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‚urzfassung 

ÜR DEN ENTWURF integrierter Schaltkreise ist es wünschenswert, das elektrische Ver- 

halten der integrierten Bauelemente mittels spezieller Simulationsprogramme nachbilden zu 

können. Im Fall von teil-verarmten Silicon-on-Insulator (501) Transistoren ist es mit den bisher 
vorhandenen Simulationswerkzeugen jedoch kaum möglich, physikalisch realistische Ausgangs- 

kennlinien zu erhalten. Bei Verwendung des konventionellen Energietrausportmodells wird bei 

zunehmender Drain-Source Spannung eine Verringerung des Drain-Stromes nach Erreichen eines 

Maximums beobachtet. Dieser Effekt tritt nur in der Simulation bei Verwendung des Einergie- 

transportmodells auf. Diese Arbeit zeigt, dass die Ursache dafür im Transportimodell selbst zu 

suchen ist. Bei Verwendung des Drift-Diffusionsmodells und in experimentellen Daten tritt der 

Abfall in der Kennlinie nicht auf. Das anomale Verhalten wurde mit zwei verschiedenen Simula- 

toren reproduziert, womit Unterschiede in den numerischen Verfahren als Ursache ausgeschlossen 

werden können. 

Die Anwendbarkeit des Energietransportmodells ist deshalb wünschenswert, da durch die zu- 

nehmende Verkleinerung der Bauteilabmessungen nichtlokale Elfekte immer mehr an Bedeutung 

gewinnen. Das Drift-Diffusiousmodell kann solche Effekte jedoch nicht beschreiben. 

Durch umfassende Simulations-Studien konnte die Ursache des Problems identifiziert werden: Bei 

Verwendung des Energietransportmodells erwärmen sich die Elektronen im Äbschnürbereich des 

Transistors auf Temperaturen, die weit über der Gittertemperatur liegen. Aufgrund der dadurch 

erhöhten Diffusion gelangen Elektronen in das nicht kontaktierte Substrat des Transistors. Ein 

Teil dieser Elektronen wird von den Drain- und Source-Raumladungszonen abgesaugt, der Rest 

rekombiniert mit den Löchern im p-dotierten Substrat. Durch die Rekombination der Löcher 

nimmi das Potential im nicht kontaktierten Substrat stetig ab, solange, bis die Generation 

in den Sperrschichten den Rekombinationsprozess kompensieren kann. Das sich so einstellende 

Substrat-Potential bewirkt über den Substrat-Elfekt eine Verringerung des Drain-Stromes und 

dadurch den negativen differenziellen Ausgangsleitwert in der Kennlinie. 

Für Vergleiche wird die Monte Carlo-Methode verwendet, welche die Lösung der BOLTZMANN- 

Transportgleichung ohne weitere vereinfachende Annahmen erlaubt. Bei Verwendung des Ener- 

gietransportmodells nimmt die Blektronenkonzentration im Vergleich mit Monte Garlo-Simula- 

tionen im Abschnürbereich in vertikaler Richtung viel langsamer ab. Wenn nun aber die BOLTZ- 

MANN-Gleichung einen stärkeren Abfall der Blektronenkonzentration vorhersagt, muss das Pro- 

blem bei den Annahmen und Vereinfachungen liegen, die bei der Herleitung des Energietrans- 

portmodells getroffen wurden. In diesem Zusammenhang sind die Näherung der Tensorgrößen 

durch Skalare und die Schlielbedingung, welche bei der Hierarchie der Momentengleichungen 

auftritt, relevant. 

 



KURZFASSUNG 
  

Zur Lösung des Problems wird eine Modifizierung des konventionellen Energietransportmodells 

vorgeschlagen. Durch Verwendung einer modifizierten Schließbedingung und einer anisotropen 

Trägertemperatur gelingt es, die artihizielle vertikale Diffusion ausreichend zu reduzieren. Das 

Einergietransportimodell wird ausgehend von der BOLTZMANN-Transportgleichung unter den ge- 

troffenen Annahmen neu abgeleitet. Zur Herleitung werden Momente aufsteigender Ordnung 

von der BOLTZMANN-Transportgleichung ermittelt, indem diese mit. unterschiedlichen Gewichts- 

funktionen multipliziert, und anschließend über den Impuls-Raum integriert wird. Wird die 

Momentenentwicklung bei unterschiedlichen Ordnungen abgebrochen, erhält man unterschied- 

liche aus der Literatur bekannte Transportmodelle. Im Zuge dieser Herleitung wurde auch ein 

5-Momententransportimodell entwickelt und implementiert, welches in dieser Form in der Lite- 

ratur bisher noch nicht zu finden ist. 

Die modifizierten Flussgleichungen wurden in den allgemeinen Bauteilsimulator Mintmos-NT 

implementiert und erfolgreich an verschiedenen SOl-Transistoren getestet. Die konkreten Werte 

der Parameter werden in dieser Arbeit aus Monte Oarlo-Vergleichsrechnungen gewonxen. Durch 

geeignete Parameterwahl in den resultierenden Flussgleichungen kann verhindert werden, dass 

die Elektronen jene hohe Diffusivität erreichen, die zum Fehlverhalten in der Simulation führen. 
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Abstract 

O DEVELOP and design integrated circuits which use 5ilicon-on-Insulator (SON) technology 
it is desirable t0 be able to properly simulate the electrical behavior ofthe integrated devices 

using dedicated simulation programs. However, the simulation tools currently available are not 

capable of predicting reasonable output characteristics when the energy transport model is 

applied. Instead, by using the conventional energy transport model in simulations of partially 

depleted 501 MOSFETs an anomalous decrease ofthe drain current with increasing drain-source 

voltage has been observed. This work shows that this decrease Is a spurious eflect, because it 

is neither present in experiments nor is it predicted by the drift-diffusion transport model. The 

possibility that the decrease is caused by the details of a particular nurnerical method has been 

ruled out by using two different device simulators. 

Nevertheless, the applicability of the energy transport model is desirable, because in contrast 

to the drift-diffusion model it takes nonlocal effects into account, which gain importance in 

the regime of the ever decreasing minimum feature size of todays devices. The drift-diffusion 

transport model is not capäble of describing such effects. 

By making comprehensive simulation experiments the cause ofthe problem has been identified: 

When using the energy transport model the electrons in the pinch-oT region attain an increased 

temperature which leads to an enhanced diffusion. The hot electrons of the pinch-off region 

have enough energy to overcome the energy barrier towards the Hoating body region and thus 

enter into the sea of holes. Some of these electrons in the foating body are sucked-off froın the 

drain-body and source-body junctions, the rest recombines with holes ofthe p-doped substrate. 

The holes removed by recombination cause the body potential ta drop. A steady state is ob- 

tainsd when the body potential reaches a value which biases the junctions sufficiently in reverse 

direction so that Ihermal generation of holes in the junetions can compensate this recombinatien 

process. Via the body effect the drop of ihe bady potential leads to the decrease in the output, 

characteristics. 

For comparison the Monte Carlo meihod is used which solves BOLTZMANN’s transport equation 

without further simplifying assumptions. In Monte Carlo simulations the spreading of hot 

carriers away from the interface is much less pronounced than in energy transport simulations. 

if we assume that BOLTZMANN’Ss equation does not predict the hot carrier spreading, and if the 

energy transport equations derived from BOLTZMANN’S equation do so, Ihe problem must be 

introduced by Ihe assumptions made in the derivation of the energy transport model. Relevant 

in this regard is the approximation oftensor quantities by scalars and the closure ofthe hierarchy 

of moment equations. 
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ABSTRACT 
  

To overeome the problem of spurious negative differential output conductance a modified en- 

ergy transport model is being proposed. By using a different closure relation and an anisotropic 

carrier temperature it is possible to sufficiently reduce the artificial vertical diffusion. The mod- 

ified energy transport model is derived from BOLTZMANN’S transport equation. BOLTZMANN’S 

transport equation is multiplied by weight functions of increasing order and integrated over 

momentum space. The resulting moment equations lead to transport models of different order 

which are known from literature. During tkis derivation for the Grst time also a six-morments 

transport model has been developed In a consistent way. 

The modified energy transport model has been implemented in the general purpose device sim- 

ulator MINIMOS-NT, and successfully applied to simulate different SOl transistors. Parameter 

values needed in the modified transport model are taken from Monte Uarlo comparison sim- 

ulations. The suggested modikeations turned out to be appropriate to prevent the electrons 

from reaching the high diffusivities which led to the failure of the standard energy transport 

simulations. 
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Chapter 1 

  

Introduction and 

HE INCREASED speed and capability of computers has had enormous impact on the 

development of our society. The Internet, advanced software applications like office suits 

and computer games, speech recognition, advances in telecommunications and the many services 

that we take for granted are all made feasible only because ofthe steady performance increase of 

microchips over time. Judging from what is in development in the research laboratories of many 

companies and universities, the increased performance of chips will continue to fundamentally 

change the way we live in the future, 

One way to make chips faster is to reduce the size of Ihe transistors. This technique has 

successfully been used for more than thirty years now |}, following Moore’s law [2] which 

states that the number of devices per chip doubles roughiy every 13 month. Other techniques 

io increase the speed of chips is to use alternative semiconductor matertals and substrates. A 

substrate that has been under active consideration for the last 30 years is silicon-on-insulator 

(SON. In integrated circuits SO! technology Improves performance over bulk CMOS technology 
by 25% to 35% [3], equivalent to two years of bulk CMOS advances. SO technology also reduces 

power consumption by a factor of 1.7 to 3. Therefore SOl technology wiül result in faster 

computer chips which also require less power-—a key requirernent for extending the battery Iife 

of small, hand-held devices that will be pervasive in the future. 

When designing a serniconductor device 1 is convenlent to simulate its characteristics and be- 

bhavior with software tools before fabricating a prototype in order to reduce the costs and to 

allow io speed up the whole development. 

To simulate ihe electrical behavior of semiconductor devices with a computer program, it is 

necessary to have proper physical models of the quantities of interest. A starting point is often 

BOLTZMANN’S transport equation which is a semiclassical transport equation neglecting quantum 

effects, For devices of microelectronics this simpHfication is quite valid. Monte Carlo simulators 

solve BOLTZMANN’S transport equation without any further assumptions, but they need a lot of 

computer resources. Another way to get reasonable results is to use partial differential-equation 

systeins. During the derivation of these systems, various assumptions are made to reduce the 

complexity oftbe problem. It is worth noting that although the simulation domaln is restriched 

io a single device or a small circuit, & first principle deseription of carrier transport is not 

avallable under general conditions. Hence appropriate assumptions are taken, which ensure the 

required accuracy and, at the same time, lend thernselves to an efficient numertica} solution. 

 



INTRODUCTION AND OVERVIEW 
  

The typical transport model used in the description of the semiconductor device behavior takes 

only the ohmic and diffusive contributions to carrier transport into account, and is referred to 

as drift-diffusion transport model. One of its major drawbacks is that the temperatures 7, and 

7, of the carrier gas are set equal to Ihe lattice temperature, which means that carrier heating 

is neglected. The energy transport model, on the contrary, is able io retain the information 

about the carriers’ temperature which makes it possible to descerıbe non-local phenomena such 

as velocity overshoot. The carrier temperature may locally become considerably larger than the 

lattice temperature. It is thus desirable to take advantage of models able to tackle such effects 

and predich them with reasonable aceuracy. A disadvantage of the energy transport model 

should be mentioned too. The required computation Lime is higher compared to that required 

by the drifi-difusion transport model, and convergence of the numerical solution is harder to 

achieve. 

This work deals with a specific problem ofthe energy transport model. When simulating partially 

depleted SO! MOSFETs the standard energy transport model breaks down completely. One 

obtains anomalous output characteristics which make it impossible to predict the behavior ofa 

real device. By improving the physical assumptions the energy transport model can be modihed 

io overcome these Iimitatbions. 

This work is organized as follows: 

Chapter 2 presents the derivation ofihe basic semiconductor equations. After putting together 

a simple transport model ın a rather phenomenological way a rigorous derivation of transport 

models with increasing complexity is performed starting from BOLTZMANN’s transport equation 

by using the moments method. 

Chapter 3 treats the discretization of the six-moments transport model obtained in Chapter 2 

using a straightforward extension of Ihe SCHÄRFETTER-GUMMEL discretization scheme. This 

couverts the original differential problem in a usually large nonlinear algebraic system. 

The problem related to SOl simulations is presented in Chapter & The physical effects are 

investigated in great detail and an explanation of the effect is given. 

In Chapter 5 the energy transport model is modified by taking an anisotropie carrier temper- 
<o 

ature and a non~-MAXWELLIan distribution function into account. 

Chapter 8 presents empirical models for the anisotropy and the non-MAXWELLian distribution 

function. Different elosure relations are examined and a stable and simple yet effective solution 

is presented. 

Chapter ¥ Gnally summarizes and concludes this text. 

 



Chapter 2 

Semiconductor Equations 

HE BASIC EQUATIONS for device simulation can be obtained by different means. One 

way is to use MAXWELL’s equations to derive POISSON’s equation and the carrier continuity 

equations and introduce the current relations by a phenomenological approach. Anotker way to 

synthesize transport models is the systematic derivation starting from BOLTZMANNTs transport 

equation. The moments meihad allows the derivalion of a hierarchy of increasingly complex 

trausport models meluding the well known drift-diffusion and energy transport models. 

2.1 MaxXweLL’s Equations 

MAXWELT’s equations determine a relation among the electric and magnetic field, the space 

charge density and the current density. They read |#, p.31] 

VxE=--3B, (2.1) 
V.B =0, (2.2) 
VıH=J+8D, (2.3) 

YV -D=g, (2.4) 

where B and D are the electric Reld and displacement vectors, respectively, H and B are the 

magnetic held and induction vectors, respectively, o is the total electric charge density, and J 

the conduction current density. 

Egns. (2.1) and (2.2) and egns. (2.3) and (2.4) each build a subsystem of their own. They are 
linked together by the relations 

D=cE, (2.5) 
B=uH, (2.6) 

where & and u are the permittivity and permeability, respectively. Egqn. (2.5) and egn. (2.6) are 

yalid only in materials where no piezoelectric or ferroelectric phenomena occur. In semiconduc- 

tors the frequency dependence of e and u can be neglected. 

 



SEMICONDUCTOR EQUATIONS 2.1 MAXWELL’s Equations 
  

2.1.1 Poisson’s Equation 

By introducing a vecior potential and a scalar potential MAXWELL's equations can often be 

rewritten in a more practical form. The vector potential A is defined by 

B=eVxA, (3.7) 

which fulfills eqn. (2.2) since ¥ - (W x A) evaluates to zero for every vector field A. Inserting 

egn. (2.7) into egn. (2.1) gives 

VxE=-5(VxA). (2.8) 

Interchanging the order oftbe time derivative and the curl operator, 

VxE=-¥x (&f A) . (2.9) 

and using the associative property ofthe curl operator, 

Vx{E+8A)=0, (2.10) 

the argument of the curl operator can be substituted by the gradient of a scalar potential 

E+dA=-Vo, en) 
since 9 x (VW ») yields zero for every scalar Geld ı. The minus sign on the right hand side of 

egn. (2.11) is introduced by convention based on historical reasons. 

In the quasi-stalionary case, which holds true for semiconductor devices‘, the time derivative of 

the vector potential can be neglected 

E=-Vo. (2.12) 

Poissow’s equation is finally obtained by inserting egn. (2.12) into eqn. (2.5) 

D=--eV»b, (2.13) 

which is in turn inserted into egn. (2.4) 

Vo= 218 
In the case of vanishing space charge density o POIssoN’s equation simplifies to the LAPLACE 

equation 

VeV =0. (2.15) 
  

!In semiconductor devices the characteristic dimensions are much smaller than the wavelength A associated 

with the operating frequency fby A =c/f, where c is the velocity of propagation in the semiconductor defined 

byc=co/ Er Er. Co Is the speed of light in vacnum, ¢, and a, are the relative permittivity and permeability, 

respectively, and have values of &, = 11.9 {3, 9.849] and ar = 1 for silicon. Thus for a frequency of f = 100 GHz 

the wavelength evaluates to A = 377 um which is much bigger that the typical device dimension of semiconductor 
devices which is in the order of 1 pm {6, p.141 {7, 2.110). 
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2.2 Phenomenological Approach 

In this section the carrier continnity equations and the drifi-diffusion current relations will be 

derived. Together with POISSON’s equation from the previous section this equation-set forms the 

basic semiconductor equalions (8, p.41]. They are based on the drifi-diffusion fransport model, 

the simplest ressonable transport model possible. 

2.2.1 Balance Equations 

3 By applying the divergence operator to eqn. (2.3) 

V- (VxH =V . J+V- 3D, (2.16) 

=V.J+3V-D, (2.17) 

4 and using egqn. (2.4) a continuity equation for the conduction current density is formed 

Yıltdeo=0). 219 
This result states that the sources and sinks ofihe conduction current density are compensated 

by the time variation of the space charge density. 

2.2.2  Drift-Difusion Transport Model 

MAXWELTL’s equations can be used to derive PoissoN’s equation (2.14) and the current: conti- 

nuity equation (2.18), whereas the current relations cannot be derived from them. 

The causes of current flow are manifold. One contribution is determined by Orm’s law which 

connects the current density to the electric held. Other causes might be gradients of the car- 

rier concentration or the temperatures of the lattice or the carriers, or gradients of material 

properties. 

In semiconductors two separate particle systems are responsible for charge transport. The 

carriers of charge are electrons (n) and holes (p}) aud their movement is responsible for the 
conduction“ current density which can be written as the sum of two components 

I=Ja+Jp. (2.19) 

where J„ and J,„ art the electron and hole current density, respectively. 
  

