼𝐤′

)

× ∫ 𝜙+𝜙−𝑒i{𝑆𝜙[𝜙
+]−𝑆𝜙[𝜙−]}𝜙+(𝑥)𝜙−(𝑥′)𝛼[𝜙+;𝜙−; 𝑡]𝜙+(𝑦)𝜙−(𝑦′) ,

(21)

where 𝜙+ and 𝜙− denote scalar fields associated with the positive and
egative branches of the Schwinger–Keldysh closed time path [47,48],

in order to find an expression like Eq. (9). The Feynman–Vernon influ-
ence functional 𝛼[𝜙+;𝜙−; 𝑡] [49] describes the effects of the screened
scalar fields on the open dynamics of the probe atom, and is given as
a trace over the 𝜒𝛼-degrees of freedom [43]:

𝛼[𝜙+;𝜙−; 𝑡] = ⟨

exp
{

i
(

𝑆self[𝜒+
𝛼 ; 𝑡] − 𝑆self[𝜒−

𝛼 ; 𝑡]

+ 𝑆int[𝜙+, 𝜒+
𝛼 ; 𝑡] − 𝑆int[𝜙−, 𝜒−

𝛼 ; 𝑡]
)}⟩

𝜒𝛼
. (22)

For practical purposes, we can only compute it perturbatively. From
Ref. [34], we already know which terms of the Feynman–Vernon influ-
ence functional will give the leading effect when discussing
chameleons. However, note that this requires us to only consider cases
for which 𝜆𝐶 ≫ 𝛽𝐶 . Similarly, since the symmetron has basically the
ame matter coupling as the environment-dependent dilaton, we can
se Ref. [35] in order to determine the leading term for this model.
onsequently, we only need to consider:

𝐶 [𝜙+;𝜙−; 𝑡] = 1 − 𝜆𝐶𝛽𝐶
8

𝑀⟨𝜑𝐶 ⟩
∑

𝜅 ,𝜈=±
𝜅 𝜈 ∫𝑧𝑧′

𝛥F𝐶 (𝑧, 𝑧)𝛥𝜅 𝜈𝐶 (𝑧, 𝑧′)[𝜙𝜈 (𝑧′)]2

+ … , (23)

𝑆 [𝜙+;𝜙−; 𝑡] = 1 − i 𝛾𝑆
4

∑

𝜅=±
𝜅 ∫𝑧

𝛥F𝑆 (𝑧, 𝑧)[𝜙𝜅 (𝑧)]2 +⋯ . (24)

Note that 𝛥++ is a Feynman propagator, 𝛥−− is a Dyson propagator,
and 𝛥+− and 𝛥−+ are Wightman propagators; see, e.g., Ref. [34].
Substituting Eqs. (23) and (24) into Eq. (21), and computing the path
ntegrals over 𝜙+ and 𝜙−, we find

𝜌𝐶 (𝐩;𝐩′; 𝑡) ≈ lim
𝑥0(′) → 𝑡+
𝑦0(′) → 0−

∫
𝑑3𝑘𝑑3𝑘′

(2𝜋)64𝐸𝜙,𝐶
𝐤 𝐸𝜙,𝐶

𝐤′
𝜌free(𝐤;𝐤′; 0)∫𝐱 𝐱′𝐲 𝐲′ 𝑒

−i(𝐩⋅𝐱−𝐩′ ⋅𝐱′)+i(𝐤⋅𝐲−𝐤′ ⋅𝐲′)

×
(

𝜕𝑥0 − i𝐸𝜙,𝐶
𝐩

) (
𝜕𝑥0′ + i𝐸𝜙,𝐶

𝐩′

) (
𝜕𝑦0 + i𝐸𝜙,𝐶

𝐤

) (
𝜕𝑦0′ − i𝐸𝜙,𝐶

𝐤′

)

×
{

𝐷++(𝑥, 𝑦)𝐷−−(𝑥′, 𝑦′)

−
𝜆𝐶𝛽𝐶
4

𝑀⟨𝜑𝐶 ⟩
∑

𝜅
𝜅 ∫𝑧𝑧′

𝛥F𝐶 (𝑧, 𝑧)