* In the literature this current: is sometimes referred to as convecheon current |[9, p.31] in analogy to thermo- 

dynamics since the current is caused by moving particles. On the other hand the transport happens in a solid 

medium which in thermodynamics is only capable to conduct the (heat) current. However the important point 

conduction current} and the current caused by a time variation of the electric displacement vector D which is 

uniformly called displacement current. The displacement current appears as 0, D in egn. (2.3). 

 



SEMIOONDUCTOR EQUATIONS 2.2 Phenomenological Approach 
  

2.2.21 Drift Current 

The component of the current which is caused by the electric field is called draft current. From 

the macröscopic point of view the current density and the electric field are related by OBM’s 

law 

zart HE 
(2.20) 

where o is the electrical conduetivity. Di is in general a tensor but can be assumed as a scalar 

in most sermiconductors®. 

From the microscopic point of view Ihe current density is made un by the movins carriers Y y 

drift . N J = gPW-INW , (2.21) 

where q is the elementary charge, n and p are the electron and hole concentrations, respectively, 

and v„ and v, are Ihe mean velocities of electrons and holes, respectively. The electric Held 
accelerates the carriers, but due to various scattering mechanisms the velocity of the carriers is 

imited: 

mE, (2.22) 
v, = mE, (2.23) 

where i, and ji, are the mobility of eleetrons and holes, respectively. By inserting these two 

equations into egn. (2.21) 

get = QP iy B En GN Un B , 
(2.24) 

and comparing egn. (2.24) with eqn. (2.20) and eqn. (2.19) the following relations are obtained: 

J o B (2.25) 
gan =, E, (2.26) 

and for the conductivities: 

Tp = Y0 iy, (2.27) 
= pin. (2.28) 

2.2.2.2 Diffusion Current 

The component of the current which is caused by the thermal motion of the carriers is called 

diffusion current. Ih is driven by a gradient in the carrier concentration. The law of diffusion 

which originally stems from the theory of dilute gases reads 

Fp,=-D,Vn, (2.29) 
F,=-D,Vp, (2.30) 
  

*Strictly speaking the conductivity o is a scalar only in isotropie materials. Semiconductors are due to their 

crystal structure in principle anisotropic. However, due to syımmetry properties, especially in the case of Germa- 

iur and Silicon, the anisotropicity ofthe conductivity is very small and can be neglected in many cases. 
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where [}, and D, are the diffusion coellicients for elecirons and holes, respectively, F,„ and 

¥, are the respective particle lux densities, which have to be multiplied by the charge of the 

particle to get the electrical current density 

„diffusion = —g ¥, (2.31) 

diffusion _ . os gdiftusion _ gF, . (2.32) 

For conditions close to thermal equilibrium and for non-degenerate carrier systems {BOLTZMANN 

statistics), the difTusion coefhicients are related to the mobilities by the EiINsTEin relation 

  
kg T, un 

D, = En z - 9 (2.33) 

ka T Bu 
DPo= bp u. 9 (2.34) 

where kr is BOLTZMANN’S constant. 

Superposition of the current components ylelds the druft-diffusion current relations 

Jn=qnu, BE+qgD,¥Vn, (2.35) 

Jp=qpu, B —gD,Vyp. (2.36) 

2.2.3 Carrier Continuity Equations 

The space charge density in semiconduetors is composed of the charges of electrons, holes, and 

the ionized dopant atoms 

e=qg(p+N})-qula+N,). (2.37) 

PotssoN’s equation (2.14) can be rewritten as 

VeV =qgn-p+N;— NS} . (2.38) 

bince the current relations were introduced by using two separate subsystems it is convenient 
Y to also split up the current continuity eguation eqn. (2.18) into two squations by introducing a 

formal separation parameter R 

v.J„-ufn= uR, (2.39) 

WW ° Sn > Qg Rp = q R . (2.40) 

R Ry~ Gpo=Ry~ Gy, (2.41) 

where R, /G, and R,/G, are the recombination/generation rates for electrons and holes, re- 
spectively. 

D] By summarizing Poisson’s equation (2.38), the current continuity equabions (2.39) and (2.40), 
and the current relations (2.38) and (2.36), ike set of basic semiconducior egqualions is obtained. 

This set of equations was first presented by VANROOSBROEOK in 1950 [10]. 
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2.3 Systematic Approach 

As already discussed, the mobile charge in a device can be seen as a system comprising two in- 

teracting subsystems, namely electrons and holes TIL, 0.357). The macroscopie average quantities 

are basically deterrnined by the microscopic behavior of Ihe particles constituting the systems. 

2.3.1 BOLTZMANN’s Transport Equation 

1t is well accepted to characterize the dynamics of each subsystem by BOLTZMANN’S transport 

equabion {BTE) 12, 2.107) {13, p.245], which provides a semiclassical description of carrier 
transport, and is of the following gestalt 

„=-1 for elect 
ch Fa ..- ¥ Vr Fr + Sp qE o vp fh e Q(j’b) . R(_f};) Pr Sy OT SISECIHONS (2.42) 

sy = +1 for holes 

° - - » . ° » ° R 2 3 

where f}, is the distribution function. In this work it is assumed that f{r,k, L) d’r d’& represents 

the number of carriers in the elementary volume d’r d°k of phase space at time ti. This leads to 

the normalization 

N= / dr / &k fr k1), (2.43) 
J : 

where NV is the number of carriers in the domain under consideration, D. v is the group 

velocity, and sp is the sign of the carrier charge. Carrier scattering is taken Into account by the 

collision operator Q(f). Generation/recombination processes are represented by R{f) and will 
} the influence of a magnetic field has oo A 3 be considered separately in Section 2.3.4. In egn. (2.42 

been neglected, 

  

N
 

In the semiclassical picture it is assumed that the state of a carrier at (r,k} in phase space is 

weil defined at each time ti. This statement violates the uncertainty principle formulated by 

HEISENBERG according to which both the position and the momentum of the carrier cannot be 

specitied ab the same time. However, in most transport problems of interest, the location ofthe 

carriers need only be fixed on a macroscopie scale [14, p.131]. To account for quantum effects, 

equations based on the WIGNER-BOLTZMANN equation have been considered [13]. 

From a practical point of view, the direct solution of BTE by a deterministic method is an 

extremely demanding and often un-prachcal task. The Monte Carlo method provides an accurate 

solution oftkis equation. However, the computational demand ofthis method is often too high to 

be used for TCAD purposes. Also, Hthe distribution of bigh-energetic carriers is relevant, or Üithe 

carrier concentration is very low in specific regions of the device, Monte Carlo simulations tend 

to produce high variance in the results. Therefore, furtker approximalions can be introduced 

in order to derive simpler equations from BTE and to obtain a reasonable trade-off between 

physical accuracy and computational demand. 

2.3.2 Moments Method 

General schemes to derive transport models from BTE have been proposed by Stratton [18] 

and Blatekjer [17]. The moments method is characterized by multiplying each term of BTE 
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with a weight function and integrate the whole equation over k-space®. By this procedure the 

coordinates of the k-space are saturated and a set of differential equations in (r, t)-space is left. 

Consequentiy, some information originally carried by the distribution function is lost. However, 

in many practical cases the information retained by the equations in {r, t)-space is suflicient 

to capture the essential features of the problem at hand [18, p.112]. The moments of the 

distribution function are defined by 

M,= (6) = / far, (2.44) 

where 6; denotes a weight function which can either be of scalar or vectorial type. The weight 

functions are usually chosen as powers of increasing order of the vector k. These powers are 

accompanied by some appropriate scaling factors to get physically meaningful quantities. In this 

work moments up to the sixth order will be considered. The corresponding weight functions for 

the even orders read 

  

  

  

do =1, (2.45) 

oy =& = iif (2.46) 

¢y =17 E = — (2.47) 
6 1.5 

bg = viE = 2;:5 , (2.48) 

and the weight funchons for the odd orders are 

DB = D =7 Ak ) (2.49) 

. RE?’k 
&s am Y & am gr 5 (2.50) 

PD kik 
s = v E = Da (2.51) 

where p is ihe momentum, A is the reduced PLANCK constant, k is the wave vector, m is Ihe 

effective mass”, and & is the energy. It is to note that the weight functions of even orders are 

scalars whereas the odd orders yield vectorial forms. As will be seen later, using these weight 

functions in the moments method the even orders will lead to the balance equations whereas 

the odd orders will lead to the Hux equations. 

o5 oo In egns. (2.46) to (2.51) a single effective parabolic energy band has been assumed®: 

2 2 £2 1.9 Y 9 h=k ="l o u , (2.52) 
2 am 2m ' 
      

  
*Physically correct would be to integrate over the first BRILLOUIN zone {sometimes also termed WIGNER SEITZ 

cell). However, since the effective mass of an elertron is assumed to be constant in this text, and since the decay 

of the distribution function is of exponential order, the error is negligible. 
>» literature the effective mass is often denoted by m“. Por a clearer notation in combination with powers of 

m” this text will use just m. 
“A first order approximation for a mon-parabolic energy band can be written as £{1 + o &) = B*E*/(2m) 

with o being the non-parabolicity correction factor [18]. However, inclusion of non-parabolic effects considerably 

complicates the formulation of adequate transport eguations since no closed form solutions exist even for this 

simple first order approxvimation. 
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The following derivation will be carried out only for electrons for the sake of clarity and brevity. 

As the derivation for holes is analogous, the results for holes will be presented without derivation. 

Appiying the moments method to BTE the moment eqguations for electrons are obtained 

he HE (Mb) = / ¢; Q dk — / ¢; R A%k, jeven, {2.53} 

2.3.2.1 Gradient Caleulation 

The eqns. (2.53) and (2.54) contain several gradients of scalar and vectorial functions which will 
be evaluated in this section. The following two identities which represent the gradienis of a 

scalar- and a vector-Reld are helpful 

where 6 is the unity tensor and p = |p!. 

The calculation of the gradients of ihke weight functions of even order is straightforward: 

Ve g0 =0, (2.57) 
ey = v, (2.58) 

4. x 

= —£v. 2.5¢ Vp ¢4 — Ev (2.59) 

The calculation of tbe gradients of the weight functions of odd order takes into account that 

eqns. (2.49) to (2.51) all have the same functional form, 

¢ =phip) . 2.60) 

Vp®¢=V,@phip) =hip) Ve @p+p 3V, hip) (2.61) 
~ dh = h(p) 3 +8 — V,p (2.62) dp 

o~ 1 
= hip) ö +{P®p) - bp}. (2.63) 

B4 zu 1 . hr je . (2.64) 

& D . 
i mu en $ m 2.85 

'3 m” IT m2 2.65) 
2 3.8 

p* £ 29" Ann 
As == a , hr == mE . (2.56) 
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which finally allows the gradients of the odd weight functions to be written as 

V, @ =4, (2.67) 
£~ 

Vp & b5 = o §+vRV, (2.68) 

E , 9x 
¥ ® gy = — (,),2 d+4vQv). (2.69) 

2.3.2.2 Macroscopic Belaxation Time Approximation 

The collision term on the right hand side ofegns. (3.33) and (2.54), which represents the various 
scattering processes, can be deliberately modeled as 

IE 7,0 kB) er (2.70) 
27 

which is commonly termed as relazation time approsimation 14, p.144]. This equation implies 

that the perturbed distribution function will relax exponentially to the equilibrium function 

with one time constant rz, when the perturbing Geld is removed. A discussion on the validity 
7 

of this approximation is given in {20, p.139]. 

The equiiibrium distribution function fo(k) is a symmetric function. Since the even weight 
functions are symmetric in k and the odd weight functions are anti-symmetric in k, only the 

even moments of the equilibrium distribution function will be non-zero whereas the odd moments 

will vanish 

(di = [sw folk) d’ #0 for even 7, (2.70) 

(@) = / ¢ (k) folk) k=0  forodd ] . (2.72) 

Appiying the relaxation time approximation and inserting Ihe calculated gradients from the 

previous section into eqns. (2.53) and (2.54) leads to the equation set 

  

go: ah +V (v} = - £, (2.73) 

! . £ = 7 _ (E) - (E)o 6 A 
BD: Ö: {E) +WV-.wvE) +qgE- (v) 7 me TTT + Gen, (2.74) 

£ 

’ 4 22 €Y — (12 
i WEHT e+ S vy = BT W E o (2.75) 

m Tg 

Be: V-lvep +gE-Ö) —. (2.76) 

E ~ , & ’ 
&y V- -(vev) —_. (2.77) 

2 

ds: V- -(vovi'E)+— E Ei? +4v8v)) = zu (2.78) - 

where rn, Te, 78, Te, Tr are the relaxation times for momentum, energy, energy fux density, 

kurtosis, and kurtosis Dux density, respectively. 
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2.3.2.3  Isotropic Distribution Function 

Egns. (2.76) to (2.78) all contain a stabistical average of a symmetric tensor (see Appendix A) 
of the form (PO p) which will be evaluäted in this section. The distribution function can be 

decomposed into a symmetric and an anli-symmetric part 

Sk} = fol(k) + falk) . (2.79) 

Fa) = Istikl) + Jalk). (2.80) 

This is a special case of the diffusion approximalıon 

detail for the MAXWELL distribution in Sechion 2.3 

the statistical average of Ihe tensor can be written as 

oy 1, p.49' which will be explained in more 
~ 

ion vage 14, By using this assumption g ) 

5 

3 
o3 

(p & p) = / kokjslikl) dir. (2.81) 

For symmetry reasons all elements outside the trace vanish. For instance, the element 

&GO 

(kaky) = / / / o by fs (B2 + 52+ K2 dkzdkydk. (2.82) 

evaluates to zero because of the integral 

    
oa 

Jess (Erg + RR) die=0. (2.83) 
- OO 

Since the distribution function is assumed to be isotropic, the integrals determining the elements 

of the trace all evaluate to a common value J 

50 

(uk) = [fs (fr+ +2) diydhydb, =7, lemmz. (2.84) 
0 . 

The value of J can be evaluated by the simple transformation 

  

(ki Fo) = (i"y Ray} = (ki k) = (2.85) 

(rk) rk) kr) =], (2.86) 
k%) 

(‘;” =]. (2.87) 

Therefore, the statistical averages of the tensors are diagonal with all diagonal elements being 

equal: 

  

MN 

pop) = <"£;> g, (2.88) 
2y 

(p®p5>——<§£§~’~5~ (2.89) 
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By inserting egns. (2.88) and (2.89) into egns. (2.76) to (2.78) one gets 

2 o /o 14 {v} By = (&) +gE(Ü) Zu (2.90) 
3 Tm 

1,2 5 g (v &) yore eine = NL 2.91 

1 9 2o 4 3 e (vote) 298 4: _ Tl 2.92 iy, 3V<’U ve) 3 (vw) = (2.92) 

Note that the divergences of Ihe tensors simphfy to gradients of scalars. 

2.3.2.4 Statistical Averages 

Instead of the statistical averages found in eqns. (2.73) to (2.75) and egns. (2.80) to (2.92) the 
following state variables are commonly used: 

» Densities: 

  

do den, 2.3) 
3 . 

b2 (&)= sknnTy, , (2.94) 

5 5 v 3 k2 m 
€ A 

hi wi)= =. u HT, (2.95) 

e Fluxes: 

Py (v} = an 5 (2.98) ) Sn 

Ba: (v&) =8y, 2.97) 
2 

nis the eleciron concentration, T,, is the eleciron temperature, and 5, is the kurtosis. Ega. (2.93 

represents the normalization of the distribution function chosen in this work. Formmlation (2.8 

will be explained in more detail in Section 2.2.3.2 on page 1%. Egn. (2.95) wii be justißed in 

Section 2.3.3.5 on page 23. 

  

© 4 zn Egn. (2.96) is defined in analogy to the drift current egn. (2.21). Egns. (2.97) and (2.38) are 

reasonable extensions of the Hux term Io energy and kurtosis. 

Introdueing these new state variables leads to the final form of the transport equations: 

1 
ds: An - E}?V In =—R, (2.99) 

3 ( 3 T, —T% 
da: —kpd (nTy) + %85, - E-J, m e e kan m L +Gen, (2.100) 

2 2 TE 

5.3 k2 2 ., 4 5-3k% Tin - 
Da . ");'"'"" "'B' (3'1: (7?/ TEL Eh 3) + | Y “ Kn + — 1 5 ° Sn nenn n u 2 - 13 """"éfi'"""“"";‘" """ Ga n 

2m ™ An 2 m T4 
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2 43 5: us -- (3 v (5 kg 7) + gEn) (2.102) 

1 Hk . 5 qkg ; 
DB: By, = Tg (3 ¥ ( 5 nT% Br) + 3 m EnT,) 3 (2.103) 

m o1 , 35 qki . bs: Ku= 5 (z Y (ds) zen Br) (2.104) 

2.3.3 Closure 

Depending ou the order up to which the mornent equalions are taken into account, transport 

models of different levels of sophistication are obtained. A characteristic ofthe moments method 

is that each equation for the moment s of the distribution function contains the next higher 

moment +1. For example eqn. (2.104) contains the sixth order moment (de). Therefore 
the mumber of unknowns exceeds the number of equations and an expression for the highest 

ocecurring moment must be found. This can be achieved either by simplifying the equation of 

order +1 or by invoking some physical reasoning independent of the derivation ofthe moments 

themselves. This task is referred to as closure of the moment equations. 

2.3.3.1 Maxwell Distribution 

To close the system of equations an a priori assumption about the shape of the distribution 

funchion can be made. A shifted MAXWELL distribution function is a frequentliy used ansatz 

faul) = et (2.105) 

Every distribution function can be seen as being comprised ofa symmetric and an anti-symmetric 

part 

Jk) = falk) + fa(k) , (2.106) 

whereby the two parts satisfy the following relations 

., . une Ss)= Se); reH), 2.107) 
an voran 

falk) = —fal-k) = 5 (f(k) — [(~K)) . (2.108) 

An example of a shifted MAXweELLian distribution function together with its syrnmetric and 

anti-symmetric part is depieted in Fig. 21. 

The diffusien approximahion now assumes that the displacement of the distribution function is 

small which means that the anti-symmetric part is much sinaller than the symmetric one. Then 

it is justihied to approximate the shifted MAXWELL distribution function by a series expansion 

with respect to the displacement and to truncate the expansion after the first, term: 

FR) = ertbice? (2.109) 
u gb k? Pa 

(2.110) 

= /ulk)(i+b-k). 2.111) 
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Figure 2.1: Shape of a shifted MAXWELL distribution function fy(k) and its sym- 
metric fs(k) and anti-symmetric fa(k) parts. The displacement is assumed to be 

large. 

A decomposition of a shifted MAXWELLian distribution function, where the displacement is 

small, is depieted in Fig. 2.2. The symmetric and anti-symmetrie part from Fig. 2.2 together 

with th approximations are depicted in Fig. 2.3. As can be 1, if the displacement is small 

the diffusion approximation is well justified. 
        

The interpretation of eqn. (2.111) is that the symmetrie part can be approximated by a non- 

displaced MAXWELL distribution function 

£ 
Iu(k)=Ae ken, (2.112) 

and the anti-symmetric part by a non-displaced MAXWELL distribution function multiplied by 

b k. 

For closing the moment equation system at even moments, an assumption about the symmetric 

part of the distribution function must be introduced since the integrals of even powers of k 

multiplied with the anti-symmetrie part vanish. Vice versa, for closing the moment equation 

system at odd moments, only the anti-symmetric part of the distribution funetion must be 

assumed since the integrals of odd powers of k multiplied with the symmetrie part vanish. 

    

The even moments will be calculated as powers of the energy €’ since for parabolic bands 

(v2 E) and (€?) only differ by a constant prefactor m/2. The same holds true for (v! €) and (E°) 
where the constant prefactor yields m?/4. Starting from 

(&% = [es Bm dk, (2.113) 
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Figure 2.2: Shape of a shifted MAxwEız distribution function fsu(k) and its sym- 
metric fs(k) and anti-symmetric fa(k) parts. The displacement is assumed to be 

small. 
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Figure 2.3: Symmetrical fs(k) and anti-symmetric f (k) parts of a shifted MAXWELL 

distribution function in comparison with the result of the diffusion approximation. 

  

16



SEMIOONDUCTOR EQUATIONS 2.3 Systematic Approach 
  

the integration over k-space is performed in spherical polar coordinates using the transformation 

o2 

/ d’k = / Arkidk. (2.114) 

0 

Assuming a parabolic dispersion relation, £ = h;i;;’ eqn. {2.113) becomes 

~ 2mN 5 7 1 £ 
(€ = Ar (=) : jet e Bin dE, (2.115) 

9 

and making ihe substitution &E = kp T, u egn. (2.115) can be written in a form suitable for 

making use oftbe gamıma funchion 

oO 

Ä 2mks Ty 3 - m (£ = A2n =) (ka Ta)” fe ut du. (2.116) 
8 

Using the gamma function and its identity rules 

oo 

iz) = fe ut du, T{z+1)=2T{(z}, F{1/2) = 7, (2.117) 

0 

transforms the even moments of the MAXWELL distribution function to 

s 3 
2mkg =) 5 

75 (ke ‚N fi + 2) T (7 + =) (2.118) (EN = A? [ 

lating the moments is then straightiorward and yields 

  

usn, (2.119) 
57\ 3 . (E1 Yy = n 5k T s (2.120) 

/57 5 i 3 rm 2 

(& == 375 Kein), (2.121) 

. 7-5-3 3 
3 —_— Iy ¢ Y6 (E%u =mn 37375 (knTh)", (2.122) 

or by using the weight functions (2.45) to (2.48) 

(de)m=r, (2.123) 

(de)m = 5 kpn'f, , (2.124) 

5-3k% . 
(dam = 757 = nTz | (2.125) 

7.5.3 _ 
(du = nn. (2.126) 

In 
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2.3.3.2 Discussion of the Diffusion Approximation 

The framework of the diffusson opproxsimahon allows to considerably simplify the structure of 

the transport equations. To point out Ihe implications of the diffusion approximation in this 

sechion two Important wmornents are evaluated without this approximation. 

Let now be f a shifted distribution function 

J=folk ~ kol , (2.127) 

where fa is not only symmetric in k but also in every component ofk 

Jolkz, Ay; kr) = Eu Fol- hy, fayı Rz} (2.128) 

= folko, Ay, kr) (2.129) 
= folks ky hi) 2.130) 

This stronger symmeiry property ensures that the resulting tensor quantities are of diagonal 

shape {see egn. (2.83)}). Functions which satisfy this stronger symmetry criterion are for example 

an isotropic” distribution function where fo is only a function of the absolute value ofk, fo = 

follkl]}, and whose iso-surfaces are spheres. Another example is a distribution with ellipsoidal 

iso-surfaces, for instance an anisotropice MAXWELL distribution. 

FIDE As has already been shown in eqns. (2.106) to (2.108), every function can be split into its 
symmetric and tis anti-symmelric part. Since ihe weight functions k  k and ko k are even 

funchions, only the symmetric part of the distribution function has to be taken into account 

[s(k) = ; {folk — ko) + fo(—k — ko)) = (fg(k - ko) 4 folle -+ ko)) (2.131) 

DT Bgn. (2.131) is now used in ihe evaluation of the statistical average (k ® k}: 

1 . i a 
= 5 /k®kfo(k~ko) + 5 /k@kj'g(k+k0 4%k 

k' 1! 

P/ , . 1 f . 

5 [w + ko} 8 (K + ko) fo(k') d’R + 5 fe — ko) © (k" — ko) folk") dh" 

= ["s15@ + Rkon. (2.132) 

Cross terms containing both k and kg vanish because of [k folk) d’k = 

The statistical average of (k- k) can be evaluated in the same way ylelding 

(k-k) = / k-kfolk) Pk+ky kon, (2.133) 

  
"The assurmption of an isotropic distribution function can be justifhied due to the strong scattering of the 

carriers inside the seniconductor. Nevertheless, as will be seen in Chapter 5, this assumption is worth a detailed 

iuvestigation 38 it cam lead to erroneous results. 
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For a MAXWELL distribution the Girst term ofthe RHS ofeqn. (2.133) has already been caleulated 

as egn. (2.130). Therefore eqn. (2.133) can be written as 

  

A? 3 mu? EN ann 0 G 1A 
{(E) = 3 (k-k)= :n(5 kan + 5 ) . (2.134)   

      

As can be seen, without the diffusion approximation the average carrier energy is composed of 

a thermal component and a kinetic® component. A consequence of the diffusion approximation 

is that the kinetic term is neglected [24, p.71] 25, p.736]. By assuming T = Ty, = 77 K, 
v = 10’ cm/s, and m/mg = 0.26 for electrons in silicon 9, p.181] the ratio 3kgT)/{mw 2) 
yields 1.34. However, in reality ihis ratio is much bigger because in the regions, where the 

assurmed electron saturation velocity is reached, the electron temperature is much higher than 

the lattice temperature [26, p.34). Neglecting the kinetie term appears therefore justilied. Note 
that simulabions at very low temperatures would have to include this term. Under dynamic 

conditions this term can also be significant [27, p.413). 

  

oy The first term of the RHS of equ. (2.132) has also already been calenlated as eqn. (2.88). 
EDEN Bgn. (2.132) can therefore be writien as 

. 72 2, .~ B _, , vop) = koK = 2@ 5+ ko ken . (2.135) 
mM 3 mM 

Sy Inserting eqn. (2.135) into eqn. (2.76) ylelds 

2 e | 
VD H-V— — ko Qkon+gE(Q) = -m ) : (2.136) 
3 T 

By calculating the statistical average (k) 

19 = [ ko~ ko) d% = / (0 + ko) fol) K =Ko [ foll) K =kom, (2.137) 

the current density can be expressed as 

fi 

ED 
“ ID and the second term of the LHS of egn. (2.136) can be written as 

2 
  3 I: V. ky®kon = v . (Je: -)5=J1-V8-5, (2.139) 

g ng 
         

where in the last identity the term containing W - J has been neglected. 

Inserting egn. (2.139) into egn. (2.136) yields the final form ofthe current relation 

  

. m. J M ey . 
In == J-V8 - = q;’"‘ (V (ksnTy) +qEn) |, (2.140) 

      
  

51n literature this term is also called convective term [22, 2.157] 23, p.232]. As the expression convection is 

already quite mixed up in conjunction with the current density (see footnote on page 3), the expression kinetic 

will be used here. 
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D which has compared to egn. (2.102} an additional second term [28] on the LHS, which is non- 
linear in J. This example demonstrates that neglection of the term u J-V® % is another 

conseguence of the diffusion approximation. Therefore, if it is justilied to neglect the kinstic 

term in eqn. (2.134) it is equaliy valid to neglect ihe additional term in the current equation 
3 140 hi Je 

The importance of this additional term within semiconductor equations is controversial. Phe- 

nomena known frora fluid dynaraics like super-sonic transport and propagation ofelectron shock- 

waves arıise [29] [30]. The resulting transport model is referred to as ffull) hydrodynamie transport 
model”. 

2.3.3.3  Drifi-Diffusion Transport Model — Closure at de 

oy .-\E o 

By taking only the first two moments, eqos. (2.99) and (2.102), Into account 

1 . 
g Aun--VJ„=-R, (2.141) 

4 
[2 

U 
Ein 

and elosing the equation system at dy 

(B2) = S kun, (2.143) 
the drift-diffusion transport model is obtained. Since no information about the carrier 

assuming the thermal equilibrium approzimation [31]. 

V.n=q{R+ön), (2.144) 

In = mka (VnTı)+ En). (2.145) 
B 

This transport model takes only local quantities into account. As such, it completely neglects 

non-static transport effects which occur in response to a sudden variation of the electric Neld, 

either in time or in space. 

In order to enhance the validity range of the drift current expression, a field dependent mo- 

bility!® is generally used, accounting for hot-carrier effects. Diffusivity, however, is largely 

underestimated with the EINSTEIN equations, if the lattice temperature rather than the carrier 

temperature is being used [7, p.145]. 

I needed, the average energy can be estimated via Ihe homogeneous energy balance equalion 

2 M To=T,+5 e B? | (2.146) 
3 kg 
  

“Nomenclature in lterature again is ambiguous. Sometimes the model presented in this text under the terın 5 > . 

energy transpori ınodel, which neglects the term in the current relation, which is nonlinear in J, is also called 

hydrodynamic model, sometimes it is referred to as energy balance model. However, the important point is to 

distinguish between including and neglecting the tern nonlinear ın J. 
Various different models have been developed. Examples can be found for instance in 132! 133] fädl. F P i 
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However, for rapid increasing electric fields, for instance, the average energy lags behind the 

electric Held. As a consequence the average energy can be considerably smaller than the one 

predicted by the homogeneous energy balance equation (2.14%). Another important consequence 

is that Ihe lag of ihe average energy gives rise to an overshoot in the carrier velocity. The reason 

for this velocsiy oversheot ıs that the mobility depends to first order on the average energy rather 

than on she electric held. As the o mobility has not yet. been reduced by the increasing > energy 

carrier Energy comes into equilibrium with the electric f old: again. One of the fir st works dealing 

with this effect is 35]. Non-local effects Iike this one cannot be modeled using Ihe drift-diffusion 

trausport ınodel. 

2.3.3.4 Emergy Transport Model — Closure at d, and d4 

By taking the first three moments of BOLTZMANN’S transport equation, egns. (2.99), (2.100), 
and (2.102), into account 

1 
do: In av In == - R, (2.147) 

3 3 Tn-T a 
@2 - §det(nTrz)+v'<¢3> —E"Jn:_féan"%—%—(ffn 9 (2.148) 

Gi: Jn = pnkn (v (nTy) + f--- En) | (2.149) 
B 

an energy transport ınodel is obtained. To close the system the moment of third order (d,) 

must be evaluated. This is ihe only case where we close at an odd moment. ‚Fo or this the antı- 

symmetric part eqn. (2111) has to be used. The coeficient b found in egn. (2.111) is determined 

from the first moment. Since odd moments are calculated, only the anti-symmetric part of the 

distribution function ylelds moments different from zero. 

  

h hi Jp=—q(v)= - [ kfyb-kdk=-""b- /kmkad" = 
m. m 

h 2 2q. .: =- 2b: 5 [rpm dk =. b In Jen 43 = giébn%kgmz (2.150) 

qks " In = ET — be-——, 
en aka nn 

Lo x i 
(ds) == (v£) = 8, == = [ve f dk 3 [® kfub- kd’ k = 

    
I B« _____ bb: { ko ki PR bhed § K 8 = 2.151 

2m? / ® I e 6 m? ? öl md 2.151) 

— 5 3 kr 
= & fu d’k= —bn ke tn) = 3 Tundn: ef m = 55 ( B = 7 q nn 

Using this closure the 3>-moments energy transport model becomes 

Yln=qglR+ün), (2.152) 

In = ink (V nu) + En), (2.153) &B 
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3. . . 3 T — . . 
v “ S,, m ~ ku Or (rn Ta) + E ” B| nz ka Tt Bi: u + (g 7 9 (2.154) 

2 2 Tg 

5k 
8y = In dan (2.155) 

2 q 

The expression for the energy flux density eqn. (2.133) deseribes pure heat convection. I is 
often empirically extended by a conductive term where FOURIER's law is used for the heat How 

Q, [36 
5k 8, = ; B Ia+ Q. , (2.156) 

, = Rn vr. . (2.157) 

The thermal conductivity &, is calculated by the WIEDEMANN-FRANZ law, and is proportional 

to the mobility ii, and Ihe carrier temperature 7, 

5 k2 
Km 22 (= + en) 2 e Ty (2.158) 

2 q 

Care must be taken to perform this extension in a consistent way. c„ has to be set to zero since 

the prefactor in egn. (2.155) reads 3. In the literature this is often found inconsistent [37 

However, the heat flow term comes naturally into existence when the first four moment 

egas. (2.08), (2.100), (2.102), and (2.103) are taken into account 

1 do: In vn =0, (2.159) - 
- 3 T . I:l'l_ 

BB: EV Eike li (2.160) 
2 2 TE 

br: In lin kp (v (nT,) +;.En) (2.161) 

5 gk by: S, = -TS( V) + o q B EnT) (2.162) 

% Together with the closure relation derived from a heated MAXWELLian, eqn. (2.1233), 

a 

Mm 

  (du) = (da)m = nT, (2.163) 

the resulting energy transport model reads 

  

V- -Jd,=q(R+dn), (2.164) 

In = pn ks (v (nTn)+ gEn) : (2.165) 
. ’ kp 

3 T — T , . 
V8, =-skpd(nTn) + B J -—_kgyz,_—’?—;__é+(;¢gn, (2.166) 

' £ 
TS k: R. kı g, = 3 rn W, VT, + 2 5B 7;1310 , (2.167) 
Tm N2 g 2 
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The thermal diffusion current is included in egn. (2.183) since the gradient operates on both n 
and T,. Moreover, the velocity overshoot effect is included in this equation set since u, depends 

on 7, which in turn depends via egns. (2.156) and (2.187) in a non-local manner on the electric 
field distribution. 

As already mentioned, the heat How term is present in this model and the WIEDEMANN-FRANZ 

law for x, is obtained consistently. Eqn. (2.166) represents the standard form of a conservation 

eguabion. The left-hand side represents the energy outflow from some control volume, which 

must be equal to the sum ofthe rate of change ofthe energy density, Ihe energy delivered to the 

carriers by the electric field per unit volume and time, and the rate of change of energy density 

due to collisions. 

Using au energy transport model, non-iocal effects like Ihe velocity overshoot are covered. Inter- 

estingly, this model also predict a velocity overshoot when the electric field decreases rapidly, for 

instance ab the end of a channel in a MOS transistor. This velocity overshoot is not observed in 

the more rigorous Monte Carlo simwulations and thus termed spurious velocily overshoot. How- 

ever, it is generally believed that the influence of this effect on device characteristics is small. 

It appears that the spurious velocity avershoot is a result of the truncation of the moment ex- 

pansion of BTE at a certain order and close the equation system by some empirical expression. 

A second point is, that the relaxation times are not single valued functions of the energy. Due 

to these two reasons it is believed that Ihe spurious velocity overshoot can never be completely 

eliminated using a finite number of moment equations. More detailed investigations can be 

found in 38]. 

2.3.3.5 Six Moments Transport Model — Closure at de 

A M}, into account give three balance and 24 Taking the Arst six moments, egns. (2.39) to (2.1 
three Aux equations 

  

i 
db: In -, - (2.168) 

q 
3 _ 3 Tn — 71, 

b0 ks (nTy)  +V-S, En :m§k3nmi;mm£+(;gn, (2.169) 
£ 

15 k2 2 4q 15 k3 T2 B, — TP 
Bi ZEIT Ku + IE = - ZB mi gen, 

am Fr ™ 2 T8 

(2.170) 

. { \ .\ 

di: = na (V in) +,En), (2.171) 

5 kr -+ 5 gk h IM ¢ 5 &y 8y = —7T5 E = V(T2 8,) + 5 MB En n) (2.172) 

m ri 35 gk Br . 6: K=k (3 N +7 = EnT2ß.). (2.173) 

By using just a MAXWELL distribution function to close Ihe system one would not obtain any 

additional information as compared to the energy transport model. A shifted MAXWELL distri- 

bution function has only ihree independent parameters, namely its ampltude, the displacement, 

and the standard deviation, which correspond to Ihe carrier concentration n, the carrier velocity 
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%, and the carrier temperature 7, respecetively. By simply increasing the number of considered 

moments of the distribution function no additional independent variables can be found. 