×
[

𝛥𝜅+𝐶 (𝑧, 𝑧′)𝐷++(𝑥, 𝑧)𝐷++(𝑧, 𝑦)𝐷−−(𝑥′, 𝑦′)
− (𝑥, 𝑦⟷ 𝑥′, 𝑦′)∗]

}

, (25)

𝜌𝑆 (𝐩;𝐩′; 𝑡) ≈ lim
𝑥0(′) → 𝑡+
𝑦0(′) → 0−

∫
𝑑3𝑘𝑑3𝑘′

(2𝜋)64𝐸𝜙,𝑆
𝐤 𝐸𝜙,𝑆

𝐤′
𝜌free(𝐤;𝐤′; 0)∫𝐱 𝐱′𝐲 𝐲′ 𝑒

−i(𝐩⋅𝐱−𝐩′ ⋅𝐱′)+i(𝐤⋅𝐲−𝐤′ ⋅𝐲′)

×
(

𝜕𝑥0 − i𝐸𝜙,𝑆
𝐩

) (
𝜕𝑥0′ + i𝐸𝜙,𝑆

𝐩′

) (
𝜕𝑦0 + i𝐸𝜙,𝑆

𝐤

) (
𝜕𝑦0′ − i𝐸𝜙,𝑆

𝐤′

)

×
{

𝐷++(𝑥, 𝑦)𝐷−−(𝑥′, 𝑦′)

−i
𝛾𝑆
2 ∫𝑧

𝛥F𝑆 (𝑧, 𝑧)
[

𝐷++(𝑥, 𝑧)𝐷++(𝑧, 𝑦)𝐷−−(𝑥′, 𝑦′)

− (𝑥, 𝑦⟷ 𝑥′, 𝑦′)∗]
}

, (26)

where 𝐷 denotes 𝜙-propagators, we have dropped disconnected bub-
ble diagrams, and, for notational convenience, we have omitted the
+⋯. The first terms in the curly brackets of Eqs. (25) and (26) are
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Fig. 1. Diagrammatic depiction of the processes leading to the predicted frequency shifts, as given in Eqs. (25) and (26), where a crossed box represents the reduced density
matrix at the initial time, a solid line stands for an atom-propagator, and a dotted line is a propagator of a screened scalar field; note that the conjugated diagrams, i.e., those
mirrored along a vertical line through the box and 𝐩 ↔ 𝐩′, also contribute. (a) was taken from Ref. [34] and (b) adapted from the same figure. (a): diagram leading to a frequency
shift induced by 𝑛 = −4 chameleons, where the X denotes the insertion of a VEV ⟨𝜑𝐶 ⟩; (b): diagram leading to a frequency shift induced by symmetrons.
the usual unitary evolution terms but with atom masses rescaled by
factors of 𝐴2

𝛼(⟨𝜑𝛼⟩), while the last terms are inducing frequency shifts
𝛥𝑢𝛼(𝐩,𝐩′). We can illustrate the relevant physical processes that induce
the frequency shifts by translating their propagator expressions into
Feynman diagrams; see Fig. 1. After evaluating the remaining integrals
in Eqs. (25) and (26), we finally obtain

𝜌𝐶 (𝐩;𝐩′; 𝑡)

≈ 𝜌free(𝐩;𝐩′; 0)𝑒
−i(𝐸𝜙,𝐶𝐩 −𝐸𝜙,𝐶

𝐩′
)𝑡

×

{

1 − i𝜆𝐶𝛽𝐶
4

𝑀⟨𝜑𝐶 ⟩
𝑚2
𝐶

𝛥F𝐶 (0)
⎛

⎜

⎜

⎝

1
𝐸𝜙,𝐶𝐩

− 1
𝐸𝜙,𝐶𝐩′

⎞

⎟

⎟

⎠

[

sin(𝑚𝐶 𝑡)
𝑚𝐶

− 𝑡
]

}

, (27)

𝜌𝑆 (𝐩;𝐩′; 𝑡)

≈ 𝜌free(𝐩;𝐩′; 0)𝑒
−i(𝐸𝜙,𝑆𝐩 −𝐸𝜙,𝑆

𝐩′
)𝑡
[

1 − i𝛾𝑆
4
𝛥F𝑆 (0)