In analogy to statistical mathematics a quantity £, called kurtosis has been introduced, which 

is in this work defined as the deviation of the fourth moment oftihe son-MAXWELL distribution 

function from the fourth moment of a MAXWELL distribution function with the same standard 

deviation 

2 
g L M . (2.174) 

dm 

The system is now closed at (de). Eqn. (2.138) is one possible closure relation obtained from a 
MAXWELL distribution function. Other eimpirical closures are also possible (egqn. (2.178)). By 

introdueing an additional temperature 9, 

neh, (2.175) 

g 19 ! ihe third power of the temperature T, in eqn. (2.126) is substituted by empirically combining 

different powers ol T, and ©, 

Me=To '@, =T28, 0<i<3. (25176} 

This is 5 depict bed i in n Fig, 2 where the different closure relamons are mmpmed with the sixth 

moment obtained from a Monte Carlo simulation of a one-dimensional n"-n-n" test struchure. 

As can be seen, the closure for the case i = 3 gives the smallest error within the channel. The 

convergence behavior ofthe resulting discretized equation systern also appeared most stable when 

using ? == 3. Especially for i = 1, which corresponds to closing the system wiih a MAXWELLian 
~ ¥ distribution function egn. 1126) [40] the NEWTON procedure failed to converge in most cases. 

[0 

C Sku 

  

7- , 
) = e Ly T3 33 2.177 

and the full six moments transport model reads 

Yln=qglR+ün), (2.178) 

I, = timkp (v (nT,) + Ei En) (2.179) 
£B 

3. 3 Tn—T0 
Y - Sn = a kp Ör In Ta) +5: In = 3 kp n ‘“‘““:r“:“““" + Gen y (2.180) 

5k2 rg ) . 3-85 fin (v (nT? 8, + I EnT a): (2.181) 
2 4 Tm kn 

15 Bo Rh-T.. 
YV K, = i W0 (nT28,) ~ 298 -8, — - T kan Hm - Gag (2.182) 

= TB 

’ 30 1"% TK 13 3‘ 4 rrı2 ¥ K, = oo o5 K e (v (nT2 B3 + End?) (2.183) 
A Q Tın kr 4 

  

Note: The implementation in Minimos NT uses © justead of 8 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

z/um 

Figure 2.4: Comparison of the different closure relations (2.176) with the sixth mo- 

ment from a Monte Carlo simulation. 

In the following the equations for the six moments transport model are rewritten by introdueing 

the charge sign s,„ for electrons and the coeflicients Cı to C5. The balance equations become 

  

V.J,=-s1q(On +R), (2.184) 
x IT, V.S, =-Cyd(nTy) +E-J, —Cn Tl 4Gy, (2.185) 

Tg 

12-72 
V-Kn=-Cı9(nT} Bm) +25n E38 - Can HFE— 4 Gyn, (2.186) 

TB 

with 

3 15 
Ges, Ci= Fu (2.187) 

and the following flux equations: 

J,=-C, (V(‘MT,,) — s, en) . (2.188) 

, 2 a . Sy = —Cy (v (T3 An) = an En 7.) . (2.189) 

, o a ‚_ kr ’ K, = —C; (v (AT?) - 5, en T2 H,,) ‚, 6-7 “ em (2.190) 

The equations for holes are obtained by replacing n by p and taking into account that 9, = 1: 

V-J,=—q(R+dip). (2.191) 

I, = —ppkn (v (»T,) — k‘—‘ Er) . (2.192) 
B 
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3 3 D-N 
V80= DT) HE In Zkap + Gen. (2.193) 

Skh s 2 q . 
g (v Pd) 7, Er 7,) , (2.194) 

2 . 15, %%-T% 
VK, =— kb (p1; B) +2qE 5 - Tkép%LJrcflp , (2.195) 

B 

3 
_ _PIBTK »T? 83) - LEIT? 9 196 

K, = mr (v Pd) BTy 3) . (2.196) 

  

2.3.4 Generation/Recombination Processes 

  

In indireet gap semiconductors, such as silicon and germanium, it was found experimentally 

that generation/recombination occurs primarily via trap centers. A theory of this effect has 

been established by SHOCKLEY and READ [41] and Haut [42]. 

dE 
Qe £, 

Figure 2.5: Symbolic band diagram showing 

the four partial pro 

rect generation/rei 
s involved in indi- 

mbination. 

  

    
Interaction among the partial systems electrons, holes, and traps is described by four partial 

processes (Fig. 2.5) 

  

e 4TV 2T (2.197) 

T 20 (2.198) 

¢, Electron capture. An electron from the conduction band is trapped by an unoccupied 

defect which becomes occupied. 

  

  

€„: Electron emission. An electron from an occupied trap moves to the conduction band. The 

trap becomes unoccupied. 
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c): Hole capture. An electron from an occupied trap moves to the valence band and neutralizes 

a hole. The trap becomes unoceupied. 

ep: Hole emission. An electron from the valence band is trapped by a defect, thus leaving a 

hole in the valence band and an occupied trap. 

Here cn, en, Cm €, are the respective rate constants. This description assumes acceptor-like 

traps which can exist in a neutral or a negatively charged state. Donor-like traps, which have a 

neutral and a positively charged state, lead however ta exactly Ihe same expression for the net 

recombination rate. 

The generation- and recombination rates of electrons/holes within an energy interval dE are 

described by the lau of mass action which states that Ihe rates are proportional to the concen- 

tration of the involved reactants [43, p.54] 

daR. - dGn = CC In No dE (i - jt) Nr 77 fı N; (i - In} Na dE y (2.199) 

dR, 46, =, Ny d€ fy N, — ey (1= i) Ny (1 — f,) Ny d€ . (2.200) 

The occupation probability of an energy level is given by the FERMI-DHRAG statistics 

ne s ELLE, 3 (2.201) 1+ ek 
1 

h= ——= » p=il-fn, (2.202) 

IHe ii 
1 are 

he mean; (2.203) 

with Fi, #,, and F} being the respective quasi FERMI levels and g the ground-state degeneracy 

of the trap [44, p.122} which is assumed to be 1 in the following. 

2.3.4.1 Thermal Equilibrium 

The four rate constants are not independent. "Their relation can be found by examining the 

thermal equilibrium case. In thermal equilibrium the principle of deiasled balance holds, which 

ensures that at T, emission and capture processes are balanced 

daR, = dGn , (2.204) 

dR, = 4G, . (2.205) 

Furthermore, all distribution functions have one FERMI level Er in common 

m=h=-h=&. (2.206) 

© £} o by applying egns. (2.204) to (2.206) to egns. (2.199) to (2.203) the following relationships between 

ihe rate constants are found 

  
— oe Bi, (2.207) 

€. L&y 
Dei. (2.208) 

Cp 
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Inserting egns. (2.207) and (2.208) into egns. (2.189 ar =
 & = -
 

e
y
 b 

dfi, dGn fo) e m——fn)), (2.209) 
| 

E-£; 

= ¢p Np Ny df (fn i- 

daR, — dG, = m Nyv NıdE (nf (2.210) 

2.3.4.2 Steady State 

The trap occupation probability f; can be caleulated by examining the steady stote in which the 

following relation holds'“ 

  

p o - (2.211) 

For the non degenerated case, that is, for the FERMI level several ke 7, below &¢ Bei > 1, 

MAXWELL-BOLTZMANN statistics can be assumed 

T E-Fn 
N nn kn 

1 tes 

which further allows to assume 

(1 f) a1 (2.213) 

Using ihe approximations (2.212) and (2.21 
{2. > 200 

{3} and the analog approximations for hole 

and (2.210) can be written as 
5, equations 

O 

En Er 
By — Gy = %NK/NCCV@M(LgmmwiafideF (2.214) 

an ot 

/7, Eco 

Ey 

,@m@:%mn/m%hwfi_wwwwfifl de, (2.215) 
Sa yon? . 

Ly = 

where 7, and 7, are the lifetimes for electrons and holes, respectively. The characteristic pa 

rarneters deseribing the interachion of carriers and trap centers are the capbure cross sections oy, 

and op. I they are known the rate constants (and thus also the Iifetimes) can be expressed a: 

Cn In Tt s 

where Un, and vn, are the thermal velocities of eleetrons and holes, respectively 

5] AL >, ;i 

. 25, v} 

Using the following expressions for the electron and hole concentrations 

0 

Ec s 

un Erf Y £-r, 

:[’NO(SW Bin de, - erv(f)e , (2.217) 

12] the time variant case a conservation equation for the trapped charge has to be added to the transport 

model dr = (Rn — On) (Rp — Gel: 
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and the handy abbreviations nı and pı for the electron and hole concentrations when the FERMI 

level is equal to the trap level 

o0 

. E--£, 
nen, nei) / Nele Bi dE, (2.218) 

Eco 

Er 
u E-Er . 

m = p(T1, F, = ) = / Ny (£) R de, (2.219) 

- 

egns. (2.214) and (2.215) can be written as 

Rn = In = (n (1~ fi) —ny jt) , (2.220) 

1 
fip = Gp = — <pf‘t -pil- 12) (2.221) 

Tp 

Making use of the steady state condition eqn. {2.211) the following expression for f; is found 

£ = T Cp + P1Cp L rt mp (2.222) 

cn{n+niltopp+m) nent+m)+m{p+p) 
    

Du ER ER 
A Inserting eqn. (2.222) either in eqn. (2.3214) or egn. (2.215) yields the well known SHOCKLEY- 

READ-FIALL net recombination rate 

npen 
2 Sy 

— . mm=n. 2.223 
Tp {0+ n1) + meer + PB) ! J 
  

2.3.4.3 Higher Order Moments 

Integration of egns. (2.209) and (2.210) led to the generation/recombination term which con- 
tributes to the carrier continuity equation. The contribkutions to the higher order moment 

equabions are obtained by calculating the moments oftke net recambination term in k-space 

1 | LES vun 
R = — (a - f)fan- de ® ”) , (2.224) 

n , 

won 13 1 - P 9 e RU — (a Plön ] (dh) (2.225) 
., T 

with 

~ m , — m LEE 
(6;) — [% Fr 33k : <¢j>1 = { ¢;e Kati d°k ; (2.226) 

37% where an energy independent carrier Iifetime has been assumed and the approximation (2.313) 

has been used. Since the subsequent integration is carried out in k-space rather than in the 

malization of the distribution function, (1) = n. 
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Using egns. (2% 

1 o 
f Ey 

u: R = = (a fi) nf 2. 3 (2.227) 
k) 

. Skp /. . ’ 
ia! Gen= 3” © nt, iM nn) (2.228) 

27 

¥ G- 3 ka 2 de Ge (m (1~ f)nT2B) (2.229) 
Egn. (2 

(2.230) 

  

The index n must be used since in contrast to the net recombination rate the net energy gener- 

ation rate is different for both carrier types. 

The contribution to the moment equations of odd order can be neglected since the right hand 

sides of sans. Be 6) to (2.78) are several orders of magnitude larger than the additional gener- 

ation term“ 

Rewriting egn. (2.228) leads to 

  

3k FR Gen= 5 (nn hin + m +m m - (2.231) 
“ Ty N : 

3 n— hfn+nı 4 

2 Tn Tn Soosennnnnnnnnnnnn, ‚eos was, 

¥ In En On 

Egn. (2.229) can be manipulated in the same way, so the even moments read 

  

  

do: Rz {EIN (2.233) 
„rn +m)+m(ep+P) 

3 
®2 : Gen = 3 kg (An = G.) Tat Gn (Ta — 7)) 3 (2.234) 

a S . 3 kr f 2 Y 7% R ni Gm=- B 2 — G T2 B+ G (T2, — 72)) . (2.235) 

N The interpretation ofegn. (2.234) is that a recombining eleciron on average removes the energy 

1.5kg T, from the system, while a generated electron introduces an energy of only 1.5kg 71, 

which means that generated elechrons are initially cold. 

  

for example comparing the RHS of eqn. (2.78) with the first term of the corresponding SRH contribution 

yields 

  
%z“(;: ff) )a 
" In 

where the terın containing r„ can be neglected since the Iifetime is much larger than the momentum relaxation 

time, Ty >> Tr 
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Chapter 3 

Discretization 

  

N ORDER to solve the system of partial differential equations, H is necessary to discretize 

them on an appropriate grid. In general, the solution must be calculated by means of numerical 

methods. The domain in which the solution is sought is decomposed in of a large number of 

subdornains, in which the solution can be approximated by functions with a given structure. In 

ihat way one obtains a fairly large system of, in general nonlinear, algebraic equations. Due 

to the discretization it is Impossible to obtain an exact solution ofthe analytically formulated 

problem. There are several techniques to discretize the equations. Among them are the finite 

difference method, the box integration method, and the finite element method. The former two 

will be discussed in more detail. 

31 Grid Generation 

The quality ofthe result obtained from numerical sinmlations and the convergence of the numer- 

ical iterabion strongly depend on the proper meshing of the simulation domain. The simulation 

grid has to meet several requirements. First, it has to render Ihe device geomeiry as accurately as 

possible, which calls for small mesh elements where complicated geometrical details are located. 

A large mesh point density is also required to resolve an abrupt change of the solutions over a 

small space region. For example, the carrier concentralion Increases very rapidly from the sub- 

strate towards the channel region ofa MOSFET, requiring a very fine grid spacing. The source 

and drain dopings also decay very steep at the pn-Junchions. On the other hand, the meshing of 

the body region of such a device can often remain quite coarse to reduce computational Gime. 

On the contrary, a too fine grid structure increases the computation time and can even make the 

accuracy of the result worse because of the introduced rounding errors. Since the discretization 

converts a set of differential equations into a set of algebraic equations the accuracy and robust- 

ness of the algorithms for the solution of such a system strongly depend on mairix properties 

which in turn are related with the mesh properties. 

An approach to get an initial mesh is to solve PoIssoN’s equation in the simulation domain 

and refine the grid depending on the computed potential distribution |45'. The meshes of the 
Fr Devices 1 and 2 which are used in Chapter & were generated by using the MDRAW program [48]. 
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3.2 Finite Difference Method 

    The finite difference met the grid hod requires an orthographic grid. In the two-dimensional c 

located at hor i     ontal and     points a 

the regions of the device where a strong variation of the quantities 

an example of such a grid. The grid lines are more dense in the regions of strong variation of 

the carrier concentration, like the channel and the junctions of the source and drain doping. 

     

Source Gate Drain 

  

Subs 

  

ate 

  

Figure 3.1: Schematic representation of an orthogonal mesh discretizing the active 

region of a MOSFET. 

3.2.1 One-Dimensional TAYLOR Expansion 

  

For the sake of brevity, a one-dimensional investigation will be given. The results can be extended 

ightforwardly to higher dimensions [8, p.150]. Considering a set of grid points z; the spacing 

  

stra 

is defined by 

  

hi (3.1) 

  

By is 

Fig. 3.2 shows the notation used. 
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Fi Jia Fi Firiya Fir 

Figure 3.2: Three adjacent grid points together with some notational abbreviations 

used in the derivation. 

For the discretization of the flux equations the derivatives in-between the grid points are im- 

portant. Therefore a TAYLOR series expansion [47, p.415] around the mid point z; + h;/2 is 

considered 

  

   
) 

f(a:): ’f’}” ( i (3.2) 
n=0 

1+ 4)? ; 
ee 7)) Ty + O3 . (3.3) 

To get an expression for the first order derivatives the series up to the order n = 2 is evaluated 

at z; and iy 

  
hi h? . 

Fi = Jin - > Tl + 5 Yun 00), (3.4) 

hi En . 
FH = fiyry2 + 5 fz+1/z z+1/z +O(h ) - (35) 

Jirya can be eliminated by subtracting the two equations and thus the first order derivative 

becomes 

Fi Fi, 26 A row. (3.6) 
i 

For the second order derivatives the TAYLOR series expansion around x; 

    

(3.7) 

Ja=f-hafit (3.8) 

Ja=fithifi (3.9) 

and by eliminating f’(z;) the second order derivative is found to be 

fach _ fh 
" hi hi 1 5 ie un +0Oth). (3.10) 

2 
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No assumption about the uniformity ofthe grid has been made during the derivation ofegn. (3.6) 

and egn. (3.10), so the estimated truncation errors are valid for a non-uniform grid. Ifa uniform 
grid spacing is assumed, the truncation error will be of order QO{Ah?) in egn. (2.8) and O(h?) in 
egn. (3.10) {8, 2.153). 

3.2.2  One-Dimensional Poisson’s Equation 

As an example the discretized form of PoIssow’s equation (214) will be written using the finite 
difference method. ÄAssuming constant permittivity POIssoN’s equation in the one-dimensional 

case is given Dy 

a = - (n-p+N] —-N}). (3.11) 

The discretized representation is obtained by replacing the second order derivative by the central 
FIN difference quotient egn. (3.10) at all inner points 

Bir _ zii 

fi; Pu g ; T— TN __ g6 T s £ 
gg lm pH NND) ----- Oq == ee, N 1. (3.12) 

2 

this equation in the form 

b i1 + 2zt ta par neh, (3.13) 

the coefhicients are found to be 

i i 
  LT by = - =, 3.14) 

s Ri ‘ fi 1 ni \ ) 

q R Bi + Ri 
Zp= —a; — by Ti:;(ni_pi"i’f Ai—Ngz‘)“l"""i"}"“’ (3.15) 

< 

The coeflicient mairix resulting from the linear equation system equn. (3.13) is symmetric and 

only the diagonal and the secondary diagonal are filled with elewents different from zero. 

3.2.3 Final Remarks 

Apart from its conceptual simplichty, the finite difference method has a number of appealing 

features. The regnlarity of the grid is responsible for a regular structure of the system matrix, 

allowing highly eflicient linear solvers to be used. The disadvantage of ihis method is also clearly 

visible. The introduction of grid Ines in regions of strong variation of the quantities introduces 

iots of grid points in regions where Ihey are not needed. This is even more of a problem in 

the ihree-dimensional case. Also, the orthogonal grid has Üttle geometrical Hexibility. Surfaces 

which are not parallel to the grid Imes are not resolved properly unless a large number of grid 

points is ermployed. 

In order to describe the non planar surfaces originated from, for example silicon oxidation, 

mäpping techniques have been proposed [48]. An irregular physical domain is transformed 

into an orthogonal computational domain, suitable for discretization with the finite difference 

method. Such a trausformation usually requires the actual device boundary lines to be described 

by analytical or interpolating expressions. 
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3.3 Box Integration Method 

To overcome the limitations of the finite difference method the box integration method [49, 
p-191] [50] can be used. The simulation domain is partitioned into subdomains without overlap 
or exclusion. An example can be seen in Fig. 3.3. 

Figure 3.3: A set of 13 grid 

points together with their 

ciated VORONOT re; 
  

as:     
ons which are bounded by 

- the dashed lines. 

  

° Grid Point 

The subdomains are also called VORONO!? regions. A VORONOL region is defined as the set ofall 

points that are closer to the considered grid point than to any other grid point. The differential 

equations are then integrated over each of the subdomains and discretized by approximating the 

integrals by numerical integration rules. 

           

For an orthogonal grid structure the box integration method leads to the expressions obtained 

from the finite difference method. 

To get a connection between the global and the local attributes of fields, a relation between the 

integral over a domain and the boundary of this domain must be presented. Its general form is 

the GREEN transformation 

VeFdv = fn@l?dA (3.16) 

vi; avi 

By reducing F to a vector F = f, the theorem of GAuss is obtained 

[var furaa, (3.17) 

v 7 

where V; denotes the integration volume, OV; is the boundary of the volume and n is the unity 

vector which is normal to the boundary and points from the inside to the outside. 

specially entertaining to read. Beside proposing the box 
integration method the author also show: ion using electrical circuits with “physically realizable” 
electrical resistors to solve a system of partial differential equations. 

® Control volume and WIGNER SEITZ cell are also common terms used in literature, 

             

  

  

35



DISCRETIZATION 3.3 Box Integration Method 
  

3.3.1 Poısson’s Equation 

To find a discrete approximation of MAXWELL's fourth equation, eqn. (2.4) is integrated over a 

control volume V; 

/V -DdV = [: dV. (3.18) 

vi vi 

Applying the theorem of GAuss to the left hand side turns eqn. (3.18) into 

/ n-DdA= /y dV. (3.19) 

oV Vi 

The integrals are approximated as follows: 

> Dy Ay = oV, (3.20) 
i 

where D;; is the projection of the flux D onto the grid edge d;;, evaluated at the midpoint of 

the edge, A;; is the boundary line which belongs to both subdomains V; and V;, and 9; is the 

space charge density at the grid point P; (Fig. 3.4). 

Figure 3.4: Control volume of 

grid point P; used for the 

box integration method. 

  

The remaining task is to find an approximation for the projection of the dielectric fux density 

D;j. This is done by the finite difference approximation 

  

  

Dy=- HR, 3.21) 

€= 5";5’ . (3.22) 

With eqn. (3.20) and eqn. (3.21), the discretization of Po1ssoN’s equation can be coneluded. 
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3.3.2 Six Moments Transport Model 

3.3.21 Continuity and Balance Equations 

The balance equations (2.184) to (3.188) are discretized in the same manner as PoIsson’s 
eguabion. Integrating over ihe control volume V; and applying the theorem of GAUSS yields 

d n-J, dd = / -sngln+R) av, (3.23) 
8Y; Yy 

. - In - Tr ¢ 5y 
n-8,dd= § -Co&{nT,) +E-J,-Can T + Gepn dV (3.24) 

av; ¥ - 

T2 8, — T2 ) 
__?z‘___l(__j_?________];‘_ + GBTL av ° (3.25) 

) T3 ' 
eV; 

The terms BE J„ and E- 5, are again discretized by the box integration method. Writing the 

electric feld as the negative gradient of the electric potential and using the product rule Ihe 

first term becomes 

E-J,=-Ve¢ -J=-V - I} +v¥ I, . (3.26) 

Integration over the control volume V;, applying the theorem of GAUSS, and approximating the 

integrals by sums yields 

/E IndV - % an (bJ,)dA+ ? n-J4, dA (3.27) 

Y; Ey ey; 

nen 1b; he hi; a an 
- Y mbm-zf—li—i IT Ari Ing Az; (3.28) 

J 7 

where a linear variation of the potential between two grid points has been assumed. By com- 

bining the sums the discrete representation of E- J,„ is obtained 

ale — ab; ) ’ 
/ E.V ah Zn Foij Aij - (3.29) 
Vi 3 

By analogy, the discretization of E - 5, Iooks 

/ E-S,dV -3 Hi Spij Aij - (3.30) 
2 ; 

Using egns. (3.20) and (3.30) the discretization of the continuity equations can be concluded 

3 Juig Ay = —snq(Bini + R Vi, (3.31) 
J 
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u) 

Tas Tr, . 
> Sir Az = = (028, (n;? Tai) + Cam 4 Gem) V 

>; 
4 (3.32) 

u Z Me, 
3 

- N 2 o ~ ngfin/ E 7 Ku Ay = (6, G (1 T Brid + Cany — Gani) Vi 
: Bi 

I i (3.33) 
¢ i Y 

- 28, 4 Z """"" 3 — 4 gnzg Ay 1 

where Jain 8545, Äniz are the projections of the Buxes Ju, Sn, BR, onto the grid edge e;;. 

3.3.2.2 Flux Equations 

The current density is discretized by a scheme which is frequently referred to as SCHARFETTER- 

*UMMEL discreiization [51]. The extension of the discretization to the Bux equatious stemming 

from the higher order moments of BOLTZMANN’s equation Is not beyond controversy, so different, 

approaches can be found in the literature. In [23] it is assumed that the electron concentration 
is a known function of exponential shape. This strategy is refined in |37] where the variation 
of the electron concentration obtained from the discretization of the current density equation 

is used for discretizing the energy flux density. This text will follow the approach presented in 

[31], which is an extension of [52] and [53], where a generalized expression for the fluxes is used 
and no assumption about the variation ofthe carrier concentration is made. 

0 2} By rewriting the flux equations (2.188) to (2.180) 

  

| | 1 | (v MT) - Sn E(nT,) - ) , (3.34) 
IE 

Sn = ~Cs (V (0 T2 o) ~ ng B (n T2 by y ol ) (3.35) 
- o kB 27 En, 

1 K, = —{ T?z 33 \ IE TE: 3 . 9 26 w == O (V (RT3 A k (n T2 A )Tnfi;{;) , (3.36) 

In: Een, To =T | (3.38) 

S,: E=nT,, T =T B (3.39) 

n E=nT?B,, Seh. (3.40) 
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By projecting eqn. (3.37) onto a grid line a one-dimensional differential equation is obtained 

D d q . 
—— = Tl — 8, — FE. 3.41 

Ca dz TR} = sa kp ¢ ) 
    

To solve this equation the following assumptions have been made: 

e constant general flux ©, 

» constant electric field 

E=-—, (3.42) 

s linear variation of the general temperature Ts 

AT: - 
A—; (2-2). (3.43) Ts (&) = Ts; + 

The solution of eqn. (3.41) is found by multiplication with an integraling factor w{z) and by 
sub-sequentially comparing the coefhcients of the resulting equation with the total derivative of 

the product (£ Te) wie): 

  

  

D , _ | ¢ , Q - ¢ Fr d & fs "7 wir) = T (ETg)w(z) — 84 . Etwiz) = Ir ( Ts) w(e)) (3.44) 

d nn dw(x«) u T iz ET . 3.45 SE Ta) la) + ET, EN (3.49) 
Comparing the coeflicients leads to 

d 
T$ I 8, I Ew (3.46) 

de kg 

1 dw ¢ & 
e TR 8 T gy . 3.47 
ww da o kp Tz(z) 

This equation can be solved for the integrating factor w, taking into account Ihe assumptions 

(3.42) and (3.43): 

Inf) = 8, o Sn In(7y}, (3.48) 

o 

wir) = Tele) = Sy, - = (3.49) 

Inserting the integrating factor into egn. (3.44) 

- Tate) = (ee), (3.50) 
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and assuming that the flux ® is constant between two grid points, egn. (3.30) can be integrated 
from 2; io 2; 

    

  

  

H a1, A 2; 

. Y= ET et (3.51) 
Os a +1 - ATy 2; 

¢ Az +3 + - mal e pachl . na TE) or ar. (3.52) 
Uommonly eqn. (3.52) is rewritten using the BERNOULLI function 

. x E 
13 

Beginning with 

® (a+1)ATs ( . en ) rer 3.54) 
TE tt teten m e “ »Ü) 

Co Az “rin Trgtt g 

= nm m—f"“"“;“"m)a 3.55 
Ar & i ('Iq;i/lq)j)a’{”i ’ (‘Zq;j/”_l'q}i)a’{”i ----- i 

and using the abbreviations 

(TeifTa te Te, (3.56) 
Ve ={a+1) n{Tsi/Te ;) , (3.57) 

Ye 
o+l = e 3.58) 

n{Ts i/TiE? i) { 

the Aux equation can be written as 

S == ATy - te : ( L £ BR. ---------- ) (3.59) 
Cs Az Wm{Tei/Te;) V7 1—eYe e Yo — 

AT 1 Y: u ER (& wu): (3.60) 
Az In{(Te;/Tei) efe — 1 e ] 

or using the BERNOULLI function as 

Os ATg o o= =2 (6 B(Ye) — 6 B(-Ya)) 3.61 Ar Inf‘ % j/Ts;) &; 3 ( &) & 3 \ 5) Ä } 

In(7T;/Te;) g Ya a („LAU ATy 3.62 & AT, Inn d + ATe (3.62) 

The concept of assuming a constant Hux density was ürst presented by SCHARFETTER and 

GUMMEL in the appendix of {81, 2.79]. The assumption of a linear variation of the general- 
ized temperature Tg by ean. (3.43) can be interpreted as a straightforward extension of the 

SCHARFETTER-GUMMEL scheme. 

An advantage of using BERNOULLI functions in the flux equations is that B{zx) is well defined 
at z = 0. 

 



DHSCRETIZATION 3.3 Box Integration Method 
  

Inserting the abbreviations (3.38) to (3.40) used for £ and Ta yields the disceretized flux 
equations 

  

  

  

  

0 A, L an 
In m u Ar Kin,/T) (n, BE (} 1) N; B { Y)) 3 (3.63) 

In (Tn5/Tni) g . 
- — [ / —_— 0 Y Ar (sn mu AT,) (3.64) 

Us AT, Bi) o~ 

8, = 2 - e ;T B(Ys) —ny T B(=Y35) 1, 3.65) 
“ Az 111(('_[7,33 '675.?,)/(1%1'& fina)) | a ;) “ ) \ ’ 

x lfl((Tn g En An (n i Da i)) g ' o ge Y, = | BEN AH ALT, 3. 

- CS A (7 B2 } 2 N 2 - 
_K,’, DI um mn - 7 12 5N Dr T > A : Y‘:; — g T ; j}-; ) --"Y;’S q el Aa nl, N) (m Tas OH) TEN), 0.7) 

In, ER) q L a a ¥s ke Art) (3.68) 

3.3.2.3 Growth Function 

As already mentioned, some works explicitiy assume a particular interpolation of Ihe gener- 

alized concentration between two grid points, for Insiance an exponential varlation. No such 

assumption was necessary to calculate the fluxes in the presented discretization. Nonetheless, 

the resulting interpolation is needed in some cases and will be investigated in this section. 

First, a variable upper boundary & is used in the definite integral (3.51) 

      

    

o» Te Ar z e _ = getl 3.69 

which evaluates to 

b Az .y . 11; EEE TE) ER TE-ETEN . (3.70) 
Cs o+ 1) ATy 

Noonasonnaconnaconrs, cconnaconnaconnaco’ 

& 

By using eqn. (3.52) the coefficient a is found to be 

g:-.."'v&'—i—l Er w1 

>47 i &g & 7 DB; a nl BR (3.71) 
pati . pearl y 
©; D3 

A normalization of £(z) to the range [0,1] can be achieved by using the substitution 

ea) & 
E—& 

glz) = (@) =gz} (§ — &) + & (3.72) 
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    where g(z) is called growth function [8, p.156]. In: 

eqn. (3.70) yields the expression for the growth function 

ing eqn. (3.71) and eqn. (3.72) into 

  

  
B TE*+! (a) - TER ( To; y” _ 1 (1 L/T’D(J:))(x+l 9 

) .73 g(z) = 
Tv;f;rl I Tote 1- (Tvlu/Tvb;)wrl 

A graph of this function with « as parameter is depicted in Fig. 3.5. The curves in the upper-left 

region are obtained for Tg; < Ta; and vice versa. 

    1 
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Figure 3.5: Functional shape of the growth function g(x) displayed in a normalized 

interval with « as parameter. 

3.3.3 Final Remarks 

  

Since the box integration method is not limited to orthogonal grids, it has a basic advantage 

over the finite difference method due to its greater geometrical versatility. However, this greater 

versatility is payed for by a more difficult grid generation. The vertices connecting two grid 

points must be chosen in such a way that negative coupling between the grid points is avoided. 

  

    

imulation domain is to use the DELAUNAY 

simulation domain, the DELAUNAY criterion 

  

One method to obtain a grid of triangles in the s 

i 3; Given any set of points distributed over a 
requires that the sum of two facing angles obtained from a triangulation is never larger than 

7. However, the plain DELAUNAY algorithm must be supplemented by a number of empirical 

    

  

® An entertaining Java applet where a DELAUNAY triangulation and its VoroNO! diagram together with the cir- 
cumcircles can be drawn manually is found at http://www .cs.cornell .edu/Info/People/chew/Delaunay.html 
The vertices of the VORONOI region associated with each node can be regarded as the circumcenters of the triangle 
formed by the nodes 
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constraints, which become necessary when dealing with internal interfaces. Moreover, since 

the algorithm works on a pre-defined set of points, a local grid refinement requires the entire 

tessellation to be repeated. More details according to DELAUNAY triangulation can be found in 
nA 

(8 4] > 

Another method to get a simulation grid is to use a regular mesh structure within the device 

inner region, such as a rectangular grid. A set ofnested rectangles can be used to modulate the 

mesh point density“. Local refinements can be easily performed by splitting any given rectangle 

into two or four smaller elements. The rectangle set can be easily converted into a set oftriangles 

by diagonalization [11, 2.72). 

  

“Such a rectangle-hierarchy is sometimes termed quad-tree 
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Chapter 4 

  

Standard Energy Transport 

Simulations 

NOMALOUS OUTPUT characteristics have been observed in simulabions of partially de- 

pleted SO} MOSFETs using the standard energy transport ınodel 55, G3]. The effect that 

the drain current reaches a maximum and then decreases is peculiar to Ihe energy transport 

model. It is neither present in. measurements! nor in drift-diffusion simulatione. In this chapter 

the problern is investigated under various generation/recombination conditions and an explana- 

tion of the cause of this effect is given. On the basis of this investigations a modified energy 

transport model is developed in Chapter 3. 

     

41 Devices Used 

Device 1 

The device which was used for most simulation experiments is depicted in Fig. 4.1. Ib has an 

effective gate-length of 130 nm, a gate-oxide thickness of 3nm, and a silicon-Alm thickness of 

200 um. With a p-doping ofNa = 7.5x 1017 cm? the device is partially depleted. The Gaussian 

%0 em 3, 

D
e
 

Device 2 

To compare Device 1 to an equivalent MOSFET a second device has been investigated which 

has a small body contact added to pin the potential of the body to fixed values. 

Device 3 

This device has been generated by MINIMOS 6, the device simulator with which the Monte Carlo 

sinulations have been performed. Tt has a gate-length of 150nm. Gateoxide and silicon-Alm 

thickness as well as the doping concentrations have Ihe same values as in Device 1. 
  

’Iu [58] the authors report on a slight; decrease of the drain current for a p-MOSFET. However, it seems that 
this decrease occurs due to self-heating since it vanishes if the drain voltage is swept faster. Auyway, even such 
an effect can occur in a real SO device, the energy transport model tends to overestimate the effect considerably. 
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Figure 4. 

vices. 

  

Sketch of the simulated SOI MOSFET including symbolic compact de- 

Important eff are SHOCKLEY-READ-HALL generation/recombination 

(SRH) and impact-ionization (II). 
    

Device 4 

For comparison and verification an SOI device has been modeled after the 90 um “Well-Tempered” 

MOSFET [57] using the doping profiles available, including the super steep retrograde (SSR) 
channel doping and source/drain halo-doping. To achieve a partially depleted devi 

strate doping of Na = 17.5 x 10!7 cm ® has been assumed, and the substrate thicknes 

limited to 200. nm. 

> a sub- 

has been 

  

    

4.2 Body and Bipolar Effect 

  

Drift-diffusion simulations show a remarkable influence of impact-ionization on the drain current 

(Fig. 4.2). The increase of the drain current can be partially attributed to the kink-effect [58]: 
the holes generated by impact-ionization are drawn into the floating body where they raise the 

potential. Fig. 4.3 shows the lateral potential distribution in the middle of the silicon film. The 

increased body potential leads via the body effect to an increased drain current. The second 

contribution to the current increase is due to the bipolar effect. The in ed body potential 

acts as a forward bias to the source-body diode. Electrons are injected from source to the body, 

diffuse through the body, and are collected by the drain. 