⎛

⎜

⎜

⎝

1
𝐸𝜙,𝑆𝐩

− 1
𝐸𝜙,𝑆𝐩′

⎞

⎟

⎟

⎠

𝑡

]

, (28)

where 𝛥F𝛼(0) denotes a tadpole propagator. Subsequently, we follow
Ref. [34] and add counter terms

𝛿 𝑆self[𝜒𝛼] ∶=
𝜆𝛼⟨𝜑𝛼⟩

2 ∫𝑥
𝛥𝐹 (𝑇=0)𝛼 𝜒𝛼 , 𝛿 𝑆int[𝜙, 𝜒𝛼] ∶=

𝛾𝛼
4 ∫𝑥

𝛥𝐹 (𝑇=0)𝛼 𝜙2

(29)

to the actions in Eqs. (12) and (13) in order to deal with the divergences
originating from the tadpoles, where 𝛥𝐹 (𝑇=0)𝛼 is the Feynman propagator
given in Eq. (15) for 𝑇 = 0 and 𝑥 = 𝑦. As a consequence, we are left
with

𝜌𝐶 (𝐩;𝐩′; 𝑡)

≈ 𝜌free(𝐩;𝐩′; 0)𝑒
−i(𝐸𝜙,𝐶𝐩 −𝐸𝜙,𝐶

𝐩′
)𝑡

×

{

1 − i𝜆𝐶𝛽𝐶
4

𝑀⟨𝜑𝐶 ⟩
𝑚2
𝐶

𝛥(𝑇≠0)𝐶

⎛

⎜

⎜

⎝

1
𝐸𝜙,𝐶𝐩

− 1
𝐸𝜙,𝐶𝐩′

⎞

⎟

⎟

⎠

[

sin(𝑚𝐶 𝑡)
𝑚𝐶

− 𝑡
]

}

, (30)

𝜌𝑆 (𝐩;𝐩′; 𝑡)

≈ 𝜌free(𝐩;𝐩′; 0)𝑒
−i(𝐸𝜙,𝑆𝐩 −𝐸𝜙,𝑆

𝐩′
)𝑡
[

1 − i𝛾𝑆
4
𝛥(𝑇≠0)𝑆

⎛

⎜

⎜

⎝

1
𝐸𝜙,𝑆𝐩

− 1
𝐸𝜙,𝑆𝐩′

⎞

⎟

⎟

⎠

𝑡

]

(31)

with 𝛥(𝑇≠0)𝛼 given in Eq. (17). Next, we expand the energies with the
rescaled masses in terms of ⟨𝜑𝛼⟩∕𝛼 ; substitute Eq. (20) into Eqs. (30)
and (31); keep only terms up to second order in 𝜆𝐶 , 𝑀∕𝛼 and
⟨𝜑𝛼⟩∕𝛼 ; and interpret the last line of Eq. (30) and the term in the
square brackets in Eq. (31) as expansions of exponential functions. In
this way, we find

𝜌𝐶 (𝐩;𝐩′; 𝑡) ≈ 𝜌free(𝐩;𝐩′; 0)𝑒
−i[𝐸𝜙𝐩 −𝐸

𝜙
𝐩′
+𝛥𝑢𝐶 (𝐩,𝐩′)]𝑡 , (32)

𝜙 𝜙 ′

𝜌𝑆 (𝐩;𝐩′; 𝑡) ≈ 𝜌free(𝐩;𝐩′; 0)𝑒

−i[𝐸𝐩 −𝐸𝐩′
+𝛥𝑢𝑆 (𝐩,𝐩 )]𝑡

, (33)

4 
where, by comparison with Eq. (9), the frequency shifts induced by
𝑛 = −4 chameleons and symmetrons between two atomic states with
momenta 𝐩 and 𝐩′ are

𝛥𝑢𝐶 (𝐩,𝐩′) ≈ 𝑀2
⟨𝜑𝐶 ⟩

𝐶

{

1 − 𝜆𝐶
2𝑚2

𝐶

𝛥(𝑇≠0)𝐶 [1 − sinc(𝑚𝐶 𝑡)]
}

⎛

⎜

⎜

⎝

1
𝐸𝜙
𝐩
− 1
𝐸𝜙
𝐩′

⎞

⎟

⎟

⎠

, (34)

𝛥𝑢𝑆 (𝐩,𝐩′) ≈ 𝑀2

22
𝑆

(

⟨𝜑𝑆 ⟩
2 + 𝛥(𝑇≠0)𝑆

)
⎛

⎜

⎜

⎝

1
𝐸𝜙
𝐩
− 1
𝐸𝜙
𝐩′

⎞

⎟

⎟

⎠

(35)

with sinc(𝑚𝐶 𝑡) = sin(𝑚𝐶 𝑡)∕𝑚𝐶 𝑡.
Next, we consider the non-relativistic case |𝐩|, |𝐩′| ≪ 𝑀 and intro-

duce 𝑣 ∶= ‖𝐩|−|𝐩′‖
𝑀 as the speed difference between two atomic states,

such that the frequency shifts become

𝛥𝑢𝐶 ≈
𝑀⟨𝜑𝐶 ⟩
2𝐶

{

1 − 𝜆𝐶
2𝑚2

𝐶

𝛥(𝑇≠0)𝐶 [1 − sinc(𝑚𝐶 𝑡)]
}

𝑣2 , (36)

𝛥𝑢𝑆 ≈ 𝑀
42

𝑆

(

⟨𝜑𝑆⟩
2 + 𝛥(𝑇≠0)𝑆

)

𝑣2 . (37)

Note that the chameleon-induced frequency shift that we have derived
in Eq. (36) has some similarities with the one found in Ref. [34].
However, they are clearly not identical. This stems from the fact
that Ref. [34] reads off the frequency shift directly from a quantum
master equation, which is an incorrect procedure because the shift is 𝑡-
dependent and cannot be extracted without actually solving the master
equation. Since the method presented in Ref. [43] allows us to directly
compute the reduced density matrix elements, we were able to find the
correct frequency shift in this article. In addition, in contrast to the
result in Ref. [34], Eq. (36) allows for arbitrary temperatures and still
has its explicit time dependence. This renders it more general.

Next, we check whether the frequency shifts in Eqs. (36) and (37)
could actually lead to new constraints on the considered models. For
this, we use the same experimental parameters as in Ref. [35], i.e., we
use a vacuum chamber with radius 𝐿 = 10 cm [24,27]; assume a
speed difference 𝑣 = 50 mm s−1 [50]; and state that the smallest
frequency shifts that can currently be measured in atom interferometry
experiments are 𝛥𝑢min ≈ 10−8 Hz [50,51]. In order to avoid any non-
negligible effects of the experimental setup on the screened scalar
fields’ VEVs and masses, we restrict our discussion to model parameters
for which 𝐿 ≫ 1∕𝑚𝛼 ≫ 𝑟nuc is fulfilled, where 𝑟nuc is the radius of
our probe atom’s nucleus. Note that we take 𝑟nuc instead of the atomic
radius since the nucleus is by far the most dense part of an atom and
is consequently expected to have the largest impact on the screened
scalar fields. Furthermore, in order to be consistent with our previous
assumptions, we must restrict our discussion to the cases 𝜆𝛼 ≪ 1,
⟨𝜑𝛼⟩ ≪ 𝛼 , and 𝑀 ≪ 𝛼 . For the chameleon, we consider two
limiting cases, 𝑚𝐶 𝑡 → 0 and 𝑚𝐶 𝑡 → ∞, such that we can make use
of lim𝑥→0 sinc(𝑥) = 1 and lim𝑥→∞ sinc(𝑥) = 0. The symmetron-induced
frequency shift is discussed only for parts of the parameter space in
which the fifth force is unscreened.
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Fig. 2. Predicted constraints for the two screened scalar field models when comparing the frequency shifts induced in two atom interferometry experiments with either Rb-87 or
Li-7; (a): 𝑛 = −4 chameleon constraints in a parameter space region that has already been covered by other experiments [18]; (b) and (c): symmetron constraints for 𝜇 = 104 eV
and 𝜇 = 106 eV, respectively; the potential constraints for the symmetron are on parts of the parameter space that have never been constrained by any other experiment before;
see Ref. [17] for the most recent summary of symmetron constraints. On the abscissae of (b) and (c), the distances to any constraints given in Ref. [17] are larger than 10 orders
of magnitude.
As was pointed out in Ref. [34] and implemented in Ref. [35],
frequency shifts can only be quantified if one measurement is compared
to another measurement under different experimental conditions. This
means that we actually need to predict frequency shifts for two distinct
experimental setups and look at the difference of those. If we predict a
difference in frequency shifts that is at least 𝛥𝑢min but it is not observed
in actual experiments, then this constrains the parts of the screened
scalar field parameter spaces for which we have made our predictions.
At first, we follow the path of Ref. [35], i.e., we take a rubidium-87
atom as the probe particle, and predict frequency shifts for different
temperatures and gas pressures in the vacuum chamber. However, in
this way, we do not find any new constraints on either of the two
screened scalar field models considered in this article. Therefore, we
employ a different approach and actually compare two experiments at
the same temperature, 𝑇 = 300 K, and with the same residual H2 gas
pressure, 𝑃 = 9.6 × 10−10 mbar [31], but with two different atom species.
Besides rubidium-87, lithium-7 is used in atom interferometry [52].
5 
Comparing the predicted frequency shifts for experiments with those
two types of atoms, i.e., we search for parameters that fulfill