          

Simulating the device without impact-ionization yields a comparatively small shift in the body 

potential as shown in Fig. 4.4. In this simulation condition the kink in the output characteristic 

does not appear. 
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Figure 4.2: Output characteristics of the SOI (Device 1) obtained by drift-diffusion 

simulations with and without impact-ionization. 
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Figure 4.3: Distributed potential of the SOI (Device 1) obtained by drift-diffi 

simulations with impact-ionization turned on. The cutline through the device is 

located at a depth of y= 100. um. 
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Figure 4.4: Distributed potential of the SOI (Device 1) obtained by drift-diffusion 
simulations with impact-ionization turned off. The cutline through the device is 

located at a depth of y= 100 nm. 

4.3 Anomalous Output Characteristic 

Calculating the drain current with the energy transport model gives a completely different and 

unexpected result. As can be n in Fig. 4.5, the output characteristics differ significantly 

from those obtained by drift-diffusion, Fig. 4.2. After reaching a maximum at about Vps = 

0.2V, the drain current di derably. This negative differential output conductanc: 

is predicted by two different device simulators. Fig. 4.5 shows the results obtained from our 

device simulator Minımos-NT [33] and the commercially available device simulator DESSIS 
[34]. An implementation error of the 
the cause for the anomalous characterist 

    

   

  

cons          

    
   
energy transport model can the, > be ruled out as 

s. The results are in good qualitative agreement. The 

are due to slightly different default values for mobility and impact- 

ionization parameters. Self-heating cannot cause such a large negative differential conductance 

and has been neglected in the simulations. 

   
    small quantitative differen« 
  

4.4 Body Contact 

The order of magnitude of the involved currents can be estimated by looking at simulations 

of the same device, but with a body contact attached. This body contact prevents the body 

potential from dropping below its equilibrium value. Fig. 4.6 shows the output charactı 

  

s 

of this device. Because of the pinned body potential the drain current is not much affected by 

impact-ionization. The kink in the drain current does not appear because both contributing 

d, namely the body effect and the amplification of the impact-ionization 

    

effects are suppress    
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Figure 4.5: Output characteri 

simulations using the dev 

  

of impact-ionization is also shown. 

0.3 

of the SOI (Device 1) obtained by energy transport 

mulators Minımos-NT and DESSIS. The influence 
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Figure 4.6: Output characteristics of the SOl with a body contact (Device 2) obtained 

by energy transport simulations. 
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current through the bipolar effect. As expected, a positive output conductance is obtained. 

  

The strong influence of impact-ionization can be seen in the corresponding bulk currents (Fig. 4.7). 

With impact-ionization included the expected result of a body current flowing out of the transis- 

tor is obtained (I < 0). But if in contrast impact-ionization is neglected there is a body current 

flowing into the device (Is > 0), which is several orders of magnitude smaller. It is to note that 

the real substrate current due to impact-ionization has the opposite sign. The situation of a 

positive substrate current shows that even in this bulk MOSFET hot electron diffusion into the 

p-body occurs. Note that this is a prediction of the energy transport model only, and is not 

confirmed by experimental data. 

  

  

10°   

  10% 

-   10 

  10 # 

  10° 

  1010 

10 1 / 

12 10 

Ip
/A
 

  

      

—— without II 

wo ] — with Il 
103 

0 02 0.4 0.6 0.8 1 
Vos/V 

10.33 ] 

  

                  

Figure 4.7: Bulk cuı 

transport simulatio; 

ıts of the SOI with body contact (Device 2) obtained by energy 

    

To estimate if the resulting drain current obtained by the drift-diffusion simulation using impact- 

ionization shown in Fig. 4.2 is really caused by the increased body potential, simulations using 

the same transistor but with a body contact applied (Device 2) were made. The 

  

ults are shown 

  

in Fig. 4.8 where the curve from Fig. 4.2 which used impact-ionization is depicted again—this 

time the full /p range is shown. From Fig. 4.3 it can be seen that the body potential is shifted 

from —0.46V at Vns = 0.0V to +0.47V at Vps = 1.0V resulting in a total shift of 0.93 V. 
This voltage is now applied at the body contact of Device 2. In this case the source-body diode 

(and at small Vps even the drain-body diode) is biased in forward direetion yielding a negative 

drain current of In = —0.5mA at Vns = UV. Accounting for this negative current offset total 

agreement with the curve using impact-ionization is obtained at Vns = 1V. 
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Figure 4.8: Comparison of the drain currents of the SOI (Device 1) and the device 

with body contact (Device 2) obtained by drift-diffusion simulations. 

4.5 Cause of the Effect 

  

A characteristic difference between a drift-diffusion and an energy transport simulation is that 

while the carri 

  

ay at lattice temperature in the former one, they can reach significantly 

higher temperatures in the latter one. Carrier heating occurs in the pinch-off region near the 

drain. While the vast majority of electrons from the channel flow into the drain, some of them 

have enough energy to diffuse into the p-doped body, where a certain percentage recombines 

with holes. The remaining electrons flow into the source and drain regions, and are of no harın. 

The problem is, that pair recombination ca: 

  

a lack of holes and hence a steady dee         
Fig. 4.4 and Fig. 4.9, respectively, where the distributed potential 

of y = 100 nm. In Fig. 4.9 an anomalous drop of the body potential is observed with increasing 

drain voltage. Not only is the drain-body junction reverse biased but also the source-body 

Junction. Therefore, leakage currents from both junctions flow into the floating body. Clearly, 

the dropping body potential has an influence to the drain current via the body effect (Fig. 4.10). 

The gate overdrive Vas — Vin gets reduced because V;] increases while Vas stays the same yielding 

to a reduced channel charge and therefore to a smaller drain current. 

  

hown at a vertical position 

  

The balance of the drift and diffusion eurrents is affected by carrier heating as follows. 

    Jaittusion _ kpTı |Vn . {1 for drift-diffusion @) 

Jarite q n|Bl | T,/TL for energy transport 

  

This means that carri     diffusion in the energy transport model is enhanced by a factor T}, /T, 

as compared with the drift-diffusion model. 
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Figure 4.9: Distributed potential of the SOI (Device 1) obtained by energy trans- 

port simulations at a depth of y = 100nm. The body potential drops below the 

equilibrium value of —0.46 V. 
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Figure 4.10: Threshold voltage as a function of the body bias of the SOI with a body 

contact (Device 2) obtained by drift-diffusion simulations. The threshold voltage 

was defined as the gate-source voltage at which the drain current equals 0.1mA. 
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To the oceurrence of the current drop four partial effects contribute: 

» In device regions where electrons reach high temperatures, such as the pinch-of region, 

electrons diffuse farther away from the interface and spread deeper into the p-body. This 

effect is also known as real space transfer {RST). 

e Eixcess electrons accruing Trom the pinch-off region recombine with holes in the p-body 

{Fig. 4.1}. 

» Removing holes causes the body potential to drop and the source-body Junction to become 

reverse biased. A steady state is resched when the reverse junction leakages of both the 

source-body and drain-body junchions compensate for the recombining holes. 

& Due io the body effect the drain current decreases with decreasing body potential. 

The RST of hot electrons from the pinch-off region to ihe depletion region underneath is at the 

outset of the effect. With drift-diffusion, the RST does not appear since elechrons cannot rnove 

from the low quasi FerMt level (ÖFL) in the pinch-off region to any higher QFL in the depletion 

region or in the p-body. The difference in the electron concentration between drift-diffusion and 

energy transport can be seen clearly in Fig. 4.11 and Fig. 4.12. In Fig. 4.12 the spread of elecirons 

into the body is remarkable. This difference has a great impact on the SHOCKLEY-READ- HALL 

generation/recombination rates depieted in Fig. 4.13 to Fig. 4.18. The critical area is the 

depletion region underneath the pinch-off region. While the drift-diffusion simulation predicts 

carrier generation in this area, which is the expected situabion in this depletion region, in the 

energy transport simulation carrier recombination takes place because ofthe excess electrons. As 

a consequence of recombination, holes are removed from the p-body. Ifthe body is contacted, the 

recombining holes are substituted by holes from the body contact, leading to a small substrate 

current which Hows into the body (Fig. 4.7). However, in an 50! MOSFET the situation is 
different. The holes removed by recombination make the body potential drop. Eventually the 

reverse bias of the source-body and drain-body junctions becomes large enough such that the 

Junction leakage currents compensate for the recombination current and a sieady state is reached. 

Yia the body effect the drop of the body potential causes the drain current to decrease. 
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Figure 4.11: Electron concentration in the SOI (Device 1) obtained by a drift-diffusion 

simulation. 
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Figure 4.12: Electron concentration in the SOI (Device 1) obtained by an energy 

transport simulation. 
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      Figure 4.14: SRH net-generation in the SOI (Device 1) obtained by an energy trans- 

port simulation. Generation occurs in both junctions. 
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Figure 4.15: SRH net-recombination in the SOI (Device 1) obtained by a drift- 

diffusion simulation. Recombination oceurs only in the source-body junction. 
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Figure 4.16: SRH net-recombination in the SOI (Device 1) obtained by an energy 

transport simulation. Recombination occurs in the whole p-body. 
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4.6 Transient Behavior 

A reason for the lack of experimental evidence for the effect could be that it has a large time 

constant. In this case possible transient measurement techniques which sweep the applied voltage 

would not capture the effect. Fig. 4.17 shows the body potential as function of time obtained 

by a transient simulation using the standard energy transport model. 
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Figure 4.17: Body potential of the SOI (Device 1) obtained by a transient energy 

transport simulation. 

Due to the very small current produced by the injected electrons, the de se of the body 

potential is quite slow. The drain current obtained for different ramp-functions for the drain 

voltage Vps can be seen in Fig. 4.18. The sweep-time in this figures ranges from 100ns to 

100 ms. 

    

  

In Fig. 4.19 the time-dependence of the body potential is shown with the sweep time as param- 

eter. First the body potential increases because of the capacitive coupling to the drain. Then 

the parasitic DC current due to hot. carrier diffusion begins to dominate over the displacement 

current and charges the body negatively. 

  

   

From Fig. 4.18 and Fig. 4.19 it can be seen that a possible transient measurement of the effect 

has to use a moderately long sweep-time. 
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Figure 4.18: Drain currents of the SOI (Device 1) obtained by a transient energy 

transport simulation showing different sweep times. 
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Figure 4.19: Body potentials of the SOI (Device 1) obtained by a transient energy 

transport simulation showing different sweep times. 
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4.7 Doping Dependence 

This section tries to answer the question at which doping level one should measure if the effect 

is real. The dependence on the body doping is depicted in Fig. 4.20. 
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Figure 4.20: Drain currents of the SOI (Device 1) obtained by a energy transport 

simulations showing different body dopings Na. 

The decrease of the drain current vanishes, if the doping is reduced by about one order of 

magnitude. A similar result has been reported in [56]. The doping-dependence of the simulated 

characteristics is difficult to interpret because several partial effects contribute. First, the body 

effect parameter which plays a key role inc: with doping. Second, there is a doping- 

dependence introduced through the carrier lifetimes, which are modeled by the SCHARFETTER 

relation [59] [60] 

      

  

ana — Tai No, mar = Fila 18 N) N (42) 

  

the default model in DESSIS (which was used in [56]) and it was also implemented and 
used in Mınımos-NT. The advantage of this model is that with increasing doping concentration 

the lifetimes get reduced, which strengthens the coupling between the electron and hole subsys- 

tem, which in turn improves numerical stability. The same effect could be achieved by using 

small static lifetimes, but eqn. (4.2) provides a more physical model. The simulations show 

mes the negative diff 

corresponds well with the suggested explanation of the effect. 

    
     

  

  

ıtial conductance gets more pronounced, which 
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4.8 impact-lonization 

is it finally possible that the effect cannot be measured because it is compensated by the impact- 

ionization current? The results shown in Fig. 4.7 could suggest this. One problem is that the 

device characteristics depend sensitively on impact-ionization. Furthermore, the kink-effect 

occurs at higher drain voltages, such that a region with negative differential conductance can 

still remain (Fig. 4.5). Therefore using just impact-ionization in the simulation cannot be treated 

as a solution to the 50! problem. 
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Chapter 5 

Model       lodified Energy Transport 

N CHAPTER 2 several assumptions and simplifications have been made during derivation of 

the transport models of different order. Additional information extracted rom BOLTZMANNW’S 

transport equalion by taking higher order moments of the distribution function into account is 

supposed to improve Ihe agreement beiween simulalions and measurements. 

The energy transport model has, compared to the drift-diffusion transport model, the advantage 

that it provides information about the mean energy (temperature) of the carriers, which can be 
used to develop better inodels for, for example the relaxation times, the impact-ionization rates, 

or the gate tunneling currents. The drawback of including higher order moment equations is 

that ihe simulation time increäses because of the increased system matrix size. Convergence of 

the numerical iterabion also seems to degrade dus t6 the strong coupling of the equation in Ihe 

sysiem. 

However, the decrease of the gate-length into the deep sub-micron range together with a much 

silower reduction of the operating voltage leads to hish values and large gradients of the electric 

feld in regions of the device which are essential for its physical behavior. Therefore advanced 

transport: models are necessary to capture the non-Iocal effects which occur in scaled devices. 

The drift-difusion transport model is the mostly used one in TCAD. To fit at least the terminal 

characteristies, which are in most engineering applications in the focus of interest, a saburation 

velocity of more than twice the bulk value has been used in [61] which definitely does not model 
the physics inside the device accurately. Furthermore the author mentions that it is unclear 

whether the value of the saturation velocity is applicable for different MOSFET structures and 

under different operating conditions. This treatment ofthe physical parameters merely as Htting 

parameters may provide short-term fixes to available models but have limited value for predictive 

sumulabions. 

The increased demands for accurate transport models, combined with the steadily increasing 

computational power of simulation hardware makes the energy transport model more and more 

attractive. However, the simulation study of a partially depleted 50! MOSFET presented in 

Chapter 4 demonstrated the complete breakdown of this transport model. To improve the 

transport model this chapter will compare the relevant quantities with Monte Carlo simulations, 

and a modified energy transport model will be derived. 
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5.1 Monte Carlo Simulations 

The Monte Carlo code described in [62] has been used to generate reference data for compar- 
ison. Such comparison shows that the energy transport model signilicantly overestimates the 

electron diffusion into the substrate, (Fig. 5.1) whereas the drift-diffusion model underestimates 

it (Fig. 3.2) 

In Monte Carlo simulations Ihe spreading of hot carrters away from the interface is much less pro- 

nounced than in energy transport simulations (Fig. 5.3). Another Monte Carlo/energy transport 

comparison is reported in [63]. The authors state that the electron concentration resulting from 

the energy transport model are several orders too high in the substrate region of a MOSFET, 

and propose a reduction of the heat flow by mulliplying it with a constant 0.2 to get better 

agreement between energy transport and Monte Carlo results. However, even with this crude 

meäsure the electrons under the pinch off region still spread deeply in the substrate [63, Pig.3]. 

5.1.1 Anisotropic Distribution Function 

3 In the current equation (2.76) a temperature tensor oceurs. The diagonal components of this 

tensor are defined as 

. 11 Tor = o (Vg Pa) (5.1) 

11 
-, {oy py) 3.2) 

11 . 
Tz“ == kn n — (U, Pr } 3 (5.3) 

and the temperature 7, used in the energy bransport model is defined through the mean carrier 
{3/ energy (cf. eqn. {2.84)) 

2 1 1 ; 
= om . 5.4 

For parabolic bands the relation 

=g (Tao + Pay + Taz) (8.5) 

holds. 

Monte Carlo simulations ofa one-dimensional n*-n-nT test structure show that the temperature 

components parallel (7,,) and normal (7,,,} to the direction ofthe current flow are quite different 

(Fig. 5.4). In particular, the transverse temperature component is smaller than the longitudinal 

component {64, Fig.7]. This encourages the derivation of a transport model which takes an 

anisotropic distribution function into account. 
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Figure 5.1: Electron concentration ina MOSFET (Device 3) obtained by energy trans- 

port and Monte Carlo simulations. 
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Figure 5.2: Electron concentration in a MOSFET (Device 3) obtained by drift- 

diffusion and Monte Carlo simulations. 
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Figure 5.4: Components of the temperature tensor compared to the temperature 7, 

  

from the mean energy obtained by Monte ‚lo simulations. 
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5.1.2 N=Non-MAxweLllan Closure 

Por a given electhron concentrabion, a MAXWELLian distribution is uniquely characterized by the 

electron temperature. In a semiconductor device, however, the carrier temperature is no longer 

sufficient to characterize the distribution funchion uniquely [65). Fig. 3.5 and Fig. 5.6 show 
the mean electron energy together with the electron distribution functions inside a channel of 

a MOS transistor. Points B, C, D are in the channel while the points E and F are located in 

the drain region. In ihe drain region, the formation of a high-energy tail is obvious, whereas in 

ihe channel a significant thermal tail is observed. This high energy tail does not only represent 

some mernory of the initial distribution at the injection boundary due to ballistie transport, but 

is alscı affected by electron-phonon interaction [66]. When hot carriers from the channel of a 

MOSFET enter the drain region, they mix with the large pool of cold carriers |ET). 

An approximation of the distribution function by a MAXWELL distribution function at the six 

points from Fig. 5.6 is depicted in Fig. 3.7. Inside the channel the number of hot electrons is 

dramatically overestimated because the MAXWELL distribution cannot reproduce the thermal 

tail. Inside the drain region, a cold and a hot population are visible, which cannot be resolved 

with a single MAXWELL distribution. 

Fig. 5.8 displays the qualitative shape of the distribution function in four characteristic regions. 

Region I shows the electirons entering the channel where they are accelerated and gain energy 

(Region II). In Region III the electrons mix with the pool of cold elsetrons in the drain and 

Region IV shows the cooling of the high energy tail [68, G4]. 