|𝛥𝑢𝛼(𝑀Rb-87) − 𝛥𝑢𝛼(𝑀Li-7)| ≥ 𝛥𝑢min , (38)

we expect to find constraints on the screened scalar field models as
shown in Fig. 2. In actual experiments, we would of course have to
take into account that there is a natural difference in the unitary
evolutions for both types of atoms due to the different atomic masses.
Interestingly, our predictions for the chameleon are not noticeably
affected by choosing either of the two cases 𝑚𝐶 𝑡 → 0 or 𝑚𝐶 𝑡 → ∞,
which implies that the thermal correction is subleading. Unfortunately,
for the 𝑛 = −4 chameleon, our results show that we do not have to
expect induced frequency shifts to lead to novel constraints. However,
this does not necessarily come as a surprise since this model is already
tightly constrained. Though, our predictions for symmetrons indicate
that open quantum dynamical effects have the potential to constrain
parts of the model parameter space that have never been reached by
any experiment before. Quite interestingly, frequency shifts seem to
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give particularly tight constraints for values of 𝜇 ≈ 104 eV and above,
a regime that can currently only be reached by a few experiments; see
Ref. [17].

4. Conclusions

Light scalar fields appear in many contexts throughout modern
physics. Consequently, they are actively searched for in many exper-
ments. Screened scalar fields are some particularly interesting light
calar models since they dynamically circumvent current Solar System
onstraints on the fifth forces they are expected to cause. Despite
normous experimental efforts, many of these models are, as of yet,
ot fully excluded. This fuels the demands for new experimental ideas.

In this article, we have complemented the studies of Refs. [34,35] by
deriving and discussing frequency shifts induced in atom interferometry
experiments due to interactions with two well-known screened scalar
field models, 𝑛 = −4 chameleons and symmetrons. We have shown that
the original prediction of Ref. [34] was not fully correct. Employing
more recently developed methods from Ref. [43], we were able to
roperly derive expressions for frequency shifts as corrections to the
nitary dynamics of an open scalar field system that acted as a proxy
or a cold atom. While a scalar field representing an atom is a rather
ough approximation, we have argued why this can still give us a first
stimation on whether open quantum dynamical effects induced by
hameleons or symmetrons can lead to constraints on these models.
sing more sophisticated computational methods that are currently still

n development, we will in the future be able to confirm or amend the
esults from the present article.

While we have shown that frequency shifts can likely only be used
o investigate regions of the 𝑛 = −4 chameleon parameter space that

have already been covered by other experiments, they could still be
useful in order to confirm such existing constraints. However, much
more interesting is our conclusion that frequency shifts have the po-
tential to tightly constrain parts of the symmetron parameter space
that are currently out of reach for any other experiment. In particular,
our results indicate that frequency shifts can be powerful tools when
studying symmetrons with tachyonic masses above the keV scale.
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