5.2 Model Derivation 

5.2.1 Anisotropic Distribution Function 

In this section the fux equations of an energy transport model assuming an anisotropie dis- 

tribution function will be derived. The balance equations are not affected by an anisotropic 

distribution function since the tensor quantities only appear in the odd moment equations (2.76) 

to (2.78). 

In order to allow for an anisotropie distribution function the starting point will bea MAXWELL 

distribution 

  
£ BR ki 

Jalle) = A ”‘P(“kg Tn> =A rn) = (77) >0 
where 

m k7T, oy = 4\/ . 
(5.7) 

is the slianderd devialion. 

To get the value of the coeficient A the normalization 

2 

n={h) = [irl k) o k:/A exp( ‘:2) & . (5.8) 
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Figure 5.6: Electron distribution function at six characteristics points along the chan- 

nel of a MOS transistor. Note that the average energies for the points B and E 

are the same. 
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c points approximated by a 

MAXWELL distribution. Except for the contact regions the distribution function 

is never anything like a MAXWELLian. 
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Figure 5.8: The shape of the distribution function in four characteristic regions. (Pic- 

ture gratefully taken from [69] with kind permission from the author.) 

1. By using spherical polar coordinates and the substitution k = k’ k; the integral can be 

written as 

is 

  

o0 
. 1z o 3 [pr KEN an - n=4nAk} f: exp ( „) dk . (5.9) 

0 

Setting k' = V21 gives 

o 
n=4rnAk} [er exp(-t) di=4rAKPV2T(3/2) , (5.10) 

0 

where the GAMMA function has been used 

o 

T(z) = [onen lat, T(z+1)=aT(z), T(1/2) = vr. (5.11) 
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The coefhicient A and the distribution function is found to be 

Ken, (5.12) 

(5.13) 

An anisotropie MAXWELL distribution funchon is obtained by splitting the argument of the 

exponental function into tIhree separate components 

MOKHkAHN EM KM E 
= z y “ _— «dr 

  

  

BETT => = ++ „2 with o; = \ 3=z, Y, (5.14) 

2 

S 
Bar Jamik) = n fl =; e ( 53) (5.15) 

Since the odd mornents of this distribution function are zero, current How would uot be possible. 

To allow for current Dow, the distribution function is shified 

71 1 k; — K.Y 
Jsam(k) = ag I Zu u ' a . (5.16) 

il ¢ 

K<ı, 

  

  

  

s M(is*x —~ Ky ky K, er K’z> 2 
saM en s oy : . 

o ( by by &, ) Om Ka __IHam_ u __ am K, (5.17) 
aM 020 o Okyfoe) oo OBlkyjo,) o Ok /o) o, Du 

KR: mA, rk u kr (i ri Y _ Y 2 2) 

Jan (k) o a2 * oy * o2 

The symmetric and the anti-symmetric part are found to be 

fsk) = faulk) (5.18) 
3 

al) = fs(k) I, = - (5.19) 
=1 i 

The equations for the current density and Ihe energy Hux density are obiained by calculating 
en Ser) 

the statistical averages of the tensors occurring in egns. (2.78) and (2.7) 

B2 5? . . : ) 

(&) = 5 (k%) = 5 (Kathy + ki) = 5 ((R2) + (kg + (D)) (5.20) 

2 [09 0 
(v &p) — keky=—| 0 (k) © (5.21) 
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hk hk B*%° Rh? 

RVE) = (= Q —— ) = (k@ k{k +&2+k; 
vave) mm im” ms‘ Sk (kg +ky + 1)) = 

74 k2 ° 0 . 

= 55 (10 & 02 (k7 -+ Ky + i’iiz)) = (5.22) 

0 0 k2 

ya RR 0 0 
= e 1) kjké) + (k) + 0 

2m? 272 27.2 4 0 (2 62) + {ky k) + (k) 

The elements outside the trace are zero due to the symmetry properties of fs, introduced by 

the diffusion approximahion. The statistical averages present in egns. (5.20) to (5.23) all have 

ons of ihe forms {k2), (k£), or (k2 ka) and will be integrated in the following. 

0 

  

. 1 k2 
ki"“"‘ exp(“‘ 5 ‘L“ ) dk, - 

Or 20:    
O 

; T 02 = [[[ 12 16000 kb, dk = = 
— O0 X 

2 2 o 1/2 ‚. o mkanTr . = IE. 29m | M2 exp(—t) di = T2 9nT(3/2) = nod = i lsT 5.2 = n/ exp{—1) x/_ n(3/2) =nol 55 (5.23) 

0 

  

5{:. 

“OO 

4 7 - 3m2 k2 n 72 

= %47& fe 2 exp(—1) dt = \/“f_4nF 5/2) = 3not = W (5.24) 

0 

BEN 7 2 1 BEN ar o 1 _ by v () =5 [ K exp( - 5—53) dk, / ko exp( - 3) dh, = 
-0 0 i 

ket nT,, T, 
=N ;3. o 2 = U (5 25) 

167 RB 2 77 kg n m 4 5 ! 3 m > 
(&) = 5 (B3 + (B2) + (kD)) = 5 (T + Day + Tee) = 5kenT, , (5.26) 

which reflects egn. (5.5), 

(vepy=—1 0 (k) 0 |=kpn| 0 Ty 0 |=ksnT, (5.27) 
Ty 0 kD 0 0 T, 

and 
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[+ 00 
wevii= |0 (kg hog) + (kg) + (kS kD) 0] = 

0 0 (RZAD) +{(kgRD) + (ED) 

= 5 0 Ton Tyy + 377, + Ty Tzz » = 

,0 {) Ten Tyz + Tag Tyz + 3 T5, 

Kan Tal Tat Tat Tz) 89 D 
=t 10 Ty, (Tpo + 3Ty + Tz} 0 = (5.28) 

0 0 Ten (Ton + Tan + 3 Tor) 

2 Tor (2 Tara +375) 0 0 

= 5 0 Tyy {2 Tyy +37.) Ul = 
10 60 T, {27, +37%) 

=g | 0 Ty O 0 27, O |+ 0 3T, 0 ||= 
08 8 Ta 0 0 27, 0 0 37, 

ke, o, o~ o 
=5 (27 +3T,8)7 . 

The Hux equations of the anisotropice energy transport model thus become 

  I, =--(p) = I Im (V- (kun?) +gEn) ; (5.29) 
Mm IT 

k2 ~ N 713 ~ 1 = 
Sy = WE) mis (v . (““Ij“?i (27 + 37, 5) T) +q B (— -kenT, 6+— ks nF)) = 

‘ . 2m m 2 m 

TS kr am x amım 4 arm © Fe = (v-(n(amd+2P)P)+ Ine(smd+2T)), (5.30) 

and their one-dimensional projection onto an arbitrary direction e; reads 

  

T A 

= an (& (kg nTy) +q By 72) , (5.31) 
Mo nt 

Kin 

x ATm 75 k% ; q Sy = — mil (r)g (n (37, +273) T”) + In, (37, 2Ty = 
M , Tm äg B Ya not 

[77 

5 Ts ke ( 3T+ 27y q 3T, +2Ty 
m [y e een) — eh 5.32 5 Hn Y in 5 I kn in 5 (5.32) 

In terms of the general flux equation (3.41) 

5 u Vs (& {€ Ts} . Sn — Ei 3 3 (8.33) B 

the quantities Us, &, and Ta read 

Int Co = s,k pn , gen, Ty =Ty, (5.34) 

5 k% 73 3T, + 27, - 
8, c@:-—-fi—fiigfl, gun T =Ty . (5.35) 

2 q ™ D 

Note that the discretization eqn. (3.81) can be used without modification. 
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5.2.2 Non-MAaxwerLian Closure 

In the channel of state-of-the-art MOSFET devic 

These highly non-uniform field distributions give rise to distribution functions which deviate 

significantly from the MAxwerLian distribution. However, the standard energy transport mod- 

els are based on the assumption ofa heated MAXwELLian distribution. Even in a homogeneous 

semiconductor the di: ribed properly by a heated MAXWELLian 

distribution at high field values. Fig. 5.9 shows the distribution function in homogeneou 

with a bulk doping of Np = 10°° cm ®. The deviation from the MAXWELLian shape is 
which would appear as a straight line due to the logarithmic scale. 

strong gradients of the electric field occur. 
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Figure 5.9: Distribution function in bulk for different electric field values. 

The energy flux equation (2.162) contains the moment of fourth order of the distribution func- 

tion, (Ba): 

5k 

Sons (ka V(d)+qEn 7.) ne. (5.36) 
q m 

Sn=- 

  

To close the set of energy transport equations, (d4) needs to be expressed as a function of lower 

order moments. Assuming a MAXWELLian distribution function gives (61) = nT}, whereas a 
non-MAXWELLian distribution function can be characterized by (d4) = n PnT%, using a non- 
MAXWELLian parameter 9, #1. 

Regions of the channel where the high energy tail is underpopulated (points B, C, D, E in 

Fig. 5.6, Region II in Fig. 5.8) are characterized by 3, < 1. 

        

The non-MAXWELLian effects turned out to be important for SOI simulations. It is believed that 

standard energy transport SOI simulations yield anomalous ılts mainly bec: 
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are neglected. The problem is that in the energy transport framework there is no information 

about the non-MAXWELLian parameter A. In Chapter 6, several attempts are made to estimate 

this additional information. 

5.3 Combining the Modifications 

By combining the modifications for an anisotropic carrier temperature and a non-MAXWELLIan 

closure relation Ihe modified energy transport model becomes 

V- J, =q(R+8n), (5.37) 

In = Hin Ku (v ’ {n 7) + — En) ? (3.38) SB 

3 3 un-T 
VSn=-5kdln HE In Skon —— + Gen, (5.39) 

5% rs 37,6 +27 ~ \ g 37,6 +27 
I nn nn nm u SER nn 4 da BET ammmmmmmmmmmmmmmmmmmmmmmmmeene 5 LA Su= =5 2 (v (n - Fß) En ) (5.40) 

Ouly the flux equations (5.38) and (5.40) are changed whereas the balance equations (3.37) and 
(5.39) remain unchanged. 
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Chapter 6 

  

lodeling and Application 

N THIS chapter empirical models for the anisotropic temperature and the non-MAXWELLian 

closure relation expressed by the kurtosis Ö„, which appear in the modified energy transport 

model, are presented. The model is then used to simulate the devices described in Section &1, 

showing that tke drop in the drain current vanishes. 

6.1 Temperature Tensor Modeling 

To incorporate an anisobropic temperature into the standard energy transport model, it is of 

advantage to reiain 7, as the solution variable and to model 7;, and 7, empirically by means 
< 

of some anisotropy functions y,(T,} 

Ta = Ya Tr; I = Yu Tr - (6.1) 

Fig. 6.1 shows the anisotropy function vy, obtained by Monte Carlo simulation. "The two branches 

ofthe Monte Carlo results stem from the different eircumstances in the regions of carrier heating 

and carrier cooling. Since modeling of the anisotropice temperature is only an approximation of 

a second-order effect, usage of a single valued function appears to be justified. An important 

property is that y,(7,) drops beginning from unity and saturates for high temperatures. This 

means that the distribution becomes anisotropie at high temperatures whereas the equilibrium 

distribution stays isotropie, which is consistent with the fact that the eguilibrium solution of 

BOLTZMANN’S transport eguation is the isotropie MAXWELL distribution function. 

Two analytical anisotropy functions shown in Fig. 6.1 have been investigated: 

Ta- Tr u 
Yo, () = Yoy + (1 — Yoy ) ex}i*(—"%";““) ; (6.2) 

ref,y 

N T - Tr, 2 N‘ 

ln) = rg +) re) ): (6.3) 
- ref,y 

Implementation of both funciions showed that the convergence properties are vastly improved 

by using egn. (6.3) instead of egn. (6.2). I is believed that the steep decrease of egn. (8.2) 
gear equilibrium and the non-vanishing derivatives under this conditions result in an unstable 
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behavior. The analytical model for T, using egn. (6.3) is depicted in Fig. 6.2, with "ya, = 0.75 
and Trer,, = 600K. Excellent agreement with the Monte Carlo data is obtained. 

6.2 Closure Relation Modeling 

9.2.1 Six Moments Transport Model 

To obtain information about the distribution function additional to the average energy several 

authors proposed usage of higher order moment equations, see for example [70] [Ti]. These 
equations were based on a distribution function expanded around a Maxwellian distribution. 

SONODA [40] added two equations for the fourth and fifths moment of BOLTZMANN’S transport 
TEN 

equation io a standard energy transport model, taken from [72]. A more consistent approach 

has been presented in Chapter 2 where a transport model using six moments of BOLTZMANNs 

transport, equation has been derived, with the kurtosis /, as an additional state variable [38, 

Ga). 
Although this approach appears promising from a physical poinf of view, it has not been used 

to tackle the SOI problem as the additional balance equation significantly increases numerical 

complexity and computation times. Convergence behavior also worsens considerably. Instead, 

the framework of energy transport equations was adopted and corrections accounting for distri- 

bution function effects were introduced. 

6.2.2 Bulk Case 

By neglecting in Ihe six moments transport model (egns. (2.178) to (2.183)) all terms containing 
derivatives, equations for the homogeneous case are obtained 

„=gmnEnr, (6.4) 

Sn 2 kg SE in EnTn , (6.5) 
2 Ten 

3. Tn-T 
0=F -Jy— ken —, (6.6) 

2 TE 
5, Eh- TE 

0=-24E.5,- kan 4 —. (6.7) 
8 

Inserting eqn. (6.4} into egn. (6.8) and egn. (8.5} into egn. {6.7) yields the equations 

3, nz Y B2 = = iy et 2 rn 3 "B TE ) (6.8) 

_ 3. 7?28, —T? 
am B2, = kg In Pn Ir (6.9) 
T 4 T8 
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Figure 6.1: Approximation of the anisotropie temperature by the analytical models 

(6.2) and (6.3). 
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Figure 6.2: Components of the temperature tensor obtained by Monte Carlo simula- 

tions compared to the analytical model of T,,,. eqns. (6.1) and (6.3). 
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Unfortunately, the model: 

  

for the relaxation times are not accurate enough to obtain a realistic 

estimate for n,bulk- Therefore the following fit to Monte Carlo data has been developed 

22 < 4m (1 -exp(-2, 4) . (6.11) 
Tm TE 1, 

x, = 1.34, and za = 1.89. This expre: 

  

with zo = 0.68 ion is accurate for doping concentrations   

    

  

  

  

  

  

        

  

  

  

  

  

  

around 10!% cm ? but the doping dependence of 8, .puk is only relevant at lower temperatures 
(Fig. 6.3). 
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Figure 6.3: Kurtosis §, as a function of the temperature 7, for bulk silicon with 

the doping concentration as a parameter together with the analytical expression 

(6.10) and (6.11). 

Unfortunately, the presented formulation for 37,pulk did not solve the problem of anomalous SOI 

simulation results—presumably because the decrease of the kurtosis with increasing temperature 

occurs too slowly. 

6.2.3 Inhomogeneous Case 

  

In this section heuri 

  

tic models for 8, will be presented, which have been fitted to Monte Carlo 

ı-n* test structures.     results o 

The points B and E in Fig. 5.5 can be distinguished by taking, for example, the gradient of the 

carrier temperature into account. To capture both the 3, < 1 and 9, > 1 region (Fig. 6.4), such 

a dependence on the gradient of the carrier temperature is introduced: 

Vor.) ı 
J Emax 

  
k 

) Brora(Tn) . Ur=-21,. (6.12) Ana = (1- 
q 
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Figure 6.4: Monte Carlo simulation of an n*- 

moment of fourth order $,,uc compared to the analytical model (6.12). 

ı* structure showing the normalized 

  

To account for the non-parabolic band structure used in the Monte Carlo simulation a non- 

parabolieity factor due to BORDELON [73] [74] is included 

3 2 Pronal in) = 5 HUH) (14, Hm): (6.13) 
1405 ul 

1420 3 ln H(T,) a=05eV . (6.14) 

The model (6.12) reproduces the peak of 3, in the region where the hot carriers from the channel 

mix with the cold ones in the drain (Fig. 6.4). In this way, the hysteresis of 3, shown in Fig. 6.5 

can also be reproduced at least qualitatively. 

  

However, the model eqn. (6.12) leads to severe stability problems with the numerical iteration. 

Furthermore it turned out that the reproduction of the peak is not essential for solving the 

problem related to SOI simulation nce the important point is to allow for a reduced 9, along 

the channel—especially in the pinch-off region. 

   
  

  

In most of the channel region the high energy tail i populated than that of a MAXWELLian 

distribution which means that 8, < 1 (Fig. 6.6). believed that proper modeling of the 

Bn < 1 region is very important for the SOI problem described in Chapter 4, because the smaller 

amount of carriers in the high energy tail will give reduced hot carrier diffusion into the floating 

body. 

   

  

To avoid numerical stability problems a model for 8, as a function of 7, only has been developed 

T, ~Tiy2 
Bn2 = o+ (1= o) PJ(]J(*(:I"*HL) ) . (6.15) 
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Figure 6. Jomparison of the non-MAXWELLian parameter obtained by Monte Carlo 

simulations and the empirical model (6.15). 
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MODELING AND APPLICATION 6.3 Summarizing the Models 
  

which neglects the peak in the drain region (mixing of hot and cold distributions). Parameters 

are only weakly dependent on doping and applied voltage which can be seen by comparing 
= 

Fig. 6.4 and Fig. 6.6 which were obtained by using two different, devices. 

6.3 Summarizing the Models 

&) onto a direction eı er 4 i For discretization the one-dimensional projections of eqns. (5.38) and (5.4 

has to be considered: 

In = pin (8 (ni) + Ra B -n) , (6.16) 
<R 

5 k2 Te . 37, + 27 3T 2T len), 6.1) 
By assuming an isotropic MAXWELLIAN distribution, which results n Tan = 7, and 9, = L, the 

conventional energy transport model is obtained. 

The carrier temperature 7, defined by egn. (2.84) is a measure of average carrier energy. The 

diagonal component of the temperature tensor is given by ks Tu = (up). Off-diagonal compo- 
3 

nents are neglected. The solution variable is still the carrier temperature 7);, whereas the tensor 

components and the fourth order moment are modeled empirically as functions of 7}, {engs. (8.3) 

= You + (1 = Y00 exp(m(%fi)g) wel, (6.18) 

= + (1= o) exp(~ (1)) (6.19) 
The empirical model for ihe temperature tensor distinguishes between directions parallel {|} 
and normal (| } to the current density 

Ty =% Ty, vll. (6.20) 

The diagonal temperature for a generic direction &; == (cos p, sin) is obtained [rom the average 

{v-&;p- 67) after neglecting the off-diagonal terıns as 

Ty =1 cos? w AT sin? @ (6.20) 

i = arccos{e; - ey} . (6.22) 

> The graphs of the functions of egns. (6.18) and (8.19) are displayed in Fig. 8.7. Both functions 

value. Parameter values for yo, Do, and Trer can be roughly estimated from Monte Carlo 
- 

simulations of one-dimensional n"-n-n" test structures (Thl. 6.1). 

Monte Oarlo results for the anisotropic temperature in a MOSFET are shown in Fig. 6.3 and 

Fig. 8.9 in comparison with the analytical models. Fig. 8.8 indicates that values for ihe 

anisotropy parameter can be as low 38 gy = 0.6. Values close to fo = 0.75 Tor the non- 

MAXWELLian parameter in the chaunel region can be estimated from Fig. 6.3. These parameters 

show only a weak dependence on doping and applied voltage. 
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Table 6.1: Parameter values estimated from Monte Carlo simulations. 

6.4 Using the Modified Energy Transport Model 

  

Fig. 6.10 shows the influence of the anisotropy parameter Yo, on the output characteristics. 

By accounting for a reduced vertical electron temperature it is po: 

current decrease, but only to a certain degree and by assuming a fairly large anisotropy. 

ssible to reduce the spurious 

  

By combining the modifications for an anisotropie temperature and a non-MAXWELLian clo- 

sure relation the artificial current decrease is eliminated (Fig. 6.11). Parameter values roughly 

‚ for example vy, = 0.75 and 80 = 0.75. In the 

eliminated the output characteristics are found to be 

  

estimated from MC simulations can be us    
parameter range where the current drop 

rather insensitive to the exact parameter values. 
    

When the modified model is applied to a body-contacted MOSFET, the difference in the output 

characteristic is only marginal compared to the standard energy transport model. For example 

using the values Yoy = 0.6 and $0 = 0.75 leads to a maximum deviation in the drain current of 

about 0.3% compared to the standard energy transport model within the bias range. 

Using the modified energy transport model good agreement of the electron concentration in 

vertical direction with Monte Carlo data is obtained (Fig. 6.12 and Fig. 6.13). This confirms 

that the correction of the SOI output characteristics obtained with the modified model is based 

on a corrected behavior of the electron distribution in the bulk. 

  

  

80



MODELING AND APPLICATION 6.4 Using the Modified Energy Transport Model 
  

  3500 T 

N m #n,MC 

3000 — Tuch] 

| | Tyy 
2500 | 

2000 \ \ 

1500 7 \ A\ 

1000 Y 

500 

0 
=50 0 50 100 150 200 250 

z/um 

  

  

      
  

  

T/
K 

  

  

  

  

                  

  

Figure 6.8: Monte Carlo simulation of a 9Dnm and a 180nm MOSFET (Device 3 with 

different gate-lengths) showing the y-component of the temperature tensor at the 

surface compared to the temperature T„,mc from the mean energy. The analytical 

model for T,,, uses Yoy = 0.6. 
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Figure 6.9: Monte Carlo simulation of a 9Dnm and a 180 nm MOSFET (Device 3 with 

different gate-lengths) showing the normalized moment of fourth order A„,mc at 

the surface compared to the analytical model for 3, with 30 = 0.75. 
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ics of the SOI (Device 1) obtained by anisotropic 

energy transport simulations without closure modification (Bo = 1). 

  

  

  

    
  

  

            
    

  

0.25 
el 

eg 

0.2 = | 

/ T~ 
0.15 I 

< 
< 
= 

0.1 

By =1.0 
— B =09 

0.05 > — 
— By =08 
— By =075 

0 L 
0 0.2 0.4 0.6 0.8 1 

Vos/V 

Figure 6.11: Output c 

temperature (Yoy = 

  

aracteristics of the SOI (Device 1) assuming an anisotropic 

.75) and a modified closure relation at Vges=1V. 

  

  

 



MODELING AND APPLICATION 6.4 Using the Modified Energy Transport Model   

  
  

  

1e7 

      0.
20
 

  
-0.3 000 bo 606 do’ 012 015 ols 

x/um 

  

Figure 6.12: Electron concentration in a MOSFET (Device 3) obtained by simulations 

using the modified energy transport model compared to Monte Carlo data. 

1020 

1018 

1016 

101 

1012 

1010 

n/
cm

 
? 

108 

106 

10! 

10? 

  

10° 
0 0.02 0.04 006 008 01 012 0.14 0.16 0.18 02 

y/pm 

  

Figure 6.13: Comparison of the electron concentration in a MOSFET (Device 3) at 

a vertical cut located in the middle between source and drain obtained by simu- 

lations using drift-diffusion (DD), standard energy transport (ET), Monte Carlo 

(MC), and the modified energy transport (MET) model. 
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MODELING AND APPLICATION 6.5 “Well-Tempered” SOl MOSFET 
  

6.5 “Well-Tempered” SOl MOSFET 

To verify the modified energy transport model, another SOI device has been investigated (De- 

vice 4). The standard energy transport model predicts the drop in the drain current also for 

this device (5, 1.0, 79, = 1.0 in Fig. 6.14). Applying the modified model using the same pa- 

re leads to output characteristics with only positive output conductance. The 

different order of magnitude of the drain currents seen with Device 1 and Device 4 mainly stems 

from the rather high threshold voltage of Device 1. 
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Figure 6.14: Output characteristics of the “Well-Tempered” SOI (Device 4) at Vas = 

IV. 

The difference in the electron concentration is 

  

shown in Fig. 6.15. In the case of the standard 

energy transport model, the spreading of the hot electrons is much more pronounced than with 

the modified one. By looking at the potential in the device at a vertical cut located in the middle 

between source and drain (Fig. 6.16), the difference between the standard energy transport model 

and the modified one is also clearly visible. The standard energy transport model produces an 

anomalous decrease of the body potential. 

  

  

6.6 Grid Matters 

It appeared that in contrast to MOS devices the grid in the floating body region plays a crucial 

role to the stability of the simulation and the quality of the result. This is due to the fact that 

the drain current is very sensitive to the location of the potential drop in the floating region. 
    
   

  

For example, when using a too coarse grid in vertical direction in the body area, unphysical rip- 

ples are observed in the output characteristics (Fig. 6.17). With inc: 

  

sing drain-source voltage 
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Figure 6.15: Electron concentration in the “Well-Tempered” SOI (Device 4) obtained 

by a standard energy transport and a modified energy transport simulation. 
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Figure 6.16: Vertical potential distribution in the “Well-Tempered” SOI (Device 4) 

obtained by drift-diffusion, energy transport, and modified energy transport sim- 

ulations. 

 



MODELING AND APPLICATION 6.6 Grid Matters 

the floating body area becomes smaller and the junction moves deeper into the semiconductor. 

Each time the junction reaches the next grid line, a pronounced drop in the drain current can be 

observed. The grid in vertical direction must be refined until the interpolation of the quantities 

between the grid lines has no influence on the output characteris     

  

Fig. 6.17 shows output characteri: ics of such a device using different parameter values for the 

modified energy transport model. 
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Figure 6.17: Output characteristics of an SOI similar to Device 1 but with coarser 

grid in vertical direction. 
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Chapter 7 

Summary and Conclusion 

N SIMULATIONS of partially depleted 50! MOSFETs anomalous output characteristics have 

been observed which indicate a complete failure of the standard energy transport model. 

Therefore, the derivation of the energy transport model has been reconsidered. A system- 

atic technique based on Ihe method of moments allows the rigorous derivation of increasingly 

sophisticated transport models from BOLTZMANN’sS transport equation. BOLTZMANN’S trans- 

port equabion is multiplied with weight funchions of Increasing order and is integrated over 

momentum-space which ylelds an infinite set of equations. These equations are coupled as the 

eguabion for a given moment contains a moment of next higber order. To obtain a tractable 

equation set this hierarchy has to be truncated. The highest moment has to be modeled as a 

funchion of the available moments to close the equation system. The closure has been performed 

at different orders: 

« When only the first iwo moments are considered the drift-difusion model is obtained 

which is still predominantly used in engineering applications. Its advantage is that the 

numertical methods are robust because only one balance equation needs to be solved. As ihe 

drift-diffusion model cannot capture non-local effects, which gain increasing importance 

for minmiaburized devices, its use becomes questionable. Therefore, higher-order equations 

have been considered. 

s The model obtained by using the Grst three moments is seldomly used. The energy Hux 

equation is often extended in an Inconsistent way and Ihe model has no advantage over 

the four moments transport rnodel, since also two balance equations have to be solved. 

& Inclusion of the Erst four moments of BOLTZMANNV’S equation results in the full hydrody- 

namic model which is, however, t00 complieated for every-day’s use. Within the framework 

of the diffusion approximation the convective terms in the hydrodynamic models are ne- 

glected. This results in simpler energy transport models, which are offered nowadays by 

leading commercial and academic device simulators. 

» T'he derivation of a six moments transport model appeared to be very instructive for the 

development of the modified energy transport model. However, for every-day’s use it 

canuıot be recommended since the third balance equation increases the complexity of the 

system further and numerical stability seems to be worse than with the energy transport 

model. 
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SUMMARY AND CONCLUSION 
  

A detailed study reveals some fundamental problems common to transport models using the 

first three or four moments. Most importantly, the energy distribution function is frequentiy 

inodeled by assuming a heated MAXWELLian distribution. This distribution function model is 

then used to derive a closure relation. Monte Carlo simulations show that the energy distribution 

function is only poorly described by a heated MAXWELLian distribution function, both for bulk 

and inhomogeneous devices. 

In the particular case of partially depleted SOI MOSFETs the error in the closure together with 

the assumed equipartition of the energy in the directions parallel and normal to the current 

density cause a complete breakdown of the energy transport model. The number of carriers 

with suflicient energy to surmount the barrier towards the bulk is significantly overestimated 

which results in a spurious drop of the body potential with increasing drain voltage instead of 

the expected rise. Via the body effect the transistor is then virtually turned off, visible as a 

strong decline of the drain current in the output characteristic. 

An improved energy transport model has been developed and implemented n Minmos-NT. 

By using this advanced model it is possible to successfully simulate partially depleted 50! de- 

vices. The unphysical current drop in the output characteristics predicted by the standard 

energy transport model is entirely avoided. The madifications to the standard energy transport 

transport model consist of the introduction of an anisotropic carrier temperature and a modi- 

fied closure relation. The new model appeared to be very stable, especially when compared to 

simulations of 501 MOSFETs with the standard energy transport model, because it produces a 

physically sound solution. The spurious diflusion of hot electrons perpendicular to the current 

direction is sufficiently reduced. 

Based on the observalions made during the evaluation of transport models including the first 

four moments of BOLTZMANK®’S transport equation, an extended model has been propased which 

includes the first six moments. The additional even order moment is the kurtosis of the distri- 

bution function. While not applicable for 5Ol simulation due to mumerical stability problems, 

its derivation gave valuable insight in modeling the closure relation used in the modified energy 

transport model. Furthermore, it has been proven to be highly beneficial for other works per- 

formed at the institute. In particular, an analytical model for the energy distribution function 

(69) has been proposed which accurately captures the features observed in Monte Carlo simu- 

lations, notably the thermal tail inside Ihe channel and the contribution of cold carriers inside 

the drain region. This analytical distribution function model has been used to model impact 
ey 

ionisation [75, G6] [78] and the hot-carrier gate currents |77. 
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Appendix A 

  

Vector and Tensor Notation 

OR THE SAKE of convenience and to better describe the structure of the moment equations, 

& few symbols will be introduced. Let a, b, ¢, ... be vectors in a {real) space of dimension 

N. 

a={a;}, 1< <N (AA) 

Then, the symbol 

aab={mb;} , 1<, <N (A.2) 

represents the set of all pairs of the components a;, & of two vectors, where the indices i and 

§ range independently over all ihe admissible values. Hence, egn. (A.2) defines a tensor, whose 

elements are the quantities a; b,. The definition can be extended to the triplets 

a®b@c={abc}, 1<6,5,6< N, (A.3) 

and so on. The following notation is adopted [4]: 

f’g =a®b, T = a; by, (AA) 

T,=a8b®Be, Tigr > 0 85 © ; (A.5) 

x 

vectors defining it. For instance M = 2 in eqn. (A.2} and M = 3 inegn. (A.3). Hence the tensor 

special case a=b=c=..., however, the tensor is completely symmetric and any permutation 

of indices in an slement. leaves the tensor unchanged. Ta this case, the number ofelements which 

are different from each otker is smaller than N”, and the tensor is invariant when the order of 

the vectors is changed. 

Ib is useful to expand the tensor product to scalars as well, and to identify it with the normal 

product, 

c@a=ca=8Rc. (A.6) 
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VECTOR AND TENSOR NOTATION 
  

In the following, the scalar product will be used as well. If necessary for the sake of clarity, it 

will be expressed explicitly like, for example in 

N 

g 1’3 R ZT’:fl“ Ok s (A?) 

k=1 

_ N 

a-Ty= Zai Tk ¢ (A.8) 
-;f::::]_ 

, N 
Ty Up=1{ 3 TyUpy . (A.9) 

dk 

In general, the scalar product depends on the order of the tensor, and becomes invariant only 

when all tensors involved are syimmetric. 

Let now &, &, ..., £v be spatial coordinates, which will also be referred to as £, and let the 

tensors be functions of & as well. Introducing the nabla operator 

Ve=1{0,}, 1<j5N, (A.10) 

the divergence of a rank M tensor is defined as 

N 

Ve Ty = 23& Dir; (Ai) 

where it is intended, that the multiplication by W is symboliec. It is seen, that W Tr is a tensor 

ofrank M—1. Consistently, the gradient ofarank M tensor is defined as the rank M +1 tensor 

Ve Tur = (0 Ty k) I<r<N. (A.12) 

relationships hold: 

Vg - (g Tar) =g Vg - Tr + Tas Weg, (A.13) 

Ve - (Fir g) = fiw Ve gtg- Ve Tu . (A.14) 

Another definition which will be used is the statistical average of a tensor 

{(The) = / Tagw dV¢ (A.15) 

D 

where D is the definition domain of Ty in the £-space aud w is a distribution function. 
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Appendix B 

  

Driving Force Discretization 

O IMPLEMENT the discretization scheme described in Chapter 3 into Ihe device simulator 

MINIMOS-NT an expression for the driving force was required. The driving force F„ is 

defined by 

I, gm En. (B.1) 

To obtain the discrete driving force the discretized current density eqns. (3.63) and (3.64) 

Go i - _ AT, 
e Ta ( h: 2 Y —_ —Y, , T LI mm B.2 

In Da" ny B(¥1) = m B ( 1)> " (T /70 ) (B.2) 

i q N , 
Y = o oo Sn 7” Di AT, . B.: 1 7 e kn W z) { 3} 

must therefore be divided in sorme way by Ihe electron concentrabion n. Thus, an average carrier 

concentration 7 is introduced via the following definition 

  

‚I Os fo _ ma (RB)-RBlN). - (B.4) 

By comparing the coefficients of egn. ({B.4} with those from eqn. (B.2) 

aB{A)=n; B(Y1) , (B.5) 

and using the identity 

B(x) 5 e 
. =& B.7 

B(—x) BD) 

ihe new argument A ofthe BERNOULLI funchion can be calculated 

en, (3.8) 
1y 

A=Y —lIn(n;/n;) , (B.9) 

and the average carrier concentration is finally found to be 

nen ur m. (B.10) 
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DRIVING FORCE DISCRETIZATION 
  

Appiying the identity 

B(z) - B{—z)= —x2, (B.11) 

i Ci T (8 (A) - B(- A) = Mm. (B.12) 

After inserting Ci from egn. (2.188) 

8, KR ln —— kam A am 
In = anna = Gun Ti En mim ) (B.13) 

the expression for the discretized driving force can easily be obtained 

  

  Fl = 52 — In e T 8 e - - B.14 

n Sn a "Az o q (/T Az ( )     
  

The consistency ofthe discretization can be checked by calculating the driving force in the Iimit 

of &z — 0 

    

  

, i kp /1,Y: Alan) , im A) = lim un a (At AS) B.15 An A (B-15) 
. kg q Alb AT, AT, Alan) 

= im 3, (im -------------------------- . : ) ’ (B.16) 
Az g kr Az Az AT, Az ' 

where the abbreviations for A and Yı have been expanded. Using the total derivative yields 

  

  

_ dab kardl, 47, 1 u) 
En Sn e ‘ B.1 

In de "og ( dt de ann) dx (BAT) 
£ 

kg 1 dT, Ir aan -E-n = (n—+T, ==} (B.18) 
gr de de 

kp 1 d(nT, =, 2 d{nTy) (B.19) 
an der 

which is the one-dimensional projection of the driving force 

kg 1 1 
Fp=FE—s,—~V{(nT,) = In. (B.20) 

gn Gun? 
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